WO2014195539A1 - Celda de ablación criogénica con control de la temperatura de la muestra - Google Patents

Celda de ablación criogénica con control de la temperatura de la muestra Download PDF

Info

Publication number
WO2014195539A1
WO2014195539A1 PCT/ES2014/000096 ES2014000096W WO2014195539A1 WO 2014195539 A1 WO2014195539 A1 WO 2014195539A1 ES 2014000096 W ES2014000096 W ES 2014000096W WO 2014195539 A1 WO2014195539 A1 WO 2014195539A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
cell
external
laser
ablation
Prior art date
Application number
PCT/ES2014/000096
Other languages
English (en)
French (fr)
Inventor
Beatriz FERNÁNDEZ GARCIA
Ioana Konz
Adrián VALENZUELA CASTAÑEDA
María Luisa FERNÁNDEZ SÁNCHEZ
María Rosario PEREIRO GARCÍA
Alfredo Sanz Medel
Original Assignee
Universidad De Oviedo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Oviedo filed Critical Universidad De Oviedo
Publication of WO2014195539A1 publication Critical patent/WO2014195539A1/es

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0468Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components with means for heating or cooling the sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • H01J49/0418Sample holders or containers for laser desorption, e.g. matrix-assisted laser desorption/ionisation [MALDI] plates or surface enhanced laser desorption/ionisation [SELDI] plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0459Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for solid samples
    • H01J49/0463Desorption by laser or particle beam, followed by ionisation as a separate step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration

Definitions

  • the present invention relates to an ablation cell with control of the temperature of the sample comprising a removable top cover, a base of the cell which in turn comprises an internal cooling system, an external cooling system, a sample temperature sensor, temperature control means and an external ventilation system.
  • the cell of the present invention can be used in combination with other devices such as, for example, a laser ablation system coupled to an inductive coupling plasma system with optical or mass emission spectrometry detection.
  • the invention is applicable in those sectors where ablation cells are designed, produced or used, such as that of machinery and mechanical equipment, geology, biology, medicine, archeology or chemistry.
  • the cryogenic ablation cell proposed in the invention is closely related to an analytical method for the detection of trace elements in solid samples by tearing sample material using a laser beam.
  • a sample to be analyzed is arranged in a laser ablation system to be subjected to the removal of material by impact of the laser beam on its surface.
  • the aerosol generated from the sample is transported by a flow of inert carrier gas (usually helium or argon) to an inductive coupling plasma (ICP) where the atomization and ionization of the aerosol occurs, subsequently allowing the detection of ions generated with a mass spectrometer (MS).
  • ICP inductive coupling plasma
  • ICP-MS laser ablation equipment (LA) consists are: a laser system, which includes a laser beam guidance optics (set of lenses and mirrors that lead the laser beam to the surface of the sample) and an ablation cell where the sample to be analyzed is arranged, an interface for the transport of the generated aerosol and, finally, an ICP-MS instrument.
  • a laser system which includes a laser beam guidance optics (set of lenses and mirrors that lead the laser beam to the surface of the sample) and an ablation cell where the sample to be analyzed is arranged, an interface for the transport of the generated aerosol and, finally, an ICP-MS instrument.
  • the LA-ICP-MS technique is also increasingly used for the determination of metals and trace elements in tissues of biomedical interest, such as kidney and heart tissues (Zoriy M, Matusch A, Spruss T, Becker JS "Laser ablation inductively coupled plasma mass spectrometry for imaging of copper, zinc, and platinum in thin sections of a kidney from a mouse treated with cis-platin "Int. J. Mass Spectrom.
  • the ideal method for the preparation of Samples are the freezing thereof, resulting in this case the use of an ablation cell that allows working at low temperature to ensure both integrity of the samples as the accuracy of the analysis.
  • a cryogenic cell for the analysis of other types of solid samples (eg bone structures, implants or geological samples)
  • the benefits obtained using a strict control of the temperature of the sample throughout the analysis are superior to the analyzes done without temperature control (Zoriy MV, Kayser M, Izmer A, Pickhardt C, Becker JS "Determination of uranium isotopic ratios in biological samples using laser ablation inductively coupled plasma double focusing field field mass spectrometry with cooled ablation chamber "Inter. J. Mass Spectrom. 242 (2005) 297).
  • the field of application of ablation cells operating at low temperature is very wide and is not only restricted to samples of biomedical tissues.
  • the cooling of the sample takes place on the support in which the sample to be analyzed is arranged and it is the temperature of this support that is controlled by the cooling systems.
  • Accurate and continuous control of the temperature of the sample is a crucial aspect to ensure the integrity of the sample during the analysis (which can last more than 20 hours when doing i aging studies), especially in the case of samples of tissues prepared in their native form.
  • these ablation cells do not allow to monitor the temperature of the sample and, therefore, it may undergo changes due to the important thermal effects that the laser beam exerts on the sample during the analysis.
  • the results obtained from the analyzes by LA-ICP-MS lack accuracy and precision and are not representative of the sample.
  • the present invention relates to an ablation cell with sample temperature control, which can be used in combination with other devices such as, for example, a laser ablation system coupled to an inductive coupling plasma system with spectrometry detection. of optical or mass emission.
  • the ablation cell of the present invention comprises:
  • the lid in turn comprises a transparent window to the laser through which the beam that allows the sample to be ablated penetrates.
  • the lid also has at least one opening for the entrainment of entrained gas and at least one opening for the outlet of entrained gas.
  • the entrainment gas serves to transport the aerosol with particles formed from the ablation of the sample to the exit of the ablation cell. This aerosol is suitable for analysis, for example using optical emission and mass spectrometry instruments.
  • the entrainment gas is an inert gas, such as helium or argon, such that it does not interfere with the analysis of the material of interest.
  • a base of the cell which in turn comprises an internal heat exchanger, an internal cooling system, a cooling plate on the internal cooling system and a sample holder on the cooling plate.
  • the internal heat exchanger provides a cold focus inside the cell, which is cooled thanks to the constant supply of a cooling fluid that comes from the outside.
  • the internal cooling system allows to dynamically and immediately regulate the temperature of the sample that is placed on the sample holder, keeping it within an appropriate range for the ablation process.
  • the internal cooling system transfers heat from the cold focus to the hot focus, which appears due to the power of the laser beam that hits the sample, heating it.
  • the cooling plate transmits the regulation temperature provided by the internal cooling system to the sample holder, on which the sample is arranged.
  • the base of the cell also comprises a light-transparent window and an internal heat exchanger connection system and the external cooling system through which a cooling fluid penetrates.
  • An external cooling system which in turn comprises an external heat exchanger and pumping means of a cooling fluid that allow the circulation of the cooling fluid through the internal heat exchanger of the base of the cell and the exchanger of external heat.
  • the pumping means can be any system for transferring a fluid, such as an electronically controlled radial pump, associated with conduits carrying the pumped fluid.
  • a sample temperature sensor that allows direct control of its temperature.
  • An external ventilation system that drives a ventilation fluid over the laser transparent window of the removable top cover.
  • the ventilation system allows to maintain optimal conditions of work reducing for example the effects of diffraction or reflection associated with condensation phenomena on the transparent window to the laser.
  • the removable top cover and the cell base are made of thermal insulating material.
  • the selection of a material with an appropriate thermal transmission coefficient directly influences the heat transfer kinetics due to the strong thermal gradient that can occur between the inside and outside of the cell. This aspect has a direct impact on the sizing and configuration of the different cell subsystems, such as temperature control means, the internal heat exchanger or the internal cooling system.
  • the thermal insulating material is a polyamide compound.
  • the laser transparent window comprises a quartz crystal.
  • Quartz crystal offers ideal properties for the transmission of a laser beam typically used in ablation processes.
  • the quartz crystal facilitates the vision of the interior of the cell and allows the illumination of the sample from the top.
  • the quartz crystal allows the transmission of an electromagnetic wavelength in the range between 1064 nm and 193 nm.
  • the opening for the entrainment of entrained gas consists of a single hole. In another preferred embodiment, the opening for the entrainment of entrained gas consists of four inlet holes.
  • the opening for the removal of entrained gas consists of a single orifice.
  • the single hole is in the form of a collecting funnel.
  • the gas outlet opening consists of four outlet holes.
  • the selection between one or four holes for the entrance or the exit and the materialization of the funnel-shaped exit depends on the size of the lid and, therefore, on the volume of the ablation cell and, above all, on the features of the entrainment gas and the means to boost it. In some applications, such as in imaging studies, obtaining a laminar flow of the entrained gas with the aerosol is decisive for obtaining a good analytical result.
  • the internal heat exchanger is a coil.
  • a coil-shaped heat exchanger is a very efficient solution, increasing the heat exchange capacity in a very small volume of space.
  • it also allows the heat exchanger to be arranged in a space close to the inner wall of the cell, so that a large volume is cleared inside the cell.
  • other components of the system need a selection of materials according to thermal transmission criteria, so as to promote rapid thermal kinetics.
  • the attributes that are related to this selection is the speed of reaction for the temperature control of the system.
  • An optimized material selection allows you to limit the thermal variation of the sample over time with an accuracy of even tenths of a degree.
  • the coil is made of a thermally conductive material.
  • the thermal conductive material is a metal or an alloy of metals, such as aluminum.
  • the internal cooling system comprises at least 4 Peltier elements. Peltier elements are devices that allow heat to shift, regulate the temperature of the sample and which can also be controlled by control signals. Preferably, the Peltier elements are arranged annularly around the vertical axis of the sample, in a number of between four and eight elements.
  • the system further comprises an insulating plate of a thermal insulating material that thermally separates the cold face and the hot face from the Peltier elements.
  • the thermal insulating material is a polyamide compound.
  • the insulating plate of a thermal insulating material such as a polyamide compound, has the function of insulating the two faces of the Peltiers of the system of internal cooling so that there is no convection between both edge zones. In this way it is possible to increase the efficiency of the assembly and obtain optimum cooling of the sample.
  • the cooling plate is made of a thermally conductive material.
  • the thermal conductive material is metal or an alloy of metals, such as copper.
  • the sample holder is made of glass.
  • glass is a translucent material, which allows the passage of exterior light, such as that which comes from the light-transparent window also located at the base of the cell, and thus a good Sample display.
  • the connection system of the internal heat exchanger and the external heat exchanger comprises fittings.
  • the fittings are made of metal or a metal alloy.
  • the light transparent window of the cell base is a diffuser glass.
  • the external heat exchanger also comprises Peltier elements.
  • the cooling fluid is polypropylene glycol. In another specific embodiment, the cooling fluid is silicone oil. In another specific embodiment, the temperature sensor is a thermocouple in contact with the sample.
  • the temperature sensor is a pyrometer, which allows the temperature of the sample to be detected directly without contact, even being placed outside the cell, through the radiation thereof.
  • the system further comprises external lighting means that illuminate the sample through the light transparent window. This aspect is relevant when analyzing samples with structures or defects on a micrometric scale, where a good visualization of the surface of the sample is necessary by complementing with artificial vision systems, such as example cameras or microscopes.
  • the external lighting means comprise a light emitting diode, such as an LED, PLED or OLED.
  • the external ventilation system comprises a fan driven by motor means which can be realized with any system capable of moving the fan, such as an electronically controlled electric motor.
  • the external ventilation system comprises a pressure chamber containing the ventilation fluid, a conduit that conducts the ventilation fluid over the transparent window to the laser and valvular means, such as an electrovalve or a hydraulic regulator or pneumatic, to regulate the outlet of the ventilation fluid.
  • valvular means such as an electrovalve or a hydraulic regulator or pneumatic
  • the external ventilation system comprises a compressor that compresses the ventilation fluid, a conduit that conducts the ventilation fluid over the transparent window to the laser and valve means for regulating the output of the ventilation fluid.
  • the ventilation fluid may be the outside air of the cell, heat treated or not, compressed by a compressor and projected onto the laser transparent window.
  • the temperature control means collect and process analog or digital signals captured by the temperature sensor and send analog or digital control signals to the internal cooling system. In a more preferred embodiment, the temperature control means also send control signals to the external cooling system. In a more preferred embodiment, when the cell systems use Peltier elements, the temperature control means collect and process analog or digital signals captured by the temperature sensor and send analog or digital control signals to the Peltier elements, which modify their dynamics of operation based on these electrical control signals. In another more preferred embodiment, the processing of analog or digital signals is performed by program function blocks or software programs.
  • the treatment of analog or digital signals is performed by algorithms implemented in a computer.
  • This computer can also centralize the control of other systems related to ablation, such as the laser system or the system that provides the flow of entrained gas.
  • the invention provides a cell with a cryogenic refrigeration system that allows laser ablation of previously cryogenized samples while maintaining the temperature of the sample within a predetermined test range, despite the thermal disturbance that is induced in the sample itself during the analysis due to the impact of the laser beam on it and the circulation of an uncooled entrainment gas through the ablation cell.
  • the ablation cell allows the analysis of biological or biomedical tissues preserved in their native form, ensuring the integrity of the samples during the time in which it is arranged in the ablation cell.
  • the invention also provides a cell with a sample temperature sensor that may preferably be a thermocouple in direct contact with the surface thereof or a pyrometer directed on the surface of the sample.
  • a sample temperature sensor that may preferably be a thermocouple in direct contact with the surface thereof or a pyrometer directed on the surface of the sample.
  • the measurement of the temperature of the sample directly allows an instantaneous and continuous control of the temperature of the sample during the analysis without the need to make indirect approximations or readings that could falsify the results.
  • the direct measurement of the temperature of the sample also makes it possible to carry out a very rigorous control of the dynamics of the ablation throughout the analysis, by means of the rapid readjustment of the temperature of the sample using the internal cooling system.
  • the configuration used to perform the cooling of the sample arranged in the ablation cell combines an internal cooling system with an internal heat exchanger and an external cooling system.
  • both the external cooling system and the internal cooling system comprise Peltier elements which allows a temperature adjustment to be carried out in a controlled, fast and precise manner.
  • the temperature control means collect and process analog or digital signals captured by the temperature sensor and send analog or digital control signals to the internal cooling system.
  • the temperature control means means that, on the one hand, the temperature of the sample can be monitored and, on the other, controlled so that it is within the optimum working range at all times.
  • the rapid response of the internal cooling system can ensure a thermal variation in the sample of only ⁇ 0.2 ° C over 17 hours of laser analysis.
  • the internal cooling system consists of eight Peltier elements arranged annularly at the base of the cell, which allows the entire sample to be internally cooled in a very homogeneous manner and also allows the passage of light for a better visualization thereof. .
  • the removable top cover has an opening for the gas outlet with a collecting funnel shape which allows a quick and efficient extraction of the aerosol generated from the ablation of the sample. This ensures that in the ablation cell there is a laminar flow that has a positive impact on the lateral resolution of the analyzes, which is crucial in imaging studies as there is a lower mix of information from different parts of the sample.
  • the light-transparent window makes it possible to improve the display of the sample within the ablation cell, especially if auxiliary means are used, such as a video monitor associated with the laser ablation system, to optimize the location of the impact zone and ablation. In this way, it is not only possible to illuminate the sample from the top, through the transparent window to the laser, but it is also possible to backlight the sample from the bottom, in case the window is arranged in the bottom of cell base. This aspect is of crucial importance when analyzing samples with micrometric scale structures or defects where a good visualization of the surface of the surface is necessary. sample.
  • the internal cooling system is in the form of a coil and the internal heat exchanger is arranged in such a way which allow a beam of light to pass through the center of the cell base.
  • the ablation cell is complemented by an external ventilation system that drives a ventilation fluid over the transparent window to the laser, thus avoiding condensation problems and thus ensuring the ablation of the sample always under the same conditions (for the same conditions of contour as the same energy of the laser beam), and therefore the quality and repeatability of the experiments.
  • the invention is applicable in those sectors where ablation cells are designed, produced or used, such as that of machinery and mechanical equipment, geology, biology, medicine, archeology or chemistry.
  • Fig. 1 shows a detailed view of a section of the ablation cell (1) where the different components and systems of the cell base (4) and the removable top cover (2) can be observed.
  • the removable top cover (2) has a laser transparent window (3) in the center of it.
  • an internal heat exchanger (11) in the form of a coil
  • an internal cooling system (12) materialized in Peltier elements a cooling plate (13) on the cooling system internal (12)
  • the sample (5) to be analyzed is placed in the base of the cell (4) on a sample holder (14) arranged on the cooling plate (13).
  • Both the sample holder (14) and the light-transparent window (17) allow to carry out a correct display of the sample (5) when it can be illuminated from several directions, through the transparent window to the laser (3) and through the transparent window to the light (17).
  • external lighting means (18) that can be materialized by means of LEDs and that are not represented, emit a light radiation that can be introduced through the window transparent to light (17), improving the display of the sample (5).
  • the cooling plate (13) of a material that is a good thermal conductor, is placed on the internal cooling system (12) comprising 8 Peltier elements.
  • the figure also shows an insulating plate (19) of a thermal insulating material that thermally separates the cold face and the hot face from the Peltier elements.
  • the ablation cell (1) has a temperature sensor (21), which in the figure is represented by a thermocouple arranged directly on the sample (5), which allows to carry out the exact and continuous control of the temperature of it.
  • Fig. 2 shows a decomposed view of the different components of the base of a cell (4) similar to that shown in Fig. 1, arranged on an imaginary vertical axis.
  • the internal cooling system (12) represented by eight Peltiers can be in direct contact with the cooling plate (13) where the sample holder (14) is placed with the sample (5).
  • this figure clearly shows the arrangement of the insulating plate (19), separating the cold face and the hot face of the internal cooling system (12), materialized in several Peltiers, intercalating with them.
  • the light-transparent window (17) that allows a correct display of the sample (5) to be able to illuminate it from the bottom is shown at the bottom of the base of the cell (4). using external lighting means (18).
  • Fig. 3 shows a view of the removable top cover (2) of the ablation cell (1).
  • the opening for the gas outlet (24) is a unique hole that in the interior part of the The lid is in the form of a collecting funnel, which allows the entrainment gas carrying an aerosol comprising material torn from the sample (5) to be extracted from the ablation cell (1) quickly and efficiently. In this way the lateral resolution of the analyzes can be improved, which is crucial in imaging studies.
  • Fig. 4 shows a general overhead view of the ablation cell (1) and the external cooling system (16), demarcated by a rectangle formed by a dotted line.
  • the external cooling system (16) comprises an external heat exchanger (25) and pumping means (26). These pumping means (26) allow the circulation of the refrigerant fluid (20) to be carried out through insulating ducts between the internal heat exchanger (11), arranged in the base of the cell (4), and the heat exchanger. external heat (25).
  • the figure shows arrows that indicate the direction of circulation of the refrigerant fluid (20), which circulates inside insulating ducts that connect to the base of the cell (4) through a connection system (15) . In this way the cooling fluid (20) is cooled by the external heat exchanger (25) after it has removed heat from the internal cooling system (12), thus ensuring that the temperature of the sample (5) always remains constant.
  • Fig. 5 shows a view of the ablation cell (1) arranged in a laser ablation system.
  • the ablation cell (1) comprises a removable top cover (2) with a laser transparent window (3) and a base of the cell (4) where the sample (5) to be analyzed is placed.
  • the base of the cell (4) can be mounted on a metal support, not shown in the figure, which can be moved in all three dimensions (x, y, z) using motor means. In this way, the ablation cell (1), and therefore the sample (5), can be precisely positioned within the laser ablation system, in a controlled manner.
  • the movement control of the ablation cell (1) can be performed with software implemented in a computer of the laser system (6).
  • the area of interest in the sample (5) is precisely defined using a video monitor (7), which can also be controlled with software implemented in the computer of the laser system (6).
  • the laser (8) is focused by focusing lenses (9) on the surface of the sample (5). After the impact of the laser (8) is formed an aerosol with particles from the sample (5) that is transported by a flow of entrainment gas (10), contained in a tank, through flexible connections.
  • the ablation cell (1) has an external ventilation system (27) that drives a ventilation fluid over the transparent window to the laser (3) thus avoiding condensation problems.
  • the ablation cell (1) can be used in combination with other devices such as, for example, an inductive coupling plasma system with detection by optical or mass emission spectrometry, where the aerosol generated from the sample is introduced ( 5) and the presence of the different elements of interest is detected
  • Fig. 6 shows two diagrams with the evolution of the sample temperature
  • Fig. 7 shows the ablation profiles obtained by LA-ICP-MS for the Ag and Pb isotopes in the analysis of a glass (SRM NIST 612) using the ablation cell (1) of the invention under cryogenic conditions and working at ambient temperature (-20 and + 20 ° C, respectively).
  • the ordinate axis shows the analysis time and the abscissa axis the intensity measured for each element in the ICP-MS.
  • the 107 Ag + signal is stabilized with a relative temporal standard deviation (TRSD) of less than 12% working at room temperature and under cryogenic conditions.
  • TRSD relative temporal standard deviation
  • the accuracy in the measure of the isotopic ratios of 109 Ag + / 107 Ag + is below 1.7% with a 1.3% deviation from the natural isotopic ratio.
  • the signal is stabilized with a TRSD of 8%, the accuracy in the measurement of the isotopic ratio 208 Pb + / 206 Pb + below 1% (with a deviation of 2 , 5% of the natural isotopic ratio).
  • the ablation cell (1) allows to obtain comparable results using both working temperatures, in terms of signal accuracy, accuracy in the measurement of isotopic relationships and sensitivity.
  • Fig. 8 shows a representation of the evacuation times of the ablation cell (1) for the elements 59 Co + , 107 Ag + , 137 Ba + , 232 Th + and 238 U + in the SRM NIST 612 glass analysis at two different temperatures, + 20 ° C and -20 ° C.
  • the ordinate axis shows the isotopes of each element measured in the ICP-MS and the abscissa axis the evacuation time.
  • the error bars in the figure indicate the standard deviation obtained for 10 independent analyzes.
  • the evacuation time is defined as the time that the signal of each of the isotopes needs to decrease from its maximum value to 10% of the maximum signal.
  • Fig. 9 shows the images obtained at + 20 ° C and -20 ° C for the spatial distribution of several trace elements ( 56 Fe + , 63 Cu + , 64 Zn + and 1 7 I + ) in a synthetic biological material using the ablation cell (1) connected to an ICP-MS device.
  • the experimental analysis conditions are: 50 ⁇ laser diameter (8), 20 Hz repetition frequency, 5.6 mJ energy and 32.5 ⁇ / s sample travel speed (5).
  • the ablation cell (1) was integrated into a laser ablation system coupled to an ICP-MS equipment to carry out imaging studies.
  • the ablation cell (1) was formed by two parts: a removable top cover (2) of a polyamide compound with a laser transparent window (3) and a cell base (4), also of a polyamide compound as this is a compound with low thermal conductivity.
  • the removable top cover (2) was attached to the base of the cell (4) by means of a thread.
  • the transparent window to the laser (3) was made of quartz with an outer coating that allowed the transmission of an electromagnetic wavelength of 213 nm.
  • the base of the cell (4) was mounted on a metal support that can be moved in all three dimensions (x, y, z) using a motorized auxiliary system.
  • the ablation cell (1) and therefore the sample (5), was positioned precisely within the laser ablation system.
  • the movement control of the ablation cell (1) was performed with software implemented in the computer of the laser system (6).
  • the area of interest in the sample (5) could be precisely defined using a video monitor (7), also controlled with software implemented in the laser system computer (6).
  • the laser (8) was focused by focusing lenses (9) on the surface of the sample (5). After the impact of the laser (8) an aerosol was formed with particles from the sample (5), which It was able to transport by means of a flow of entrained gas (10), constituted by inert helium, through flexible connections to the ICP-MS system.
  • entrained gas (10) constituted by inert helium
  • the laser (8) was always fired at the same point although it was possible to vary the position of the sample (5) in the x and y dimensions using the motorized auxiliary system. This is the analysis strategy usually selected to do imaging studies and obtain a good lateral resolution.
  • the experimental analysis conditions were: 150 ⁇ laser beam diameter (8), 10 Hz repetition frequency, 3.5 mJ energy and 20 ⁇ / s sample travel speed (5).
  • the removable top cover (2) had an opening for the gas inlet (23) and an opening for the gas outlet (24).
  • the opening for the gas outlet (24) was a unique orifice that in the interior part of the lid was shaped like a collecting funnel, which allowed the entrainment gas carrying the aerosol that included material torn from the sample ( 5) It could be removed from the ablation cell (1) quickly and efficiently.
  • evacuation times of less than 4 seconds were obtained for all the analytes investigated ("Co T , iU 'Ag, 1J ' Ba ⁇ ⁇ J ⁇ Tb7 and " e U T ), working in low temperature conditions. In this way, the lateral resolution of the analyzes could be improved using low temperature and a gas funnel-shaped opening (24), which is crucial in imaging studies.
  • an internal heat exchanger (1 1) of coil-shaped aluminum an internal cooling system (12) materialized with 8 Peltier elements homogeneously distributed annularly, a cooling plate (1) 13) copper arranged on the internal cooling system (12), a glass sample holder (14) on the cooling plate (13), a connection system (15) in the form of fittings between the internal heat exchanger (1 1 ) and the external cooling system (16), and a light-transparent window (17) arranged at the bottom of the base of the cell (4).
  • an insulating plate (19) of a polyamide compound having the function of insulating the two faces of the 8 elements was arranged Peltier in order that there was no convection between the two in the edge areas, thus increasing the efficiency of the whole.
  • the internal cooling system (12) allowed to reach temperatures in the sample (5) of up to -20 ° C, which ensured the integrity of the sample (5) during the analysis.
  • an aluminum coil was used as an internal heat exchanger (11).
  • the connection system (15) of metal fittings allowed the circulation of the cooling fluid (20) between the internal heat exchanger (11) and the external cooling system (16).
  • the external cooling system (16) comprised an external heat exchanger (25) materialized in a Peltier element and pumping means (26) materialized by an electronically controlled radial drive hydraulic pump. These pumping means (26) allowed to carry out the circulation of the refrigerant fluid (20) through insulating ducts between the internal heat exchanger (11) and the external heat exchanger (25). The refrigerant fluid (20) circulated through the internal heat exchanger (1 1) providing a cold focus to the 8 Peltier elements and to cool this refrigerant fluid (20) it was made to reach the external heat exchanger (25 ).
  • thermocouple (21) was used as a thermocouple in direct contact with the surface of the sample (5) to control and thus adjust the analysis temperature.
  • the temperature control means (22) consisted of software that collected and processed digital signals captured by the temperature sensor (21) and sent digital control signals to both the Peltier of the internal cooling system (12) and to the Peltier and the external cooling system pump (16). Using this controlled cooling system in the ablation cell (1), a rapid cooling of the sample (5) could be carried out. As shown in Fig. 6, the surface temperature of the sample (5) dropped by less than 20 minutes at -20 ° C. In addition, this temperature remained stable, with a deviation of ⁇ 0.2 ° C, over 17 hours of laser analysis (8).
  • an external ventilation system (27) was used that propelled a ventilation fluid over the laser transparent window (3).
  • the external ventilation system (27) consisted of a fan driven by an electric motor. This external ventilation system (27) allowed to maintain optimal working conditions eliminating condensation phenomena on the transparent window to the laser when working at low temperature.

Abstract

Celda de ablación criogénica con control de la temperatura de la muestra (5) que comprende una tapa superior extraíble (2) con una ventana transparente al láser (3) y una base de la celda (4) con un sistema de refrigeración interno (12). El sistema también comprende un sistema de refrigeración externo (16), un sensor de temperatura (21), unos medios de control de la temperatura (22) y un sistema de ventilación externo (27). La celda se puede usar en combinación con otros dispositivos como, por ejemplo, un sistema de ablación láser acoplado a un sistema de plasma de acoplamiento inductivo con detección por espectrometría de emisión óptica o de masas. De aplicación en aquellos sectores en los que se diseñen, produzcan o utilicen celdas de ablación, como por ejemplo el de la maquinaria y equipo mecánico, geología, biología, medicina, arqueología o química.

Description

CELDA DE ABLACION CRIOGENICA CON CONTROL DE LA
TEMPERATURA DE LA MUESTRA
La presente invención se refiere a una celda de ablación con control de la temperatura de la muestra que comprende una tapa superior extraíble, una base de la celda que a su vez comprende en su interior un sistema de refrigeración interno, un sistema de refrigeración externo, un sensor de temperatura de la muestra, unos medios de control de la temperatura y un sistema de ventilación externo. La celda de la presente invención se puede usar en combinación con otros dispositivos como, por ejemplo, un sistema de ablación láser acoplado a un sistema de plasma de acoplamiento inductivo con detección por espectrometría de emisión óptica o de masas.
La invención resulta de aplicación en aquellos sectores en los que se diseñen, produzcan o utilicen celdas de ablación, como por ejemplo el de la maquinaria y equipo mecánico, geología, biología, medicina, arqueología o química.
ESTADO DE LA TÉCNICA
La celda de ablación criogénica propuesta en la invención está estrechamente relacionada con un método analítico para la detección de elementos traza en muestras sólidas mediante el arrancado de material de la muestra empleando un haz láser. Para la detección de los elementos de interés, una muestra a analizar se dispone en un sistema de ablación láser para ser sometida al arrancado de material por impacto del haz láser sobre su superficie. Posteriormente, el aerosol generado a partir de la muestra es transportado mediante un flujo de gas portador inerte (generalmente helio o argón) hacia un plasma de acoplamiento inductivo (ICP) donde se produce la atomización e ionización del aerosol, permitiendo posteriormente la detección de los iones generados con un espectrómetro de masas (MS).
Los componentes básicos de los que consta un equipo de ablación láser (LA) ICP-MS son: un sistema láser, donde se incluye una óptica de guía del haz láser (conjunto de lentes y espejos que conducen el haz láser hasta la superficie de la muestra) y una celda de ablación donde se dispone la muestra a analizar, una interfase para el transporte del aerosol generado y, finalmente, un instrumento ICP-MS. Desde los primeros estudios realizados durante la década de 1980 (Gray AL "Solid sample introduction by láser ablation for inductively coupled plasma source mass spectrometry'" Analyst 1 10 (1985) 551; Arrowsmith P, Hughes SK "Entrainment and transport of láser ablated plumes for subsequent elemental analysis" Appl. Spectrosc. 42 (1988) 1231), el interés por la técnica LA-ICP-MS ha ido en aumento, de tal modo que actualmente se emplea para el análisis elemental e isotópico en una gran variedad de materiales sólidos (Durrant SF, Ward NI "Recent biológica! and environmental applications of láser ablation inductively coupled plasma mass spectrometry" J. Anal. At. Spectrom. 20 (2005) 821 ; Pisonero J, Fernandez B, Günther D "Critical Revisión of GD-MS, LA-ICP-MS and SIMS as Inorganic Mass Spectrometric Methods for Direct Solid Analysis" J. Anal. At. Spectrom. 24 (2009) 1145; Fernandez B, Claverie F, Pecheyran C, Donard OFX "Direct analysis of solid samples by femtosecond láser ablation inductively coupled plasma mass spectrometry" Trends Anal. Chem. 26 (2007) 951). Entre las principales ventajas de la técnica LA-ICP-MS se encuentran su facilidad de manejo, su alta sensibilidad (los límites de detección están en el intervalo comprendido entre los mg/kg y ng/kg) y un rango dinámico de hasta doce órdenes de magnitud, lo que permite la adquisición simultánea de componentes mayoritarios, minoritarios y traza. Además, otra de sus principales características es la elevada resolución espacial, tanto lateral (~5 μηι) como en profundidad (del orden comprendido entre 500 nm y 2 μπι dependiendo del tipo de láser empleado), por lo que se considera una técnica no destructiva a nivel macroscópico. Una de las aplicaciones más importantes de la técnica LA-ICP-MS en los últimos años está relacionada con los estudios de "imaging". Esta técnica ofrece la posibilidad de obtener imágenes con una gran resolución lateral directamente de la superficie de la muestra, lo que permite estudiar la distribución elemental de los diferentes analitos (Becker JS, Zoriy M, Matusch A, Wu B, Salber D, Palm C, Becker JS "Bioimaging of metáis by láser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)" Mass Spectrom. Reviews 2 (2010) 156). Este tipo de estudios resulta de gran interés en todos los campos relacionados con la biomedicina, clínica y biología. Así, se ha demostrado su aplicabilidad a un tipo muy variado de muestras como corteza de árbol (Narewski U, Werner G, Schulz H, Vogt C "Application of láser ablation inductively coupled mass spectrometry for the determination of major, minor, and trace elements in bark samples" Fresenius' J. Anal. Chem. 366 (2000) 167), hojas de plantas (Cizdziel J, Bu K, Nowinski P "Determination of elements in situ in green leaves by láser ablation ICP-MS itsing pressed reference materials for calibration" Anal. Methods 4 (2012) 564), piezas dentales (Prohaska T, Latkoczy C, Schultheis G, Teschler-Nicola M, Stingeder G "Investigation of Sr isotope ratios in prehistoric human bones and teeth using Láser Ablation ICP-MS and ICP-MS after Rb/Sr separation" J. Anal. At. Spectrom. 17 (2002) 887) y otolitos (Huelga-Suarez G, Fernández B, Moldovan M, Alonso JIG "Detection of transgenerational barium dual-isotopic marte in salmón otoliths by means ofLA-ICP-MS" Anal. Bioanal. Chem. 405 (2013) 2901).
Además, la técnica LA-ICP-MS también se emplea cada vez más para la determinación de metales y elementos traza en tejidos de interés biomédico, como tejidos de riñon y corazón (Zoriy M, Matusch A, Spruss T, Becker JS "Láser ablation inductively coupled plasma mass spectrometry for imaging of copper, zinc, and platinum in thin sections of a kidney from a mouse treated with cis-platin" Int. J. Mass Spectrom. 260 (2007) 102; Becker JS, Breuer U, Hsieh HF, Osterholt T, Kumtabtim U, Wu B, Matusch A, Caruso JA, Qin Z "Bioimaging of metáis and biomolecules in mouse heart by láser ablation inductively coupled plasma mass spectrometry and secondary ion mass spectrometry''' Anal. Chem. 82 (2010) 9528), ganglios linfáticos y tejidos respiratorios (Haré D, Tolmachev S, James A, Bishop D, Austin C, Fryer F, Doble P "Elemental bio-imaging of thorium, uranium, and plutonium in tissues from occupationally exposed former nuclear workers" Anal. Chem. 82 (2010) 3176), tejidos de cáncer de próstata y de mama (Giesen C, Waentig L, Mairinger T, Drescher D, Kneipp J, Roos PH, Panneab U, Jakubowski N "Iodine as an elemental marker for imaging of single cells and tissue sections by láser ablation inductively coupled plasma mass spectrometry J. Anal. At. Spectrom. 26 (201 1) 2160) y secciones de tejido cerebral (Zoriy M, Dehnhardt M, Matusch A, Becker JS "Comparative imaging of P, S, Fe, Cu, Zn and C in thin sections of rat brain tumor as well as control tissues by láser ablation inductively coupled plasma mass spectrometry" Spectrochim. Acta Part B 63 (2008) 375). Dentro de los tejidos biomédicos, en los últimos años ha cobrado gran interés el empleo de la técnica LA-ICP-MS para evaluar tejidos de pacientes afectados por enfermedades neurológicas degenerativas como el Parkinson y el Alzheimer (Matusch A, Depboylu C, Palm C, Wu B, Hóglinger GU, Scháfer MK- H, Becker JS "Cerebral bioimaging of Cu, Fe, Zn, and Mn in the MPTP mouse model of Parkinson 's disease using láser ablation inductively coupled plasma mass spectrometry''' J. Am. Soc. Mass Spectrom. 21 (2010) 161 ; Hutchinson RW, Cox AG, McLeod CW, Marshall PS, Harper A, Dawson EL, Howlett DR "Imaging and spatial distribution of β-amyloid peptide and metal ions in Alzheimer 's plaques by láser ablation-inductively coupled plasma-mass spectrometry Anal. Biochem. 346 (2005) 225).
Cuando se lleva a cabo el análisis de tejidos biológicos o biomédicos uno de los aspectos más importantes a tener en cuenta es la preparación de las muestras, así como la posible pérdida de metales de los tejidos durante este proceso. Actualmente, hay dos tipos de procedimientos estándar empleados en los laboratorios para la preparación de secciones de tejidos biomédicos: (i) fijación del tejido en formalina y posteriormente embebido del mismo en parafina y (ii) congelación de la muestra en el estado nativo a temperaturas inferiores a -40°C. En el caso de las muestras embebidas en parafina se ha observado que puede haber pérdidas de algunos elementos durante el proceso de preparación de las muestras. De este modo, se ha demostrado que la concentración de algunos metales (p.ej. Fe) en muestras embebidas en parafina es inferior a las concentraciones detectadas en muestras criogénicas, preparadas de forma nativa (Qin Z, Caruso JA, Lai B, Matusch A, Becker JS "Trace metal imaging with high spatial resolution: Applications in biomedicine^ Metallomics 3 (2011) 28). Este hecho podría deberse a la lixiviación de los metales de los tejidos en la disolución de formalina o durante el proceso de inclusión en parafina. Sin embargo, el método de congelación del tejido fresco protege el estado nativo de la muestra (especialmente con respecto a la preservación de los analitos que pueden difundir fácilmente). Por lo tanto, podría decirse que el método ideal para la preparación de las muestras es la congelación de las mismas, resultando en este caso imprescindible el empleo de una celda de ablación que permita trabajar a baja temperatura para asegurar de este modo tanto la integridad de las muestras como la exactitud de los análisis. Por otro lado, aunque no resulta imprescindible emplear una celda criogénica para el análisis de otro tipo de muestras sólidas (p.ej. estructuras óseas, implantes o muestras geológicas), se ha observado que las prestaciones obtenidas empleando un control estricto de la temperatura de la muestra a lo largo del análisis son superiores a los análisis hechos sin control de la temperatura (Zoriy MV, Kayser M, Izmer A, Pickhardt C, Becker JS "Determination of uranium isotopic ratios in biological samples using laser ablation inductively coupled plasma double focusing sector field mass spectrometry with cooled ablation chamber" Inter. J. Mass Spectrom. 242 (2005) 297). De esta manera, el campo de aplicación de las celdas de ablación que operan a baja temperatura es muy amplio y no está únicamente restringido a muestras de tejidos biomédicos.
Actualmente existen varios tipos de celdas de ablación que permiten trabajar a baja temperatura, por ejemplo las descritas por Zoriy MV, Kayser M, Izmer A, Pickhardt C, Becker JS "Determination of uranium isotopic ratios in biological samples using laser ablation inductively coupled plasma double focusing sector field mass spectrometry with cooled ablation chambef Int. J. Mass Spectrom. 242 (2005) 297, Müller W, Shelley JMG, Rasmussen SO "Direct chemical analysis of frozen ice cores by UV-laser ablation ICPMS J. Anal. At. Spectrom. 26 (201 1) 2391 y Feldmann J, Kindness A, Ek P "Laser ablation of soft tissue using a cryogenically cooled ablation cell" J. Anal. At. Spectrom. 17 (2002) 813. Sin embargo, en todas ellas, el control de la temperatura de la muestra y la refrigeración de la misma tienen lugar de manera indirecta, es decir, sin un control de la temperatura que se produce en la propia muestra sometida a la acción del haz láser.
En las celdas de ablación disponibles, el enfriamiento de la muestra tiene lugar sobre el soporte en el que se dispone la muestra a analizar y es la temperatura de este soporte la que es controlada por los sistemas de refrigeración. El control exacto y continuo de la temperatura de la muestra es un aspecto crucial para asegurar la integridad de la muestra durante el análisis (el cual puede llegar a durar más de 20 horas cuando se hacen estudios de i aging), especialmente tratándose de muestras de tejidos preparados en su forma nativa. Además, estas celdas de ablación no permiten monitorizar la temperatura de la muestra y, por lo tanto, ésta puede sufrir cambios debido a los importantes efectos térmicos que ejerce el haz láser en la muestra durante el análisis. De este modo, los resultados obtenidos de los análisis por LA-ICP-MS carecen de exactitud y precisión y no son representativos de la muestra.
Por otro lado, un aspecto importante a la hora de hacer estudios de imaging sobre muestras con estructuras a escala micrométrica (p.ej. inclusiones en muestras geológicas o distribución de metales en secciones de tejidos humanos) es la necesidad de llevar a cabo una correcta visualización de la muestra. Las celdas de ablación que permiten trabajar a baja temperatura disponen de una base de la celda opaca por lo que la iluminación de la muestra se realiza únicamente a través de la parte superior de la celda, resultando en muchos casos insuficiente para llevar a cabo análisis con una buena resolución lateral y poder distinguir así microestructuras.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere a una celda de ablación con control de la temperatura de la muestra, que se puede usar en combinación con otros dispositivos como por ejemplo, un sistema de ablación láser acoplado a un sistema de plasma de acoplamiento inductivo con detección por espectrometría de emisión óptica o de masas.
La celda de ablación de la presente invención comprende:
- Una tapa superior extraíble que permite la disposición de una muestra dentro de la celda de ablación. La tapa a su vez comprende una ventana transparente al láser por donde penetra el haz que permite la ablación de la muestra. La tapa también dispone de al menos una abertura para la entrada de gas de arrastre y al menos una abertura para la salida de gas de arrastre. El gas de arrastre sirve para transportar el aerosol con partículas que se forma a partir de la ablación de la muestra hacia la salida de la celda de ablación. Este aerosol es apto para ser analizado por ejemplo empleando instrumentos de espectrometría de emisión óptica y de masas. Preferiblemente, el gas de arrastre es un gas inerte, como por ejemplo helio o argón, de forma que no interfiere en el análisis del material de interés. Una base de la celda que a su vez comprende en su interior un intercambiador de calor interno, un sistema de refrigeración interno, una placa refrigeradora sobre el sistema de refrigeración interno y un portamuestras sobre la placa refrigeradora. El intercambiador de calor interno proporciona un foco frío en el interior de la celda, que se enfría gracias al suministro constante de un fluido refrigerante que proviene del exterior. Por otra parte, el sistema de refrigeración interno permite regular de forma dinámica e inmediata la temperatura de la muestra que se sitúa sobre el portamuestras, manteniéndola dentro de un rango apropiado para el proceso de ablación. El sistema de refrigeración interno trasiega calor desde el foco frío al foco caliente, el cual aparece debido a la potencia del haz láser que incide sobre la muestra, calentándola. La placa refrigeradora transmite la temperatura de regulación proporcionada por el sistema de refrigeración interno al portamuestras, sobre el que se dispone la muestra. La base de la celda también comprende una ventana transparente a la luz y un sistema de conexión del intercambiador de calor interno y el sistema de refrigeración externo por el que penetra un fluido refrigerante.
Un sistema de refrigeración externo que a su vez comprende un intercambiador de calor externo y unos medios de bombeo de un fluido refrigerante que permiten llevar a cabo la circulación del fluido refrigerante a través del intercambiador de calor interno de la base de la celda y del intercambiador de calor externo. A los efectos de esta invención y su descripción, los medios de bombeo pueden ser cualquier sistema para trasegar un fluido, como por ejemplo una bomba radial, controlada electrónicamente, asociada a unos conductos que transportan el fluido bombeado.
Un sensor de temperatura de la muestra que permite controlar de forma directa su temperatura.
Un sistema de ventilación externo que impulsa un fluido de ventilación sobre la ventana transparente al láser de la tapa superior extraíble. El sistema de ventilación permite mantener unas condiciones óptimas de trabajo disminuyendo por ejemplo los efectos de difracción o reflexión asociados a fenómenos de condensación sobre la ventana transparente al láser.
- Unos medios de control de temperatura de todo el sistema. En una realización preferida, la tapa superior extraíble y la base de la celda son de un material aislante térmico. La selección de un material con un coeficiente de transmisión térmica apropiado influye directamente en la cinética de trasmisión de calor debida al fuerte gradiente térmico que se puede dar entre el interior y el exterior de la celda. Este aspecto repercute directamente en el dimensionamiento y la configuración de los diferentes subsistemas de la celda, como por ejemplo en los medios de control de temperatura, el intercambiador de calor interno o el sistema de refrigeración interno. En una realización más preferida, el material aislante térmico es un compuesto de poliamida.
En otra realización preferida, la ventana transparente al láser comprende un cristal de cuarzo. El cristal de cuarzo ofrece unas propiedades ideales para la transmisión de un haz láser típicamente utilizado en procesos de ablación. Además, el cristal de cuarzo facilita la visión del interior de la celda y permite la iluminación de la muestra por la parte superior. En una realización más preferida, el cristal de cuarzo permite la trasmisión de una longitud de onda electromagnética en el rango comprendido entre 1064 nm y 193 nm.
En otra realización preferida, la abertura para la entrada de gas de arrastre consiste en un orificio único. En otra realización preferida, la abertura para la entrada de gas de arrastre consiste en cuatro orificios de entrada.
En otra realización preferida, la abertura para la salida de gas de arrastre consiste en un orificio único. En una realización más preferida, el orificio único tiene forma de embudo recolector. En otra realización preferida, la abertura para la salida de gas consiste en cuatro orificios de salida.
La selección entre uno o cuatro orificios para la entrada o la salida y la materialización de la salida en forma de embudo, depende del tamaño de la tapa y, por lo tanto, del volumen de la celda de ablación y, sobre todo, de las características del gas de arrastre y los medios para impulsarlo. En algunas aplicaciones, como por ejemplo en estudios de imaging, la obtención de un flujo laminar del gas de arrastre con el aerosol es determinante para obtener un buen resultado analítico.
En una realización específica, el intercambiador de calor interno es un serpentín. Un intercambiador de calor en forma de serpentín es una solución muy eficiente, aumentando la capacidad de intercambio de calor en un volumen de espacio muy reducido. Por otro lado, permite además que el intercambiador de calor se pueda disponer en un espacio cercano a la pared interna de la celda, de forma que deja despejado un gran volumen en el interior de la misma. Al igual que con la selección de materiales aislantes, otros componentes del sistema necesitan una selección de materiales de acuerdo a criterios de transmisión térmica, de forma que propicien una cinética térmica rápida. Entre los atributos que se ven relacionados con esta selección se encuentra la rapidez de reacción para el control de temperatura del sistema. Una selección de materiales optimizada permite limitar la variación térmica de la muestra en el tiempo con una precisión de, incluso, décimas de grado.
En una realización más específica, el serpentín es de un material conductor térmico. En una realización aún más específica, el material conductor térmico es un metal o una aleación de metales, como por ejemplo aluminio. En otra realización específica, el sistema de refrigeración interno comprende al menos 4 elementos Peltier. Los elementos Peltier son dispositivos que permiten trasegar calor, regular la temperatura de la muestra y que además pueden estar controlados mediante señales de control. Preferidamente, los elementos Peltier se disponen de forma anular alrededor del eje vertical de la muestra, en un número de entre cuatro y ocho elementos. En una realización más específica, el sistema además comprende una placa aislante de un material aislante térmico que separa térmicamente la cara fría y la cara caliente de los elementos Peltier. En una realización aún más específica, el material aislante térmico es un compuesto de poliamida. La placa aislante de un material aislante térmico, como por ejemplo un compuesto de poliamida, tiene la función de aislar las dos caras de los Peltiers del sistema de refrigeración interno con el fin de que no exista convección entre ambas zonas de borde. De esta manera es posible incrementar la eficiencia del conjunto y obtener una refrigeración óptima de la muestra.
En otra realización específica, la placa refrigeradora es de un material conductor térmico. En una realización más específica, el material conductor térmico es metal o una aleación de metales, como por ejemplo cobre.
En una realización preferida, el portamuestras es de vidrio. Además de tener unas propiedades térmicas adecuadas, el vidrio es un material traslúcido, que permite el paso de la luz exterior, como la que proviene de la ventana transparente a la luz situada también en la base de la celda, y de este modo una buena visualización de la muestra. En otra realización preferida, el sistema de conexión del intercambiador de calor interno y del intercambiador de calor externo comprende unos racores. En una realización más preferida, los racores son de metal o una aleación de metales.
En otra realización preferida, la ventana transparente a la luz de la base de la celda es un vidrio difusor.
En otra realización preferida, el intercambiador de calor externo también comprende elementos Peltier.
En una realización específica, el fluido refrigerante es polipropilenglicol. En otra realización específica, el fluido refrigerante es aceite de silicona. En otra realización específica, el sensor de temperatura es un termopar en contacto con la muestra.
En otra realización específica, el sensor de temperatura es un pirómetro, que permite detectar directamente la temperatura de la muestra sin contacto, incluso situándose fuera de la celda, a través de la radiación de la misma. En otra realización específica, el sistema además comprende unos medios de iluminación externos que iluminan la muestra a través de la ventana transparente a la luz. Este aspecto es relevante a la hora de analizar muestras con estructuras o defectos a escala micrométrica, donde es necesaria una buena visualización de la superficie de la muestra mediante el complemento con sistemas de visión artificial, como por ejemplo cámaras o microscopios. En una realización más específica, los medios de iluminación externos comprenden un diodo emisor de luz, como por ejemplo un LED, PLED u OLED.
En otra realización específica, el sistema de ventilación externo comprende un ventilador accionado por unos medios motores los cuales pueden materializarse con cualquier sistema capaz de mover el ventilador, como por ejemplo un motor eléctrico electrónicamente controlado.
En otra realización específica, el sistema de ventilación externo comprende una cámara a presión que contiene el fluido de ventilación, una conducción que conduce el fluido de ventilación sobre la ventana transparente al láser y unos medios valvulares, como por ejemplo una electroválvula o un regulador hidráulico o neumático, para regular la salida del fluido de ventilación.
En otra realización específica, el sistema de ventilación externo comprende un compresor que comprime el fluido de ventilación, una conducción que conduce el fluido de ventilación sobre la ventana transparente al láser y unos medios valvulares para regular la salida del fluido de ventilación. En esta realización preferida, el fluido de ventilación puede ser el aire exterior de la celda, tratado térmicamente o no, comprimido por un compresor y proyectado sobre la ventana transparente al láser.
En una realización preferida, los medios de control de temperatura recogen y tratan señales analógicas o digitales capturadas por el sensor de temperatura y envían señales de control analógicas o digitales al sistema de refrigeración interno. En una realización más preferida, los medios de control de la temperatura además envían señales de control al sistema de refrigeración externo. En una realización más preferida, cuando los sistemas de la celda utilizan elementos Peltier, los medios de control de temperatura recogen y tratan señales analógicas o digitales capturadas por el sensor de temperatura y envían señales de control analógicas o digitales a los elementos Peltier, que modifican su dinámica de funcionamiento en función de estas señales eléctricas de control. En otra realización más preferida, el tratamiento de las señales analógicas o digitales se realiza mediante bloques funcionales de programa o programas de software.
En otra realización más preferida, el tratamiento de las señales analógicas o digitales se realiza mediante algoritmos implementados en un ordenador. Este ordenador además puede centralizar el control de otros sistemas relacionados con la ablación, como por ejemplo el sistema láser o el sistema que proporciona el caudal de gas de arrastre.
La invención proporciona una celda con un sistema de refrigeración criogénico que permite realizar la ablación láser de muestras previamente criogenizadas a la vez que se mantiene la temperatura de la muestra dentro de un rango de ensayo predeterminado, a pesar de la perturbación térmica que se induce en la propia muestra durante el análisis debido al impacto del haz láser sobre la misma y a la circulación de un gas de arrastre no enfriado a través de la celda de ablación. De esta manera la celda de ablación permite el análisis de tejidos biológicos o biomédicos conservados en su forma nativa, asegurando la integridad de las muestras durante el tiempo en el que ésta se encuentre dispuesta en la celda de ablación.
La invención también proporciona una celda con un sensor de temperatura de la muestra que preferidamente puede ser un termopar en contacto directo con la superficie de la misma o un pirómetro dirigido sobre la superficie de la muestra. La medición de la temperatura de la muestra de forma directa permite un control instantáneo y continuo de la temperatura de la muestra durante el análisis sin necesidad de hacer aproximaciones o lecturas indirectas que podrían falsear los resultados. La medición directa de la temperatura de la muestra además hace que se pueda llevar a cabo un control muy riguroso de la dinámica de la ablación a lo largo del análisis, mediante el reajuste rápido de la temperatura de la muestra empleando el sistema de refrigeración interno.
La configuración que se emplea para llevar a cabo la refrigeración de la muestra dispuesta en la celda de ablación combina un sistema de refrigeración interno con un intercambiador de calor interno y un sistema de refrigeración externo. En una realización preferida, tanto el sistema de refrigeración externo como el sistema de refrigeración interno comprenden elementos Peltier lo que permite llevar a cabo un ajuste de la temperatura de manera controlada, rápida y precisa. Los medios de control de temperatura recogen y tratan señales analógicas o digitales capturadas por el sensor de temperatura y envían señales de control analógicas o digitales al sistema de refrigeración interno. Los medios de control de temperatura hacen que, por una parte, se pueda monitorizar la temperatura de la muestra y, por otra, controlarla para que esté dentro del rango de trabajo óptimo en todo momento. Mediante una materialización de la invención con elementos Peltier, la respuesta rápida del sistema de refrigeración interno puede asegurar una variación térmica en la muestra de tan solo ± 0,2°C a lo largo de 17 horas de análisis con el láser. Preferidamente, el sistema de refrigeración interno está formado por ocho elementos Peltier dispuestos de manera anular en la base de la celda, lo que permite refrigerar internamente toda la muestra de manera muy homogénea y permitir además el paso de luz para una mejor visualización de la misma.
En una realización preferida de la invención, la tapa superior extraíble tiene una abertura para la salida de gas con una forma de embudo recolector lo que permite una extracción rápida y eficaz del aerosol generado a partir de la ablación de la muestra. De esta manera se asegura que en la celda de ablación haya un flujo laminar que repercute positivamente en la resolución lateral de los análisis, lo que resulta crucial en estudios de imaging al haber una menor mezcla de la información proveniente de diferentes partes de la muestra.
La ventana transparente a la luz permite mejorar la visualización de la muestra dentro de la celda de ablación sobre todo si se emplean medios auxiliares, como por ejemplo un monitor de video asociado al sistema de ablación láser, para optimizar la localización de la zona de impacto y ablación. De esta forma, no solo es posible iluminar la muestra por la parte superior, a través de la ventana transparente al láser, sino que también es posible retro iluminar la misma por la parte inferior, en el caso de que la ventana se disponga en el fondo de la base de la celda. Este aspecto es de crucial importancia a la hora de analizar muestras con estructuras o defectos a escala micrométrica donde es necesaria una buena visualización de la superficie de la muestra. Para que la luz llegue de manera adecuada a la muestra por la parte inferior, además de la ventana transparente a la luz, en una realización preferida el sistema de refrigeración interno tiene forma de serpentín y el intercambiador de calor interno se dispone anularmente de tal forma que permiten pasar un haz de luz por el centro de la base de la celda.
La celda de ablación se complementa con un sistema de ventilación externo que impulsa un fluido de ventilación sobre la ventana transparente al láser evitando de este modo problemas de condensación y asegurando así la ablación de la muestra siempre en las mismas condiciones (para las mismas condiciones de contorno como la misma energía del haz láser), y por lo tanto la calidad y la repetibilidad de los experimentos.
La invención resulta de aplicación en aquellos sectores en los que se diseñen, produzcan o utilicen celdas de ablación, como por ejemplo el de la maquinaria y equipo mecánico, geología, biología, medicina, arqueología o química.
DESCRIPCIÓN DE LAS FIGURAS
La Fig. 1 muestra una vista detallada de una sección de la celda de ablación (1) donde se pueden observar los diferentes componentes y sistemas de la base de la celda (4) y de la tapa superior extraíble (2). La tapa superior extraíble (2) tiene en el centro de la misma una ventana transparente al láser (3). En la base de la celda (4) se puede observar un intercambiador de calor interno (11) en forma de serpentín, un sistema de refrigeración interno (12) materializado en unos elementos Peltier, una placa refrigeradora (13) sobre el sistema de refrigeración interno (12), un portamuestras (14) sobre la placa refrigeradora (13), un sistema de conexión (15) en forma de racores del intercambiador de calor interno (11) y el sistema de refrigeración externo (16), el cual no se representa en esta figura, y una ventana transparente a la luz (17) que en la figura no se muestra al estar dispuesta en la cara oculta inferior de la base de la celda (4). La muestra (5) a analizar se coloca en la base de la celda (4) sobre un portamuestras (14) dispuesto sobre la placa refrigeradora (13). Tanto el portamuestras (14) como la ventana transparente a la luz (17) permiten llevar a cabo una correcta visualización de la muestra (5) al poder iluminar la misma desde varias direcciones, a través de la ventana transparente al láser (3) y a través de la ventana transparente a la luz (17). De esta forma, unos medios de iluminación externos (18) que se pueden materializar mediante unos LED y que tampoco aparecen representados, emiten una radiación lumínica que se puede introducir por la ventana transparente a la luz (17), mejorando la visualización de la muestra (5). En cuanto a la refrigeración de la muestra, la placa refrigeradora (13), de un material que es buen conductor térmico, está colocada sobre el sistema de refrigeración interno (12) que comprende 8 elementos Peltier. En la figura también se muestra una placa aislante (19) de un material aislante térmico que separa térmicamente la cara fría y la cara caliente de los elementos Peltier. Por otro lado, la celda de ablación (1) dispone de un sensor de temperatura (21), que en la figura se representa mediante un termopar dispuesto directamente sobre la muestra (5), el cual permite llevar a cabo el control exacto y continuo de la temperatura de la misma. La Fig. 2 muestra una vista descompuesta de los diferentes componentes de la base de una celda (4) similar a la mostrada en la Fig. 1, dispuestos sobre un eje vertical imaginario. Como se puede observar, el sistema de refrigeración interno (12) representado mediante ocho Peltiers puede estar en contacto directo con la placa refrigeradora (13) donde se coloca el portamuestras (14) con la muestra (5). Por lo tanto, la refrigeración de la muestra (5) puede realizarse de manera directa y sin pérdidas. Por otra parte, esta figura muestra claramente la disposición de la placa aislante (19), separando la cara fría y la cara caliente del sistema de refrigeración interno (12), materializado en varios Peltiers, intercalándose con ellos. Además, se muestra en la parte inferior de la base de la celda (4), la ventana transparente a la luz (17) que permite llevar a cabo una correcta visualización de la muestra (5) al poder iluminarse la misma por la parte inferior utilizando unos medios de iluminación externos (18).
La Fig. 3 muestra una vista de la tapa superior extraíble (2) de la celda de ablación (1). En ella se puede observar la ventana transparente al láser (3), la abertura para la entrada de gas (23) y la abertura para la salida de gas (24). Como se puede ver, la abertura para la salida de gas (24) es un orificio único que en la parte interior de la tapa tiene forma de embudo recolector, lo que permite que el gas de arrastre que transporta un aerosol que comprende material arrancado a partir de la muestra (5) pueda ser extraído de la celda de ablación (1) de una forma rápida y eficaz. De este modo se puede mejorar la resolución lateral de los análisis, lo que resulta crucial en estudios de imaging.
La Fig. 4 muestra una vista cenital general de la celda de ablación (1) y del sistema de refrigeración externo (16), demarcado por un rectángulo formado por una línea punteada. El sistema de refrigeración externo (16) comprende un intercambiador de calor externo (25) y unos medios de bombeo (26). Estos medios de bombeo (26) permiten llevar a cabo la circulación del fluido refrigerante (20) a través de unos conductos aislantes entre el intercambiador de calor interno (11), dispuesto en la base de la celda (4), y el intercambiador de calor externo (25). En la figura se muestran unas flechas que señalan la dirección de circulación del fluido refrigerante (20), el cual circula por el interior de unos conductos aislantes que se conectan con la base de la celda (4) mediante un sistema de conexión (15). De esta manera el fluido refrigerante (20) es enfriado por el intercambiador de calor externo (25) después de que éste haya extraído el calor del sistema de refrigeración interno (12), asegurando así que la temperatura de la muestra (5) permanece siempre constante.
La Fig. 5 muestra una vista de la celda de ablación (1) dispuesta en un sistema de ablación láser. La celda de ablación (1) comprende una tapa superior extraíble (2) con una ventana transparente al láser (3) y una base de la celda (4) donde se coloca la muestra (5) a analizar. La base de la celda (4) puede estar montada sobre un soporte metálico, no representado en la figura, que se puede mover en las tres dimensiones (x, y, z) empleando unos medios motores. De esta manera se puede posicionar con precisión la celda de ablación (1), y por lo tanto la muestra (5), dentro del sistema de ablación láser, de forma controlada. El control del movimiento de la celda de ablación (1) se puede realizar con un software implementado en un ordenador del sistema láser (6). La zona de interés en la muestra (5) se define con exactitud empleando un monitor de vídeo (7), que también puede estar controlado con un software implementado en el ordenador del sistema láser (6). El láser (8) es enfocado mediante unas lentes de enfoque (9) sobre la superficie de la muestra (5). Tras el impacto del láser (8) se forma un aerosol con partículas procedentes de la muestra (5) que es transportado mediante un flujo de gas de arrastre (10), contenido en un tanque, a través de unas conexiones flexibles. La celda de ablación (1) dispone de un sistema de ventilación externo (27) que impulsa un fluido de ventilación sobre la ventana transparente al láser (3) evitando de este modo problemas de condensación. La celda de ablación (1) se puede usar en combinación con otros dispositivos como, por ejemplo, un sistema de plasma de acoplamiento inductivo con detección por espectrometría de emisión óptica o de masas, donde se introduce el aerosol generado a partir de la muestra (5) y se detecta la presencia de los diferentes elementos de interés La Fig. 6 muestra dos diagramas con la evolución de la temperatura de la muestra
(5) en la celda de ablación (1) durante un ciclo de enfriamiento hasta alcanzar la temperatura de -20°C. En ambos diagramas (a y b) el eje de ordenadas muestra el tiempo de análisis y el eje de abscisas muestra la temperatura de la muestra (5) medida con el sensor de temperatura (21). El diagrama a) muestra la evolución de la temperatura de la muestra (5) durante los primeros 40 min de análisis y el diagrama b) la evolución de la temperatura durante 17 h. Como se puede observar en el diagrama a), la temperatura de la superficie de la muestra (5) baja en menos de 20 minutos a -20°C. Además, cabe destacar que la temperatura se mantiene estable, con una desviación de solamente ± 0,2°C, a lo largo de 17 horas de análisis con el láser (8). De este modo, se puede asegurar la integridad de la muestra (5) así como que las condiciones de trabajo se mantienen constantes a lo largo de todo el análisis.
La Fig. 7 muestra los perfiles de ablación obtenidos por LA-ICP-MS para los isótopos Ag y Pb en el análisis de un vidrio (SRM NIST 612) empleando la celda de ablación (1) de la invención en condiciones criogénicas y trabajando a temperatura ambiente (-20 y +20°C, respectivamente). En ambos perfiles el eje de ordenadas muestra el tiempo de análisis y el eje de abscisas la intensidad medida para cada elemento en el ICP-MS. Como se puede observar en el perfil a), la señal de 107Ag+ se estabiliza con una desviación estándar temporal relativa (TRSD) menor del 12% trabajando a temperatura ambiente y en condiciones criogénicas. Además, se puede indicar que la precisión (RSD para tres medidas independientes) en la medida de las relaciones isotópicas de 109Ag+/107Ag+ está por debajo de 1,7% con una desviación del 1,3% de la relación isotópica natural. Para el caso del 208Pb+ (perfil b), la señal se estabiliza con un TRSD del 8% siendo la precisión en la medida de la relación isotópica 208Pb+/206Pb+ por debajo de 1% (con una desviación del 2,5% de la relación isotópica natural). Cabe destacar que la celda de ablación (1 ) permite obtener resultados comparables empleando ambas temperaturas de trabajo, en términos de precisión de las señales, exactitud en la medida de relaciones isotópicas y sensibilidad.
La Fig. 8 muestra una representación de los tiempos de evacuación de la celda de ablación (1) para los elementos 59Co+, 107 Ag+, 137Ba+, 232Th+ y 238U+ en el análisis del vidrio SRM NIST 612 a dos temperaturas diferentes, +20°C y -20°C. El eje de ordenadas muestra los isótopos de cada elemento medidos en el ICP-MS y el eje de abscisas el tiempo de evacuación. Las barras de error de la figura indican la desviación estándar obtenida para 10 análisis independientes. El tiempo de evacuación se define como el tiempo que necesita la señal de cada uno de los isótopos para disminuir desde su máximo valor al 10% de la señal máxima. Este factor permite estudiar la rapidez con la que el aerosol generado en la celda de ablación (1) a partir de la muestra (5) abandona la celda de ablación (1) y es transportado, por ejemplo, a un equipo ICP-MS para su posterior análisis. Cuanto menor sea el tiempo de evacuación, mejor será la resolución lateral al haber una menor mezcla de la información proveniente de diferentes partes de la muestra (5). Como se puede observar en la figura, para todos los elementos se obtienen menores tiempos de evacuación trabajando a -20°C. Además, la reproducibilidad es también mejor a baja temperatura, indicando las óptimas prestaciones analíticas de la celda de ablación (1) en condiciones criogénicas.
La Fig. 9 muestra las imágenes obtenidas a +20°C y -20°C para la distribución espacial de varios elementos traza (56Fe+, 63Cu+, 64Zn+ y 1 7I+) en un material biológico sintético empleando la celda de ablación (1) conectada a un equipo ICP-MS. Las condiciones experimentales de análisis son: 50 μηι diámetro del láser (8), 20 Hz de frecuencia de repetición, 5,6 mJ de energía y 32,5 μητ/s velocidad de desplazamiento de la muestra (5). Como se puede ver en las imágenes, en todos los casos se puede observar una distribución homogénea de 56Fe+, 63Cu+, 64Zn+ y 127I+ en la muestra a ambas temperaturas de trabajo: para cada elemento en estudio las imágenes de la izquierda corresponden a los análisis a -20°C y las de la derecha a +20°C. Comparando las intensidades obtenidas para los diferentes elementos se observa un aumento significativo en la señal de Γ para los análisis realizados a -20°C. Además, cabe destacar que se obtiene una mejor resolución lateral trabajando a -20°C para todos los elementos (especialmente para el 64Zn+) lo que indica una mejor conservación de la muestra durante el tiempo de análisis.
EXPLICACIÓN DE UNA FORMA DE REALIZACIÓN PREFERENTE
Para una mejor comprensión de la presente invención, se expone el siguiente ejemplo de realización preferente, descrito en detalle, que debe entenderse sin carácter limitativo del alcance de la invención.
EJEMPLO 1
La celda de ablación (1) fue integrada en un sistema de ablación láser acoplado a un equipo ICP-MS para llevar a cabo estudios de imaging. La celda de ablación (1) estaba formada por dos partes: una tapa superior extraíble (2) de un compuesto de poliamida con una ventana transparente al láser (3) y una base de la celda (4), también de un compuesto de poliamida por ser éste un compuesto con baja conductividad térmica. La tapa superior extraíble (2) se unía a la base de la celda (4) mediante una rosca. La ventana transparente al láser (3) se hizo de cuarzo con un recubrimiento exterior que permitía la trasmisión de una longitud de onda electromagnética de 213 nm. La base de la celda (4) se montó sobre un soporte metálico que se puede mover en las tres dimensiones (x, y, z) empleando un sistema auxiliar motorizado. De esta manera se consiguió posicionar con precisión la celda de ablación (1), y por lo tanto la muestra (5), dentro del sistema de ablación láser. El control del movimiento de la celda de ablación (1) se realizó con un software implementado en el ordenador del sistema láser (6). La zona de interés en la muestra (5) se pudo definir con exactitud empleando un monitor de vídeo (7), controlado también con un software implementado en el ordenador del sistema láser (6). El láser (8) se enfocó mediante unas lentes de enfoque (9) sobre la superficie de la muestra (5). Tras el impacto del láser (8) se formó un aerosol con partículas procedentes de la muestra (5), el cual se pudo transportar mediante un flujo de gas de arrastre (10), constituido por helio inerte, a través de unas conexiones flexibles hasta el sistema ICP-MS. Para llevar a cabo el análisis, el láser (8) se disparó siempre en un mismo punto aunque fue posible variar la posición de la muestra (5) en las dimensiones x e y empleando el sistema auxiliar motorizado. Esta es la estrategia de análisis habitualmente seleccionada para hacer estudios de imaging y obtener una buena resolución lateral. Las condiciones experimentales de análisis fueron: 150 μιη diámetro del haz láser (8), 10 Hz frecuencia de repetición, 3,5 mJ de energía y 20 μηι/s velocidad de desplazamiento de la muestra (5). La tapa superior extraíble (2) tenía una abertura para la entrada de gas (23) y una abertura para la salida de gas (24). La abertura para la salida de gas (24) era un orificio único que en la parte interior de la tapa tenía forma de embudo recolector, lo que permitió que el gas de arrastre que transportaba el aerosol que comprendía material arrancado a partir de la muestra (5) pudiera ser extraído de la celda de ablación (1) de una forma rápida y eficaz. Como se muestra en la Fig. 8, empleando un vidrio SRM NIST 612 como muestra (5) se obtuvieron tiempos de evacuación menores de 4 segundos para todos los analitos investigados ("CoT, iU'Ag , 1J'Ba\ ¿J¿Tb7 y "eUT), trabajando en condiciones de baja temperatura. De este modo se pudo mejorar la resolución lateral de los análisis empleando baja temperatura y una abertura para la salida de gas (24) con forma de embudo recolector, lo que resulta crucial en estudios de imaging.
En la base de la celda (4) se dispuso un intercambiador de calor interno (1 1) de aluminio en forma de serpentín, un sistema de refrigeración interno (12) materializado con 8 elementos Peltier distribuidos homogéneamente de forma anular, una placa refrigeradora (13) de cobre dispuesta sobre el sistema de refrigeración interno (12), un portamuestras (14) de vidrio sobre la placa refrigeradora (13), un sistema de conexión (15) en forma de racores entre el intercambiador de calor interno (1 1) y el sistema de refrigeración externo (16), y una ventana transparente a la luz (17) dispuesta en la parte inferior de la base de la celda (4). Además, entre el sistema de refrigeración interno (12) y la placa refrigeradora (13) se dispuso una placa aislante (19) de un compuesto de poliamida que tiene la función de aislar las dos caras de los 8 elementos Peltier con el fin de que no existiese convección entre ambas en las zonas de borde, incrementando de esta manera la eficiencia del conjunto. De esta manera, el sistema de refrigeración interno (12) permitió alcanzar temperaturas en la muestra (5) de hasta -20°C, lo que aseguraba la integridad de la muestra (5) durante el análisis. Además, para el buen funcionamiento del sistema de refrigeración interno (12) se empleó un serpentín de aluminio como intercambiador de calor interno (11). Un fluido refrigerante (20), formado por polipropilenglicol, circulaba a través del intercambiador de calor interno (11) proporcionando un foco frió a los 8 elementos Peltier para un funcionamiento más eficaz de los mismos. El sistema de conexión (15) de racores metálicos permitió la circulación del fluido refrigerante (20) entre el intercambiador de calor interno (11) y el sistema de refrigeración externo (16).
El sistema de refrigeración externo (16) comprendía un intercambiador de calor externo (25) materializado en un elemento Peltier y unos medios de bombeo (26) materializados mediante una bomba hidráulica de impulsión radial controlada electrónicamente. Estos medios de bombeo (26) permitieron llevar a cabo la circulación del fluido refrigerante (20) a través de unos conductos aislantes entre el intercambiador de calor interno (11) y el intercambiador de calor externo (25). El fluido refrigerante (20) circulaba a través del intercambiador de calor interno (1 1) proporcionando un foco frío a los 8 elementos Peltier y para enfriar de nuevo este fluido refrigerante (20) se hacía llegar el mismo al intercambiador de calor externo (25).
Se empleó como sensor de temperatura (21) un termopar en contacto directo con la superficie de la muestra (5) para controlar y poder ajustar así la temperatura de análisis. Los medios de control de la temperatura (22) estaban constituidos por un software que recogía y trataba señales digitales capturadas por el sensor de temperatura (21) y enviaba señales de control digitales tanto a los Peltier del sistema de refrigeración interno (12) como al Peltier y la bomba del sistema de refrigeración externo (16). Empleando este sistema de refrigeración controlado en la celda de ablación (1) se pudo llevar a cabo un enfriamiento rápido de la muestra (5). Como se recoge en la Fig. 6, la temperatura de la superficie de la muestra (5) bajó en menos de 20 minutos a -20°C. Además, esta temperatura se mantuvo estable, con una desviación de ± 0,2°C, a lo largo de 17 horas de análisis con el láser (8).
Para un correcto funcionamiento de la celda de ablación (1), se empleó un sistema de ventilación externo (27) que impulsaba un fluido de ventilación sobre la ventana transparente al láser (3). El sistema de ventilación externo (27) consistió en un ventilador accionado por un motor eléctrico. Este sistema de ventilación externo (27) permitió mantener unas condiciones óptimas de trabajo eliminando los fenómenos de condensación sobre la ventana transparente al láser al trabajar a baja temperatura.

Claims

REIVINDICACIONES
1. Celda de ablación que comprende:
- una tapa superior extraíble (2) que permite la disposición de una muestra (5) dentro de la celda de ablación (1) que a su vez comprende una ventana transparente al láser (3), una abertura para la entrada de gas (23) de arrastre y una abertura para la salida de gas (24) de arrastre;
- una base de la celda (4) que a su vez comprende en su interior un intercambiador de calor interno (11), un sistema de refrigeración interno (12), una placa refrigeradora (13) sobre el sistema de refrigeración interno (12), un portamuestras (14) sobre la placa refrigeradora (13), un sistema de conexión (15) del intercambiador de calor interno (11) y el sistema de refrigeración externo (16) y una ventana transparente a la luz (17);
- un sistema de refrigeración externo (16) que a su vez comprende un intercambiador de calor externo (25) y unos medios de bombeo (26) de un fluido refrigerante (20) que permiten llevar a cabo la circulación del fluido refrigerante (20) a través del intercambiador de calor interno (11) de la base de la celda (4) y del intercambiador de calor externo (25);
- un sensor de temperatura (21 ) de la muestra (5) ;
- un sistema de ventilación externo (27) que impulsa un fluido de ventilación sobre la ventana transparente al láser (3) de la tapa superior extraíble (2);
- unos medios de control de temperatura (22).
2. Sistema según la reivindicación 1 caracterizado por que la tapa superior extraíble (2) y la base de la celda (4) son de un material aislante térmico.
3. Sistema según la reivindicación 1 caracterizado por que la ventana transparente al láser (3) comprende un cristal de cuarzo.
4. Sistema según la reivindicación 3 caracterizado por que el cristal de cuarzo permite la trasmisión de una longitud de onda electromagnética en el rango comprendido entre 1064 nm y 193 nm.
5. Sistema según la reivindicación 1 caracterizado por que la abertura para la entrada de gas (23) de arrastre consiste en un orificio único.
6. Sistema según la reivindicación 1 caracterizado por que la abertura para la entrada de gas (23) de arrastre consiste en cuatro orificios de entrada.
7. Sistema según la reivindicación 1 caracterizado por que la abertura para la salida de gas (24) de arrastre consiste en un orificio único.
8. Sistema según la reivindicación 7 caracterizado por que el orificio único tiene forma de embudo recolector.
9. Sistema según la reivindicación 1 caracterizado por que la abertura para la salida de gas (24) consiste en cuatro orificios de salida.
10. Sistema según la reivindicación 1 caracterizado por que el intercambiador de calor interno (11 ) es un serpentín.
11. Sistema según la reivindicación 10 caracterizado por que el serpentín es de un material conductor térmico.
12. Sistema según la reivindicación 1 caracterizado por que el sistema de refrigeración interno (12) comprende al menos 4 elementos Peltier.
13. Sistema según la reivindicación 12 caracterizado por que además comprende una placa aislante (19) de un material aislante térmico que separa térmicamente la cara fría y la cara caliente de los elementos Peltier.
14. Sistema según la reivindicación 2 ó 13 caracterizado por que el material aislante térmico es un compuesto de poliamida.
15. Sistema según la reivindicación 1 caracterizado por que la placa refrigeradora (13) es de un material conductor térmico.
16. Sistema según la reivindicación 11 ó 15 caracterizado por que el material conductor térmico es metal o una aleación de metales.
17. Sistema según la reivindicación 1 caracterizado por que el portamuestras (14) es de vidrio.
18. Sistema según la reivindicación 1 caracterizado por que el sistema de conexión (15) comprende unos racores.
19. Sistema según la reivindicación 18 caracterizado por que los racores son de metal o una aleación de metales.
20. Sistema según la reivindicación 1 caracterizado por que la ventana transparente a la luz ( 17) es un vidrio difusor.
21. Sistema según la reivindicación 1 caracterizado por que el intercambiador de calor externo (25) comprende elementos Peltier.
22. Sistema según la reivindicación 1 caracterizado por que el fluido refrigerante (20) es polipropilenglicol.
23. Sistema según la reivindicación 1 caracterizado por que el fluido refrigerante (20) es aceite de silicona.
24. Sistema según la reivindicación 1 caracterizado por que el sensor de temperatura (21) es un termopar.
25. Sistema según la reivindicación 1 caracterizado por que el sensor de temperatura (21 ) es un pirómetro.
26. Sistema según la reivindicación 1 caracterizado por que además comprende unos medios de iluminación externos (18) que iluminan la muestra (5) a través de la ventana transparente a la luz (17).
27. Sistema según la reivindicación 26 caracterizado por que los medios de iluminación externos (18) comprenden un diodo emisor de luz.
28. Sistema según la reivindicación 1 caracterizado por que el sistema de ventilación externo (27) comprende un ventilador accionado por unos medios motores.
29. Sistema según la reivindicación 1 caracterizado por que el sistema de ventilación externo (27) comprende una cámara a presión que contiene el fluido de ventilación, una conducción que conduce el fluido de ventilación sobre la ventana transparente al láser (3) y unos medios valvulares para regular la salida del fluido de ventilación.
30. Sistema según la reivindicación 1 caracterizado por que el sistema de ventilación externo (27) comprende un compresor que comprime el fluido de ventilación, una conducción que conduce el fluido de ventilación sobre la ventana transparente al láser (3) y unos medios valvulares para regular la salida del fluido de ventilación.
31. Sistema según la reivindicación 1 caracterizado por que los medios de control de temperatura (22) recogen y tratan señales analógicas o digitales capturadas por el sensor de temperatura (21) y envían señales de control analógicas o digitales al sistema de refrigeración interno (12).
32. Sistema según la reivindicación 31 caracterizado por que los medios de control de la temperatura (22) además envían señales de control al sistema de refrigeración externo (16).
33. Sistema según las reivindicaciones 12 ó 21 caracterizado por que los medios de control de temperatura (22) recogen y tratan señales analógicas o digitales capturadas por el sensor de temperatura (21) y envían señales de control analógicas o digitales a los elementos Peltier.
34. Sistema según la reivindicación 31, 32 ó 33 caracterizado por que el tratamiento de las señales analógicas o digitales se realiza mediante bloques funcionales de programa o programas de software.
35. Sistema según la reivindicación 31, 32 ó 33 caracterizado por que el tratamiento de las señales analógicas o digitales se realiza mediante algoritmos implementados en un ordenador.
PCT/ES2014/000096 2013-06-07 2014-06-06 Celda de ablación criogénica con control de la temperatura de la muestra WO2014195539A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201300559 2013-06-07
ES201300559A ES2425138B2 (es) 2013-06-07 2013-06-07 Celda de ablación criogénica con control de la temperatura de la muestra

Publications (1)

Publication Number Publication Date
WO2014195539A1 true WO2014195539A1 (es) 2014-12-11

Family

ID=49231195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/000096 WO2014195539A1 (es) 2013-06-07 2014-06-06 Celda de ablación criogénica con control de la temperatura de la muestra

Country Status (2)

Country Link
ES (1) ES2425138B2 (es)
WO (1) WO2014195539A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106872256A (zh) * 2017-02-24 2017-06-20 中国地质大学(武汉) 无定形激光剥蚀池
CN108469465A (zh) * 2018-03-19 2018-08-31 西北大学 一种用于激光剥蚀的载样装置
CN111579631A (zh) * 2020-06-11 2020-08-25 中国地质大学(武汉) 一种激光剥蚀系统驱动等离子体质谱仪接口转换电路

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2969142A4 (en) * 2013-03-14 2016-11-23 Univ Massachusetts PELTIER COOLED CRYOGENIC LASER DISPATCHING CELL
CN105223263B (zh) * 2014-05-30 2018-05-08 中国科学院上海硅酸盐研究所 一种用于测定生物样品中痕量元素的检测平台及检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040045497A1 (en) * 2001-01-05 2004-03-11 Michael Kriews Analysis method for detecting three-dimensional trace element distribution patterns and corresponding device for carrying out this method
WO2006076817A1 (en) * 2005-01-21 2006-07-27 Empa, Eidgenössische Materialprüfungs- Und Forschungsanstalt Laser ablation analysis in a spinning carrier gas
WO2006106265A1 (fr) * 2005-04-05 2006-10-12 Centre National De La Recherche Scientifique Machine laser d'analyse directe
US20120074307A1 (en) * 2009-04-08 2012-03-29 Sabine Becker Method and device for carrying out a quantitative spatially-resolved local and distribuition analysis of chemical elements and in situ characterization of the ablated surface regions
US20120104244A1 (en) * 2010-11-03 2012-05-03 University Of North Texas Petroleum oil analysis using liquid nitrogen cold stage - laser ablation- icp mass spectrometry

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040045497A1 (en) * 2001-01-05 2004-03-11 Michael Kriews Analysis method for detecting three-dimensional trace element distribution patterns and corresponding device for carrying out this method
WO2006076817A1 (en) * 2005-01-21 2006-07-27 Empa, Eidgenössische Materialprüfungs- Und Forschungsanstalt Laser ablation analysis in a spinning carrier gas
WO2006106265A1 (fr) * 2005-04-05 2006-10-12 Centre National De La Recherche Scientifique Machine laser d'analyse directe
US20120074307A1 (en) * 2009-04-08 2012-03-29 Sabine Becker Method and device for carrying out a quantitative spatially-resolved local and distribuition analysis of chemical elements and in situ characterization of the ablated surface regions
US20120104244A1 (en) * 2010-11-03 2012-05-03 University Of North Texas Petroleum oil analysis using liquid nitrogen cold stage - laser ablation- icp mass spectrometry

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106872256A (zh) * 2017-02-24 2017-06-20 中国地质大学(武汉) 无定形激光剥蚀池
CN108469465A (zh) * 2018-03-19 2018-08-31 西北大学 一种用于激光剥蚀的载样装置
CN108469465B (zh) * 2018-03-19 2020-11-03 西北大学 一种用于激光剥蚀的载样装置
CN111579631A (zh) * 2020-06-11 2020-08-25 中国地质大学(武汉) 一种激光剥蚀系统驱动等离子体质谱仪接口转换电路

Also Published As

Publication number Publication date
ES2425138A1 (es) 2013-10-11
ES2425138B2 (es) 2014-06-10

Similar Documents

Publication Publication Date Title
ES2425138B2 (es) Celda de ablación criogénica con control de la temperatura de la muestra
Saudemont et al. Real-time molecular diagnosis of tumors using water-assisted laser desorption/ionization mass spectrometry technology
Stetzer et al. The Zurich Ice Nucleation Chamber (ZINC)-A new instrument to investigate atmospheric ice formation
ES2397107T3 (es) Sistema y método de espectroscopia Raman no tripulado a distancia
ES2871539T3 (es) Dispositivo láser para caracterización de tejidos
US20090140169A1 (en) Method and device for three dimensional microdissection
US20160245753A1 (en) Fluorescence biopsy specimen imager and methods
Sneed et al. New LA-ICP-MS cryocell and calibration technique for sub-millimeter analysis of ice cores
JP6713634B2 (ja) ガス分析計、光合成速度測定装置、及び、光合成速度測定方法
US20130227970A1 (en) Device for the light stimulation and cryopreservation of biological samples
Kanngießer et al. Three-dimensional micro-XRF under cryogenic conditions: a pilot experiment for spatially resolved trace analysis in biological specimens
US9679753B2 (en) Peltier-cooled cryogenic laser ablation cell
CN105223263B (zh) 一种用于测定生物样品中痕量元素的检测平台及检测方法
Wang et al. Micro-PIXE analyses of frozen-hydrated semi-thick biological sections
Echlin et al. Low‐temperature X‐ray microanalysis of the differentiating vascular tissue in root tips of Lemna minor L
Galli et al. EDXRF analysis of metal artefacts from the grave goods of the Royal Tomb 14 of Sipan, Peru
US20230384476A1 (en) Optical probe and method for in situ soil analysis
CN210215385U (zh) 温控载物台及检测设备
Geipel et al. Speciation of uranium in compartments of living cells
CN206209262U (zh) 具有密闭气道及绝热外壳的近接光源及影像撷取组件
US10111419B2 (en) Multi-modal biopsy storage device and methods
CN113702149A (zh) 一种红外热成像赶酸定容法
Török et al. Tandem LA–LIBS coupled to ICP-MS for comprehensive analysis of tumor samples
DE2210442A1 (de) Mikroskopanordnung zur untersuchung tiefgekuehlter proben, mit einer zwischen mikroskopobjektiv und probe bzw. probenabdeckung angeordneten immersionsfluessigkeit
Amir Khalili Evaluation of an in-house-built Peltier cooled ablation stage for elemental imaging of snap frozen biological tissue samples using LA-ICP-MS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807922

Country of ref document: EP

Kind code of ref document: A1