WO2014192954A1 - 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム - Google Patents

超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム Download PDF

Info

Publication number
WO2014192954A1
WO2014192954A1 PCT/JP2014/064559 JP2014064559W WO2014192954A1 WO 2014192954 A1 WO2014192954 A1 WO 2014192954A1 JP 2014064559 W JP2014064559 W JP 2014064559W WO 2014192954 A1 WO2014192954 A1 WO 2014192954A1
Authority
WO
WIPO (PCT)
Prior art keywords
feature amount
unit
ultrasonic
image data
frequency
Prior art date
Application number
PCT/JP2014/064559
Other languages
English (en)
French (fr)
Inventor
裕雅 野口
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to EP14804957.0A priority Critical patent/EP3005945A4/en
Priority to JP2014545437A priority patent/JP5659324B1/ja
Priority to CN201480002244.1A priority patent/CN104582584B/zh
Publication of WO2014192954A1 publication Critical patent/WO2014192954A1/ja
Priority to US14/625,794 priority patent/US20150178919A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4477Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52033Gain control of receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52071Multicolour displays; using colour coding; Optimising colour or information content in displays, e.g. parametric imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/001Texturing; Colouring; Generation of texture or colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • G09G5/04Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed using circuits for interfacing with colour displays
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/14Solving problems related to the presentation of information to be displayed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2380/00Specific applications
    • G09G2380/08Biomedical applications

Definitions

  • the present invention relates to an ultrasonic observation apparatus that observes a tissue of a specimen using ultrasonic waves, an operation method of the ultrasonic observation apparatus, and an operation program of the ultrasonic observation apparatus.
  • a technique for imaging a characteristic amount of a frequency spectrum of a received ultrasonic signal is known (see, for example, Patent Document 1). ).
  • a feature amount of a frequency spectrum is extracted as an amount representing the tissue property of an observation target, and then a feature amount image to which visual information corresponding to the feature amount is added is generated and displayed.
  • a user such as a doctor diagnoses the tissue properties of the specimen by looking at the displayed feature image.
  • the luminance and color of the pixels constituting the feature amount image change according to the values of display parameters necessary for imaging such as gain and contrast, and the relationship with the feature amount value. It was scarce. For this reason, in the above-described prior art, it may be difficult for the user to objectively and accurately diagnose the tissue properties to be observed.
  • the present invention has been made in view of the above, and an ultrasonic observation apparatus, an operation method of the ultrasonic observation apparatus, and an ultrasonic wave that enable a user to objectively and accurately diagnose a tissue property of an observation target.
  • An object is to provide an operation program of the observation apparatus.
  • an ultrasonic observation apparatus transmits an ultrasonic signal to a specimen and receives an ultrasonic wave reflected by the specimen.
  • a frequency analysis unit that calculates a frequency spectrum by analyzing the frequency of the ultrasonic wave received by the ultrasonic probe, and at least from the frequency spectrum by approximating the frequency spectrum calculated by the frequency analysis unit
  • a feature quantity extraction unit that extracts one feature quantity, a feature quantity extracted by the feature quantity extraction unit, and a threshold value in the feature quantity that is constant regardless of the display parameter value of the image data
  • the feature amount image data for generating feature amount image data for displaying information corresponding to the feature amount in accordance with any of a plurality of display methods.
  • a generating unit characterized by comprising a.
  • the threshold information storage unit that stores the feature value including the threshold and the plurality of display methods in association with each other, and the feature amount extraction unit extracts the feature value.
  • a display method of information corresponding to a feature amount is selected from the plurality of display methods stored in the threshold information storage unit, and the feature amount image data is stored in the feature amount image data generation unit according to the selected display method.
  • a display method selection unit to be generated.
  • the plurality of display methods may include a gray display in which a hue changes according to the feature value, and a gray in which the hue is constant regardless of the feature value.
  • the display method selection unit is roughly classified into scale display, and the display method selection unit selects either the color display or the gray scale display according to the magnitude relationship between the feature amount and the threshold value.
  • the ultrasonic probe can be selected from a plurality of different types of ultrasonic probes
  • the threshold information storage unit includes the specimen and the A threshold value corresponding to the type of the ultrasound probe is stored
  • the feature amount image data generating unit generates the feature amount image data based on the threshold value corresponding to the type of the specimen and the ultrasound probe. It is characterized by that.
  • the feature amount extraction unit performs an approximation process on the frequency spectrum calculated by the frequency analysis unit, thereby calculating an approximate expression of the frequency spectrum. And an approximate expression calculated by the approximating unit by performing attenuation correction processing for reducing the contribution of attenuation generated according to the ultrasonic reception depth and frequency, thereby extracting the feature quantity of the frequency spectrum. And a correction unit.
  • the feature amount extraction unit responds to the reception depth and frequency of the ultrasonic wave when the ultrasonic wave propagates to the frequency spectrum calculated by the frequency analysis unit.
  • An attenuation correction unit that performs an attenuation correction process that reduces the contribution of attenuation generated by the method, and an approximation unit that extracts a characteristic amount of the frequency spectrum by performing an approximation process on the frequency spectrum corrected by the attenuation correction unit; It is characterized by having.
  • the ultrasonic observation apparatus is characterized in that, in the above invention, the approximating unit approximates a frequency spectrum to be approximated by a polynomial by regression analysis.
  • the approximating unit approximates the frequency spectrum to be approximated by a linear expression, the inclination of the linear expression, the intercept of the linear expression, and the inclination and the intercept. And at least one of the intensities determined by using a specific frequency included in the frequency region of the frequency spectrum is extracted as a feature amount.
  • An operation method of an ultrasonic observation apparatus is an operation method of an ultrasonic observation apparatus that transmits an ultrasonic signal to a specimen and receives an ultrasonic wave reflected by the specimen, and the frequency analysis unit includes A frequency analysis step of calculating a frequency spectrum by analyzing the frequency of the ultrasonic wave, and a feature amount extraction step of extracting at least one feature amount from the frequency spectrum by a feature amount extraction unit approximating the frequency spectrum;
  • the feature amount image data generation unit has a relationship between the feature amount extracted in the feature amount extraction step and a threshold value that is constant in the feature amount regardless of the value of the display parameter of the image data. Accordingly, the feature amount image data for generating the information corresponding to the feature amount according to any of a plurality of display methods is generated. Characterized in that it comprises a quantity image data generating step.
  • the operation program of the ultrasonic observation apparatus includes: an ultrasonic observation apparatus that transmits an ultrasonic signal to a specimen and receives an ultrasonic wave reflected by the specimen; Analyzing a frequency spectrum by analyzing the frequency spectrum, a feature quantity extracting step for extracting at least one feature quantity from the frequency spectrum by a feature quantity extraction unit approximating the frequency spectrum, and feature quantity image data According to the relationship between the feature amount extracted in the feature amount extraction step by the generation unit and a threshold value that is a threshold value in the feature value and that is constant regardless of the value of the display parameter included in the image data, Feature amount image data for generating feature amount image data for displaying information corresponding to the amount according to one of a plurality of display methods. Wherein the executing and data generating step.
  • the user can objectively and accurately diagnose the tissue properties to be observed.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic observation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a relationship between the reception depth and the amplification factor in the amplification processing performed by the signal amplification unit of the ultrasonic observation apparatus according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing a relationship between the reception depth and the amplification factor in the amplification processing performed by the amplification correction unit of the ultrasonic observation apparatus according to the embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example of a frequency spectrum calculated by the frequency analysis unit of the ultrasonic observation apparatus according to the embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic observation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a relationship between the reception depth and the amplification factor in the amplification processing performed by the signal amplification unit of the ultrasonic observation apparatus according to the embodiment
  • FIG. 5 is a diagram illustrating a straight line corresponding to the feature amount corrected by the attenuation correction unit of the ultrasonic observation apparatus according to the embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a display example of the B-mode image corresponding to the B-mode image data generated by the B-mode image generation unit of the ultrasonic observation apparatus according to the embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a relationship between a feature amount and a plurality of display methods when the feature amount image data generation unit of the ultrasonic observation apparatus according to the embodiment of the present invention generates feature amount image data.
  • FIG. 8 is a diagram schematically showing the image shown in FIG. 7 in black and white.
  • FIG. 9 is a diagram illustrating an example of threshold information stored in the threshold information storage unit of the ultrasonic observation apparatus according to the embodiment of the present invention.
  • FIG. 10 is a flowchart showing an outline of processing of the ultrasonic observation apparatus according to the embodiment of the present invention.
  • FIG. 11 is a flowchart showing an outline of processing performed by the frequency analysis unit of the ultrasonic observation apparatus according to the embodiment of the present invention.
  • FIG. 12 is a diagram schematically showing a data array of one sound ray.
  • FIG. 13 is a diagram schematically illustrating an example of a feature amount image displayed by the display unit of the ultrasonic observation apparatus according to the embodiment of the present invention.
  • FIG. 10 is a flowchart showing an outline of processing of the ultrasonic observation apparatus according to the embodiment of the present invention.
  • FIG. 11 is a flowchart showing an outline of processing performed by the frequency analysis unit of the ultrasonic observation apparatus according to the embodiment of the present invention.
  • FIG. 12 is a diagram schematically showing
  • FIG. 14 is a diagram schematically illustrating another hue setting method used when the feature amount image data generation unit of the ultrasonic observation apparatus according to the embodiment of the present invention generates feature amount image data.
  • FIG. 15 is a diagram schematically showing the image shown in FIG. 14 in black and white.
  • FIG. 16 is a diagram illustrating an example in which the display unit of the ultrasonic observation apparatus according to another embodiment of the present invention displays a B-mode image superimposed on a feature amount image.
  • FIG. 17 is a diagram schematically showing the image shown in FIG. 16 in black and white.
  • FIG. 18 is a diagram schematically illustrating an outline of attenuation correction processing performed by the attenuation correction unit of the ultrasonic observation apparatus according to another embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic observation apparatus according to an embodiment of the present invention.
  • An ultrasonic observation apparatus 1 shown in FIG. 1 is an apparatus for observing a specimen that is a diagnosis target using ultrasonic waves.
  • the ultrasonic observation apparatus 1 transmits and receives electrical signals between the ultrasonic probe 2 that outputs an ultrasonic pulse to the outside and receives an ultrasonic echo reflected from the outside, and the ultrasonic probe 2.
  • a display unit 7 that displays various types of information, a storage unit 8 that stores various types of information necessary for ultrasonic observation, and a control unit 9 that controls the operation of the ultrasonic observation apparatus 1 are provided.
  • the ultrasonic observation apparatus 1 includes a scope in which an ultrasonic probe 2 is provided at a distal end portion thereof, and a processing apparatus (processor) in which a base end of the scope is detachably connected and the above-described parts other than the ultrasonic probe 2 are provided. ).
  • the ultrasonic probe 2 converts an electrical pulse signal received from the transmission / reception unit 3 into an ultrasonic pulse (acoustic pulse signal), and converts an ultrasonic echo reflected by an external specimen into an electrical echo signal.
  • a signal conversion unit 21 for conversion is included.
  • the ultrasonic probe 2 may be one that mechanically scans an ultrasonic transducer, or one that electronically scans a plurality of ultrasonic transducers. In the present embodiment, it is possible to select and use any one of a plurality of different types of ultrasonic probes 2 as the ultrasonic probe 2.
  • the transmission / reception unit 3 is electrically connected to the ultrasonic probe 2, transmits a pulse signal to the ultrasonic probe 2, and receives an electrical echo signal as a reception signal from the ultrasonic probe 2. To do. Specifically, the transmission / reception unit 3 generates a pulse signal based on a preset waveform and transmission timing, and transmits the generated pulse signal to the ultrasound probe 2.
  • the transmission / reception unit 3 includes a signal amplification unit 31 that amplifies the echo signal. Specifically, the signal amplifying unit 31 performs STC correction that amplifies an echo signal having a larger reception depth with a higher amplification factor.
  • FIG. 2 is a diagram illustrating the relationship between the reception depth and the amplification factor in the amplification process performed by the signal amplification unit 31.
  • the reception depth z shown in FIG. 2 is an amount calculated based on the elapsed time from the reception start point of the ultrasonic wave. As shown in FIG.
  • the amplification factor ⁇ (dB) increases linearly from ⁇ 0 to ⁇ th (> ⁇ 0 ) as the reception depth z increases. Further, the amplification factor ⁇ takes a constant value ⁇ th when the reception depth z is equal to or greater than the threshold value z th .
  • the value of the threshold z th is such a value that the ultrasonic signal received from the specimen is almost attenuated and the noise becomes dominant. More generally, when the reception depth z is smaller than the threshold value z th , the amplification factor ⁇ may increase monotonously as the reception depth z increases.
  • the transmission / reception unit 3 performs processing such as filtering on the echo signal amplified by the signal amplification unit 31, and then generates and outputs a time-domain digital RF signal by performing A / D conversion.
  • processing such as filtering on the echo signal amplified by the signal amplification unit 31, and then generates and outputs a time-domain digital RF signal by performing A / D conversion.
  • the transmission / reception unit 3 has a multi-channel circuit for beam synthesis corresponding to the plurality of ultrasonic transducers.
  • the calculation unit 4 includes an amplification correction unit 41 that performs amplification correction to make the amplification factor constant regardless of the reception depth with respect to the digital RF signal output from the transmission / reception unit 3, and a fast Fourier transform to the digital RF signal subjected to amplification correction.
  • Frequency analysis unit 42 that calculates a frequency spectrum by performing (FFT) and performing frequency analysis, and approximation processing based on regression analysis and ultrasonic waves propagate to the frequency spectrum of each location calculated by frequency analysis unit 42
  • a feature amount extraction unit 43 that extracts the feature amount of the specimen by performing attenuation correction processing to reduce the contribution of attenuation generated according to the reception depth and frequency of the ultrasonic wave.
  • FIG. 3 is a diagram illustrating the relationship between the reception depth and the amplification factor in the amplification process performed by the amplification correction unit 41.
  • the amplification rate ⁇ (dB) in the amplification process performed by the amplification correction unit 41 takes the maximum value ⁇ th ⁇ 0 when the reception depth z is zero, and the reception depth z is zero to the threshold value z th. Decreases linearly until reaching 0 and is zero when the reception depth z is greater than or equal to the threshold z th .
  • the amplification correction unit 41 amplifies and corrects the digital RF signal with the amplification factor determined in this way, thereby canceling the influence of the STC correction in the signal amplification unit 31 and outputting a signal with a constant amplification rate ⁇ th.
  • the relationship between the reception depth z and the amplification factor ⁇ performed by the amplification correction unit 41 is different depending on the relationship between the reception depth and the amplification factor in the signal amplification unit 31.
  • the STC correction is a correction that uniformly amplifies the amplitude of the analog signal waveform over the entire frequency band. For this reason, when generating a B-mode image using the amplitude of ultrasonic waves, a sufficient effect can be obtained by performing STC correction, while in the case of calculating the frequency spectrum of ultrasonic waves. However, the influence of attenuation associated with the propagation of ultrasonic waves cannot be accurately eliminated. To solve this problem, when generating a B-mode image, output a reception signal subjected to STC correction, while generating an image based on a frequency spectrum, It is conceivable to perform a different new transmission and output a received signal not subjected to STC correction.
  • the amplification correction unit 41 in order to eliminate the influence of the STC correction once on the signal subjected to the STC correction for the B-mode image while maintaining the frame rate of the generated image data, the amplification correction unit 41 Thus, the amplification factor is corrected.
  • the frequency analysis unit 42 calculates a frequency spectrum at a plurality of locations (data positions) on the sound ray by performing fast Fourier transform on an FFT data group having a predetermined data amount for each sound ray (line data). The calculation result by the frequency analysis unit 42 is obtained as a complex number and stored in the storage unit 8.
  • the frequency spectrum shows different tendencies depending on the tissue properties of the specimen. This is because the frequency spectrum has a correlation with the size, density, acoustic impedance, and the like of the specimen as a scatterer that scatters ultrasonic waves.
  • the “tissue property” is, for example, any of cancer, endocrine tumor, mucinous tumor, normal tissue, vasculature, and the like.
  • FIG. 4 is a diagram illustrating an example of a frequency spectrum calculated by the frequency analysis unit 42. Specifically, a frequency spectrum obtained by performing a fast Fourier transform on the FFT data group is expressed by intensity I (f, z) and phase ⁇ (f, z) with frequency f and reception depth as a function of z. The spectrum of intensity I (f, z) is shown.
  • intensity refers to any of parameters such as voltage, power, sound pressure, and acoustic energy.
  • the horizontal axis f is frequency
  • the vertical axis I is intensity
  • the reception depth z is constant. Based in the frequency spectrum curve C 1 shown in FIG.
  • the lower limit frequency f L and upper frequency f H of the frequency spectrum, the ultrasonic probe 2 of the frequency bands, and the frequency band of the pulse signal receiving unit 3 transmits
  • f L 3 MHz
  • f H 10 MHz.
  • the curve and the straight line are composed of a set of discrete points.
  • the feature amount extraction unit 43 is an approximation unit 431 that calculates the approximate expression of the frequency spectrum calculated by the frequency analysis unit 42 by regression analysis, and the approximation expression calculated by the approximation unit 431 depends on the ultrasonic reception depth and frequency.
  • An attenuation correction unit 432 that extracts a characteristic amount of the frequency spectrum by performing an attenuation correction process that reduces the contribution of attenuation of the ultrasonic wave.
  • the approximating unit 431 extracts a pre-correction feature quantity that characterizes this approximated primary expression by approximating the frequency spectrum with a linear expression (regression line) by regression analysis. Specifically, the approximating unit 431 extracts the slope a 0 and the intercept b 0 of the linear expression as the pre-correction feature quantity.
  • Linear L 10 shown in FIG. 4 is a straight line corresponding to the linear expression approximating unit 431 is approximated.
  • the intensity also referred to as Mid-band fit
  • the slope a 0 has a correlation with the size of the ultrasonic scatterer, and it is generally considered that the larger the scatterer, the smaller the slope.
  • the intercept b 0 has a correlation with the size of the scatterer, the difference in acoustic impedance, the number density (concentration) of the scatterer, and the like. Specifically, it is considered that the intercept b 0 has a larger value as the scatterer is larger, a larger value as the acoustic impedance is larger, and a larger value as the density (concentration) of the scatterer is larger.
  • the intensity at the center frequency f M (hereinafter simply referred to as “intensity”) c 0 is an indirect parameter derived from the slope a 0 and the intercept b 0 , and gives the spectrum intensity at the center in the effective frequency band. Therefore, the intensity c 0 is considered to have a certain degree of correlation with the brightness of the B-mode image in addition to the size of the scatterer, the difference in acoustic impedance, and the density of the scatterer.
  • the approximate polynomial calculated by the feature amount extraction unit 43 is not limited to a linear expression, and it is possible to use a quadratic or higher-order approximate polynomial.
  • is the attenuation rate
  • z is the ultrasonic reception depth
  • f is the frequency.
  • the attenuation amount A (f, z) is proportional to the frequency f.
  • the value of the attenuation rate ⁇ may be set or changed by input from the input unit 6.
  • FIG. 5 is a diagram illustrating a straight line corresponding to the feature amount corrected by the attenuation correction unit 432.
  • the image processing unit 5 displays information corresponding to the feature amount extracted by the B-mode image data generation unit 51 that generates B-mode image data from the echo signal and the feature amount extraction unit 43 according to one of a plurality of display methods. And a feature amount image data generation unit 52 for generating feature amount image data.
  • the B-mode image data generation unit 51 performs signal processing using a known technique such as a bandpass filter, logarithmic conversion, gain processing, contrast processing, and the like on the digital signal, and also according to the image display range on the display unit 7.
  • B-mode image data is generated by thinning out data in accordance with the data step width determined in advance.
  • FIG. 6 is a diagram illustrating a display example of a B-mode image corresponding to the B-mode image data generated by the B-mode image data generation unit 51.
  • a B-mode image 100 shown in the figure is a grayscale image in which values of R (red), G (green), and B (blue), which are variables when the RGB color system is adopted as a color space, are matched.
  • the ultrasound observation apparatus 1 is specialized for generating feature amount image data
  • the B-mode image data generation unit 51 is not an essential component. In this case, the signal amplifying unit 31 and the amplification correcting unit 41 are also unnecessary.
  • the feature amount image data generation unit 52 has a relationship between the feature amount extracted by the feature amount extraction unit 43 and a threshold value that is constant regardless of the display parameter value of the image data. Accordingly, feature amount image data for displaying information corresponding to the feature amount according to any of a plurality of display methods is generated.
  • the display method used here is selected by a display method selection unit 91 of the control unit 9 described later.
  • the information assigned to each pixel in the feature amount image data is determined according to the data amount of the FFT data group when the frequency analysis unit 42 calculates the frequency spectrum. Specifically, for example, information corresponding to the feature amount of the frequency spectrum calculated from the FFT data group is assigned to the pixel region corresponding to the data amount of one FFT data group. In the present embodiment, description will be made assuming that only one type of feature amount is used when generating feature amount image data, but feature amount image data may be generated using a plurality of types of feature amounts. .
  • FIG. 7 is a diagram illustrating an example of a relationship between a feature amount and a plurality of display methods when the feature amount image data generation unit 52 generates feature amount image data.
  • FIG. 8 is a diagram schematically showing the image shown in FIG. 7 in black and white.
  • the information corresponding to the feature amount has luminance, saturation, and hue as variables. Multiple display methods determine specific values for these variables.
  • the feature amount image data generation unit 52 generates feature amount image data when the feature amount S is in the range of S min ⁇ S ⁇ S max .
  • the threshold value S th shown in FIGS. 7 and 8 is always constant without being affected by display parameters that are necessary for imaging such as gain and contrast and can be changed during real-time observation.
  • Such a threshold value S th is determined according to the type of scope (substantially, the type of the ultrasound probe 2 mounted on the scope) and the type of specimen to be observed. Are stored in a threshold information storage unit 84 (described later) included in the storage unit 8.
  • the luminance may be continuously decreased as the feature amount S increases.
  • the relationship between the feature amount and the display method shown in FIGS. 7 and 8 is merely an example.
  • the number, type, and bandwidth of each color in color display are preferably set according to the relationship between the feature amount S, the organ to be observed, and the scope to be used.
  • the color type may be changed by the user via the input unit 6.
  • the storage unit 8 includes an amplification factor information storage unit 81, a window function storage unit 82, a correction information storage unit 83, and a threshold information storage unit 84.
  • the amplification factor information storage unit 81 is a relationship between an amplification factor and a reception depth that are referred to when the signal amplification unit 31 performs amplification processing and the amplification correction unit 41 performs amplification correction processing (for example, FIG. 2 and FIG. 3). Is stored as amplification factor information.
  • the window function storage unit 82 stores at least one of window functions such as Hamming, Hanning, and Blackman.
  • the correction information storage unit 83 stores information related to attenuation correction including Expression (1).
  • the threshold information storage unit 84 stores threshold values determined according to the type of scope (substantially, the type of the ultrasound probe 2 mounted on the scope) and the type of specimen to be observed.
  • the threshold value and a plurality of display methods are stored in association with each other (see FIG. 7).
  • FIG. 9 is a diagram schematically illustrating an example of threshold values stored in the threshold information storage unit 84.
  • the table Tb shown in the figure records threshold values corresponding to the type of scope having the specimen to be observed and the ultrasound probe 2 for the three feature quantities S1, S2, and S3.
  • the threshold values of the feature amounts S1, S2, and S3 are SA11, SA12, and SA13, respectively.
  • the threshold values of the feature amounts S1, S2, and S3 are SB21, SB22, and SB23.
  • the threshold value is preferably set as a value that cancels the variation in the feature amount due to the difference in performance of each scope.
  • the threshold value is set high.
  • the threshold value may be set low. Conceivable.
  • the storage unit 8 is realized using a ROM in which an operation program of the ultrasound observation apparatus 1, a program for starting a predetermined OS, and the like are stored in advance, and a RAM in which calculation parameters and data of each process are stored.
  • the control unit 9 has a display method selection unit 91 that selects the corresponding display method by referring to the threshold information stored in the threshold information storage unit 84 with respect to the feature amount extracted by the feature amount extraction unit 43.
  • the display method selection unit 91 outputs the selected display method to the feature amount image data generation unit 52.
  • the control unit 9 is realized by using a CPU having calculation and control functions.
  • the control unit 9 reads various programs including information stored and stored in the storage unit 8 and an operation program of the ultrasonic observation apparatus 1 from the storage unit 8, thereby performing various arithmetic processes related to the operation method of the ultrasonic observation apparatus 1. To control the ultrasonic observation apparatus 1 in an integrated manner.
  • the operation program of the ultrasound observation apparatus 1 can be recorded on a computer-readable recording medium such as a hard disk, flash memory, CD-ROM, DVD-ROM, or flexible disk and widely distributed. Recording of various programs on a recording medium or the like may be performed when the computer or the recording medium is shipped as a product, or may be performed by downloading via a communication network.
  • a computer-readable recording medium such as a hard disk, flash memory, CD-ROM, DVD-ROM, or flexible disk and widely distributed. Recording of various programs on a recording medium or the like may be performed when the computer or the recording medium is shipped as a product, or may be performed by downloading via a communication network.
  • FIG. 10 is a flowchart showing an outline of processing of the ultrasonic observation apparatus 1 having the above configuration. It is assumed that the type of the ultrasound probe 2 provided in the ultrasound observation apparatus 1 is recognized in advance by the apparatus itself. For this purpose, for example, a connection pin for allowing the processing device to determine the type of the scope (ultrasound probe 2) may be provided at the end of the scope on the processing device connection side. Thereby, the processing apparatus side can determine the type of the scope according to the shape of the connection pin of the connected scope. In addition, regarding the type of specimen to be observed, the user may input identification information through the input unit 6 in advance.
  • a connection pin for allowing the processing device to determine the type of the scope may be provided at the end of the scope on the processing device connection side.
  • the processing apparatus side can determine the type of the scope according to the shape of the connection pin of the connected scope.
  • the user may input identification information through the input unit 6 in advance.
  • the ultrasonic observation apparatus 1 first measures a new specimen with the ultrasonic probe 2 (step S1).
  • the signal amplifying unit 31 that has received the echo signal from the ultrasound probe 2 amplifies the echo signal (step S2).
  • the signal amplifying unit 31 performs amplification (STC correction) of the echo signal based on the relationship between the amplification factor and the reception depth shown in FIG. 2, for example.
  • the B-mode image data generation unit 51 generates B-mode image data using the echo signal amplified by the signal amplification unit 31 (step S3).
  • this step S3 is unnecessary.
  • the amplification correction unit 41 performs amplification correction on the signal output from the transmission / reception unit 3 so that the amplification factor becomes constant regardless of the reception depth (step S4).
  • the amplification correction unit 41 performs amplification correction based on, for example, the relationship between the amplification factor and the reception depth shown in FIG.
  • step S4 the frequency analysis unit 42 calculates a frequency spectrum by performing frequency analysis by FFT calculation (step S5).
  • step S5 the process (step S5) performed by the frequency analysis unit 42 will be described in detail with reference to the flowchart shown in FIG.
  • the frequency analysis unit 42 sets a counter k for identifying a sound ray to be analyzed to k 0 (step S21).
  • FIG. 12 is a diagram schematically showing a data array of one sound ray.
  • a white or black rectangle means one piece of data.
  • the sound ray SR k is discretized at a time interval corresponding to a sampling frequency (for example, 50 MHz) in A / D conversion performed by the transmission / reception unit 3.
  • FIG. 12 shows a case where the first data position of the sound ray SR k is set as the initial value Z (k) 0 , the position of the initial value can be arbitrarily set.
  • the frequency analysis unit 42 acquires the FFT data group at the data position Z (k) (step S23), and applies the window function stored in the window function storage unit 82 to the acquired FFT data group (step S24). ). In this way, by applying the window function to the FFT data group, it is possible to avoid the FFT data group from becoming discontinuous at the boundary and to prevent the occurrence of artifacts.
  • the frequency analysis unit 42 determines whether or not the FFT data group at the data position Z (k) is a normal data group (step S25).
  • the FFT data group needs to have a power number of 2 data.
  • the number of data in the FFT data group is 2 n (n is a positive integer).
  • the normal FFT data group means that the data position Z (k) is the 2 n-1 th position from the front in the FFT data group.
  • the FFT data groups F 2 and F 3 are both normal.
  • step S25 when the FFT data group at the data position Z (k) is normal (step S25: Yes), the frequency analysis unit 42 proceeds to step S27 described later.
  • step S25 when the FFT data group at the data position Z (k) is not normal (step S25: No), the frequency analysis unit 42 inserts the normal FFT data group by inserting zero data for the shortage. Generate (step S26).
  • the FFT function group determined to be not normal in step S25 is subjected to a window function before adding zero data. For this reason, discontinuity of data does not occur even if zero data is inserted into the FFT data group.
  • step S26 the frequency analysis unit 42 proceeds to step S27 described later.
  • step S27 the frequency analysis unit 42 obtains a frequency spectrum composed of complex numbers by performing an FFT operation using the FFT data group (step S27). As a result, for example, the frequency spectrum curve C 1 shown in FIG. 4 is obtained.
  • the frequency analysis unit 42 changes the data position Z (k) by the step width D (step S28). It is assumed that the step width D is stored in advance in the storage unit 8.
  • the step width D is desirably matched with the data step width used when the B-mode image data generation unit 51 generates the B-mode image data.
  • the step width D A value larger than the data step width may be set.
  • the frequency analysis unit 42 determines whether or not the data position Z (k) is larger than the maximum value Z (k) max in the sound ray SR k (step S29).
  • the frequency analysis unit 42 increments the counter k by 1 (step S30).
  • the frequency analysis unit 42 returns to step S23. In this way, the frequency analysis unit 42 performs an FFT operation on [ ⁇ (Z (k) max ⁇ Z (k) 0 ) / D ⁇ +1] FFT data groups for the sound ray SR k .
  • [X] represents the maximum integer not exceeding X.
  • step S30 the frequency analysis unit 42 determines whether the counter k is larger than the maximum value k max (step S31). When the counter k is larger than k max (step S31: Yes), the frequency analysis unit 42 ends a series of FFT processing. On the other hand, when the counter k is equal to or less than k max (step S31: No), the frequency analysis unit 42 returns to step S22.
  • the frequency analysis unit 42 performs the FFT operation a plurality of times for each of (k max ⁇ k 0 +1) sound rays.
  • the frequency analysis unit 42 performs frequency analysis processing on all regions where the ultrasonic signal is received, but a setting input of a specific region of interest is received by the input unit 6 in advance, You may make it perform a frequency analysis process only within the region of interest.
  • the approximating unit 431 extracts a pre-correction feature quantity by performing regression analysis on the frequency spectrum calculated by the frequency analyzing unit 42 as an approximating process (step S6). Specifically, the approximating unit 431 calculates a linear expression that approximates the intensity I (f, z) of the frequency spectrum in the frequency spectrum frequency band f L ⁇ f ⁇ f H by regression analysis. A slope a 0 and an intercept b 0 (, intensity c 0 ) to be characterized are extracted as pre-correction feature values. Linear L 10 shown in FIG. 4, in step S6, which is an example of a regression line obtained by performing the pre-correction feature amount extraction processing for the frequency spectrum curve C 1.
  • the attenuation correction unit 432 performs an attenuation correction process on the pre-correction feature quantity extracted by the approximation unit 431 (step S7).
  • the data sampling frequency is 50 MHz
  • the data sampling time interval is 20 (nsec).
  • the sound speed is 1530 (m / sec)
  • the data position Z is 0 using the data step number n and the data step width D. 0153 nD (mm).
  • the attenuation correction unit 432 substitutes the value of the data position Z obtained in this way into the reception depth z of the above-described equations (2) and (4), so that the slope a and the intercept b ( , Intensity c) is calculated.
  • An example of the straight line corresponding to the feature amount the calculated so, may be mentioned lines L 1 shown in FIG.
  • Steps S6 and S7 described above constitute a feature amount extraction step in which the feature amount extraction unit 43 extracts at least one feature amount from the frequency spectrum by approximating the frequency spectrum.
  • the display method selection unit 91 displays information corresponding to the extracted feature amount based on the feature amount value extracted by the feature amount extraction unit 43 and the threshold information stored in the threshold information storage unit 84. A method is selected, and the selection result is output to the feature amount image data generation unit 52 (step S8).
  • the feature quantity image data generation unit 52 does not depend on the feature quantity extracted in the feature quantity extraction step (steps S6 and S7) and the threshold value in the feature quantity and the display parameter value of the image data. According to the relationship with the constant threshold value, feature amount image data for displaying information corresponding to the feature amount in accordance with the display method selected by the display method selection unit 91 is generated (step S9).
  • FIG. 13 is a diagram illustrating an example of the feature amount image displayed by the display unit 7, and is a diagram illustrating a display example of the feature amount image generated based on the relationship between the feature amount illustrated in FIG. 7 and a plurality of display methods. It is.
  • a feature amount image 200 shown in the figure shows a feature amount distribution in the specimen 201.
  • the feature amount image 200 includes one gray area 202 and two color areas 203 and 204 in the specimen 201.
  • the color region 203 is composed of a closed green region 205 (described with a dot pattern) and a red region 206 (described with an oblique stripe pattern) spreading inside thereof.
  • the color region 204 is composed of an annular red region 207 (described with an oblique stripe pattern) and a circular blue region 208 (described with an oblique lattice pattern) extending inside thereof. These regions are considered to have different tissue properties, as is apparent from their colors.
  • the user who has seen the feature amount image 200 generated based on the correspondence between the color and the tissue property described in describing FIGS. 7 and 8 indicates the gray region 202 as the tissue property of the specimen 201. Is a normal tissue, the color region 203 is a lesion, and the color region 204 is a vascular vessel.
  • step S10 the ultrasound observation apparatus 1 ends a series of processes. Note that the ultrasound observation apparatus 1 may periodically repeat the processes of steps S1 to S10.
  • the feature amount is not affected by the display parameters. It is possible to obtain feature amount image data having a strong relationship with the amount value. Therefore, according to the present embodiment, the user can objectively and accurately diagnose the tissue property of the observation target based on the feature amount image.
  • the threshold value information storage that stores the display method of information corresponding to the feature value extracted by the feature value extraction unit in association with the feature value value including the threshold value and the plurality of display methods. Since the feature amount image data generating unit generates feature amount image data according to the selected display method, the relationship between the feature amount value and the display method is absolute. In terms of meaning, it enables an objective and highly accurate diagnosis by the user.
  • the plurality of display methods are roughly divided into color display and gray scale display, for example, a display method using color display in a portion to be emphasized, such as a lesioned part, of a tissue property of a specimen.
  • a display method using gray scale display to normal tissues, it is possible to generate feature amount image data that clearly expresses differences in tissue properties.
  • the threshold value is determined according to the specimen and the ultrasonic probe (or the type of scope equipped with the ultrasonic probe), so that the ultrasonic probe is taken into account while taking into account the characteristics of the specimen. It is possible to generate feature amount image data that excludes the influence due to the machine difference of the tentacles. As a result, the user can diagnose the tissue characteristics of the specimen with higher accuracy.
  • B-mode image data is generated based on a signal to which STC correction that is amplified at an amplification factor according to the reception depth is added, while only the influence of STC correction is canceled to cancel the amplification factor.
  • FIG. 14 is a diagram schematically illustrating another hue setting method used when the feature image data generation unit 52 generates feature image data.
  • FIG. 15 is a diagram schematically showing the image shown in FIG. 14 in black and white. In the case shown in FIGS. 14 and 15, the hue is continuously changed according to the change in the value of the feature amount S when S min ⁇ S ⁇ S th . Specifically, in FIGS.
  • the hue is changed in the order of red ⁇ yellow ⁇ green ⁇ blue in accordance with the change in wavelength. It is changing continuously. Note that the double arrows in FIG. 15 schematically indicate that the hue changes continuously according to the change in wavelength between the hues described at both ends of the arrow.
  • the plurality of display methods may be only two of color display and gray scale display.
  • the display method selection unit 91 selects one of the two display methods when the feature amount is greater than or equal to the threshold value, and selects the other of the two display methods when the feature amount is less than the threshold value. That's fine.
  • a hue is given in a region smaller than the threshold value. This is because the tissue most desired to be seen when determining the tissue properties (for example, This is because it is assumed that a hue is imparted to a lesion portion such as cancer. Therefore, depending on the type of specimen, a region where the feature amount is larger than the threshold value may be a lesion. Accordingly, the hue application region is not determined by the size of the threshold value, but preferably has a configuration that can be appropriately changed according to conditions such as the type and characteristics of the specimen and the tissue properties that the user wants to check.
  • FIG. 16 is a diagram illustrating an example in which the display unit 7 displays a B-mode image superimposed on a feature amount image.
  • FIG. 17 is a diagram schematically showing the image shown in FIG. 16 in black and white.
  • the superimposed image 300 shown in these drawings includes a B-mode display area 301 in which the B-mode image is displayed as it is, and a superimposed display area 302 in which the feature amount image and the B-mode image are displayed in a superimposed manner.
  • the change in hue in the superimposed display area 302 is ignored, and is schematically illustrated as a single vertical stripe pattern.
  • the mixing ratio between the feature amount image and the B-mode image is set in advance. However, the mixing ratio can be changed by an input from the input unit 6. It is. In this way, by displaying the feature amount image together with the B-mode image on the display unit 7, a user such as a doctor can discriminate the tissue property of the specimen together with the information by the B-mode image. It becomes possible to perform accuracy diagnosis.
  • the user may arbitrarily change the threshold value.
  • the feature amount extraction unit 43 may calculate the approximate expression of the corrected frequency spectrum after performing the attenuation correction of the frequency spectrum.
  • FIG. 18 is a diagram schematically illustrating an outline of the attenuation correction process performed by the attenuation correction unit 432. As shown in FIG. 18, the attenuation correction unit 432 applies the formula (1) to the intensity I (f, z) at all frequencies f (f L ⁇ f ⁇ f H ) in the band with respect to the frequency spectrum curve C 1. Correction (I (f, z) ⁇ I (f, z) + A (f, z)) is performed to add the respective attenuation amounts A (f, z).
  • Approximation unit 431 by performing a regression analysis on the frequency spectrum curve C 2, extracts the feature quantity. Characteristic quantities extracted in this case, the gradient a of the straight line L 1 shown in FIG. 18, the intercept b (, intensity c) is.
  • the straight line L 1 is the same as the straight line L 1 shown in FIG.
  • control unit 9 may collectively perform the amplification correction process by the amplification correction unit 41 and the attenuation correction process by the attenuation correction unit 432. This process is equivalent to changing the definition of the attenuation amount of the attenuation correction process in step S7 in FIG. 10 to the following equation (6) without performing the amplification correction process in step S4 in FIG.
  • a ′ 2 ⁇ zf + ⁇ (z) (6)
  • ⁇ (z) on the right side is the difference between the amplification factors ⁇ and ⁇ 0 at the reception depth z
  • ⁇ (z) ⁇ ⁇ ( ⁇ th ⁇ 0 ) / z th ⁇ z + ⁇ th ⁇ 0 (z ⁇ z th )
  • ⁇ (z) 0 (z> z th ) (8) It is expressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Theoretical Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Hardware Design (AREA)
  • Physiology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Quality & Reliability (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 検体に対して超音波信号を送信するとともに前記検体によって反射された超音波を受信する超音波探触子と、超音波探触子2が受信した超音波の周波数を解析することによって周波数スペクトルを算出する周波数解析部と、周波数解析部が算出した周波数スペクトルを近似することによって周波数スペクトルから少なくとも1つの特徴量を抽出する特徴量抽出部と、特徴量抽出部が抽出した特徴量と該特徴量における閾値であって画像データが有する表示用のパラメータの値によらずに一定である閾値との関係に応じて、該特徴量に対応する情報を複数の表示方法のいずれかにしたがって表示する特徴量画像データを生成する特徴量画像データ生成部と、を備える。

Description

超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
 本発明は、超音波を用いて検体の組織を観測する超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラムに関する。
 従来、超音波を用いた検体等の観察対象の組織性状を観測する技術として、受信した超音波信号の周波数スペクトルの特徴量を画像化する技術が知られている(例えば、特許文献1を参照)。この技術では、観察対象の組織性状を表す量として周波数スペクトルの特徴量を抽出した後、この特徴量に対応する視覚的な情報を付与した特徴量画像を生成して表示する。医師等のユーザは、表示された特徴量画像を見ることによって検体の組織性状を診断する。
国際公開第2012/063975号
 しかしながら、上述した従来技術では、特徴量画像を構成する画素の輝度や色が、ゲインやコントラストなどの画像化に必要な表示用のパラメータの値に応じて変化し、特徴量の値との関連性に乏しかった。このため、上述した従来技術では、ユーザが観察対象の組織性状を客観的に精度よく診断することが難しい場合があった。
 本発明は、上記に鑑みてなされたものであって、ユーザが観測対象の組織性状を客観的に精度よく診断することを可能にする超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラムを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る超音波観測装置は、検体に対して超音波信号を送信するとともに前記検体によって反射された超音波を受信する超音波探触子と、前記超音波探触子が受信した超音波の周波数を解析することによって周波数スペクトルを算出する周波数解析部と、前記周波数解析部が算出した周波数スペクトルを近似することによって前記周波数スペクトルから少なくとも1つの特徴量を抽出する特徴量抽出部と、前記特徴量抽出部が抽出した特徴量と該特徴量における閾値であって画像データが有する表示用のパラメータの値によらずに一定である閾値との関係に応じて、該特徴量に対応する情報を複数の表示方法のいずれかにしたがって表示する特徴量画像データを生成する特徴量画像データ生成部と、を備えたことを特徴とする。
 本発明に係る超音波観測装置は、上記発明において、前記閾値を含む前記特徴量の値と前記複数の表示方法とを対応付けて記憶する閾値情報記憶部と、前記特徴量抽出部が抽出した特徴量に対応する情報の表示方法を前記閾値情報記憶部が記憶する前記複数の表示方法の中から選択し、該選択した表示方法にしたがって前記特徴量画像データ生成部に前記特徴量画像データを生成させる表示方法選択部と、をさらに備えたことを特徴とする。
 本発明に係る超音波観測装置は、上記発明において、前記複数の表示方法は、色相が前記特徴量の値に応じて変化するカラー表示および色相が前記特徴量の値によらず一定であるグレースケール表示に大別され、前記表示方法選択部は、前記特徴量と前記閾値との大小関係に応じて前記カラー表示および前記グレースケール表示のいずれかを選択することを特徴とする。
 本発明に係る超音波観測装置は、上記発明において、前記超音波探触子は、互いに種類が異なる複数の超音波探触子から選択可能であり、前記閾値情報記憶部は、前記検体および前記超音波探触子の種類に応じた閾値を記憶し、前記特徴量画像データ生成部は、前記検体および前記超音波探触子の種類に応じた閾値に基づいて前記特徴量画像データを生成することを特徴とする。
 本発明に係る超音波観測装置は、上記発明において、前記特徴量抽出部は、前記周波数解析部が算出した周波数スペクトルに対して近似処理を行うことにより、該周波数スペクトルの近似式を算出する近似部と、前記近似部が算出した近似式に対して超音波の受信深度および周波数に応じて発生する減衰の寄与を削減する減衰補正処理を行うことにより、前記周波数スペクトルの特徴量を抽出する減衰補正部と、を有することを特徴とする。
 本発明に係る超音波観測装置は、上記発明において、前記特徴量抽出部は、前記周波数解析部が算出した周波数スペクトルに対して超音波が伝播する際に該超音波の受信深度および周波数に応じて発生する減衰の寄与を削減する減衰補正処理を行う減衰補正部と、前記減衰補正部が補正した周波数スペクトルに対して近似処理を行うことにより、前記周波数スペクトルの特徴量を抽出する近似部と、を有することを特徴とする。
 本発明に係る超音波観測装置は、上記発明において、前記近似部は、回帰分析によって近似対象の周波数スペクトルを多項式で近似することを特徴とする。
 本発明に係る超音波観測装置は、上記発明において、前記近似部は、前記近似対象の周波数スペクトルを一次式で近似し、前記一次式の傾き、前記一次式の切片、および前記傾きと前記切片と前記周波数スペクトルの周波数域に含まれる特定の周波数とを用いて定まる強度、の少なくとも1つを特徴量として抽出することを特徴とする。
 本発明に係る超音波観測装置の作動方法は、検体に対して超音波信号を送信するとともに前記検体によって反射された超音波を受信する超音波観測装置の作動方法であって、周波数解析部が前記超音波の周波数を解析することによって周波数スペクトルを算出する周波数解析ステップと、特徴量抽出部が前記周波数スペクトルを近似することによって前記周波数スペクトルから少なくとも1つの特徴量を抽出する特徴量抽出ステップと、特徴量画像データ生成部が、前記特徴量抽出ステップで抽出した特徴量と該特徴量における閾値であって画像データが有する表示用のパラメータの値によらずに一定である閾値との関係に応じて、該特徴量に対応する情報を複数の表示方法のいずれかにしたがって表示する特徴量画像データを生成する特徴量画像データ生成ステップと、を含むことを特徴とする。
 本発明に係る超音波観測装置の作動プログラムは、検体に対して超音波信号を送信するとともに前記検体によって反射された超音波を受信する超音波観測装置に、周波数解析部が前記超音波の周波数を解析することによって周波数スペクトルを算出する周波数解析ステップと、特徴量抽出部が前記周波数スペクトルを近似することによって前記周波数スペクトルから少なくとも1つの特徴量を抽出する特徴量抽出ステップと、特徴量画像データ生成部が、前記特徴量抽出ステップで抽出した特徴量と該特徴量における閾値であって画像データが有する表示用のパラメータの値によらずに一定である閾値との関係に応じて、該特徴量に対応する情報を複数の表示方法のいずれかにしたがって表示する特徴量画像データを生成する特徴量画像データ生成ステップと、を実行させることを特徴とする。
 本発明によれば、ユーザが観測対象の組織性状を客観的に精度よく診断することが可能となる。
図1は、本発明の一実施の形態に係る超音波観測装置の構成を示すブロック図である。 図2は、本発明の一実施の形態に係る超音波観測装置の信号増幅部が行う増幅処理における受信深度と増幅率との関係を示す図である。 図3は、本発明の一実施の形態に係る超音波観測装置の増幅補正部が行う増幅処理における受信深度と増幅率との関係を示す図である。 図4は、本発明の一実施の形態に係る超音波観測装置の周波数解析部によって算出される周波数スペクトルの例を示す図である。 図5は、本発明の一実施の形態に係る超音波観測装置の減衰補正部が補正した特徴量に対応する直線を示す図である。 図6は、本発明の一実施の形態に係る超音波観測装置のBモード画像生成部が生成するBモード画像データに対応するBモード画像の表示例を示す図である。 図7は、本発明の一実施の形態に係る超音波観測装置の特徴量画像データ生成部が特徴量画像データを生成する際の特徴量と複数の表示方法との関係を示す図である。 図8は、図7に示す画像を白黒で模式的に示す図である。 図9は、本発明の一実施の形態に係る超音波観測装置の閾値情報記憶部が記憶する閾値情報の例を示す図である。 図10は、本発明の一実施の形態に係る超音波観測装置の処理の概要を示すフローチャートである。 図11は、本発明の一実施の形態に係る超音波観測装置の周波数解析部が行う処理の概要を示すフローチャートである。 図12は、1つの音線のデータ配列を模式的に示す図である。 図13は、本発明の一実施の形態に係る超音波観測装置の表示部が表示する特徴量画像の一例を模式的に示す図である。 図14は、本発明の一実施の形態に係る超音波観測装置の特徴量画像データ生成部が特徴量画像データを生成する際の色相の別な設定方法を模式的に示す図である。 図15は、図14に示す画像を白黒で模式的に示す図である。 図16は、本発明の他の実施の形態に係る超音波観測装置の表示部が特徴量画像にBモード画像を重畳して表示する場合の例を示す図である。 図17は、図16に示す画像を白黒で模式的に示す図である。 図18は、本発明の他の実施の形態に係る超音波観測装置の減衰補正部が行う減衰補正処理の概要を模式的に示す図である。
 以下、添付図面を参照して、本発明を実施するための形態(以下、「実施の形態」という)を説明する。
 図1は、本発明の一実施の形態に係る超音波観測装置の構成を示すブロック図である。同図に示す超音波観測装置1は、超音波を用いて診断対象である検体を観測するための装置である。超音波観測装置1は、外部へ超音波パルスを出力するとともに、外部で反射された超音波エコーを受信する超音波探触子2と、超音波探触子2との間で電気信号の送受信を行う送受信部3と、超音波エコーを変換した電気的なエコー信号に対して所定の演算を施す演算部4と、電気的なエコー信号に対応する画像データの生成を行う画像処理部5と、キーボード、マウス、タッチパネル等のインタフェースを用いて実現され、各種情報の入力を受け付ける入力部6と、液晶または有機EL等からなる表示パネルを用いて実現され、画像処理部5が生成した画像を含む各種情報を表示する表示部7と、超音波観測に必要な各種情報を記憶する記憶部8と、超音波観測装置1の動作制御を行う制御部9と、を備える。超音波観測装置1は、先端部に超音波探触子2が設けられるスコープと、スコープの基端が着脱可能に接続され、超音波探触子2以外の上記部位が設けられる処理装置(プロセッサ)とによって構成される。
 超音波探触子2は、送受信部3から受信した電気的なパルス信号を超音波パルス(音響パルス信号)に変換するとともに、外部の検体で反射された超音波エコーを電気的なエコー信号に変換する信号変換部21を有する。超音波探触子2は、超音波振動子をメカ的に走査させるものであってもよいし、複数の超音波振動子を電子的に走査させるものであってもよい。本実施の形態では、超音波探触子2として、互いに異なる複数種類のいずれかの超音波探触子2を選択して使用することが可能である。
 送受信部3は、超音波探触子2と電気的に接続され、パルス信号を超音波探触子2へ送信するとともに、超音波探触子2から受信信号である電気的なエコー信号を受信する。具体的には、送受信部3は、予め設定された波形および送信タイミングに基づいてパルス信号を生成し、この生成したパルス信号を超音波探触子2へ送信する。
 送受信部3は、エコー信号を増幅する信号増幅部31を有する。具体的には、信号増幅部31は、受信深度が大きいエコー信号ほど高い増幅率で増幅するSTC補正を行う。図2は、信号増幅部31が行う増幅処理における受信深度と増幅率との関係を示す図である。図2に示す受信深度zは、超音波の受信開始時点からの経過時間に基づいて算出される量である。図2に示すように、増幅率β(dB)は、受信深度zが閾値zthより小さい場合、受信深度zの増加に伴ってβからβth(>β)へ線型に増加する。また、増幅率βは、受信深度zが閾値zth以上である場合、一定値βthをとる。閾値zthの値は、検体から受信する超音波信号がほとんど減衰してしまい、ノイズが支配的になるような値である。より一般に、増幅率βは、受信深度zが閾値zthより小さい場合、受信深度zの増加に伴って単調増加すればよい。
 送受信部3は、信号増幅部31によって増幅されたエコー信号に対してフィルタリング等の処理を施した後、A/D変換することによって時間ドメインのデジタルRF信号を生成して出力する。なお、超音波探触子2が複数の超音波振動子を電子的に走査させるものである場合、送受信部3は、複数の超音波振動子に対応したビーム合成用の多チャンネル回路を有する。
 演算部4は、送受信部3が出力したデジタルRF信号に対して受信深度によらず増幅率を一定とする増幅補正を行う増幅補正部41と、増幅補正を行ったデジタルRF信号に高速フーリエ変換(FFT)を施して周波数解析を行うことにより周波数スペクトルを算出する周波数解析部42と、周波数解析部42が算出した各箇所の周波数スペクトルに対し、回帰分析に基づく近似処理および超音波が伝播する際に該超音波の受信深度および周波数に応じて発生する減衰の寄与を削減する減衰補正処理を行うことにより、検体の特徴量を抽出する特徴量抽出部43と、を有する。
 図3は、増幅補正部41が行う増幅処理における受信深度と増幅率との関係を示す図である。図3に示すように、増幅補正部41が行う増幅処理における増幅率β(dB)は、受信深度zがゼロのとき最大値βth−βをとり、受信深度zがゼロから閾値zthに達するまで線型に減少し、受信深度zが閾値zth以上のときゼロである。このように定められる増幅率によって増幅補正部41がデジタルRF信号を増幅補正することにより、信号増幅部31におけるSTC補正の影響を相殺し、一定の増幅率βthの信号を出力することができる。なお、増幅補正部41が行う受信深度zと増幅率βの関係は、信号増幅部31における受信深度と増幅率の関係に応じて異なることは勿論である。
 このような増幅補正を行う理由を説明する。STC補正は、アナログ信号波形の振幅を全周波数帯域にわたって均一に増幅させる補正である。このため、超音波の振幅を利用するBモード画像を生成する際には、STC補正を行うことによって十分な効果を得ることができる一方で、超音波の周波数スペクトルを算出するような場合には、超音波の伝播に伴う減衰の影響を正確に排除できるわけではない。この問題を解決するには、Bモード画像を生成する際にSTC補正を施した受信信号を出力する一方、周波数スペクトルに基づいた画像を生成する際に、Bモード画像を生成するための送信とは異なる新たな送信を行い、STC補正を施していない受信信号を出力することが考えられる。ところがこの場合には、受信信号に基づいて生成される画像データのフレームレートが低下してしまうという問題がある。そこで、本実施の形態では、生成される画像データのフレームレートを維持しつつ、Bモード画像用にSTC補正を施した信号に対して一度STC補正の影響を排除するために、増幅補正部41によって増幅率の補正を行っている。
 周波数解析部42は、各音線(ラインデータ)に対し、所定のデータ量からなるFFTデータ群を高速フーリエ変換することによって音線上の複数の箇所(データ位置)における周波数スペクトルを算出する。周波数解析部42による算出結果は複素数で得られ、記憶部8に記憶される。
 一般に、周波数スペクトルは、検体の組織性状によって異なる傾向を示す。これは、周波数スペクトルが、超音波を散乱する散乱体としての検体の大きさ、密度、音響インピーダンス等と相関を有しているためである。なお、本実施の形態において、「組織性状」とは、例えば癌、内分泌腫瘍、粘液性腫瘍、正常組織、脈管などのいずれかである。
 図4は、周波数解析部42によって算出される周波数スペクトルの例を示す図である。具体的には、FFTデータ群を高速フーリエ変換することによって得られた周波数スペクトルを、周波数fおよび受信深度をzの関数として、強度I(f,z)と位相φ(f,z)によって表現したときの強度I(f,z)のスペクトルを示している。ここでいう「強度」とは、電圧、電力、音圧、音響エネルギー等のパラメータのいずれかを指す。図4では、横軸fが周波数、縦軸Iが強度であり、受信深度zは一定である。図4に示す周波数スペクトル曲線Cにおいて、周波数スペクトルの下限周波数fおよび上限周波数fは、超音波探触子2の周波数帯域、送受信部3が送信するパルス信号の周波数帯域などをもとに決定されるパラメータであり、例えばf=3MHz、f=10MHzである。本実施の形態において、曲線および直線は、離散的な点の集合からなる。
 特徴量抽出部43は、周波数解析部42が算出した周波数スペクトルの近似式を回帰分析によって算出する近似部431と、近似部431が算出した近似式に対し、超音波の受信深度および周波数に依存する超音波の減衰の寄与を削減する減衰補正処理を施すことによって周波数スペクトルの特徴量を抽出する減衰補正部432と、を有する。
 近似部431は、回帰分析によって周波数スペクトルを一次式(回帰直線)で近似することにより、この近似した一次式を特徴付ける補正前特徴量を抽出する。具体的には、近似部431は、一次式の傾きaおよび切片bを補正前特徴量として抽出する。図4に示す直線L10は、近似部431が近似した一次式に相当する直線である。なお、近似部431は、傾きaおよび切片b以外の補正前特徴量として、周波数帯域(f<f<f)の中心周波数f=(f+f)/2における回帰直線上の値である強度(Mid−band fitともいう)c=a+bを算出してもよい。
 3つの特徴量のうち、傾きaは、超音波の散乱体の大きさと相関を有し、一般に散乱体が大きいほど傾きが小さな値を有すると考えられる。また、切片bは、散乱体の大きさ、音響インピーダンスの差、散乱体の数密度(濃度)等と相関を有している。具体的には、切片bは、散乱体が大きいほど大きな値を有し、音響インピーダンスが大きいほど大きな値を有し、散乱体の密度(濃度)が大きいほど大きな値を有すると考えられる。中心周波数fにおける強度(以下、単に「強度」という)cは、傾きaと切片bから導出される間接的なパラメータであり、有効な周波数帯域内の中心におけるスペクトル強度を与える。このため、強度cは、散乱体の大きさ、音響インピーダンスの差、散乱体の密度に加えて、Bモード画像の輝度とある程度の相関を有していると考えられる。なお、特徴量抽出部43が算出する近似多項式は一次式に限定されるわけではなく、二次以上の近似多項式を用いることも可能である。
 減衰補正部432が行う補正について説明する。一般に、超音波の減衰量A(f,z)は、
 A(f,z)=2αzf  ・・・(1)
と表される。ここで、αは減衰率であり、zは超音波の受信深度であり、fは周波数である。式(1)からも明らかなように、減衰量A(f,z)は、周波数fに比例している。減衰率αの具体的な値は、観察対象が生体である場合、0.0~1.0(dB/cm/MHz)、より好ましくは0.3~0.7(dB/cm/MHz)であり、生体の部位に応じて定まる。例えば、観察対象が膵臓である場合には、α=0.6(dB/cm/MHz)と定めることがある。なお、本実施の形態において、減衰率αの値を入力部6からの入力によって設定または変更可能な構成としてもよい。
 減衰補正部432は、近似部431が抽出した補正前特徴量(傾きa,切片b,強度c)を、以下のように減衰補正することによって特徴量を抽出する。
 a=a+2αz  ・・・(2)
 b=b  ・・・(3)
 c=c+2αzf(=af+b)  ・・・(4)
式(2)、(4)からも明らかなように、減衰補正部432は、超音波の受信深度zが大きいほど、補正量が大きい補正を行う。また、式(3)によれば、切片に関する補正は恒等変換である。これは、切片が周波数0(Hz)に対応する周波数成分であって減衰の影響を受けないためである。
 図5は、減衰補正部432が補正した特徴量に対応する直線を示す図である。直線Lの式は、
 I=af+b=(a+2αz)f+b  ・・・(5)
で表される。この式(5)からも明らかなように、直線Lは、直線L10と比較して、傾きが大きく、かつ切片が同じである。
 画像処理部5は、エコー信号からBモード画像データを生成するBモード画像データ生成部51と、特徴量抽出部43が抽出した特徴量に対応する情報を複数の表示方法のいずれかにしたがって表示する特徴量画像データを生成する特徴量画像データ生成部52と、を有する。
 Bモード画像データ生成部51は、デジタル信号に対してバンドパスフィルタ、対数変換、ゲイン処理、コントラスト処理等の公知の技術を用いた信号処理を行うとともに、表示部7における画像の表示レンジに応じて定まるデータステップ幅に応じたデータの間引き等を行うことによってBモード画像データを生成する。図6は、Bモード画像データ生成部51が生成するBモード画像データに対応するBモード画像の表示例を示す図である。同図に示すBモード画像100は、色空間としてRGB表色系を採用した場合の変数であるR(赤)、G(緑)、B(青)の値を一致させたグレースケール画像である。なお、超音波観測装置1を特徴量画像データの生成用として特化する場合、Bモード画像データ生成部51は必須の構成要素ではない。この場合には、信号増幅部31や増幅補正部41も不要である。
 特徴量画像データ生成部52は、特徴量抽出部43が抽出した特徴量と該特徴量における閾値であって画像データが有する表示用のパラメータの値によらずに一定である閾値との関係に応じて、該特徴量に対応する情報を複数の表示方法のいずれかにしたがって表示する特徴量画像データを生成する。ここで使用する表示方法は、後述する制御部9の表示方法選択部91によって選択される。
 特徴量画像データにおいて各画素に割り当てられる情報は、周波数解析部42が周波数スペクトルを算出する際のFFTデータ群のデータ量に応じて定められる。具体的には、例えば1つのFFTデータ群のデータ量に対応する画素領域には、そのFFTデータ群から算出される周波数スペクトルの特徴量に対応する情報が割り当てられる。なお、本実施の形態において、特徴量画像データを生成する際に使用する特徴量は1種類のみとして説明するが、複数種類の特徴量を用いて特徴量画像データを生成するようにしてもよい。
 図7は、特徴量画像データ生成部52が特徴量画像データを生成する際の特徴量と複数の表示方法との関係の一例を示す図である。図8は、図7に示す画像を白黒で模式的に示す図である。これらの図に示す場合、特徴量に対応する情報は、輝度、彩度および色相を変数として有する。複数の表示方法は、これらの変数の具体的な値を定めるものである。図7および図8に示す場合、特徴量画像データ生成部52は、特徴量SがSmin≦S≦Smaxの範囲にあるときに特徴量画像データを生成する。図7および図8に示す閾値Sthは、ゲインやコントラストなど画像化に必要なパラメータであってリアルタイム観察中に変化可能な表示用のパラメータの影響を受けることなく、常に一定である。このような閾値Sthは、スコープの種類(実質的には、スコープに搭載された超音波探触子2の種類)、ならびに観察対象の検体の種類に応じて定められ、図7および図8に例示された複数の表示方法との関係とともに、記憶部8が有する閾値情報記憶部84(後述)に格納される。
 以下、図7および図8を参照して、閾値Sthとの大小における輝度(曲線V)、彩度(曲線V)および色相(カラーバーCB)の設定例を説明する。図7および図8では、特徴量Sが閾値Sth以上である場合に色相が一定であるグレースケール表示とする一方、特徴量Sが閾値Sth未満である場合に色相が変化するカラー表示としている。以下、より具体的に説明する。
・Sth≦S≦Smaxの場合
 輝度は、特徴量Sの増加とともに増加する。彩度は特徴量Sの値によらずゼロであり、色相は特徴量Sの値によらず一定である(グレースケール表示)。図7および図8に示す領域Tは、特徴量Sの値が正常組織に相当する領域である。
・Smin≦S<Sthの場合
 輝度および彩度は、特徴量Sの値によらず一定である。また、色相は、特徴量Sが大きい方から緑G(図8ではドット模様で記載)、赤R(図8では斜め縞模様で記載)、青B(図8では斜め格子模様で記載)に順次変化する(カラー表示)。図7および図8において、各色の帯域幅は等しい。また、図7および図8に示す領域T(緑Gと赤Rにまたがる領域)は、特徴量Sの値が病変部に対応する領域である一方、領域T(青Bに対応する領域)は、脈管に相当する領域である。なお、この場合には、特徴量Sの増加とともに輝度を連続的に減少させるようにしてもよい。
 ところで、図7および図8に示す特徴量と表示方法との関係はあくまでも一例に過ぎない。例えば、カラー表示における色の数、種類や各色の帯域幅は、特徴量Sと観察対象の臓器および使用するスコープとの関係に応じて設定することが好ましい。また、色の種類については、ユーザが入力部6を介して設定を変更することができるようにしてもよい。さらに、すべての表示領域で色相を変化させ、閾値を境として色を切り替えるような設定とすることも可能である。加えて、閾値を複数設定し、各閾値との大小関係に応じて表示方法を設定することも可能である。
 記憶部8は、増幅率情報記憶部81と、窓関数記憶部82と、補正情報記憶部83と、閾値情報記憶部84とを有する。
 増幅率情報記憶部81は、信号増幅部31が増幅処理を行う際および増幅補正部41が増幅補正処理を行う際にそれぞれ参照する増幅率と受信深度との関係(例えば、図2および図3に示す関係)を増幅率情報として記憶する。
 窓関数記憶部82は、Hamming,Hanning,Blackmanなどの窓関数のうち少なくともいずれか1つの窓関数を記憶する。
 補正情報記憶部83は、式(1)を含む減衰補正に関連した情報を記憶する。
 閾値情報記憶部84は、スコープの種類(実質的には、スコープに搭載された超音波探触子2の種類)、および観察対象の検体の種類に応じて定められる閾値を記憶するとともに、各閾値と複数の表示方法とを対応付けて記憶する(図7を参照)。
 図9は、閾値情報記憶部84が記憶する閾値の例を模式的に示す図である。同図に示すテーブルTbは、3つの特徴量S1、S2、S3に対して、観察対象の検体と超音波探触子2を具備するスコープの種類に応じた閾値の値を記録している。例えば、スコープIを用いて検体の一種である臓器Aを観察対象とする場合、特徴量S1、S2、S3の閾値は、それぞれSA11、SA12、SA13である。また、スコープIIを用いて臓器Bを観察対象とする場合、特徴量S1、S2、S3の閾値は、SB21、SB22、SB23である。
 閾値は、スコープごとの性能の差による特徴量のばらつきを打ち消すような値として設定するのが好ましい。具体的には、例えば特徴量が高く算出される傾向にあるスコープの場合には閾値を高く設定する一方、特徴量が低く算出される傾向にあるスコープの場合には閾値を低く設定することが考えられる。
 記憶部8は、超音波観測装置1の作動プログラムや所定のOSを起動するプログラム等が予め記憶されたROM、および各処理の演算パラメータやデータ等を記憶するRAM等を用いて実現される。
 制御部9は、特徴量抽出部43が抽出した特徴量に対して、閾値情報記憶部84が記憶する閾値情報を参照することにより、対応する表示方法を選択する表示方法選択部91を有する。表示方法選択部91は、選択した表示方法を特徴量画像データ生成部52へ出力する。
 制御部9は、演算および制御機能を有するCPUを用いて実現される。制御部9は、記憶部8が記憶、格納する情報および超音波観測装置1の作動プログラムを含む各種プログラムを記憶部8から読み出すことにより、超音波観測装置1の作動方法に関連した各種演算処理を実行することによって超音波観測装置1を統括して制御する。
 なお、超音波観測装置1の作動プログラムは、ハードディスク、フラッシュメモリ、CD−ROM、DVD−ROM、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に記録して広く流通させることも可能である。各種プログラムの記録媒体等への記録は、コンピュータまたは記録媒体を製品として出荷する際に行ってもよいし、通信ネットワークを介したダウンロードにより行ってもよい。
 図10は、以上の構成を有する超音波観測装置1の処理の概要を示すフローチャートである。なお、超音波観測装置1が備える超音波探触子2の種類は、予め装置自身が認識しているものとする。このために、例えばスコープにおける処理装置接続側の端部にスコープ(超音波探触子2)の種類を処理装置に判別させるための接続ピンを設けておけばよい。これにより、処理装置側は、接続されたスコープの接続ピンの形状に応じてスコープの種別を判定することができる。また、観測対象である検体の種類については、予めユーザが入力部6によって識別情報を入力しておけばよい。
 図10において、超音波観測装置1は、まず超音波探触子2によって新規の検体の測定を行う(ステップS1)。
 続いて、超音波探触子2からエコー信号を受信した信号増幅部31は、そのエコー信号の増幅を行う(ステップS2)。ここで、信号増幅部31は、例えば図2に示す増幅率と受信深度との関係に基づいてエコー信号の増幅(STC補正)を行う。
 続いて、Bモード画像データ生成部51は、信号増幅部31が増幅したエコー信号を用いてBモード画像データを生成する(ステップS3)。超音波観測装置1を特徴量画像データの生成用として特化する場合、このステップS3は不要である。
 この後、増幅補正部41は、送受信部3から出力された信号に対して受信深度によらず増幅率が一定となる増幅補正を行う(ステップS4)。ここで、増幅補正部41は、例えば図3に示す増幅率と受信深度との関係に基づいて増幅補正を行う。
 ステップS4の後、周波数解析部42は、FFT演算による周波数解析を行うことによって周波数スペクトルを算出する(ステップS5)。
 ここで、周波数解析部42が行う処理(ステップS5)について、図11に示すフローチャートを参照して詳細に説明する。まず、周波数解析部42は、解析対象の音線を識別するカウンタkをkとする(ステップS21)。
 続いて、周波数解析部42は、FFT演算用に取得する一連のデータ群(FFTデータ群)を代表するデータ位置(受信深度に相当)Z(k)の初期値Z(k) を設定する(ステップS22)。図12は、1つの音線のデータ配列を模式的に示す図である。同図に示す音線SRにおいて、白または黒の長方形は、1つのデータを意味している。音線SRは、送受信部3が行うA/D変換におけるサンプリング周波数(例えば50MHz)に対応した時間間隔で離散化されている。図12では、音線SRの1番目のデータ位置を初期値Z(k) として設定した場合を示しているが、初期値の位置は任意に設定することができる。
 その後、周波数解析部42は、データ位置Z(k)のFFTデータ群を取得し(ステップS23)、取得したFFTデータ群に対し、窓関数記憶部82が記憶する窓関数を作用させる(ステップS24)。このようにFFTデータ群に対して窓関数を作用させることにより、FFTデータ群が境界で不連続になることを回避し、アーチファクトが発生するのを防止することができる。
 続いて、周波数解析部42は、データ位置Z(k)のFFTデータ群が正常なデータ群であるか否かを判定する(ステップS25)。ここで、FFTデータ群は、2のべき乗のデータ数を有している必要がある。以下、FFTデータ群のデータ数を2(nは正の整数)とする。FFTデータ群が正常であるとは、データ位置Z(k)がFFTデータ群で前から2n−1番目の位置であることを意味する。換言すると、FFTデータ群が正常であるとは、データ位置Z(k)の前方に2n−1−1(=Nとする)個のデータがあり、データ位置Z(k)の後方に2n−1(=Mとする)個のデータがあることを意味する。図12に示す場合、FFTデータ群F、Fはともに正常である。なお、図12ではn=4(N=7,M=8)の場合を例示している。
 ステップS25における判定の結果、データ位置Z(k)のFFTデータ群が正常である場合(ステップS25:Yes)、周波数解析部42は、後述するステップS27へ移行する。
 ステップS25における判定の結果、データ位置Z(k)のFFTデータ群が正常でない場合(ステップS25:No)、周波数解析部42は、不足分だけゼロデータを挿入することによって正常なFFTデータ群を生成する(ステップS26)。ステップS25において正常でないと判定されたFFTデータ群は、ゼロデータを追加する前に窓関数が作用されている。このため、FFTデータ群にゼロデータを挿入してもデータの不連続は生じない。ステップS26の後、周波数解析部42は、後述するステップS27へ移行する。
 ステップS27において、周波数解析部42は、FFTデータ群を用いてFFT演算を行うことにより、複素数からなる周波数スペクトルを得る(ステップS27)。この結果、例えば図4に示すような周波数スペクトル曲線Cが得られる。
 続いて、周波数解析部42は、データ位置Z(k)をステップ幅Dで変化させる(ステップS28)。ステップ幅Dは、記憶部8が予め記憶しているものとする。図12では、D=15の場合を例示している。ステップ幅Dは、Bモード画像データ生成部51がBモード画像データを生成する際に利用するデータステップ幅と一致させることが望ましいが、周波数解析部42における演算量を削減したい場合には、そのデータステップ幅より大きい値を設定してもよい。
 その後、周波数解析部42は、データ位置Z(k)が音線SRにおける最大値Z(k) maxより大きいか否かを判定する(ステップS29)。データ位置Z(k)が最大値Z(k) maxより大きい場合(ステップS29:Yes)、周波数解析部42はカウンタkを1増加させる(ステップS30)。一方、データ位置Z(k)が最大値Z(k) max以下である場合(ステップS29:No)、周波数解析部42はステップS23へ戻る。このようにして、周波数解析部42は、音線SRに対して、[{(Z(k) max−Z(k) )/D}+1]個のFFTデータ群に対するFFT演算を行う。ここで、[X]は、Xを超えない最大の整数を表す。
 ステップS30の後、周波数解析部42は、カウンタkが最大値kmaxより大きいか否かを判定する(ステップS31)。カウンタkがkmaxより大きい場合(ステップS31:Yes)、周波数解析部42は一連のFFT処理を終了する。一方、カウンタkがkmax以下である場合(ステップS31:No)、周波数解析部42はステップS22に戻る。
 このようにして、周波数解析部42は、(kmax−k+1)本の音線の各々について複数回のFFT演算を行う。
 なお、ここでは、周波数解析部42が超音波信号を受信したすべての領域に対して周波数解析処理を行うことを前提としているが、あらかじめ入力部6によって特定の関心領域の設定入力を受け付けて、その関心領域内においてのみ周波数解析処理を行うようにしてもよい。
 以上説明したステップS5の周波数解析処理に続いて、近似部431は、近似処理として周波数解析部42が算出した周波数スペクトルを回帰分析することにより、補正前特徴量を抽出する(ステップS6)。具体的には、近似部431は、周波数スペクトル周波数帯域f<f<fの周波数スペクトルの強度I(f,z)を近似する一次式を回帰分析によって算出することにより、この一次式を特徴づける傾きa、切片b(、強度c)を補正前特徴量として抽出する。図4に示す直線L10は、このステップS6において、周波数スペクトル曲線Cに対して補正前特徴量抽出処理を行うことによって得られる回帰直線の一例である。
 この後、減衰補正部432は、近似部431が抽出した補正前特徴量に対して減衰補正処理を行う(ステップS7)。例えば、データのサンプリング周波数が50MHzである場合、データのサンプリングの時間間隔は20(nsec)である。ここで、音速を1530(m/sec)とすると、データのサンプリング距離間隔は、1530(m/sec)×20(nsec)/2=0.0153(mm)となる。処理対象のFFTデータ群のデータ位置までの音線の1番目のデータからのデータステップ数がnであるとすると、そのデータ位置Zは、データステップ数nとデータステップ幅Dとを用いて0.0153nD(mm)となる。減衰補正部432は、このようにして求まるデータ位置Zの値を上述した式(2)、(4)の受信深度zへ代入することにより、周波数スペクトルの特徴量である傾きa、切片b(、強度c)を算出する。このように算出される特徴量に相当する直線の一例として、図5に示す直線Lを挙げることができる。
 以上説明したステップS6およびS7は、特徴量抽出部43が周波数スペクトルを近似することによってその周波数スペクトルから少なくとも1つの特徴量を抽出する特徴量抽出ステップを構成する。
 続いて、表示方法選択部91は、特徴量抽出部43によって抽出された特徴量の値と閾値情報記憶部84が記憶する閾値情報とに基づいて、抽出された特徴量に対応する情報の表示方法を選択し、この選択結果を特徴量画像データ生成部52へ出力する(ステップS8)。
 この後、特徴量画像データ生成部52は、特徴量抽出ステップ(ステップS6,S7)で抽出した特徴量と該特徴量における閾値であって画像データが有する表示用のパラメータの値によらずに一定である閾値との関係に応じて、該特徴量に対応する情報を、表示方法選択部91によって選択された表示方法にしたがって表示する特徴量画像データを生成する(ステップS9)。
 続いて、表示部7は、制御部9の制御のもと、特徴量画像データ生成部52が生成した特徴量画像を表示する(ステップS10)。図13は、表示部7が表示する特徴量画像の一例を示す図であり、図7に示す特徴量と複数の表示方法との関係に基づいて生成された特徴量画像の表示例を示す図である。同図に示す特徴量画像200は、検体201における特徴量分布を示している。特徴量画像200は、検体201の中に、1つの灰色領域202と、2つのカラー領域203、204とを有する。カラー領域203は、閉じた緑色領域205(ドット模様で記載)と、その内側に広がる赤色領域206(斜め縞模様で記載)とからなる。カラー領域204は、円環状の赤色領域207(斜め縞模様で記載)と、その内側に広がる円状の青色領域208(斜め格子模様で記載)とからなる。これらの領域は、その色からも明らかなように、組織性状が異なっていると考えられる。具体的には、図7および図8を説明する際に説明した色と組織性状との対応に基づいて生成された特徴量画像200を見たユーザは、検体201の組織性状として、灰色領域202は正常組織であり、カラー領域203は病変部であり、カラー領域204は脈管であると判定することができる。
 ステップS10の後、超音波観測装置1は、一連の処理を終了する。なお、超音波観測装置1が、ステップS1~S10の処理を周期的に繰り返すようにしてもよい。
 以上説明した本発明の一実施の形態によれば、観察対象から受信した周波数スペクトルから抽出した特徴量と該特徴量における閾値であって画像データが有する表示用のパラメータの値によらずに一定である閾値との関係に応じて、該特徴量に対応する情報を複数の表示方法のいずれかにしたがって表示する特徴量画像データを生成するため、表示用のパラメータの影響を受けることなく、特徴量の値と強い関連性を有する特徴量画像データを得ることができる。したがって、本実施の形態によれば、ユーザが特徴量画像に基づいて観察対象の組織性状を客観的に精度よく診断することが可能となる。
 また、本実施の形態によれば、特徴量抽出部が抽出した特徴量に対応する情報の表示方法を、閾値を含む特徴量の値と複数の表示方法とを対応付けて記憶する閾値情報記憶部を参照して選択し、該選択した表示方法にしたがって特徴量画像データ生成部に特徴量画像データを生成させるため、特徴量の値と表示方法との関係は絶対的なものであり、この意味でもユーザによる客観的かつ高精度な診断を可能としている。
 また、本実施の形態によれば、複数の表示方法を、カラー表示とグレースケール表示に大別しているため、例えば検体の組織性状のうち病変部のように強調したい箇所にはカラー表示による表示方法を適用する一方、正常組織に対してはグレースケール表示による表示方法を適用することで、組織性状の違いを明確に表現した特徴量画像データを生成することができる。
 また、本実施の形態によれば、検体および超音波探触子(または超音波探触子を搭載したスコープの種類)に応じて閾値を定めることにより、検体の特性を考慮しつつ超音波探触子の機差による影響を排除した特徴量画像データを生成することができる。この結果、ユーザは、一段と高精度で検体の組織性状を診断することが可能となる。
 また、本実施の形態によれば、受信深度に応じた増幅率で増幅するSTC補正を加えた信号をもとにBモード画像データを生成する一方、STC補正の影響のみを相殺して増幅率を受信深度によらず一定にする増幅補正を行ってから周波数スペクトルを算出し、この周波数スペクトルに近似処理を施した後、近似処理によって得られた補正前特徴量に対して減衰補正を行うため、超音波の伝播に伴う減衰の影響を正しく排除するとともに、受信した超音波をもとに生成する画像データのフレームレートの低下を防止することが可能となる。したがって、本実施の形態によれば、周波数スペクトルに基づいて検体の組織性状を鑑別する際の精度が減衰の影響によって低下してしまうのを防止することができる。
(その他の実施の形態)
 ここまで、本発明を実施するための形態を説明してきたが、本発明は、上述した一実施の形態によってのみ限定されるべきものではない。例えば、本発明において、特徴量画像データ生成部52が特徴量画像データを生成する際の色相の設定方法は、図7および図8に示すものに限られるわけではない。図14は、特徴量画像データ生成部52が特徴量画像データを生成する際の色相の別な設定方法を模式的に示す図である。図15は、図14に示す画像を白黒で模式的に示す図である。図14および図15に示す場合には、特徴量SのSmin≦S<Sthにおけるの値の変化に応じて色相を連続的に変化させている。具体的には、図14および図15では、特徴量SがSmin≦S<Sthの範囲で増加するにつれて、色相を赤→黄→緑→青の順に、波長の変化に応じて色相を連続的に変化させている。なお、図15における両矢印は、矢印両端に記載された色相の間で、波長の変化に応じて色相が連続的に変化していくことを模式的に示している。
 また、本発明において、複数の表示方法をカラー表示とグレースケール表示の2つのみとしてもよい。この場合、表示方法選択部91が、特徴量が閾値以上である場合に2つの表示方法の一方を選択し、特徴量が閾値未満である場合に2つの表示方法の他方を選択するようにすればよい。
 なお、図7(および図8)および図14(および図15)では、閾値よりも小さい領域で色相を付与しているが、これは、組織性状を判別する際に最も見たい組織(例えば、癌などの病変部)に色相を付与することを想定しているためである。したがって、検体の種類によっては、特徴量が閾値よりも大きい領域が病変部である場合もある。したがって、色相の付与領域は、閾値との大小によって決まるわけではなく、検体の種類や特性、ユーザが確認したい組織性状などの条件に応じて適宜変更可能な構成とすることが好ましい。
 また、本発明において、表示部7が特徴量画像を表示する際には、Bモード画像と特徴量画像を並べて表示してもよいし、特徴量画像にBモード画像を重畳して表示してもよい。図16は、表示部7が特徴量画像にBモード画像を重畳して表示する場合の例を示す図である。図17は、図16に示す画像を白黒で模式的に示す図である。これらの図に示す重畳画像300は、Bモード画像がそのまま表示されるBモード表示領域301と、特徴量画像とBモード画像が重畳して表示される重畳表示領域302とを有する。なお、図17では、重畳表示領域302における色相の変化は無視して、単一の縦縞模様で模式的に記載している。重畳画像300において、特徴量画像とBモード画像との混合比率は予め設定されているものとしているが、入力部6からの入力によって混合比率を変化させることができるような構成とすることも可能である。
 このようにして、特徴量画像をBモード画像とともに表示部7で表示することにより、医師等のユーザは、Bモード画像による情報とあわせて検体の組織性状を判別することが可能となり、より高精度の診断を行うことが可能となる。
 また、本発明において、表示部7が表示中の特徴量画像がフリーズ状態にある場合には、ユーザが閾値を任意に設定変更することができるようにしてもよい。
 また、本発明において、特徴量抽出部43が、周波数スペクトルの減衰補正を行ってから、補正後の周波数スペクトルの近似式を算出するようにしてもよい。図18は、減衰補正部432が行う減衰補正処理の概要を模式的に示す図である。図18に示すように、減衰補正部432は、周波数スペクトル曲線Cに対し、帯域内のすべての周波数f(f<f<f)における強度I(f,z)に式(1)の減衰量A(f,z)をそれぞれ加える補正(I(f,z)→I(f,z)+A(f,z))を行う。これにより、超音波の伝播に伴う減衰の寄与を削減した新たな周波数スペクトル曲線Cが得られる。近似部431は、周波数スペクトル曲線Cに対して回帰分析を行うことにより、特徴量を抽出する。この場合に抽出される特徴量は、図18に示す直線Lの傾きa、切片b(、強度c)である。この直線Lは、図5に示す直線Lと同じである。
 また、本発明において、制御部9が、増幅補正部41による増幅補正処理と減衰補正部432における減衰補正処理とを一括して行わせるようにしてもよい。この処理は、図10のステップS4における増幅補正処理を行わず、図10のステップS7における減衰補正処理の減衰量の定義を次式(6)のように変更して行うことと等価である。
 A’=2αzf+γ(z)  ・・・(6)
ここで、右辺のγ(z)は、受信深度zにおける増幅率βとβとの差であり、
 γ(z)=−{(βth−β)/zth}z+βth−β (z≦zth)  ・・・(7)
 γ(z)=0 (z>zth)  ・・・(8)
と表される。
 このように、本発明は、特許請求の範囲に記載した技術的思想を逸脱しない範囲内において、様々な実施の形態を含みうるものである。
 1 超音波観測装置
 2 超音波探触子
 3 送受信部
 4 演算部
 5 画像処理部
 6 入力部
 7 表示部
 8 記憶部
 9 制御部
 21 信号変換部
 31 信号増幅部
 41 増幅補正部
 42 周波数解析部
 43 特徴量抽出部
 51 Bモード画像データ生成部
 52 特徴量画像データ生成部
 81 増幅率情報記憶部
 82 窓関数記憶部
 83 補正情報記憶部
 84 閾値情報記憶部
 91 表示方法選択部
 100 Bモード画像
 200 特徴量画像
 201 検体
 202 灰色領域
 203、204 カラー領域
 205 緑色領域
 206、207 赤色領域
 208 青色領域
 300 重畳画像
 301 Bモード表示領域
 302 重畳表示領域
 431 近似部
 432 減衰補正部

Claims (10)

  1.  検体に対して超音波信号を送信するとともに前記検体によって反射された超音波を受信する超音波探触子と、
     前記超音波探触子が受信した超音波の周波数を解析することによって周波数スペクトルを算出する周波数解析部と、
     前記周波数解析部が算出した周波数スペクトルを近似することによって前記周波数スペクトルから少なくとも1つの特徴量を抽出する特徴量抽出部と、
     前記特徴量抽出部が抽出した特徴量と該特徴量における閾値であって画像データが有する表示用のパラメータの値によらずに一定である閾値との関係に応じて、該特徴量に対応する情報を複数の表示方法のいずれかにしたがって表示する特徴量画像データを生成する特徴量画像データ生成部と、
     を備えたことを特徴とする超音波観測装置。
  2.  前記閾値を含む前記特徴量の値と前記複数の表示方法とを対応付けて記憶する閾値情報記憶部と、
     前記特徴量抽出部が抽出した特徴量に対応する情報の表示方法を前記閾値情報記憶部が記憶する前記複数の表示方法の中から選択し、該選択した表示方法にしたがって前記特徴量画像データ生成部に前記特徴量画像データを生成させる表示方法選択部と、
     をさらに備えたことを特徴とする請求項1に記載の超音波観測装置。
  3.  前記複数の表示方法は、
     色相が前記特徴量の値に応じて変化するカラー表示および色相が前記特徴量の値によらず一定であるグレースケール表示に大別され、
     前記表示方法選択部は、
     前記特徴量と前記閾値との大小関係に応じて前記カラー表示および前記グレースケール表示のいずれかを選択することを特徴とする請求項2に記載の超音波観測装置。
  4.  前記超音波探触子は、互いに種類が異なる複数の超音波探触子から選択可能であり、
     前記閾値情報記憶部は、
     前記検体および前記超音波探触子の種類に応じた閾値を記憶し、
     前記特徴量画像データ生成部は、
     前記検体および前記超音波探触子の種類に応じた閾値に基づいて前記特徴量画像データを生成することを特徴とする請求項1~3のいずれか一項に記載の超音波観測装置。
  5.  前記特徴量抽出部は、
     前記周波数解析部が算出した周波数スペクトルに対して近似処理を行うことにより、該周波数スペクトルの近似式を算出する近似部と、
     前記近似部が算出した近似式に対して超音波の受信深度および周波数に応じて発生する減衰の寄与を削減する減衰補正処理を行うことにより、前記周波数スペクトルの特徴量を抽出する減衰補正部と、
     を有することを特徴とする請求項1~4のいずれか一項に記載の超音波観測装置。
  6.  前記特徴量抽出部は、
     前記周波数解析部が算出した周波数スペクトルに対して超音波が伝播する際に該超音波の受信深度および周波数に応じて発生する減衰の寄与を削減する減衰補正処理を行う減衰補正部と、
     前記減衰補正部が補正した周波数スペクトルに対して近似処理を行うことにより、前記周波数スペクトルの特徴量を抽出する近似部と、
     を有することを特徴とする請求項1~4のいずれか一項に記載の超音波観測装置。
  7.  前記近似部は、回帰分析によって近似対象の周波数スペクトルを多項式で近似することを特徴とする請求項5または6に記載の超音波観測装置。
  8.  前記近似部は、前記近似対象の周波数スペクトルを一次式で近似し、前記一次式の傾き、前記一次式の切片、および前記傾きと前記切片と前記周波数スペクトルの周波数域に含まれる特定の周波数とを用いて定まる強度、の少なくとも1つを特徴量として抽出することを特徴とする請求項7に記載の超音波観測装置。
  9.  検体に対して超音波信号を送信するとともに前記検体によって反射された超音波を受信する超音波観測装置の作動方法であって、
     周波数解析部が前記超音波の周波数を解析することによって周波数スペクトルを算出する周波数解析ステップと、
     特徴量抽出部が前記周波数スペクトルを近似することによって前記周波数スペクトルから少なくとも1つの特徴量を抽出する特徴量抽出ステップと、
     特徴量画像データ生成部が、前記特徴量抽出ステップで抽出した特徴量と該特徴量における閾値であって画像データが有する表示用のパラメータの値によらずに一定である閾値との関係に応じて、該特徴量に対応する情報を複数の表示方法のいずれかにしたがって表示する特徴量画像データを生成する特徴量画像データ生成ステップと、
     を含むことを特徴とする超音波観測装置の作動方法。
  10.  検体に対して超音波信号を送信するとともに前記検体によって反射された超音波を受信する超音波観測装置に、
     周波数解析部が前記超音波の周波数を解析することによって周波数スペクトルを算出する周波数解析ステップと、
     特徴量抽出部が前記周波数スペクトルを近似することによって前記周波数スペクトルから少なくとも1つの特徴量を抽出する特徴量抽出ステップと、
     特徴量画像データ生成部が、前記特徴量抽出ステップで抽出した特徴量と該特徴量における閾値であって画像データが有する表示用のパラメータの値によらずに一定である閾値との関係に応じて、該特徴量に対応する情報を複数の表示方法のいずれかにしたがって表示する特徴量画像データを生成する特徴量画像データ生成ステップと、
     を実行させることを特徴とする超音波観測装置の作動プログラム。
PCT/JP2014/064559 2013-05-29 2014-05-27 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム WO2014192954A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14804957.0A EP3005945A4 (en) 2013-05-29 2014-05-27 Ultrasonic observation device, operation method for ultrasonic observation device, and operation program for ultrasonic observation device
JP2014545437A JP5659324B1 (ja) 2013-05-29 2014-05-27 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
CN201480002244.1A CN104582584B (zh) 2013-05-29 2014-05-27 超声波观测装置以及超声波观测装置的动作方法
US14/625,794 US20150178919A1 (en) 2013-05-29 2015-02-19 Ultrasonic observation apparatus, method for operating ultrasonic observation apparatus, and computer-readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013113284 2013-05-29
JP2013-113284 2013-05-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/625,794 Continuation US20150178919A1 (en) 2013-05-29 2015-02-19 Ultrasonic observation apparatus, method for operating ultrasonic observation apparatus, and computer-readable recording medium

Publications (1)

Publication Number Publication Date
WO2014192954A1 true WO2014192954A1 (ja) 2014-12-04

Family

ID=51988970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064559 WO2014192954A1 (ja) 2013-05-29 2014-05-27 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム

Country Status (5)

Country Link
US (1) US20150178919A1 (ja)
EP (1) EP3005945A4 (ja)
JP (1) JP5659324B1 (ja)
CN (1) CN104582584B (ja)
WO (1) WO2014192954A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5927367B1 (ja) * 2014-12-22 2016-06-01 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2016103849A1 (ja) * 2014-12-22 2016-06-30 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
CN105939674A (zh) * 2014-12-22 2016-09-14 奥林巴斯株式会社 超声波诊断装置、超声波诊断装置的工作方法以及超声波诊断装置的工作程序
WO2017094511A1 (ja) * 2015-11-30 2017-06-08 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JPWO2017110756A1 (ja) * 2015-12-24 2018-10-11 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP2018192117A (ja) * 2017-05-19 2018-12-06 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
EP3275376A4 (en) * 2015-03-23 2019-01-16 Olympus Corporation ULTRASONIC OBSERVATION DEVICE, ULTRASONIC OBSERVATION DEVICE OPERATING PROCEDURE AND ULTRASONIC OBSERVATION DEVICE OPERATING PROGRAM

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5932183B1 (ja) * 2014-12-22 2016-06-08 オリンパス株式会社 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム
JP5953457B1 (ja) * 2015-03-23 2016-07-20 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
CN105249994A (zh) * 2015-10-20 2016-01-20 北京悦琦创通科技有限公司 超声骨密度检测设备
WO2017069068A1 (ja) * 2015-10-23 2017-04-27 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP6253869B2 (ja) * 2015-12-08 2017-12-27 オリンパス株式会社 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム
WO2017110361A1 (ja) * 2015-12-25 2017-06-29 古野電気株式会社 超音波解析装置、超音波解析方法、および超音波解析プログラム
CN108172167B (zh) * 2017-12-21 2020-02-07 无锡祥生医疗科技股份有限公司 便携超声设备显示校正系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106852A1 (ja) * 2005-03-30 2006-10-12 Hitachi Medical Corporation 超音波診断装置
WO2012063975A1 (ja) 2010-11-11 2012-05-18 オリンパスメディカルシステムズ株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2012063929A1 (ja) * 2010-11-11 2012-05-18 オリンパスメディカルシステムズ株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604081A1 (fr) * 1986-09-19 1988-03-25 Labo Electronique Physique Dispositif d'exploration par echographie ultrasonore d'organes en mouvement et d'ecoulements sanguins
US5279301A (en) * 1991-01-18 1994-01-18 Olympus Optical Co., Ltd. Ultrasonic image analyzing apparatus
GB2291969A (en) * 1993-04-19 1996-02-07 Commw Scient Ind Res Org Tissue characterisation using intravascular echoscopy
US6893399B2 (en) * 2002-11-01 2005-05-17 Ge Medical Systems Global Technology Company, Llc Method and apparatus for B-mode image banding suppression
CN102802536B (zh) * 2010-11-11 2015-01-07 奥林巴斯医疗株式会社 超声波诊断装置、超声波诊断装置的动作方法以及超声波诊断装置的动作程序
WO2012063977A1 (ja) * 2010-11-11 2012-05-18 オリンパスメディカルシステムズ株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106852A1 (ja) * 2005-03-30 2006-10-12 Hitachi Medical Corporation 超音波診断装置
WO2012063975A1 (ja) 2010-11-11 2012-05-18 オリンパスメディカルシステムズ株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2012063929A1 (ja) * 2010-11-11 2012-05-18 オリンパスメディカルシステムズ株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3005945A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5927367B1 (ja) * 2014-12-22 2016-06-01 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2016103849A1 (ja) * 2014-12-22 2016-06-30 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
CN105939674A (zh) * 2014-12-22 2016-09-14 奥林巴斯株式会社 超声波诊断装置、超声波诊断装置的工作方法以及超声波诊断装置的工作程序
US10010306B2 (en) 2014-12-22 2018-07-03 Olympus Corporation Ultrasound diagnosis apparatus, method for operating ultrasound diagnosis apparatus, and computer-readable recording medium
US10299766B2 (en) 2014-12-22 2019-05-28 Olympus Corporation Ultrasound diagnosis apparatus, method for operating ultrasound diagnosis apparatus, and computer-readable recording medium
EP3275376A4 (en) * 2015-03-23 2019-01-16 Olympus Corporation ULTRASONIC OBSERVATION DEVICE, ULTRASONIC OBSERVATION DEVICE OPERATING PROCEDURE AND ULTRASONIC OBSERVATION DEVICE OPERATING PROGRAM
WO2017094511A1 (ja) * 2015-11-30 2017-06-08 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JPWO2017094511A1 (ja) * 2015-11-30 2017-12-28 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JPWO2017110756A1 (ja) * 2015-12-24 2018-10-11 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP2018192117A (ja) * 2017-05-19 2018-12-06 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム

Also Published As

Publication number Publication date
JP5659324B1 (ja) 2015-01-28
CN104582584B (zh) 2016-09-14
EP3005945A4 (en) 2017-01-25
EP3005945A1 (en) 2016-04-13
CN104582584A (zh) 2015-04-29
JPWO2014192954A1 (ja) 2017-02-23
US20150178919A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP5659324B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5114609B2 (ja) 超音波観測装置および超音波観測装置の作動方法および超音波観測装置の作動プログラム
EP2599441B1 (en) Ultrasonic observation apparatus, method of operating the ultrasonic observation apparatus, and operation program of the ultrasonic observation apparatus
JP5433097B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5568199B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5430809B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5079177B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5881905B2 (ja) 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
JP5974210B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2015008534A1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP7046502B2 (ja) 超音波観測装置
US9517054B2 (en) Ultrasound observation apparatus, method for operating ultrasound observation apparatus, and computer-readable recording medium
WO2016181869A1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
EP3366220A1 (en) Ultrasonic observation apparatus, operation method for ultrasonic observation apparatus, and operation program for ultrasonic observation apparatus
WO2015198713A1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014545437

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014804957

Country of ref document: EP