WO2014192902A1 - Transparent electrode, electronic device, and organic electroluminescent element - Google Patents

Transparent electrode, electronic device, and organic electroluminescent element Download PDF

Info

Publication number
WO2014192902A1
WO2014192902A1 PCT/JP2014/064371 JP2014064371W WO2014192902A1 WO 2014192902 A1 WO2014192902 A1 WO 2014192902A1 JP 2014064371 W JP2014064371 W JP 2014064371W WO 2014192902 A1 WO2014192902 A1 WO 2014192902A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transparent electrode
group
organic
light
Prior art date
Application number
PCT/JP2014/064371
Other languages
French (fr)
Japanese (ja)
Inventor
貴之 飯島
秀謙 尾関
和央 吉田
健 波木井
杉田 修一
小島 茂
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015519949A priority Critical patent/JP6468186B2/en
Publication of WO2014192902A1 publication Critical patent/WO2014192902A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80517Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to a transparent electrode, an electronic device, and an organic electroluminescence element. More specifically, the present invention relates to a transparent electrode having both light transmittance and conductivity, and further excellent in durability, and an electronic device and an organic electroluminescence element including the transparent electrode.
  • An organic EL element (also referred to as an organic electroluminescence element) using electroluminescence of an organic material (hereinafter referred to as EL) is a thin film type capable of emitting light at a low voltage of about several volts to several tens of volts. It is a complete solid-state device and has many excellent features such as high brightness, high luminous efficiency, thinness, and light weight. For this reason, it has been attracting attention in recent years as surface light emitters such as backlights for various displays, display boards such as signboards and emergency lights, and illumination light sources.
  • Such an organic EL element has a configuration in which a light emitting layer made of an organic material is disposed between two electrodes, and emitted light generated in the light emitting layer passes through the electrode and is extracted outside. For this reason, at least one of the two electrodes is configured as a transparent electrode.
  • an oxide semiconductor material such as indium tin oxide (SnO 2 —In 2 O 3 : Indium Tin Oxide: ITO) is generally used. Studies aiming at resistance have also been made (see, for example, Patent Documents 1 and 2). However, since ITO uses rare metal indium, the material cost is high, and it is necessary to anneal at about 300 ° C. after film formation in order to reduce resistance.
  • the electrode disclosed in Patent Document 4 has a problem that a sufficient resistance value cannot be obtained.
  • ZnO-based thin films containing Zn are likely to react with water and change their performance, and SnO 2 -based thin films containing Sn are difficult to etch.
  • the resistance value of the electrode disclosed in Patent Document 5 is at most 128 ⁇ / ⁇ , and it cannot be said that the electrode is a transparent electrode having both sufficient light transmittance and conductivity.
  • Patent Document 6 an organic EL element in which silver is deposited as a cathode with a film thickness of 15 nm is disclosed (for example, see Patent Document 6).
  • Patent Document 6 when the film is thinned, it is difficult to maintain electrode characteristics because silver easily migrates, and development of a new technique is desired.
  • JP 2002-015623 A JP 2006-16961 A JP 2006-344497 A JP 2007-031786 A JP 2009-151963 A US Patent Application Publication No. 2011/0260148
  • the present invention has been made in view of the above-described problems and circumstances, and the solution to the problem is a transparent electrode having sufficient light transmission and conductivity, and excellent in durability, an electronic device including the transparent electrode, and An organic electroluminescence device is provided.
  • the present inventor is a transparent electrode comprising a conductive layer and an intermediate layer provided adjacent to the conductive layer,
  • the conductive layer contains silver as a main component
  • the intermediate layer contains a compound having a structure represented by the following general formula (2), thereby achieving both excellent light transmittance and conductivity.
  • the transparent electrode excellent in durability was realizable, and came to this invention.
  • a transparent electrode comprising a conductive layer and an intermediate layer provided adjacent to the conductive layer,
  • the conductive layer contains silver as a main component
  • middle layer contains the compound which has a structure represented by following General formula (2),
  • the transparent electrode characterized by the above-mentioned.
  • R 4 to R 9 each independently represents a hydrogen atom or a substituent.
  • L 2 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • X 1 , X 2 and X 3 each independently represent a nitrogen atom or —CR 10 .
  • R 10 represents a hydrogen atom or a substituent.
  • An electronic device comprising the transparent electrode according to any one of items 1 to 8.
  • An organic electroluminescence device comprising the transparent electrode according to any one of items 1 to 8.
  • a transparent electrode that has both sufficient light transmittance and conductivity and is excellent in durability, and an electronic device and an organic electroluminescence element including the transparent electrode.
  • a conductive layer containing silver as a main component is provided adjacent to the intermediate layer, and the intermediate layer comprises a compound having a structure represented by the general formula (2). Contains.
  • the nitrogen atom not bonded to the carbon atom of the six-membered ring substituent is a “nitrogen atom having an unshared electron pair not involved in aromaticity”.
  • the silver atoms constituting the conductive layer interact with nitrogen atoms having unshared electron pairs not involved in the aromaticity contained in the intermediate layer.
  • the diffusion distance of silver atoms on the surface of the intermediate layer is reduced, and aggregation of silver at a specific location can be suppressed.
  • the silver atom first forms a two-dimensional nucleus on the surface of the intermediate layer containing the silver affinity compound having an atom having an affinity for the silver atom,
  • a film is formed by a layer growth type (Frank-van der Merwe: FM type) film growth in which a two-dimensional single crystal layer is formed.
  • Schematic sectional view showing an example of the configuration of the transparent electrode of the present invention Schematic sectional view showing a first example of an organic EL device using the transparent electrode of the present invention
  • Schematic cross-sectional view of an illuminating device having a light-emitting surface enlarged using an organic EL element having a transparent electrode of the present invention Schematic cross-sectional view of a light-emitting panel equipped with an organic EL device produced in the examples
  • the transparent electrode of the present invention includes a conductive layer and an intermediate layer provided adjacent to the conductive layer, the conductive layer contains silver as a main component, and the intermediate layer has the general formula ( It contains a compound having a structure represented by 2). This feature is a technical feature common to the inventions according to claims 1 to 10.
  • X 1 , X 2 and X 3 are More preferably, each represents a nitrogen atom.
  • any one of X 1 , X 2 and X 3 preferably represents —CR 10 .
  • X 1 , X 2 and X 3 each represent —CR 10 .
  • the structure represented by the general formula (2) is used from the viewpoint that the crystallinity is lowered when forming a film by eliminating the 120-degree symmetry axis and the film quality is good.
  • the structure represented by the general formula (3) is preferable.
  • X 4 , X 5 and X 6 preferably each represent a nitrogen atom.
  • any one of X 4 , X 5 and X 6 preferably represents —CR 17 .
  • X 4 , X Preferably 5 and X 6 each represent —CR 17 .
  • the transparent electrode of the present invention can be suitably provided in an electronic device. Thereby, it is possible to obtain an electronic device having both sufficient light transmission and conductivity and excellent durability.
  • the transparent electrode of the present invention can be suitably provided in an organic electroluminescence element. Thereby, it is possible to obtain an organic electroluminescence element having both sufficient light transmittance and conductivity and excellent in durability.
  • is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
  • the transparent electrode 1 includes a conductive layer 1b and an intermediate layer 1a provided adjacent to the conductive layer 1b. Specifically, the transparent electrode 1 has a two-layer structure in which an intermediate layer 1a and a conductive layer 1b are stacked on the intermediate layer 1a. The layers 1b are provided in this order.
  • the intermediate layer 1a is a layer containing a compound having a structure represented by the general formula (2).
  • the conductive layer 1b is a layer composed mainly of silver.
  • the main component of the conductive layer 1b is a component having the highest component ratio among the components constituting the conductive layer 1b.
  • the composition ratio of silver in the conductive layer 1b is preferably 60% by mass or more, more preferably 90% by mass or more, and particularly preferably 98% by mass or more.
  • the transparency of the transparent electrode 1 means that the light transmittance at a measurement light wavelength of 550 nm is 50% or more.
  • the sheet resistance value as the transparent electrode 1 is preferably 20 ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 5 to 20 nm, preferably 5 to 12 nm.
  • the substrate 11 on which the transparent electrode 1 of the present invention is formed examples include, but are not limited to, glass and plastic. Further, the substrate 11 may be transparent or opaque. When the transparent electrode 1 of the present invention is used in an electronic device that extracts light from the substrate 11 side, the substrate 11 is preferably transparent. Examples of the transparent substrate 11 that is preferably used include glass, quartz, and a transparent resin film.
  • the glass examples include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass. From the viewpoints of adhesion to the intermediate layer 1a, durability, and smoothness, the surface of these glass materials may be subjected to physical treatment such as polishing, if necessary, or from an inorganic or organic material. Or a hybrid film obtained by combining these films may be formed.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by J
  • a film made of an inorganic material or an organic material, or a hybrid film combining these films may be formed on the surface of the resin film.
  • Such coatings and hybrid coatings have a water vapor permeability (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2% RH) measured by a method according to JIS K 7129-1992, 0.01 g / m 2 ⁇ 24 h.
  • the following barrier films (also referred to as barrier films) are preferable.
  • the oxygen permeability measured by a method in accordance with JIS K 7126-1987 is 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm or less, and the water vapor permeability is 1 ⁇ 10 ⁇ 5 g / m 2 ⁇ A high barrier film of 24 hours or less is preferable.
  • the material for forming the barrier film as described above may be any material that has a function of suppressing intrusion of factors that cause deterioration of electronic devices such as moisture and oxygen and organic EL elements. Silicon, silicon nitride, or the like can be used. Furthermore, in order to improve the brittleness of the barrier film, it is more preferable to have a laminated structure of a layer made of these inorganic materials (inorganic layer) and a layer made of organic material (organic layer). Although there is no restriction
  • the method for producing the barrier film is not particularly limited.
  • the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma polymerization method, the atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method described in JP-A-2004-68143 is particularly preferable.
  • the substrate 11 is made of an opaque material, for example, a metal substrate such as aluminum or stainless steel, a film, an opaque resin substrate, a ceramic substrate, or the like can be used.
  • a conductive layer containing silver as a main component is provided adjacent to the intermediate layer, and the intermediate layer comprises a compound having a structure represented by the following general formula (2). Contains.
  • R 4 to R 9 each independently represents a hydrogen atom or a substituent.
  • L 2 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • X 1 , X 2 and X 3 each independently represent a nitrogen atom or —CR 10 .
  • R 10 represents a hydrogen atom or a substituent.
  • the nitrogen atom not bonded to the carbon atom of the six-membered ring substituent is a “nitrogen atom having an unshared electron pair not involved in aromaticity”.
  • the silver atoms constituting the conductive layer are contained in the intermediate layer and nitrogen atoms having unshared electron pairs not involved in the aromaticity
  • the diffusion distance of silver atoms on the surface of the intermediate layer is reduced, and aggregation of silver at a specific location can be suppressed.
  • the “nitrogen atom having an unshared electron pair not involved in aromaticity” is a nitrogen atom having an unshared electron pair, and the unshared electron pair becomes an aromatic property of the unsaturated cyclic compound.
  • a nitrogen atom that is not directly involved as an essential element That is, a non-localized ⁇ electron system on a conjugated unsaturated ring structure (aromatic ring) has a nitrogen atom in which a lone pair is not involved as an essential element for aromatic expression in the chemical structural formula Say.
  • Nitrogen atom is a Group 15 element and has 5 electrons in the outermost shell. Of these, three unpaired electrons are used for covalent bonds with other atoms, and the remaining two become a pair of unshared electron pairs, so that the number of bonds of nitrogen atoms is usually three.
  • an amino group (—NR 1 R 2 ), an amide group (—C ( ⁇ O) NR 1 R 2 ), a nitro group (—NO 2 ), a cyano group (—CN), a diazo group (—N 2 ), An azide group (—N 3 ), a urea bond (—NR 1 C ⁇ ONR 2 —), an isothiocyanate group (—N ⁇ C ⁇ S), a thioamide group (—C ( ⁇ S) NR 1 R 2 ) and the like.
  • R 1 and R 2 each represent a substituent.
  • the resonance formula of a nitro group (—NO 2 ) can be expressed as follows. Strictly speaking, the unshared electron pair of the nitrogen atom in the nitro group is used for the resonance structure with the oxygen atom, but in the present invention, it is defined that the nitrogen atom of the nitro group also has an unshared electron pair.
  • a nitrogen atom can also create a fourth bond by utilizing an unshared electron pair.
  • TBAC tetrabutylammonium chloride
  • Tris (2-phenylpyridine) iridium (III) (abbreviation: Ir (ppy) 3 ) is a neutral metal complex in which an iridium atom and a nitrogen atom are coordinated. Although these compounds have a nitrogen atom, the lone pair of electrons is used for ionic bond and coordinate bond, respectively. Is not applicable.
  • the present invention is to effectively utilize unshared electron pairs of nitrogen atoms that are not used for bonding.
  • the left side shows the structure of tetrabutylammonium chloride (abbreviation: TBAC), and the right side shows the structure of tris (2-phenylpyridine) iridium (III) (abbreviation: Ir (ppy) 3 ).
  • nitrogen atoms are common as heteroatoms that can constitute an aromatic ring, and can contribute to the expression of aromaticity.
  • nitrogen-containing aromatic ring examples include a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazine ring, a pyrrole ring, an imidazole ring, a pyrazole ring, a triazole ring, and a tetrazole ring.
  • the nitrogen atom of the pyridine ring corresponds to the “nitrogen atom having an unshared electron pair not involved in aromaticity” according to the present invention.
  • the molecular orbital of the pyridine ring is shown below.
  • a pyrrole ring As shown below, one of the carbon atoms constituting the five-membered ring is substituted with a nitrogen atom, but the number of ⁇ electrons is six and satisfies the Hückel rule.
  • a nitrogen-containing aromatic ring Since the nitrogen atom of the pyrrole ring is also bonded to a hydrogen atom, an unshared electron pair is mobilized to the 6 ⁇ electron system.
  • the nitrogen atom of the pyrrole ring has an unshared electron pair, it has been utilized as an essential element for the expression of aromaticity, and therefore the “unshared electron pair not involved in aromaticity” of the present invention. Does not correspond to "nitrogen atom having".
  • the molecular orbital of the pyrrole ring is shown below.
  • the imidazole ring is a nitrogen-containing aromatic ring having a structure in which two nitrogen atoms are substituted at the 1- and 3-positions in a 5-membered ring, and also has 6 ⁇ electrons.
  • the nitrogen atom N 1 is a pyridine ring-type nitrogen atom in which only one unpaired electron is mobilized to the 6 ⁇ -electron system, and the unshared electron pair is not used for aromaticity expression.
  • the nitrogen atom N 2 is a pyrrole-ring nitrogen atom that mobilizes an unshared electron pair to the 6 ⁇ electron system.
  • the nitrogen atom N 1 of the imidazole ring corresponds to the “nitrogen atom having an unshared electron pair not involved in aromaticity” in the present invention.
  • the molecular orbital of the imidazole ring is shown below.
  • ⁇ -carboline is an azacarbazole compound in which a benzene ring skeleton, a pyrrole ring skeleton, and a pyridine ring skeleton are condensed in this order.
  • the nitrogen atom N 3 of the pyridine ring mobilizes only one unpaired electron
  • the nitrogen atom N 4 of the pyrrole ring mobilizes an unshared electron pair to the ⁇ -electron system, respectively, to form a ring.
  • the total number of ⁇ electrons is 14 aromatic rings.
  • the nitrogen atom N 3 of the pyridine ring corresponds to the “nitrogen atom having an unshared electron pair not involved in aromaticity” according to the present invention, but the nitrogen of the pyrrole ring The atom N 4 does not fall under this.
  • the “nitrogen atom having an unshared electron pair not involved in aromaticity” defined in the present invention expresses a strong interaction between the unshared electron pair and silver which is the main component of the conductive layer. Is important for.
  • a nitrogen atom is preferably a nitrogen atom in a nitrogen-containing aromatic ring from the viewpoint of stability and durability.
  • the strength of the interaction between the nitrogen atom and silver can be inferred from the nucleophilic strength of the nitrogen atom. That is, the stronger the nucleophilicity, the stronger the coordination power to silver atoms and the stronger the interaction.
  • the strength of nucleophilicity has a correlation with the strength of basicity. Since the basicity according to the definition of Bronsted Raleigh is a property of receiving protons, in other words, it can be said that the attack target is a proton.
  • the conjugate acid is a form in which protons are added to the base, and the pKa value indicates that the smaller the value, the stronger the acidity (proton releasing ability). Therefore, the larger the pKa value of the conjugate acid, the stronger the basicity.
  • HA represents an acid
  • B represents a base
  • a ⁇ represents a conjugate base
  • HB + represents a conjugate acid
  • the present invention utilizes the interaction between the nitrogen-containing aromatic ring compound in the intermediate layer and silver. Therefore, from the above viewpoint, the pKa value of the conjugate acid of the main nitrogen-containing aromatic ring compound was referred.
  • the list at the end of the book is used (see Table 1), Hiroshi Yamanaka, Satoshi Hino, Masako Nakagawa, “New Heterocyclic Compound Fundamentals” by Kodansha Scientific, March 1, 2004. .
  • the structure of the general formula (2) is a six-membered meta-substituted product, which is preferable in that the site capable of interacting with silver is more effectively arranged.
  • the inventors of the present invention have also found a preferable form from the viewpoint of improving the film quality of the intermediate layer.
  • the compound contained in the intermediate layer is preferably a highly amorphous film with suppressed crystallinity. In order to suppress crystallinity, it is considered that the symmetry of the structure of the compound should be low to some extent, and the structure represented by the general formula (3) is found to be suitable.
  • the skeleton formed by Z 1 to Z 4 in the structure substituted at the 5-position of the structure represented by the general formula (3) is a pyridine ring skeleton, and the nitrogen atom contained in the pyridine ring also interacts with silver.
  • the pyridine ring skeleton means that a pyridine ring is included as a partial structure in the structure of the compound.
  • the whole molecule has a twisted structure. It is because crystallinity is suppressed by making it a three-dimensional structure rather than a planar structure.
  • the rotational movement of each unit around its coupling axis may be inhibited or suppressed.
  • One of the methods is to use a rotation barrier of hydrogen atoms.
  • X 4 , X 5 and X 6 of the central six-membered ring in the general formula (3) is a nitrogen atom, it does not have a hydrogen atom, but X 4 , X 5 and X 6 are each carbon.
  • X 4 , X 5 and X 6 are each a carbon atom.
  • the unit substituted at the 5-position of the structure represented by the general formula (3) is a 6-membered + 5-membered + 6-membered condensed aromatic heterocycle.
  • I-95 in which carboline is substituted at the 5-position of the benzene ring has a twisted structure according to the molecular orbital calculation result.
  • the most preferable form for exhibiting the effect of the present invention is a compound having a structure represented by the general formula (3).
  • the energy level of LUMO is Gaussian 03 (Gaussian 03, Revision D02, MJ Frisch, et al, Gaussian, Inc., Wallingford CT, 2004. Software for molecular orbital calculation manufactured by Gaussian, USA). ) And using B3LYP / 6-31G * as a keyword to optimize the structure of the target molecular structure (eV unit converted value). It is known that the correlation between the calculated value obtained by this method and the experimental value is high as a background to the effectiveness of this calculated value.
  • the silver atom first forms a two-dimensional nucleus on the surface of the intermediate layer containing the silver affinity compound having an atom having an affinity for the silver atom,
  • the film is formed by layer growth (FM type) film growth in which a two-dimensional single crystal layer is formed.
  • an island-like growth type in which silver atoms attached on the surface of the intermediate layer are bonded while diffusing the surface to form a three-dimensional nucleus and grow into a three-dimensional island shape. It is considered that the film is easily grown in an island shape by the film growth in (1).
  • island-like growth is caused by the compound having an imidazole skeleton, which is a structure represented by the general formula (2) or the general formula (3) which is a silver affinity compound contained in the intermediate layer. It is presumed that the growth is suppressed and layer growth is promoted. Accordingly, it is possible to obtain a conductive layer having a uniform thickness even though the layer thickness is thin. As a result, it is possible to obtain a transparent electrode in which conductivity is ensured while maintaining light transmittance with a thinner layer thickness.
  • the intermediate layer 1a contains a compound having a structure represented by the following general formula (2).
  • R 4 to R 9 each independently represents a hydrogen atom or a substituent.
  • L 2 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • X 1 , X 2 and X 3 each independently represent a nitrogen atom or —CR 10 .
  • R 10 represents a hydrogen atom or a substituent.
  • examples of the substituent represented by R 4 to R 10 include an alkyl group (eg, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group).
  • alkyl group eg, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group.
  • Acyl groups for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl) Group), acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy) Group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group,
  • the compound having the structure represented by the general formula (2) preferably has a branched substituent in the molecule from the viewpoint of improving heat resistance and excellent long-term storage after film formation.
  • substituent having a branched structure include a branched alkyl group, a silyl group having two or more substitutions (for example, a trialkylsilyl group, a triarylsilyl group, etc.), a disubstituted amino group (for example, a dialkylamino group, a diarylamino group). 2) or more substituted groups such as a tolyl group, a xylyl group, a dimethylpyridyl group (preferably a linear or branched substituent group) ) And the like.
  • the constituent atoms contained in these branched substituents can be appropriately replaced with other atoms such as an oxygen atom, a nitrogen atom, and a sulfur atom.
  • Particularly preferred is a branched alkyl group having 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms, such as isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, neopentyl group, dimethyl group. A hexyl group etc. are mentioned.
  • the substituents represented by R 4 to R 10 may be further substituted with the above substituents.
  • X 1 , X 2 and X 3 each represent a nitrogen atom.
  • any one of X 1 , X 2 and X 3 preferably represents —CR 10 .
  • X 1 , X 2 and X 3 each preferably represent —CR 10 .
  • a method using a wet process such as a coating method, an ink jet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, etc. And a method using the dry process.
  • R 11 to R 16 each independently represents a hydrogen atom or a substituent.
  • X 4 , X 5 and X 6 each independently represent a nitrogen atom or —CR 17
  • R 17 represents a hydrogen atom or a substituent.
  • Y 1 to Y 4 each independently represent a nitrogen atom or —CR 18 , and these may be bonded to each other to form a new ring.
  • R 18 represents a hydrogen atom or a substituent.
  • Z 1 to Z 4 each independently represents a nitrogen atom or —CR 19 , and at least one represents a nitrogen atom. These may combine with each other to form a new ring.
  • R 19 represents a hydrogen atom or a substituent.
  • X 4 , X 5 and X 6 each preferably represent a nitrogen atom.
  • any one of X 4 , X 5 and X 6 preferably represents —CR 17 .
  • examples of the substituent represented by R 11 to R 19 include the same substituents as those represented by R 4 in the general formula (2).
  • the organic compound according to the present invention can be easily synthesized according to a conventionally known synthesis method.
  • middle layer 1a of this invention is shown, this invention is not limited to this.
  • the conductive layer 1b according to the present invention contains silver as a main component.
  • the conductive layer 1b is a layer formed on the intermediate layer 1a.
  • the conductive layer 1b may have a configuration in which a layer mainly composed of silver is divided into a plurality of layers as necessary.
  • the conductive layer 1b preferably has a layer thickness in the range of 5 to 20 nm, and more preferably in the range of 5 to 12 nm.
  • the layer thickness is less than 20 nm, the absorption component or reflection component of the layer is reduced, and the light transmittance of the transparent electrode 1 is preferably improved. Further, it is preferable that the layer thickness is thicker than 5 nm because the conductivity of the layer becomes sufficient.
  • the transparent electrode 1 having a laminated structure including the intermediate layer 1a as described above and the conductive layer 1b formed thereon the upper part of the conductive layer 1b may be covered with a protective film. Another conductive layer may be laminated. In this case, it is preferable that the protective film and another conductive layer have light transmittance so that the light transmittance of the transparent electrode 1 is not impaired. Moreover, it is good also as a structure which provided the layer as needed also under the intermediate
  • the conductive layer 1b may be composed of an alloy containing silver (Ag) as a main component.
  • an alloy include silver magnesium (AgMg), silver copper (AgCu), and silver palladium (AgPd). ), Silver palladium copper (AgPdCu), silver indium (AgIn), and the like.
  • a wet process such as a coating method, an inkjet method, a coating method, or a dip method, a dry method such as a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, or the like is used. Examples include a method using a process.
  • a wet method it is preferable to use a conductive ink containing silver as a main component and containing an organic solvent.
  • an organic solvent a conventionally well-known thing can be especially used without a restriction
  • the conductive layer 1b is formed on the intermediate layer 1a, so that the conductive layer 1b is sufficiently conductive even without a high-temperature annealing process (for example, a heating process at 150 ° C. or higher) after the formation of the conductive layer.
  • a high-temperature annealing process for example, a heating process at 150 ° C. or higher
  • it is characterized by having, it may have been subjected to high-temperature annealing treatment after film formation, if necessary.
  • the transparent electrode 1 having the above-described configuration is composed mainly of silver on the intermediate layer 1a containing the compound having the structure represented by any one of the general formulas (2) and (3).
  • a conductive layer 1b is provided.
  • the silver atoms contained in the conductive layer 1b are contained in the intermediate layer 1a in the above general formulas (2) and (3). It interacts with a compound having a structure represented by any one, the diffusion distance of silver atoms on the surface of the intermediate layer 1a is reduced, and aggregation of silver is suppressed.
  • the thin film is grown in an island-like growth type (VW type), so that silver particles are easily isolated in an island shape.
  • VW type island-like growth type
  • the thickness is thin, it is difficult to obtain conductivity, and the sheet resistance value becomes high. Therefore, it is necessary to increase the film thickness in order to ensure conductivity.
  • the film thickness is increased, the light transmittance is lowered, which is not suitable as a transparent electrode.
  • the transparent electrode 1 of the configuration of the present invention since aggregation of silver is suppressed on the intermediate layer 1a as described above, in the film formation of the conductive layer 1b composed mainly of silver, the layered A thin film is grown by the growth type (FM type).
  • the transparency of the transparent electrode 1 of the present invention means that the light transmittance at a measurement light wavelength of 550 nm is 50% or more, but each of the above materials used as the intermediate layer 1a is mainly composed of silver. Compared with the conductive layer 1b, a film having sufficiently good light transmittance is formed. On the other hand, the conductivity of the transparent electrode 1 is ensured mainly by the conductive layer 1b. Therefore, as described above, the conductive layer 1b composed mainly of silver has a thinner layer to ensure conductivity, thereby improving the conductivity and light transmission of the transparent electrode 1. It is possible to achieve a balance with improvement in performance.
  • the transparent electrode 1 having the above-described configuration can be used for various electronic devices.
  • Examples of electronic devices include organic EL elements, LEDs (Light Emitting Diodes), liquid crystal elements, solar cells, touch panels, etc.
  • As electrode members that require light transmission in these electronic devices the above-mentioned transparent The electrode 1 can be used.
  • embodiment of the organic EL element using the transparent electrode 1 of this invention is described as an example of a use.
  • FIG. 2 is a schematic cross-sectional view showing a first example of an organic EL element using the transparent electrode 1 described above as an example of the electronic device of the present invention. Below, the structure of an organic EL element is demonstrated based on this figure.
  • the organic EL element 100 is provided on a transparent substrate (substrate) 13, and in order from the transparent substrate 13 side, an organic functional layer 3 configured using the transparent electrode 1, an organic material, and the like.
  • the counter electrode 5a is laminated in this order.
  • the transparent electrode 1 of the present invention described above is used as the transparent electrode 1.
  • the organic EL element 100 is configured to extract the generated light (hereinafter referred to as emission light h) from at least the transparent substrate 13 side.
  • the layer structure of the organic EL element 100 is not limited to the example described below, and may be a general layer structure.
  • the transparent electrode 1 functions as an anode (that is, an anode)
  • the counter electrode 5a functions as a cathode (that is, a cathode).
  • the organic functional layer 3 has a structure in which a hole injection layer 3a / a hole transport layer 3b / a light emitting layer 3c / an electron transport layer 3d / an electron injection layer 3e are stacked in this order from the transparent electrode 1 side which is an anode.
  • the hole injection layer 3a and the hole transport layer 3b may be provided as a hole transport injection layer.
  • the electron transport layer 3d and the electron injection layer 3e may be provided as an electron transport injection layer.
  • the electron injection layer 3e may be made of an inorganic material.
  • the organic functional layer 3 may have a hole blocking layer, an electron blocking layer, and the like laminated as necessary.
  • the light emitting layer 3c may have a structure in which each color light emitting layer that generates light emitted in each wavelength region is laminated, and each of these color light emitting layers is laminated via a non-light emitting auxiliary layer.
  • the auxiliary layer may function as a hole blocking layer or an electron blocking layer.
  • the counter electrode 5a as a cathode may also have a laminated structure as necessary. In such a configuration, only a portion where the organic functional layer 3 is sandwiched between the transparent electrode 1 and the counter electrode 5 a becomes a light emitting region in the organic EL element 100.
  • the auxiliary electrode 15 may be provided in contact with the conductive layer 1b of the transparent electrode 1 for the purpose of reducing the resistance of the transparent electrode 1.
  • the organic EL element 100 having the above configuration is sealed with a sealing material 17 described later on the transparent substrate 13 for the purpose of preventing deterioration of the organic functional layer 3 configured using an organic material or the like. ing.
  • the sealing material 17 is fixed to the transparent substrate 13 side with an adhesive 19. However, it is assumed that the terminal portions of the transparent electrode 1 and the counter electrode 5a are provided on the transparent substrate 13 so as to be exposed from the sealing material 17 in a state of being insulated from each other by the organic functional layer 3.
  • the details of the main layers for constituting the organic EL element 100 described above will be described in terms of the transparent substrate 13, the transparent electrode 1, the counter electrode 5a, the light emitting layer 3c of the organic functional layer 3, the other layers of the organic functional layer 3, and the auxiliary.
  • the electrode 15 and the sealing material 17 will be described in this order.
  • the transparent substrate 13 is the substrate 11 on which the transparent electrode 1 of the present invention described above is provided, and among the substrates 11 described above, the transparent substrate 11 having optical transparency is used.
  • the transparent electrode 1 is the transparent electrode 1 of the present invention described above, and has a configuration in which an intermediate layer 1a and a conductive layer 1b are sequentially formed from the transparent substrate 13 side.
  • the transparent electrode 1 functions as an anode
  • the conductive layer 1b is a substantial anode.
  • the counter electrode 5a is an electrode film that functions as a cathode for supplying electrons to the organic functional layer 3, and is made of a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof. Specifically, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 , An oxide semiconductor such as SnO 2 can be given.
  • the counter electrode 5a can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering. Further, the sheet resistance value as the counter electrode 5a is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected within the range of 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the counter electrode is made of a conductive material having a good light transmission property selected from the above-described conductive materials. 5a should just be comprised.
  • the light emitting layer 3c contains a light emitting material, and among them, it is preferable that a phosphorescent dopant (phosphorescent material, phosphorescent compound, phosphorescent compound) is contained as the light emitting material.
  • a phosphorescent dopant phosphorescent material, phosphorescent compound, phosphorescent compound
  • the light emitting layer 3c is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer 3d and holes injected from the hole transport layer 3b, and the light emitting portion is the light emitting layer 3c. Even within the layer, it may be the interface between the light emitting layer 3c and the adjacent layer.
  • the light emitting layer 3c is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting auxiliary layer (not shown) between the light emitting layers 3c.
  • the total thickness of the light emitting layer 3c is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained.
  • the sum total of the layer thickness of the light emitting layer 3c is a layer thickness also including the said auxiliary layer, when a nonluminous auxiliary layer exists between the light emitting layers 3c.
  • the thickness of each light emitting layer is preferably adjusted within the range of 1 to 50 nm, and more preferably within the range of 1 to 20 nm.
  • the plurality of stacked light emitting layers correspond to blue, green, and red light emission colors, there is no particular limitation on the relationship between the thicknesses of the blue, green, and red light emitting layers.
  • the light emitting layer 3c configured as described above is formed by using a known thin film forming method such as a vacuum evaporation method, a spin coating method, a casting method, an LB method, or an ink jet method, for example, by using a light emitting material or a host compound described later. Can be formed.
  • a known thin film forming method such as a vacuum evaporation method, a spin coating method, a casting method, an LB method, or an ink jet method, for example, by using a light emitting material or a host compound described later. Can be formed.
  • the light emitting layer 3c may be configured by mixing a plurality of light emitting materials, and a phosphorescent light emitting dopant (phosphorescent compound) and a fluorescent dopant (fluorescent light emitting material, fluorescent compound) are mixed. It may be configured.
  • the light emitting layer 3c contains a host compound (light emitting host) and a light emitting material (light emitting dopant), and it is preferable that the light emitting material emits more light.
  • a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in the light emitting layer 3c.
  • a known host compound may be used alone, or a plurality of types may be used.
  • a plurality of types of host compounds it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
  • a plurality of kinds of light emitting materials described later it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
  • the host compound used may be a conventionally known low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .
  • the known host compound a compound having a hole transporting ability and an electron transporting ability while preventing the emission of light from being increased in wavelength and having a high Tg (glass transition temperature) is preferable.
  • the glass transition temperature here is a value obtained by a method based on JIS K 7121-2012 using DSC (Differential Scanning Colorimetry).
  • Luminescent material (1) Phosphorescence emission dopant As a luminescent material which can be used by this invention, a phosphorescence emission dopant is mentioned.
  • a phosphorescent dopant is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.). Although defined as being a compound of 01 or more, a preferable phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7.
  • the phosphorescence quantum yield in a solution can be measured using various solvents, but when using a phosphorescent dopant in the present invention, the above phosphorescence quantum yield (0.01 or more) is achieved in any solvent. It only has to be done.
  • the phosphorescent dopant There are two types of light emission principles of the phosphorescent dopant. One is that recombination of carriers occurs on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant to obtain light emission from the phosphorescent dopant. It is an energy transfer type. The other is a carrier trap type in which the phosphorescent dopant becomes a carrier trap, and carrier recombination occurs on the phosphorescent dopant to emit light from the phosphorescent dopant. In any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
  • the phosphorescent light-emitting dopant can be appropriately selected from known materials used for the light-emitting layer of a general organic EL device, and preferably contains a group 8-10 metal in the periodic table of elements.
  • a complex compound more preferably an iridium compound, an osmium compound, a platinum compound (platinum complex compound), or a rare earth complex, and most preferably an iridium compound.
  • At least one light emitting layer 3c may contain two or more phosphorescent light emitting dopants, and the concentration ratio of the phosphorescent light emitting dopant in the light emitting layer 3c varies in the thickness direction of the light emitting layer 3c. It may be.
  • the phosphorescent dopant is preferably 0.1% by volume or more and less than 30% by volume with respect to the total amount of the light emitting layer 3c.
  • phosphorescent dopants that can be used in the present invention include compounds described in the following documents. Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Application Publication No. 2006/835469, US Patent Application Publication No. 2006 /. No. 0202194, U.S. Patent Application Publication No. 2007/0087321, U.S. Patent Application Publication No. 2005/0244673, Inorg. Chem.
  • a preferable phosphorescent dopant includes an organometallic complex having Ir as a central metal. More preferably, a complex containing at least one coordination mode among a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
  • the fluorescent luminescent dopant (henceforth "fluorescent dopant") based on this invention is demonstrated.
  • the fluorescent dopant according to the present invention is a compound that can emit light from an excited singlet, and is not particularly limited as long as light emission from the excited singlet is observed.
  • the fluorescent dopant according to the present invention includes coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes. Stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like.
  • luminescent dopant using delayed fluorescence include, for example, compounds described in International Publication No. 2011/156793, Japanese Patent Application Laid-Open No. 2011-213643, Japanese Patent Application Laid-Open No. 2010-93181, and the like. Is not limited to these.
  • injection layer hole injection layer, electron injection layer
  • the injection layer is a layer provided between the electrode and the light emitting layer 3c in order to lower the driving voltage and improve the light emission luminance.
  • the injection layer can be provided as necessary.
  • the hole injection layer 3a may be present between the anode and the light emitting layer 3c or the hole transport layer 3b, and the electron injection layer 3e may be present between the cathode and the light emitting layer 3c or the electron transport layer 3d. Good.
  • JP-A-9-45479 JP-A-9-260062, JP-A-8-288069 and the like.
  • Specific examples thereof include phthalocyanine represented by copper phthalocyanine.
  • examples thereof include a layer, an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • the electron injection layer 3e Details of the electron injection layer 3e are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like, and specifically, strontium, aluminum and the like are represented. Examples thereof include a metal layer, an alkali metal halide layer typified by potassium fluoride, an alkaline earth metal compound layer typified by magnesium fluoride, and an oxide layer typified by molybdenum oxide.
  • the electron injection layer 3e is desirably a very thin film, and the layer thickness is preferably in the range of 1 nm to 10 ⁇ m although it depends on the material.
  • the hole transport layer 3b is made of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer 3a and the electron blocking layer are also included in the hole transport layer 3b.
  • the hole transport layer 3b can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • hole transport material those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminoph
  • polymer materials in which these materials are introduced into polymer chains or these materials are used as polymer main chains can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • a so-called p-type hole transport material as described in 139 can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
  • the hole transport layer 3b is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. be able to.
  • the layer thickness of the hole transport layer 3b is not particularly limited, but is usually in the range of about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer 3b may have a single layer structure composed of one or more of the above materials.
  • Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer 3d is made of a material having a function of transporting electrons, and in a broad sense, the electron injection layer 3e and the hole blocking layer are also included in the electron transport layer 3d.
  • the electron transport layer 3d can be provided as a single layer structure or a multilayer structure of a plurality of layers.
  • An electron transport material for the electron transport layer 3d having a single layer structure and an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer 3c in the electron transport layer 3d having a multilayer structure are injected from the cathode. What is necessary is just to have a function to transmit the emitted electrons to the light emitting layer 3c.
  • any one of conventionally known compounds can be selected and used.
  • Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group are also used as the material for the electron transport layer 3d.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • Mg Metal complexes replaced by Cu, Ca, Sn, Ga, or Pb can also be used as the material for the electron transport layer 3d.
  • metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the material for the electron transport layer 3d.
  • a distyrylpyrazine derivative that is also used as a material for the light emitting layer 3c can be used as a material for the electron transport layer 3d.
  • n-type-Si, n-type An inorganic semiconductor such as -SiC can also be used as the material of the electron transport layer 3d.
  • the electron transport layer 3d can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the thickness of the electron transport layer 3d is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer 3d may have a single-layer structure made of one or more of the above materials.
  • the electron transport layer 3d can be doped with an impurity to increase the n property.
  • examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer 3d contains potassium, a potassium compound, or the like.
  • the potassium compound for example, potassium fluoride can be used.
  • the material (electron transporting compound) of the electron transport layer 3d the same material as that constituting the intermediate layer 1a described above may be used. The same applies to the electron transport layer 3d also serving as the electron injection layer 3e.
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic functional layer 3 described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has the function of the electron transport layer 3d in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
  • the structure of said electron carrying layer 3d can be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer 3c.
  • the electron blocking layer has the function of the hole transport layer 3b in a broad sense.
  • the electron blocking layer is made of a material that has a function of transporting holes but has a very small ability to transport electrons, and improves the probability of recombination of electrons and holes by blocking electrons while transporting holes. be able to.
  • the structure of said positive hole transport layer 3b can be used as an electron blocking layer as needed.
  • the thickness of the hole blocking layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the auxiliary electrode 15 is provided for the purpose of reducing the resistance of the transparent electrode 1, and is provided in contact with the conductive layer 1 b of the transparent electrode 1.
  • the material for forming the auxiliary electrode 15 is preferably a metal with low resistance such as gold, platinum, silver, copper, or aluminum. Since these metals have low light transmittance, a pattern is formed in a range not affected by extraction of the emitted light h from the light extraction surface 13a. Examples of a method for producing such an auxiliary electrode 15 include a vapor deposition method, a sputtering method, a printing method, an ink jet method, an aerosol jet method, and the like.
  • the line width of the auxiliary electrode 15 is preferably 50 ⁇ m or less from the viewpoint of the aperture ratio for extracting light, and the thickness of the auxiliary electrode 15 is preferably 1 ⁇ m or more from the viewpoint of conductivity.
  • the sealing material 17 covers the organic EL element 100 and may be a plate-like (film-like) sealing member that is fixed to the transparent substrate 13 side by the adhesive 19. It may be a stop film. Such a sealing material 17 is provided in a state of covering at least the organic functional layer 3 in a state in which the terminal portions of the transparent electrode 1 and the counter electrode 5a in the organic EL element 100 are exposed. In addition, an electrode may be provided on the sealing material 17 so that the transparent electrode 1 and the terminal portion of the counter electrode 5a of the organic EL element 100 are electrically connected to this electrode.
  • the plate-like (film-like) sealing material 17 include a glass substrate, a polymer substrate, a metal substrate, and the like. These substrate materials may be used in the form of a thinner film.
  • the glass substrate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal substrate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a thin film-like polymer substrate or metal substrate can be preferably used as the sealing material.
  • the polymer substrate in the form of a film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm or less, and JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a compliant method is preferably 1 ⁇ 10 ⁇ 3 g / m 2 ⁇ 24 h or less.
  • the above substrate material may be processed into a concave plate shape and used as the sealing material 17.
  • the above-described substrate material is subjected to processing such as sandblasting and chemical etching to form a concave shape.
  • the adhesive 19 for fixing the plate-shaped sealing material 17 to the transparent substrate 13 side seals the organic EL element 100 sandwiched between the sealing material 17 and the transparent substrate 13. It is used as a sealing agent.
  • Specific examples of such an adhesive 19 include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, moisture curing types such as 2-cyanoacrylates, and the like. Can be mentioned.
  • epoxy-based heat and chemical curing type (two-component mixing), hot-melt type polyamide, polyester, polyolefin, and cationic curing type UV-curable epoxy resin adhesive can also be exemplified.
  • the adhesive 19 is preferably one that can be adhesively cured from room temperature (25 ° C.) to 80 ° C. Further, a desiccant may be dispersed in the adhesive 19.
  • Application of the adhesive 19 to the bonding portion between the sealing material 17 and the transparent substrate 13 may be performed using a commercially available dispenser or may be printed like screen printing.
  • an inert gas such as nitrogen or argon or a fluorine is used. It is preferable to inject an inert liquid such as activated hydrocarbon or silicon oil. A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • the organic functional layer 3 in the organic EL element 100 is completely covered and the terminal portions of the transparent electrode 1 and the counter electrode 5a in the organic EL element 100 are exposed.
  • a sealing film is provided on the transparent substrate 13.
  • Such a sealing film is composed of an inorganic material or an organic material.
  • it is made of a material having a function of suppressing entry of a substance that causes deterioration of the organic functional layer 3 in the organic EL element 100 such as moisture and oxygen.
  • a material for example, inorganic materials such as silicon oxide, silicon dioxide, and silicon nitride are used.
  • a laminated structure may be formed by using a film made of an organic material together with a film made of these inorganic materials.
  • the method for producing these films is not particularly limited.
  • a polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • a protective film or a protective plate may be provided so as to sandwich the organic EL element 100 and the sealing material 17 together with the transparent substrate 13.
  • This protective film or protective plate is for mechanically protecting the organic EL element 100, and in particular when the sealing material 17 is a sealing film, sufficient mechanical protection is provided for the organic EL element 100. Therefore, it is preferable to provide such a protective film or protective plate.
  • a glass plate, a polymer plate, a thinner polymer film, a metal plate, a thinner metal film, a polymer material film or a metal material film is applied.
  • a polymer film because it is lightweight and thin.
  • an intermediate layer 1a containing a compound having a structure represented by any one of the general formula (2) and the general formula (3) is formed on the transparent substrate 13 with a thickness of 1 ⁇ m or less, preferably 10 to 100 nm. It forms by appropriate methods, such as a vapor deposition method, so that it may become thick.
  • the conductive layer 1b containing silver (or an alloy containing silver) as a main component has a layer thickness within a range of 5 to 20 nm, preferably within a range of 8 to 12 nm.
  • a transparent electrode 1 which is formed on the intermediate layer 1a by the method and serves as an anode is produced.
  • a hole injection layer 3a, a hole transport layer 3b, a light emitting layer 3c, an electron transport layer 3d, and an electron injection layer 3e are formed in this order on this, and the organic functional layer 3 is formed.
  • the film formation of each of these layers includes spin coating, casting, ink jet, vapor deposition, and printing, but vacuum vapor deposition is easy because a homogeneous film is easily obtained and pinholes are difficult to generate.
  • the method or spin coating method is particularly preferred.
  • different film formation methods may be applied for each layer. When a vapor deposition method is employed for forming each of these layers, the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C.
  • the counter electrode 5a serving as the cathode is formed on the upper portion by an appropriate film forming method such as a vapor deposition method or a sputtering method.
  • the counter electrode 5 a is patterned in a shape in which a terminal portion is drawn from the upper side of the organic functional layer 3 to the periphery of the transparent substrate 13 while being kept insulated from the transparent electrode 1 by the organic functional layer 3.
  • the sealing material 17 that covers at least the organic functional layer 3 is provided in a state where the terminal portions of the transparent electrode 1 and the counter electrode 5a in the organic EL element 100 are exposed.
  • a desired organic EL element is obtained on the transparent substrate 13.
  • the organic functional layer 3 is consistently produced from the counter electrode 5a by a single evacuation.
  • the transparent substrate 13 is taken out from the vacuum atmosphere in the middle to perform different formations. A film method may be applied. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the transparent electrode 1 as an anode has a positive polarity and the counter electrode 5a as a cathode has a negative polarity, and the voltage is about 2 to 40V.
  • Luminescence can be observed by applying.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • the organic EL element 100 described above has a configuration in which the transparent electrode 1 having both light transmittance and conductivity according to the present invention is used as an anode, and an organic functional layer 3 and a counter electrode 5a serving as a cathode are provided thereon. is there. For this reason, the extraction efficiency of the emitted light h from the transparent electrode 1 side is improved while applying a sufficient voltage between the transparent electrode 1 and the counter electrode 5a to realize high luminance light emission in the organic EL element 100. Therefore, it is possible to increase the luminance. Further, it is possible to improve the light emission life by reducing the drive voltage for obtaining a predetermined luminance.
  • FIG. 3 is a schematic cross-sectional view showing a second example of an organic EL element using the transparent electrode 1 described above as an example of the electronic device of the present invention.
  • the organic EL element 200 of the second example shown in FIG. 3 is different from the organic EL element 100 of the first example shown in FIG. 2 in that the transparent electrode 1 is used as a cathode.
  • the transparent electrode 1 is used as a cathode.
  • the organic EL element 200 is provided on the transparent substrate 13, and the transparent electrode 1 of the present invention described above is used as the transparent electrode 1 on the transparent substrate 13 as in the first example. ing. For this reason, the organic EL element 200 is configured to extract the emitted light h from at least the transparent substrate 13 side.
  • the transparent electrode 1 is used as a cathode (cathode).
  • the counter electrode 5b is used as an anode.
  • the layer structure of the organic EL element 200 configured as described above is not limited to the example described below, and may be a general layer structure as in the first example.
  • an electron injection layer 3e / electron transport layer 3d / light emitting layer 3c / hole transport layer 3b / hole injection layer 3a are laminated in this order on the transparent electrode 1 functioning as a cathode.
  • the configuration is exemplified. However, it is essential to have at least the light emitting layer 3c made of an organic material.
  • the organic functional layer 3 adopts various configurations as required in the same manner as described in the first example. In such a configuration, only the portion where the organic functional layer 3 is sandwiched between the transparent electrode 1 and the counter electrode 5 b becomes the light emitting region in the organic EL element 200 as in the first example.
  • the auxiliary electrode 15 may be provided in contact with the conductive layer 1b of the transparent electrode 1 for the purpose of reducing the resistance of the transparent electrode 1. The same as in the example.
  • the counter electrode 5b used as the anode is composed of a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof.
  • metals such as gold (Au), oxide semiconductors such as copper iodide (CuI), ITO, ZnO, TiO 2 , and SnO 2 .
  • the counter electrode 5b configured as described above can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering. Further, the sheet resistance value as the counter electrode 5b is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected within the range of 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • this organic EL element 200 is comprised so that emitted light h can be taken out also from the counter electrode 5b side, as a material which comprises the counter electrode 5b, favorable light transmittance is mentioned among the electrically conductive materials mentioned above.
  • a suitable conductive material is selected and used.
  • the organic EL element 200 having the above configuration is sealed with the sealing material 17 in the same manner as in the first example for the purpose of preventing the organic functional layer 3 from being deteriorated.
  • the detailed structure of the constituent elements other than the counter electrode 5b used as the anode and the method for manufacturing the organic EL element 200 are the same as in the first example. For this reason, detailed description is omitted.
  • the organic EL element 200 described above has a configuration in which the transparent electrode 1 having both light transmittance and conductivity according to the present invention is used as a cathode, and an organic functional layer 3 and a counter electrode 5b serving as an anode are provided thereon. is there. For this reason, as in the first example, a sufficient voltage is applied between the transparent electrode 1 and the counter electrode 5b to realize high-luminance light emission in the organic EL element 200, and light emitted from the transparent electrode 1 side. It is possible to increase the luminance by improving the extraction efficiency of h. Further, it is possible to improve the light emission life by reducing the drive voltage for obtaining a predetermined luminance.
  • FIG. 4 is a schematic cross-sectional view showing a third example of the organic EL element using the transparent electrode 1 described above as an example of the electronic device of the present invention.
  • the organic EL element 300 of the third example shown in FIG. 4 is different from the organic EL element 100 of the first example shown in FIG. 2 in that the counter electrode 5c is provided on the substrate 131 side, and the organic functional layer 3 and It is in the place which laminated
  • the detailed description of the same components as those in the first example will be omitted, and the characteristic configuration of the organic EL element 300 in the third example will be described.
  • the organic EL element 300 shown in FIG. 4 is provided on a substrate 131, and the counter electrode 5c serving as an anode, the organic functional layer 3, and the transparent electrode 1 serving as a cathode are laminated in this order from the substrate 131 side. .
  • the transparent electrode 1 of the present invention described above is used as the transparent electrode 1.
  • the organic EL element 300 is configured to extract the emitted light h from at least the transparent electrode 1 side opposite to the substrate 131.
  • the layer structure of the organic EL element 300 configured as described above is not limited to the example described below, and may be a general layer structure as in the first example.
  • An example of the case of the third example is a configuration in which a hole injection layer 3a / a hole transport layer 3b / a light emitting layer 3c / an electron transport layer 3d are stacked in this order on the counter electrode 5c functioning as an anode.
  • the electron transport layer 3d also serves as the electron injection layer 3e, and is provided as an electron transport layer 3d having electron injection properties.
  • the characteristic structure of the organic EL element 300 of the third example is that an electron transport layer 3d having electron injection properties is provided as the intermediate layer 1a in the transparent electrode 1. That is, in the third example, the transparent electrode 1 used as a cathode is composed of an intermediate layer 1a also serving as an electron transport layer 3d having electron injection properties, and a conductive layer 1b provided on the intermediate layer 1a. It is.
  • Such an electron transport layer 3d is configured by using the material constituting the intermediate layer 1a of the transparent electrode 1 described above.
  • the organic functional layer 3 employs various configurations as necessary, as described in the first example.
  • the electron serving as the intermediate layer 1a of the transparent electrode 1 is also used.
  • No electron injection layer or hole blocking layer is provided between the transport layer 3d and the conductive layer 1b of the transparent electrode 1. In the above configuration, only the portion where the organic functional layer 3 is sandwiched between the transparent electrode 1 and the counter electrode 5c becomes the light emitting region in the organic EL element 300, as in the first example.
  • the auxiliary electrode 15 may be provided in contact with the conductive layer 1b of the transparent electrode 1 for the purpose of reducing the resistance of the transparent electrode 1. The same as in the example.
  • the counter electrode 5c used as the anode is composed of a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof.
  • metals such as silver (Ag) and gold (Au)
  • oxide semiconductors such as copper iodide (CuI), ITO, ZnO, TiO 2 and SnO 2 .
  • the counter electrode 5c configured as described above can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering. Further, the sheet resistance value as the counter electrode 5c is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • this organic EL element 300 is comprised so that the emitted light h can be taken out also from the counter electrode 5c side, as a material which comprises the counter electrode 5c, light transmittance is favorable among the electrically conductive materials mentioned above.
  • a suitable conductive material is selected and used.
  • the substrate 131 is the same as the transparent substrate 13 described in the first example, and the surface facing the outside of the substrate 131 is the light extraction surface 131a.
  • the electron transport layer 3d having the electron injecting property constituting the uppermost part of the organic functional layer 3 is used as the intermediate layer 1a, and the conductive layer 1b is provided on the intermediate layer 1a.
  • the transparent electrode 1 composed of the conductive layer 1b is provided as a cathode. Therefore, similarly to the first example and the second example, a sufficient voltage is applied between the transparent electrode 1 and the counter electrode 5c to realize high-luminance light emission in the organic EL element 300, while the transparent electrode 1 side. It is possible to increase the luminance by improving the extraction efficiency of the emitted light h from the light source. Further, it is possible to improve the light emission life by reducing the drive voltage for obtaining a predetermined luminance. Further, when the counter electrode 5c is light transmissive, the emitted light h can be extracted from the counter electrode 5c.
  • the intermediate layer 1a of the transparent electrode 1 has been described as also serving as the electron transport layer 3d having electron injection properties.
  • the present example is not limited to this, and the intermediate layer 1a may also serve as an electron transport layer 3d that does not have electron injection properties, or the intermediate layer 1a may serve as an electron injection layer instead of an electron transport layer.
  • the intermediate layer 1a may be formed as an extremely thin film that does not affect the light emitting function of the organic EL element. In this case, the intermediate layer 1a has electron transport properties and electron injection properties. Not.
  • the intermediate layer 1a of the transparent electrode 1 is formed as an extremely thin film that does not affect the light emitting function of the organic EL element, the counter electrode 5c on the substrate 131 side is used as a cathode,
  • the transparent electrode 1 may be an anode.
  • the organic functional layer 3 is, for example, in order from the counter electrode (cathode) 5c side on the substrate 131, for example, an electron injection layer 3e / electron transport layer 3d / light emitting layer 3c / hole transport layer 3b / hole injection layer 3a. Are stacked.
  • the transparent electrode 1 which consists of a laminated structure of the ultra-thin intermediate
  • organic EL elements are surface light emitters as described above, they can be used as various light emission sources.
  • lighting devices such as home lighting and interior lighting, backlights for watches and liquid crystals, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, Examples include a light source of an optical sensor. In particular, it can be effectively used for a backlight of a liquid crystal display device combined with a color filter and a light source for illumination.
  • the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image. It may be used as a display device (display).
  • the light emitting surface may be enlarged by so-called tiling, in which light emitting panels provided with organic EL elements are joined together in a plane.
  • the drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • a color or full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
  • a lighting device will be described as an example of the application, and then a lighting device having a light emitting surface enlarged by tiling will be described.
  • Lighting device-1 The lighting device according to the present invention can include the organic EL element.
  • the organic EL element used in the lighting device according to the present invention may be designed such that each organic EL element having the above-described configuration has a resonator structure.
  • the purpose of use of the organic EL element configured to have a resonator structure includes a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, etc. It is not limited to. Moreover, you may use for the said use by making a laser oscillation.
  • the material used for the organic EL element of this invention is applicable to the organic EL element (white organic EL element) which produces substantially white light emission.
  • a plurality of luminescent colors can be simultaneously emitted by a plurality of luminescent materials, and white light emission can be obtained by mixing colors.
  • white light emission colors those containing the three emission maximum wavelengths of the three primary colors of red, green and blue may be used, or two emission using the complementary colors such as blue and yellow, blue green and orange, etc. It may contain a maximum wavelength.
  • a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and excitation of light from the light emitting materials. Any combination with a pigment material that emits light as light may be used, but in a white organic EL element, a combination of a plurality of light-emitting dopants may be used.
  • Such a white organic EL element is different from a configuration in which organic EL elements emitting each color are individually arranged in parallel to obtain white light emission, and the organic EL element itself emits white light. For this reason, a mask is not required for film formation of most layers constituting the element, and deposition can be performed on one side by vapor deposition, casting, spin coating, ink jet, printing, etc., and productivity is also improved. To do.
  • any one of the above-described metal complexes and known light-emitting materials may be selected and combined to be whitened.
  • the white organic EL element described above it is possible to produce a lighting device that emits substantially white light.
  • FIG. 5 is a schematic cross-sectional view of an illuminating device having a large light emitting surface using a plurality of organic EL elements having the above-described configurations.
  • the illuminating device 21 has a light emitting surface having a large area by arranging a plurality of light emitting panels 22 including the organic EL elements 100 on the transparent substrate 13 on the support substrate 23 (tiling). This is a structured.
  • the support substrate 23 may also serve as the sealing material 17, and each light-emitting panel 22 is tied with the organic EL element 100 sandwiched between the support substrate 23 and the transparent substrate 13 of the light-emitting panel 22. Ring.
  • An adhesive 19 may be filled between the support substrate 23 and the transparent substrate 13, thereby sealing the organic EL element 100.
  • the edge part of the transparent electrode 1 which is an anode, and the counter electrode 5a which is a cathode are exposed around the light emission panel 22.
  • FIG. only the exposed part of the counter electrode 5a is shown in FIG.
  • the organic functional layer 3 constituting the organic EL element 100 the hole injection layer 3a / the hole transport layer 3b / the light emitting layer 3c / the electron transport layer 3d / the electron injection layer 3e are formed on the transparent electrode 1.
  • a configuration in which the layers are sequentially stacked is shown as an example.
  • the center of each light emitting panel 22 is a light emitting area A, and a non-light emitting area B is generated between the light emitting panels 22.
  • a light extraction member for increasing the light extraction amount from the non-light-emitting region B may be provided in the non-light-emitting region B of the light extraction surface 13a.
  • a light collecting sheet or a light diffusion sheet can be used as the light extraction member.
  • the transparent electrodes 101 to 108, 110, and 115 to 121 were fabricated so that the area of the conductive region was 5 cm ⁇ 5 cm.
  • the transparent electrodes 101 to 104 are produced as single-layer transparent electrodes composed of only a conductive layer, and the transparent electrodes 105 to 108, 110, and 115 to 121 are laminated electrodes having a laminated structure of an intermediate layer and a conductive layer. Produced.
  • a transparent non-alkali glass substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus and attached to a vacuum chamber of the vacuum deposition apparatus.
  • the resistance heating boat made from tungsten was filled with silver (Ag), and was attached in the said vacuum chamber.
  • the resistance heating boat was energized and heated, and the layer thickness was 5 nm on the substrate within the range of the deposition rate of 0.1 to 0.2 nm / second.
  • a conductive layer made of silver was formed to produce a transparent electrode 101 having a single layer structure.
  • Transparent electrodes 102 to 104 were produced in the same manner as the production of the transparent electrode 101 except that the thickness of the conductive layer was changed to 8 nm, 10 nm, and 15 nm, respectively.
  • the first vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing a heating boat containing Alq 3 within a deposition rate range of 0.1 to 0.2 nm / second. Then, an intermediate layer made of Alq 3 having a layer thickness of 30 nm was provided on the substrate.
  • the substrate having been formed up to the intermediate layer was transferred to the second vacuum chamber in a vacuum, and after the second vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, the heating boat containing silver was energized and heated, A conductive layer made of silver having a layer thickness of 8 nm was formed at a deposition rate of 0.1 to 0.2 nm / second, and a transparent electrode 105 having a laminated structure of an intermediate layer and a conductive layer was produced.
  • Transparent electrode 110 was produced in the same manner as in production of transparent electrode 105 except that the constituent material of the intermediate layer was changed to I-1.
  • Transparent electrodes 115 to 118 were produced in the same manner as the production of the transparent electrode 110 except that the constituent material of the intermediate layer was changed to the compounds shown in Table 2.
  • Transparent electrodes 119 to 121 were produced in the same manner as the production of the transparent electrodes 116 to 118 except that the substrate was changed from a non-alkali glass to a PET (polyethylene terephthalate) film.
  • the produced transparent electrodes 101 to 108, 110, and 115 to 121 were measured for light transmittance, sheet resistance value, and light transmittance change (durability) under high temperature storage according to the following methods.
  • the transparent electrodes 115 to 121 of the present invention in which the conductive layer mainly composed of silver (Ag) is provided on the intermediate layer formed by vapor deposition are all light transmissive. The rate is 72% or more, and the sheet resistance value is suppressed to 7.7 ⁇ / ⁇ or less.
  • some of the transparent electrodes 101 to 108 of the comparative example had a light transmittance of less than 72%, and the sheet resistance value exceeded 7.7 ⁇ / ⁇ .
  • the transparent electrodes 115 to 121 of the present invention are smaller and excellent in comparison with the transparent electrodes 101 to 108 of the comparative example. Recognize.
  • the transparent electrode of the present invention has high light transmittance and conductivity, and is further excellent in durability.
  • the transparent electrodes 201 to 207 and 212 to 217 were produced so that the area of the conductive region was 5 cm ⁇ 5 cm.
  • the transparent electrodes 201 and 202 were produced as transparent electrodes having a single layer structure consisting only of a conductive layer, and the transparent electrodes 203 to 207 and 212 to 217 were produced as transparent electrodes having a laminated structure of an intermediate layer and a conductive layer. .
  • Transparent electrode 202 was produced in the same manner as in production of transparent electrode 201 except that the thickness of the conductive layer was changed to 20 nm.
  • Transparent electrode 207 was produced in the same manner as in production of transparent electrode 203, except that the constituent material of the intermediate layer was changed to I-2.
  • Transparent electrodes 212 to 214 were produced in the same manner as the production of the transparent electrode 207 except that the constituent material of the intermediate layer was changed to the compounds shown in Table 3.
  • Transparent electrodes 215 to 217 were produced in the same manner as the production of the transparent electrodes 212 to 214 except that the substrate was changed from a non-alkali glass to a PET (polyethylene terephthalate) film.
  • the light transmittance was measured by using a spectrophotometer (U-3300 manufactured by Hitachi, Ltd.) and measuring the light transmittance (%) at a measurement light wavelength of 550 nm using the substrate of each transparent electrode as a reference.
  • the light transmittance change of each transparent electrode under high-temperature storage is shown as a relative value with the light transmittance change of the transparent electrode 207 of Example 2 as 100.
  • the results are shown in Table 3.
  • the transparent electrodes 212 to 217 of the present invention in which the conductive layer mainly composed of silver (Ag) is provided on the intermediate layer formed by coating are all light transmissive. The rate is 58% or more, and the sheet resistance value is suppressed to 8.7 ⁇ / ⁇ or less.
  • the transparent electrodes 201 to 206 of the comparative example had a light transmittance of 37% or less and a sheet resistance value greatly exceeding 8.7 ⁇ / ⁇ and 197 ⁇ / ⁇ or more. It can also be seen that the transparent electrodes 212 to 217 of the present invention are superior to the transparent electrodes 201 to 206 of the comparative example in terms of durability (change in light transmittance under high temperature storage).
  • the transparent electrode of the present invention has high light transmittance and conductivity, and is further excellent in durability.
  • Example 3 ⁇ Production of light emitting panel> Double-sided light emitting panels 401 to 408, 410, and 416 to 421 using the transparent electrode of the present invention as an anode were manufactured. Hereinafter, the manufacturing procedure will be described with reference to FIG.
  • the transparent substrate 101 produced in Example 1 that is, the transparent substrate 13 on which the transparent electrode 1 having only the conductive layer 1b is formed is used as a substrate holder of a commercially available vacuum deposition apparatus. It fixed and the vapor deposition mask was opposingly arranged by the formation surface side of the transparent electrode 1.
  • FIG. Moreover, each material which comprises the organic functional layer 3 was filled in each heating boat in a vacuum evaporation apparatus in the optimal quantity for film-forming of each layer. In addition, what was produced with the resistance heating material made from tungsten was used for the heating boat.
  • each layer was formed as follows by sequentially energizing and heating a heating boat containing each material.
  • a heating boat containing ⁇ -NPD shown below as a hole transport injecting material is energized and heated to form a hole transport injecting layer 31 serving as both a hole injecting layer and a hole transporting layer made of ⁇ -NPD.
  • a hole transport injecting layer 31 serving as both a hole injecting layer and a hole transporting layer made of ⁇ -NPD.
  • the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 20 nm.
  • the heating boat containing the host material H4 and the heating boat containing the phosphorescent dopant Ir-4 are energized independently, and the light emitting layer 3c containing the host material H4 and the phosphorescent dopant Ir-4 is supplied.
  • the hole transport injection layer 31 was formed on the hole transport injection layer 31.
  • the layer thickness was 30 nm.
  • a heating boat containing BAlq shown below as a hole blocking material was energized and heated to form a hole blocking layer 33 made of BAlq on the light emitting layer 3c.
  • the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 10 nm.
  • a heating boat containing ET-6 shown below as an electron transporting material and a heating boat containing potassium fluoride were energized independently, and an electron transport layer 3d containing ET-6 and potassium fluoride was supplied.
  • an electron transport layer 3d containing ET-6 and potassium fluoride was supplied.
  • the layer thickness was 30 nm.
  • a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer 3e made of potassium fluoride on the electron transport layer 3d.
  • the deposition rate was 0.01 to 0.02 nm / second, and the layer thickness was 1 nm.
  • the transparent substrate 13 formed up to the electron injection layer 3e was transferred from the vapor deposition chamber of the vacuum vapor deposition apparatus to the processing chamber of the sputtering apparatus to which an ITO target as a counter electrode material was attached while maintaining the vacuum state. Then, in the processing chamber, a film was formed at a film forming rate of 0.3 to 0.5 nm / second, and a light-transmitting counter electrode 5a made of ITO having a film thickness of 150 nm was formed as a cathode. As described above, the organic EL element 400 was formed on the transparent substrate 13.
  • the organic EL element 400 is covered with a sealing material 17 made of a glass substrate having a thickness of 300 ⁇ m, and the adhesive 19 (sealing material) is interposed between the sealing material 17 and the transparent substrate 13 so as to surround the organic EL element 400. ).
  • a sealing material 17 made of a glass substrate having a thickness of 300 ⁇ m
  • the adhesive 19 (sealing material) is interposed between the sealing material 17 and the transparent substrate 13 so as to surround the organic EL element 400. ).
  • an epoxy photocurable adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) was used.
  • the adhesive 19 filled between the sealing material 17 and the transparent substrate 13 is irradiated with UV light from the glass substrate (sealing material 17) side to cure the adhesive 19 and seal the organic EL element 400. Stopped.
  • the organic EL element 400 In forming the organic EL element 400, an evaporation mask is used for forming each layer, and the central 4.5 cm ⁇ 4.5 cm of the 5 cm ⁇ 5 cm transparent substrate 13 is defined as the light emitting region A, and the entire circumference of the light emitting region A is formed. A non-light emitting region B having a width of 0.25 cm was provided. Further, the transparent electrode 1 serving as the anode and the counter electrode 5a serving as the cathode are insulated by the organic functional layer 3 from the hole transport injection layer 31 to the electron injection layer 3e, and a terminal portion is provided on the periphery of the transparent substrate 13. Was formed in a drawn shape.
  • the light emitting panel 401 in which the organic EL element 400 was provided on the transparent substrate 13 and sealed with the sealing material 17 and the adhesive 19 was manufactured.
  • the emitted light h of each color generated in the light emitting layer 3c is extracted from both the transparent electrode 1 side, that is, the transparent substrate 13 side, and the counter electrode 5a side, that is, the sealing material 17 side.
  • a light-emitting panel 405 was produced in the same manner except that the light-emitting panel 401 was produced using the transparent electrode 105.
  • the light-emitting panels 406 to 408 were produced in the same manner except that the constituent material of the intermediate layer 1a was changed to the comparative compound (1), (2) or (3). 408 was produced.
  • a light-emitting panel 410 was produced in the same manner as in the production of the light-emitting panel 405 except that the constituent material of the intermediate layer 1a was changed to I-5.
  • Light emitting panels 419 to 421 were produced in the same manner as the light emitting panels 416 to 418 except that the substrate was changed from non-alkali glass to a PET (polyethylene terephthalate) film.
  • the light-emitting panels 401 to 408, 410, and 416 to 421 were measured for light transmittance, sheet resistance value, and external quantum efficiency (durability) under high temperature storage according to the following methods.
  • each of the light emitting panels 416 to 421 using the transparent electrode of the present invention as the anode of the organic EL device has a light transmittance of 73% or more, and has a sheet resistance. The value is suppressed to 7.4 ⁇ / ⁇ or less.
  • the light emitting panels 401 to 408 using the transparent electrode of the comparative example as the anode of the organic EL element have a light transmittance of less than 73% and a sheet resistance value of greater than 7.4 ⁇ / ⁇ . The value is shown. It was also found that the light emitting panels 416 to 421 of the present invention are superior to the light emitting panels 401 to 408 of the comparative example in terms of durability (change in external quantum efficiency under high temperature storage).
  • the transparent electrode using the compound having the structure represented by the general formula (2) or (3) of the present invention can be used for various electronic devices. Among these, it has been found that the transparent electrode of the present invention can be effectively used in an organic electroluminescence element having the most severe restrictions among electronic devices from the viewpoint of sheet resistance. Accordingly, the transparent electrode using the compound having the structure represented by the general formula (2) or (3) of the present invention is also applied to other electronic devices such as a liquid crystal display device, a solar cell, electronic paper, and a touch panel. It is considered possible. An organic thin film solar cell and a touch panel were actually produced using the electrode produced with the transparent electrode 118 of Example 1 and confirmed to work well.
  • the light-emitting panel using the transparent electrode of the present invention can emit light with high brightness with low sheet resistance.
  • the transparent electrodes 501 to 522 were prepared so that the area of the conductive region was 5 cm ⁇ 5 cm.
  • the transparent electrodes 501 to 504 were produced as transparent electrodes having a single layer structure consisting of only a conductive layer, and the transparent electrodes 505 to 522 were produced as transparent electrodes having a laminated structure of an intermediate layer and a conductive layer.
  • a transparent non-alkali glass substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus and attached to a vacuum chamber of the vacuum deposition apparatus.
  • the resistance heating boat made from tungsten was filled with silver (Ag), and was attached in the said vacuum chamber.
  • the resistance heating boat was energized and heated, and the layer thickness was 5 nm on the substrate within the range of the deposition rate of 0.1 to 0.2 nm / second.
  • a conductive layer made of silver was formed to produce a transparent electrode 501 having a single layer structure.
  • Transparent electrodes 502 to 504 were produced in the same manner as the production of the transparent electrode 501, except that the thickness of the conductive layer was changed to 8 nm, 10 nm, and 15 nm, respectively.
  • the first vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing a heating boat containing Alq 3 within a deposition rate range of 0.1 to 0.2 nm / second. Then, an intermediate layer made of Alq 3 having a layer thickness of 35 nm was provided on the substrate.
  • the substrate having been formed up to the intermediate layer was transferred to the second vacuum chamber in a vacuum, and after the second vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, the heating boat containing silver was energized and heated, A conductive layer made of silver having a layer thickness of 8 nm was formed at a deposition rate of 0.1 to 0.2 nm / second, and a transparent electrode 105 having a laminated structure of an intermediate layer and a conductive layer was produced.
  • transparent electrode 505 was prepared in the same manner except that the constituent materials of the intermediate layer were changed to the comparative compounds (1), (2) and (3) shown above. Electrodes 506 to 508 were produced.
  • Transparent electrodes 510 to 512 were produced in the same manner as the production of the transparent electrode 509 except that the thickness of the conductive layer was changed to 8 nm, 10 nm, and 15 nm, respectively.
  • Transparent electrodes 513 to 519 were produced in the same manner as the production of the transparent electrode 510 except that the constituent material of the intermediate layer was changed to the compounds shown in Table 5.
  • Transparent electrodes 520 to 522 were produced in the same manner as the production of the transparent electrodes 517 to 522 except that the substrate was changed from non-alkali glass to a PET (polyethylene terephthalate) film.
  • the produced transparent electrodes 501 to 522 were measured for light transmittance, sheet resistance value, and sheet resistance change (durability) under high temperature storage according to the following method.
  • the transparent electrodes 509 to 522 of the present invention in which the conductive layer mainly composed of silver (Ag) is provided on the intermediate layer formed by vapor deposition are all light transmissive.
  • the rate is 51% or more, and the sheet resistance value is suppressed to 18.0 ⁇ / ⁇ or less.
  • some of the transparent electrodes 501 to 508 of the comparative example had a light transmittance of less than 51%, and the sheet resistance value exceeded 18.0 ⁇ / ⁇ .
  • durability change in sheet resistance under high temperature storage
  • the transparent electrode of the present invention has high light transmittance and conductivity, and is further excellent in durability.
  • the transparent electrodes 601 to 616 were fabricated so that the area of the conductive region was 5 cm ⁇ 5 cm.
  • the transparent electrodes 601 to 604 were produced as single-layered transparent electrodes consisting only of a conductive layer, and the transparent electrodes 605 to 616 were produced as transparent electrodes having a laminated structure of an intermediate layer and a conductive layer.
  • a transparent non-alkali glass substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus and attached to a vacuum chamber of the vacuum deposition apparatus.
  • the resistance heating boat made from tungsten was filled with silver (Ag), and was attached in the said vacuum chamber.
  • the resistance heating boat was energized and heated, and the layer thickness was 5 nm on the substrate within the range of the deposition rate of 0.1 to 0.2 nm / second.
  • a conductive layer made of silver was formed to produce a transparent electrode 601 having a single layer structure.
  • Transparent electrodes 602 to 604 were produced in the same manner as the production of the transparent electrode 601, except that the thickness of the conductive layer was changed to 8 nm, 10 nm, and 15 nm, respectively.
  • the first vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing a heating boat containing Alq 3 within a deposition rate range of 0.1 to 0.2 nm / second. Then, an intermediate layer made of Alq 3 having a layer thickness of 35 nm was provided on the substrate.
  • the substrate having been formed up to the intermediate layer was transferred to the second vacuum chamber in a vacuum, and after the second vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, the heating boat containing silver was energized and heated, A conductive layer made of silver having a layer thickness of 8 nm was formed at a deposition rate of 0.1 to 0.2 nm / second, and a transparent electrode 605 having a laminated structure of an intermediate layer and a conductive layer was produced.
  • Transparent electrodes 609 to 612 were produced in the same manner as the production of the transparent electrode 605 except that the constituent material of the intermediate layer was changed to the compounds shown in Table 6.
  • Transparent electrodes 613 to 616 were produced in the same manner as the production of the transparent electrodes 609 to 616 except that the substrate was changed from a non-alkali glass to a PET (polyethylene terephthalate) film.
  • the produced transparent electrodes 601 to 616 were measured for light transmittance, light transmittance change under high temperature storage (durability) and sheet resistance change under high temperature storage (durability) according to the following methods.
  • the transparent electrodes 609 to 616 of the present invention in which the conductive layer mainly composed of silver (Ag) is provided on the intermediate layer formed by vapor deposition are all light transmissive. The rate is 65% or more.
  • some of the transparent electrodes 601 to 608 of the comparative example have a light transmittance of less than 65%.
  • the transparent electrodes 609 to 616 of the present invention are compared with the transparent electrodes 601 to 608 of the comparative example, It can be seen that the change is small and excellent.
  • the transparent electrode of the present invention has high light transmittance and is further excellent in durability.
  • the transparent electrode of the present invention can be used for electronic devices such as organic EL elements, liquid crystal display devices, solar cells, electronic paper, and touch panels.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

This invention addresses the problem of providing the following: a transparent electrode that combines sufficient light transmission with sufficient conductivity and is also highly durable; and an electronic device and organic electroluminescent element provided with said transparent electrode. This transparent electrode (1), which comprises a conductive layer (1b) and an intermediate layer (1a) adjacent thereto, is characterized in that the conductive layer (1b) consists primarily of silver and the intermediate layer (1a) contains a compound having a structure that can be represented by general formula (2). (In general formula (2), each of R4 through R9 independently represents either a hydrogen atom or a substituent; L2­ represents either an aromatic hydrocarbon ring or an aromatic heterocycle; X1, X2, and X3 each independently represent either a nitrogen atom or -CR10; and R10 represents either a hydrogen atom or a substituent.)

Description

透明電極、電子デバイス及び有機エレクトロルミネッセンス素子Transparent electrode, electronic device, and organic electroluminescence element
 本発明は、透明電極、電子デバイス及び有機エレクトロルミネッセンス素子に関する。より詳しくは、光透過性と導電性とを兼ね備え、更に耐久性に優れた透明電極、この透明電極を備えた電子デバイス及び有機エレクトロルミネッセンス素子に関する。 The present invention relates to a transparent electrode, an electronic device, and an organic electroluminescence element. More specifically, the present invention relates to a transparent electrode having both light transmittance and conductivity, and further excellent in durability, and an electronic device and an organic electroluminescence element including the transparent electrode.
 有機材料のエレクトロルミネッセンス(Electro Luminescence:以下ELと記す。)を利用した有機EL素子(有機電界発光素子ともいう。)は、数V~数十V程度の低電圧で発光が可能な薄膜型の完全固体素子であり、高輝度、高発光効率、薄型、軽量といった多くの優れた特徴を有する。このため、各種ディスプレイのバックライト、看板や非常灯等の表示板、照明光源等の面発光体として近年注目されている。 An organic EL element (also referred to as an organic electroluminescence element) using electroluminescence of an organic material (hereinafter referred to as EL) is a thin film type capable of emitting light at a low voltage of about several volts to several tens of volts. It is a complete solid-state device and has many excellent features such as high brightness, high luminous efficiency, thinness, and light weight. For this reason, it has been attracting attention in recent years as surface light emitters such as backlights for various displays, display boards such as signboards and emergency lights, and illumination light sources.
 このような有機EL素子は、2枚の電極間に有機材料からなる発光層を配置した構成であり、発光層で生じた発光光は電極を透過して外部に取り出される。このため、2枚の電極のうちの少なくとも一方は、透明電極として構成される。 Such an organic EL element has a configuration in which a light emitting layer made of an organic material is disposed between two electrodes, and emitted light generated in the light emitting layer passes through the electrode and is extracted outside. For this reason, at least one of the two electrodes is configured as a transparent electrode.
 透明電極としては、酸化インジウムスズ(SnO-In:Indium Tin Oxide:ITO)等の酸化物半導体系の材料が一般的に用いられているが、ITOと銀とを積層して低抵抗化を狙った検討もなされている(例えば、特許文献1及び2参照。)。しかしながら、ITOは、レアメタルのインジウムを使用しているため材料コストが高く、また、抵抗を下げるために成膜後に300℃程度でアニール処理する必要がある。 As the transparent electrode, an oxide semiconductor material such as indium tin oxide (SnO 2 —In 2 O 3 : Indium Tin Oxide: ITO) is generally used. Studies aiming at resistance have also been made (see, for example, Patent Documents 1 and 2). However, since ITO uses rare metal indium, the material cost is high, and it is necessary to anneal at about 300 ° C. after film formation in order to reduce resistance.
 そこで、電気伝導率の高い銀(Ag)とマグネシウム(Mg)との合金を用いて薄膜を形成することで光透過率と導電性との両立を図った技術や、安価で入手容易な亜鉛(Zn)やスズ(Sn)を原料として薄膜を構成する技術、銀とアルミニウムとの合金を用いて薄膜を構成することで短波長領域の光を透過させる技術等が提案されている(例えば、特許文献3~5参照。)。
 しかしながら、特許文献3に開示されている電極の抵抗値はせいぜい100Ω/□前後で、電極の導電性としては不十分であり、加えて、マグネシウムが酸化されやすいため、経時劣化が著しいという問題があった。
 特許文献4に開示されている電極では、十分な抵抗値が得られないという問題がある。また、Znを含有したZnO系の薄膜は水と反応して性能が変動しやすく、Snを含有したSnO系の薄膜はエッチングが困難である等の問題があった。
 特許文献5に開示されている電極の抵抗値はせいぜい128Ω/□であり、十分な光透過性と導電性とを兼ね備えた透明電極とはいえない。
Therefore, a technique for achieving both light transmittance and conductivity by forming a thin film using an alloy of silver (Ag) and magnesium (Mg) having high electrical conductivity, and zinc ( A technique for forming a thin film using Zn) or tin (Sn) as a raw material, a technique for transmitting light in a short wavelength region by forming a thin film using an alloy of silver and aluminum, and the like have been proposed (for example, patents). See references 3-5.)
However, the resistance value of the electrode disclosed in Patent Document 3 is at most about 100Ω / □, which is insufficient as the conductivity of the electrode. In addition, since magnesium is easily oxidized, there is a problem that deterioration with time is remarkable. there were.
The electrode disclosed in Patent Document 4 has a problem that a sufficient resistance value cannot be obtained. In addition, ZnO-based thin films containing Zn are likely to react with water and change their performance, and SnO 2 -based thin films containing Sn are difficult to etch.
The resistance value of the electrode disclosed in Patent Document 5 is at most 128 Ω / □, and it cannot be said that the electrode is a transparent electrode having both sufficient light transmittance and conductivity.
 一方、陰極として銀を膜厚15nmで蒸着した有機EL素子について開示されている(例えば、特許文献6参照。)。
 しかしながら、特許文献6に開示されている銀膜においては、薄膜化すると、銀がマイグレーションしやすいため電極特性を維持することが困難であり、新たな技術の開発が望まれている。
On the other hand, an organic EL element in which silver is deposited as a cathode with a film thickness of 15 nm is disclosed (for example, see Patent Document 6).
However, in the silver film disclosed in Patent Document 6, when the film is thinned, it is difficult to maintain electrode characteristics because silver easily migrates, and development of a new technique is desired.
特開2002-015623号公報JP 2002-015623 A 特開2006-164961号公報JP 2006-16961 A 特開2006-344497号公報JP 2006-344497 A 特開2007-031786号公報JP 2007-031786 A 特開2009-151963号公報JP 2009-151963 A 米国特許出願公開第2011/0260148号明細書US Patent Application Publication No. 2011/0260148
 本発明は上記問題・状況に鑑みてなされたものであり、その解決課題は十分な光透過性と導電性とを兼ね備え、かつ耐久性に優れた透明電極、当該透明電極を備えた電子デバイス及び有機エレクトロルミネッセンス素子を提供することである。 The present invention has been made in view of the above-described problems and circumstances, and the solution to the problem is a transparent electrode having sufficient light transmission and conductivity, and excellent in durability, an electronic device including the transparent electrode, and An organic electroluminescence device is provided.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、導電性層と、前記導電性層に隣接して設けられる中間層と、を備える透明電極であって、前記導電性層が、銀を主成分として含有し、前記中間層が、下記一般式(2)で表される構造を有する化合物を含有することで、優れた光透過率と導電性とを両立し、かつ耐久性に優れた透明電極を実現できることを見出し、本発明に至った。 As a result of examining the cause of the above-mentioned problem in order to solve the above-mentioned problems, the present inventor is a transparent electrode comprising a conductive layer and an intermediate layer provided adjacent to the conductive layer, The conductive layer contains silver as a main component, and the intermediate layer contains a compound having a structure represented by the following general formula (2), thereby achieving both excellent light transmittance and conductivity. And it discovered that the transparent electrode excellent in durability was realizable, and came to this invention.
 すなわち、本発明にかかる上記課題は、以下の手段により解決される。 That is, the said subject concerning this invention is solved by the following means.
 1.導電性層と、前記導電性層に隣接して設けられる中間層と、を備える透明電極であって、
 前記導電性層が、銀を主成分として含有し、
 前記中間層が、下記一般式(2)で表される構造を有する化合物を含有することを特徴とする透明電極。
Figure JPOXMLDOC01-appb-C000003
〔一般式(2)中、R~Rは、それぞれ独立に、水素原子又は置換基を表す。Lは、芳香族炭化水素環基又は芳香族複素環基を表す。X、X及びXは、それぞれ独立に、窒素原子又は-CR10を表す。R10は、水素原子又は置換基を表す。〕
1. A transparent electrode comprising a conductive layer and an intermediate layer provided adjacent to the conductive layer,
The conductive layer contains silver as a main component,
The said intermediate | middle layer contains the compound which has a structure represented by following General formula (2), The transparent electrode characterized by the above-mentioned.
Figure JPOXMLDOC01-appb-C000003
[In General Formula (2), R 4 to R 9 each independently represents a hydrogen atom or a substituent. L 2 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group. X 1 , X 2 and X 3 each independently represent a nitrogen atom or —CR 10 . R 10 represents a hydrogen atom or a substituent. ]
 2.前記一般式(2)中、X、X及びXが、それぞれ窒素原子を表すことを特徴とする第1項に記載の透明電極。 2. 2. The transparent electrode according to item 1 , wherein X 1 , X 2 and X 3 in the general formula (2) each represent a nitrogen atom.
 3.前記一般式(2)中、X、X及びXのうちいずれか一つが、-CR10を表すことを特徴とする第1項に記載の透明電極。 3. 2. The transparent electrode according to item 1 , wherein in the general formula (2), any one of X 1 , X 2 and X 3 represents —CR 10 .
 4.前記一般式(2)中、X、X及びXが、それぞれ-CR10を表すことを特徴とする第1項に記載の透明電極。 4). 2. The transparent electrode according to item 1 , wherein in the general formula (2), X 1 , X 2 and X 3 each represent —CR 10 .
 5.前記一般式(2)で表される構造が、下記一般式(3)で表される構造であることを特徴とする第1項に記載の透明電極。
Figure JPOXMLDOC01-appb-C000004
〔一般式(3)中、R11~R16は、それぞれ独立に、水素原子又は置換基を表す。X、X及びXは、それぞれ独立に、窒素原子又は-CR17を表し、R17は水素原子又は置換基を表す。Y~Yは、それぞれ独立に、窒素原子又は-CR18を表し、これらが互いに結合して新たな環を形成しても良い。R18は、水素原子又は置換基を表す。Z~Zは、それぞれ独立に、窒素原子又は-CR19を表し、少なくとも一つは窒素原子を表す。これらは互いに結合して新たな環を形成してもよい。R19は、水素原子又は置換基を表す。〕
5. 2. The transparent electrode according to item 1, wherein the structure represented by the general formula (2) is a structure represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000004
[In General Formula (3), R 11 to R 16 each independently represents a hydrogen atom or a substituent. X 4 , X 5 and X 6 each independently represent a nitrogen atom or —CR 17 , and R 17 represents a hydrogen atom or a substituent. Y 1 to Y 4 each independently represent a nitrogen atom or —CR 18 , and these may be bonded to each other to form a new ring. R 18 represents a hydrogen atom or a substituent. Z 1 to Z 4 each independently represents a nitrogen atom or —CR 19 , and at least one represents a nitrogen atom. These may combine with each other to form a new ring. R 19 represents a hydrogen atom or a substituent. ]
 6.前記一般式(3)中、X、X及びXが、それぞれ窒素原子を表すことを特徴とする第5項に記載の透明電極。 6). The transparent electrode according to item 5 , wherein X 4 , X 5 and X 6 in the general formula (3) each represent a nitrogen atom.
 7.前記一般式(3)中、X、X及びXのうちいずれか一つが、-CR17を表すことを特徴とする第5項に記載の透明電極。 7). 6. The transparent electrode according to item 5, wherein any one of X 4 , X 5 and X 6 in the general formula (3) represents —CR 17 .
 8.前記一般式(3)中、X、X及びXが、それぞれ-CR17を表すことを特徴とする第5項に記載の透明電極。 8). 6. The transparent electrode according to item 5 , wherein in the general formula (3), X 4 , X 5 and X 6 each represent —CR 17 .
 9.第1項から第8項までのいずれか一項に記載の透明電極を備えていることを特徴とする電子デバイス。 9. An electronic device comprising the transparent electrode according to any one of items 1 to 8.
 10.第1項から第8項までのいずれか一項に記載の透明電極を備えていることを特徴とする有機エレクトロルミネッセンス素子。 10. An organic electroluminescence device comprising the transparent electrode according to any one of items 1 to 8.
 本発明によれば、十分な光透過性と導電性とを兼ね備え、かつ耐久性に優れた透明電極、当該透明電極を備えた電子デバイス及び有機エレクトロルミネッセンス素子を提供することができる。 According to the present invention, it is possible to provide a transparent electrode that has both sufficient light transmittance and conductivity and is excellent in durability, and an electronic device and an organic electroluminescence element including the transparent electrode.
 本発明の効果の発現機構、作用機構については明確にはなっていないが、以下のように推察される。 The expression mechanism and action mechanism of the effect of the present invention are not clear, but are presumed as follows.
 本発明の透明電極は、中間層に隣接して、銀を主成分として含有する導電性層が設けられており、かつ中間層は、前記一般式(2)で表される構造を有する化合物を含有している。 In the transparent electrode of the present invention, a conductive layer containing silver as a main component is provided adjacent to the intermediate layer, and the intermediate layer comprises a compound having a structure represented by the general formula (2). Contains.
 一般式(2)のイミダゾール骨格中、六員環置換基の炭素原子と結合していない方の窒素原子は「芳香族性に関与しない非共有電子対を持つ窒素原子」である。これにより、中間層の上部に導電性層を成膜する際、導電性層を構成する銀原子が中間層に含有されている該芳香族性に関与しない非共有電子対を持つ窒素原子と相互作用し、中間層表面上での銀原子の拡散距離が減少し、特異箇所での銀の凝集を抑制することができたものである。 In the imidazole skeleton of the general formula (2), the nitrogen atom not bonded to the carbon atom of the six-membered ring substituent is a “nitrogen atom having an unshared electron pair not involved in aromaticity”. As a result, when forming a conductive layer on the upper part of the intermediate layer, the silver atoms constituting the conductive layer interact with nitrogen atoms having unshared electron pairs not involved in the aromaticity contained in the intermediate layer. Thus, the diffusion distance of silver atoms on the surface of the intermediate layer is reduced, and aggregation of silver at a specific location can be suppressed.
 本発明の化合物を中間層に用いると、銀原子は、まず銀原子と親和性のある原子を有する銀親和性化合物を含有する中間層表面上で2次元的な核を形成し、それを中心に2次元の単結晶層を形成するという層状成長型(Frank-van der Merwe:FM型)の膜成長によって成膜されるようになる。 When the compound of the present invention is used for the intermediate layer, the silver atom first forms a two-dimensional nucleus on the surface of the intermediate layer containing the silver affinity compound having an atom having an affinity for the silver atom, In addition, a film is formed by a layer growth type (Frank-van der Merwe: FM type) film growth in which a two-dimensional single crystal layer is formed.
 なお、一般的には、中間層表面において付着した銀原子が表面を拡散しながら結合して3次元的な核を形成し、3次元的な島状に成長するという島状成長型(Volumer-Weber:VW型)での膜成長により、島状に成膜しやすいと考えられる。
 しかし、本発明においては、中間層に含有されている銀親和性化合物である一般式(2)又は一般式(3)で表される構造である、イミダゾール骨格を有する化合物により、島状成長が抑制され、層状成長が促進されると推察される。
 したがって、薄い層厚でありながらも均一な層厚の導電性層が得られるようになる。その結果、より薄い層厚として光透過率を保ちつつも、導電性が確保された透明電極とすることができる。
In general, silver atoms attached on the surface of the intermediate layer are bonded while diffusing on the surface to form three-dimensional nuclei and grow into three-dimensional islands (Volume- It is considered that the film is easily formed into an island shape by the film growth using the Weber (VW type).
However, in the present invention, island-like growth is caused by the compound having an imidazole skeleton, which is a structure represented by the general formula (2) or the general formula (3) which is a silver affinity compound contained in the intermediate layer. It is presumed that the growth is suppressed and layer growth is promoted.
Accordingly, it is possible to obtain a conductive layer having a uniform thickness even though the layer thickness is thin. As a result, it is possible to obtain a transparent electrode in which conductivity is ensured while maintaining light transmittance with a thinner layer thickness.
本発明の透明電極の構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the transparent electrode of the present invention 本発明の透明電極を用いた有機EL素子の第1例を示す概略断面図Schematic sectional view showing a first example of an organic EL device using the transparent electrode of the present invention 本発明の透明電極を用いた有機EL素子の第2例を示す概略断面図Schematic sectional view showing a second example of an organic EL device using the transparent electrode of the present invention 本発明の透明電極を用いた有機EL素子の第3例を示す概略断面図Schematic sectional view showing a third example of an organic EL element using the transparent electrode of the present invention 本発明の透明電極を備えた有機EL素子を用いて発光面を大面積化した照明装置の概略断面図Schematic cross-sectional view of an illuminating device having a light-emitting surface enlarged using an organic EL element having a transparent electrode of the present invention 実施例にて作製した有機EL素子を具備した発光パネルの概略断面図Schematic cross-sectional view of a light-emitting panel equipped with an organic EL device produced in the examples
 本発明の透明電極は、導電性層と、前記導電性層に隣接して設けられる中間層と、を備え、導電性層が、銀を主成分として含有し、中間層が、前記一般式(2)で表される構造を有する化合物を含有することを特徴とする。この特徴は、請求項1から10までの請求項に係る発明に共通する技術的特徴である。 The transparent electrode of the present invention includes a conductive layer and an intermediate layer provided adjacent to the conductive layer, the conductive layer contains silver as a main component, and the intermediate layer has the general formula ( It contains a compound having a structure represented by 2). This feature is a technical feature common to the inventions according to claims 1 to 10.
 本発明の実施態様としては、多様な分子構造の設計が可能で、かつ有機合成的に修飾が容易であるという観点から、前記一般式(2)中、X、X及びXが、それぞれ窒素原子を表すことがさらに好ましい。 As an embodiment of the present invention, from the viewpoint that various molecular structures can be designed and modification is easy organically, in the general formula (2), X 1 , X 2 and X 3 are More preferably, each represents a nitrogen atom.
 本発明の実施態様としては、前記一般式(2)中、X、X及びXのうちいずれか一つが、-CR10を表すことが好ましい。 As an embodiment of the present invention, in the general formula (2), any one of X 1 , X 2 and X 3 preferably represents —CR 10 .
 本発明の実施態様としては、前記一般式(2)中、X、X及びXが、それぞれ-CR10を表すことが好ましい。これにより、強力な相互作用を有するという効果と、合成のしやすさ、経済的、時間的に有利な点等からの効果との両立が可能である。 As an embodiment of the present invention, in the general formula (2), it is preferable that X 1 , X 2 and X 3 each represent —CR 10 . As a result, it is possible to achieve both the effect of having a strong interaction and the effect from the point of easiness of synthesis, economical advantages and time advantages.
 本発明の実施態様としては、120度対称軸を持たなくなることにより、成膜する際に結晶性が低下し、良好な膜質となるという観点から、前記一般式(2)で表される構造が、前記一般式(3)で表される構造であることが好ましい。 As an embodiment of the present invention, the structure represented by the general formula (2) is used from the viewpoint that the crystallinity is lowered when forming a film by eliminating the 120-degree symmetry axis and the film quality is good. The structure represented by the general formula (3) is preferable.
 本発明の実施態様としては、前記一般式(3)中、X、X及びXが、それぞれ窒素原子を表すことが好ましい。 As an embodiment of the present invention, in the general formula (3), X 4 , X 5 and X 6 preferably each represent a nitrogen atom.
 本発明の実施態様としては、前記一般式(3)中、X、X及びXのうちいずれか一つが、-CR17を表すことが好ましい。 As an embodiment of the present invention, in the general formula (3), any one of X 4 , X 5 and X 6 preferably represents —CR 17 .
 本発明の実施態様としては、分子全体がねじれ構造となることにより、成膜する際に結晶性が低下し、良好な膜質となるという観点から、前記一般式(3)中、X、X及びXが、それぞれ-CR17を表すことが好ましい。 As an embodiment of the present invention, from the viewpoint that the whole molecule has a twisted structure, the crystallinity is lowered during film formation and the film quality is good, and in formula (3), X 4 , X Preferably 5 and X 6 each represent —CR 17 .
 また、本発明の透明電極は、電子デバイスに好適に具備され得る。これにより、十分な光透過性と導電性とを兼ね備え、かつ耐久性に優れた電子デバイスを得ることができる。 Moreover, the transparent electrode of the present invention can be suitably provided in an electronic device. Thereby, it is possible to obtain an electronic device having both sufficient light transmission and conductivity and excellent durability.
 また、本発明の透明電極は、有機エレクトロルミネッセンス素子に好適に具備され得る。これにより、十分な光透過性と導電性とを兼ね備え、かつ耐久性に優れた有機エレクトロルミネッセンス素子を得ることができる。 Moreover, the transparent electrode of the present invention can be suitably provided in an organic electroluminescence element. Thereby, it is possible to obtain an organic electroluminescence element having both sufficient light transmittance and conductivity and excellent in durability.
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について詳細な説明をする。
 なお、本発明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail.
In the present invention, “˜” is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
 ≪1.透明電極≫
 <透明電極の構成>
 図1に示すように、透明電極1は、導電性層1bと、導電性層1bに隣接して設けられる中間層1aとを備えている。具体的には、透明電極1は、中間層1aと、この中間層1aの上部に導電性層1bとが積層された2層構造であり、例えば、基板11の上部に、中間層1a、導電性層1bの順に設けられている。中間層1aは、前記一般式(2)で表される構造を有する化合物を含有する層である。導電性層1bは、銀を主成分として構成されている層である。
 なお、導電性層1bの主成分とは、導電性層1bを構成する成分のうち、構成比率が最も高い成分をいう。導電性層1bにおける銀の構成比率としては、60質量%以上であることが好ましく、90質量%以上であることがより好ましく、98質量%以上であることが特に好ましい。
 また、透明電極1の透明とは、測定光波長550nmでの光透過率が50%以上であることをいう。
 また、透明電極1としてのシート抵抗値は、20Ω/□以下が好ましく、膜厚は通常5~20nm、好ましくは5~12nmの範囲で選ばれる。
<< 1. Transparent electrode >>
<Configuration of transparent electrode>
As shown in FIG. 1, the transparent electrode 1 includes a conductive layer 1b and an intermediate layer 1a provided adjacent to the conductive layer 1b. Specifically, the transparent electrode 1 has a two-layer structure in which an intermediate layer 1a and a conductive layer 1b are stacked on the intermediate layer 1a. The layers 1b are provided in this order. The intermediate layer 1a is a layer containing a compound having a structure represented by the general formula (2). The conductive layer 1b is a layer composed mainly of silver.
The main component of the conductive layer 1b is a component having the highest component ratio among the components constituting the conductive layer 1b. The composition ratio of silver in the conductive layer 1b is preferably 60% by mass or more, more preferably 90% by mass or more, and particularly preferably 98% by mass or more.
Moreover, the transparency of the transparent electrode 1 means that the light transmittance at a measurement light wavelength of 550 nm is 50% or more.
Further, the sheet resistance value as the transparent electrode 1 is preferably 20Ω / □ or less, and the film thickness is usually selected in the range of 5 to 20 nm, preferably 5 to 12 nm.
 次に、このような積層構造の透明電極1が設けられる基板11、透明電極1を構成する中間層1a及び導電性層1bの順に、詳細な構成を説明する。 Next, the detailed configuration will be described in the order of the substrate 11 provided with the transparent electrode 1 having such a laminated structure, the intermediate layer 1a and the conductive layer 1b constituting the transparent electrode 1.
 (基板)
 本発明の透明電極1が形成される基板11としては、例えば、ガラス、プラスチック等を挙げることができるが、これらに限定されない。また、基板11は、透明であっても不透明であってもよい。本発明の透明電極1が、基板11側から光を取り出す電子デバイスに用いられる場合には、基板11は透明であることが好ましい。好ましく用いられる透明な基板11としては、ガラス、石英又は透明樹脂フィルムを挙げることができる。
(substrate)
Examples of the substrate 11 on which the transparent electrode 1 of the present invention is formed include, but are not limited to, glass and plastic. Further, the substrate 11 may be transparent or opaque. When the transparent electrode 1 of the present invention is used in an electronic device that extracts light from the substrate 11 side, the substrate 11 is preferably transparent. Examples of the transparent substrate 11 that is preferably used include glass, quartz, and a transparent resin film.
 ガラスとしては、例えば、シリカガラス、ソーダ石灰シリカガラス、鉛ガラス、ホウケイ酸塩ガラス、無アルカリガラス等が挙げられる。これらのガラス材料の表面には、中間層1aとの密着性、耐久性、平滑性の観点から、必要に応じて、研磨等の物理的処理が施されていてもよいし、無機物又は有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成されていてもよい。 Examples of the glass include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass. From the viewpoints of adhesion to the intermediate layer 1a, durability, and smoothness, the surface of these glass materials may be subjected to physical treatment such as polishing, if necessary, or from an inorganic or organic material. Or a hybrid film obtained by combining these films may be formed.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Is mentioned.
 上記したように、樹脂フィルムの表面には、無機物又は有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成されていてもよい。このような被膜及びハイブリッド被膜は、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が0.01g/m・24h以下のバリア性フィルム(バリア膜等ともいう。)であることが好ましい。さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/m・24h・atm以下、及び水蒸気透過度が1×10-5g/m・24h以下の高バリア性フィルムであることが好ましい。 As described above, a film made of an inorganic material or an organic material, or a hybrid film combining these films may be formed on the surface of the resin film. Such coatings and hybrid coatings have a water vapor permeability (25 ± 0.5 ° C., relative humidity 90 ± 2% RH) measured by a method according to JIS K 7129-1992, 0.01 g / m 2 · 24 h. The following barrier films (also referred to as barrier films) are preferable. Further, the oxygen permeability measured by a method in accordance with JIS K 7126-1987 is 1 × 10 −3 ml / m 2 · 24 h · atm or less, and the water vapor permeability is 1 × 10 −5 g / m 2 · A high barrier film of 24 hours or less is preferable.
 以上のようなバリア性フィルムを形成する材料としては、水分や酸素等の電子デバイスや有機EL素子の劣化をもたらす要因の浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。さらに、当該バリア性フィルムの脆弱性を改良するために、これら無機材料からなる層(無機層)と有機材料からなる層(有機層)の積層構造を持たせることがより好ましい。無機層と有機層との積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 The material for forming the barrier film as described above may be any material that has a function of suppressing intrusion of factors that cause deterioration of electronic devices such as moisture and oxygen and organic EL elements. Silicon, silicon nitride, or the like can be used. Furthermore, in order to improve the brittleness of the barrier film, it is more preferable to have a laminated structure of a layer made of these inorganic materials (inorganic layer) and a layer made of organic material (organic layer). Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 バリア性フィルムの作製方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載の大気圧プラズマ重合法によるものが特に好ましい。 The method for producing the barrier film is not particularly limited. For example, the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma polymerization method, the atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method described in JP-A-2004-68143 is particularly preferable.
 一方、基板11を不透明な材料で構成する場合には、例えば、アルミニウム、ステンレス等の金属基板、フィルムや不透明樹脂基板、セラミック製の基板等を用いることができる。 On the other hand, when the substrate 11 is made of an opaque material, for example, a metal substrate such as aluminum or stainless steel, a film, an opaque resin substrate, a ceramic substrate, or the like can be used.
 (中間層)
 本発明の透明電極は、中間層に隣接して、銀を主成分として含有する導電性層が設けられており、かつ中間層は、下記一般式(2)で表される構造を有する化合物を含有している。
(Middle layer)
In the transparent electrode of the present invention, a conductive layer containing silver as a main component is provided adjacent to the intermediate layer, and the intermediate layer comprises a compound having a structure represented by the following general formula (2). Contains.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(2)中、R~Rは、それぞれ独立に、水素原子又は置換基を表す。Lは、芳香族炭化水素環基又は芳香族複素環基を表す。X、X及びXは、それぞれ独立に、窒素原子又は-CR10を表す。R10は、水素原子又は置換基を表す。 In general formula (2), R 4 to R 9 each independently represents a hydrogen atom or a substituent. L 2 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group. X 1 , X 2 and X 3 each independently represent a nitrogen atom or —CR 10 . R 10 represents a hydrogen atom or a substituent.
 一般式(2)のイミダゾール骨格中、六員環置換基の炭素原子と結合していない方の窒素原子は「芳香族性に関与しない非共有電子対を持つ窒素原子」である。これにより、中間層に隣接して導電性層を成膜する際、導電性層を構成する銀原子が中間層に含有されている該芳香族性に関与しない非共有電子対を持つ窒素原子と相互作用し、中間層表面上での銀原子の拡散距離が減少し、特異箇所での銀の凝集を抑制することができたものである。 In the imidazole skeleton of the general formula (2), the nitrogen atom not bonded to the carbon atom of the six-membered ring substituent is a “nitrogen atom having an unshared electron pair not involved in aromaticity”. Thus, when forming a conductive layer adjacent to the intermediate layer, the silver atoms constituting the conductive layer are contained in the intermediate layer and nitrogen atoms having unshared electron pairs not involved in the aromaticity By interacting with each other, the diffusion distance of silver atoms on the surface of the intermediate layer is reduced, and aggregation of silver at a specific location can be suppressed.
 本発明において、「芳香族性に関与しない非共有電子対を持つ窒素原子」とは、非共有電子対を持つ窒素原子であって、当該非共有電子対が不飽和環状化合物の芳香族性に必須要素として直接的に関与していない窒素原子のことをいう。すなわち、共役不飽和環構造(芳香環)上の非局在化したπ電子系に、非共有電子対が、化学構造式上、芳香性発現のために必須のものとして関与していない窒素原子をいう。 In the present invention, the “nitrogen atom having an unshared electron pair not involved in aromaticity” is a nitrogen atom having an unshared electron pair, and the unshared electron pair becomes an aromatic property of the unsaturated cyclic compound. A nitrogen atom that is not directly involved as an essential element. That is, a non-localized π electron system on a conjugated unsaturated ring structure (aromatic ring) has a nitrogen atom in which a lone pair is not involved as an essential element for aromatic expression in the chemical structural formula Say.
 以下、本発明に係る「芳香族性に関与しない非共有電子対を持つ窒素原子」について説明する。 Hereinafter, the “nitrogen atom having an unshared electron pair not involved in aromaticity” according to the present invention will be described.
 窒素原子は第15族元素であり、最外殻に5個の電子を有する。このうち3個の不対電子は他の原子との共有結合に用いられ、残りの2個は一対の非共有電子対となるため、通常窒素原子の結合本数は3本である。 Nitrogen atom is a Group 15 element and has 5 electrons in the outermost shell. Of these, three unpaired electrons are used for covalent bonds with other atoms, and the remaining two become a pair of unshared electron pairs, so that the number of bonds of nitrogen atoms is usually three.
 例えば、アミノ基(-NR)、アミド基(-C(=O)NR)、ニトロ基(-NO)、シアノ基(-CN)、ジアゾ基(-N)、アジド基(-N)、ウレア結合(-NRC=ONR-)、イソチオシアネート基(-N=C=S)、チオアミド基(-C(=S)NR)などが挙げられ、これらは本発明の「芳香族性に関与しない非共有電子対を持つ窒素原子」に該当する。なお、R及びRはそれぞれ置換基を表す。 For example, an amino group (—NR 1 R 2 ), an amide group (—C (═O) NR 1 R 2 ), a nitro group (—NO 2 ), a cyano group (—CN), a diazo group (—N 2 ), An azide group (—N 3 ), a urea bond (—NR 1 C═ONR 2 —), an isothiocyanate group (—N═C═S), a thioamide group (—C (═S) NR 1 R 2 ) and the like. These correspond to the “nitrogen atom having an unshared electron pair not involved in aromaticity” of the present invention. R 1 and R 2 each represent a substituent.
 このうち、例えば、ニトロ基(-NO)の共鳴式は、下記のように表すことができる。ニトロ基における窒素原子の非共有電子対は、厳密には、酸素原子との共鳴構造に利用されているが、本発明においては、ニトロ基の窒素原子も非共有電子対を持つこと定義する。 Among these, for example, the resonance formula of a nitro group (—NO 2 ) can be expressed as follows. Strictly speaking, the unshared electron pair of the nitrogen atom in the nitro group is used for the resonance structure with the oxygen atom, but in the present invention, it is defined that the nitrogen atom of the nitro group also has an unshared electron pair.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一方、窒素原子は、非共有電子対を利用することで4本目の結合を作り出すこともできる。例えば、下記に示すように、テトラブチルアンモニウムクロライド(略称:TBAC)は、四つ目のブチル基が窒素原子とイオン結合しており、対イオンとして塩化物イオンを有する第四級アンモニウム塩である。また、トリス(2-フェニルピリジン)イリジウム(III)(略称:Ir(ppy))は、イリジウム原子と窒素原子が配位結合している中性の金属錯体である。これらの化合物は窒素原子を有するものの、その非共有電子対がそれぞれイオン結合、配位結合に利用されてしまっているため、本発明の「芳香族性に関与しない非共有電子対を持つ窒素原子」には該当しない。 On the other hand, a nitrogen atom can also create a fourth bond by utilizing an unshared electron pair. For example, as shown below, tetrabutylammonium chloride (abbreviation: TBAC) is a quaternary ammonium salt in which a fourth butyl group is ionically bonded to a nitrogen atom and has a chloride ion as a counter ion. . Tris (2-phenylpyridine) iridium (III) (abbreviation: Ir (ppy) 3 ) is a neutral metal complex in which an iridium atom and a nitrogen atom are coordinated. Although these compounds have a nitrogen atom, the lone pair of electrons is used for ionic bond and coordinate bond, respectively. Is not applicable.
 すなわち、本発明は、結合に利用されていない窒素原子の非共有電子対を有効利用するというものである。 That is, the present invention is to effectively utilize unshared electron pairs of nitrogen atoms that are not used for bonding.
 下記に示す構造式において、左側はテトラブチルアンモニウムクロライド(略称:TBAC)、右側はトリス(2-フェニルピリジン)イリジウム(III)(略称:Ir(ppy))の構造を示す。 In the structural formulas shown below, the left side shows the structure of tetrabutylammonium chloride (abbreviation: TBAC), and the right side shows the structure of tris (2-phenylpyridine) iridium (III) (abbreviation: Ir (ppy) 3 ).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 また、窒素原子は、芳香環を構成することのできるヘテロ原子として一般的であり、芳香族性の発現に寄与することができる。この「含窒素芳香環」としては、例えばピリジン環、ピラジン環、ピリミジン環、トリアジン環、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環、テトラゾール環、などが挙げられる。 Also, nitrogen atoms are common as heteroatoms that can constitute an aromatic ring, and can contribute to the expression of aromaticity. Examples of the “nitrogen-containing aromatic ring” include a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazine ring, a pyrrole ring, an imidazole ring, a pyrazole ring, a triazole ring, and a tetrazole ring.
 ピリジン環の場合、下記に示すように、6員環状に並んだ共役(共鳴)不飽和環構造において、非局在化したπ電子の数が6個であるため、4n+2(n=0または自然数)のヒュッケル則を満たす。6員環内の窒素原子は、-CH=を置換したものであるため、1個の不対電子を6π電子系に動員するのみで、非共有電子対は、芳香族性発現のために必須のものとして関与していない。 In the case of a pyridine ring, as shown below, in a conjugated (resonant) unsaturated ring structure arranged in a 6-membered ring, the number of delocalized π electrons is 6, so that 4n + 2 (n = 0 or natural number) ) Satisfies the Hückel rule. Since the nitrogen atom in the six-membered ring is substituted with —CH═, only one unpaired electron is mobilized to the 6π-electron system, and the unshared electron pair is essential for aromatic expression. Not involved as a thing.
 したがって、ピリジン環の窒素原子は、本発明に係る「芳香族性に関与しない非共有電子対を持つ窒素原子」に該当する。以下に、ピリジン環の分子軌道を示す。 Therefore, the nitrogen atom of the pyridine ring corresponds to the “nitrogen atom having an unshared electron pair not involved in aromaticity” according to the present invention. The molecular orbital of the pyridine ring is shown below.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 ピロール環の場合は、下記に示すように、5員環内を構成する炭素原子の一つが窒素原子に置換された構造であるが、やはりπ電子の数は6個であり、ヒュッケル則を満たした含窒素芳香環である。ピロール環の窒素原子は、水素原子とも結合しているため、非共有電子対が6π電子系に動員されている。 In the case of a pyrrole ring, as shown below, one of the carbon atoms constituting the five-membered ring is substituted with a nitrogen atom, but the number of π electrons is six and satisfies the Hückel rule. A nitrogen-containing aromatic ring. Since the nitrogen atom of the pyrrole ring is also bonded to a hydrogen atom, an unshared electron pair is mobilized to the 6π electron system.
 したがって、ピロール環の窒素原子は、非共有電子対を有するものの、芳香族性発現のために必須のものとして利用されてしまっているため、本発明の「芳香族性に関与しない非共有電子対を持つ窒素原子」には該当しない。 Therefore, although the nitrogen atom of the pyrrole ring has an unshared electron pair, it has been utilized as an essential element for the expression of aromaticity, and therefore the “unshared electron pair not involved in aromaticity” of the present invention. Does not correspond to "nitrogen atom having".
 以下に、ピロール環の分子軌道を示す。 The molecular orbital of the pyrrole ring is shown below.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一方、イミダゾール環は、下記に示すように、5員環内に二つの窒素原子が1、3位に置換した構造を有しており、やはりπ電子数が6個の含窒素芳香環である。窒素原子Nは、1個の不対電子のみを6π電子系に動員し、非共有電子対を芳香族性発現のために利用していないピリジン環型の窒素原子である。一方、窒素原子Nは、非共有電子対を6π電子系に動員しているピロール環型の窒素原子である。 On the other hand, as shown below, the imidazole ring is a nitrogen-containing aromatic ring having a structure in which two nitrogen atoms are substituted at the 1- and 3-positions in a 5-membered ring, and also has 6 π electrons. . The nitrogen atom N 1 is a pyridine ring-type nitrogen atom in which only one unpaired electron is mobilized to the 6π-electron system, and the unshared electron pair is not used for aromaticity expression. On the other hand, the nitrogen atom N 2 is a pyrrole-ring nitrogen atom that mobilizes an unshared electron pair to the 6π electron system.
 したがって、イミダゾール環の窒素原子Nは、本発明の「芳香族性に関与しない非共有電子対を持つ窒素原子」に該当する。以下に、イミダゾール環の分子軌道を示す。 Therefore, the nitrogen atom N 1 of the imidazole ring corresponds to the “nitrogen atom having an unshared electron pair not involved in aromaticity” in the present invention. The molecular orbital of the imidazole ring is shown below.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 また、含窒素芳香環骨格を有する縮環化合物の場合も同様である。例えば、δ-カルボリンは、下記に示すように、ベンゼン環骨格、ピロール環骨格及びピリジン環骨格がこの順に縮合したアザカルバゾール化合物である。ピリジン環の窒素原子Nは、1個の不対電子のみを、ピロール環の窒素原子Nは、非共有電子対を、それぞれπ電子系に動員しており、環を形成している炭素原子からの11個のπ電子とともに、全体のπ電子数が14個の芳香環となっている。 The same applies to a condensed ring compound having a nitrogen-containing aromatic ring skeleton. For example, as shown below, δ-carboline is an azacarbazole compound in which a benzene ring skeleton, a pyrrole ring skeleton, and a pyridine ring skeleton are condensed in this order. The nitrogen atom N 3 of the pyridine ring mobilizes only one unpaired electron, and the nitrogen atom N 4 of the pyrrole ring mobilizes an unshared electron pair to the π-electron system, respectively, to form a ring. Together with 11 π electrons from the atoms, the total number of π electrons is 14 aromatic rings.
 したがって、δ-カルボリンの二つの窒素原子のうち、ピリジン環の窒素原子Nは本発明に係る「芳香族性に関与しない非共有電子対を持つ窒素原子」に該当するが、ピロール環の窒素原子Nはこれに該当しない。 Therefore, among the two nitrogen atoms of δ-carboline, the nitrogen atom N 3 of the pyridine ring corresponds to the “nitrogen atom having an unshared electron pair not involved in aromaticity” according to the present invention, but the nitrogen of the pyrrole ring The atom N 4 does not fall under this.
 このように、ピリジン環やピロール環は、その骨格が縮環化合物中に組み込まれている場合でも、その効果が阻害されたり抑制されたりすることはなく、単環として利用したときとなんら相違はない。以下に、δ-カルボリンの分子軌道を示す。 Thus, even when the pyridine ring or pyrrole ring is incorporated in a condensed ring compound, its effect is not inhibited or suppressed, and there is no difference from when it is used as a single ring. Absent. The molecular orbital of δ-carboline is shown below.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 以上のように、本発明で規定する「芳香族性に関与しない非共有電子対を持つ窒素原子」は、その非共有電子対を導電性層の主成分である銀と強い相互作用を発現するために重要である。そのような窒素原子としては、安定性、耐久性の観点から、含窒素芳香環中の窒素原子であることが好ましい。 As described above, the “nitrogen atom having an unshared electron pair not involved in aromaticity” defined in the present invention expresses a strong interaction between the unshared electron pair and silver which is the main component of the conductive layer. Is important for. Such a nitrogen atom is preferably a nitrogen atom in a nitrogen-containing aromatic ring from the viewpoint of stability and durability.
 窒素原子と銀との間に働く相互作用の強さは、窒素原子の求核性の強さから推察できる。すなわち、求核性が強いほど、銀原子への配位力も強く、相互作用も強い、というものである。 The strength of the interaction between the nitrogen atom and silver can be inferred from the nucleophilic strength of the nitrogen atom. That is, the stronger the nucleophilicity, the stronger the coordination power to silver atoms and the stronger the interaction.
 さらに求核性の強さは、塩基性の強さに相関があることが知られている。ブレンステッド・ローリーの定義による塩基性とは、プロトンを受け取る性質のことであるから、これを能動的に言い換えると、攻撃対象がプロトンである、と言える。 Furthermore, it is known that the strength of nucleophilicity has a correlation with the strength of basicity. Since the basicity according to the definition of Bronsted Raleigh is a property of receiving protons, in other words, it can be said that the attack target is a proton.
 塩基性の強さを定量的に理解するためには、共役酸のpKa値(酸解離定数)を参照するのがよい。共役酸とは、塩基にプロトンが付加した姿であり、pKa値とは、数値が小さいほど酸性(プロトン放出能)が強いことを表す。
 したがって、共役酸のpKa値が大きければ大きいほど、塩基性が強いことを意味する。
In order to quantitatively understand the basic strength, it is preferable to refer to the pKa value (acid dissociation constant) of the conjugate acid. The conjugate acid is a form in which protons are added to the base, and the pKa value indicates that the smaller the value, the stronger the acidity (proton releasing ability).
Therefore, the larger the pKa value of the conjugate acid, the stronger the basicity.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 HAは酸、Bは塩基、Aは共役塩基、HBは共役酸を表す。 HA represents an acid, B represents a base, A represents a conjugate base, and HB + represents a conjugate acid.
 本発明は中間層の含窒素芳香族環化合物と銀との相互作用を利用している。そこで上記の観点から、主な含窒素芳香族環化合物の共役酸のpKa値を参照した。なお、pKa値は山中宏、日野亨、中川昌子、坂本尚夫著「新編ヘテロ環化合物 基礎編」講談社サイエンティフィク、2004年3月1日、巻末の一覧表を用いた(表1参照。)。 The present invention utilizes the interaction between the nitrogen-containing aromatic ring compound in the intermediate layer and silver. Therefore, from the above viewpoint, the pKa value of the conjugate acid of the main nitrogen-containing aromatic ring compound was referred. For the pKa value, the list at the end of the book is used (see Table 1), Hiroshi Yamanaka, Satoshi Hino, Masako Nakagawa, “New Heterocyclic Compound Fundamentals” by Kodansha Scientific, March 1, 2004. .
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 上記の観点から、一般式(2)で表される構造に由来する構造を多く有する化合物が中間層に含有されていると、より強い相互作用が発現すると考えられる。一般式(2)の構造は、六員環のメタ置換体であり、これは銀と相互作用できる部位がより効果的に配置されている点で好ましい。 From the above viewpoint, it is considered that a stronger interaction is expressed when a compound having a large number of structures derived from the structure represented by the general formula (2) is contained in the intermediate layer. The structure of the general formula (2) is a six-membered meta-substituted product, which is preferable in that the site capable of interacting with silver is more effectively arranged.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 これらは例えば、ベンゼン環の1,2,4位で置換されたI-52と、1,3,5位で置換された化合物I-53の実験結果を比較すると、I-53の方が光透過性と導電性と、かつ耐久性に優れた透明電極であったことから明らかとなった。したがって、1,3,5位を置換する置換体であることが、効果的であると考えられる。 For example, when comparing the experimental results of I-52 substituted at the 1,2,4 position of the benzene ring and Compound I-53 substituted at the 1,3,5 position, I-53 is more light. This was clarified from the fact that the transparent electrode had excellent permeability and conductivity and durability. Therefore, it is thought that it is effective that it is a substitution body which substitutes 1,3,5-position.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 さらに実験結果から、必ずしも含窒素複素芳香環骨格を多く有している化合物の物性が優れているというわけではない。例えば、分子内に含窒素複素芳香環骨格を四つ以上有する化合物I-36においては、銀と相互作用できる部位を多く有しているにもかかわらず、電極性能はI-53と大きな差は見られなかった。したがって、一般式(2)で表す1,3,5位を置換する置換体が、合成のしやすさ、経済的、時間的な観点から最も好ましいと考えられる。 Furthermore, from the experimental results, the physical properties of compounds having many nitrogen-containing heteroaromatic skeletons are not necessarily excellent. For example, Compound I-36 having four or more nitrogen-containing heteroaromatic skeletons in the molecule has a large difference from I-53 in electrode performance, despite having many sites capable of interacting with silver. I couldn't see it. Therefore, it is considered that the substitution product substituted at positions 1, 3, and 5 represented by the general formula (2) is most preferable from the viewpoint of ease of synthesis, economics, and time.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 本発明者らは、中間層の膜質を良好なものにするという観点からも、好ましい形態を見出した。該中間層に含有される化合物は、結晶性が抑制され、アモルファス性の高い膜である方が好ましい。結晶性を抑制するためには、化合物の構造の対称性がある程度低い方がよいと考えられ、一般式(3)で表される構造が適していることを見出した。 The inventors of the present invention have also found a preferable form from the viewpoint of improving the film quality of the intermediate layer. The compound contained in the intermediate layer is preferably a highly amorphous film with suppressed crystallinity. In order to suppress crystallinity, it is considered that the symmetry of the structure of the compound should be low to some extent, and the structure represented by the general formula (3) is found to be suitable.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 一般式(3)においては、5位にカルバゾール骨格を有する構造が置換されており、1,3,5位に置換位置を持つ置換体である。一般式(3)で表される化合物は、120度対称軸を持たなくなるため対称性が低下し、膜を形成した際に、より良好な膜質となる。 In the general formula (3), a structure having a carbazole skeleton at the 5-position is substituted, and a substituted product having substitution positions at the 1, 3, and 5 positions. Since the compound represented by the general formula (3) does not have a 120-degree symmetry axis, the symmetry is lowered, and a better film quality is obtained when a film is formed.
 一般式(3)で表される構造の5位に置換されている構造中のZ~Zで形成される骨格はピリジン環骨格であり、ピリジン環に含まれる窒素原子も銀と相互作用する。ここで、ピリジン環骨格とは、化合物の構造中にピリジン環を部分構造として含んでいることを表している。 The skeleton formed by Z 1 to Z 4 in the structure substituted at the 5-position of the structure represented by the general formula (3) is a pyridine ring skeleton, and the nitrogen atom contained in the pyridine ring also interacts with silver. To do. Here, the pyridine ring skeleton means that a pyridine ring is included as a partial structure in the structure of the compound.
 アモルファス性の高い膜を実現するためには、分子全体をねじれ構造にすることが好ましい。平面的な構造よりも立体的な構造とすることで、結晶性が抑制されるためである。 In order to realize a highly amorphous film, it is preferable that the whole molecule has a twisted structure. It is because crystallinity is suppressed by making it a three-dimensional structure rather than a planar structure.
 ねじれ構造とするためには、各ユニットのその結合軸周りの回転運動が、阻害又は抑制されるようにすればよい。その方法の一つに、水素原子の回転障壁を利用することが挙げられる。 In order to obtain a twisted structure, the rotational movement of each unit around its coupling axis may be inhibited or suppressed. One of the methods is to use a rotation barrier of hydrogen atoms.
 一般式(3)中の、中心六員環のX、X及びXで表される原子が窒素原子の場合、水素原子を持たないが、X、X及びXがそれぞれ炭素原子の場合、-CHとなることから、その水素原子が隣接のユニットとの間に回転障壁が生じることがある。したがって、分子内にねじれ構造を持たせるためにはX、X及びXがそれぞれ炭素原子である方が好ましい。 When the atom represented by X 4 , X 5 and X 6 of the central six-membered ring in the general formula (3) is a nitrogen atom, it does not have a hydrogen atom, but X 4 , X 5 and X 6 are each carbon. In the case of an atom, since it is —CH, a rotation barrier may occur between the hydrogen atom and an adjacent unit. Therefore, in order to give a twisted structure in the molecule, it is preferable that X 4 , X 5 and X 6 are each a carbon atom.
 しかしながら、上記の条件のみでは、効果的に作用が発現するとは言えない。例えばベンゼン環の1,3,5位に含窒素複素芳香環骨格が置換されたI-53は、分子軌道計算結果によると、結合軸周りに回転障壁を持たず分子全体が平面構造になっていることが分かる。 However, it cannot be said that the above-described conditions alone will effectively produce the action. For example, I-53 in which the nitrogen-containing heteroaromatic skeleton is substituted at the 1,3,5-position of the benzene ring shows that the whole molecule has a planar structure without a rotation barrier around the bond axis, according to the molecular orbital calculation results. I understand that.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 ねじれ構造を持たせるためには、化合物の中心に位置するベンゼン環の炭素原子に結合している水素原子と、回転障壁が生じるように、その隣接のユニットを設計することが有効であると考えられる。 In order to have a twisted structure, it is considered effective to design a hydrogen atom bonded to the carbon atom of the benzene ring located at the center of the compound and its adjacent unit so that a rotation barrier is generated. It is done.
 一般式(3)で表される構造の5位に置換されているユニットは、6員+5員+6員型の縮環芳香族複素環である。例えば、ベンゼン環の5位にカルボリンが置換されたI-95は、分子軌道計算結果によると、ねじれ構造になっていることが分かる。 The unit substituted at the 5-position of the structure represented by the general formula (3) is a 6-membered + 5-membered + 6-membered condensed aromatic heterocycle. For example, I-95 in which carboline is substituted at the 5-position of the benzene ring has a twisted structure according to the molecular orbital calculation result.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 上記カルボリン骨格の六員環に含まれる二つの水素原子が、上記中心ベンゼン環骨格の炭素原子に結合している二つの水素原子との間に回転障壁が生じ、ねじれ構造となることを明らかにした。 It is clear that a rotation barrier is created between the two hydrogen atoms contained in the six-membered ring of the carboline skeleton and the two hydrogen atoms bonded to the carbon atoms of the central benzene ring skeleton, resulting in a twisted structure. did.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 これらの分子軌道計算結果から、本発明の効果を発現するために最も好ましい形態は、一般式(3)で表される構造を有する化合物である。 From these molecular orbital calculation results, the most preferable form for exhibiting the effect of the present invention is a compound having a structure represented by the general formula (3).
 なお、本発明におけるLUMOのエネルギー準位は、米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian03(Gaussian03、Revision D02,M.J.Frisch,et al,Gaussian,Inc.,Wallingford CT,2004.)を用い、キーワードとしてB3LYP/6-31G*を用いて、対象とする分子構造の構造最適化を行うことにより算出した(eV単位換算値)。
 この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いことが知られている。
In the present invention, the energy level of LUMO is Gaussian 03 (Gaussian 03, Revision D02, MJ Frisch, et al, Gaussian, Inc., Wallingford CT, 2004. Software for molecular orbital calculation manufactured by Gaussian, USA). ) And using B3LYP / 6-31G * as a keyword to optimize the structure of the target molecular structure (eV unit converted value).
It is known that the correlation between the calculated value obtained by this method and the experimental value is high as a background to the effectiveness of this calculated value.
 本発明の化合物を中間層に用いると、銀原子は、まず銀原子と親和性のある原子を有する銀親和性化合物を含有する中間層表面上で2次元的な核を形成し、それを中心に2次元の単結晶層を形成するという層状成長型(FM型)の膜成長によって成膜されるようになる。 When the compound of the present invention is used for the intermediate layer, the silver atom first forms a two-dimensional nucleus on the surface of the intermediate layer containing the silver affinity compound having an atom having an affinity for the silver atom, The film is formed by layer growth (FM type) film growth in which a two-dimensional single crystal layer is formed.
 なお、一般的には、中間層表面において付着した銀原子が表面を拡散しながら結合して3次元的な核を形成し、3次元的な島状に成長するという島状成長型(VW型)での膜成長により、島状に成膜しやすいと考えられる。
 しかし、本発明においては、中間層に含有されている銀親和性化合物である一般式(2)又は一般式(3)で表される構造である、イミダゾール骨格を有する化合物により、島状成長が抑制され、層状成長が促進されると推察される。
 したがって、薄い層厚でありながらも均一な層厚の導電性層が得られるようになる。その結果、より薄い層厚として光透過率を保ちつつも、導電性が確保された透明電極とすることができる。
In general, an island-like growth type (VW type) in which silver atoms attached on the surface of the intermediate layer are bonded while diffusing the surface to form a three-dimensional nucleus and grow into a three-dimensional island shape. It is considered that the film is easily grown in an island shape by the film growth in (1).
However, in the present invention, island-like growth is caused by the compound having an imidazole skeleton, which is a structure represented by the general formula (2) or the general formula (3) which is a silver affinity compound contained in the intermediate layer. It is presumed that the growth is suppressed and layer growth is promoted.
Accordingly, it is possible to obtain a conductive layer having a uniform thickness even though the layer thickness is thin. As a result, it is possible to obtain a transparent electrode in which conductivity is ensured while maintaining light transmittance with a thinner layer thickness.
 次に、本発明に係る一般式(2)及び一般式(3)で表される構造について詳細に説明する。 Next, the structure represented by the general formula (2) and the general formula (3) according to the present invention will be described in detail.
 [一般式(2)で表される構造を有する化合物]
 中間層1aが、下記一般式(2)で表される構造を有する化合物を含有していることを特徴とする。
[Compound having structure represented by general formula (2)]
The intermediate layer 1a contains a compound having a structure represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 一般式(2)中、R~Rは、それぞれ独立に、水素原子又は置換基を表す。Lは、芳香族炭化水素環基又は芳香族複素環基を表す。X、X及びXは、それぞれ独立に、窒素原子又は-CR10を表す。R10は、水素原子又は置換基を表す。 In general formula (2), R 4 to R 9 each independently represents a hydrogen atom or a substituent. L 2 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group. X 1 , X 2 and X 3 each independently represent a nitrogen atom or —CR 10 . R 10 represents a hydrogen atom or a substituent.
 一般式(2)において、R~R10で表される置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基、ピペリジル基(ピペリジニル基ともいう)、2,2,6,6-テトラメチルピペリジニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、リン酸エステル基(例えば、ジヘキシルホスホリル基等)、亜リン酸エステル基(例えばジフェニルホスフィニル基等)、ホスホノ基等が挙げられる。
 一般式(2)で表される構造を有する化合物は、耐熱性が向上し、成膜後の長時間保存性に優れるという観点から、分子内に分岐状の置換基を有することが好ましい。分岐構造を有する置換基としては、分岐状アルキル基、2置換以上のシリル基(例えば、トリアルキルシリル基、トリアリールシリル基など)、2置換のアミノ基(例えば、ジアルキルアミノ基、ジアリールアミノ基など)、2置換のホスホリル基(例えば、ジアルキルホスホリル基、ジアリールホスホリル基など)、また、トリル基、キシリル基、ジメチルピリジル基等の2つ以上の置換基(好ましくは直鎖または分岐状置換基)を有する芳香族基等が挙げられる。また、分岐構造が維持される範囲であれば、これらの分岐状置換基に含まれる構成原子を、適宜酸素原子や窒素原子、硫黄原子等他の原子に置き換えることも可能である。
 特に好ましくは、炭素原子を3~20個、より好ましくは炭素原子を3~10個有する分岐状アルキル基であり、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、ネオペンチル基、ジメチルヘキシル基等が挙げられる。
 また、R~R10で表される置換基は、さらに上記の置換基で置換されていてもよい。
In the general formula (2), examples of the substituent represented by R 4 to R 10 include an alkyl group (eg, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group). Group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group, etc.), alkynyl group (eg, ethynyl group) , Propargyl group, etc.), aromatic hydrocarbon group (aromatic carbocyclic group, aryl group, etc.), for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl Group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenyl Enrylyl group, etc.), aromatic heterocyclic group (for example, furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, carbazolyl group, carbolinyl group) A group, a diazacarbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), a phthalazinyl group, etc.), a heterocyclic group (eg, pyrrolidyl group, imidazolidyl) Group, morpholyl group, oxazolidyl group, etc.), alkoxy group (eg, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (eg, cyclopentyl) Oxy group, cyclohexylo Si group etc.), aryloxy group (eg phenoxy group, naphthyloxy group etc.), alkylthio group (eg methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group etc.), cycloalkylthio Groups (eg, cyclopentylthio group, cyclohexylthio group, etc.), arylthio groups (eg, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl groups (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxy) Carbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (eg, aminosulfonyl group, methyla Minosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc. ), Acyl groups (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl) Group), acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy) Group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2 -Ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl) Group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dode Ruaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group) Group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group) Group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group (for example, methylsulfonyl group, ethylsulfonyl group, butylsulfuryl group) Sulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (for example, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (for example, , Amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, piperidyl group (also called piperidinyl group) , 2,2,6,6-tetramethylpiperidinyl group, etc.), halogen atom (eg, fluorine atom, chlorine atom, bromine atom etc.), fluorinated hydrocarbon group (eg, fluoromethyl group, trifluoromethyl group) , Pentafluoroethyl group, Interfluorophenyl group), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.), phosphate ester group (for example, , Dihexyl phosphoryl group, etc.), phosphite group (for example, diphenylphosphinyl group, etc.), phosphono group and the like.
The compound having the structure represented by the general formula (2) preferably has a branched substituent in the molecule from the viewpoint of improving heat resistance and excellent long-term storage after film formation. Examples of the substituent having a branched structure include a branched alkyl group, a silyl group having two or more substitutions (for example, a trialkylsilyl group, a triarylsilyl group, etc.), a disubstituted amino group (for example, a dialkylamino group, a diarylamino group). 2) or more substituted groups such as a tolyl group, a xylyl group, a dimethylpyridyl group (preferably a linear or branched substituent group) ) And the like. In addition, as long as the branched structure is maintained, the constituent atoms contained in these branched substituents can be appropriately replaced with other atoms such as an oxygen atom, a nitrogen atom, and a sulfur atom.
Particularly preferred is a branched alkyl group having 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms, such as isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, neopentyl group, dimethyl group. A hexyl group etc. are mentioned.
The substituents represented by R 4 to R 10 may be further substituted with the above substituents.
 前記一般式(2)中、X、X及びXが、それぞれ窒素原子を表すことが好ましい。
 また、前記一般式(2)中、X、X及びXのうちいずれか一つが、-CR10を表すことが好ましい。
 また、前記一般式(2)中、X、X及びXが、それぞれ-CR10を表すことが好ましい。
In the general formula (2), it is preferable that X 1 , X 2 and X 3 each represent a nitrogen atom.
In the general formula (2), any one of X 1 , X 2 and X 3 preferably represents —CR 10 .
In the general formula (2), X 1 , X 2 and X 3 each preferably represent —CR 10 .
 このような中間層1aの成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法等のウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法等)、スパッタ法、CVD法等のドライプロセスを用いる方法等が挙げられる。 As a method of forming such an intermediate layer 1a, a method using a wet process such as a coating method, an ink jet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, etc. And a method using the dry process.
 [一般式(3)で表される構造を有する化合物]
 また、一般式(2)で表される構造が、下記一般式(3)で表される構造であることが好ましい。
[Compound having structure represented by general formula (3)]
Moreover, it is preferable that the structure represented by General formula (2) is a structure represented by following General formula (3).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 一般式(3)中、R11~R16は、それぞれ独立に、水素原子又は置換基を表す。X、X及びXは、それぞれ独立に、窒素原子又は-CR17を表し、R17は水素原子又は置換基を表す。Y~Yは、それぞれ独立に、窒素原子又は-CR18を表し、これらが互いに結合して新たな環を形成しても良い。R18は、水素原子又は置換基を表す。Z~Zは、それぞれ独立に、窒素原子又は-CR19を表し、少なくとも一つは窒素原子を表す。これらは互いに結合して新たな環を形成してもよい。R19は、水素原子又は置換基を表す。 In general formula (3), R 11 to R 16 each independently represents a hydrogen atom or a substituent. X 4 , X 5 and X 6 each independently represent a nitrogen atom or —CR 17 , and R 17 represents a hydrogen atom or a substituent. Y 1 to Y 4 each independently represent a nitrogen atom or —CR 18 , and these may be bonded to each other to form a new ring. R 18 represents a hydrogen atom or a substituent. Z 1 to Z 4 each independently represents a nitrogen atom or —CR 19 , and at least one represents a nitrogen atom. These may combine with each other to form a new ring. R 19 represents a hydrogen atom or a substituent.
 一般式(3)中、X、X及びXが、それぞれ窒素原子を表すことが好ましい。
 また、一般式(3)中、X、X及びXのうちいずれか一つが、-CR17を表すことが好ましい。
 さらに、一般式(3)中、X、X及びXが、それぞれ-CR17を表すことが好ましい。
In general formula (3), X 4 , X 5 and X 6 each preferably represent a nitrogen atom.
In the general formula (3), any one of X 4 , X 5 and X 6 preferably represents —CR 17 .
Further, in the general formula (3), it is preferable that X 4 , X 5 and X 6 each represent —CR 17 .
 一般式(3)において、R11~R19で表される置換基としては、上記一般式(2)におけるRで表される置換基と同様のものを挙げることができる。 In the general formula (3), examples of the substituent represented by R 11 to R 19 include the same substituents as those represented by R 4 in the general formula (2).
 以下に、本発明の中間層1aに含有される有機化合物の具体例を示すが、これに限定されるものではない。 Specific examples of the organic compound contained in the intermediate layer 1a of the present invention are shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 本発明にかかる有機化合物は、従来公知の合成方法に準じて、容易に合成することができる。
 以下、本発明の中間層1aに含有される有機化合物の合成方法の一例を示すが、本発明はこれに限定されるものではない。
The organic compound according to the present invention can be easily synthesized according to a conventionally known synthesis method.
Hereinafter, although an example of the synthesis | combining method of the organic compound contained in the intermediate | middle layer 1a of this invention is shown, this invention is not limited to this.
 [合成例:例示化合物I-73の合成] [Synthesis Example: Synthesis of Exemplified Compound I-73]
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 (1)例示化合物I-73の合成
 100mlナスフラスコに、δ-カルボリン(5.5g、0.033mol)のTHF(50ml)溶液を、窒素雰囲気下、0℃で1時間撹拌した。その後η-BuLi(1.2eq.)を徐々に滴下しながら加え、室温になるまで撹拌した。
 200mlナスフラスコに、トリクロロトリアジン(5g、0.027mol)のTHF(100ml)溶液を、窒素雰囲気下、室温で撹拌した。
 この溶液に、100mlナスフラスコからδ-カルボリンのη-BuLi溶液を徐々に滴下しながら加え、室温で4時間撹拌した。
 さらにこの溶液に、イミダゾール(4.0eq.)のTHF(50ml)溶液を加えて、室温で10時間撹拌した。
 その後、溶液を分液ロートに移して抽出を行った。酢酸エチルと飽和食塩水を加えて有機相と水相に分離した後、有機相を取り出し、減圧留去した。得られた固体をシリカゲルカラムクロマトグラフィーにより精製し、例示化合物I-73の白色固体(7.4g,収率71%)を得た。
(1) Synthesis of Exemplary Compound I-73 In a 100 ml eggplant flask, a solution of δ-carboline (5.5 g, 0.033 mol) in THF (50 ml) was stirred at 0 ° C. for 1 hour under a nitrogen atmosphere. Thereafter, η-BuLi (1.2 eq.) Was gradually added dropwise and stirred until the temperature reached room temperature.
In a 200 ml eggplant flask, a solution of trichlorotriazine (5 g, 0.027 mol) in THF (100 ml) was stirred at room temperature under a nitrogen atmosphere.
To this solution, a η-BuLi solution of δ-carboline was gradually added dropwise from a 100 ml eggplant flask and stirred at room temperature for 4 hours.
Further, a solution of imidazole (4.0 eq.) In THF (50 ml) was added to this solution, and the mixture was stirred at room temperature for 10 hours.
Thereafter, the solution was transferred to a separatory funnel and extracted. Ethyl acetate and saturated brine were added to separate the organic phase and the aqueous phase, and then the organic phase was taken out and evaporated under reduced pressure. The resulting solid was purified by silica gel column chromatography to obtain a white solid (7.4 g, yield 71%) of exemplary compound I-73.
 (導電性層)
 本発明に係る導電性層1bは、銀を主成分として含有している。また、導電性層1bは、中間層1a上に成膜された層である。
 導電性層1bは、銀を主成分として構成されている層が、必要に応じて、複数の層に分けて積層された構成であってもよい。
(Conductive layer)
The conductive layer 1b according to the present invention contains silver as a main component. The conductive layer 1b is a layer formed on the intermediate layer 1a.
The conductive layer 1b may have a configuration in which a layer mainly composed of silver is divided into a plurality of layers as necessary.
 導電性層1bは、層厚が5~20nmの範囲内であることが好ましく、5~12nmの範囲内であることがより好ましい。
 層厚が20nmより薄い場合には、層の吸収成分又は反射成分が少なくなり、透明電極1の光透過率が向上するため好ましい。また、層厚が5nmより厚い場合には、層の導電性が十分になるため好ましい。
The conductive layer 1b preferably has a layer thickness in the range of 5 to 20 nm, and more preferably in the range of 5 to 12 nm.
When the layer thickness is less than 20 nm, the absorption component or reflection component of the layer is reduced, and the light transmittance of the transparent electrode 1 is preferably improved. Further, it is preferable that the layer thickness is thicker than 5 nm because the conductivity of the layer becomes sufficient.
 なお、以上のような中間層1aと、この上部に成膜された導電性層1bとからなる積層構造の透明電極1は、導電性層1bの上部が保護膜で覆われていてもよいし、別の導電性層が積層されていてもよい。この場合、透明電極1の光透過性を損なうことのないように、保護膜及び別の導電性層が光透過性を有することが好ましい。また、中間層1aの下部、すなわち中間層1aと基板11との間にも、必要に応じた層を設けた構成としてもよい。 Note that, in the transparent electrode 1 having a laminated structure including the intermediate layer 1a as described above and the conductive layer 1b formed thereon, the upper part of the conductive layer 1b may be covered with a protective film. Another conductive layer may be laminated. In this case, it is preferable that the protective film and another conductive layer have light transmittance so that the light transmittance of the transparent electrode 1 is not impaired. Moreover, it is good also as a structure which provided the layer as needed also under the intermediate | middle layer 1a, ie, between the intermediate | middle layer 1a and the board | substrate 11. FIG.
 導電性層1bは、銀(Ag)を主成分として含有する合金から構成されていてもよく、そのような合金としては、例えば、銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)等が挙げられる。 The conductive layer 1b may be composed of an alloy containing silver (Ag) as a main component. Examples of such an alloy include silver magnesium (AgMg), silver copper (AgCu), and silver palladium (AgPd). ), Silver palladium copper (AgPdCu), silver indium (AgIn), and the like.
 導電性層1bの成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法等のウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法等)、スパッタ法、CVD法等のドライプロセスを用いる方法等が挙げられる。
 湿式法により導電性層1bを成膜する場合は、銀を主成分とし、かつ有機溶媒を含有する導電性インクを用いることが好ましい。有機溶媒としては、本発明の透明電極1の効果を阻害しない限りにおいて、従来公知のものを特に制限なく使用することができる。
As a method for forming the conductive layer 1b, a wet process such as a coating method, an inkjet method, a coating method, or a dip method, a dry method such as a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, or the like is used. Examples include a method using a process.
When forming the conductive layer 1b by a wet method, it is preferable to use a conductive ink containing silver as a main component and containing an organic solvent. As an organic solvent, a conventionally well-known thing can be especially used without a restriction | limiting, unless the effect of the transparent electrode 1 of this invention is inhibited.
 また、導電性層1bは、中間層1a上に成膜されることにより、導電性層成膜後の高温アニール処理(例えば、150℃以上の加熱プロセス)等がなくても十分に導電性を有することを特徴とするが、必要に応じて、成膜後に高温アニール処理等を行ったものであってもよい。 Further, the conductive layer 1b is formed on the intermediate layer 1a, so that the conductive layer 1b is sufficiently conductive even without a high-temperature annealing process (for example, a heating process at 150 ° C. or higher) after the formation of the conductive layer. Although it is characterized by having, it may have been subjected to high-temperature annealing treatment after film formation, if necessary.
 <透明電極の効果>
 以上のような構成の透明電極1は、上記一般式(2)及び(3)のいずれかで表される構造を有する化合物を含有する中間層1a上に、銀を主成分として構成されている導電性層1bを設けている。これにより、中間層1aの上部に導電性層1bを成膜する際には、導電性層1bに含有される銀原子が中間層1aに含有される上記一般式(2)及び(3)のいずれかで表される構造を有する化合物と相互作用し、銀原子の中間層1a表面での拡散距離が減少し、銀の凝集が抑えられる。
<Effect of transparent electrode>
The transparent electrode 1 having the above-described configuration is composed mainly of silver on the intermediate layer 1a containing the compound having the structure represented by any one of the general formulas (2) and (3). A conductive layer 1b is provided. Thus, when the conductive layer 1b is formed on the intermediate layer 1a, the silver atoms contained in the conductive layer 1b are contained in the intermediate layer 1a in the above general formulas (2) and (3). It interacts with a compound having a structure represented by any one, the diffusion distance of silver atoms on the surface of the intermediate layer 1a is reduced, and aggregation of silver is suppressed.
 ここで、一般的に銀を主成分として構成されている導電性層の成膜においては、島状成長型(VW型)で薄膜成長するため、銀粒子が島状に孤立しやすく、膜厚が薄いときは導電性を得ることが困難であり、シート抵抗値が高くなる。
 したがって、導電性を確保するには膜厚を厚くする必要があるが、膜厚を厚くすると光透過率が下がるため、透明電極としては不適であった。
Here, in the formation of a conductive layer generally composed of silver as a main component, the thin film is grown in an island-like growth type (VW type), so that silver particles are easily isolated in an island shape. When the thickness is thin, it is difficult to obtain conductivity, and the sheet resistance value becomes high.
Therefore, it is necessary to increase the film thickness in order to ensure conductivity. However, if the film thickness is increased, the light transmittance is lowered, which is not suitable as a transparent electrode.
 しかしながら、本発明構成の透明電極1によれば、上述したように中間層1a上において銀の凝集が抑えられるため、銀を主成分として構成されている導電性層1bの成膜においては、層状成長型(FM型)で薄膜成長するようになる。 However, according to the transparent electrode 1 of the configuration of the present invention, since aggregation of silver is suppressed on the intermediate layer 1a as described above, in the film formation of the conductive layer 1b composed mainly of silver, the layered A thin film is grown by the growth type (FM type).
 また、本発明の透明電極1の透明とは、測定光波長550nmでの光透過率が50%以上であることをいうが、中間層1aとして用いられる上述した各材料は、銀を主成分とした導電性層1bと比較して、十分に光透過性の良好な膜を形成する。一方、透明電極1の導電性は、主に、導電性層1bによって確保される。したがって、上述のように、銀を主成分として構成されている導電性層1bが、より薄い層厚で導電性が確保されたものとなることにより、透明電極1の導電性の向上と光透過性の向上との両立を図ることが可能になるのである。 In addition, the transparency of the transparent electrode 1 of the present invention means that the light transmittance at a measurement light wavelength of 550 nm is 50% or more, but each of the above materials used as the intermediate layer 1a is mainly composed of silver. Compared with the conductive layer 1b, a film having sufficiently good light transmittance is formed. On the other hand, the conductivity of the transparent electrode 1 is ensured mainly by the conductive layer 1b. Therefore, as described above, the conductive layer 1b composed mainly of silver has a thinner layer to ensure conductivity, thereby improving the conductivity and light transmission of the transparent electrode 1. It is possible to achieve a balance with improvement in performance.
 ≪2.透明電極の用途≫
 上述した構成の透明電極1は、各種電子デバイスに用いることができる。電子デバイスの例としては、有機EL素子、LED(Light Emitting Diode)、液晶素子、太陽電池、タッチパネル等が挙げられ、これらの電子デバイスにおいて光透過性を必要とされる電極部材として、上述の透明電極1を用いることができる。
 以下では、用途の一例として、本発明の透明電極1を用いた有機EL素子の実施の形態を説明する。
≪2. Applications of transparent electrodes >>
The transparent electrode 1 having the above-described configuration can be used for various electronic devices. Examples of electronic devices include organic EL elements, LEDs (Light Emitting Diodes), liquid crystal elements, solar cells, touch panels, etc. As electrode members that require light transmission in these electronic devices, the above-mentioned transparent The electrode 1 can be used.
Below, embodiment of the organic EL element using the transparent electrode 1 of this invention is described as an example of a use.
 ≪3.有機EL素子の第1例≫
 <有機EL素子の構成>
 図2は、本発明の電子デバイスの一例として、上述した透明電極1を用いた有機EL素子の第1例を示す概略断面図である。
 以下に、この図に基づいて有機EL素子の構成を説明する。
≪3. First example of organic EL element >>
<Configuration of organic EL element>
FIG. 2 is a schematic cross-sectional view showing a first example of an organic EL element using the transparent electrode 1 described above as an example of the electronic device of the present invention.
Below, the structure of an organic EL element is demonstrated based on this figure.
 図2に示すとおり、有機EL素子100は、透明基板(基板)13上に設けられており、透明基板13側から順に、透明電極1、有機材料等を用いて構成された有機機能層3、及び対向電極5aをこの順に積層して構成されている。この有機EL素子100においては、透明電極1として、先に説明した本発明の透明電極1を用いている。このため、有機EL素子100は、発生させた光(以下、発光光hと記す。)を、少なくとも透明基板13側から取り出すように構成されている。 As shown in FIG. 2, the organic EL element 100 is provided on a transparent substrate (substrate) 13, and in order from the transparent substrate 13 side, an organic functional layer 3 configured using the transparent electrode 1, an organic material, and the like. The counter electrode 5a is laminated in this order. In the organic EL element 100, the transparent electrode 1 of the present invention described above is used as the transparent electrode 1. For this reason, the organic EL element 100 is configured to extract the generated light (hereinafter referred to as emission light h) from at least the transparent substrate 13 side.
 また、有機EL素子100の層構造は以下に説明する例に限定されることはなく、一般的な層構造であってもよい。ここでは、透明電極1がアノード(すなわち陽極)として機能し、対向電極5aがカソード(すなわち陰極)として機能することとする。この場合、例えば、有機機能層3は、アノードである透明電極1側から順に正孔注入層3a/正孔輸送層3b/発光層3c/電子輸送層3d/電子注入層3eを積層した構成が例示されるが、このうち少なくとも有機材料を用いて構成された発光層3cを有することが必須である。正孔注入層3a及び正孔輸送層3bは、正孔輸送注入層として設けられていてもよい。電子輸送層3d及び電子注入層3eは、電子輸送注入層として設けられていてもよい。また、これらの有機機能層3のうち、例えば、電子注入層3eは無機材料で構成されているものとしてもよい。 Further, the layer structure of the organic EL element 100 is not limited to the example described below, and may be a general layer structure. Here, the transparent electrode 1 functions as an anode (that is, an anode), and the counter electrode 5a functions as a cathode (that is, a cathode). In this case, for example, the organic functional layer 3 has a structure in which a hole injection layer 3a / a hole transport layer 3b / a light emitting layer 3c / an electron transport layer 3d / an electron injection layer 3e are stacked in this order from the transparent electrode 1 side which is an anode. Although illustrated, it is essential to have at least the light emitting layer 3c composed of an organic material. The hole injection layer 3a and the hole transport layer 3b may be provided as a hole transport injection layer. The electron transport layer 3d and the electron injection layer 3e may be provided as an electron transport injection layer. Of these organic functional layers 3, for example, the electron injection layer 3e may be made of an inorganic material.
 また、有機機能層3は、これらの層の他に正孔阻止層や電子阻止層等が必要に応じて必要箇所に積層されていてもよい。さらに、発光層3cは、各波長領域の発光光を発生させる各色発光層を有し、これらの各色発光層を非発光性の補助層を介して積層させた構造としてもよい。補助層は、正孔阻止層、電子阻止層として機能してもよい。さらに、カソードである対向電極5aも、必要に応じた積層構造であってもよい。このような構成においては、透明電極1と対向電極5aとで有機機能層3が挟持された部分のみが、有機EL素子100における発光領域となる。 In addition to these layers, the organic functional layer 3 may have a hole blocking layer, an electron blocking layer, and the like laminated as necessary. Furthermore, the light emitting layer 3c may have a structure in which each color light emitting layer that generates light emitted in each wavelength region is laminated, and each of these color light emitting layers is laminated via a non-light emitting auxiliary layer. The auxiliary layer may function as a hole blocking layer or an electron blocking layer. Furthermore, the counter electrode 5a as a cathode may also have a laminated structure as necessary. In such a configuration, only a portion where the organic functional layer 3 is sandwiched between the transparent electrode 1 and the counter electrode 5 a becomes a light emitting region in the organic EL element 100.
 また、以上のような層構成においては、透明電極1の低抵抗化を図ることを目的とし、透明電極1の導電性層1bに接して補助電極15が設けられていてもよい。 In the layer configuration as described above, the auxiliary electrode 15 may be provided in contact with the conductive layer 1b of the transparent electrode 1 for the purpose of reducing the resistance of the transparent electrode 1.
 以上のような構成の有機EL素子100は、有機材料等を用いて構成された有機機能層3の劣化を防止することを目的として、透明基板13上において後述する封止材17で封止されている。この封止材17は、接着剤19を介して透明基板13側に固定されている。ただし、透明電極1及び対向電極5aの端子部分は、透明基板13上において有機機能層3によって互いに絶縁性を保った状態で封止材17から露出させた状態で設けられていることとする。 The organic EL element 100 having the above configuration is sealed with a sealing material 17 described later on the transparent substrate 13 for the purpose of preventing deterioration of the organic functional layer 3 configured using an organic material or the like. ing. The sealing material 17 is fixed to the transparent substrate 13 side with an adhesive 19. However, it is assumed that the terminal portions of the transparent electrode 1 and the counter electrode 5a are provided on the transparent substrate 13 so as to be exposed from the sealing material 17 in a state of being insulated from each other by the organic functional layer 3.
 以下、上述した有機EL素子100を構成するための主要各層の詳細を、透明基板13、透明電極1、対向電極5a、有機機能層3の発光層3c、有機機能層3の他の層、補助電極15、及び封止材17の順に説明する。 Hereinafter, the details of the main layers for constituting the organic EL element 100 described above will be described in terms of the transparent substrate 13, the transparent electrode 1, the counter electrode 5a, the light emitting layer 3c of the organic functional layer 3, the other layers of the organic functional layer 3, and the auxiliary. The electrode 15 and the sealing material 17 will be described in this order.
 (透明基板)
 透明基板13は、先に説明した本発明の透明電極1が設けられる基板11であり、先に説明した基板11のうち、光透過性を有する透明な基板11が用いられる。
(Transparent substrate)
The transparent substrate 13 is the substrate 11 on which the transparent electrode 1 of the present invention described above is provided, and among the substrates 11 described above, the transparent substrate 11 having optical transparency is used.
 (透明電極(アノード))
 透明電極1は、先に説明した本発明の透明電極1であり、透明基板13側から順に中間層1a及び導電性層1bを順に成膜した構成である。ここでは特に、透明電極1はアノードとして機能するものであり、導電性層1bが実質的なアノードとなる。
(Transparent electrode (anode))
The transparent electrode 1 is the transparent electrode 1 of the present invention described above, and has a configuration in which an intermediate layer 1a and a conductive layer 1b are sequentially formed from the transparent substrate 13 side. Here, in particular, the transparent electrode 1 functions as an anode, and the conductive layer 1b is a substantial anode.
 (対向電極(カソード))
 対向電極5aは、有機機能層3に電子を供給するカソードとして機能する電極膜であり、金属、合金、有機若しくは無機の導電性化合物、又はこれらの混合物等から構成されている。具体的には、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO、SnO等の酸化物半導体等が挙げられる。
(Counter electrode (cathode))
The counter electrode 5a is an electrode film that functions as a cathode for supplying electrons to the organic functional layer 3, and is made of a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof. Specifically, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 , An oxide semiconductor such as SnO 2 can be given.
 対向電極5aは、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより作製することができる。
 また、対向電極5aとしてのシート抵抗値は、数百Ω/□以下が好ましく、膜厚は通常5nm~5μm、好ましくは5~200nmの範囲内で選ばれる。
The counter electrode 5a can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering.
Further, the sheet resistance value as the counter electrode 5a is preferably several hundred Ω / □ or less, and the film thickness is usually selected within the range of 5 nm to 5 μm, preferably 5 to 200 nm.
 なお、この有機EL素子100が、対向電極5a側からも発光光hを取り出すものである場合には、上述した導電性材料のうちから選択される光透過性の良好な導電性材料により対向電極5aが構成されていればよい。 In addition, when this organic EL element 100 takes out the emitted light h also from the counter electrode 5a side, the counter electrode is made of a conductive material having a good light transmission property selected from the above-described conductive materials. 5a should just be comprised.
 (発光層)
 発光層3cは、発光材料が含有されているが、中でも発光材料としてリン光発光ドーパント(リン光発光材料、リン光発光化合物、リン光性化合物)が含有されていることが好ましい。
(Light emitting layer)
The light emitting layer 3c contains a light emitting material, and among them, it is preferable that a phosphorescent dopant (phosphorescent material, phosphorescent compound, phosphorescent compound) is contained as the light emitting material.
 この発光層3cは、電極又は電子輸送層3dから注入された電子と、正孔輸送層3bから注入された正孔とが再結合して発光する層であり、発光する部分は発光層3cの層内であっても発光層3cと隣接する層との界面であってもよい。 The light emitting layer 3c is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer 3d and holes injected from the hole transport layer 3b, and the light emitting portion is the light emitting layer 3c. Even within the layer, it may be the interface between the light emitting layer 3c and the adjacent layer.
 このような発光層3cとしては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層3c間には非発光性の補助層(図示せず)を有していることが好ましい。 The light emitting layer 3c is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting auxiliary layer (not shown) between the light emitting layers 3c.
 発光層3cの層厚の総和は、好ましくは、1~100nmの範囲内であり、更に好ましくは、より低い駆動電圧を得ることができることから1~30nmの範囲内である。なお、発光層3cの層厚の総和とは、発光層3c間に非発光性の補助層が存在する場合には、当該補助層も含む層厚である。 The total thickness of the light emitting layer 3c is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained. In addition, the sum total of the layer thickness of the light emitting layer 3c is a layer thickness also including the said auxiliary layer, when a nonluminous auxiliary layer exists between the light emitting layers 3c.
 複数層を積層した構成の発光層3cの場合、個々の発光層の層厚としては、1~50nmの範囲内に調整することが好ましく、1~20nmの範囲内に調整することがより好ましい。積層された複数の発光層が、青、緑、赤のそれぞれの発光色に対応する場合、青、緑、赤の各発光層の層厚の関係については、特に制限はない。 In the case of the light emitting layer 3c having a structure in which a plurality of layers are laminated, the thickness of each light emitting layer is preferably adjusted within the range of 1 to 50 nm, and more preferably within the range of 1 to 20 nm. When the plurality of stacked light emitting layers correspond to blue, green, and red light emission colors, there is no particular limitation on the relationship between the thicknesses of the blue, green, and red light emitting layers.
 以上のように構成されている発光層3cは、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜形成方法により成膜して形成することができる。 The light emitting layer 3c configured as described above is formed by using a known thin film forming method such as a vacuum evaporation method, a spin coating method, a casting method, an LB method, or an ink jet method, for example, by using a light emitting material or a host compound described later. Can be formed.
 また発光層3cは、複数の発光材料が混合されて構成されていてもよく、またリン光発光ドーパント(リン光発光性化合物)と蛍光ドーパント(蛍光発光材料、蛍光性化合物)とが混合されて構成されていてもよい。 The light emitting layer 3c may be configured by mixing a plurality of light emitting materials, and a phosphorescent light emitting dopant (phosphorescent compound) and a fluorescent dopant (fluorescent light emitting material, fluorescent compound) are mixed. It may be configured.
 発光層3cは、ホスト化合物(発光ホスト)と発光材料(発光ドーパント)を含有し、発光材料をより発光させることが好ましい。 The light emitting layer 3c contains a host compound (light emitting host) and a light emitting material (light emitting dopant), and it is preferable that the light emitting material emits more light.
 (ホスト化合物)
 発光層3cに含有されるホスト化合物としては、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物が好ましい。さらに好ましくはリン光量子収率が0.01未満である。また、発光層3cに含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
(Host compound)
As the host compound contained in the light emitting layer 3c, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in the light emitting layer 3c.
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、又は複数種用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the host compound, a known host compound may be used alone, or a plurality of types may be used. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
 用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。 The host compound used may be a conventionally known low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .
 公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、発光の長波長化を防ぎ、かつ高Tg(ガラス転移温度)の化合物が好ましい。
 ここでいうガラス転移温度とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012に準拠した方法により求められる値である。
As the known host compound, a compound having a hole transporting ability and an electron transporting ability while preventing the emission of light from being increased in wavelength and having a high Tg (glass transition temperature) is preferable.
The glass transition temperature here is a value obtained by a method based on JIS K 7121-2012 using DSC (Differential Scanning Colorimetry).
 公知のホスト化合物の具体例としては、以下の文献に記載されている化合物を用いることもできる。例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報、米国特許出願公開第2003/0175553号明細書、米国特許出願公開第2006/0280965号明細書、米国特許出願公開第2005/0112407号明細書、米国特許出願公開第2009/0017330号明細書、米国特許出願公開第2009/0030202号明細書、米国特許出願公開第2005/0238919号明細書、国際公開第2001/039234号明細書、国際公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008-074939号公報、特開2007-254297号公報、欧州特許第2034538号明細書等が挙げられる。 As specific examples of known host compounds, compounds described in the following documents may be used. For example, Japanese Patent Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860 Gazette, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579 No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 2002-203683, No. 2002-363227, No. 2002-231453. No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060. No. 2002-302516, No. 2002-305083, No. 2002-305084, No. 2002-308837, No. 2003/0175553, No. 2006/0280965. US Patent Application Publication No. 2005/0112407, US Patent Application Publication No. 2009/0017330, US Patent Application Publication No. 2009/0030202, US Patent Application Publication No. 2005/0238919 ,Country Publication No. 2001/039234, International Publication No. 2009/021126, International Publication No. 2008/056746, International Publication No. 2004/093207, International Publication No. 2005/089025, International Publication No. 2007/063796, International Publication No. International Publication No. 2007/063754, International Publication No. 2004/107822, International Publication No. 2005/030900, International Publication No. 2006/114966, International Publication No. 2009/086028, International Publication No. 2009/003898, International Publication No. Examples include 2012/023947, JP 2008-074939 A, JP 2007-254297 A, and European Patent No. 2034538.
 (発光材料)
 (1)リン光発光ドーパント
 本発明で用いることのできる発光材料としては、リン光発光ドーパントが挙げられる。
(Luminescent material)
(1) Phosphorescence emission dopant As a luminescent material which can be used by this invention, a phosphorescence emission dopant is mentioned.
 リン光発光ドーパントとは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。 A phosphorescent dopant is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.). Although defined as being a compound of 01 or more, a preferable phosphorescence quantum yield is 0.1 or more.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明においてリン光発光ドーパントを用いる場合、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. The phosphorescence quantum yield in a solution can be measured using various solvents, but when using a phosphorescent dopant in the present invention, the above phosphorescence quantum yield (0.01 or more) is achieved in any solvent. It only has to be done.
 リン光発光ドーパントの発光の原理としては2種挙げられる。
 一つは、キャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光発光ドーパントに移動させることでリン光発光ドーパントからの発光を得るというエネルギー移動型である。
 もう一つは、リン光発光ドーパントがキャリアトラップとなり、リン光発光ドーパント上でキャリアの再結合が起こりリン光発光ドーパントからの発光が得られるというキャリアトラップ型である。いずれの場合においても、リン光発光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件となる。
There are two types of light emission principles of the phosphorescent dopant.
One is that recombination of carriers occurs on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant to obtain light emission from the phosphorescent dopant. It is an energy transfer type.
The other is a carrier trap type in which the phosphorescent dopant becomes a carrier trap, and carrier recombination occurs on the phosphorescent dopant to emit light from the phosphorescent dopant. In any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
 リン光発光ドーパントは、一般的な有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、又は白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent light-emitting dopant can be appropriately selected from known materials used for the light-emitting layer of a general organic EL device, and preferably contains a group 8-10 metal in the periodic table of elements. A complex compound, more preferably an iridium compound, an osmium compound, a platinum compound (platinum complex compound), or a rare earth complex, and most preferably an iridium compound.
 本発明においては、少なくとも一つの発光層3cに2種以上のリン光発光ドーパントが含有されていてもよく、発光層3cにおけるリン光発光ドーパントの濃度比が発光層3cの厚さ方向で変化していてもよい。 In the present invention, at least one light emitting layer 3c may contain two or more phosphorescent light emitting dopants, and the concentration ratio of the phosphorescent light emitting dopant in the light emitting layer 3c varies in the thickness direction of the light emitting layer 3c. It may be.
 リン光発光ドーパントは、好ましくは発光層3cの総量に対し0.1体積%以上30体積%未満である。 The phosphorescent dopant is preferably 0.1% by volume or more and less than 30% by volume with respect to the total amount of the light emitting layer 3c.
 本発明に使用できる公知のリン光ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。
 Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許出願公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許出願公開第2009/0108737号明細書、米国特許出願公開第2009/0039776号明細書、米国特許第6921915号明細書、米国特許第6687266号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2009/0165846号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7250226号明細書、米国特許第7396598号明細書、米国特許出願公開第2006/0263635号明細書、米国特許出願公開第2003/0138657号明細書、米国特許出願公開第2003/0152802号明細書、米国特許第7090928号明細書、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許出願公開第2006/0251923号明細書、米国特許出願公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許出願公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/098120号明細書、米国特許出願公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、米国特許出願公開第2012/228583号明細書、米国特許出願公開第2012/212126号明細書、特開2012-069737号公報、特開2011-181303号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等である。
 中でも、好ましいリン光ドーパントとしてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合のうち少なくとも1つの配位様式を含む錯体が好ましい。
Specific examples of known phosphorescent dopants that can be used in the present invention include compounds described in the following documents.
Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Application Publication No. 2006/835469, US Patent Application Publication No. 2006 /. No. 0202194, U.S. Patent Application Publication No. 2007/0087321, U.S. Patent Application Publication No. 2005/0244673, Inorg. Chem. 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chem. Lett. 34, 592 (2005), Chem. Commun. 2906 (2005), Inorg. Chem. 42, 1248 (2003), International Publication No. 2009/050290, International Publication No. 2002/015645, International Publication No. 2009/000673, US Patent Application Publication No. 2002/0034656, and US Pat. No. 7,332,232. US Patent Application Publication No. 2009/0108737, US Patent Application Publication No. 2009/0039776, US Patent No. 6921915, US Patent No. 6,687,266, US Patent Application Publication No. 2007/0190359. Specification, US Patent Application Publication No. 2006/0008670, US Patent Application Publication No. 2009/0165846, US Patent Application Publication No. 2008/0015355, US Patent No. 7250226, US Patent No. No. 7396598 , U.S. Patent Application Publication No. 2006/0263635, U.S. Patent Application Publication No. 2003/0138657, U.S. Patent Application Publication No. 2003/0152802, U.S. Patent No. 7090928, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics 23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2002/002714, International Publication No. 2006/009024, International Publication No. 2006/056418, International Publication No. 2005/019373, International Publication No. 2005/123873, International Publication No. 2005/123873, International Publication No. 2007/004380, International Publication No. 2006/082742, US Patent Application Publication No. 2006/0251923, US Patent Application Publication No. 2005/0260441, US Pat. No. 7,393,599. Description, US Pat. No. 7,534,505, US Pat. No. 7,445,855, US Patent Application Publication No. 2007/0190359, US Patent Application Publication No. 2008/0297033, US Pat. No. 7,338,722 , US special Published Patent Application No. 2002/0134984, U.S. Pat. No. 7,279,704, U.S. Patent Application Publication No. 2006/098120, U.S. Patent Application Publication No. 2006/103874, International Publication No. 2005/076380, International Publication No. 2010/032663, International Publication No. 2008/140115, International Publication No. 2007/052431, International Publication No. 2011/134013, International Publication No. 2011/157339, International Publication No. 2010/086089, International Publication 2009/113646, International Publication No. 2012/020327, International Publication No. 2011/051404, International Publication No. 2011/004639, International Publication No. 2011/073149, US Patent Application Publication No. 2012/228583, USA Japanese Patent Application Publication No. 2012/212126, Japanese Patent Application Laid-Open No. 2012-069737, Japanese Patent Application Laid-Open No. 2011-181303, Japanese Patent Application Laid-Open No. 2009-114086, Japanese Patent Application Laid-Open No. 2003-81988, Japanese Patent Application Laid-Open No. 2002-302671. Japanese Patent Laid-Open No. 2002-363552.
Among these, a preferable phosphorescent dopant includes an organometallic complex having Ir as a central metal. More preferably, a complex containing at least one coordination mode among a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
 (2)蛍光ドーパント
 本発明に係る蛍光発光性ドーパント(以下、「蛍光ドーパント」ともいう)について説明する。
 本発明に係る蛍光ドーパントは、励起一重項からの発光が可能な化合物であり、励起一重項からの発光が観測される限り特に限定されない。
 本発明に係る蛍光ドーパントとしては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。
 また、近年では遅延蛍光を利用した発光ドーパントも開発されており、これらを用いてもよい。
 遅延蛍光を利用した発光ドーパントの具体例としては、例えば、国際公開第2011/156793号、特開2011-213643号公報、特開2010-93181号公報等に記載の化合物が挙げられるが、本発明はこれらに限定されない。
(2) Fluorescent dopant The fluorescent luminescent dopant (henceforth "fluorescent dopant") based on this invention is demonstrated.
The fluorescent dopant according to the present invention is a compound that can emit light from an excited singlet, and is not particularly limited as long as light emission from the excited singlet is observed.
The fluorescent dopant according to the present invention includes coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes. Stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like.
In recent years, light emitting dopants utilizing delayed fluorescence have been developed, and these may be used.
Specific examples of the luminescent dopant using delayed fluorescence include, for example, compounds described in International Publication No. 2011/156793, Japanese Patent Application Laid-Open No. 2011-213643, Japanese Patent Application Laid-Open No. 2010-93181, and the like. Is not limited to these.
 (注入層:正孔注入層、電子注入層)
 注入層とは、駆動電圧低下や発光輝度向上のために電極と発光層3cの間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層3aと電子注入層3eとがある。
(Injection layer: hole injection layer, electron injection layer)
The injection layer is a layer provided between the electrode and the light emitting layer 3c in order to lower the driving voltage and improve the light emission luminance. “The organic EL element and the forefront of its industrialization (November 30, 1998, NT. 2), Chapter 2, “Electrode Materials” (pages 123 to 166) of “S. Co., Ltd.”, which includes a hole injection layer 3a and an electron injection layer 3e.
 注入層は、必要に応じて設けることができる。正孔注入層3aであれば、アノードと発光層3c又は正孔輸送層3bとの間、電子注入層3eであれば、カソードと発光層3c又は電子輸送層3dとの間に存在させてもよい。 The injection layer can be provided as necessary. The hole injection layer 3a may be present between the anode and the light emitting layer 3c or the hole transport layer 3b, and the electron injection layer 3e may be present between the cathode and the light emitting layer 3c or the electron transport layer 3d. Good.
 正孔注入層3aは、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニン層、酸化バナジウムに代表される酸化物層、アモルファスカーボン層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子層等が挙げられる。 The details of the hole injection layer 3a are also described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. Specific examples thereof include phthalocyanine represented by copper phthalocyanine. Examples thereof include a layer, an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
 電子注入層3eは、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属層、フッ化カリウムに代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデンに代表される酸化物層等が挙げられる。電子注入層3eはごく薄い膜であることが望ましく、素材にもよるがその層厚は1nm~10μmの範囲内が好ましい。 Details of the electron injection layer 3e are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like, and specifically, strontium, aluminum and the like are represented. Examples thereof include a metal layer, an alkali metal halide layer typified by potassium fluoride, an alkaline earth metal compound layer typified by magnesium fluoride, and an oxide layer typified by molybdenum oxide. The electron injection layer 3e is desirably a very thin film, and the layer thickness is preferably in the range of 1 nm to 10 μm although it depends on the material.
 (正孔輸送層)
 正孔輸送層3bは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層3a、電子阻止層も正孔輸送層3bに含まれる。正孔輸送層3bは、単層又は複数層設けることができる。
(Hole transport layer)
The hole transport layer 3b is made of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer 3a and the electron blocking layer are also included in the hole transport layer 3b. The hole transport layer 3b can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。 The hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
 正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。 As the hole transport material, those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル、N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル、N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル、4,4′-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール、更には米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3個スターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'-diphenyl-N, N ' Di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (diphenylamino) quadriphenyl N, N, N-tri (p-tolyl) amine, 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene, 4-N, N-diphenylamino -(2-diphenylvinyl) benzene, 3-methoxy-4'-N, N-diphenylaminostilbenzene, N-phenylcarbazole and also two condensed aromatics described in US Pat. No. 5,061,569 Having a ring in the molecule, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-30868 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA) in which three triphenylamine units described in Japanese Patent Publication No. ) And the like.
 さらに、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。 Furthermore, polymer materials in which these materials are introduced into polymer chains or these materials are used as polymer main chains can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
 また、特開平11-251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されているような、いわゆるp型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。 Also, JP-A-11-251067, J. Org. Huang et. al. , Applied Physics Letters, 80 (2002), p. A so-called p-type hole transport material as described in 139 can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
 正孔輸送層3bは、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層3bの層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲内である。この正孔輸送層3bは、上記材料の1種又は2種以上からなる1層構造であってもよい。 The hole transport layer 3b is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. be able to. The layer thickness of the hole transport layer 3b is not particularly limited, but is usually in the range of about 5 nm to 5 μm, preferably 5 to 200 nm. The hole transport layer 3b may have a single layer structure composed of one or more of the above materials.
 また、正孔輸送層3bの材料に不純物をドープしてp性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to increase the p property by doping impurities in the material of the hole transport layer 3b. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
 このように、正孔輸送層3bのp性を高くすると、より低消費電力の素子を作製することができるため好ましい。 Thus, it is preferable to increase the p property of the hole transport layer 3b because a device with lower power consumption can be manufactured.
 (電子輸送層)
 電子輸送層3dは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層3e、正孔阻止層も電子輸送層3dに含まれる。電子輸送層3dは、単層構造又は複数層の積層構造として設けることができる。
(Electron transport layer)
The electron transport layer 3d is made of a material having a function of transporting electrons, and in a broad sense, the electron injection layer 3e and the hole blocking layer are also included in the electron transport layer 3d. The electron transport layer 3d can be provided as a single layer structure or a multilayer structure of a plurality of layers.
 単層構造の電子輸送層3dの電子輸送材料、及び積層構造の電子輸送層3dにおいて発光層3cに隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層3cに伝達する機能を有していればよい。このような材料としては、従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層3dの材料として用いることができる。さらに、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 An electron transport material for the electron transport layer 3d having a single layer structure and an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer 3c in the electron transport layer 3d having a multilayer structure are injected from the cathode. What is necessary is just to have a function to transmit the emitted electrons to the light emitting layer 3c. As such a material, any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives. Further, in the above oxadiazole derivative, a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group are also used as the material for the electron transport layer 3d. Can do. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層3dの材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metals of these metal complexes are In, Mg Metal complexes replaced by Cu, Ca, Sn, Ga, or Pb can also be used as the material for the electron transport layer 3d.
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送層3dの材料として好ましく用いることができる。また、発光層3cの材料としても用いられるジスチリルピラジン誘導体も電子輸送層3dの材料として用いることができるし、正孔注入層3a、正孔輸送層3bと同様にn型-Si、n型-SiC等の無機半導体も電子輸送層3dの材料として用いることができる。 In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the material for the electron transport layer 3d. Further, a distyrylpyrazine derivative that is also used as a material for the light emitting layer 3c can be used as a material for the electron transport layer 3d. Similarly to the hole injection layer 3a and the hole transport layer 3b, n-type-Si, n-type An inorganic semiconductor such as -SiC can also be used as the material of the electron transport layer 3d.
 電子輸送層3dは、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層3dの層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲内である。電子輸送層3dは、上記材料の1種又は2種以上からなる1層構造であってもよい。 The electron transport layer 3d can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. The thickness of the electron transport layer 3d is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The electron transport layer 3d may have a single-layer structure made of one or more of the above materials.
 また、電子輸送層3dに不純物をドープし、n性を高くすることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。さらに、電子輸送層3dには、カリウムやカリウム化合物等を含有させることが好ましい。カリウム化合物としては、例えば、フッ化カリウム等を用いることができる。このように電子輸送層3dのn性を高くすると、より低消費電力の素子を作製することができる。 Further, the electron transport layer 3d can be doped with an impurity to increase the n property. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like. Furthermore, it is preferable that the electron transport layer 3d contains potassium, a potassium compound, or the like. As the potassium compound, for example, potassium fluoride can be used. Thus, when the n property of the electron transport layer 3d is increased, an element with lower power consumption can be manufactured.
 また、電子輸送層3dの材料(電子輸送性化合物)として、上述した中間層1aを構成する材料と同様のものを用いてもよい。これは、電子注入層3eを兼ねた電子輸送層3dであっても同様である。 Further, as the material (electron transporting compound) of the electron transport layer 3d, the same material as that constituting the intermediate layer 1a described above may be used. The same applies to the electron transport layer 3d also serving as the electron injection layer 3e.
 (阻止層:正孔阻止層、電子阻止層)
 阻止層は、上記した有機機能層3の基本構成層の他に、必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
(Blocking layer: hole blocking layer, electron blocking layer)
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic functional layer 3 described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
 正孔阻止層とは、広い意味では、電子輸送層3dの機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、上記の電子輸送層3dの構成を、必要に応じて、正孔阻止層として用いることができる。正孔阻止層は、発光層3cに隣接して設けられていることが好ましい。 The hole blocking layer has the function of the electron transport layer 3d in a broad sense. The hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved. Moreover, the structure of said electron carrying layer 3d can be used as a hole-blocking layer as needed. The hole blocking layer is preferably provided adjacent to the light emitting layer 3c.
 一方、電子阻止層とは、広い意味では、正孔輸送層3bの機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、上記の正孔輸送層3bの構成を、必要に応じて、電子阻止層として用いることができる。
 正孔阻止層の層厚としては、好ましくは3~100nmの範囲内であり、更に好ましくは5~30nmの範囲内である。
On the other hand, the electron blocking layer has the function of the hole transport layer 3b in a broad sense. The electron blocking layer is made of a material that has a function of transporting holes but has a very small ability to transport electrons, and improves the probability of recombination of electrons and holes by blocking electrons while transporting holes. be able to. Moreover, the structure of said positive hole transport layer 3b can be used as an electron blocking layer as needed.
The thickness of the hole blocking layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
 (補助電極)
 補助電極15は、透明電極1の抵抗を下げる目的で設けられるものであって、透明電極1の導電性層1bに接して設けられる。補助電極15を形成する材料としては、金、白金、銀、銅、アルミニウム等の抵抗が低い金属が好ましい。これらの金属は光透過性が低いため、光取り出し面13aからの発光光hの取り出しの影響のない範囲でパターン形成される。このような補助電極15の作製方法としては、蒸着法、スパッタリング法、印刷法、インクジェット法、エアロゾルジェット法等が挙げられる。補助電極15の線幅は、光を取り出す開口率の観点から50μm以下であることが好ましく、補助電極15の厚さは、導電性の観点から1μm以上であることが好ましい。
(Auxiliary electrode)
The auxiliary electrode 15 is provided for the purpose of reducing the resistance of the transparent electrode 1, and is provided in contact with the conductive layer 1 b of the transparent electrode 1. The material for forming the auxiliary electrode 15 is preferably a metal with low resistance such as gold, platinum, silver, copper, or aluminum. Since these metals have low light transmittance, a pattern is formed in a range not affected by extraction of the emitted light h from the light extraction surface 13a. Examples of a method for producing such an auxiliary electrode 15 include a vapor deposition method, a sputtering method, a printing method, an ink jet method, an aerosol jet method, and the like. The line width of the auxiliary electrode 15 is preferably 50 μm or less from the viewpoint of the aperture ratio for extracting light, and the thickness of the auxiliary electrode 15 is preferably 1 μm or more from the viewpoint of conductivity.
 (封止材)
 封止材17は、有機EL素子100を覆うものであって、板状(フィルム状)の封止部材であって接着剤19によって透明基板13側に固定されるものであってもよく、封止膜であってもよい。このような封止材17は、有機EL素子100における透明電極1及び対向電極5aの端子部分を露出させる状態で、少なくとも有機機能層3を覆う状態で設けられている。また、封止材17に電極を設け、有機EL素子100の透明電極1及び対向電極5aの端子部分と、この電極とを導通させるように構成されていてもよい。
(Encapsulant)
The sealing material 17 covers the organic EL element 100 and may be a plate-like (film-like) sealing member that is fixed to the transparent substrate 13 side by the adhesive 19. It may be a stop film. Such a sealing material 17 is provided in a state of covering at least the organic functional layer 3 in a state in which the terminal portions of the transparent electrode 1 and the counter electrode 5a in the organic EL element 100 are exposed. In addition, an electrode may be provided on the sealing material 17 so that the transparent electrode 1 and the terminal portion of the counter electrode 5a of the organic EL element 100 are electrically connected to this electrode.
 板状(フィルム状)の封止材17としては、具体的には、ガラス基板、ポリマー基板、金属基板等が挙げられ、これらの基板材料を更に薄型のフィルム状にして用いてもよい。ガラス基板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー基板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属基板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。 Specific examples of the plate-like (film-like) sealing material 17 include a glass substrate, a polymer substrate, a metal substrate, and the like. These substrate materials may be used in the form of a thinner film. Examples of the glass substrate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal substrate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
 中でも、素子を薄膜化できるということから、封止材としてポリマー基板や金属基板を薄型のフィルム状にしたものを好ましく使用することができる。 In particular, since the element can be thinned, a thin film-like polymer substrate or metal substrate can be preferably used as the sealing material.
 さらには、フィルム状としたポリマー基板は、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/m・24h・atm以下、及びJIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/m・24h以下のものであることが好ましい。 Furthermore, the polymer substrate in the form of a film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 ml / m 2 · 24 h · atm or less, and JIS K 7129-1992. The water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by a compliant method is preferably 1 × 10 −3 g / m 2 · 24 h or less.
 また以上のような基板材料は、凹板状に加工して封止材17として用いてもよい。この場合、上述した基板材料に対してサンドブラスト加工、化学エッチング加工等の加工が施され、凹状が形成される。 Further, the above substrate material may be processed into a concave plate shape and used as the sealing material 17. In this case, the above-described substrate material is subjected to processing such as sandblasting and chemical etching to form a concave shape.
 また、このような板状の封止材17を透明基板13側に固定するための接着剤19は、封止材17と透明基板13との間に挟持された有機EL素子100を封止するためのシール剤として用いられる。このような接着剤19は、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。
 また、エポキシ系等の熱及び化学硬化型(二液混合)、ホットメルト型のポリアミド、ポリエステル、ポリオレフィン、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることもできる。
The adhesive 19 for fixing the plate-shaped sealing material 17 to the transparent substrate 13 side seals the organic EL element 100 sandwiched between the sealing material 17 and the transparent substrate 13. It is used as a sealing agent. Specific examples of such an adhesive 19 include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, moisture curing types such as 2-cyanoacrylates, and the like. Can be mentioned.
In addition, epoxy-based heat and chemical curing type (two-component mixing), hot-melt type polyamide, polyester, polyolefin, and cationic curing type UV-curable epoxy resin adhesive can also be exemplified.
 なお、有機EL素子100を構成する有機材料は、熱処理により劣化する場合がある。このため、接着剤19は、室温(25℃)から80℃までに接着硬化できるものが好ましい。また、接着剤19中に乾燥剤を分散させておいてもよい。 In addition, the organic material which comprises the organic EL element 100 may deteriorate by heat processing. For this reason, the adhesive 19 is preferably one that can be adhesively cured from room temperature (25 ° C.) to 80 ° C. Further, a desiccant may be dispersed in the adhesive 19.
 封止材17と透明基板13との接着部分への接着剤19の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 Application of the adhesive 19 to the bonding portion between the sealing material 17 and the transparent substrate 13 may be performed using a commercially available dispenser or may be printed like screen printing.
 また、板状の封止材17と透明基板13と接着剤19との間に隙間が形成される場合、この間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。 In addition, when a gap is formed between the plate-shaped sealing material 17, the transparent substrate 13, and the adhesive 19, in this gap, in the gas phase and the liquid phase, an inert gas such as nitrogen or argon or a fluorine is used. It is preferable to inject an inert liquid such as activated hydrocarbon or silicon oil. A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside.
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
 一方、封止材17として封止膜を用いる場合、有機EL素子100における有機機能層3を完全に覆い、かつ有機EL素子100における透明電極1及び対向電極5aの端子部分を露出させる状態で、透明基板13上に封止膜が設けられる。 On the other hand, when a sealing film is used as the sealing material 17, the organic functional layer 3 in the organic EL element 100 is completely covered and the terminal portions of the transparent electrode 1 and the counter electrode 5a in the organic EL element 100 are exposed. A sealing film is provided on the transparent substrate 13.
 このような封止膜は、無機材料や有機材料を用いて構成される。特に、水分や酸素等、有機EL素子100における有機機能層3の劣化をもたらす物質の浸入を抑制する機能を有する材料で構成されることとする。このような材料として、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等の無機材料が用いられる。さらに、封止膜の脆弱性を改良するために、これら無機材料からなる膜とともに、有機材料からなる膜を用いて積層構造としてもよい。 Such a sealing film is composed of an inorganic material or an organic material. In particular, it is made of a material having a function of suppressing entry of a substance that causes deterioration of the organic functional layer 3 in the organic EL element 100 such as moisture and oxygen. As such a material, for example, inorganic materials such as silicon oxide, silicon dioxide, and silicon nitride are used. Furthermore, in order to improve the brittleness of the sealing film, a laminated structure may be formed by using a film made of an organic material together with a film made of these inorganic materials.
 これらの膜の作製方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 The method for producing these films is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
 (保護膜、保護板)
 透明基板13とともに、有機EL素子100及び封止材17を挟むようにして保護膜若しくは保護板を設けてもよい。この保護膜若しくは保護板は、有機EL素子100を機械的に保護するためのものであり、特に封止材17が封止膜である場合には、有機EL素子100に対する機械的な保護が十分ではないため、このような保護膜若しくは保護板を設けることが好ましい。
(Protective film, protective plate)
A protective film or a protective plate may be provided so as to sandwich the organic EL element 100 and the sealing material 17 together with the transparent substrate 13. This protective film or protective plate is for mechanically protecting the organic EL element 100, and in particular when the sealing material 17 is a sealing film, sufficient mechanical protection is provided for the organic EL element 100. Therefore, it is preferable to provide such a protective film or protective plate.
 以上のような保護膜若しくは保護板としては、ガラス板、ポリマー板、これよりも薄型のポリマーフィルム、金属板、これよりも薄型の金属フィルム、又はポリマー材料膜や金属材料膜が適用される。特に、軽量かつ薄膜化ということから、ポリマーフィルムを用いることが好ましい。 As the above protective film or protective plate, a glass plate, a polymer plate, a thinner polymer film, a metal plate, a thinner metal film, a polymer material film or a metal material film is applied. In particular, it is preferable to use a polymer film because it is lightweight and thin.
 <有機EL素子の製造方法>
 ここでは一例として、図2に示す有機EL素子100の製造方法について説明する。
<Method for producing organic EL element>
Here, as an example, a method for manufacturing the organic EL element 100 shown in FIG. 2 will be described.
 まず、透明基板13上に、一般式(2)及び一般式(3)のいずれか一つで表される構造を有する化合物を含有する中間層1aを、1μm以下、好ましくは10~100nmの層厚になるように蒸着法等の適宜の方法により形成する。次に、銀(又は銀を含有する合金)を主成分とする導電性層1bを5~20nmの範囲内、好ましくは8~12nmの範囲内の層厚になるように蒸着法等の適宜の方法により中間層1a上に形成し、アノードとなる透明電極1を作製する。 First, an intermediate layer 1a containing a compound having a structure represented by any one of the general formula (2) and the general formula (3) is formed on the transparent substrate 13 with a thickness of 1 μm or less, preferably 10 to 100 nm. It forms by appropriate methods, such as a vapor deposition method, so that it may become thick. Next, the conductive layer 1b containing silver (or an alloy containing silver) as a main component has a layer thickness within a range of 5 to 20 nm, preferably within a range of 8 to 12 nm. A transparent electrode 1 which is formed on the intermediate layer 1a by the method and serves as an anode is produced.
 次に、この上に正孔注入層3a、正孔輸送層3b、発光層3c、電子輸送層3d、電子注入層3eの順に成膜し、有機機能層3を形成する。これらの各層の成膜は、スピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、真空蒸着法又はスピンコート法が特に好ましい。さらに、層ごとに異なる成膜法を適用してもよい。これらの各層の成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度1×10-6~1×10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、層厚0.1~5μmの範囲内で、各条件を適宜選択することが望ましい。 Next, a hole injection layer 3a, a hole transport layer 3b, a light emitting layer 3c, an electron transport layer 3d, and an electron injection layer 3e are formed in this order on this, and the organic functional layer 3 is formed. The film formation of each of these layers includes spin coating, casting, ink jet, vapor deposition, and printing, but vacuum vapor deposition is easy because a homogeneous film is easily obtained and pinholes are difficult to generate. The method or spin coating method is particularly preferred. Further, different film formation methods may be applied for each layer. When a vapor deposition method is employed for forming each of these layers, the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C. and a degree of vacuum of 1 × 10 −6 to 1 × 10 −2 It is desirable to appropriately select each condition within the ranges of Pa, vapor deposition rate of 0.01 to 50 nm / second, substrate temperature of −50 to 300 ° C., and layer thickness of 0.1 to 5 μm.
 以上のようにして有機機能層3を形成した後、この上部にカソードとなる対向電極5aを、蒸着法やスパッタ法等の適宜の成膜法によって形成する。この際、対向電極5aは、有機機能層3によって透明電極1に対して絶縁状態を保ちつつ、有機機能層3の上方から透明基板13の周縁に端子部分を引き出した形状にパターン形成する。これにより、有機EL素子100が得られる。その後には、有機EL素子100における透明電極1及び対向電極5aの端子部分を露出させた状態で、少なくとも有機機能層3を覆う封止材17を設ける。 After forming the organic functional layer 3 as described above, the counter electrode 5a serving as the cathode is formed on the upper portion by an appropriate film forming method such as a vapor deposition method or a sputtering method. At this time, the counter electrode 5 a is patterned in a shape in which a terminal portion is drawn from the upper side of the organic functional layer 3 to the periphery of the transparent substrate 13 while being kept insulated from the transparent electrode 1 by the organic functional layer 3. Thereby, the organic EL element 100 is obtained. Thereafter, the sealing material 17 that covers at least the organic functional layer 3 is provided in a state where the terminal portions of the transparent electrode 1 and the counter electrode 5a in the organic EL element 100 are exposed.
 以上により、透明基板13上に所望の有機EL素子が得られる。このような有機EL素子100の作製においては、一回の真空引きで一貫して有機機能層3から対向電極5aまで作製するのが好ましいが、途中で真空雰囲気から透明基板13を取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。 Thus, a desired organic EL element is obtained on the transparent substrate 13. In the production of such an organic EL element 100, it is preferable that the organic functional layer 3 is consistently produced from the counter electrode 5a by a single evacuation. However, the transparent substrate 13 is taken out from the vacuum atmosphere in the middle to perform different formations. A film method may be applied. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
 このようにして得られた有機EL素子100に直流電圧を印加する場合には、アノードである透明電極1を+の極性とし、カソードである対向電極5aを-の極性として、電圧2~40V程度を印加すると発光が観測できる。また、交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。 When a DC voltage is applied to the organic EL element 100 thus obtained, the transparent electrode 1 as an anode has a positive polarity and the counter electrode 5a as a cathode has a negative polarity, and the voltage is about 2 to 40V. Luminescence can be observed by applying. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.
 <有機EL素子の効果>
 以上説明した有機EL素子100は、本発明の光透過性と導電性とを兼ね備えた透明電極1をアノードとして用い、この上部に有機機能層3とカソードとなる対向電極5aとを設けた構成である。このため、透明電極1と対向電極5aとの間に十分な電圧を印加して有機EL素子100での高輝度発光を実現しつつ、透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。
<Effect of organic EL element>
The organic EL element 100 described above has a configuration in which the transparent electrode 1 having both light transmittance and conductivity according to the present invention is used as an anode, and an organic functional layer 3 and a counter electrode 5a serving as a cathode are provided thereon. is there. For this reason, the extraction efficiency of the emitted light h from the transparent electrode 1 side is improved while applying a sufficient voltage between the transparent electrode 1 and the counter electrode 5a to realize high luminance light emission in the organic EL element 100. Therefore, it is possible to increase the luminance. Further, it is possible to improve the light emission life by reducing the drive voltage for obtaining a predetermined luminance.
 ≪4.有機EL素子の第2例≫
 <有機EL素子の構成>
 図3は、本発明の電子デバイスの一例として、上述した透明電極1を用いた有機EL素子の第2例を示す概略断面図である。図3に示す第2例の有機EL素子200が、図2に示した第1例の有機EL素子100と異なるところは、透明電極1をカソードとして用いるところにある。
 以下、第1例と同様の構成要素についての重複する詳細な説明は省略し、第2例の有機EL素子200の特徴的な構成を説明する。
<< 4. Second example of organic EL element >>
<Configuration of organic EL element>
FIG. 3 is a schematic cross-sectional view showing a second example of an organic EL element using the transparent electrode 1 described above as an example of the electronic device of the present invention. The organic EL element 200 of the second example shown in FIG. 3 is different from the organic EL element 100 of the first example shown in FIG. 2 in that the transparent electrode 1 is used as a cathode.
Hereinafter, a detailed description of the same components as those in the first example will be omitted, and a characteristic configuration of the organic EL element 200 in the second example will be described.
 図3に示すとおり、有機EL素子200は、透明基板13上に設けられており、第1例と同様に、透明基板13上の透明電極1として先に説明した本発明の透明電極1を用いている。このため有機EL素子200は、少なくとも透明基板13側から発光光hを取り出せるように構成されている。ただし、この透明電極1は、カソード(陰極)として用いられる。このため、対向電極5bは、アノードとして用いられることになる。 As shown in FIG. 3, the organic EL element 200 is provided on the transparent substrate 13, and the transparent electrode 1 of the present invention described above is used as the transparent electrode 1 on the transparent substrate 13 as in the first example. ing. For this reason, the organic EL element 200 is configured to extract the emitted light h from at least the transparent substrate 13 side. However, the transparent electrode 1 is used as a cathode (cathode). For this reason, the counter electrode 5b is used as an anode.
 このように構成される有機EL素子200の層構造は以下に説明する例に限定されることはなく、一般的な層構造であってもよいことは、第1例と同様である。 The layer structure of the organic EL element 200 configured as described above is not limited to the example described below, and may be a general layer structure as in the first example.
 第2例の場合の一例としては、カソードとして機能する透明電極1の上部に、電子注入層3e/電子輸送層3d/発光層3c/正孔輸送層3b/正孔注入層3aをこの順に積層した構成が例示される。ただし、このうち少なくとも有機材料で構成された発光層3cを有することが必須である。 As an example of the second example, an electron injection layer 3e / electron transport layer 3d / light emitting layer 3c / hole transport layer 3b / hole injection layer 3a are laminated in this order on the transparent electrode 1 functioning as a cathode. The configuration is exemplified. However, it is essential to have at least the light emitting layer 3c made of an organic material.
 なお、有機機能層3は、これらの層の他にも、第1例で説明したのと同様に、必要に応じたさまざまな構成が採用される。このような構成において、透明電極1と対向電極5bとで有機機能層3が挟持された部分のみが、有機EL素子200における発光領域となることも第1例と同様である。 In addition to these layers, the organic functional layer 3 adopts various configurations as required in the same manner as described in the first example. In such a configuration, only the portion where the organic functional layer 3 is sandwiched between the transparent electrode 1 and the counter electrode 5 b becomes the light emitting region in the organic EL element 200 as in the first example.
 また、以上のような層構成においては、透明電極1の低抵抗化を図ることを目的として、透明電極1の導電性層1bに接して補助電極15が設けられていてもよいことも、第1例と同様である。 In the layer structure as described above, the auxiliary electrode 15 may be provided in contact with the conductive layer 1b of the transparent electrode 1 for the purpose of reducing the resistance of the transparent electrode 1. The same as in the example.
 ここで、アノードとして用いられる対向電極5bは、金属、合金、有機若しくは無機の導電性化合物、又はこれらの混合物等から構成されている。具体的には、金(Au)等の金属、ヨウ化銅(CuI)、ITO、ZnO、TiO、SnO等の酸化物半導体等が挙げられる。 Here, the counter electrode 5b used as the anode is composed of a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof. Specific examples include metals such as gold (Au), oxide semiconductors such as copper iodide (CuI), ITO, ZnO, TiO 2 , and SnO 2 .
 以上のように構成されている対向電極5bは、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより作製することができる。
 また、対向電極5bとしてのシート抵抗値は、数百Ω/□以下が好ましく、膜厚は通常5nm~5μm、好ましくは5~200nmの範囲内で選ばれる。
The counter electrode 5b configured as described above can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering.
Further, the sheet resistance value as the counter electrode 5b is preferably several hundred Ω / □ or less, and the film thickness is usually selected within the range of 5 nm to 5 μm, preferably 5 to 200 nm.
 なお、この有機EL素子200が、対向電極5b側からも発光光hを取り出せるように構成されている場合、対向電極5bを構成する材料としては、上述した導電性材料のうち光透過性の良好な導電性材料が選択されて用いられる。 In addition, when this organic EL element 200 is comprised so that emitted light h can be taken out also from the counter electrode 5b side, as a material which comprises the counter electrode 5b, favorable light transmittance is mentioned among the electrically conductive materials mentioned above. A suitable conductive material is selected and used.
 以上のような構成の有機EL素子200は、有機機能層3の劣化を防止することを目的として、第1例と同様に封止材17で封止されている。 The organic EL element 200 having the above configuration is sealed with the sealing material 17 in the same manner as in the first example for the purpose of preventing the organic functional layer 3 from being deteriorated.
 以上説明した有機EL素子200を構成する主要各層のうち、アノードとして用いられる対向電極5b以外の構成要素の詳細な構成、及び有機EL素子200の製造方法は、第1例と同様である。このため、詳細な説明は省略する。 Among the main layers constituting the organic EL element 200 described above, the detailed structure of the constituent elements other than the counter electrode 5b used as the anode and the method for manufacturing the organic EL element 200 are the same as in the first example. For this reason, detailed description is omitted.
 <有機EL素子の効果>
 以上説明した有機EL素子200は、本発明の光透過性と導電性とを兼ね備えた透明電極1をカソードとして用い、この上部に有機機能層3とアノードとなる対向電極5bとを設けた構成である。このため、第1例と同様に、透明電極1と対向電極5bとの間に十分な電圧を印加して有機EL素子200での高輝度発光を実現しつつ、透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。
<Effect of organic EL element>
The organic EL element 200 described above has a configuration in which the transparent electrode 1 having both light transmittance and conductivity according to the present invention is used as a cathode, and an organic functional layer 3 and a counter electrode 5b serving as an anode are provided thereon. is there. For this reason, as in the first example, a sufficient voltage is applied between the transparent electrode 1 and the counter electrode 5b to realize high-luminance light emission in the organic EL element 200, and light emitted from the transparent electrode 1 side. It is possible to increase the luminance by improving the extraction efficiency of h. Further, it is possible to improve the light emission life by reducing the drive voltage for obtaining a predetermined luminance.
 ≪5.有機EL素子の第3例≫
 <有機EL素子の構成>
 図4は、本発明の電子デバイスの一例として、上述した透明電極1を用いた有機EL素子の第3例を示す概略断面図である。図4に示す第3例の有機EL素子300が、図2に示した第1例の有機EL素子100と異なるところは、基板131側に対向電極5cを設け、この上部に有機機能層3と透明電極1とをこの順に積層したところにある。
 以下、第1例と同様の構成要素についての重複する詳細な説明は省略し、第3例の有機EL素子300の特徴的な構成を説明する。
≪5. Third example of organic EL element >>
<Configuration of organic EL element>
FIG. 4 is a schematic cross-sectional view showing a third example of the organic EL element using the transparent electrode 1 described above as an example of the electronic device of the present invention. The organic EL element 300 of the third example shown in FIG. 4 is different from the organic EL element 100 of the first example shown in FIG. 2 in that the counter electrode 5c is provided on the substrate 131 side, and the organic functional layer 3 and It is in the place which laminated | stacked the transparent electrode 1 in this order.
Hereinafter, the detailed description of the same components as those in the first example will be omitted, and the characteristic configuration of the organic EL element 300 in the third example will be described.
 図4に示す有機EL素子300は、基板131上に設けられており、基板131側から、アノードとなる対向電極5c、有機機能層3、及びカソードとなる透明電極1がこの順に積層されている。このうち、透明電極1として、先に説明した本発明の透明電極1を用いている。このため、有機EL素子300は、少なくとも基板131とは逆の透明電極1側から発光光hを取り出せるように構成されている。 The organic EL element 300 shown in FIG. 4 is provided on a substrate 131, and the counter electrode 5c serving as an anode, the organic functional layer 3, and the transparent electrode 1 serving as a cathode are laminated in this order from the substrate 131 side. . Among these, the transparent electrode 1 of the present invention described above is used as the transparent electrode 1. For this reason, the organic EL element 300 is configured to extract the emitted light h from at least the transparent electrode 1 side opposite to the substrate 131.
 このように構成される有機EL素子300の層構造は、以下に説明する例に限定されることはなく、一般的な層構造であってもよいことは第1例と同様である。 The layer structure of the organic EL element 300 configured as described above is not limited to the example described below, and may be a general layer structure as in the first example.
 第3例の場合の一例としては、アノードとして機能する対向電極5cの上部に、正孔注入層3a/正孔輸送層3b/発光層3c/電子輸送層3dをこの順に積層した構成が例示される。ただし、このうち少なくとも有機材料を用いて構成された発光層3cを有することが必須である。また、電子輸送層3dは、電子注入層3eを兼ねたもので、電子注入性を有する電子輸送層3dとして設けられていることとする。 An example of the case of the third example is a configuration in which a hole injection layer 3a / a hole transport layer 3b / a light emitting layer 3c / an electron transport layer 3d are stacked in this order on the counter electrode 5c functioning as an anode. The However, it is essential to have at least the light emitting layer 3c configured using an organic material. The electron transport layer 3d also serves as the electron injection layer 3e, and is provided as an electron transport layer 3d having electron injection properties.
 特に、第3例の有機EL素子300に特徴的な構成としては、電子注入性を有する電子輸送層3dが、透明電極1における中間層1aとして設けられているところにある。すなわち、第3例においては、カソードとして用いられる透明電極1が、電子注入性を有する電子輸送層3dを兼ねる中間層1aと、その上部に設けられた導電性層1bとで構成されているものである。 In particular, the characteristic structure of the organic EL element 300 of the third example is that an electron transport layer 3d having electron injection properties is provided as the intermediate layer 1a in the transparent electrode 1. That is, in the third example, the transparent electrode 1 used as a cathode is composed of an intermediate layer 1a also serving as an electron transport layer 3d having electron injection properties, and a conductive layer 1b provided on the intermediate layer 1a. It is.
 このような電子輸送層3dは、上述した透明電極1の中間層1aを構成する材料を用いて構成されている。 Such an electron transport layer 3d is configured by using the material constituting the intermediate layer 1a of the transparent electrode 1 described above.
 なお、有機機能層3は、これらの層の他にも、第1例で説明したものと同様に、必要に応じたさまざまな構成が採用されるが、透明電極1の中間層1aを兼ねる電子輸送層3dと、透明電極1の導電性層1bとの間には、電子注入層や正孔阻止層が設けられることはない。以上のような構成において、透明電極1と対向電極5cとで有機機能層3が挟持された部分のみが、有機EL素子300における発光領域となることは、第1例と同様である。 In addition to these layers, the organic functional layer 3 employs various configurations as necessary, as described in the first example. However, the electron serving as the intermediate layer 1a of the transparent electrode 1 is also used. No electron injection layer or hole blocking layer is provided between the transport layer 3d and the conductive layer 1b of the transparent electrode 1. In the above configuration, only the portion where the organic functional layer 3 is sandwiched between the transparent electrode 1 and the counter electrode 5c becomes the light emitting region in the organic EL element 300, as in the first example.
 また、以上のような層構成においては、透明電極1の低抵抗化を図ることを目的とし、透明電極1の導電性層1bに接して補助電極15が設けられていてもよいことも、第1例と同様である。 In the layer structure as described above, the auxiliary electrode 15 may be provided in contact with the conductive layer 1b of the transparent electrode 1 for the purpose of reducing the resistance of the transparent electrode 1. The same as in the example.
 さらに、アノードとして用いられる対向電極5cは、金属、合金、有機若しくは無機の導電性化合物、又はこれらの混合物等から構成されている。具体的には、銀(Ag)、金(Au)等の金属、ヨウ化銅(CuI)、ITO、ZnO、TiO、SnO等の酸化物半導体等が挙げられる。 Furthermore, the counter electrode 5c used as the anode is composed of a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof. Specific examples include metals such as silver (Ag) and gold (Au), and oxide semiconductors such as copper iodide (CuI), ITO, ZnO, TiO 2 and SnO 2 .
 以上のように構成されている対向電極5cは、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより作製することができる。
 また、対向電極5cとしてのシート抵抗値は、数百Ω/□以下が好ましく、膜厚は通常5nm~5μm、好ましくは5~200nmの範囲で選ばれる。
The counter electrode 5c configured as described above can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering.
Further, the sheet resistance value as the counter electrode 5c is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 5 nm to 5 μm, preferably 5 to 200 nm.
 なお、この有機EL素子300が、対向電極5c側からも発光光hを取り出せるように構成されている場合、対向電極5cを構成する材料としては、上述した導電性材料のうち光透過性の良好な導電性材料が選択されて用いられる。またこの場合、基板131としては、第1例で説明した透明基板13と同様のものが用いられ、基板131の外側に向かう面が光取り出し面131aとなる。 In addition, when this organic EL element 300 is comprised so that the emitted light h can be taken out also from the counter electrode 5c side, as a material which comprises the counter electrode 5c, light transmittance is favorable among the electrically conductive materials mentioned above. A suitable conductive material is selected and used. In this case, the substrate 131 is the same as the transparent substrate 13 described in the first example, and the surface facing the outside of the substrate 131 is the light extraction surface 131a.
 <有機EL素子の効果>
 以上説明した有機EL素子300は、有機機能層3の最上部を構成する電子注入性を有する電子輸送層3dを中間層1aとし、この上部に導電性層1bを設けることにより、中間層1aと導電性層1bとからなる透明電極1をカソードとして設けた構成である。このため、第1例及び第2例と同様に、透明電極1と対向電極5cとの間に十分な電圧を印加して有機EL素子300での高輝度発光を実現しつつ、透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。また、対向電極5cが光透過性を有する場合には、対向電極5cからも発光光hを取り出すことができる。
<Effect of organic EL element>
In the organic EL element 300 described above, the electron transport layer 3d having the electron injecting property constituting the uppermost part of the organic functional layer 3 is used as the intermediate layer 1a, and the conductive layer 1b is provided on the intermediate layer 1a. The transparent electrode 1 composed of the conductive layer 1b is provided as a cathode. Therefore, similarly to the first example and the second example, a sufficient voltage is applied between the transparent electrode 1 and the counter electrode 5c to realize high-luminance light emission in the organic EL element 300, while the transparent electrode 1 side. It is possible to increase the luminance by improving the extraction efficiency of the emitted light h from the light source. Further, it is possible to improve the light emission life by reducing the drive voltage for obtaining a predetermined luminance. Further, when the counter electrode 5c is light transmissive, the emitted light h can be extracted from the counter electrode 5c.
 なお、上述の第3例においては、透明電極1の中間層1aが電子注入性を有する電子輸送層3dを兼ねているものとして説明したが、本例はこれに限られるものではなく、中間層1aが電子注入性を有していない電子輸送層3dを兼ねているものであってもよいし、中間層1aが電子輸送層ではなく電子注入層を兼ねているものであってもよい。また、中間層1aが有機EL素子の発光機能に影響を及ぼさない程度の極薄膜として形成されているものとしてもよく、この場合には、中間層1aは電子輸送性及び電子注入性を有していない。 In the third example described above, the intermediate layer 1a of the transparent electrode 1 has been described as also serving as the electron transport layer 3d having electron injection properties. However, the present example is not limited to this, and the intermediate layer 1a may also serve as an electron transport layer 3d that does not have electron injection properties, or the intermediate layer 1a may serve as an electron injection layer instead of an electron transport layer. In addition, the intermediate layer 1a may be formed as an extremely thin film that does not affect the light emitting function of the organic EL element. In this case, the intermediate layer 1a has electron transport properties and electron injection properties. Not.
 さらに、透明電極1の中間層1aが有機EL素子の発光機能に影響を及ぼさない程度の極薄膜として形成されている場合には、基板131側の対向電極5cをカソードとし、有機機能層3上の透明電極1をアノードとしてもよい。この場合、有機機能層3は、基板131上の対向電極(カソード)5c側から順に、例えば、電子注入層3e/電子輸送層3d/発光層3c/正孔輸送層3b/正孔注入層3aが積層される。そして、この上部に極薄い中間層1aと導電性層1bとの積層構造からなる透明電極1が、アノードとして設けられる。 Further, when the intermediate layer 1a of the transparent electrode 1 is formed as an extremely thin film that does not affect the light emitting function of the organic EL element, the counter electrode 5c on the substrate 131 side is used as a cathode, The transparent electrode 1 may be an anode. In this case, the organic functional layer 3 is, for example, in order from the counter electrode (cathode) 5c side on the substrate 131, for example, an electron injection layer 3e / electron transport layer 3d / light emitting layer 3c / hole transport layer 3b / hole injection layer 3a. Are stacked. And the transparent electrode 1 which consists of a laminated structure of the ultra-thin intermediate | middle layer 1a and the electroconductive layer 1b is provided in this upper part as an anode.
 ≪6.有機EL素子の用途≫
 上述した各構成の有機EL素子は、上述したように面発光体であるため各種の発光光源として用いることができる。例えば、家庭用照明や車内照明等の照明装置、時計や液晶用のバックライト、看板広告用照明、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる。特に、カラーフィルターと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
≪6. Applications of organic EL elements >>
Since the organic EL elements having the above-described configurations are surface light emitters as described above, they can be used as various light emission sources. For example, lighting devices such as home lighting and interior lighting, backlights for watches and liquid crystals, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, Examples include a light source of an optical sensor. In particular, it can be effectively used for a backlight of a liquid crystal display device combined with a color filter and a light source for illumination.
 また、本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。この場合、近年の照明装置及びディスプレイの大型化にともない、有機EL素子を設けた発光パネル同士を平面的に接合する、いわゆるタイリングによって発光面を大面積化してもよい。 Further, the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image. It may be used as a display device (display). In this case, with the recent increase in the size of lighting devices and displays, the light emitting surface may be enlarged by so-called tiling, in which light emitting panels provided with organic EL elements are joined together in a plane.
 動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。また、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、カラー又はフルカラー表示装置を作製することが可能である。 The drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method. In addition, a color or full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
 以下では、用途の一例として照明装置について説明し、次にタイリングによって発光面を大面積化した照明装置について説明する。 In the following, a lighting device will be described as an example of the application, and then a lighting device having a light emitting surface enlarged by tiling will be described.
 ≪7.照明装置-1≫
 本発明に係る照明装置は、上記有機EL素子を具備することができる。
≪7. Lighting device-1 >>
The lighting device according to the present invention can include the organic EL element.
 本発明に係る照明装置に用いる有機EL素子は、上述した構成の各有機EL素子に共振器構造を持たせた設計としてもよい。共振器構造を有するように構成された有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。 The organic EL element used in the lighting device according to the present invention may be designed such that each organic EL element having the above-described configuration has a resonator structure. The purpose of use of the organic EL element configured to have a resonator structure includes a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, etc. It is not limited to. Moreover, you may use for the said use by making a laser oscillation.
 なお、本発明の有機EL素子に用いられる材料は、実質的に白色の発光を生じる有機EL素子(白色有機EL素子)に適用できる。例えば、複数の発光材料により複数の発光色を同時に発光させて、混色により白色発光を得ることもできる。複数の発光色の組み合わせとしては、赤色、緑色、青色の三原色の三つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した二つの発光極大波長を含有したものでもよい。 In addition, the material used for the organic EL element of this invention is applicable to the organic EL element (white organic EL element) which produces substantially white light emission. For example, a plurality of luminescent colors can be simultaneously emitted by a plurality of luminescent materials, and white light emission can be obtained by mixing colors. As a combination of a plurality of emission colors, those containing the three emission maximum wavelengths of the three primary colors of red, green and blue may be used, or two emission using the complementary colors such as blue and yellow, blue green and orange, etc. It may contain a maximum wavelength.
 また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光又は蛍光で発光する材料を複数組み合わせたもの、蛍光又はリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、白色有機EL素子においては、発光ドーパントを複数組み合わせて混合したものでもよい。 In addition, a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and excitation of light from the light emitting materials. Any combination with a pigment material that emits light as light may be used, but in a white organic EL element, a combination of a plurality of light-emitting dopants may be used.
 このような白色有機EL素子は、各色発光の有機EL素子をアレー状に個別に並列配置して白色発光を得る構成と異なり、有機EL素子自体が白色を発光する。このため、素子を構成するほとんどの層の成膜にマスクを必要とせず、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で成膜することができ、生産性も向上する。 Such a white organic EL element is different from a configuration in which organic EL elements emitting each color are individually arranged in parallel to obtain white light emission, and the organic EL element itself emits white light. For this reason, a mask is not required for film formation of most layers constituting the element, and deposition can be performed on one side by vapor deposition, casting, spin coating, ink jet, printing, etc., and productivity is also improved. To do.
 また、このような白色有機EL素子の発光層に用いる発光材料としては、特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、上記した金属錯体や公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。 Moreover, there is no restriction | limiting in particular as a light emitting material used for the light emitting layer of such a white organic EL element, For example, if it is a backlight in a liquid crystal display element, it will fit in the wavelength range corresponding to CF (color filter) characteristic. As described above, any one of the above-described metal complexes and known light-emitting materials may be selected and combined to be whitened.
 以上に説明した白色有機EL素子を用いれば、実質的に白色の発光を生じる照明装置を作製することが可能である。 If the white organic EL element described above is used, it is possible to produce a lighting device that emits substantially white light.
 ≪8.照明装置-2≫
 図5は、上記各構成の有機EL素子を複数用いて発光面を大面積化した照明装置の概略断面図である。
 図5に示すとおり、照明装置21は、透明基板13上に有機EL素子100を備えた複数の発光パネル22を、支持基板23上に複数配列する(タイリングする)ことによって発光面を大面積化した構成である。支持基板23は、封止材17を兼ねるものであってもよく、この支持基板23と、発光パネル22の透明基板13との間に有機EL素子100を挟持する状態で各発光パネル22をタイリングする。支持基板23と透明基板13との間には接着剤19を充填し、これによって有機EL素子100を封止してもよい。なお、発光パネル22の周囲には、アノードである透明電極1及びカソードである対向電極5aの端部を露出させておく。ただし、図5においては対向電極5aの露出部分のみを図示した。
 なお、図5では、有機EL素子100を構成する有機機能層3として、透明電極1上に、正孔注入層3a/正孔輸送層3b/発光層3c/電子輸送層3d/電子注入層3eを順次積層した構成を一例として示している。
≪8. Lighting device-2 >>
FIG. 5 is a schematic cross-sectional view of an illuminating device having a large light emitting surface using a plurality of organic EL elements having the above-described configurations.
As shown in FIG. 5, the illuminating device 21 has a light emitting surface having a large area by arranging a plurality of light emitting panels 22 including the organic EL elements 100 on the transparent substrate 13 on the support substrate 23 (tiling). This is a structured. The support substrate 23 may also serve as the sealing material 17, and each light-emitting panel 22 is tied with the organic EL element 100 sandwiched between the support substrate 23 and the transparent substrate 13 of the light-emitting panel 22. Ring. An adhesive 19 may be filled between the support substrate 23 and the transparent substrate 13, thereby sealing the organic EL element 100. In addition, the edge part of the transparent electrode 1 which is an anode, and the counter electrode 5a which is a cathode are exposed around the light emission panel 22. FIG. However, only the exposed part of the counter electrode 5a is shown in FIG.
In FIG. 5, as the organic functional layer 3 constituting the organic EL element 100, the hole injection layer 3a / the hole transport layer 3b / the light emitting layer 3c / the electron transport layer 3d / the electron injection layer 3e are formed on the transparent electrode 1. A configuration in which the layers are sequentially stacked is shown as an example.
 このような構成の照明装置21では、各発光パネル22の中央が発光領域Aとなり、発光パネル22間には非発光領域Bが発生する。このため、非発光領域Bからの光取り出し量を増加させるための光取り出し部材を、光取り出し面13aの非発光領域Bに設けてもよい。光取り出し部材としては、集光シートや光拡散シートを用いることができる。 In the lighting device 21 having such a configuration, the center of each light emitting panel 22 is a light emitting area A, and a non-light emitting area B is generated between the light emitting panels 22. For this reason, a light extraction member for increasing the light extraction amount from the non-light-emitting region B may be provided in the non-light-emitting region B of the light extraction surface 13a. As the light extraction member, a light collecting sheet or a light diffusion sheet can be used.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
 [実施例1]
 《透明電極の作製》
 以下に説明するように、透明電極101~108、110、115~121を、導電性領域の面積が5cm×5cmとなるように作製した。透明電極101~104は、導電性層のみからなる単層構造の透明電極として作製し、透明電極105~108、110、115~121は、中間層と導電性層との積層構造の透明電極として作製した。
[Example 1]
<< Preparation of transparent electrode >>
As described below, the transparent electrodes 101 to 108, 110, and 115 to 121 were fabricated so that the area of the conductive region was 5 cm × 5 cm. The transparent electrodes 101 to 104 are produced as single-layer transparent electrodes composed of only a conductive layer, and the transparent electrodes 105 to 108, 110, and 115 to 121 are laminated electrodes having a laminated structure of an intermediate layer and a conductive layer. Produced.
 (1)透明電極101の作製
 まず、透明な無アルカリガラス製の基板を、市販の真空蒸着装置の基板ホルダーに固定し、真空蒸着装置の真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を充填し、当該真空槽内に取り付けた。次に、真空槽を4×10-4Paまで減圧した後、抵抗加熱ボートを通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、基板上に層厚5nmの銀からなる導電性層を成膜し、単層構造の透明電極101を作製した。
(1) Production of transparent electrode 101 First, a transparent non-alkali glass substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus and attached to a vacuum chamber of the vacuum deposition apparatus. Moreover, the resistance heating boat made from tungsten was filled with silver (Ag), and was attached in the said vacuum chamber. Next, after reducing the vacuum chamber to 4 × 10 −4 Pa, the resistance heating boat was energized and heated, and the layer thickness was 5 nm on the substrate within the range of the deposition rate of 0.1 to 0.2 nm / second. A conductive layer made of silver was formed to produce a transparent electrode 101 having a single layer structure.
 (2)透明電極102~104の作製
 透明電極101の作製において、導電性層の層厚をそれぞれ8nm、10nm、15nmに変更した以外は同様にして、透明電極102~104を作製した。
(2) Production of transparent electrodes 102 to 104 Transparent electrodes 102 to 104 were produced in the same manner as the production of the transparent electrode 101 except that the thickness of the conductive layer was changed to 8 nm, 10 nm, and 15 nm, respectively.
 (3)透明電極105の作製
 透明な無アルカリガラス製の基板を市販の真空蒸着装置の基板ホルダーに固定し、下記に示すAlqをタンタル製抵抗加熱ボートに充填し、これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀を充填し、第2真空槽内に取り付けた。
(3) Production of transparent electrode 105 A transparent non-alkali glass substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, Alq 3 shown below is filled in a tantalum resistance heating boat, and these substrate holder and heating are performed. The boat was attached to the first vacuum chamber of the vacuum deposition apparatus. Moreover, the resistance heating boat made from tungsten was filled with silver, and it attached in the 2nd vacuum chamber.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 この状態で、まず、第1真空槽を4×10-4Paまで減圧した後、Alqの入った加熱ボートに通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、基板上に層厚30nmのAlqからなる中間層を設けた。 In this state, first, the first vacuum chamber was depressurized to 4 × 10 −4 Pa, and then heated by energizing a heating boat containing Alq 3 within a deposition rate range of 0.1 to 0.2 nm / second. Then, an intermediate layer made of Alq 3 having a layer thickness of 30 nm was provided on the substrate.
 次に、中間層まで成膜した基板を真空のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、層厚8nmの銀からなる導電性層を形成し、中間層と導電性層との積層構造からなる透明電極105を作製した。 Next, the substrate having been formed up to the intermediate layer was transferred to the second vacuum chamber in a vacuum, and after the second vacuum chamber was depressurized to 4 × 10 −4 Pa, the heating boat containing silver was energized and heated, A conductive layer made of silver having a layer thickness of 8 nm was formed at a deposition rate of 0.1 to 0.2 nm / second, and a transparent electrode 105 having a laminated structure of an intermediate layer and a conductive layer was produced.
 (4)透明電極106~108の作製
 透明電極105の作製において、中間層の構成材料をそれぞれ上記に示す比較化合物(1)、(2)及び(3)に変更した以外は同様にして、透明電極106~108を作製した。
(4) Preparation of transparent electrodes 106 to 108 In the preparation of transparent electrode 105, transparent materials were formed in the same manner except that the constituent materials of the intermediate layer were changed to the comparative compounds (1), (2) and (3) shown above Electrodes 106 to 108 were produced.
 (5)透明電極110の作製
 透明電極105の作製において、中間層の構成材料をI-1に変更した以外は同様にして、透明電極110を作製した。
(5) Production of transparent electrode 110 Transparent electrode 110 was produced in the same manner as in production of transparent electrode 105 except that the constituent material of the intermediate layer was changed to I-1.
 (6)透明電極115~118の作製
 透明電極110の作製において、中間層の構成材料を表2に記載の化合物に変更した以外は同様にして、透明電極115~118を作製した。
(6) Production of transparent electrodes 115 to 118 Transparent electrodes 115 to 118 were produced in the same manner as the production of the transparent electrode 110 except that the constituent material of the intermediate layer was changed to the compounds shown in Table 2.
 (7)透明電極119~121の作製
 透明電極116~118の作製において、基板を無アルカリガラスからPET(ポリエチレンテレフタレート)フィルムに変更した以外は同様にして、透明電極119~121を作製した。
(7) Production of transparent electrodes 119 to 121 Transparent electrodes 119 to 121 were produced in the same manner as the production of the transparent electrodes 116 to 118 except that the substrate was changed from a non-alkali glass to a PET (polyethylene terephthalate) film.
 《透明電極の評価》
 作製した透明電極101~108、110、115~121について、下記の方法に従い、光透過率、シート抵抗値及び高温保存下での光透過率変化(耐久性)の測定を行った。
<< Evaluation of transparent electrode >>
The produced transparent electrodes 101 to 108, 110, and 115 to 121 were measured for light transmittance, sheet resistance value, and light transmittance change (durability) under high temperature storage according to the following methods.
 (1)光透過率の測定
 作製した各透明電極について、分光光度計(日立製作所製U-3300)を用い、各透明電極の基板をリファレンスとして、測定光波長550nmにおける光透過率(%)を測定した。
 測定結果を表2に示す。
(1) Measurement of light transmittance For each of the produced transparent electrodes, a spectrophotometer (U-3300 manufactured by Hitachi, Ltd.) was used, and the light transmittance (%) at a measurement light wavelength of 550 nm was measured using the substrate of each transparent electrode as a reference. It was measured.
The measurement results are shown in Table 2.
 (2)シート抵抗値の測定
 作製した各透明電極について、抵抗率計(三菱化学社製MCP-T610)を用い、4探針法定電流印加方式でシート抵抗値(Ω/□)を測定した。
 測定結果を表2に示す。
(2) Measurement of sheet resistance value About each produced transparent electrode, sheet resistance value (ohm / square) was measured by the 4-probe method constant current application system using the resistivity meter (MCP-T610 by Mitsubishi Chemical Corporation).
The measurement results are shown in Table 2.
 (3)高温保存下での光透過率変化の測定
 作製した各透明電極について、温度80℃/相対湿度90%RH雰囲気において保存し、光透過率変化を測定した。具体的には、試験開始前に比較して、500時間経過後の光透過率変化を評価し、結果を表2に示した。光透過率は、分光光度計(日立製作所製U-3300)を用い、各透明電極の基板をリファレンスとして、測定光波長550nmにおける光透過率(%)を測定した。各透明電極の高温保存下での光透過率変化は、透明電極110の光透過率変化を100とする相対値で示している。
(3) Measurement of light transmittance change under high temperature storage Each of the produced transparent electrodes was stored in a temperature 80 ° C./relative humidity 90% RH atmosphere, and the light transmittance change was measured. Specifically, the change in light transmittance after the lapse of 500 hours was evaluated as compared with before the test was started, and the results are shown in Table 2. The light transmittance was measured using a spectrophotometer (U-3300, manufactured by Hitachi, Ltd.), with the substrate of each transparent electrode as a reference, and the light transmittance (%) at a measurement light wavelength of 550 nm. The change in light transmittance of each transparent electrode under high temperature storage is shown as a relative value with the change in light transmittance of the transparent electrode 110 as 100.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 (4)まとめ
 表2から明らかなように、蒸着により形成された中間層上に銀(Ag)を主成分とした導電性層を設けた本発明の透明電極115~121は、いずれも光透過率が72%以上であり、シート抵抗値が7.7Ω/□以下に抑えられている。これに対して、比較例の透明電極101~108は、光透過率が72%未満のものがあり、しかもシート抵抗値が7.7Ω/□を超える値を示した。
 また、耐久性(高温保存下での光透過率変化)においても、本発明の透明電極115~121が、比較例の透明電極101~108と比較して、変化が小さく、優れていることがわかる。
 また、PET(ポリエチレンテレフタレート)のような樹脂フィルムにおいても、本発明の化合物を中間層に用いることで、無アルカリガラスと同等の評価結果が得られたことから、基板によらず効果を発現することが確認できた。
(4) Summary As is clear from Table 2, the transparent electrodes 115 to 121 of the present invention in which the conductive layer mainly composed of silver (Ag) is provided on the intermediate layer formed by vapor deposition are all light transmissive. The rate is 72% or more, and the sheet resistance value is suppressed to 7.7Ω / □ or less. On the other hand, some of the transparent electrodes 101 to 108 of the comparative example had a light transmittance of less than 72%, and the sheet resistance value exceeded 7.7Ω / □.
Further, in terms of durability (change in light transmittance under high temperature storage), the transparent electrodes 115 to 121 of the present invention are smaller and excellent in comparison with the transparent electrodes 101 to 108 of the comparative example. Recognize.
In addition, even in a resin film such as PET (polyethylene terephthalate), by using the compound of the present invention for the intermediate layer, an evaluation result equivalent to that of non-alkali glass was obtained, so that the effect is exhibited regardless of the substrate. I was able to confirm.
 以上から、本発明の透明電極は、高い光透過率と導電性とを兼ね備え、更に耐久性に優れていることが確認された。 From the above, it was confirmed that the transparent electrode of the present invention has high light transmittance and conductivity, and is further excellent in durability.
 [実施例2]
 《透明電極の作製》
 以下に説明するように、透明電極201~207、212~217を、導電性領域の面積が5cm×5cmとなるように作製した。透明電極201及び202は、導電性層のみからなる単層構造の透明電極として作製し、透明電極203~207、212~217は、中間層と導電性層との積層構造の透明電極として作製した。
[Example 2]
<< Preparation of transparent electrode >>
As described below, the transparent electrodes 201 to 207 and 212 to 217 were produced so that the area of the conductive region was 5 cm × 5 cm. The transparent electrodes 201 and 202 were produced as transparent electrodes having a single layer structure consisting only of a conductive layer, and the transparent electrodes 203 to 207 and 212 to 217 were produced as transparent electrodes having a laminated structure of an intermediate layer and a conductive layer. .
 (1)透明電極201の作製
 透明な無アルカリガラス製の基材上に、導電性層材料として錯体銀からなるインクジェットインク(Ink Tec(株)製、TEC-IJ-010)0.1mLを、スピンコート法により塗布・パターニングした後、130℃で5分間焼成し、層厚12nmの銀からなる導電性層を形成し、単層構造の透明電極201を作製した。
(1) Production of transparent electrode 201 On a transparent non-alkali glass base material, 0.1 mL of inkjet ink (TEC-IJ-010, manufactured by Ink Tec Co., Ltd.) made of complex silver as a conductive layer material, After coating and patterning by spin coating, baking was performed at 130 ° C. for 5 minutes to form a conductive layer made of silver having a layer thickness of 12 nm, and a transparent electrode 201 having a single layer structure was produced.
 (2)透明電極202の作製
 透明電極201の作製において、導電性層の層厚を20nmに変更した以外は同様にして、透明電極202を作製した。
(2) Production of transparent electrode 202 Transparent electrode 202 was produced in the same manner as in production of transparent electrode 201 except that the thickness of the conductive layer was changed to 20 nm.
 (3)透明電極203の作製
 無アルカリガラス製の基材上に、Alqのトルエン溶液を用い、スピンコート法により薄膜を形成した。150℃で1時間加熱乾燥し、層厚50nmのAlqを含有する中間層を設けた。
(3) Preparation on an alkali-free glass substrate of the transparent electrode 203, using a toluene solution of Alq 3, a thin film was formed by spin coating. An intermediate layer containing Alq 3 having a layer thickness of 50 nm was provided by heating and drying at 150 ° C. for 1 hour.
 この中間層上に、導電性層材料として錯体銀からなるインクジェットインク(Ink Tec(株)製、TEC-IJ-010)0.1mLを、スピンコート法により塗布・パターニングした後、130℃で5分間焼成し、層厚12nmの銀からなる導電性層を形成し、中間層と導電性層との積層構造からなる透明電極203を作製した。 On this intermediate layer, 0.1 mL of inkjet ink (TEC-IJ-010, manufactured by Ink Tec Co., Ltd.) made of complex silver as a conductive layer material was applied and patterned by spin coating, and then 5 ° C. at 130 ° C. After baking for a minute, a conductive layer made of silver having a layer thickness of 12 nm was formed, and a transparent electrode 203 having a laminated structure of an intermediate layer and a conductive layer was produced.
 (4)透明電極204~206の作製
 透明電極203の作製において、中間層の構成材料を比較化合物(1)、(2)又は(3)に変更した以外は同様にして、透明電極204~206を作製した。
(4) Preparation of transparent electrodes 204 to 206 In the preparation of the transparent electrode 203, the transparent electrodes 204 to 206 were prepared in the same manner except that the constituent material of the intermediate layer was changed to the comparative compound (1), (2) or (3). Was made.
 (5)透明電極207の作製
 透明電極203の作製において、中間層の構成材料をI-2に変更した以外は同様にして、透明電極207を作製した。
(5) Production of transparent electrode 207 Transparent electrode 207 was produced in the same manner as in production of transparent electrode 203, except that the constituent material of the intermediate layer was changed to I-2.
 (6)透明電極212~214の作製
 透明電極207の作製において、中間層の構成材料を表3に記載の化合物に変更した以外は同様にして、透明電極212~214を作製した。
(6) Production of transparent electrodes 212 to 214 Transparent electrodes 212 to 214 were produced in the same manner as the production of the transparent electrode 207 except that the constituent material of the intermediate layer was changed to the compounds shown in Table 3.
 (7)透明電極215~217の作製
 透明電極212~214の作製において、基板を無アルカリガラスからPET(ポリエチレンテレフタレート)フィルムに変更した以外は同様にして、透明電極215~217を作製した。
(7) Production of transparent electrodes 215 to 217 Transparent electrodes 215 to 217 were produced in the same manner as the production of the transparent electrodes 212 to 214 except that the substrate was changed from a non-alkali glass to a PET (polyethylene terephthalate) film.
 《透明電極の評価》
 (1)光透過率、シート抵抗値及び高温保存下での光透過率変化の測定
 作製した透明電極201~207、212~217について、実施例1と同様にして、光透過率、シート抵抗値及び高温保存下での光透過率変化(耐久性)の測定を行った。高温保存下での光透過率変化の測定は、作製した各透明電極について、温度80℃/相対湿度90%RH雰囲気において保存し、光透過率変化を測定した。具体的には、試験開始前に比較して、300時間経過後の光透過率変化を評価し、結果を表3に示した。光透過率は、分光光度計(日立製作所製U-3300)を用い、各透明電極の基板をリファレンスとして、測定光波長550nmにおける光透過率(%)を測定した。各透明電極の高温保存下での光透過率変化は、実施例2の透明電極207の光透過率変化を100とする相対値で示している。
 結果を表3に示した。
<< Evaluation of transparent electrode >>
(1) Measurement of light transmittance, sheet resistance value and change in light transmittance under high temperature storage For the produced transparent electrodes 201 to 207 and 212 to 217, light transmittance and sheet resistance value were obtained in the same manner as in Example 1. And the change of light transmittance (durability) under high temperature storage was measured. The light transmittance change under high temperature storage was measured by storing each of the produced transparent electrodes in a temperature 80 ° C./relative humidity 90% RH atmosphere and measuring the light transmittance change. Specifically, the change in light transmittance after 300 hours was evaluated as compared to before the test was started, and the results are shown in Table 3. The light transmittance was measured by using a spectrophotometer (U-3300 manufactured by Hitachi, Ltd.) and measuring the light transmittance (%) at a measurement light wavelength of 550 nm using the substrate of each transparent electrode as a reference. The light transmittance change of each transparent electrode under high-temperature storage is shown as a relative value with the light transmittance change of the transparent electrode 207 of Example 2 as 100.
The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 (2)まとめ
 表3から明らかなように、塗布により形成された中間層上に銀(Ag)を主成分とした導電性層を設けた本発明の透明電極212~217は、いずれも光透過率が58%以上であり、シート抵抗値が8.7Ω/□以下に抑えられている。これに対して、比較例の透明電極201~206は、光透過率が37%以下であり、しかもシート抵抗値が8.7Ω/□を大きく超えて、197Ω/□以上であった。
 また、耐久性(高温保存下での光透過率変化)においても、本発明の透明電極212~217が、比較例の透明電極201~206と比較して、優れていることがわかる。
 また、PET(ポリエチレンテレフタレート)のような樹脂フィルムにおいても、本発明の化合物を中間層に用いることで、無アルカリガラスと同等の評価結果が得られたことから、基板によらず効果を発現することが確認できた。
(2) Summary As is clear from Table 3, the transparent electrodes 212 to 217 of the present invention in which the conductive layer mainly composed of silver (Ag) is provided on the intermediate layer formed by coating are all light transmissive. The rate is 58% or more, and the sheet resistance value is suppressed to 8.7Ω / □ or less. On the other hand, the transparent electrodes 201 to 206 of the comparative example had a light transmittance of 37% or less and a sheet resistance value greatly exceeding 8.7Ω / □ and 197Ω / □ or more.
It can also be seen that the transparent electrodes 212 to 217 of the present invention are superior to the transparent electrodes 201 to 206 of the comparative example in terms of durability (change in light transmittance under high temperature storage).
In addition, even in a resin film such as PET (polyethylene terephthalate), by using the compound of the present invention for the intermediate layer, an evaluation result equivalent to that of non-alkali glass was obtained, so that the effect is exhibited regardless of the substrate. I was able to confirm.
 以上から、本発明の透明電極は、高い光透過率と導電性とを兼ね備え、更に耐久性に優れていることが確認された。 From the above, it was confirmed that the transparent electrode of the present invention has high light transmittance and conductivity, and is further excellent in durability.
 [実施例3]
 《発光パネルの作製》
 本発明の透明電極をアノードとして用いた両面発光型の発光パネル401~408、410、416~421を作製した。以下、図6を参照して、作製手順を説明する。
[Example 3]
<Production of light emitting panel>
Double-sided light emitting panels 401 to 408, 410, and 416 to 421 using the transparent electrode of the present invention as an anode were manufactured. Hereinafter, the manufacturing procedure will be described with reference to FIG.
 (1)発光パネル401の作製
 まず、実施例1で作製した透明電極101、すなわち、導電性層1bのみを有する透明電極1が形成された透明基板13を、市販の真空蒸着装置の基板ホルダーに固定し、透明電極1の形成面側に蒸着マスクを対向配置した。また、真空蒸着装置内の加熱ボートの各々に、有機機能層3を構成する各材料を、それぞれの層の成膜に最適な量で充填した。なお、加熱ボートは、タングステン製抵抗加熱用材料で作製されたものを用いた。
(1) Production of Light-Emitting Panel 401 First, the transparent substrate 101 produced in Example 1, that is, the transparent substrate 13 on which the transparent electrode 1 having only the conductive layer 1b is formed is used as a substrate holder of a commercially available vacuum deposition apparatus. It fixed and the vapor deposition mask was opposingly arranged by the formation surface side of the transparent electrode 1. FIG. Moreover, each material which comprises the organic functional layer 3 was filled in each heating boat in a vacuum evaporation apparatus in the optimal quantity for film-forming of each layer. In addition, what was produced with the resistance heating material made from tungsten was used for the heating boat.
 次いで、真空蒸着装置の蒸着室内を真空度4×10-4Paまで減圧し、各材料が入った加熱ボートを順次通電して加熱することにより、以下のように各層を成膜した。 Next, the inside of the vapor deposition chamber of the vacuum vapor deposition apparatus was decompressed to a vacuum degree of 4 × 10 −4 Pa, and each layer was formed as follows by sequentially energizing and heating a heating boat containing each material.
 まず、正孔輸送注入材料として下記に示すα-NPDが入った加熱ボートに通電して加熱し、α-NPDよりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送注入層31を、透明電極1を構成する導電性層1b上に成膜した。この際、蒸着速度0.1~0.2nm/秒、層厚20nmとした。 First, a heating boat containing α-NPD shown below as a hole transport injecting material is energized and heated to form a hole transport injecting layer 31 serving as both a hole injecting layer and a hole transporting layer made of α-NPD. Was formed on the conductive layer 1 b constituting the transparent electrode 1. At this time, the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 20 nm.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 次いで、ホスト材料H4の入った加熱ボートと、リン光発光ドーパントIr-4の入った加熱ボートとを、それぞれ独立に通電し、ホスト材料H4とリン光発光ドーパントIr-4を含有する発光層3cを、正孔輸送注入層31上に成膜した。この際、蒸着速度がホスト材料H4:リン光発光ドーパントIr-4=100:6となるように、加熱ボートの通電を調節した。また、層厚は30nmとした。 Next, the heating boat containing the host material H4 and the heating boat containing the phosphorescent dopant Ir-4 are energized independently, and the light emitting layer 3c containing the host material H4 and the phosphorescent dopant Ir-4 is supplied. Was formed on the hole transport injection layer 31. At this time, the energization of the heating boat was adjusted so that the deposition rate was host material H4: phosphorescent dopant Ir-4 = 100: 6. The layer thickness was 30 nm.
 次いで、正孔阻止材料として下記に示すBAlqが入った加熱ボートに通電して加熱し、BAlqよりなる正孔阻止層33を、発光層3c上に成膜した。この際、蒸着速度0.1~0.2nm/秒、層厚10nmとした。 Next, a heating boat containing BAlq shown below as a hole blocking material was energized and heated to form a hole blocking layer 33 made of BAlq on the light emitting layer 3c. At this time, the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 10 nm.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 その後、電子輸送材料として下記に示すET-6の入った加熱ボートと、フッ化カリウムの入った加熱ボートとを、それぞれ独立に通電し、ET-6とフッ化カリウムを含有する電子輸送層3dを、正孔阻止層33上に成膜した。この際、蒸着速度がET-6:フッ化カリウム=75:25になるように、加熱ボートの通電を調節した。また、層厚30nmとした。 Thereafter, a heating boat containing ET-6 shown below as an electron transporting material and a heating boat containing potassium fluoride were energized independently, and an electron transport layer 3d containing ET-6 and potassium fluoride was supplied. Was formed on the hole blocking layer 33. At this time, the energization of the heating boat was adjusted so that the deposition rate was ET-6: potassium fluoride = 75: 25. The layer thickness was 30 nm.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 次に、電子注入材料としてフッ化カリウムの入った加熱ボートに通電して加熱し、フッ化カリウムよりなる電子注入層3eを、電子輸送層3d上に成膜した。この際、蒸着速度0.01~0.02nm/秒、層厚1nmとした。 Next, a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer 3e made of potassium fluoride on the electron transport layer 3d. At this time, the deposition rate was 0.01 to 0.02 nm / second, and the layer thickness was 1 nm.
 その後、電子注入層3eまで成膜した透明基板13を、真空蒸着装置の蒸着室から、対向電極材料としてITOのターゲットが取り付けられたスパッタ装置の処理室内に、真空状態を保持したまま移送した。次いで、処理室内において、成膜速度0.3~0.5nm/秒で、膜厚150nmのITOからなる光透過性の対向電極5aをカソードとして成膜した。以上により、透明基板13上に有機EL素子400を形成した。 Thereafter, the transparent substrate 13 formed up to the electron injection layer 3e was transferred from the vapor deposition chamber of the vacuum vapor deposition apparatus to the processing chamber of the sputtering apparatus to which an ITO target as a counter electrode material was attached while maintaining the vacuum state. Then, in the processing chamber, a film was formed at a film forming rate of 0.3 to 0.5 nm / second, and a light-transmitting counter electrode 5a made of ITO having a film thickness of 150 nm was formed as a cathode. As described above, the organic EL element 400 was formed on the transparent substrate 13.
 その後、有機EL素子400を、厚さ300μmのガラス基板からなる封止材17で覆い、有機EL素子400を囲む状態で、封止材17と透明基板13との間に接着剤19(シール材)を充填した。接着剤19としては、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を用いた。封止材17と透明基板13との間に充填した接着剤19に対して、ガラス基板(封止材17)側からUV光を照射し、接着剤19を硬化させて有機EL素子400を封止した。 Thereafter, the organic EL element 400 is covered with a sealing material 17 made of a glass substrate having a thickness of 300 μm, and the adhesive 19 (sealing material) is interposed between the sealing material 17 and the transparent substrate 13 so as to surround the organic EL element 400. ). As the adhesive 19, an epoxy photocurable adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) was used. The adhesive 19 filled between the sealing material 17 and the transparent substrate 13 is irradiated with UV light from the glass substrate (sealing material 17) side to cure the adhesive 19 and seal the organic EL element 400. Stopped.
 なお、有機EL素子400の形成においては、各層の形成に蒸着マスクを使用し、5cm×5cmの透明基板13における中央の4.5cm×4.5cmを発光領域Aとし、発光領域Aの全周に幅0.25cmの非発光領域Bを設けた。また、アノードである透明電極1とカソードである対向電極5aとは、正孔輸送注入層31から電子注入層3eまでの有機機能層3によって絶縁された状態で、透明基板13の周縁に端子部分を引き出された形状で形成した。 In forming the organic EL element 400, an evaporation mask is used for forming each layer, and the central 4.5 cm × 4.5 cm of the 5 cm × 5 cm transparent substrate 13 is defined as the light emitting region A, and the entire circumference of the light emitting region A is formed. A non-light emitting region B having a width of 0.25 cm was provided. Further, the transparent electrode 1 serving as the anode and the counter electrode 5a serving as the cathode are insulated by the organic functional layer 3 from the hole transport injection layer 31 to the electron injection layer 3e, and a terminal portion is provided on the periphery of the transparent substrate 13. Was formed in a drawn shape.
 以上のようにして、透明基板13上に有機EL素子400を設け、これを封止材17と接着剤19とで封止した発光パネル401を作製した。
 発光パネル401においては、発光層3cで発生した各色の発光光hが、透明電極1側すなわち透明基板13側と、対向電極5a側すなわち封止材17側との両方から取り出される。
As described above, the light emitting panel 401 in which the organic EL element 400 was provided on the transparent substrate 13 and sealed with the sealing material 17 and the adhesive 19 was manufactured.
In the light emitting panel 401, the emitted light h of each color generated in the light emitting layer 3c is extracted from both the transparent electrode 1 side, that is, the transparent substrate 13 side, and the counter electrode 5a side, that is, the sealing material 17 side.
 (2)発光パネル402~404の作製
 発光パネル401の作製において、導電性層1bの層厚をそれぞれ8nm(透明電極102)、10nm(透明電極103)、15nm(透明電極104)に変更した以外は同様にして、発光パネル402~404を作製した。
(2) Fabrication of light emitting panels 402 to 404 In fabricating the light emitting panel 401, the thickness of the conductive layer 1b was changed to 8 nm (transparent electrode 102), 10 nm (transparent electrode 103), and 15 nm (transparent electrode 104), respectively. Similarly, light emitting panels 402 to 404 were manufactured.
 (3)発光パネル405の作製
 発光パネル401の作製において、透明電極105を用いて作製した以外は同様にして、発光パネル405を作製した。
(3) Production of Light-Emitting Panel 405 A light-emitting panel 405 was produced in the same manner except that the light-emitting panel 401 was produced using the transparent electrode 105.
 (4)発光パネル406~408の作製
 発光パネル405の作製において、中間層1aの構成材料を比較化合物(1)、(2)又は(3)に変更した以外は同様にして、発光パネル406~408を作製した。
(4) Production of light-emitting panels 406 to 408 The light-emitting panels 406 to 408 were produced in the same manner except that the constituent material of the intermediate layer 1a was changed to the comparative compound (1), (2) or (3). 408 was produced.
 (5)発光パネル410の作製
 発光パネル405の作製において、中間層1aの構成材料をI-5に変更した以外は同様にして、発光パネル410を作製した。
(5) Production of Light-Emitting Panel 410 A light-emitting panel 410 was produced in the same manner as in the production of the light-emitting panel 405 except that the constituent material of the intermediate layer 1a was changed to I-5.
 (6)発光パネル416~418の作製
 発光パネル410の作製において、中間層1aの構成材料を表4に記載の化合物に変更した以外は同様にして、発光パネル416~418を作製した。
(6) Production of Light-Emitting Panels 416 to 418 Light-emitting panels 416 to 418 were produced in the same manner as the light-emitting panel 410 except that the constituent material of the intermediate layer 1a was changed to the compounds shown in Table 4.
 (7)発光パネル419~421の作製
 発光パネル416~418の作製において、基板を無アルカリガラスからPET(ポリエチレンテレフタレート)フィルムに変更した以外は同様にして、発光パネル419~421を作製した。
(7) Production of light emitting panels 419 to 421 Light emitting panels 419 to 421 were produced in the same manner as the light emitting panels 416 to 418 except that the substrate was changed from non-alkali glass to a PET (polyethylene terephthalate) film.
 《発光パネルの評価》
 作製した発光パネル401~408、410、416~421について、下記の方法に従い、光透過率、シート抵抗値及び高温保存下での外部量子効率(耐久性)の測定を行った。
<Evaluation of luminous panel>
The light-emitting panels 401 to 408, 410, and 416 to 421 were measured for light transmittance, sheet resistance value, and external quantum efficiency (durability) under high temperature storage according to the following methods.
 (1)光透過率の測定
 作製した各発光パネルについて、分光光度計(日立製作所製U-3300)を用い、各発光パネルの透明電極の基板をリファレンスとして、測定光波長550nmにおける光透過率(%)を測定した。
 測定結果を表4示す。
(1) Measurement of light transmittance For each of the produced light-emitting panels, using a spectrophotometer (U-3300 manufactured by Hitachi, Ltd.), the light transmittance at a measurement light wavelength of 550 nm (with reference to the transparent electrode substrate of each light-emitting panel) ( %).
Table 4 shows the measurement results.
 (2)シート抵抗値の測定
 作製した発光パネルに含まれる各透明電極について、抵抗率計(三菱化学社製MCP-T610)を用い、4探針法定電流印加方式でシート抵抗値(Ω/□)を測定した。
 測定結果を表4に示す。
(2) Measurement of sheet resistance value For each transparent electrode included in the manufactured light-emitting panel, a sheet resistance value (Ω / □) was measured with a four-probe constant current application method using a resistivity meter (MCP-T610 manufactured by Mitsubishi Chemical Corporation). ) Was measured.
Table 4 shows the measurement results.
 (3)高温保存下での外部量子効率(EQE)変化の測定
 上記作製した各有機EL素子を、室温(約25℃)で、2.5mA/cmの定電流条件下で発光させ、発光開始直後の発光輝度と、開始400時間後の発光輝度を、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて測定した。測定結果を表4に示す。
 発光開始直後の発光輝度に対する開始400時間後の相対発光輝度を求め、これを外部量子効率(External Quantum Efficiency:EQE)の尺度とした。数値が小さいほど、発光輝度の変化が小さく、外部量子効率が優れていることを表す。各発光パネルの高温保存下での外部量子効率変化は、実施例3(表4)の発光パネル410の外部量子効率変化を100とする相対値で示している。
(3) Measurement of external quantum efficiency (EQE) change under high temperature storage Each of the organic EL devices prepared above was allowed to emit light at room temperature (about 25 ° C.) under a constant current condition of 2.5 mA / cm 2. The emission luminance immediately after the start and the emission luminance after 400 hours from the start were measured using a spectral radiance meter CS-2000 (manufactured by Konica Minolta). Table 4 shows the measurement results.
Relative light emission luminance after 400 hours from the light emission luminance immediately after the start of light emission was obtained, and this was used as a measure of External Quantum Efficiency (EQE). The smaller the value, the smaller the change in emission luminance and the better the external quantum efficiency. The change in external quantum efficiency of each light-emitting panel under high-temperature storage is shown as a relative value where the change in external quantum efficiency of the light-emitting panel 410 of Example 3 (Table 4) is 100.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 (4)まとめ
 表4から明らかなように、本発明の透明電極を有機EL素子のアノードに用いた本発明の発光パネル416~421は、いずれも光透過率が73%以上であり、シート抵抗値が7.4Ω/□以下に抑えられている。これに対して、比較例の透明電極を有機EL素子のアノードに用いた発光パネル401~408は、光透過率が73%未満のものがあり、しかもシート抵抗値が7.4Ω/□より大きい値を示した。
 また、耐久性(高温保存下での外部量子効率変化)においても、本発明の発光パネル416~421が、比較例の発光パネル401~408と比較して、優れていることがわかった。
(4) Summary As is clear from Table 4, each of the light emitting panels 416 to 421 using the transparent electrode of the present invention as the anode of the organic EL device has a light transmittance of 73% or more, and has a sheet resistance. The value is suppressed to 7.4Ω / □ or less. On the other hand, the light emitting panels 401 to 408 using the transparent electrode of the comparative example as the anode of the organic EL element have a light transmittance of less than 73% and a sheet resistance value of greater than 7.4Ω / □. The value is shown.
It was also found that the light emitting panels 416 to 421 of the present invention are superior to the light emitting panels 401 to 408 of the comparative example in terms of durability (change in external quantum efficiency under high temperature storage).
 本発明の一般式(2)又は(3)で表される構造を有する化合物を用いた透明電極は、さまざまな電子デバイスに用いることができる。その中でも、シート抵抗値などの観点から、電子デバイスのうちで最も制約の厳しい有機エレクトロルミネッセンス素子において、本発明の透明電極が有効に使用できることが分かった。
 このことにより本発明の一般式(2)又は(3)で表される構造を有する化合物を用いた透明電極は、例えば液晶表示装置、太陽電池、電子ペーパー、タッチパネルなど他の電子デバイスにも適用できるものと考えられる。
 実際に実施例1の透明電極118で作製した電極を用いて、有機薄膜太陽電池及びタッチパネルを作製し、良好に作動することを確認した。
The transparent electrode using the compound having the structure represented by the general formula (2) or (3) of the present invention can be used for various electronic devices. Among these, it has been found that the transparent electrode of the present invention can be effectively used in an organic electroluminescence element having the most severe restrictions among electronic devices from the viewpoint of sheet resistance.
Accordingly, the transparent electrode using the compound having the structure represented by the general formula (2) or (3) of the present invention is also applied to other electronic devices such as a liquid crystal display device, a solar cell, electronic paper, and a touch panel. It is considered possible.
An organic thin film solar cell and a touch panel were actually produced using the electrode produced with the transparent electrode 118 of Example 1 and confirmed to work well.
 これにより本発明の透明電極を用いた発光パネルは、低いシート抵抗で高輝度発光が可能であることが確認された。 Thus, it was confirmed that the light-emitting panel using the transparent electrode of the present invention can emit light with high brightness with low sheet resistance.
 [実施例4]
 《透明電極の作製》
 以下に説明するように、透明電極501~522を、導電性領域の面積が5cm×5cmとなるように作製した。透明電極501~504は、導電性層のみからなる単層構造の透明電極として作製し、透明電極505~522は、中間層と導電性層との積層構造の透明電極として作製した。
[Example 4]
<< Preparation of transparent electrode >>
As will be described below, the transparent electrodes 501 to 522 were prepared so that the area of the conductive region was 5 cm × 5 cm. The transparent electrodes 501 to 504 were produced as transparent electrodes having a single layer structure consisting of only a conductive layer, and the transparent electrodes 505 to 522 were produced as transparent electrodes having a laminated structure of an intermediate layer and a conductive layer.
 (1)透明電極501の作製
 まず、透明な無アルカリガラス製の基板を、市販の真空蒸着装置の基板ホルダーに固定し、真空蒸着装置の真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を充填し、当該真空槽内に取り付けた。次に、真空槽を4×10-4Paまで減圧した後、抵抗加熱ボートを通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、基板上に層厚5nmの銀からなる導電性層を成膜し、単層構造の透明電極501を作製した。
(1) Production of transparent electrode 501 First, a transparent non-alkali glass substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus and attached to a vacuum chamber of the vacuum deposition apparatus. Moreover, the resistance heating boat made from tungsten was filled with silver (Ag), and was attached in the said vacuum chamber. Next, after reducing the vacuum chamber to 4 × 10 −4 Pa, the resistance heating boat was energized and heated, and the layer thickness was 5 nm on the substrate within the range of the deposition rate of 0.1 to 0.2 nm / second. A conductive layer made of silver was formed to produce a transparent electrode 501 having a single layer structure.
 (2)透明電極502~504の作製
 透明電極501の作製において、導電性層の層厚をそれぞれ8nm、10nm、15nmに変更した以外は同様にして、透明電極502~504を作製した。
(2) Production of transparent electrodes 502 to 504 Transparent electrodes 502 to 504 were produced in the same manner as the production of the transparent electrode 501, except that the thickness of the conductive layer was changed to 8 nm, 10 nm, and 15 nm, respectively.
 (3)透明電極505の作製
 透明な無アルカリガラス製の基板を市販の真空蒸着装置の基板ホルダーに固定し、下記に示すAlqをタンタル製抵抗加熱ボートに充填し、これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀を充填し、第2真空槽内に取り付けた。
(3) Production of transparent electrode 505 A transparent non-alkali glass substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, Alq 3 shown below is filled in a tantalum resistance heating boat, and these substrate holder and heating The boat was attached to the first vacuum chamber of the vacuum deposition apparatus. Moreover, the resistance heating boat made from tungsten was filled with silver, and it attached in the 2nd vacuum chamber.
 この状態で、まず、第1真空槽を4×10-4Paまで減圧した後、Alqの入った加熱ボートに通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、基板上に層厚35nmのAlqからなる中間層を設けた。 In this state, first, the first vacuum chamber was depressurized to 4 × 10 −4 Pa, and then heated by energizing a heating boat containing Alq 3 within a deposition rate range of 0.1 to 0.2 nm / second. Then, an intermediate layer made of Alq 3 having a layer thickness of 35 nm was provided on the substrate.
 次に、中間層まで成膜した基板を真空のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、層厚8nmの銀からなる導電性層を形成し、中間層と導電性層との積層構造からなる透明電極105を作製した。 Next, the substrate having been formed up to the intermediate layer was transferred to the second vacuum chamber in a vacuum, and after the second vacuum chamber was depressurized to 4 × 10 −4 Pa, the heating boat containing silver was energized and heated, A conductive layer made of silver having a layer thickness of 8 nm was formed at a deposition rate of 0.1 to 0.2 nm / second, and a transparent electrode 105 having a laminated structure of an intermediate layer and a conductive layer was produced.
 (4)透明電極506~508の作製
 透明電極505の作製において、中間層の構成材料をそれぞれ上記に示す比較化合物(1)、(2)及び(3)に変更した以外は同様にして、透明電極506~508を作製した。
(4) Preparation of transparent electrodes 506 to 508 In the preparation of transparent electrode 505, the transparent electrode 505 was prepared in the same manner except that the constituent materials of the intermediate layer were changed to the comparative compounds (1), (2) and (3) shown above. Electrodes 506 to 508 were produced.
 (5)透明電極509の作製
 透明電極505の作製において、中間層の構成材料をB-16に変更し、導電性層の層厚を5nmに変更した以外は同様にして、透明電極509を作製した。
(5) Production of transparent electrode 509 In production of the transparent electrode 505, the transparent electrode 509 was produced in the same manner except that the constituent material of the intermediate layer was changed to B-16 and the layer thickness of the conductive layer was changed to 5 nm. did.
 (6)透明電極510~512の作製
 透明電極509の作製において、導電性層の層厚をそれぞれ8nm、10nm、15nmに変更した以外は同様にして、透明電極510~512を作製した。
(6) Production of transparent electrodes 510 to 512 Transparent electrodes 510 to 512 were produced in the same manner as the production of the transparent electrode 509 except that the thickness of the conductive layer was changed to 8 nm, 10 nm, and 15 nm, respectively.
 (7)透明電極513~519の作製
 透明電極510の作製において、中間層の構成材料を表5に記載の化合物に変更した以外は同様にして、透明電極513~519を作製した。
(7) Production of transparent electrodes 513 to 519 Transparent electrodes 513 to 519 were produced in the same manner as the production of the transparent electrode 510 except that the constituent material of the intermediate layer was changed to the compounds shown in Table 5.
 (8)透明電極520~522の作製
 透明電極517~519の作製において、基板を無アルカリガラスからPET(ポリエチレンテレフタレート)フィルムに変更した以外は同様にして、透明電極520~522を作製した。
(8) Production of transparent electrodes 520 to 522 Transparent electrodes 520 to 522 were produced in the same manner as the production of the transparent electrodes 517 to 522 except that the substrate was changed from non-alkali glass to a PET (polyethylene terephthalate) film.
 《透明電極の評価》
 作製した透明電極501~522について、下記の方法に従い、光透過率、シート抵抗値及び高温保存下でのシート抵抗変化(耐久性)の測定を行った。
<< Evaluation of transparent electrode >>
The produced transparent electrodes 501 to 522 were measured for light transmittance, sheet resistance value, and sheet resistance change (durability) under high temperature storage according to the following method.
 (1)光透過率の測定
 作製した各透明電極について、分光光度計(日立製作所製U-3300)を用い、各透明電極の基板をリファレンスとして、測定光波長550nmにおける光透過率(%)を測定した。
 測定結果を表5に示す。
(1) Measurement of light transmittance For each of the produced transparent electrodes, a spectrophotometer (U-3300 manufactured by Hitachi, Ltd.) was used, and the light transmittance (%) at a measurement light wavelength of 550 nm was measured using the substrate of each transparent electrode as a reference. It was measured.
Table 5 shows the measurement results.
 (2)シート抵抗値の測定
 作製した各透明電極について、抵抗率計(三菱化学社製MCP-T610)を用い、4探針法定電流印加方式でシート抵抗値(Ω/□)を測定した。
 測定結果を表5に示す。
(2) Measurement of sheet resistance value About each produced transparent electrode, sheet resistance value (ohm / square) was measured by the 4-probe method constant current application system using the resistivity meter (MCP-T610 by Mitsubishi Chemical Corporation).
Table 5 shows the measurement results.
 (3)高温保存下でのシート抵抗変化の測定
 作製した各透明電極について、温度80℃/相対湿度90%RH雰囲気において保存し、シート抵抗変化を測定した。具体的には、試験開始前に比較して、400時間経過後のシート抵抗変化を評価し、結果を表5に示した。シート抵抗は、抵抗率計(三菱化学社製MCP-T610)を用い、4探針法定電流印加方式でシート抵抗値(Ω/□)を測定した。各透明電極の高温保存下でのシート抵抗変化は、透明電極510のシート抵抗変化を100とする相対値で示している。
(3) Measurement of change in sheet resistance under high temperature storage Each of the prepared transparent electrodes was stored in an atmosphere at a temperature of 80 ° C / 90% RH, and the change in sheet resistance was measured. Specifically, the sheet resistance change after the lapse of 400 hours was evaluated as compared with before the start of the test, and the results are shown in Table 5. The sheet resistance was measured using a resistivity meter (MCP-T610, manufactured by Mitsubishi Chemical Corporation), and the sheet resistance value (Ω / □) was measured by a four-probe constant current application method. The sheet resistance change of each transparent electrode under high temperature storage is shown as a relative value where the sheet resistance change of the transparent electrode 510 is 100.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 (4)まとめ
 表5から明らかなように、蒸着により形成された中間層上に銀(Ag)を主成分とした導電性層を設けた本発明の透明電極509~522は、いずれも光透過率が51%以上であり、シート抵抗値が18.0Ω/□以下に抑えられている。これに対して、比較例の透明電極501~508は、光透過率が51%未満のものがあり、しかもシート抵抗値が18.0Ω/□を超える値を示した。
 また、耐久性(高温保存下でのシート抵抗変化)においても、本発明の透明電極509~522が、比較例の透明電極501~508と比較して、変化が小さく、優れていることがわかる。
 また、PET(ポリエチレンテレフタレート)のような樹脂フィルムにおいても、本発明の化合物を中間層に用いることで、無アルカリガラスと同等の評価結果が得られたことから、基板によらず効果を発現することが確認できた。
(4) Summary As is apparent from Table 5, the transparent electrodes 509 to 522 of the present invention in which the conductive layer mainly composed of silver (Ag) is provided on the intermediate layer formed by vapor deposition are all light transmissive. The rate is 51% or more, and the sheet resistance value is suppressed to 18.0Ω / □ or less. On the other hand, some of the transparent electrodes 501 to 508 of the comparative example had a light transmittance of less than 51%, and the sheet resistance value exceeded 18.0Ω / □.
Further, in terms of durability (change in sheet resistance under high temperature storage), it can be seen that the transparent electrodes 509 to 522 of the present invention are small and excellent in comparison with the transparent electrodes 501 to 508 of the comparative example. .
In addition, even in a resin film such as PET (polyethylene terephthalate), by using the compound of the present invention for the intermediate layer, an evaluation result equivalent to that of non-alkali glass was obtained, so that the effect is exhibited regardless of the substrate. I was able to confirm.
 以上から、本発明の透明電極は、高い光透過率と導電性とを兼ね備え、更に耐久性に優れていることが確認された。 From the above, it was confirmed that the transparent electrode of the present invention has high light transmittance and conductivity, and is further excellent in durability.
 [実施例5]
 《透明電極の作製》
 以下に説明するように、透明電極601~616を、導電性領域の面積が5cm×5cmとなるように作製した。透明電極601~604は、導電性層のみからなる単層構造の透明電極として作製し、透明電極605~616は、中間層と導電性層との積層構造の透明電極として作製した。
[Example 5]
<< Preparation of transparent electrode >>
As described below, the transparent electrodes 601 to 616 were fabricated so that the area of the conductive region was 5 cm × 5 cm. The transparent electrodes 601 to 604 were produced as single-layered transparent electrodes consisting only of a conductive layer, and the transparent electrodes 605 to 616 were produced as transparent electrodes having a laminated structure of an intermediate layer and a conductive layer.
 (1)透明電極601の作製
 まず、透明な無アルカリガラス製の基板を、市販の真空蒸着装置の基板ホルダーに固定し、真空蒸着装置の真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を充填し、当該真空槽内に取り付けた。次に、真空槽を4×10-4Paまで減圧した後、抵抗加熱ボートを通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、基板上に層厚5nmの銀からなる導電性層を成膜し、単層構造の透明電極601を作製した。
(1) Production of transparent electrode 601 First, a transparent non-alkali glass substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus and attached to a vacuum chamber of the vacuum deposition apparatus. Moreover, the resistance heating boat made from tungsten was filled with silver (Ag), and was attached in the said vacuum chamber. Next, after reducing the vacuum chamber to 4 × 10 −4 Pa, the resistance heating boat was energized and heated, and the layer thickness was 5 nm on the substrate within the range of the deposition rate of 0.1 to 0.2 nm / second. A conductive layer made of silver was formed to produce a transparent electrode 601 having a single layer structure.
 (2)透明電極602~604の作製
 透明電極601の作製において、導電性層の層厚をそれぞれ8nm、10nm、15nmに変更した以外は同様にして、透明電極602~604を作製した。
(2) Production of transparent electrodes 602 to 604 Transparent electrodes 602 to 604 were produced in the same manner as the production of the transparent electrode 601, except that the thickness of the conductive layer was changed to 8 nm, 10 nm, and 15 nm, respectively.
 (3)透明電極605の作製
 透明な無アルカリガラス製の基板を市販の真空蒸着装置の基板ホルダーに固定し、Alqをタンタル製抵抗加熱ボートに充填し、これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀を充填し、第2真空槽内に取り付けた。
(3) Production of transparent electrode 605 A transparent non-alkali glass substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, Alq 3 is filled in a resistance heating boat made of tantalum, and these substrate holder and heating boat are connected to each other. It attached to the 1st vacuum chamber of a vacuum evaporation system. Moreover, the resistance heating boat made from tungsten was filled with silver, and it attached in the 2nd vacuum chamber.
 この状態で、まず、第1真空槽を4×10-4Paまで減圧した後、Alqの入った加熱ボートに通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、基板上に層厚35nmのAlqからなる中間層を設けた。 In this state, first, the first vacuum chamber was depressurized to 4 × 10 −4 Pa, and then heated by energizing a heating boat containing Alq 3 within a deposition rate range of 0.1 to 0.2 nm / second. Then, an intermediate layer made of Alq 3 having a layer thickness of 35 nm was provided on the substrate.
 次に、中間層まで成膜した基板を真空のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、層厚8nmの銀からなる導電性層を形成し、中間層と導電性層との積層構造からなる透明電極605を作製した。 Next, the substrate having been formed up to the intermediate layer was transferred to the second vacuum chamber in a vacuum, and after the second vacuum chamber was depressurized to 4 × 10 −4 Pa, the heating boat containing silver was energized and heated, A conductive layer made of silver having a layer thickness of 8 nm was formed at a deposition rate of 0.1 to 0.2 nm / second, and a transparent electrode 605 having a laminated structure of an intermediate layer and a conductive layer was produced.
 (4)透明電極606~608の作製
 透明電極605の作製において、中間層の構成材料をそれぞれ上記に示す比較化合物(1)、(2)及び(3)に変更した以外は同様にして、透明電極606~608を作製した。
(4) Production of transparent electrodes 606 to 608 In production of the transparent electrode 605, the transparent electrode 605 was prepared in the same manner except that the constituent materials of the intermediate layer were changed to the comparative compounds (1), (2) and (3) shown above, respectively. Electrodes 606 to 608 were produced.
 (5)透明電極609~612の作製
 透明電極605の作製において、中間層の構成材料を表6に記載の化合物に変更した以外は同様にして、透明電極609~612を作製した。
(5) Production of transparent electrodes 609 to 612 Transparent electrodes 609 to 612 were produced in the same manner as the production of the transparent electrode 605 except that the constituent material of the intermediate layer was changed to the compounds shown in Table 6.
 (6)透明電極613~616の作製
 透明電極609~612の作製において、基板を無アルカリガラスからPET(ポリエチレンテレフタレート)フィルムに変更した以外は同様にして、透明電極613~616を作製した。
(6) Production of transparent electrodes 613 to 616 Transparent electrodes 613 to 616 were produced in the same manner as the production of the transparent electrodes 609 to 616 except that the substrate was changed from a non-alkali glass to a PET (polyethylene terephthalate) film.
 《透明電極の評価》
 作製した透明電極601~616について、下記の方法に従い、光透過率、高温保存下での光透過率変化(耐久性)及び高温保存下でのシート抵抗変化(耐久性)の測定を行った。
<< Evaluation of transparent electrode >>
The produced transparent electrodes 601 to 616 were measured for light transmittance, light transmittance change under high temperature storage (durability) and sheet resistance change under high temperature storage (durability) according to the following methods.
 (1)光透過率の測定
 作製した各透明電極について、分光光度計(日立製作所製U-3300)を用い、各透明電極の基板をリファレンスとして、測定光波長550nmにおける光透過率(%)を測定した。
 測定結果を表6に示す。
(1) Measurement of light transmittance For each of the produced transparent electrodes, a spectrophotometer (U-3300 manufactured by Hitachi, Ltd.) was used, and the light transmittance (%) at a measurement light wavelength of 550 nm was measured using the substrate of each transparent electrode as a reference. It was measured.
Table 6 shows the measurement results.
 (2)高温保存下での光透過率変化の測定
 作製した各透明電極について、温度80℃/相対湿度90%RH雰囲気において保存し、光透過率変化を測定した。具体的には、試験開始前に比較して、400時間経過後の光透過率変化を評価し、結果を表6に示した。光透過率は、分光光度計(日立製作所製U-3300)を用い、各透明電極の基板をリファレンスとして、測定光波長550nmにおける光透過率(%)を測定した。各透明電極の高温保存下での光透過率変化は、透明電極609の光透過率変化を100とする相対値で示している。
(2) Measurement of light transmittance change under high temperature storage Each of the produced transparent electrodes was stored in a temperature 80 ° C./relative humidity 90% RH atmosphere, and the light transmittance change was measured. Specifically, the change in light transmittance after 400 hours was evaluated as compared with before the start of the test, and the results are shown in Table 6. The light transmittance was measured by using a spectrophotometer (U-3300 manufactured by Hitachi, Ltd.) and measuring the light transmittance (%) at a measurement light wavelength of 550 nm using the substrate of each transparent electrode as a reference. The light transmittance change of each transparent electrode under high temperature storage is shown as a relative value with the light transmittance change of the transparent electrode 609 as 100.
 (3)高温保存下でのシート抵抗変化の測定
 作製した各透明電極について、温度80℃/相対湿度90%RH雰囲気において保存し、シート抵抗変化を測定した。具体的には、試験開始前に比較して、400時間経過後のシート抵抗変化を評価し、結果を表6に示した。シート抵抗は、抵抗率計(三菱化学社製MCP-T610)を用い、4探針法定電流印加方式でシート抵抗値(Ω/□)を測定した。各透明電極の高温保存下でのシート抵抗変化は、透明電極609のシート抵抗変化を100とする相対値で示している。
(3) Measurement of change in sheet resistance under high temperature storage Each of the prepared transparent electrodes was stored in an atmosphere at a temperature of 80 ° C / 90% RH, and the change in sheet resistance was measured. Specifically, the sheet resistance change after the lapse of 400 hours was evaluated as compared with before the start of the test, and the results are shown in Table 6. The sheet resistance was measured using a resistivity meter (MCP-T610, manufactured by Mitsubishi Chemical Corporation), and the sheet resistance value (Ω / □) was measured by a four-probe constant current application method. The sheet resistance change of each transparent electrode under high temperature storage is shown as a relative value where the sheet resistance change of the transparent electrode 609 is 100.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 (4)まとめ
 表6から明らかなように、蒸着により形成された中間層上に銀(Ag)を主成分とした導電性層を設けた本発明の透明電極609~616は、いずれも光透過率が65%以上である。これに対して、比較例の透明電極601~608は、光透過率が65%未満のものがある。
 また、耐久性(高温保存下での光透過率変化及び高温保存下でのシート抵抗変化)においても、本発明の透明電極609~616が、比較例の透明電極601~608と比較して、変化が小さく、優れていることがわかる。
 また、PET(ポリエチレンテレフタレート)のような樹脂フィルムにおいても、本発明の化合物を中間層に用いることで、無アルカリガラスと同等の評価結果が得られたことから、基板によらず効果を発現することが確認できた。
(4) Summary As is clear from Table 6, the transparent electrodes 609 to 616 of the present invention in which the conductive layer mainly composed of silver (Ag) is provided on the intermediate layer formed by vapor deposition are all light transmissive. The rate is 65% or more. On the other hand, some of the transparent electrodes 601 to 608 of the comparative example have a light transmittance of less than 65%.
Further, in terms of durability (change in light transmittance under high temperature storage and change in sheet resistance under high temperature storage), the transparent electrodes 609 to 616 of the present invention are compared with the transparent electrodes 601 to 608 of the comparative example, It can be seen that the change is small and excellent.
In addition, even in a resin film such as PET (polyethylene terephthalate), by using the compound of the present invention for the intermediate layer, an evaluation result equivalent to that of non-alkali glass was obtained, so that the effect is exhibited regardless of the substrate. I was able to confirm.
 以上から、本発明の透明電極は、高い光透過率を兼ね備え、更に耐久性に優れていることが確認された。 From the above, it was confirmed that the transparent electrode of the present invention has high light transmittance and is further excellent in durability.
 本発明の透明電極は、有機EL素子、液晶表示装置、太陽電池、電子ペーパー及びタッチパネルなどの電子デバイスに利用することができる。 The transparent electrode of the present invention can be used for electronic devices such as organic EL elements, liquid crystal display devices, solar cells, electronic paper, and touch panels.
1 透明電極
 1a 中間層
 1b 導電性層
3 有機機能層
 3a 正孔注入層
 3b 正孔輸送層
 3c 発光層
 3d 電子輸送層
 3e 電子注入層
 31 正孔輸送注入層
 33 正孔阻止層
5a,5b,5c 対向電極
11 基板
13,131 透明基板(基板)
13a,131a 光取り出し面
15 補助電極
17 封止材
19 接着剤
21 照明装置
22 発光パネル
23 支持基板
100,200,300,400 有機EL素子
A 発光領域
B 非発光領域
h 発光光
DESCRIPTION OF SYMBOLS 1 Transparent electrode 1a Intermediate | middle layer 1b Conductive layer 3 Organic functional layer 3a Hole injection layer 3b Hole transport layer 3c Light emitting layer 3d Electron transport layer 3e Electron injection layer 31 Hole transport injection layer 33 Hole blocking layers 5a, 5b, 5c Counter electrode 11 Substrate 13, 131 Transparent substrate (substrate)
13a, 131a Light extraction surface 15 Auxiliary electrode 17 Sealing material 19 Adhesive 21 Illumination device 22 Light-emitting panel 23 Support substrate 100, 200, 300, 400 Organic EL element A Light-emitting region B Non-light-emitting region h Light-emitting light

Claims (10)

  1.  導電性層と、前記導電性層に隣接して設けられる中間層と、を備える透明電極であって、
     前記導電性層が、銀を主成分として含有し、
     前記中間層が、下記一般式(2)で表される構造を有する化合物を含有することを特徴とする透明電極。
    Figure JPOXMLDOC01-appb-C000001
    〔一般式(2)中、R~Rは、それぞれ独立に、水素原子又は置換基を表す。Lは、芳香族炭化水素環基又は芳香族複素環基を表す。X、X及びXは、それぞれ独立に、窒素原子又は-CR10を表す。R10は、水素原子又は置換基を表す。〕
    A transparent electrode comprising a conductive layer and an intermediate layer provided adjacent to the conductive layer,
    The conductive layer contains silver as a main component,
    The said intermediate | middle layer contains the compound which has a structure represented by following General formula (2), The transparent electrode characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000001
    [In General Formula (2), R 4 to R 9 each independently represents a hydrogen atom or a substituent. L 2 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group. X 1 , X 2 and X 3 each independently represent a nitrogen atom or —CR 10 . R 10 represents a hydrogen atom or a substituent. ]
  2.  前記一般式(2)中、X、X及びXが、それぞれ窒素原子を表すことを特徴とする請求項1に記載の透明電極。 In formula (2), it is X 1, X 2 and X 3, the transparent electrode according to claim 1, characterized in that each represent a nitrogen atom.
  3.  前記一般式(2)中、X、X及びXのうちいずれか一つが、-CR10を表すことを特徴とする請求項1に記載の透明電極。 The transparent electrode according to claim 1, wherein any one of X 1 , X 2 and X 3 in the general formula (2) represents -CR 10 .
  4.  前記一般式(2)中、X、X及びXが、それぞれ-CR10を表すことを特徴とする請求項1に記載の透明電極。 The transparent electrode according to claim 1, wherein, in the general formula (2), X 1 , X 2 and X 3 each represent -CR 10 .
  5.  前記一般式(2)で表される構造が、下記一般式(3)で表される構造であることを特徴とする請求項1に記載の透明電極。
    Figure JPOXMLDOC01-appb-C000002
    〔一般式(3)中、R11~R16は、それぞれ独立に、水素原子又は置換基を表す。X、X及びXは、それぞれ独立に、窒素原子又は-CR17を表し、R17は水素原子又は置換基を表す。Y~Yは、それぞれ独立に、窒素原子又は-CR18を表し、これらが互いに結合して新たな環を形成しても良い。R18は、水素原子又は置換基を表す。Z~Zは、それぞれ独立に、窒素原子又は-CR19を表し、少なくとも一つは窒素原子を表す。これらは互いに結合して新たな環を形成してもよい。R19は、水素原子又は置換基を表す。〕
    The transparent electrode according to claim 1, wherein the structure represented by the general formula (2) is a structure represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000002
    [In General Formula (3), R 11 to R 16 each independently represents a hydrogen atom or a substituent. X 4 , X 5 and X 6 each independently represent a nitrogen atom or —CR 17 , and R 17 represents a hydrogen atom or a substituent. Y 1 to Y 4 each independently represent a nitrogen atom or —CR 18 , and these may be bonded to each other to form a new ring. R 18 represents a hydrogen atom or a substituent. Z 1 to Z 4 each independently represents a nitrogen atom or —CR 19 , and at least one represents a nitrogen atom. These may combine with each other to form a new ring. R 19 represents a hydrogen atom or a substituent. ]
  6.  前記一般式(3)中、X、X及びXが、それぞれ窒素原子を表すことを特徴とする請求項5に記載の透明電極。 The transparent electrode according to claim 5, wherein in the general formula (3), X 4 , X 5, and X 6 each represent a nitrogen atom.
  7.  前記一般式(3)中、X、X及びXのうちいずれか一つが、-CR17を表すことを特徴とする請求項5に記載の透明電極。 6. The transparent electrode according to claim 5, wherein in the general formula (3), any one of X 4 , X 5 and X 6 represents —CR 17 .
  8.  前記一般式(3)中、X、X及びXが、それぞれ-CR17を表すことを特徴とする請求項5に記載の透明電極。 The transparent electrode according to claim 5, wherein in the general formula (3), X 4 , X 5 and X 6 each represent —CR 17 .
  9.  請求項1から請求項8までのいずれか一項に記載の透明電極を備えていることを特徴とする電子デバイス。 An electronic device comprising the transparent electrode according to any one of claims 1 to 8.
  10.  請求項1から請求項8までのいずれか一項に記載の透明電極を備えていることを特徴とする有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising the transparent electrode according to any one of claims 1 to 8.
PCT/JP2014/064371 2013-05-31 2014-05-30 Transparent electrode, electronic device, and organic electroluminescent element WO2014192902A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015519949A JP6468186B2 (en) 2013-05-31 2014-05-30 Transparent electrode, electronic device, and organic electroluminescence element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013115396 2013-05-31
JP2013-115396 2013-05-31

Publications (1)

Publication Number Publication Date
WO2014192902A1 true WO2014192902A1 (en) 2014-12-04

Family

ID=51988924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064371 WO2014192902A1 (en) 2013-05-31 2014-05-30 Transparent electrode, electronic device, and organic electroluminescent element

Country Status (2)

Country Link
JP (2) JP6375697B2 (en)
WO (1) WO2014192902A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11046658B2 (en) 2018-07-02 2021-06-29 Incyte Corporation Aminopyrazine derivatives as PI3K-γ inhibitors
US11926616B2 (en) 2018-03-08 2024-03-12 Incyte Corporation Aminopyrazine diol compounds as PI3K-γ inhibitors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156445A (en) * 2004-11-25 2006-06-15 Konica Minolta Holdings Inc Organic electroluminescent element, display device and lighting system
JP2007294720A (en) * 2006-04-26 2007-11-08 Konica Minolta Holdings Inc Organic electroluminescent device, display device, and illuminating device
WO2014077063A1 (en) * 2012-11-16 2014-05-22 コニカミノルタ株式会社 Translucent electrode, and electronic device
WO2014084170A1 (en) * 2012-11-28 2014-06-05 コニカミノルタ株式会社 Transparent electrode, electronic device, and organic electroluminescence element
WO2014084323A1 (en) * 2012-11-28 2014-06-05 コニカミノルタ株式会社 Transparent electrode, and electronic device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027706A (en) * 1999-07-13 2001-01-30 Fuji Photo Film Co Ltd Optical compensation sheet, polarizing plate and liquid crystal display device
JP5651910B2 (en) * 2007-12-13 2015-01-14 コニカミノルタ株式会社 Transparent conductive film and method for producing transparent conductive film
JP5606458B2 (en) * 2009-02-19 2014-10-15 エージーシー グラス ユーロップ Transparent substrate for photonic devices
JP5201054B2 (en) * 2009-03-31 2013-06-05 コニカミノルタホールディングス株式会社 Organic electroluminescent material, organic electroluminescent element, blue phosphorescent light emitting element, display device and lighting device
JP5577186B2 (en) * 2009-09-04 2014-08-20 株式会社ジャパンディスプレイ Organic EL display device
JP6070567B2 (en) * 2011-11-17 2017-02-01 コニカミノルタ株式会社 Transparent electrode and electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156445A (en) * 2004-11-25 2006-06-15 Konica Minolta Holdings Inc Organic electroluminescent element, display device and lighting system
JP2007294720A (en) * 2006-04-26 2007-11-08 Konica Minolta Holdings Inc Organic electroluminescent device, display device, and illuminating device
WO2014077063A1 (en) * 2012-11-16 2014-05-22 コニカミノルタ株式会社 Translucent electrode, and electronic device
WO2014084170A1 (en) * 2012-11-28 2014-06-05 コニカミノルタ株式会社 Transparent electrode, electronic device, and organic electroluminescence element
WO2014084323A1 (en) * 2012-11-28 2014-06-05 コニカミノルタ株式会社 Transparent electrode, and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11926616B2 (en) 2018-03-08 2024-03-12 Incyte Corporation Aminopyrazine diol compounds as PI3K-γ inhibitors
US11046658B2 (en) 2018-07-02 2021-06-29 Incyte Corporation Aminopyrazine derivatives as PI3K-γ inhibitors

Also Published As

Publication number Publication date
JP2015008133A (en) 2015-01-15
JP6468186B2 (en) 2019-02-13
JPWO2014192902A1 (en) 2017-02-23
JP6375697B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
JP6015765B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6287834B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6230868B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6036804B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6241193B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6231009B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6241189B2 (en) Transparent electrode, method for producing transparent electrode, electronic device, and organic electroluminescence element
JP6112107B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6142645B2 (en) Transparent electrode, method for producing transparent electrode, electronic device, and organic electroluminescence element
WO2018037880A1 (en) Transparent electrode and electronic device
JP6390373B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6372265B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP5967047B2 (en) Transparent electrode, method for producing transparent electrode, electronic device, and organic electroluminescence element
JP6295958B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6468186B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6028668B2 (en) Transparent electrodes, electronic devices and organic electroluminescence devices
JP6187471B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6028806B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6119521B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
WO2016136397A1 (en) Transparent electrode and electronic device
JP6237638B2 (en) Transparent electrode, electronic device, and organic electroluminescence element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519949

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14803746

Country of ref document: EP

Kind code of ref document: A1