WO2014192740A1 - Vehicular air-conditioning device - Google Patents

Vehicular air-conditioning device Download PDF

Info

Publication number
WO2014192740A1
WO2014192740A1 PCT/JP2014/063963 JP2014063963W WO2014192740A1 WO 2014192740 A1 WO2014192740 A1 WO 2014192740A1 JP 2014063963 W JP2014063963 W JP 2014063963W WO 2014192740 A1 WO2014192740 A1 WO 2014192740A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heating
radiator
air
heating capacity
Prior art date
Application number
PCT/JP2014/063963
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 謙一
竜 宮腰
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to DE112014002612.3T priority Critical patent/DE112014002612T5/en
Priority to US14/890,770 priority patent/US9909794B2/en
Priority to CN201480030551.0A priority patent/CN105246718B/en
Publication of WO2014192740A1 publication Critical patent/WO2014192740A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00785Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models by the detection of humidity or frost
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0441Condensers with an integrated receiver containing a drier or a filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle, and more particularly to an air conditioner that can be applied to a hybrid vehicle or an electric vehicle.
  • an air conditioner that can be applied to such a vehicle, a compressor that compresses and discharges the refrigerant, a radiator (condenser) that is provided on the vehicle interior side to dissipate the refrigerant, and the vehicle interior side
  • a heat absorber evaporator
  • an outdoor heat exchanger that is provided outside the passenger compartment to dissipate or absorb the refrigerant, and dissipates the refrigerant discharged from the compressor in the radiator
  • a heating mode in which the heat dissipated in the radiator is absorbed in the outdoor heat exchanger, a dehumidification mode in which the refrigerant discharged from the compressor is dissipated in the radiator, and the refrigerant dissipated in the radiator is absorbed in the heat absorber
  • compression A refrigerant that has been radiated in an outdoor heat exchanger and is switched and executed in each cooling mode in
  • the outdoor heat exchanger functions as a refrigerant evaporator. Therefore, when the air conditioning apparatus of the vehicle is activated and the heating mode is executed, moisture in the outside air adheres to the outdoor heat exchanger as frost and grows depending on the temperature / humidity conditions of the outside air.
  • frost is formed on the outdoor heat exchanger in the heating mode, the frost becomes a heat insulating material, so the heat exchange performance with the outside air is remarkably deteriorated and heat cannot be absorbed from the outside air. There was a problem that could not be obtained.
  • the present invention has been made to solve the conventional technical problems, and in a so-called heat pump type air conditioner, by preventing or suppressing frost formation on the outdoor heat exchanger,
  • the purpose is to ensure comfortable vehicle interior heating.
  • the vehicle air conditioner of the present invention heats the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air that dissipates the refrigerant and is supplied from the air flow passage to the vehicle interior.
  • a heat sink a heat absorber for cooling the air supplied to the vehicle interior from the air flow passage by absorbing the refrigerant, an outdoor heat exchanger provided outside the vehicle cabin for radiating or absorbing heat, and control means
  • a heating mode in which at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and the radiated refrigerant is decompressed and then absorbed by the outdoor heat exchanger.
  • Auxiliary heating means for heating the air supplied to the vehicle interior from the air flow passage, and the control means is a target value of the maximum heating capacity that can be generated by the radiator within a range where frost is not formed on the outdoor heat exchanger.
  • No frost maximum heating capacity A predicted value QmaxNfst is calculated, and the required heating capacity without frosting the outdoor heat exchanger is calculated based on the predicted non-frosting maximum heating capacity predicted value QmaxNfst and the required heating capacity Qtgt which is the required heating capacity of the radiator. Heating by a radiator and heating by auxiliary heating means are controlled so as to achieve Qtgt.
  • the control means does not reach the target heating capacity TGQhp of the radiator when the predicted non-frosting maximum heating capacity value QmaxNfst is smaller than the required heating capacity Qtgt.
  • the frost maximum heating capacity predicted value QmaxNfst is used, and the portion deficient in the required heating capacity Qtgt is supplemented by heating by the auxiliary heating means.
  • the control means when the predicted value of non-frost maximum heating capacity QmaxNfst is equal to or greater than the required heating capacity Qtgt, the control means requires the target heating capacity TGQhp of the radiator. The capacity is Qtgt, and heating by the auxiliary heating means is stopped.
  • a vehicle air conditioner according to the above-described invention, wherein the control means is based on the outside air temperature, or the time, solar radiation, rainfall, position, and weather conditions are added thereto to estimate the maximum frost-free heating capacity.
  • QmaxNfst is calculated.
  • the vehicle air conditioner of the invention of claim 5 is characterized in that the control means executes the control of each of the above inventions immediately after activation.
  • a vehicular air conditioner wherein the control means includes frosting state estimating means for estimating a frosting state on the outdoor heat exchanger.
  • the frost is generated in the outdoor heat exchanger based on the estimation of the frost state estimating means, or when frost formation on the outdoor heat exchanger is predicted, heating by the auxiliary heating means is performed.
  • the control means suppresses or prevents frost formation on the outdoor heat exchanger based on the degree of frost formation on the outdoor heat exchanger.
  • the target heating capacity TGQech of the auxiliary heating means is calculated, and the target heating capacity TGQhp of the radiator is set to a value obtained by subtracting the target heating capacity TGQech of the auxiliary heating means from the required heating capacity Qtgt.
  • the air conditioning apparatus for a vehicle is characterized in that, in the above invention, the control means stops the operation of the compressor when the target heating capacity TGQhp of the radiator is smaller than a predetermined value.
  • a vehicle air conditioner according to the sixth to eighth aspects of the present invention, wherein the control means is presumed that frost is not generated in the outdoor heat exchanger based on the estimation of the frosting state estimating means.
  • the heating by the auxiliary heating means is gradually or stepwise reduced and finally stopped.
  • the air conditioner for a vehicle according to a tenth aspect of the present invention is the air conditioning apparatus for a vehicle according to any of the sixth to ninth aspects, wherein the control means includes the refrigerant evaporation temperature TXO of the outdoor heat exchanger and the refrigerant of the outdoor heat exchanger when there is no frost formation. Based on the evaporation temperature TXObase, the frost formation state on the outdoor heat exchanger or the degree of frost formation is estimated.
  • the vehicle air conditioner includes a heat medium-air heat exchanger for heating air supplied from the air flow passage to the vehicle interior, an electric heater, and a circulation means.
  • the auxiliary heating means is constituted by a heat medium circulation circuit for circulating the heat medium heated by the electric heater to the heat medium-air heat exchanger by the circulation means.
  • a compressor for compressing a refrigerant, an air flow passage through which air to be supplied to the vehicle interior flows, and a radiator for heating the air to be radiated from the refrigerant and supplied to the vehicle interior from the air flow passage.
  • a heat absorber for cooling the refrigerant to absorb heat and supplying air from the air flow passage to the vehicle interior
  • an outdoor heat exchanger that is provided outside the vehicle and radiates or absorbs the refrigerant
  • a control means In the vehicle air conditioner that executes a heating mode in which at least the refrigerant discharged from the compressor is radiated by the radiator by this control means, and the radiated refrigerant is depressurized and then absorbed by the outdoor heat exchanger.
  • Auxiliary heating means for heating the air supplied from the air flow passage to the vehicle interior is provided, and the control means is a target value of the maximum heating capacity that can be generated by the radiator within a range where frost is not formed on the outdoor heat exchanger.
  • Maximum heating capacity for frost formation A predicted value QmaxNfst is calculated, and the required heating capacity without frosting the outdoor heat exchanger is calculated based on the predicted non-frosting maximum heating capacity predicted value QmaxNfst and the required heating capacity Qtgt which is the required heating capacity of the radiator.
  • the heating by the radiator and the heating by the auxiliary heating means are controlled so as to achieve Qtgt, the frost point at which the frost to the outdoor heat exchanger determined by the outdoor temperature / humidity condition cannot be detected
  • the required heating capacity Qtgt can be achieved by cooperative heating by the radiator and the auxiliary heating means without causing the outdoor heat exchanger to be frosted, and comfortable vehicle interior heating can be realized.
  • the control means predicts the target heating capacity TGQhp of the radiator to the maximum non-frosting heating capacity.
  • the non-frosting maximum heating capacity predicted value QmaxNfst is equal to or greater than the required heating capacity Qtgt as in the invention of claim 3.
  • the target heating capacity TGQhp of the radiator is set as the required heating capacity Qtgt and the heating by the auxiliary heating means is stopped, it is possible to minimize the deterioration of the efficiency due to the heating by the auxiliary heating means. Thereby, especially in an electric vehicle, it becomes possible to effectively suppress the disadvantage that the cruising distance decreases.
  • control means as in the invention of claim 4 calculates the non-frosting maximum heating capacity predicted value QmaxNfst based on the outside air temperature or by adding the time, solar radiation, rainfall, position and weather conditions to the outdoor temperature. It is possible to accurately estimate the frost-free maximum heating capacity predicted value QmaxNfst that does not form frost on the heat exchanger, that is, to accurately estimate the frost point as a result and effectively prevent frost formation on the outdoor heat exchanger. It becomes possible.
  • the control means has frosting state estimating means for estimating the frosting state on the outdoor heat exchanger, and if not immediately after starting, the control means is based on the estimation of the frosting state estimating means.
  • frost is generated in the outdoor heat exchanger, or when frost formation on the outdoor heat exchanger is predicted, heating by the auxiliary heating means is performed, so that outdoor heat exchange during running after startup is performed. It is possible to ensure the heating capacity of the passenger compartment while effectively preventing or suppressing frost formation on the vessel.
  • the control means suppresses or prevents frost formation on the outdoor heat exchanger based on the degree of frost formation on the outdoor heat exchanger. While calculating TGQech and setting the target heating capacity TGQhp of the radiator to a value obtained by subtracting the target heating capacity TGQech of the auxiliary heating means from the required heating capacity Qtgt, frost formation on the outdoor heat exchanger is prevented, or While suppressing, heating by the auxiliary heating means can be accurately controlled, and comfortable vehicle interior heating can be realized.
  • the control means stops the operation of the compressor, so that the efficiency in the situation where the heating of the radiator becomes too small The reduction can be avoided in advance.
  • the control means as in the invention of claim 9 gradually or stepwise heats the auxiliary heating means. If the temperature is lowered and finally stopped, it is possible to suppress rapid fluctuations in the temperature of the air blown into the passenger compartment, and to increase outdoor heat as the heating capacity of the radiator increases rapidly. The inconvenience of transient frosting on the exchanger is also prevented or suppressed.
  • the control means is configured to attach to the outdoor heat exchanger based on the refrigerant evaporation temperature TXO of the outdoor heat exchanger and the refrigerant evaporation temperature TXObase of the outdoor heat exchanger when no frost is formed. If the frost state or the degree of frost formation is estimated, the frost formation of the outdoor heat exchanger can be accurately determined and the above control can be executed. As a result, heating by the auxiliary heating means can be accurately controlled, and an increase in power consumption can be suppressed.
  • the auxiliary heating means described above as in the invention of claim 11 comprises a heat medium-air heat exchanger for heating the air supplied from the air flow passage into the vehicle compartment, an electric heater, and a circulation means.
  • a heat medium-air heat exchanger for heating the air supplied from the air flow passage into the vehicle compartment
  • an electric heater for heating the air supplied from the air flow passage into the vehicle compartment
  • a circulation means for configuring the heat medium heated by the electric heater from the heat medium circulation circuit that circulates the heat medium to the heat medium-air heat exchanger by the circulation means, it becomes possible to realize an electrically safer vehicle interior heating. Is.
  • FIG. 1 It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied. It is a block diagram of the electric circuit of the controller of the vehicle air conditioner of FIG. It is an enlarged view of the airflow passage part of FIG. It is a flowchart explaining operation
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • a vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery.
  • EV electric vehicle
  • the vehicle air conditioner 1 of the present invention is also driven by the power of the battery. That is, the vehicle air conditioner 1 of the embodiment performs heating by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further operates in each operation mode such as dehumidifying heating, cooling dehumidification, and cooling. Is selectively executed.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
  • the vehicle air conditioner 1 performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, and dissipates the refrigerant into the vehicle compartment.
  • an outdoor expansion valve 6 composed of an electric valve that decompresses and expands the refrigerant during heating, and an outdoor heat exchange that functions as a radiator during cooling and performs heat exchange between the refrigerant and the outside air so as to function as an evaporator during heating.
  • a heat exchanger 9 an indoor expansion valve 8 including an electric valve for decompressing and expanding the refrigerant, a heat absorber 9 provided in the air flow passage 3 to absorb heat from the outside of the vehicle interior during cooling and dehumidification, and a heat absorber 9.
  • Steam to adjust evaporation capacity A capacity control valve 11, the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, and thereby stops the vehicle (that is, the vehicle speed VSP is 0 km / h).
  • the outdoor heat exchanger 7 is configured to ventilate the outside air.
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 in order on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is an electromagnetic valve (open / close valve) 17 that is opened during cooling.
  • the outlet of the supercooling unit 16 is connected to the indoor expansion valve 8 via a check valve 18.
  • the receiver dryer section 14 and the supercooling section 16 structurally constitute a part of the outdoor heat exchanger 7, and the check valve 18 has a forward direction on the indoor expansion valve 8 side.
  • the refrigerant pipe 13B between the check valve 18 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C exiting the evaporation capacity control valve 11 located on the outlet side of the heat absorber 9, and internal heat is generated by both.
  • the exchanger 19 is configured.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9 and passed through the evaporation capacity control valve 11.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve (open / close valve) 21 that is opened during heating.
  • the refrigerant pipe 13C is connected in communication.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and this branched refrigerant pipe 13F is a check valve via an electromagnetic valve (open / close valve) 22 that is opened during dehumidification. 18 is connected to the refrigerant pipe 13B on the downstream side.
  • a bypass pipe 13J is connected to the outdoor expansion valve 6 in parallel.
  • the bypass pipe 13J is opened in a cooling mode, and is an electromagnetic valve (open / close valve) for bypassing the outdoor expansion valve 6 and flowing refrigerant. ) 20 is interposed.
  • the piping between the outdoor expansion valve 6 and the electromagnetic valve 20 and the outdoor heat exchanger 7 is 13I.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • reference numeral 23 denotes a heat medium circulation circuit as auxiliary heating means provided in the vehicle air conditioner 1 of the embodiment.
  • the heat medium circulation circuit 23 has a circulation pump 30 constituting a circulation means, a heat medium heating electric heater (indicated by ECH in the drawing) 35, and an air downstream of the radiator 4 with respect to the air flow in the air flow passage 3.
  • a heat medium-air heat exchanger 40 provided in the air flow passage 3 on the side is provided, and these are sequentially connected in an annular shape by a heat medium pipe 23A.
  • the heat medium circulated in the heat medium circuit 23 for example, water, a refrigerant such as HFO-1234yf, a coolant, or the like is employed.
  • the circulation pump 30 When the circulation pump 30 is operated and the heat medium heating electric heater 35 is energized to generate heat, the heat medium heated by the heat medium heating electric heater 35 is circulated to the heat medium-air heat exchanger 40.
  • the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 becomes a so-called heater core, and complements the heating of the passenger compartment.
  • an air mix damper 28 is provided in the air flow passage 3 on the air upstream side of the radiator 4 to adjust the degree of flow of inside air and outside air to the radiator 4. Further, in the air flow passage 3 on the downstream side of the radiator 4, foot, vent, and differential air outlets (represented by the air outlet 29 in FIG. 1) are formed. Is provided with a blower outlet switching damper 31 for switching and controlling the blowing of air from each of the blowout ports.
  • reference numeral 32 denotes a controller (ECU) as a control means constituted by a microcomputer.
  • the input of the controller 32 includes an outside air temperature sensor 33 for detecting the outside air temperature of the vehicle and air from the suction port 25.
  • An HVAC suction temperature sensor 36 that detects the temperature of the air sucked into the flow passage 3
  • an inside air temperature sensor 37 that detects the temperature of the air (inside air) in the passenger compartment
  • an inside air humidity sensor 38 that detects the humidity of the air in the passenger compartment.
  • an indoor CO 2 concentration sensor 39 for detecting the carbon dioxide concentration in the passenger compartment
  • an outlet temperature sensor 41 for detecting the temperature of air blown into the passenger compartment from the outlet 29, and a discharge refrigerant pressure of the compressor 2 are detected.
  • a discharge pressure sensor 42 that detects the discharge refrigerant temperature of the compressor 2, and a suction pressure sensor that detects the suction refrigerant pressure of the compressor 2.
  • a radiator temperature sensor 46 for detecting the temperature of the radiator 4 (the temperature of the air passing through the radiator 4 or the temperature of the radiator 4 itself), and the refrigerant pressure of the radiator 4 (in the radiator 4 or )
  • a radiator pressure sensor 47 that detects the pressure of the refrigerant immediately after exiting the radiator 4) and the temperature of the heat absorber 9 (the temperature of the air that has passed through the heat absorber 9 or the temperature of the heat absorber 9 itself).
  • a photosensor-type solar radiation sensor 51 for detection for detection
  • a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle
  • an air-conditioning (air conditioner) operation unit 53 for setting switching of a set temperature and an operation mode.
  • An outdoor heat exchanger temperature sensor 54 that detects the temperature of the refrigerant immediately after or the temperature of the outdoor heat exchanger 7 itself, and the refrigerant pressure of the outdoor heat exchanger 7 (in the outdoor heat exchanger 7 or in the outdoor heat).
  • Each output of the outdoor heat exchanger pressure sensor 56 that detects the pressure of the refrigerant immediately after coming out of the exchanger 7 is connected.
  • the input of the controller 32 further includes the temperature of the heating medium heating electric heater 35 of the heating medium circulation circuit 23 (the temperature of the heating medium immediately after being heated by the heating medium heating electric heater 35 or the heating medium heating electric heater 35.
  • the temperature of the electric heater through the heat medium heating air heater 40 (the temperature of the air passing through the heat medium-air heat exchanger 40, Alternatively, the outputs of the heat medium-air heat exchanger temperature sensor 55 for detecting the temperature of the heat medium-air heat exchanger 40 itself are also connected.
  • the output of the controller 32 includes the compressor 2, the outdoor fan 15, the indoor fan (blower fan) 27, the suction switching damper 26, the air mix damper 28, the suction port switching damper 31, and the outdoor expansion.
  • the valve 6, the indoor expansion valve 8, the electromagnetic valves 22, 17, 21, 20, the circulation pump 30, the heat medium heating electric heater 35, and the evaporation capacity control valve 11 are connected. And the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53.
  • the controller 32 is roughly divided into a heating mode, a dehumidifying heating mode, an internal cycle mode, a dehumidifying cooling mode, and a cooling mode, and executes them.
  • a heating mode a dehumidifying heating mode
  • an internal cycle mode a dehumidifying cooling mode
  • a cooling mode a cooling mode
  • the controller 32 opens the solenoid valve 21, and the solenoid valve 17, the solenoid valve 22, and the solenoid valve. 20 is closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the radiator 4 and the heat medium-air heat exchanger 40. . Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. Deprived, cooled, and condensed into liquid.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the operation and action of the heat medium circulation circuit 23 will be described later.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump (indicated by HP in the drawing), and the outdoor heat exchanger 7 functions as a refrigerant evaporator.
  • the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13D and the electromagnetic valve 21, and after being gas-liquid separated there, the gas refrigerant is sucked into the compressor 2. repeat. Since the air heated by the radiator 4 is blown out from the outlet 29 through the heat medium-air heat exchanger 40, the vehicle interior is thereby heated.
  • the controller 32 controls the number of revolutions of the compressor 2 based on the high pressure of the refrigerant circuit R detected by the discharge pressure sensor 42 or the radiator pressure sensor 47, and the temperature of the radiator 4 detected by the radiator temperature sensor 46.
  • the valve opening degree of the outdoor expansion valve 6 is controlled based on the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47, and the degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
  • the controller 32 opens the electromagnetic valve 22 in the heating mode.
  • a part of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted and reaches the indoor expansion valve 8 via the electromagnetic valve 22 and the refrigerant pipes 13F and 13B via the internal heat exchanger 19.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and then repeats circulation sucked into the compressor 2 through the accumulator 12. . Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the controller 32 controls the number of revolutions of the compressor 2 based on the high pressure of the refrigerant circuit R detected by the discharge pressure sensor 42 or the radiator pressure sensor 47 and adjusts the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48. Based on this, the valve opening degree of the outdoor expansion valve 6 is controlled.
  • coolant piping 13F reaches the indoor expansion valve 8 through the internal heat exchanger 19 from the refrigerant
  • the refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and repeats circulation sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification heating is performed in the vehicle interior, but in this internal cycle mode, the air flow path on the indoor side 3, the refrigerant is circulated between the radiator 4 (heat radiation) and the heat absorber 9 (heat absorption), so that heat from the outside air is not pumped up, and the heating capacity for the power consumption of the compressor 2 Is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than that in the dehumidifying and heating mode, but the heating capacity is lowered.
  • the controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 or the high pressure of the refrigerant circuit R described above. At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature of the heat absorber 9 or the high pressure.
  • the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21, the electromagnetic valve 22, and the electromagnetic valve 20. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the radiator 4 and the heat medium-air heat exchanger 40. . Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air cooled and dehumidified by the heat absorber 9 is reheated (having a lower heat dissipation capacity than that during heating) in the process of passing through the radiator 4, thereby dehumidifying and cooling the vehicle interior. .
  • the controller 32 controls the number of revolutions of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 and controls the valve opening degree of the outdoor expansion valve 6 based on the high pressure of the refrigerant circuit R described above.
  • refrigerant pressure of the radiator 4 Radiator pressure PCI
  • the controller 32 opens the electromagnetic valve 20 in the dehumidifying and cooling mode state (in this case, the outdoor expansion valve 6 is fully opened (the valve opening is controlled to an upper limit)).
  • the air mix damper 28 is in a state in which no air is passed through the radiator 4 and the heat medium-air heat exchanger 40. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, the air only passes therethrough, and the refrigerant exiting the radiator 4 reaches the electromagnetic valve 20 and the outdoor expansion valve 6 through the refrigerant pipe 13 ⁇ / b> E.
  • the refrigerant bypasses the outdoor expansion valve 6 and passes through the bypass pipe 13J, and flows into the outdoor heat exchanger 7 as it is, where it travels or is ventilated by the outdoor fan 15. It is air-cooled by the outside air and is condensed and liquefied.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from the outlet 29 without passing through the radiator 4, thereby cooling the vehicle interior.
  • the controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48.
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) (1)
  • Tset is the set temperature in the passenger compartment set by the air conditioning operation unit 53
  • Tin is the temperature of the passenger compartment air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the solar radiation sensor 51 detects This is a balance value calculated from the amount of solar radiation SUN to be performed and the outside air temperature Tam detected by the outside air temperature sensor 33.
  • this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
  • the controller 32 calculates a target radiator temperature TCO from the target blowing temperature TAO, and then calculates a target radiator pressure PCO based on the target radiator temperature TCO. Then, based on the target radiator pressure PCO and the refrigerant pressure (radiator pressure) Pci of the radiator 4 detected by the radiator pressure sensor 47, the controller 32 calculates the rotation speed Nc of the compressor 2, and this rotation The compressor 2 is operated at several Nc. That is, the controller 32 controls the refrigerant pressure Pci of the radiator 4 by the rotation speed Nc of the compressor 2.
  • the controller 32 calculates the target radiator subcooling degree TGSC of the radiator 4 based on the target outlet temperature TAO.
  • the controller 32 uses the radiator pressure Pci and the temperature of the radiator 4 (radiator temperature Tci) detected by the radiator temperature sensor 46 to determine the degree of refrigerant supercooling (radiator subcooling degree SC) in the radiator 4. Is calculated.
  • the target valve opening degree of the outdoor expansion valve 6 target outdoor expansion valve opening degree TGECCV
  • the controller 32 controls the valve opening degree of the outdoor expansion valve 6 to this target outdoor expansion valve opening degree TGECVV.
  • the controller 32 performs calculation in a direction to increase the target radiator subcooling degree TGSC as the target blowing temperature TAO is higher.
  • the controller 32 is not limited to this, and the difference (capacity difference) between the required heating capacity Qtgt and the heating capacity Qhp described later, You may calculate based on the difference (pressure difference) of pressure Pci, target radiator pressure PCO, and radiator pressure Pci. In this case, the controller 32 decreases the target radiator subcooling degree TGSC as the capacity difference is smaller, the pressure difference is smaller, the air volume of the indoor blower 27 is smaller, or the radiator pressure Pci is smaller.
  • FIG. 3 shows the temperature of each part in the air flow passage 3 at this time.
  • Ga is the mass air volume of air flowing into the air flow passage 3
  • Te is the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 (temperature of the air leaving the heat absorber 9)
  • Ga ⁇ SW is mass.
  • THhp The value obtained by multiplying the air volume Ga by the opening of the air mix damper 28, THhp is the temperature of the air that has passed through the radiator 4 detected by the radiator temperature sensor 46 (ie, the radiator temperature Tci), and TH is the heat medium-air heat exchange.
  • the temperature of the air that has passed through the heat medium-air heat exchanger 40 detected by the heater temperature sensor 55 is shown. In the heating mode, the air that exits the heat medium-air heat exchanger 40 and is blown into the vehicle interior from the outlet 29 The target value of the temperature becomes the target radiator temperature TCO.
  • TH THhp.
  • the controller 32 calculates a required heating capacity Qtgt which is a heating capacity of the radiator 4 required using the following formula (II), and does not form frost on the outdoor heat exchanger 7 using the formula (III).
  • the target value of the maximum heating capacity that the radiator 4 can generate in the range that is, the heat pump operation in which the refrigerant is radiated by the radiator 4 and evaporated by the outdoor heat exchanger 7 in the environment where the vehicle is currently placed.
  • QmaxNfst the non-frosting maximum heating capability prediction value
  • Tam is the above-described outside air temperature detected by the outside air temperature sensor 33
  • Te is the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48
  • Cpa is the specific heat of the air flowing into the radiator 4 [kj / kg ⁇ K. ]
  • is the density (specific volume) of the air flowing into the radiator 4 [kg / m 3 ]
  • Qair is the air volume [m 3 / h] passing through the radiator 4 (estimated from the blower voltage BLV of the indoor fan 27, etc. ).
  • the temperature of air flowing into the radiator 4 or the temperature of air flowing out of the radiator 4 may be adopted instead of or in addition to Qair.
  • the time, the amount of solar radiation detected by the solar radiation sensor 51, rainfall, position, weather, and other environmental conditions and external information are referred to, and the frost-free maximum heating capacity prediction The value QmaxNfst may be corrected.
  • the controller 32 reads data from each sensor in step S1 of the flowchart of FIG. 4, and determines whether or not the heating mode is selected in step S2. If the heating mode is selected, the controller 32 proceeds to step S3 and calculates the required heating capacity Qtgt using the above formula (II).
  • step S4 the controller 32 determines whether or not the present is immediately after starting (ON) the heating mode. In winter, it is immediately after the vehicle is started.Judgment immediately after the start is within a predetermined time from the start of the vehicle or whether it is within a predetermined time after switching from another mode to the heating mode. Will be judged. The determination as to whether or not the vehicle has just been started is not based on such a temporal determination. For example, whether or not the difference Tset ⁇ Tin between the set temperature Tset in the vehicle interior and the temperature Tin of the vehicle interior air is greater than a predetermined value. The determination may be made by (Tset ⁇ Tin> predetermined value).
  • FIG. 5 shows the relationship between the predicted non-frosting maximum heating capacity QmaxNfst and the outside air temperature (the tendency of change in the predicted non-frosting maximum heating capacity).
  • the maximum heating capacity Qhp that can be generated by the radiator 4 increases in proportion to the increase in the outside air temperature Tam. Assuming that the outdoor temperature at which the frost is not generated in the outdoor heat exchanger 7 is about + 5 ° C., the frost is generated in the outdoor heat exchanger 7 when operating at the maximum heating capacity Qhp as it is at + 5 ° C. or less. As shown by a broken line in FIG. 5, the non-frosting maximum heating capacity predicted value QmaxNfst tends to decrease at an angle larger than the maximum heating capacity Qhp as the outside air temperature decreases.
  • the controller 32 calculates a target heating capacity TGQech of the heat medium circulation circuit 23 in step S6.
  • step S7 the controller 32 compares the predicted value QmaxNfst with the non-frosting maximum heating capacity Qtgt with the required heating capacity Qtgt. That is, in step S7, it is determined whether or not the predicted maximum frost-free heating capacity QmaxNfst is smaller than the required heating capacity Qtgt (QmaxNfst ⁇ Qtgt).
  • the controller 32 proceeds to step S9 and the heat medium circulation circuit 23.
  • step S5 Estimation of frost formation of outdoor heat exchanger Therefore, if the controller 32 is not immediately after the activation of the heating mode in step S4, that is, if the vehicle has been running for a predetermined time or more after the activation, for example, the process proceeds to step S10. Then, the frost formation state to the outdoor heat exchanger 7 is estimated by the frost formation state estimation means as a function of the controller 32. Next, the estimation example of the frost formation state of the outdoor heat exchanger 7 is demonstrated using FIG.
  • the controller 32 obtains the current refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 obtained from the outdoor heat exchanger pressure sensor 56, and the outdoor in the non-frosting state where the outdoor air is not frosted on the outdoor heat exchanger 7 in a low humidity environment. Based on the refrigerant evaporation temperature TXObase of the heat exchanger 7, the frosting state of the outdoor heat exchanger 7 is estimated. In this case, the controller 32 determines the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 at the time of non-frosting using the following equation (V).
  • Tam which is a parameter of the formula (V) is the outside air temperature obtained from the outside air temperature sensor 33
  • NC is the rotation speed of the compressor 2
  • BLV is the blower voltage of the indoor blower 27
  • VSP is obtained from the vehicle speed sensor 52. It is a vehicle speed
  • k1 to k4 are coefficients, and are obtained in advance by experiments.
  • the outside air temperature Tam is an index indicating the intake air temperature of the outdoor heat exchanger 7.
  • the index indicating the intake air temperature of the outdoor heat exchanger 7 is not limited to the outdoor air temperature Tam.
  • the rotational speed NC of the compressor 2 is an index indicating the refrigerant flow rate in the refrigerant circuit R. The higher the rotational speed NC (the higher the refrigerant flow rate), the lower the TXObase. Therefore, the coefficient k2 is a negative value.
  • the blower voltage BLV is an index indicating the amount of air passing through the radiator 4.
  • the index indicating the amount of air passing through the radiator 4 is not limited to this and may be the blower air amount of the indoor blower 27 or the air mix damper 28 opening SW.
  • the vehicle speed VSP is an index indicating the passing air speed of the outdoor heat exchanger 7. The lower the vehicle speed VSP (the lower the passing air speed of the outdoor heat exchanger 7), the lower the TXObase. Therefore, the coefficient k4 is a positive value.
  • the index indicating the passing air speed of the outdoor heat exchanger 7 is not limited to this, and the voltage of the outdoor blower 15 may be used.
  • the outside air temperature Tam, the rotational speed NC of the compressor 2, the blower voltage BLV of the indoor blower 27, and the vehicle speed VSP are used as parameters of the formula (V). May be added as a parameter.
  • the target blowout temperature TAO, the rotational speed NC of the compressor 2, the blower air volume of the indoor blower 27, the inlet air temperature of the radiator 4 and the radiator temperature Tci of the radiator 4 can be considered.
  • the parameters of the formula (V) are not limited to all of the above, and any one of them or a combination thereof may be used.
  • the solid line in FIG. 6 shows the change in the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7, and the broken line shows the change in the refrigerant evaporation temperature TXObase when there is no frost formation.
  • the refrigerant evaporating temperature TXO of the outdoor heat exchanger 7 is high and is higher than the refrigerant evaporating temperature TXObase when there is no frost formation.
  • the heating mode progresses, the temperature in the passenger compartment is warmed and the load on the vehicle air conditioner 1 is reduced. Therefore, the refrigerant flow rate and the amount of air passing through the radiator 4 are also reduced.
  • the calculated TXObase (broken line in FIG. 6) rises.
  • frost As the meaning of the progress of frost formation, there is a high probability that frost is actually generated in the outdoor heat exchanger 7 and that the frost is likely to be generated in the outdoor heat exchanger 7, that is, it is predicted with a high probability of frost formation. Including both cases.
  • controller 32 determines in step S10 that frost formation of outdoor heat exchanger 7 has progressed, it proceeds to step S11 and uses the following equation (VI) to determine the heat medium circulation circuit. 23 target heating capacity TGQech is calculated.
  • TGQech f (TXObase-TXO) (VI)
  • TGQech ⁇ 0.
  • the difference ⁇ TXO (TXObase ⁇ TXO) between the refrigerant evaporating temperature TXObase of the outdoor heat exchanger 7 and the refrigerant evaporating temperature TXO of the outdoor heat exchanger 7 at the time of this non-frosting is the reason why the outdoor heat exchanger 7 It means the degree of frost formation. That is, the controller 32 calculates the target heating capacity TGQech of the heat medium circulation circuit 23 based on the degree of frost formation on the outdoor heat exchanger 7.
  • step S11 the controller 32 sets the target heating capacity TGQhp of the radiator 4 to a value obtained by subtracting the target heating capacity TGQech of the heat medium circulation circuit 23 from the required heating capacity Qtgt (Qtgt ⁇ TGQech). Since the target heating capacity TGQhp of the radiator 4 is reduced in this way, the target heating capacity TGQech of the heat medium circulation circuit 23 has a heating capacity that suppresses or prevents frost formation on the outdoor heat exchanger 7. Become.
  • FIG. 7 is a view showing a change in the target heating capacity TGQech of the heat medium circulation circuit 23 concerned.
  • the controller 32 cannot detect the frost point, the thin broken line in FIG. 7 does not actually exist, but the frost state or the degree of frost formation is detected by the value of TXObase-TXO.
  • the controller 32 increases TGQech as the difference ⁇ TXO (TXObase ⁇ TXO) increases.
  • the controller 32 controls heating by the heat medium circulation circuit 23 based on the degree of frost formation on the outdoor heat exchanger 7, and the target heating capacity TGQhp of the radiator 4 is calculated from the required heating capacity Qtgt to the heat medium circulation circuit 23.
  • step S11 the target heating capacity TGQhp of the radiator 4 calculated in step S11 is too small and is equal to or less than Q1
  • the heat medium-air heat exchanger 40 of the heat medium circuit 23 for heating the air supplied from the air flow passage 3 to the vehicle interior is provided, and the controller 32 is provided with the outdoor heat exchanger. 7, a predicted non-frosting maximum heating capacity predicted value QmaxNfst that can be generated by the radiator 4 within a range where frosting does not occur is calculated.
  • the heating by the radiator 4 and the heating by the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 are controlled so that the required heating capacity Qtgt is achieved without frosting the outdoor heat exchanger 7.
  • the controller 32 sets the target heating capacity TGQhp of the radiator 4 as the non-frosting maximum heating capacity predicted value QmaxNfst and the required heating capacity Qtgt. If the shortage is supplemented by heating by the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 and the predicted maximum non-frosting capacity QmaxNfst is equal to or greater than the required heating capacity Qtgt, the radiator 4 The target heating capacity TGQhp is set as the required heating capacity Qtgt, and the heating by the heat medium circulation circuit 23 is stopped. Therefore, it is possible to minimize the deterioration of efficiency due to the heating by the heat medium circulation circuit 23. Thereby, especially in an electric vehicle, it becomes possible to effectively suppress the disadvantage that the cruising distance decreases.
  • the controller 32 calculates the non-frost-free maximum heating capacity predicted value QmaxNfst based on the outside air temperature Tam or by adding the time, solar radiation, rainfall, position, and weather conditions to the outside air temperature Tam, so that the outdoor heat exchanger 7 does not frost. It is possible to accurately estimate the non-frosting maximum heating capacity prediction value QmaxNfst, that is, to accurately estimate the frost point as a result and to effectively prevent frost formation on the outdoor heat exchanger 7.
  • the controller 32 performs the said control immediately after starting of the heating mode of the air conditioning apparatus 1 for vehicles, from the state which the vehicle has stopped, ie, the state where frost has not yet arisen in the outdoor heat exchanger 7, It becomes possible to prevent inconvenience that frost starts to be generated in the outdoor heat exchanger 7 by the start-up, and it is possible to reduce the growth of frost accompanying the subsequent running of the vehicle as much as possible. Further, since the frost point is estimated only immediately after the start-up and complementation is performed by the heat medium circulation circuit 23, the power consumption can be reduced also by this.
  • the controller 32 estimates the frost formation state to the outdoor heat exchanger 7, and when not immediately after starting, when frost arises in the outdoor heat exchanger 7, or the frost formation to the outdoor heat exchanger 7 is estimated. Since the heating by the heat medium circulation circuit 23 is performed when it is done, frosting on the outdoor heat exchanger 7 during traveling after startup is effectively prevented or suppressed, and the heating capacity of the vehicle interior is ensured It becomes possible to do.
  • the controller 32 calculates the target heating capacity TGQech of the heat medium circulation circuit 23 that suppresses or prevents frost formation on the outdoor heat exchanger 7 based on the degree of frost formation on the outdoor heat exchanger 7.
  • the target heating capacity TGQhp of the radiator 4 is set to a value obtained by subtracting the target heating capacity TGQech of the heat medium circuit 23 from the required heating capacity Qtgt, so that frost formation on the outdoor heat exchanger 7 is prevented or suppressed.
  • heating by the heat medium circulation circuit 23 can be accurately controlled, and comfortable vehicle interior heating can be realized.
  • the controller 32 stops the operation of the compressor 2, thereby reducing the efficiency in a situation where the heating of the radiator 4 becomes excessive. It will be possible to avoid.
  • the controller 32 is based on the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 and the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 at the time of no frost formation, Since the degree of frost formation is estimated, the frost formation of the outdoor heat exchanger 7 can be accurately determined and the cooperative control with the heat medium circulation circuit 23 can be executed. As a result, heating by the heat medium-air heat exchanger 40 of the heat medium circuit 23 can be accurately controlled, and an increase in power consumption can be suppressed.
  • the auxiliary heating means is configured from the heat medium circulation circuit 23 that circulates the heat medium heated by the medium heating electric heater 35 to the heat medium-air heat exchanger 40 by the circulation pump 30, the electric heater having a high voltage can be connected to the vehicle interior. Since the vehicle can be installed at a position far from the vehicle, it is possible to realize electrically safer vehicle interior heating.
  • FIG. 8 shows another embodiment of the flowchart of the controller 32.
  • the same parts as the parts indicated by F1 and F2 in the flowchart of FIG. 4 are indicated by the same reference numerals, and the details are omitted.
  • the difference ⁇ TXO (TXObase ⁇ TXO) is equal to or smaller than ⁇ T1 in step S10, and frost formation on the outdoor heat exchanger 7 has not progressed, that is, no frost is generated in the outdoor heat exchanger 7. If it is determined, the process proceeds directly to step S9, and the heat medium heating electric heater 35 is not de-energized, but the step control of step S15 is executed during that time.
  • step S15 of this embodiment is shown in the lower part of FIG. If the difference disappears immediately after the heating mode is started, that is, when the process proceeds from step S4 to step S10 and the difference ⁇ TXO (TXObase ⁇ TXO) is equal to or less than ⁇ T1, the controller 32 causes the heat medium circulation circuit 23 in step S15.
  • the target heating capacity TGQech is reduced gradually or stepwise.
  • the change in the heating capacity generated by the radiator 4 by the operation control of the compressor 2 is caused by the supply of the high-temperature heat medium to the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 being stopped. There may be a delay in the heating capacity decline due to. If the target heating capacity TGQech of the heat medium circulation circuit 23 is set to 0 and the target heating capacity TGQhp of the radiator 4 is rapidly increased toward the required heating capacity Qtgt, the process proceeds from step S10 to step S9. Depending on the situation, there is a risk that frost may be transiently generated in the outdoor heat exchanger 7.
  • step S15 when the controller 32 determines that frost is not generated in the outdoor heat exchanger 7 as in this embodiment, heating by the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 is gradually performed in step S15.
  • the temperature is lowered stepwise and finally stopped, the inconvenience that the temperature of the air blown into the passenger compartment fluctuates rapidly due to a delay in the increase in the heating capacity of the radiator 4 is suppressed. It becomes possible.
  • the target heating capacity TGQhp of the radiator 4 is also increased gradually or stepwise, the generation of transient frost on the outdoor heat exchanger 7 can be prevented or suppressed.
  • FIG. 9 shows another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the outdoor heat exchanger 7 is not provided with the receiver dryer section 14 and the supercooling section 16, and the refrigerant pipe 13 ⁇ / b> A exiting from the outdoor heat exchanger 7 is connected via the electromagnetic valve 17 and the check valve 18. It is connected to the refrigerant pipe 13B.
  • the refrigerant pipe 13D branched from the refrigerant pipe 13A is connected to the refrigerant pipe 13C on the downstream side of the internal heat exchanger 19 via the electromagnetic valve 21.
  • the present invention is also effective in the vehicle air conditioner 1 of the refrigerant circuit R that employs the outdoor heat exchanger 7 that does not include the receiver dryer section 14 and the supercooling section 16.
  • FIG. 10 shows another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the refrigerant circuit R in this embodiment is the same as that shown in FIG.
  • the heat medium-air heat exchanger 40 of the heat medium circuit 23 is disposed upstream of the radiator 4 and downstream of the air mix damper 28 with respect to the air flow in the air flow passage 3.
  • Other configurations are the same as those in FIG.
  • the present invention is also effective in the vehicle air conditioner 1 in which the heat medium-air heat exchanger 40 is arranged on the upstream side of the radiator 4.
  • the heat medium in the heat medium circulation circuit 23 is used. The problem caused by the low temperature is not caused. This facilitates cooperative heating with the radiator 4 and eliminates the need for so-called preliminary operation in which the heat medium is heated in advance. However, air that has passed through the heat medium-air heat exchanger 40 flows into the radiator 4.
  • the heat medium-air heat exchanger 40 is arranged on the downstream side of the radiator 4 with respect to the air flow in the air flow passage 3 as shown in FIGS. 1 and 9, the heat medium-air as shown in FIG. Compared with the case where the heat exchanger 40 is arranged upstream, the air heated by the heat medium-air heat exchanger 40 does not flow into the radiator 4, and the temperature difference between the temperature of the radiator 4 and the air Is ensured, and the heat exchange performance of the radiator 4 can be prevented from lowering.
  • FIG. 11 shows still another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the basic configurations of the refrigerant circuit R and the heat medium circulation circuit 23 in this embodiment are the same as those in FIG. 1, but a heat medium-refrigerant heat exchanger 70 is provided in the heat medium circulation circuit 23.
  • the heat medium-refrigerant heat exchanger 70 exchanges heat between the heat medium pipe 23A exiting the circulation pump 30 and the refrigerant pipe 13E exiting the radiator 4 of the refrigerant circuit R.
  • the heat medium discharged from the circulation pump 30 is configured to receive a heating action from the refrigerant discharged from the radiator 4.
  • heat can be recovered from the refrigerant that has passed through the radiator 4 to the heat medium that circulates through the heat medium circuit 23.
  • the heat medium circulation circuit 23 is provided with the heat medium-refrigerant heat exchanger 70 that recovers heat from the refrigerant that has passed through the radiator 4, so that the heat of the refrigerant that has exited the radiator 4 can be transferred to the heat medium circuit. It is possible to recover the heat medium flowing in the heat transfer medium 23 and transport it to the heat medium-air heat exchanger 40 to perform more efficient heating assistance.
  • FIG. 12 shows still another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the refrigerant circuit R and the heat medium circulation circuit 23 of this embodiment are the same as those in FIG. 11 except that the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 corresponds to the air flow in the air flow passage 3. Further, it is disposed upstream of the radiator 4 and downstream of the air mix damper 28. Also with such a configuration, the heat of the refrigerant that has exited the radiator 4 is recovered by the heat medium-refrigerant heat exchanger 70 to the heat medium flowing in the heat medium circuit 23, and the heat medium-air heat exchanger 40. It becomes possible to carry out more efficient heating assistance.
  • FIG. 13 shows still another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the piping configuration of the refrigerant circuit R and the heat medium circulation circuit 23 in this embodiment is basically the same as that in FIG. 1, but the radiator 4 is not provided in the air flow passage 3 and is arranged outside thereof. Has been. Instead, the radiator 4 is provided with a heat medium-refrigerant heat exchanger 74 in this case in a heat exchange relationship.
  • This heat medium-refrigerant heat exchanger 74 is connected to the heat medium pipe 23A between the circulation pump 30 of the heat medium circulation circuit 23 and the heat medium heating electric heater 35, and the heat medium of the heat medium circulation circuit 23-
  • the air heat exchanger 40 is provided in the air flow passage 3.
  • the heating medium heating electric heater 35 is energized to heat the heating medium flowing in the heating medium circuit 23A.
  • the heat medium circulation circuit 23 is employed as the auxiliary heating unit.
  • the auxiliary heating unit may be configured by a normal electric heater (for example, a PTC heater) 73.
  • a normal electric heater for example, a PTC heater
  • FIG. 15 A configuration example corresponding to FIG. 1 in that case is FIG. 14, and a configuration example corresponding to FIG. 9 is FIG. 15. 14 and 15, the heat medium circulation circuit 23 of FIGS. 1 and 9 is replaced with an electric heater 73 in this case.
  • controller 32 controls the energization of the electric heater 73 instead of the circulation pump 30 and the heat medium heating electric heater 35 of the heat medium circulation circuit 23, and the same as described above. Since the heating capacity of the radiator 4 is complemented by heat generation, detailed description thereof is omitted. Thus, the air supplied to the passenger compartment may be heated by the electric heater 73. According to such a configuration, there is an advantage that the configuration is simplified as compared with the case where the heat medium circulation circuit 23 is used.
  • the electric heater 73 may be arranged on the air upstream side of the radiator 4 in FIGS. 14 and 15 as in the case of FIG. 10, and in that case, the electric heater 73 is placed in the vehicle interior at the beginning of energization of the electric heater 73. This has the effect of eliminating the inconvenience that the temperature of the supplied air decreases.
  • the controller 32 serving as the frost formation state estimating means of the outdoor heat exchanger 7 determines the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 and the refrigerant evaporation of the outdoor heat exchanger 7 when there is no frost formation.
  • the invention other than claim 10 is not limited thereto, and the refrigerant evaporation pressure PXO of the outdoor heat exchanger 7 Based on the refrigerant evaporation pressure PXObase of the outdoor heat exchanger 7 at the time of non-frosting, it may be estimated by the same procedure as in the case of TXO and TXObase, and for example, the actual heating capacity of the radiator 4 The heating capacity is compared with the non-frosting heating capacity, which is the heating capacity of the radiator 4 when the outdoor heat exchanger 7 is not frosted, and the actual heating capacity is reduced. 7 is frosting It may be estimated as.
  • the present invention is applied to the vehicle air conditioner 1 that switches between and executes the heating mode, the dehumidifying heating mode, the dehumidifying and cooling mode, and the cooling mode.
  • the present invention is not limited thereto, and only the heating mode is performed. In addition, the present invention is effective.
  • the heat medium circulation circuit 23 is taken up as the auxiliary heating means.
  • the invention other than claim 11 is not limited thereto, and for example, an electric heater (auxiliary heating means) may be provided in the air flow passage 3. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

[Problem] To ensure comfortable cabin heating by preventing or suppressing frost formation on an outdoor heat exchanger of an air-conditioning device of so-called heat pump type. [Solution] A controller calculates a no-frost forming maximum heating capacity prediction value (QmaxNfst), which is a target value for a maximum heating capacity that can be generated by a radiator (4) without frost formation on an outdoor heat exchanger (7), and controls heating by the radiator (4) and heating by a heat medium-air heat exchanger (40) of a heat medium circulation circuit (23) on the basis of the no-frost forming maximum heating capacity prediction value (QmaxNfst) and a requested heating capacity (Qtgt) which is a requested heating capacity from the radiator (4), so that the requested heating capacity (Qtgt) can be achieved without causing frost formation on the outdoor heat exchanger (7).

Description

車両用空気調和装置Air conditioner for vehicles
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置、特にハイブリッド自動車や電気自動車に適用可能な空気調和装置に関するものである。 The present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle, and more particularly to an air conditioner that can be applied to a hybrid vehicle or an electric vehicle.
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器(凝縮器)と、車室内側に設けられて冷媒を吸熱させる吸熱器(蒸発器)と、車室外側に設けられて冷媒を放熱又は吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱器において放熱した冷媒を吸熱器において吸熱させる除湿モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モードの各モードを切り換えて実行するものが開発されている(例えば、特許文献1参照)。 Recently, hybrid vehicles and electric vehicles have become popular due to the emergence of environmental problems. As an air conditioner that can be applied to such a vehicle, a compressor that compresses and discharges the refrigerant, a radiator (condenser) that is provided on the vehicle interior side to dissipate the refrigerant, and the vehicle interior side A heat absorber (evaporator) that absorbs the refrigerant, and an outdoor heat exchanger that is provided outside the passenger compartment to dissipate or absorb the refrigerant, and dissipates the refrigerant discharged from the compressor in the radiator, A heating mode in which the heat dissipated in the radiator is absorbed in the outdoor heat exchanger, a dehumidification mode in which the refrigerant discharged from the compressor is dissipated in the radiator, and the refrigerant dissipated in the radiator is absorbed in the heat absorber, and compression A refrigerant that has been radiated in an outdoor heat exchanger and is switched and executed in each cooling mode in which heat is absorbed in the heat absorber has been developed. References 1).
特許第3985384号公報Japanese Patent No. 3985384
 ここで、上記暖房モードにおいては、室外熱交換器が冷媒の蒸発器として機能する。そのため、車両の空気調和装置を起動して暖房モードを実行すると、外気の温度/湿度の条件によっては、室外熱交換器に外気中の水分が霜となって付着し、成長するようになる。暖房モードにおいて室外熱交換器に着霜した場合、霜が断熱材となってしまうため、外気との熱交換性能が著しく悪化し、外気中から吸熱することができなくなるため、所要の暖房能力が得られなくなる問題があった。 Here, in the heating mode, the outdoor heat exchanger functions as a refrigerant evaporator. Therefore, when the air conditioning apparatus of the vehicle is activated and the heating mode is executed, moisture in the outside air adheres to the outdoor heat exchanger as frost and grows depending on the temperature / humidity conditions of the outside air. When frost is formed on the outdoor heat exchanger in the heating mode, the frost becomes a heat insulating material, so the heat exchange performance with the outside air is remarkably deteriorated and heat cannot be absorbed from the outside air. There was a problem that could not be obtained.
 本発明は、係る従来の技術的課題を解決するために成されたものであり、所謂ヒートポンプ方式の空気調和装置において、室外熱交換器への着霜を予防し、或いは、抑制することにより、快適な車室内暖房を確保することを目的とする。 The present invention has been made to solve the conventional technical problems, and in a so-called heat pump type air conditioner, by preventing or suppressing frost formation on the outdoor heat exchanger, The purpose is to ensure comfortable vehicle interior heating.
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行するものであって、空気流通路から車室内に供給する空気を加熱するための補助加熱手段を備え、制御手段は、室外熱交換器に着霜しない範囲で放熱器が発生可能な最大暖房能力の目標値である無着霜最大暖房能力予測値QmaxNfstを算出し、この無着霜最大暖房能力予測値QmaxNfstと、要求される放熱器の暖房能力である要求暖房能力Qtgtとに基づき、室外熱交換器に着霜させずに要求暖房能力Qtgtを達成するよう、放熱器による加熱と補助加熱手段による加熱を制御することを特徴とする。 The vehicle air conditioner of the present invention heats the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air that dissipates the refrigerant and is supplied from the air flow passage to the vehicle interior. A heat sink, a heat absorber for cooling the air supplied to the vehicle interior from the air flow passage by absorbing the refrigerant, an outdoor heat exchanger provided outside the vehicle cabin for radiating or absorbing heat, and control means And a heating mode in which at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and the radiated refrigerant is decompressed and then absorbed by the outdoor heat exchanger. Auxiliary heating means for heating the air supplied to the vehicle interior from the air flow passage, and the control means is a target value of the maximum heating capacity that can be generated by the radiator within a range where frost is not formed on the outdoor heat exchanger. No frost maximum heating capacity A predicted value QmaxNfst is calculated, and the required heating capacity without frosting the outdoor heat exchanger is calculated based on the predicted non-frosting maximum heating capacity predicted value QmaxNfst and the required heating capacity Qtgt which is the required heating capacity of the radiator. Heating by a radiator and heating by auxiliary heating means are controlled so as to achieve Qtgt.
 請求項2の発明の車両用空気調和装置は、上記発明において制御手段は、無着霜最大暖房能力予測値QmaxNfstが、要求暖房能力Qtgtより小さくなる場合、放熱器の目標暖房能力TGQhpを無着霜最大暖房能力予測値QmaxNfstとし、要求暖房能力Qtgtより不足する分を補助加熱手段による加熱により補完することを特徴とする。 In the air conditioning apparatus for a vehicle according to the second aspect of the present invention, in the above invention, the control means does not reach the target heating capacity TGQhp of the radiator when the predicted non-frosting maximum heating capacity value QmaxNfst is smaller than the required heating capacity Qtgt. The frost maximum heating capacity predicted value QmaxNfst is used, and the portion deficient in the required heating capacity Qtgt is supplemented by heating by the auxiliary heating means.
 請求項3の発明の車両用空気調和装置は、上記各発明において制御手段は、無着霜最大暖房能力予測値QmaxNfstが要求暖房能力Qtgt以上である場合、放熱器の目標暖房能力TGQhpを要求暖房能力Qtgtとし、補助加熱手段による加熱は停止することを特徴とする。 According to a third aspect of the present invention, in the vehicle air conditioner according to the third aspect of the present invention, when the predicted value of non-frost maximum heating capacity QmaxNfst is equal to or greater than the required heating capacity Qtgt, the control means requires the target heating capacity TGQhp of the radiator. The capacity is Qtgt, and heating by the auxiliary heating means is stopped.
 請求項4の発明の車両用空気調和装置は、上記各発明において制御手段は、外気温度に基づき、若しくは、それに時刻、日射、降雨、位置、気象条件を加えて無着霜最大暖房能力予測値QmaxNfstを算出することを特徴とする。 According to a fourth aspect of the present invention, there is provided a vehicle air conditioner according to the above-described invention, wherein the control means is based on the outside air temperature, or the time, solar radiation, rainfall, position, and weather conditions are added thereto to estimate the maximum frost-free heating capacity. QmaxNfst is calculated.
 請求項5の発明の車両用空気調和装置は、制御手段が、起動直後に上記各発明の制御を実行することを特徴とする。 The vehicle air conditioner of the invention of claim 5 is characterized in that the control means executes the control of each of the above inventions immediately after activation.
 請求項6の発明の車両用空気調和装置は、上記各発明において制御手段は、室外熱交換器への着霜状態を推定する着霜状態推定手段を有し、起動直後ではない場合、この着霜状態推定手段の推定に基づき、室外熱交換器へ霜が生じたとき、若しくは、室外熱交換器への着霜が予測されるとき、補助加熱手段による加熱を実行することを特徴とする。 According to a sixth aspect of the present invention, there is provided a vehicular air conditioner, wherein the control means includes frosting state estimating means for estimating a frosting state on the outdoor heat exchanger. When the frost is generated in the outdoor heat exchanger based on the estimation of the frost state estimating means, or when frost formation on the outdoor heat exchanger is predicted, heating by the auxiliary heating means is performed.
 請求項7の発明の車両用空気調和装置は、上記発明において制御手段は、室外熱交換器への着霜の度合いに基づき、当該室外熱交換器への着霜を抑制し、若しくは、防止する補助加熱手段の目標暖房能力TGQechを算出すると共に、放熱器の目標暖房能力TGQhpを、要求暖房能力Qtgtから補助加熱手段の目標暖房能力TGQechを差し引いた値とすることを特徴とする。 According to a seventh aspect of the present invention, in the vehicle air conditioner according to the seventh aspect, the control means suppresses or prevents frost formation on the outdoor heat exchanger based on the degree of frost formation on the outdoor heat exchanger. The target heating capacity TGQech of the auxiliary heating means is calculated, and the target heating capacity TGQhp of the radiator is set to a value obtained by subtracting the target heating capacity TGQech of the auxiliary heating means from the required heating capacity Qtgt.
 請求項8の発明の車両用空気調和装置は、上記発明において制御手段は、放熱器の目標暖房能力TGQhpが所定の値より小さい場合、圧縮機の運転を停止することを特徴とする。 The air conditioning apparatus for a vehicle according to an eighth aspect of the invention is characterized in that, in the above invention, the control means stops the operation of the compressor when the target heating capacity TGQhp of the radiator is smaller than a predetermined value.
 請求項9の発明の車両用空気調和装置は、請求項6乃至請求項8の発明において制御手段は、着霜状態推定手段の推定に基づき、室外熱交換器へ霜が生じていないと推定されるとき、補助加熱手段による加熱を、徐々に若しくは段階的に低下させ、最終的に停止させることを特徴とする。 According to a ninth aspect of the present invention, there is provided a vehicle air conditioner according to the sixth to eighth aspects of the present invention, wherein the control means is presumed that frost is not generated in the outdoor heat exchanger based on the estimation of the frosting state estimating means. When heating, the heating by the auxiliary heating means is gradually or stepwise reduced and finally stopped.
 請求項10の発明の車両用空気調和装置は、請求項6乃至請求項9の発明において制御手段は、室外熱交換器の冷媒蒸発温度TXOと、無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseとに基づき、室外熱交換器への着霜状態、又は、着霜の度合いを推定することを特徴とする。 The air conditioner for a vehicle according to a tenth aspect of the present invention is the air conditioning apparatus for a vehicle according to any of the sixth to ninth aspects, wherein the control means includes the refrigerant evaporation temperature TXO of the outdoor heat exchanger and the refrigerant of the outdoor heat exchanger when there is no frost formation. Based on the evaporation temperature TXObase, the frost formation state on the outdoor heat exchanger or the degree of frost formation is estimated.
 請求項11の発明の車両用空気調和装置は、上記各発明において空気流通路から車室内に供給する空気を加熱するための熱媒体-空気熱交換器と、電気ヒータと、循環手段とを有し、電気ヒータにより加熱された熱媒体を循環手段により熱媒体-空気熱交換器に循環する熱媒体循環回路から補助加熱手段を構成したことを特徴とする。 The vehicle air conditioner according to an eleventh aspect of the present invention includes a heat medium-air heat exchanger for heating air supplied from the air flow passage to the vehicle interior, an electric heater, and a circulation means. The auxiliary heating means is constituted by a heat medium circulation circuit for circulating the heat medium heated by the electric heater to the heat medium-air heat exchanger by the circulation means.
 本発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、空気流通路から車室内に供給する空気を加熱するための補助加熱手段を設け、制御手段が、室外熱交換器に着霜しない範囲で放熱器が発生可能な最大暖房能力の目標値である無着霜最大暖房能力予測値QmaxNfstを算出し、この無着霜最大暖房能力予測値QmaxNfstと、要求される放熱器の暖房能力である要求暖房能力Qtgtとに基づき、室外熱交換器に着霜させずに要求暖房能力Qtgtを達成するよう、放熱器による加熱と補助加熱手段による加熱を制御するようにしたので、外気の温度/湿度の条件により決定される室外熱交換器への霜が生じる霜点が検出できない場合にも、室外熱交換器に着霜させること無く、放熱器と補助加熱手段による協調暖房によって要求暖房能力Qtgtを達成し、快適な車室内暖房を実現することが可能となる。 According to the present invention, a compressor for compressing a refrigerant, an air flow passage through which air to be supplied to the vehicle interior flows, and a radiator for heating the air to be radiated from the refrigerant and supplied to the vehicle interior from the air flow passage. And a heat absorber for cooling the refrigerant to absorb heat and supplying air from the air flow passage to the vehicle interior, an outdoor heat exchanger that is provided outside the vehicle and radiates or absorbs the refrigerant, and a control means, In the vehicle air conditioner that executes a heating mode in which at least the refrigerant discharged from the compressor is radiated by the radiator by this control means, and the radiated refrigerant is depressurized and then absorbed by the outdoor heat exchanger. Auxiliary heating means for heating the air supplied from the air flow passage to the vehicle interior is provided, and the control means is a target value of the maximum heating capacity that can be generated by the radiator within a range where frost is not formed on the outdoor heat exchanger. Maximum heating capacity for frost formation A predicted value QmaxNfst is calculated, and the required heating capacity without frosting the outdoor heat exchanger is calculated based on the predicted non-frosting maximum heating capacity predicted value QmaxNfst and the required heating capacity Qtgt which is the required heating capacity of the radiator. Since the heating by the radiator and the heating by the auxiliary heating means are controlled so as to achieve Qtgt, the frost point at which the frost to the outdoor heat exchanger determined by the outdoor temperature / humidity condition cannot be detected In addition, the required heating capacity Qtgt can be achieved by cooperative heating by the radiator and the auxiliary heating means without causing the outdoor heat exchanger to be frosted, and comfortable vehicle interior heating can be realized.
 この場合、例えば請求項2の発明の如く制御手段が、無着霜最大暖房能力予測値QmaxNfstが、要求暖房能力Qtgtより小さくなる場合、放熱器の目標暖房能力TGQhpを無着霜最大暖房能力予測値QmaxNfstとし、要求暖房能力Qtgtより不足する分を補助加熱手段による加熱により補完するようにし、請求項3の発明の如く無着霜最大暖房能力予測値QmaxNfstが要求暖房能力Qtgt以上である場合は、放熱器の目標暖房能力TGQhpを要求暖房能力Qtgtとし、補助加熱手段による加熱は停止するようにすれば、補助加熱手段による加熱に伴う効率の悪化も最小限に抑えることが可能となる。これにより、特に電気自動車においては航続距離が低下する不都合を効果的に抑制することが可能となる。 In this case, for example, as in the second aspect of the invention, when the predicted non-frosting maximum heating capacity predicted value QmaxNfst is smaller than the required heating capacity Qtgt, the control means predicts the target heating capacity TGQhp of the radiator to the maximum non-frosting heating capacity. When the value QmaxNfst is set, and a portion deficient in the required heating capacity Qtgt is supplemented by heating by the auxiliary heating means, the non-frosting maximum heating capacity predicted value QmaxNfst is equal to or greater than the required heating capacity Qtgt as in the invention of claim 3. If the target heating capacity TGQhp of the radiator is set as the required heating capacity Qtgt and the heating by the auxiliary heating means is stopped, it is possible to minimize the deterioration of the efficiency due to the heating by the auxiliary heating means. Thereby, especially in an electric vehicle, it becomes possible to effectively suppress the disadvantage that the cruising distance decreases.
 また、請求項4の発明の如く制御手段が、外気温度に基づき、若しくは、それに時刻、日射、降雨、位置、気象条件を加えて無着霜最大暖房能力予測値QmaxNfstを算出することにより、室外熱交換器に着霜しない無着霜最大暖房能力予測値QmaxNfstを的確に推定し、即ち、結果として霜点を的確に推定して室外熱交換器への着霜を効果的に防止することが可能となる。 Further, the control means as in the invention of claim 4 calculates the non-frosting maximum heating capacity predicted value QmaxNfst based on the outside air temperature or by adding the time, solar radiation, rainfall, position and weather conditions to the outdoor temperature. It is possible to accurately estimate the frost-free maximum heating capacity predicted value QmaxNfst that does not form frost on the heat exchanger, that is, to accurately estimate the frost point as a result and effectively prevent frost formation on the outdoor heat exchanger. It becomes possible.
 そして、請求項5の発明の如く制御手段が、起動直後に上記制御を実行するようにすれば、停止している状態、即ち、未だ室外熱交換器に霜が生じていない状態から、起動によって室外熱交換器に霜が生じ始める不都合を予防することができるようになり、その後の走行に伴う着霜の成長をできるだけ低減させることができるようになる。また、起動直後にのみ係る霜点の推定を行って補助加熱手段による補完を行うので、これによっても消費電力の削減を図ることが可能となる。 And if a control means performs the said control immediately after starting like the invention of Claim 5, from the state which has stopped, ie, the state where frost has not yet arisen in the outdoor heat exchanger, by starting It becomes possible to prevent the inconvenience that frost starts to be generated in the outdoor heat exchanger, and to reduce the growth of frost accompanying the subsequent running as much as possible. In addition, since the frost point is estimated only immediately after the start-up and complemented by the auxiliary heating means, it is possible to reduce the power consumption.
 また、請求項6の発明の如く制御手段が、室外熱交換器への着霜状態を推定する着霜状態推定手段を有し、起動直後ではない場合、この着霜状態推定手段の推定に基づき、室外熱交換器へ霜が生じたとき、若しくは、室外熱交換器への着霜が予測されるとき、補助加熱手段による加熱を実行するようにすれば、起動後の走行中における室外熱交換器への着霜も効果的に防止、若しくは、抑制しながら、車室内の暖房能力を確保することが可能となる。 Further, as in the sixth aspect of the invention, the control means has frosting state estimating means for estimating the frosting state on the outdoor heat exchanger, and if not immediately after starting, the control means is based on the estimation of the frosting state estimating means. When frost is generated in the outdoor heat exchanger, or when frost formation on the outdoor heat exchanger is predicted, heating by the auxiliary heating means is performed, so that outdoor heat exchange during running after startup is performed. It is possible to ensure the heating capacity of the passenger compartment while effectively preventing or suppressing frost formation on the vessel.
 そして、請求項7の発明の如く制御手段が、室外熱交換器への着霜の度合いに基づき、当該室外熱交換器への着霜を抑制し、若しくは、防止する補助加熱手段の目標暖房能力TGQechを算出すると共に、放熱器の目標暖房能力TGQhpを、要求暖房能力Qtgtから補助加熱手段の目標暖房能力TGQechを差し引いた値とすることで、室外熱交換器への着霜を防止、若しくは、抑制しながら、的確に補助加熱手段による暖房を制御し、快適な車室内暖房を実現することができるようになる。 Then, as in the seventh aspect of the present invention, the control means suppresses or prevents frost formation on the outdoor heat exchanger based on the degree of frost formation on the outdoor heat exchanger. While calculating TGQech and setting the target heating capacity TGQhp of the radiator to a value obtained by subtracting the target heating capacity TGQech of the auxiliary heating means from the required heating capacity Qtgt, frost formation on the outdoor heat exchanger is prevented, or While suppressing, heating by the auxiliary heating means can be accurately controlled, and comfortable vehicle interior heating can be realized.
 また、この場合も補助加熱手段による加熱に伴う効率の悪化も最小限に抑えることが可能となるので、これによっても電気自動車の航続距離の低下を効果的に抑制することが可能となる。 Also in this case, since it is possible to minimize the deterioration of efficiency due to the heating by the auxiliary heating means, it is possible to effectively suppress the decrease in the cruising distance of the electric vehicle.
 この場合、請求項8の発明の如く放熱器の目標暖房能力TGQhpが所定の値より小さい場合、制御手段が圧縮機の運転を停止することにより、放熱器の暖房が過小となる状況における効率の低下を未然に回避することができるようになる。 In this case, when the target heating capacity TGQhp of the radiator is smaller than a predetermined value as in the invention of claim 8, the control means stops the operation of the compressor, so that the efficiency in the situation where the heating of the radiator becomes too small The reduction can be avoided in advance.
 尚、着霜状態推定手段の推定に基づき、室外熱交換器へ霜が生じていないと推定されるとき、請求項9の発明の如く制御手段が、補助加熱手段による加熱を、徐々に若しくは段階的に低下させて最終的に停止させるようにすれば、車室内に吹き出される空気温度の急激な変動を抑制することが可能となると共に、放熱器の暖房能力の急激な増大に伴い室外熱交換器に過渡的に着霜する不都合も防止若しくは抑制される。 When it is estimated that frost is not generated in the outdoor heat exchanger based on the estimation of the frost formation state estimation means, the control means as in the invention of claim 9 gradually or stepwise heats the auxiliary heating means. If the temperature is lowered and finally stopped, it is possible to suppress rapid fluctuations in the temperature of the air blown into the passenger compartment, and to increase outdoor heat as the heating capacity of the radiator increases rapidly. The inconvenience of transient frosting on the exchanger is also prevented or suppressed.
 特に、請求項10の発明の如く制御手段が、室外熱交換器の冷媒蒸発温度TXOと、無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseとに基づき、室外熱交換器への着霜状態、又は、着霜の度合いを推定するようにすれば、室外熱交換器の着霜を精度良く判定して上記制御を実行することができるようになる。これにより、補助加熱手段による暖房を精度良く制御し、消費電力増を抑制することが可能となる。 In particular, as in the tenth aspect of the present invention, the control means is configured to attach to the outdoor heat exchanger based on the refrigerant evaporation temperature TXO of the outdoor heat exchanger and the refrigerant evaporation temperature TXObase of the outdoor heat exchanger when no frost is formed. If the frost state or the degree of frost formation is estimated, the frost formation of the outdoor heat exchanger can be accurately determined and the above control can be executed. As a result, heating by the auxiliary heating means can be accurately controlled, and an increase in power consumption can be suppressed.
 そして、請求項11の発明の如く前述した補助加熱手段を、空気流通路から車室内に供給する空気を加熱するための熱媒体-空気熱交換器と、電気ヒータと、循環手段とを有し、電気ヒータにより加熱された熱媒体を循環手段により熱媒体-空気熱交換器に循環する熱媒体循環回路から構成することにより、電気的により安全な車室内暖房を実現することができるようになるものである。 The auxiliary heating means described above as in the invention of claim 11 comprises a heat medium-air heat exchanger for heating the air supplied from the air flow passage into the vehicle compartment, an electric heater, and a circulation means. By configuring the heat medium heated by the electric heater from the heat medium circulation circuit that circulates the heat medium to the heat medium-air heat exchanger by the circulation means, it becomes possible to realize an electrically safer vehicle interior heating. Is.
本発明を適用した一実施形態の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied. 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。It is a block diagram of the electric circuit of the controller of the vehicle air conditioner of FIG. 図1の空気流通路部分の拡大図である。It is an enlarged view of the airflow passage part of FIG. 図2のコントローラの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the controller of FIG. 図1の室外熱交換器に着霜しない放熱器の無着霜最大暖房能力予測値と外気温度の関係を示す図である。It is a figure which shows the relationship between the predicted value of the non-frosting maximum heating capability of the radiator which does not frost on the outdoor heat exchanger of FIG. 1, and external temperature. 図2のコントローラによる室外熱交換器の着霜状態推定動作を説明するタイミングチャートである。It is a timing chart explaining the frost formation state estimation operation | movement of the outdoor heat exchanger by the controller of FIG. 図2のコントローラの動作を説明する図である。It is a figure explaining operation | movement of the controller of FIG. 図2のコントローラの他の実施例の動作を説明するフローチャートである。It is a flowchart explaining the operation | movement of the other Example of the controller of FIG. 本発明を適用した他の実施例の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of the other Example to which this invention is applied. 本発明を適用したもう一つの他の実施例の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of another another Example to which this invention is applied. 本発明を適用した更にもう一つの他の実施例の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of another another Example to which this invention is applied. 本発明を適用した更にもう一つの他の実施例の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of another another Example to which this invention is applied. 本発明を適用した更にもう一つの他の実施例の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of another another Example to which this invention is applied. 本発明を適用した更にもう一つの他の実施例の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of another another Example to which this invention is applied. 本発明を適用した更にもう一つの他の実施例の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of another another Example to which this invention is applied.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房を行い、更に、除湿暖房や冷房除湿、冷房等の各運転モードを選択的に実行するものである。 FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention. A vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Yes (both not shown), the vehicle air conditioner 1 of the present invention is also driven by the power of the battery. That is, the vehicle air conditioner 1 of the embodiment performs heating by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further operates in each operation mode such as dehumidifying heating, cooling dehumidification, and cooling. Is selectively executed.
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。 The present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、吸熱器9における蒸発能力を調整する蒸発能力制御弁11と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速VSPが0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。 The vehicle air conditioner 1 according to the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, and dissipates the refrigerant into the vehicle compartment. And an outdoor expansion valve 6 composed of an electric valve that decompresses and expands the refrigerant during heating, and an outdoor heat exchange that functions as a radiator during cooling and performs heat exchange between the refrigerant and the outside air so as to function as an evaporator during heating. A heat exchanger 9, an indoor expansion valve 8 including an electric valve for decompressing and expanding the refrigerant, a heat absorber 9 provided in the air flow passage 3 to absorb heat from the outside of the vehicle interior during cooling and dehumidification, and a heat absorber 9. Steam to adjust evaporation capacity A capacity control valve 11, the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed. The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, and thereby stops the vehicle (that is, the vehicle speed VSP is 0 km / h). The outdoor heat exchanger 7 is configured to ventilate the outside air.
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁(開閉弁)17を介してレシーバドライヤ部14に接続され、過冷却部16の出口が逆止弁18を介して室内膨張弁8に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成しており、逆止弁18は室内膨張弁8側が順方向とされている。 The outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 in order on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is an electromagnetic valve (open / close valve) 17 that is opened during cooling. The outlet of the supercooling unit 16 is connected to the indoor expansion valve 8 via a check valve 18. The receiver dryer section 14 and the supercooling section 16 structurally constitute a part of the outdoor heat exchanger 7, and the check valve 18 has a forward direction on the indoor expansion valve 8 side.
 また、逆止弁18と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側に位置する蒸発能力制御弁11を出た冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出て蒸発能力制御弁11を経た低温の冷媒により冷却(過冷却)される構成とされている。 Further, the refrigerant pipe 13B between the check valve 18 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C exiting the evaporation capacity control valve 11 located on the outlet side of the heat absorber 9, and internal heat is generated by both. The exchanger 19 is configured. Thus, the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9 and passed through the evaporation capacity control valve 11.
 また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁(開閉弁)21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管13Fは除湿時に開放される電磁弁(開閉弁)22を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。 Further, the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve (open / close valve) 21 that is opened during heating. The refrigerant pipe 13C is connected in communication. Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and this branched refrigerant pipe 13F is a check valve via an electromagnetic valve (open / close valve) 22 that is opened during dehumidification. 18 is connected to the refrigerant pipe 13B on the downstream side.
 また、室外膨張弁6には並列にバイパス配管13Jが接続されており、このバイパス配管13Jには、冷房モードにおいて開放され、室外膨張弁6をバイパスして冷媒を流すための電磁弁(開閉弁)20が介設されている。尚、これら室外膨張弁6及び電磁弁20と室外熱交換器7との間の配管は13Iとする。 A bypass pipe 13J is connected to the outdoor expansion valve 6 in parallel. The bypass pipe 13J is opened in a cooling mode, and is an electromagnetic valve (open / close valve) for bypassing the outdoor expansion valve 6 and flowing refrigerant. ) 20 is interposed. The piping between the outdoor expansion valve 6 and the electromagnetic valve 20 and the outdoor heat exchanger 7 is 13I.
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。 The air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
 また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱手段としての熱媒体循環回路を示している。この熱媒体循環回路23は循環手段を構成する循環ポンプ30と、熱媒体加熱電気ヒータ(図面ではECHで示す)35と、空気流通路3の空気の流れに対して、放熱器4の空気下流側となる空気流通路3内に設けられた熱媒体-空気熱交換器40とを備え、これらが熱媒体配管23Aにより順次環状に接続されている。尚、この熱媒体循環回路23内で循環される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等が採用される。 In FIG. 1, reference numeral 23 denotes a heat medium circulation circuit as auxiliary heating means provided in the vehicle air conditioner 1 of the embodiment. The heat medium circulation circuit 23 has a circulation pump 30 constituting a circulation means, a heat medium heating electric heater (indicated by ECH in the drawing) 35, and an air downstream of the radiator 4 with respect to the air flow in the air flow passage 3. A heat medium-air heat exchanger 40 provided in the air flow passage 3 on the side is provided, and these are sequentially connected in an annular shape by a heat medium pipe 23A. As the heat medium circulated in the heat medium circuit 23, for example, water, a refrigerant such as HFO-1234yf, a coolant, or the like is employed.
 そして、循環ポンプ30が運転され、熱媒体加熱電気ヒータ35に通電されて発熱すると、この熱媒体加熱電気ヒータ35により加熱された熱媒体が熱媒体-空気熱交換器40に循環されるよう構成されている。即ち、この熱媒体循環回路23の熱媒体-空気熱交換器40が所謂ヒータコアとなり、車室内の暖房を補完する。係る熱媒体循環回路23を採用することで、搭乗者の電気的な安全性を向上することができるようになる。 When the circulation pump 30 is operated and the heat medium heating electric heater 35 is energized to generate heat, the heat medium heated by the heat medium heating electric heater 35 is circulated to the heat medium-air heat exchanger 40. Has been. That is, the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 becomes a so-called heater core, and complements the heating of the passenger compartment. By employing such a heat medium circulation circuit 23, it is possible to improve the electrical safety of the passenger.
 また、放熱器4の空気上流側における空気流通路3内には、内気や外気の放熱器4への流通度合いを調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、フット、ベント、デフの各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。 Also, an air mix damper 28 is provided in the air flow passage 3 on the air upstream side of the radiator 4 to adjust the degree of flow of inside air and outside air to the radiator 4. Further, in the air flow passage 3 on the downstream side of the radiator 4, foot, vent, and differential air outlets (represented by the air outlet 29 in FIG. 1) are formed. Is provided with a blower outlet switching damper 31 for switching and controlling the blowing of air from each of the blowout ports.
 次に、図2において32はマイクロコンピュータから構成された制御手段としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度を検出する外気温度センサ33と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。 Next, in FIG. 2, reference numeral 32 denotes a controller (ECU) as a control means constituted by a microcomputer. The input of the controller 32 includes an outside air temperature sensor 33 for detecting the outside air temperature of the vehicle and air from the suction port 25. An HVAC suction temperature sensor 36 that detects the temperature of the air sucked into the flow passage 3, an inside air temperature sensor 37 that detects the temperature of the air (inside air) in the passenger compartment, and an inside air humidity sensor 38 that detects the humidity of the air in the passenger compartment. And an indoor CO 2 concentration sensor 39 for detecting the carbon dioxide concentration in the passenger compartment, an outlet temperature sensor 41 for detecting the temperature of air blown into the passenger compartment from the outlet 29, and a discharge refrigerant pressure of the compressor 2 are detected. A discharge pressure sensor 42 that detects the discharge refrigerant temperature of the compressor 2, and a suction pressure sensor that detects the suction refrigerant pressure of the compressor 2. 44, a radiator temperature sensor 46 for detecting the temperature of the radiator 4 (the temperature of the air passing through the radiator 4 or the temperature of the radiator 4 itself), and the refrigerant pressure of the radiator 4 (in the radiator 4 or , A radiator pressure sensor 47 that detects the pressure of the refrigerant immediately after exiting the radiator 4) and the temperature of the heat absorber 9 (the temperature of the air that has passed through the heat absorber 9 or the temperature of the heat absorber 9 itself). A heat absorber temperature sensor 48, a heat absorber pressure sensor 49 for detecting the refrigerant pressure of the heat absorber 9 (the pressure of the refrigerant in the heat absorber 9 or immediately after leaving the heat absorber 9), and the amount of solar radiation into the passenger compartment For example, a photosensor-type solar radiation sensor 51 for detection, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and an air-conditioning (air conditioner) operation unit 53 for setting switching of a set temperature and an operation mode. And the temperature of the outdoor heat exchanger 7 (from the outdoor heat exchanger 7 An outdoor heat exchanger temperature sensor 54 that detects the temperature of the refrigerant immediately after or the temperature of the outdoor heat exchanger 7 itself, and the refrigerant pressure of the outdoor heat exchanger 7 (in the outdoor heat exchanger 7 or in the outdoor heat). Each output of the outdoor heat exchanger pressure sensor 56 that detects the pressure of the refrigerant immediately after coming out of the exchanger 7 is connected.
 また、コントローラ32の入力には更に、熱媒体循環回路23の熱媒体加熱電気ヒータ35の温度(熱媒体加熱電気ヒータ35で加熱された直後の熱媒体の温度、又は、熱媒体加熱電気ヒータ35に内蔵された図示しない電気ヒータ自体の温度)を検出する熱媒体加熱電気ヒータ温度センサ50と、熱媒体-空気熱交換器40の温度(熱媒体-空気熱交換器40を経た空気の温度、又は、熱媒体-空気熱交換器40自体の温度)を検出する熱媒体-空気熱交換器温度センサ55の各出力も接続されている。 Further, the input of the controller 32 further includes the temperature of the heating medium heating electric heater 35 of the heating medium circulation circuit 23 (the temperature of the heating medium immediately after being heated by the heating medium heating electric heater 35 or the heating medium heating electric heater 35. The temperature of the electric heater through the heat medium heating air heater 40 (the temperature of the air passing through the heat medium-air heat exchanger 40, Alternatively, the outputs of the heat medium-air heat exchanger temperature sensor 55 for detecting the temperature of the heat medium-air heat exchanger 40 itself are also connected.
 一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吸込口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、各電磁弁22、17、21、20と、循環ポンプ30と、熱媒体加熱電気ヒータ35と、蒸発能力制御弁11が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。 On the other hand, the output of the controller 32 includes the compressor 2, the outdoor fan 15, the indoor fan (blower fan) 27, the suction switching damper 26, the air mix damper 28, the suction port switching damper 31, and the outdoor expansion. The valve 6, the indoor expansion valve 8, the electromagnetic valves 22, 17, 21, 20, the circulation pump 30, the heat medium heating electric heater 35, and the evaporation capacity control valve 11 are connected. And the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53. FIG.
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では大きく分けて暖房モードと、除湿暖房モードと、内部サイクルモードと、除湿冷房モードと、冷房モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れについて説明する。 Next, the operation of the vehicle air conditioner 1 of the embodiment having the above configuration will be described. In the embodiment, the controller 32 is roughly divided into a heating mode, a dehumidifying heating mode, an internal cycle mode, a dehumidifying cooling mode, and a cooling mode, and executes them. First, the refrigerant flow in each operation mode will be described.
 (1)暖房モードの冷媒の流れ
 コントローラ32により或いは空調操作部53へのマニュアル操作により暖房モードが選択されると、コントローラ32は電磁弁21を開放し、電磁弁17、電磁弁22及び電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び熱媒体-空気熱交換器40に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
(1) Flow of refrigerant in heating mode When the heating mode is selected by the controller 32 or by manual operation to the air conditioning operation unit 53, the controller 32 opens the solenoid valve 21, and the solenoid valve 17, the solenoid valve 22, and the solenoid valve. 20 is closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the radiator 4 and the heat medium-air heat exchanger 40. . Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. Deprived, cooled, and condensed into liquid.
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。尚、熱媒体循環回路23の動作及び作用については後述する。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプ(図面ではHPで示す)となり、室外熱交換器7は冷媒の蒸発器として機能する。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13D及び電磁弁21を経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は熱媒体-空気熱交換器40を経て吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。 The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The operation and action of the heat medium circulation circuit 23 will be described later. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump (indicated by HP in the drawing), and the outdoor heat exchanger 7 functions as a refrigerant evaporator. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13D and the electromagnetic valve 21, and after being gas-liquid separated there, the gas refrigerant is sucked into the compressor 2. repeat. Since the air heated by the radiator 4 is blown out from the outlet 29 through the heat medium-air heat exchanger 40, the vehicle interior is thereby heated.
 コントローラ32は吐出圧力センサ42又は放熱器圧力センサ47が検出する冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数を制御すると共に、放熱器温度センサ46が検出する放熱器4の温度及び放熱器圧力センサ47が検出する放熱器4の冷媒圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。 The controller 32 controls the number of revolutions of the compressor 2 based on the high pressure of the refrigerant circuit R detected by the discharge pressure sensor 42 or the radiator pressure sensor 47, and the temperature of the radiator 4 detected by the radiator temperature sensor 46. The valve opening degree of the outdoor expansion valve 6 is controlled based on the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47, and the degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
 (2)除湿暖房モードの冷媒の流れ
 次に、除湿暖房モードでは、コントローラ32は上記暖房モードの状態において電磁弁22を開放する。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、電磁弁22を経て冷媒配管13F及び13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
(2) Flow of refrigerant in dehumidifying and heating mode Next, in the dehumidifying and heating mode, the controller 32 opens the electromagnetic valve 22 in the heating mode. As a result, a part of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted and reaches the indoor expansion valve 8 via the electromagnetic valve 22 and the refrigerant pipes 13F and 13B via the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。コントローラ32は吐出圧力センサ42又は放熱器圧力センサ47が検出する冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度に基づいて室外膨張弁6の弁開度を制御する。 The refrigerant evaporated in the heat absorber 9 merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and then repeats circulation sucked into the compressor 2 through the accumulator 12. . Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed. The controller 32 controls the number of revolutions of the compressor 2 based on the high pressure of the refrigerant circuit R detected by the discharge pressure sensor 42 or the radiator pressure sensor 47 and adjusts the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48. Based on this, the valve opening degree of the outdoor expansion valve 6 is controlled.
 (3)内部サイクルモードの冷媒の流れ
 次に、内部サイクルモードでは、コントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、電磁弁21も閉じる。この室外膨張弁6と電磁弁21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
(3) Flow of Refrigerant in Internal Cycle Mode Next, in the internal cycle mode, the controller 32 fully closes the outdoor expansion valve 6 (fully closed position) and closes the electromagnetic valve 21 in the dehumidifying and heating mode. Since the outdoor expansion valve 6 and the electromagnetic valve 21 are closed, the inflow of refrigerant to the outdoor heat exchanger 7 and the outflow of refrigerant from the outdoor heat exchanger 7 are blocked. All the condensed refrigerant flowing through the refrigerant pipe 13E through the refrigerant flows through the electromagnetic valve 22 to the refrigerant pipe 13F. And the refrigerant | coolant which flows through the refrigerant | coolant piping 13F reaches the indoor expansion valve 8 through the internal heat exchanger 19 from the refrigerant | coolant piping 13B. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。 The refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and repeats circulation sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification heating is performed in the vehicle interior, but in this internal cycle mode, the air flow path on the indoor side 3, the refrigerant is circulated between the radiator 4 (heat radiation) and the heat absorber 9 (heat absorption), so that heat from the outside air is not pumped up, and the heating capacity for the power consumption of the compressor 2 Is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than that in the dehumidifying and heating mode, but the heating capacity is lowered.
 コントローラ32は吸熱器9の温度、又は、前述した冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数を制御する。このとき、コントローラ32は吸熱器9の温度によるか高圧圧力によるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。 The controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 or the high pressure of the refrigerant circuit R described above. At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature of the heat absorber 9 or the high pressure.
 (4)除湿冷房モードの冷媒の流れ
 次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21、電磁弁22及び電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び熱媒体-空気熱交換器40に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
(4) Flow of refrigerant in dehumidifying and cooling mode Next, in the dehumidifying and cooling mode, the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21, the electromagnetic valve 22, and the electromagnetic valve 20. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the radiator 4 and the heat medium-air heat exchanger 40. . Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。 The refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。 The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数を制御すると共に、前述した冷媒回路Rの高圧圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の冷媒圧力(放熱器圧力PCI)を制御する。 The refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 </ b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 </ b> C. The air cooled and dehumidified by the heat absorber 9 is reheated (having a lower heat dissipation capacity than that during heating) in the process of passing through the radiator 4, thereby dehumidifying and cooling the vehicle interior. . The controller 32 controls the number of revolutions of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 and controls the valve opening degree of the outdoor expansion valve 6 based on the high pressure of the refrigerant circuit R described above. To control the refrigerant pressure of the radiator 4 (radiator pressure PCI).
 (5)冷房モードの冷媒の流れ
 次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において電磁弁20を開き(この場合、室外膨張弁6は全開(弁開度を制御上限)を含む何れの弁開度でもよい)、エアミックスダンパ28は放熱器4及び熱媒体-空気熱交換器40に空気が通風されない状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て電磁弁20及び室外膨張弁6に至る。
(5) Refrigerant Flow in Cooling Mode Next, in the cooling mode, the controller 32 opens the electromagnetic valve 20 in the dehumidifying and cooling mode state (in this case, the outdoor expansion valve 6 is fully opened (the valve opening is controlled to an upper limit)). The air mix damper 28 is in a state in which no air is passed through the radiator 4 and the heat medium-air heat exchanger 40. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, the air only passes therethrough, and the refrigerant exiting the radiator 4 reaches the electromagnetic valve 20 and the outdoor expansion valve 6 through the refrigerant pipe 13 </ b> E.
 このとき電磁弁20は開放されているので冷媒は室外膨張弁6を迂回してバイパス配管13Jを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。 At this time, since the solenoid valve 20 is opened, the refrigerant bypasses the outdoor expansion valve 6 and passes through the bypass pipe 13J, and flows into the outdoor heat exchanger 7 as it is, where it travels or is ventilated by the outdoor fan 15. It is air-cooled by the outside air and is condensed and liquefied. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却される。 The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled.
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過すること無く吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数を制御する。 The refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 </ b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 </ b> C. The air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from the outlet 29 without passing through the radiator 4, thereby cooling the vehicle interior. In this cooling mode, the controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48.
 (6)暖房モード及び当該暖房モードでの熱媒体循環回路(補助加熱手段)による補助加熱
 次に、前記暖房モードにおける圧縮機2及び室外膨張弁6の制御と、当該暖房モードでの熱媒体循環回路23による補助加熱について説明する。
(6) Auxiliary heating by heating mode and heating medium circulation circuit (auxiliary heating means) in the heating mode Next, control of the compressor 2 and the outdoor expansion valve 6 in the heating mode and the heating medium circulation in the heating mode The auxiliary heating by the circuit 23 will be described.
 (6-1)圧縮機及び室外膨張弁の制御
 コントローラ32は下記式(I)から目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気温度の目標値である。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
(6-1) Control of Compressor and Outdoor Expansion Valve The controller 32 calculates a target blowing temperature TAO from the following equation (I). This target blowing temperature TAO is a target value of the air temperature blown out from the blowout port 29 into the vehicle interior.
TAO = (Tset−Tin) × K + Tbal (f (Tset, SUN, Tam)) (1)
Here, Tset is the set temperature in the passenger compartment set by the air conditioning operation unit 53, Tin is the temperature of the passenger compartment air detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, and the solar radiation sensor 51 detects This is a balance value calculated from the amount of solar radiation SUN to be performed and the outside air temperature Tam detected by the outside air temperature sensor 33. And generally this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
 コントローラ32はこの目標吹出温度TAOから目標放熱器温度TCOを算出し、次に、この目標放熱器温度TCOに基づき、目標放熱器圧力PCOを算出する。そして、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力)Pciとに基づき、コントローラ32は圧縮機2の回転数Ncを算出し、この回転数Ncにて圧縮機2を運転する。即ち、コントローラ32は圧縮機2の回転数Ncにより放熱器4の冷媒圧力Pciを制御する。 The controller 32 calculates a target radiator temperature TCO from the target blowing temperature TAO, and then calculates a target radiator pressure PCO based on the target radiator temperature TCO. Then, based on the target radiator pressure PCO and the refrigerant pressure (radiator pressure) Pci of the radiator 4 detected by the radiator pressure sensor 47, the controller 32 calculates the rotation speed Nc of the compressor 2, and this rotation The compressor 2 is operated at several Nc. That is, the controller 32 controls the refrigerant pressure Pci of the radiator 4 by the rotation speed Nc of the compressor 2.
 また、コントローラ32は目標吹出温度TAOに基づき、放熱器4の目標放熱器過冷却度TGSCを算出する。一方、コントローラ32は、放熱器圧力Pciと放熱器温度センサ46が検出する放熱器4の温度(放熱器温度Tci)に基づき、放熱器4における冷媒の過冷却度(放熱器過冷却度SC)を算出する。そして、この放熱器過冷却度SCと目標放熱器過冷却度TGSCに基づき、室外膨張弁6の目標弁開度(目標室外膨張弁開度TGECCV)を算出する。そして、コントローラ32はこの目標室外膨張弁開度TGECVVに室外膨張弁6の弁開度を制御する。 Further, the controller 32 calculates the target radiator subcooling degree TGSC of the radiator 4 based on the target outlet temperature TAO. On the other hand, the controller 32 uses the radiator pressure Pci and the temperature of the radiator 4 (radiator temperature Tci) detected by the radiator temperature sensor 46 to determine the degree of refrigerant supercooling (radiator subcooling degree SC) in the radiator 4. Is calculated. Then, based on the radiator subcool degree SC and the target radiator subcool degree TGSC, the target valve opening degree of the outdoor expansion valve 6 (target outdoor expansion valve opening degree TGECCV) is calculated. And the controller 32 controls the valve opening degree of the outdoor expansion valve 6 to this target outdoor expansion valve opening degree TGECVV.
 コントローラ32は目標吹出温度TAOが高い程、目標放熱器過冷却度TGSCを上げる方向に演算を行うが、それに限らず、後述する要求暖房能力Qtgtと暖房能力Qhpの差(能力差)や放熱器圧力Pci、目標放熱器圧力PCOと放熱器圧力Pciの差(圧力差)に基づいて算出してもよい。その場合コントローラ32は、能力差が小さい程、圧力差が小さい程、室内送風機27の風量が小さい程、又は、放熱器圧力Pciが小さい程、目標放熱器過冷却度TGSCを下げることになる。 The controller 32 performs calculation in a direction to increase the target radiator subcooling degree TGSC as the target blowing temperature TAO is higher. However, the controller 32 is not limited to this, and the difference (capacity difference) between the required heating capacity Qtgt and the heating capacity Qhp described later, You may calculate based on the difference (pressure difference) of pressure Pci, target radiator pressure PCO, and radiator pressure Pci. In this case, the controller 32 decreases the target radiator subcooling degree TGSC as the capacity difference is smaller, the pressure difference is smaller, the air volume of the indoor blower 27 is smaller, or the radiator pressure Pci is smaller.
 (6-2)熱媒体循環回路の制御
 また、コントローラ32は、この暖房モードにおいて放熱器4による暖房能力が不足すると判断した場合、熱媒体加熱電気ヒータ35に通電して発熱させ、循環ポンプ30を運転することにより、熱媒体循環回路23による加熱を実行する。
(6-2) Control of Heating Medium Circulation Circuit When the controller 32 determines that the heating capacity of the radiator 4 is insufficient in this heating mode, the controller 32 energizes the heating medium heating electric heater 35 to generate heat, and the circulation pump 30 Is operated, the heating by the heat medium circulation circuit 23 is executed.
 熱媒体循環回路23の循環ポンプ30が運転され、熱媒体加熱電気ヒータ35に通電されると、前述したように熱媒体加熱電気ヒータ35により加熱された熱媒体(高温の熱媒体)が熱媒体-空気熱交換器40に循環されるので、空気流通路3の放熱器4を経た空気を加熱することになる。図3にはこのときの空気流通路3内における各部の温度等が示される。この図において、Gaは空気流通路3に流入した空気の質量風量、Teは吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器9を出た空気の温度)、Ga×SWは質量風量Gaにエアミックスダンパ28の開度を乗算した値、THhpは放熱器温度センサ46が検出する放熱器4を経た空気の温度(即ち、放熱器温度Tci)、THは熱媒体-空気熱交換器温度センサ55が検出する熱媒体-空気熱交換器40を経た空気の温度を示しており、暖房モードでは熱媒体-空気熱交換器40を出て吹出口29から車室内に吹き出される空気の温度の目標値が目標放熱器温度TCOとなる。尚、熱媒体循環回路23が
動作していないときには、TH=THhpとなる。
When the circulation pump 30 of the heat medium circulation circuit 23 is operated and the heat medium heating electric heater 35 is energized, as described above, the heat medium (high temperature heat medium) heated by the heat medium heating electric heater 35 is the heat medium. -Since it is circulated through the air heat exchanger 40, the air passing through the radiator 4 in the air flow passage 3 is heated. FIG. 3 shows the temperature of each part in the air flow passage 3 at this time. In this figure, Ga is the mass air volume of air flowing into the air flow passage 3, Te is the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 (temperature of the air leaving the heat absorber 9), and Ga × SW is mass. The value obtained by multiplying the air volume Ga by the opening of the air mix damper 28, THhp is the temperature of the air that has passed through the radiator 4 detected by the radiator temperature sensor 46 (ie, the radiator temperature Tci), and TH is the heat medium-air heat exchange. The temperature of the air that has passed through the heat medium-air heat exchanger 40 detected by the heater temperature sensor 55 is shown. In the heating mode, the air that exits the heat medium-air heat exchanger 40 and is blown into the vehicle interior from the outlet 29 The target value of the temperature becomes the target radiator temperature TCO. When the heat medium circulation circuit 23 is not operating, TH = THhp.
 次に、図4乃至図7を参照しながら前記暖房モードにおける熱媒体循環回路23の制御について説明する。この発明でコントローラ32は、下記式(II)を用いて要求される放熱器4の暖房能力である要求暖房能力Qtgtを算出し、式(III)を用いて室外熱交換器7に着霜しない範囲で放熱器4が発生可能な最大の暖房能力の目標値、即ち、車両が現在置かれている環境下で、冷媒を放熱器4で放熱させ、室外熱交換器7で蒸発させるヒートポンプ運転を行った場合に、室外熱交換器7に着霜させずに放熱器4が発生可能な最大の暖房能力の目標値である無着霜最大暖房能力予測値QmaxNfstを予測して算出する。 Next, control of the heat medium circulation circuit 23 in the heating mode will be described with reference to FIGS. In this invention, the controller 32 calculates a required heating capacity Qtgt which is a heating capacity of the radiator 4 required using the following formula (II), and does not form frost on the outdoor heat exchanger 7 using the formula (III). The target value of the maximum heating capacity that the radiator 4 can generate in the range, that is, the heat pump operation in which the refrigerant is radiated by the radiator 4 and evaporated by the outdoor heat exchanger 7 in the environment where the vehicle is currently placed. When it does, it predicts and calculates the non-frosting maximum heating capability prediction value QmaxNfst, which is the target value of the maximum heating capability that can be generated by the radiator 4 without frosting the outdoor heat exchanger 7.
 Qtgt=(TCO-Te)×Cpa×ρ×Qair  ・・(II)
 QmaxNfst=f(Tam)         ・・(III)
 ここで、Tamは外気温度センサ33が検出する前述した外気温度、Teは吸熱器温度センサ48が検出する吸熱器9の温度、Cpaは放熱器4に流入する空気の比熱[kj/kg・K]、ρは放熱器4に流入する空気の密度(比体積)[kg/m3]、Qairは放熱器4を通過する風量[m3/h](室内送風機27のブロワ電圧BLV等から推定)である。
Qtgt = (TCO−Te) × Cpa × ρ × Qair (II)
QmaxNfst = f (Tam) (III)
Here, Tam is the above-described outside air temperature detected by the outside air temperature sensor 33, Te is the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48, and Cpa is the specific heat of the air flowing into the radiator 4 [kj / kg · K. ], Ρ is the density (specific volume) of the air flowing into the radiator 4 [kg / m 3 ], Qair is the air volume [m 3 / h] passing through the radiator 4 (estimated from the blower voltage BLV of the indoor fan 27, etc. ).
 尚、式(II)においてはQairに代えて、或いは、それに加えて、放熱器4に流入する空気の温度、又は、放熱器4から流出する空気の温度を採用してもよい。また、式(III)においては外気温度Tamに加えて、時刻、日射センサ51が検出する日射量、降雨、位置、気象等の各環境条件や外部情報を参照し、無着霜最大暖房能力予測値QmaxNfstを補正してもよい。 In the formula (II), the temperature of air flowing into the radiator 4 or the temperature of air flowing out of the radiator 4 may be adopted instead of or in addition to Qair. Further, in the formula (III), in addition to the outside air temperature Tam, the time, the amount of solar radiation detected by the solar radiation sensor 51, rainfall, position, weather, and other environmental conditions and external information are referred to, and the frost-free maximum heating capacity prediction The value QmaxNfst may be corrected.
 コントローラ32は図4のフローチャートのステップS1で各センサからデータを読み込み、ステップS2で前記暖房モードが選択されているか否か判断する。そして、暖房モードが選択されている場合、コントローラ32はステップS3に進み、上記式(II)を用いて要求暖房能力Qtgtを算出する。 The controller 32 reads data from each sensor in step S1 of the flowchart of FIG. 4, and determines whether or not the heating mode is selected in step S2. If the heating mode is selected, the controller 32 proceeds to step S3 and calculates the required heating capacity Qtgt using the above formula (II).
 (6-3)暖房モード起動直後の制御
 次に、コントローラ32はステップS4で、現在が暖房モードの起動(ON)直後か否か判断する。冬場には車両を起動した直後ということになるが、この起動直後の判断は、係る車両の起動から所定時間以内である場合や、他のモードから暖房モードに切り替わってから所定時間以内か否かで判断することになる。尚、起動直後であるか否かの判断は係る時間的判断によらず、例えば、前記車室内の設定温度Tsetと車室内空気の温度Tinとの差Tset-Tinが所定値より大きいか否か(Tset-Tin>所定値)で判断してもよい。
(6-3) Control Immediately After Starting Heating Mode Next, in step S4, the controller 32 determines whether or not the present is immediately after starting (ON) the heating mode. In winter, it is immediately after the vehicle is started.Judgment immediately after the start is within a predetermined time from the start of the vehicle or whether it is within a predetermined time after switching from another mode to the heating mode. Will be judged. The determination as to whether or not the vehicle has just been started is not based on such a temporal determination. For example, whether or not the difference Tset−Tin between the set temperature Tset in the vehicle interior and the temperature Tin of the vehicle interior air is greater than a predetermined value. The determination may be made by (Tset−Tin> predetermined value).
 そして、起動直後である場合、コントローラ32はステップS4からステップS5に進み、上記式(III)を用いて無着霜最大暖房能力予測値QmaxNfst(推定値)を算出する。図5は係る無着霜最大暖房能力予測値QmaxNfstと外気温度の関係(無着霜最大暖房能力予測値の変化の傾向)を示している。放熱器4が発生可能な最大暖房能力Qhpは外気温度Tamの上昇に比例して増大する。そして、室外熱交換器7に霜が生じない外気温度が+5℃程であるものとすると、+5℃以下においてそのまま最大暖房能力Qhpで運転すると、室外熱交換器7に霜が発生してしまうので、図5に破線で示すように、無着霜最大暖房能力予測値QmaxNfstは外気温度の低下に伴い、最大暖房能力Qhpよりも大きい角度で減少していく傾向となる。 And when it is just after starting, the controller 32 progresses to step S5 from step S4, and calculates the non-frosting maximum heating capability prediction value QmaxNfst (estimated value) using the said Formula (III). FIG. 5 shows the relationship between the predicted non-frosting maximum heating capacity QmaxNfst and the outside air temperature (the tendency of change in the predicted non-frosting maximum heating capacity). The maximum heating capacity Qhp that can be generated by the radiator 4 increases in proportion to the increase in the outside air temperature Tam. Assuming that the outdoor temperature at which the frost is not generated in the outdoor heat exchanger 7 is about + 5 ° C., the frost is generated in the outdoor heat exchanger 7 when operating at the maximum heating capacity Qhp as it is at + 5 ° C. or less. As shown by a broken line in FIG. 5, the non-frosting maximum heating capacity predicted value QmaxNfst tends to decrease at an angle larger than the maximum heating capacity Qhp as the outside air temperature decreases.
 ステップS5でこのような無着霜最大暖房能力予測値QmaxNfstを算出(推定)した後、コントローラ32は次にステップS6で熱媒体循環回路23の目標暖房能力TGQechを算出する。この熱媒体循環回路23の目標暖房能力TGQechは、下記式(IV)で算出される。
 TGQech=Qtgt-QmaxNfst     ・・(IV)
 即ち、無着霜最大暖房能力予測値QmaxNfstが要求暖房能力Qtgtより不足する分を、熱媒体循環回路23の目標暖房能力TGQechとする。
After calculating (estimating) such a non-frosting maximum heating capacity predicted value QmaxNfst in step S5, the controller 32 calculates a target heating capacity TGQech of the heat medium circulation circuit 23 in step S6. The target heating capacity TGQech of the heat medium circulation circuit 23 is calculated by the following formula (IV).
TGQech = Qtgt−QmaxNfst (IV)
That is, the amount of the frost-free maximum heating capacity predicted value QmaxNfst that is less than the required heating capacity Qtgt is set as the target heating capacity TGQech of the heat medium circulation circuit 23.
 次に、コントローラ32はステップS7で無着霜最大暖房能力予測値QmaxNfstと要求暖房能力Qtgtを比較する。即ち、ステップS7では無着霜最大暖房能力予測値QmaxNfstが要求暖房能力Qtgtより小さい(QmaxNfst<Qtgt)か否か判断し、小さい場合にはステップS8に進んで放熱器4の目標暖房能力TGQhpを無着霜最大暖房能力予測値QmaxNfstとし(TGQhp=QmaxNfst)、放熱器4が無着霜最大暖房能力予測値QmaxNfstを発生するように冷媒回路Rの圧縮機2他の機器を運転する。 Next, in step S7, the controller 32 compares the predicted value QmaxNfst with the non-frosting maximum heating capacity Qtgt with the required heating capacity Qtgt. That is, in step S7, it is determined whether or not the predicted maximum frost-free heating capacity QmaxNfst is smaller than the required heating capacity Qtgt (QmaxNfst <Qtgt). The non-frosting maximum heating capacity prediction value QmaxNfst is set (TGQhp = QmaxNfst), and the compressor 2 and other devices of the refrigerant circuit R are operated so that the radiator 4 generates the non-frosting maximum heating capacity prediction value QmaxNfst.
 更に、ステップS8でコントローラ32は、熱媒体加熱電気ヒータ温度センサ50や熱媒体-空気熱交換器温度センサ55の出力に基づき、熱媒体循環回路23の目標暖房能力TGQech=要求暖房能力Qtgt-放熱器4の目標暖房能力TGQhp(目標暖房能力TGQhp=無着霜最大暖房能力予測値QmaxNfst)となるように熱媒体加熱電気ヒータ35への通電と循環ポンプ30の運転を制御する。即ち、コントローラ32は要求暖房能力Qtgtに対して無着霜最大暖房能力予測値QmaxNfstが不足する分を、熱媒体循環回路23の熱媒体-空気熱交換器40による加熱で補完する。これにより、快適な車室内暖房を実現し、且つ、室外熱交換器7の着霜も予防することができるようになる。 Further, in step S8, the controller 32, based on the outputs of the heat medium heating electric heater temperature sensor 50 and the heat medium-air heat exchanger temperature sensor 55, the target heating capacity TGQech of the heat medium circulation circuit 23 = the required heating capacity Qtgt-heat radiation. The heating medium heating electric heater 35 and the operation of the circulation pump 30 are controlled such that the target heating capacity TGQhp (target heating capacity TGQhp = non-frost maximum heating capacity predicted value QmaxNfst) of the heater 4 is obtained. That is, the controller 32 supplements the shortage of the maximum frost-free maximum heating capacity predicted value QmaxNfst with respect to the required heating capacity Qtgt by heating by the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23. Thereby, comfortable vehicle interior heating is realized, and frost formation of the outdoor heat exchanger 7 can be prevented.
 一方、例えば外気温度が比較的高く、ステップS7で無着霜最大暖房能力予測値QmaxNfstが要求暖房能力Qtgt以上である場合(Qtgt≦QmaxNfst)、コントローラ32はステップS9に進んで熱媒体循環回路23による加熱を停止(循環ポンプ30停止、熱媒体加熱電気ヒータ35非通電でECH停止:TGQech=0)し、放熱器4が要求暖房能力Qtgtを発生するように冷媒回路Rの圧縮機2他の機器を運転する(TGQhp=Qtgt)。これにより、熱媒体循環回路23による無用な暖房を回避して消費電力の増大を防止する。 On the other hand, for example, when the outside air temperature is relatively high and the predicted maximum non-frosting heating capacity value QmaxNfst is greater than or equal to the required heating capacity Qtgt in step S7 (Qtgt ≦ QmaxNfst), the controller 32 proceeds to step S9 and the heat medium circulation circuit 23. (The circulation pump 30 is stopped, the heating medium heating electric heater 35 is de-energized and ECH is stopped: TGQech = 0), and the compressor 2 and other components of the refrigerant circuit R are generated so that the radiator 4 generates the required heating capacity Qtgt. The device is operated (TGQhp = Qtgt). This avoids unnecessary heating by the heat medium circulation circuit 23 and prevents an increase in power consumption.
 (6-4)暖房モード起動直後ではないときの制御
 上記のような起動直後における放熱器4と熱媒体循環回路23との協調暖房により、室外熱交換器7への着霜が予防される。しかしながら、その後の車両の走行により暖房モードでは、室外熱交換器7には外気中の水分が霜となって付着するようになる。この霜が成長すると室外熱交換器7と通風される外気との間の熱交換が著しく阻害され、空調性能が悪化する。
(6-4) Control when not immediately after heating mode activation The frost formation on the outdoor heat exchanger 7 is prevented by the cooperative heating of the radiator 4 and the heat medium circuit 23 immediately after the activation as described above. However, in the heating mode, the water in the outside air adheres to the outdoor heat exchanger 7 as frost by the subsequent running of the vehicle. When this frost grows, heat exchange between the outdoor heat exchanger 7 and the outside air that is ventilated is significantly hindered, and air conditioning performance deteriorates.
 (6-5)室外熱交換器の着霜推定
 そこで、コントローラ32はステップS4で暖房モードの起動直後では無い場合、即ち、例えば起動から所定時間以上車両が走行している場合、ステップS10に進んでコントローラ32が有する機能としての着霜状態推定手段により、室外熱交換器7への着霜状態を推定する。次に、図6を用いて室外熱交換器7の着霜状態の推定例を説明する。
(6-5) Estimation of frost formation of outdoor heat exchanger Therefore, if the controller 32 is not immediately after the activation of the heating mode in step S4, that is, if the vehicle has been running for a predetermined time or more after the activation, for example, the process proceeds to step S10. Then, the frost formation state to the outdoor heat exchanger 7 is estimated by the frost formation state estimation means as a function of the controller 32. Next, the estimation example of the frost formation state of the outdoor heat exchanger 7 is demonstrated using FIG.
 コントローラ32は室外熱交換器圧力センサ56から得られる室外熱交換器7の現在の冷媒蒸発温度TXOと、外気が低湿環境で室外熱交換器7に着霜していない無着霜時における当該室外熱交換器7の冷媒蒸発温度TXObaseとに基づき、室外熱交換器7の着霜状態を推定する。この場合のコントローラ32は、無着霜時における室外熱交換器7の
冷媒蒸発温度TXObaseを、次式(V)を用いて決定する。
The controller 32 obtains the current refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 obtained from the outdoor heat exchanger pressure sensor 56, and the outdoor in the non-frosting state where the outdoor air is not frosted on the outdoor heat exchanger 7 in a low humidity environment. Based on the refrigerant evaporation temperature TXObase of the heat exchanger 7, the frosting state of the outdoor heat exchanger 7 is estimated. In this case, the controller 32 determines the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 at the time of non-frosting using the following equation (V).
 TXObase=f(Tam、NC、BLV、VSP)
      =k1×Tam+k2×NC+k3×BLV+k4×VSP・・(V)
TXObase = f (Tam, NC, BLV, VSP)
= K1 x Tam + k2 x NC + k3 x BLV + k4 x VSP (V)
 ここで、式(V)のパラメータであるTamは外気温度センサ33から得られる前記外気温度、NCは圧縮機2の回転数、BLVは室内送風機27のブロワ電圧、VSPは車速センサ52から得られる車速であり、k1~k4は係数で、予め実験により求めておく。 Here, Tam which is a parameter of the formula (V) is the outside air temperature obtained from the outside air temperature sensor 33, NC is the rotation speed of the compressor 2, BLV is the blower voltage of the indoor blower 27, and VSP is obtained from the vehicle speed sensor 52. It is a vehicle speed, k1 to k4 are coefficients, and are obtained in advance by experiments.
 上記外気温度Tamは室外熱交換器7の吸込空気温度を示す指標であり、外気温度Tam(室外熱交換器7の吸込空気温度)が低くなる程、TXObaseは低くなる傾向となる。従って、係数k1は正の値となる。尚、室外熱交換器7の吸込空気温度を示す指標としては外気温度Tamに限られない。
 また、上記圧縮機2の回転数NCは冷媒回路R内の冷媒流量を示す指標であり、回転数NCが高い程(冷媒流量が多い程)、TXObaseは低くなる傾向となる。従って、係数k2は負の値となる。
 また、上記ブロワ電圧BLVは放熱器4の通過風量を示す指標であり、ブロワ電圧BLVが高い程(放熱器4の通過風量が大きい程)、TXObaseは低くなる傾向となる。従って、係数k3は負の値となる。尚、放熱器4の通過風量を示す指標としてはこれに限らず、室内送風機27のブロワ風量やエアミックスダンパ28開度SWでもよい。
 また、上記車速VSPは室外熱交換器7の通過風速を示す指標であり、車速VSPが低い程(室外熱交換器7の通過風速が低い程)、TXObaseは低くなる傾向となる。従って、係数k4は正の値となる。尚、室外熱交換器7の通過風速を示す指標としてはこれに限らず、室外送風機15の電圧でもよい。
The outside air temperature Tam is an index indicating the intake air temperature of the outdoor heat exchanger 7. The lower the outside air temperature Tam (the intake air temperature of the outdoor heat exchanger 7), the lower the TXObase. Therefore, the coefficient k1 is a positive value. The index indicating the intake air temperature of the outdoor heat exchanger 7 is not limited to the outdoor air temperature Tam.
The rotational speed NC of the compressor 2 is an index indicating the refrigerant flow rate in the refrigerant circuit R. The higher the rotational speed NC (the higher the refrigerant flow rate), the lower the TXObase. Therefore, the coefficient k2 is a negative value.
The blower voltage BLV is an index indicating the amount of air passing through the radiator 4. The higher the blower voltage BLV (the larger the amount of air passing through the radiator 4), the lower the TXObase. Therefore, the coefficient k3 is a negative value. The index indicating the amount of air passing through the radiator 4 is not limited to this and may be the blower air amount of the indoor blower 27 or the air mix damper 28 opening SW.
The vehicle speed VSP is an index indicating the passing air speed of the outdoor heat exchanger 7. The lower the vehicle speed VSP (the lower the passing air speed of the outdoor heat exchanger 7), the lower the TXObase. Therefore, the coefficient k4 is a positive value. The index indicating the passing air speed of the outdoor heat exchanger 7 is not limited to this, and the voltage of the outdoor blower 15 may be used.
 尚、実施例では式(V)のパラメータとして外気温度Tam、圧縮機2の回転数NC、室内送風機27のブロワ電圧BLV、及び、車速VSPを用いているが、これらに車両用空気調和装置1の負荷をパラメータとして加えてもよい。この負荷を示す指標としては、目標吹出温度TAO、圧縮機2の回転数NC、室内送風機27のブロワ風量、放熱器4の入口空気温度、放熱器4の放熱器温度Tciが考えられ、負荷が大きい程、PXObaseは低くなる傾向となる。更に、車両の経年劣化(運転年数や運転回数)をパラメータに加えてもよい。また、式(V)のパラメータとしては、上記全てに限らず、それらのうちの何れか一つ、若しくは、それらの組み合わせでもよい。 In the embodiment, the outside air temperature Tam, the rotational speed NC of the compressor 2, the blower voltage BLV of the indoor blower 27, and the vehicle speed VSP are used as parameters of the formula (V). May be added as a parameter. As an index indicating this load, the target blowout temperature TAO, the rotational speed NC of the compressor 2, the blower air volume of the indoor blower 27, the inlet air temperature of the radiator 4 and the radiator temperature Tci of the radiator 4 can be considered. The larger the value, the lower the PXObase. Furthermore, you may add the aged deterioration (the number of driving years and the frequency | count of driving | operation) of a vehicle to a parameter. Further, the parameters of the formula (V) are not limited to all of the above, and any one of them or a combination thereof may be used.
 次にコントローラ32は、式(V)に現在の各パラメータの値を代入することで得られる無着霜時における冷媒蒸発温度TXObaseと現在の冷媒蒸発温度TXOとの差ΔTXO(ΔTXO=TXObase-TXO)を算出し、冷媒蒸発温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下して、その差ΔTXOが所定の着霜検知閾値ΔT1より大きくなった状態が例えば所定の着霜状態推定時間継続した場合、室外熱交換器7への着霜が進行しているものと判定する。 Next, the controller 32 substitutes the current value of each parameter into the equation (V) to obtain the difference ΔTXO (ΔTXO = TXObase−TXO) between the refrigerant evaporation temperature TXObase at the time of no frost and the current refrigerant evaporation temperature TXO. ) And the state in which the refrigerant evaporation temperature TXO is lower than the refrigerant evaporation temperature TXObase at the time of no frost formation and the difference ΔTXO is larger than a predetermined frost detection threshold value ΔT1, for example, continues for a predetermined frost state estimation time. When it does, it determines with the frost formation to the outdoor heat exchanger 7 progressing.
 図6の実線は室外熱交換器7の冷媒蒸発温度TXOの変化を示し、破線は無着霜時における冷媒蒸発温度TXObaseの変化を示している。運転開始(起動)当初は室外熱交換器7の冷媒蒸発温度TXOは高く、無着霜時における冷媒蒸発温度TXObaseを上回っている。暖房モードの進行に伴って車室内の温度は暖められ、車両用空気調和装置1の負荷は低下してくるので、前述した冷媒流量や放熱器4の通過風量も低下し、式(V)で算出されるTXObase(図6の破線)は上昇してくる。 The solid line in FIG. 6 shows the change in the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7, and the broken line shows the change in the refrigerant evaporation temperature TXObase when there is no frost formation. At the beginning of operation (start-up), the refrigerant evaporating temperature TXO of the outdoor heat exchanger 7 is high and is higher than the refrigerant evaporating temperature TXObase when there is no frost formation. As the heating mode progresses, the temperature in the passenger compartment is warmed and the load on the vehicle air conditioner 1 is reduced. Therefore, the refrigerant flow rate and the amount of air passing through the radiator 4 are also reduced. The calculated TXObase (broken line in FIG. 6) rises.
 一方、室外熱交換器7に霜が生じ始めると外気との熱交換性能が少しずつ悪化してくるので、冷媒蒸発温度TXO(実線)は徐々に低下していき、やがてTXObaseを下回る。そして、冷媒蒸発温度TXOの低下が更に進行して、その差ΔTXO(TXObase-TXO)が着霜検知閾値ΔT1より大きくなり、その状態が所定の推定時間以上継続した場合、コントローラ32は着霜進行と判定する。この着霜進行の意味としては、実際に室外熱交換器7に霜が生じている場合と、室外熱交換器7に霜が生じる可能性が高い、即ち、着霜が高い確率で予測される場合の双方を含むものとする。 On the other hand, when frost starts to be generated in the outdoor heat exchanger 7, the heat exchange performance with the outside air gradually deteriorates, so the refrigerant evaporation temperature TXO (solid line) gradually decreases and eventually falls below TXObase. When the refrigerant evaporation temperature TXO further decreases and the difference ΔTXO (TXObase−TXO) becomes larger than the frost detection threshold value ΔT1, and the state continues for a predetermined estimated time or longer, the controller 32 proceeds with frost formation. Is determined. As the meaning of the progress of frost formation, there is a high probability that frost is actually generated in the outdoor heat exchanger 7 and that the frost is likely to be generated in the outdoor heat exchanger 7, that is, it is predicted with a high probability of frost formation. Including both cases.
 (6-6)室外熱交換器への着霜抑制
 コントローラ32はステップS10で室外熱交換器7の着霜進行と判定すると、ステップS11に進んで下記式(VI)を用いて熱媒体循環回路23の目標暖房能力TGQechを算出する。
(6-6) Suppression of frost formation on outdoor heat exchanger When controller 32 determines in step S10 that frost formation of outdoor heat exchanger 7 has progressed, it proceeds to step S11 and uses the following equation (VI) to determine the heat medium circulation circuit. 23 target heating capacity TGQech is calculated.
 TGQech=f(TXObase-TXO)   ・・(VI)
 但し、TGQech≧0。この無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseと室外熱交換器7の冷媒蒸発温度TXOの差ΔTXO(TXObase-TXO)は、上述したような理由で室外熱交換器7への着霜の度合いを意味する。即ち、コントローラ32は室外熱交換器7への着霜の度合いに基づいて熱媒体循環回路23の目標暖房能力TGQechを算出する。
TGQech = f (TXObase-TXO) (VI)
However, TGQech ≧ 0. The difference ΔTXO (TXObase−TXO) between the refrigerant evaporating temperature TXObase of the outdoor heat exchanger 7 and the refrigerant evaporating temperature TXO of the outdoor heat exchanger 7 at the time of this non-frosting is the reason why the outdoor heat exchanger 7 It means the degree of frost formation. That is, the controller 32 calculates the target heating capacity TGQech of the heat medium circulation circuit 23 based on the degree of frost formation on the outdoor heat exchanger 7.
 そして、コントローラ32はステップS11で放熱器4の目標暖房能力TGQhpを、要求暖房能力Qtgtから熱媒体循環回路23の目標暖房能力TGQechを差し引いた値(Qtgt-TGQech)とする。このようにして放熱器4の目標暖房能力TGQhpが低減されるので、熱媒体循環回路23の目標暖房能力TGQechは、室外熱交換器7への着霜を抑制し、若しくは、防止する暖房能力となる。 In step S11, the controller 32 sets the target heating capacity TGQhp of the radiator 4 to a value obtained by subtracting the target heating capacity TGQech of the heat medium circulation circuit 23 from the required heating capacity Qtgt (Qtgt−TGQech). Since the target heating capacity TGQhp of the radiator 4 is reduced in this way, the target heating capacity TGQech of the heat medium circulation circuit 23 has a heating capacity that suppresses or prevents frost formation on the outdoor heat exchanger 7. Become.
 図7は係る熱媒体循環回路23の目標暖房能力TGQechの変化を示す図である。この場合、コントローラ32は霜点を検出することができないので、実際には図7中の細破線は存在しないが、TXObase-TXOの値によって着霜状態、若しくは、着霜の度合いを検出する。そして、前述したようにTXOがTXObaseを下回った状態が所定時間継続した場合、コントローラ32は差ΔTXO(TXObase-TXO)が増大するに伴ってTGQechを増大させていくことになる。 FIG. 7 is a view showing a change in the target heating capacity TGQech of the heat medium circulation circuit 23 concerned. In this case, since the controller 32 cannot detect the frost point, the thin broken line in FIG. 7 does not actually exist, but the frost state or the degree of frost formation is detected by the value of TXObase-TXO. As described above, when the state where TXO is below TXObase continues for a predetermined time, the controller 32 increases TGQech as the difference ΔTXO (TXObase−TXO) increases.
 尚、コントローラ32はステップS11で算出した放熱器4の目標暖房能力TGQhpが、極めて小さい所定の値Q1より大きいか否かをステップS12で判断する。そして、TGQhp>Q1であるとき、ステップS13に進んでコントローラ32は、熱媒体加熱電気ヒータ温度センサ50や熱媒体-空気熱交換器温度センサ55の出力に基づき、前記式(VI)で算出した目標暖房能力TGQech(=f(TXObase-TXO))となるように熱媒体加熱電気ヒータ35への通電と循環ポンプ30の運転を制御する。 The controller 32 determines in step S12 whether or not the target heating capacity TGQhp of the radiator 4 calculated in step S11 is greater than a predetermined value Q1 that is extremely small. When TGQhp> Q1, the process proceeds to step S13, where the controller 32 calculates the above equation (VI) based on the outputs of the heat medium heating electric heater temperature sensor 50 and the heat medium-air heat exchanger temperature sensor 55. The energization of the heating medium heating electric heater 35 and the operation of the circulation pump 30 are controlled so as to achieve the target heating capacity TGQech (= f (TXObase−TXO)).
 即ち、コントローラ32は室外熱交換器7への着霜の度合いに基づいて熱媒体循環回路23による暖房を制御し、放熱器4の目標暖房能力TGQhpは、要求暖房能力Qtgtから熱媒体循環回路23の目標暖房能力TGQechを差し引いた値(Qtgt-TGQech)とする。 That is, the controller 32 controls heating by the heat medium circulation circuit 23 based on the degree of frost formation on the outdoor heat exchanger 7, and the target heating capacity TGQhp of the radiator 4 is calculated from the required heating capacity Qtgt to the heat medium circulation circuit 23. The value obtained by subtracting the target heating capacity TGQech (Qtgt−TGQech).
 一方、ステップS11で算出された放熱器4の目標暖房能力TGQhpが過小であり、前記Q1以下の場合、コントローラ32はステップS12からステップS14に進み、冷媒回路Rの圧縮機2を停止して放熱器4による加熱を停止(HP停止:TGQhp=0)し、熱媒体循環回路23の熱媒体-空気熱交換器40が要求暖房能力Qtgtを発生するように熱媒体加熱電気ヒータ35への通電と循環ポンプ30の運転を制御する(TGQech=Qtgt)。 On the other hand, if the target heating capacity TGQhp of the radiator 4 calculated in step S11 is too small and is equal to or less than Q1, the controller 32 proceeds from step S12 to step S14, stops the compressor 2 of the refrigerant circuit R, and radiates heat. Heating by the heat generator 4 is stopped (HP stop: TGQhp = 0), and the heat medium heating electric heater 35 is energized so that the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 generates the required heating capacity Qtgt. The operation of the circulation pump 30 is controlled (TGQech = Qtgt).
 ここで、放熱器4の目標暖房能力TGQhpが過小である場合、暖房能力としては無視できるものであり、放熱器4の吸込空気温度と放熱器4を経た空気の温度とが略一致するかたちとなるため、冷媒回路Rとしては非効率となる。そこで、実施例のように放熱器4の目標暖房能力TGQhpが過小であるとき(Q1以下)、ステップS14で放熱器4の目標暖房能力TGQhp=0とするので、係る効率の低下を未然に回避することができるようになる。 Here, when the target heating capacity TGQhp of the radiator 4 is excessively small, the heating capacity is negligible, and the intake air temperature of the radiator 4 and the temperature of the air that has passed through the radiator 4 substantially coincide with each other. Therefore, the refrigerant circuit R becomes inefficient. Therefore, when the target heating capacity TGQhp of the radiator 4 is excessively low (Q1 or less) as in the embodiment, the target heating capacity TGQhp = 0 of the radiator 4 is set to 0 in step S14, so that a decrease in efficiency is avoided in advance. Will be able to.
 尚、ステップS10で差ΔTXO(TXObase-TXO)がΔT1以下であるとき、コントローラ32は室外熱交換器7への着霜は未進行、即ち、未だ霜は成長していないものと判定し、ステップS9に進んで熱媒体循環回路23による加熱を停止(循環ポンプ30停止、熱媒体加熱電気ヒータ35非通電でECH停止:TGQech=0)し、放熱器4が要求暖房能力Qtgtを発生するように冷媒回路Rの圧縮機2他の機器を運転する(TGQhp=Qtgt)。 When the difference ΔTXO (TXObase−TXO) is equal to or smaller than ΔT1 in step S10, the controller 32 determines that the frost formation on the outdoor heat exchanger 7 has not progressed, that is, the frost has not yet grown. Proceeding to S9, heating by the heat medium circulation circuit 23 is stopped (circulation pump 30 is stopped, ECH is stopped when the heat medium heating electric heater 35 is not energized: TGQech = 0), and the radiator 4 generates the required heating capacity Qtgt. The compressor 2 of the refrigerant circuit R and other devices are operated (TGQhp = Qtgt).
 以上詳述した如く本発明では、空気流通路3から車室内に供給する空気を加熱するための熱媒体循環回路23の熱媒体-空気熱交換器40を設け、コントローラ32が、室外熱交換器7に着霜しない範囲で放熱器4が発生可能な無着霜最大暖房能力予測値QmaxNfstを算出し、この無着霜最大暖房能力予測値QmaxNfstと、放熱器4の要求暖房能力Qtgtとに基づき、室外熱交換器7に着霜させずに要求暖房能力Qtgtを達成するよう、放熱器4による加熱と熱媒体循環回路23の熱媒体-空気熱交換器40による加熱を制御するようにしたので、外気の温度/湿度の条件により決定される室外熱交換器7への霜が生じる霜点が検出できない場合にも、室外熱交換器7に着霜させること無く、放熱器4と熱媒体循環回路23による協調暖房によって要求暖房能力Qtgtを達成し、快適な車室内暖房を実現することが可能となる。 As described above in detail, in the present invention, the heat medium-air heat exchanger 40 of the heat medium circuit 23 for heating the air supplied from the air flow passage 3 to the vehicle interior is provided, and the controller 32 is provided with the outdoor heat exchanger. 7, a predicted non-frosting maximum heating capacity predicted value QmaxNfst that can be generated by the radiator 4 within a range where frosting does not occur is calculated. The heating by the radiator 4 and the heating by the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 are controlled so that the required heating capacity Qtgt is achieved without frosting the outdoor heat exchanger 7. Even when the frost point at which frost on the outdoor heat exchanger 7 determined by the temperature / humidity conditions of the outdoor air cannot be detected, the outdoor heat exchanger 7 is not frosted and the radiator 4 and the heat medium are circulated. Circuit 2 To achieve the required heating capacity Qtgt by cooperative heating by, it is possible to provide a comfortable passenger compartment heating.
 この場合、コントローラ32は無着霜最大暖房能力予測値QmaxNfstが、要求暖房能力Qtgtより小さくなる場合、放熱器4の目標暖房能力TGQhpを無着霜最大暖房能力予測値QmaxNfstとし、要求暖房能力Qtgtより不足する分を熱媒体循環回路23の熱媒体-空気熱交換器40による加熱により補完するようにし、無着霜最大暖房能力予測値QmaxNfstが要求暖房能力Qtgt以上である場合は、放熱器4の目標暖房能力TGQhpを要求暖房能力Qtgtとし、熱媒体循環回路23による加熱は停止するので、熱媒体循環回路23による加熱に伴う効率の悪化も最小限に抑えることが可能となる。これにより、特に電気自動車においては航続距離が低下する不都合を効果的に抑制することが可能となる。 In this case, when the predicted non-frosting maximum heating capacity QmaxNfst is smaller than the required heating capacity Qtgt, the controller 32 sets the target heating capacity TGQhp of the radiator 4 as the non-frosting maximum heating capacity predicted value QmaxNfst and the required heating capacity Qtgt. If the shortage is supplemented by heating by the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 and the predicted maximum non-frosting capacity QmaxNfst is equal to or greater than the required heating capacity Qtgt, the radiator 4 The target heating capacity TGQhp is set as the required heating capacity Qtgt, and the heating by the heat medium circulation circuit 23 is stopped. Therefore, it is possible to minimize the deterioration of efficiency due to the heating by the heat medium circulation circuit 23. Thereby, especially in an electric vehicle, it becomes possible to effectively suppress the disadvantage that the cruising distance decreases.
 また、コントローラ32は外気温度Tamに基づき、若しくは、それに時刻、日射、降雨、位置、気象条件を加えて無着霜最大暖房能力予測値QmaxNfstを算出するので、室外熱交換器7に着霜しない無着霜最大暖房能力予測値QmaxNfstを的確に推定し、即ち、結果として霜点を的確に推定して室外熱交換器7への着霜を効果的に防止することが可能となる。 Further, the controller 32 calculates the non-frost-free maximum heating capacity predicted value QmaxNfst based on the outside air temperature Tam or by adding the time, solar radiation, rainfall, position, and weather conditions to the outside air temperature Tam, so that the outdoor heat exchanger 7 does not frost. It is possible to accurately estimate the non-frosting maximum heating capacity prediction value QmaxNfst, that is, to accurately estimate the frost point as a result and to effectively prevent frost formation on the outdoor heat exchanger 7.
 そして、コントローラ32は車両用空気調和装置1の暖房モードの起動直後に上記制御を実行するので、車両が停止している状態、即ち、未だ室外熱交換器7に霜が生じていない状態から、起動によって室外熱交換器7に霜が生じ始める不都合を予防することができるようになり、その後の車両の走行に伴う着霜の成長をできるだけ低減させることができるようになる。また、起動直後にのみ係る霜点の推定を行って熱媒体循環回路23による補完を行うので、これによっても消費電力の削減を図ることが可能となる。 And since the controller 32 performs the said control immediately after starting of the heating mode of the air conditioning apparatus 1 for vehicles, from the state which the vehicle has stopped, ie, the state where frost has not yet arisen in the outdoor heat exchanger 7, It becomes possible to prevent inconvenience that frost starts to be generated in the outdoor heat exchanger 7 by the start-up, and it is possible to reduce the growth of frost accompanying the subsequent running of the vehicle as much as possible. Further, since the frost point is estimated only immediately after the start-up and complementation is performed by the heat medium circulation circuit 23, the power consumption can be reduced also by this.
 また、コントローラ32は室外熱交換器7への着霜状態を推定し、起動直後ではない場合、室外熱交換器7へ霜が生じたとき、若しくは、室外熱交換器7への着霜が予測されるとき、熱媒体循環回路23による加熱を実行するので、起動後の走行中における室外熱交換器7への着霜も効果的に防止、若しくは、抑制しながら、車室内の暖房能力を確保することが可能となる。 Moreover, the controller 32 estimates the frost formation state to the outdoor heat exchanger 7, and when not immediately after starting, when frost arises in the outdoor heat exchanger 7, or the frost formation to the outdoor heat exchanger 7 is estimated. Since the heating by the heat medium circulation circuit 23 is performed when it is done, frosting on the outdoor heat exchanger 7 during traveling after startup is effectively prevented or suppressed, and the heating capacity of the vehicle interior is ensured It becomes possible to do.
 更に、コントローラ32は室外熱交換器7への着霜の度合いに基づき、当該室外熱交換器7への着霜を抑制し、若しくは、防止する熱媒体循環回路23の目標暖房能力TGQechを算出すると共に、放熱器4の目標暖房能力TGQhpを、要求暖房能力Qtgtから熱媒体循環回路23の目標暖房能力TGQechを差し引いた値とするので、室外熱交換器7への着霜を防止、若しくは、抑制しながら、的確に熱媒体循環回路23による暖房を制御し、快適な車室内暖房を実現することができるようになる。 Furthermore, the controller 32 calculates the target heating capacity TGQech of the heat medium circulation circuit 23 that suppresses or prevents frost formation on the outdoor heat exchanger 7 based on the degree of frost formation on the outdoor heat exchanger 7. At the same time, the target heating capacity TGQhp of the radiator 4 is set to a value obtained by subtracting the target heating capacity TGQech of the heat medium circuit 23 from the required heating capacity Qtgt, so that frost formation on the outdoor heat exchanger 7 is prevented or suppressed. However, heating by the heat medium circulation circuit 23 can be accurately controlled, and comfortable vehicle interior heating can be realized.
 また、この場合も熱媒体循環回路23による加熱に伴う効率の悪化も最小限に抑えることが可能となるので、これによっても電気自動車の航続距離の低下を効果的に抑制することが可能となる。 Also in this case, it is possible to minimize the deterioration of the efficiency due to the heating by the heat medium circulation circuit 23, so that it is also possible to effectively suppress the decrease in the cruising distance of the electric vehicle. .
 この場合、放熱器4の目標暖房能力TGQhpが所定の値より小さい場合、コントローラ32が圧縮機2の運転を停止することにより、放熱器4の暖房が過小となる状況における効率の低下を未然に回避することができるようになる。 In this case, when the target heating capacity TGQhp of the radiator 4 is smaller than a predetermined value, the controller 32 stops the operation of the compressor 2, thereby reducing the efficiency in a situation where the heating of the radiator 4 becomes excessive. It will be possible to avoid.
 特に、コントローラ32は室外熱交換器7の冷媒蒸発温度TXOと、無着霜時における当該室外熱交換器7の冷媒蒸発温度TXObaseとに基づき、室外熱交換器7への着霜状態、又は、着霜の度合いを推定するので、室外熱交換器7の着霜を精度良く判定して熱媒体循環回路23との協調制御を実行することができるようになる。これにより、熱媒体循環回路23の熱媒体-空気熱交換器40による暖房を精度良く制御し、消費電力増を抑制することが可能となる。 In particular, the controller 32 is based on the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 and the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 at the time of no frost formation, Since the degree of frost formation is estimated, the frost formation of the outdoor heat exchanger 7 can be accurately determined and the cooperative control with the heat medium circulation circuit 23 can be executed. As a result, heating by the heat medium-air heat exchanger 40 of the heat medium circuit 23 can be accurately controlled, and an increase in power consumption can be suppressed.
 そして、実施例のように空気流通路3から車室内に供給する空気を加熱するための熱媒体-空気熱交換器40と、熱媒体加熱電気ヒータ35と、循環ポンプ30とを有し、熱媒体加熱電気ヒータ35により加熱された熱媒体を循環ポンプ30により熱媒体-空気熱交換器40に循環する熱媒体循環回路23から補助加熱手段を構成すれば、高電圧となる電気ヒータを車室内から遠い位置に設置することができるようになるので、電気的により安全な車室内暖房を実現することができるようになる。 And, as in the embodiment, it has a heat medium-air heat exchanger 40 for heating the air supplied from the air flow passage 3 into the vehicle interior, a heat medium heating electric heater 35, and a circulation pump 30, and a heat pump If the auxiliary heating means is configured from the heat medium circulation circuit 23 that circulates the heat medium heated by the medium heating electric heater 35 to the heat medium-air heat exchanger 40 by the circulation pump 30, the electric heater having a high voltage can be connected to the vehicle interior. Since the vehicle can be installed at a position far from the vehicle, it is possible to realize electrically safer vehicle interior heating.
 次に、図8はコントローラ32のフローチャートの他の実施例を示している。尚、この図において、図4のフローチャート中のF1、F2で示す部分と同一の部分は同一符号で示し、詳細は省略して示している。この実施例では、ステップS10で差ΔTXO(TXObase-TXO)がΔT1以下であり、室外熱交換器7への着霜が未進行である、即ち、室外熱交換器7に霜が生じていないものと判断した場合は、直接ステップS9に進んで熱媒体加熱電気ヒータ35を非通電とするのではなく、その間にステップS15の段階制御を実行する。 Next, FIG. 8 shows another embodiment of the flowchart of the controller 32. In this figure, the same parts as the parts indicated by F1 and F2 in the flowchart of FIG. 4 are indicated by the same reference numerals, and the details are omitted. In this embodiment, the difference ΔTXO (TXObase−TXO) is equal to or smaller than ΔT1 in step S10, and frost formation on the outdoor heat exchanger 7 has not progressed, that is, no frost is generated in the outdoor heat exchanger 7. If it is determined, the process proceeds directly to step S9, and the heat medium heating electric heater 35 is not de-energized, but the step control of step S15 is executed during that time.
 この実施例のステップS15の段階制御を図8の下に示す。暖房モード起動直後から直後で無くなった場合、即ち、ステップS4からステップS10に進んだときに、差ΔTXO(TXObase-TXO)がΔT1以下であった場合、コントローラ32はステップS15で熱媒体循環回路23の目標暖房能力TGQechを徐々に、若しくは、段階的に低下させる。 The step control in step S15 of this embodiment is shown in the lower part of FIG. If the difference disappears immediately after the heating mode is started, that is, when the process proceeds from step S4 to step S10 and the difference ΔTXO (TXObase−TXO) is equal to or less than ΔT1, the controller 32 causes the heat medium circulation circuit 23 in step S15. The target heating capacity TGQech is reduced gradually or stepwise.
 一方、放熱器4の目標暖房能力TGQhpについては、ステップS11と同様TGQhp=Qtgt-TGQechで算出する。従って、放熱器4の目標暖房能力TGQhpは徐々に、若しくは、段階的に増大される。そして、最終的にステップS9に進んで熱媒体循環回路23による加熱を停止(循環ポンプ30停止、熱媒体加熱電気ヒータ35非通電でECH停止:TGQech=0)し、放熱器4が要求暖房能力Qtgtを発生するように冷媒回路Rの圧縮機2他の機器を運転する(TGQhp=Qtgt)。 On the other hand, the target heating capacity TGQhp of the radiator 4 is calculated by TGQhp = Qtgt−TGQech as in step S11. Therefore, the target heating capacity TGQhp of the radiator 4 is increased gradually or stepwise. And finally, it progresses to step S9 and the heating by the heat medium circulation circuit 23 is stopped (circulation pump 30 is stopped, the heat medium heating electric heater 35 is not energized and ECH is stopped: TGQech = 0), and the radiator 4 has the required heating capacity. The compressor 2 and other devices of the refrigerant circuit R are operated so as to generate Qtgt (TGQhp = Qtgt).
 ここで、圧縮機2の運転制御によって放熱器4が発生する暖房能力の変化は、熱媒体循環回路23の熱媒体-空気熱交換器40への高温熱媒体の供給停止による同熱交換器40による暖房能力の低下に遅れる場合がある。また、ステップS10からステップS9に進み、熱媒体循環回路23の目標暖房能力TGQechが0とされ、放熱器4の目標暖房能力TGQhpが要求暖房能力Qtgtに向けて急激に増大された場合、環境条件によっては室外熱交換器7に過渡的に霜が発生する危険性がある。 Here, the change in the heating capacity generated by the radiator 4 by the operation control of the compressor 2 is caused by the supply of the high-temperature heat medium to the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 being stopped. There may be a delay in the heating capacity decline due to. If the target heating capacity TGQech of the heat medium circulation circuit 23 is set to 0 and the target heating capacity TGQhp of the radiator 4 is rapidly increased toward the required heating capacity Qtgt, the process proceeds from step S10 to step S9. Depending on the situation, there is a risk that frost may be transiently generated in the outdoor heat exchanger 7.
 しかしながら、この実施例のように、コントローラ32が室外熱交換器7へ霜が生じていないと判断したとき、ステップS15で熱媒体循環回路23の熱媒体-空気熱交換器40による加熱を、徐々に若しくは段階的に低下させて最終的に停止させるようにすれば、係る放熱器4の暖房能力の増大が遅れることによって車室内に吹き出される空気温度が急激に変動してしまう不都合を抑制することが可能となる。また、放熱器4の目標暖房能力TGQhpも徐々に若しくは段階的に増大されることになるので、室外熱交換器7への過渡的な霜の発生も防止若しくは抑制することができるようになる。 However, when the controller 32 determines that frost is not generated in the outdoor heat exchanger 7 as in this embodiment, heating by the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 is gradually performed in step S15. Alternatively, if the temperature is lowered stepwise and finally stopped, the inconvenience that the temperature of the air blown into the passenger compartment fluctuates rapidly due to a delay in the increase in the heating capacity of the radiator 4 is suppressed. It becomes possible. In addition, since the target heating capacity TGQhp of the radiator 4 is also increased gradually or stepwise, the generation of transient frost on the outdoor heat exchanger 7 can be prevented or suppressed.
 次に、図9は本発明の車両用空気調和装置1の他の構成図を示している。この実施例では、室外熱交換器7にレシーバドライヤ部14と過冷却部16が設けられておらず、室外熱交換器7から出た冷媒配管13Aは電磁弁17と逆止弁18を介して冷媒配管13Bに接続されている。また、冷媒配管13Aから分岐した冷媒配管13Dは、同様に電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに接続されている。 Next, FIG. 9 shows another configuration diagram of the vehicle air conditioner 1 of the present invention. In this embodiment, the outdoor heat exchanger 7 is not provided with the receiver dryer section 14 and the supercooling section 16, and the refrigerant pipe 13 </ b> A exiting from the outdoor heat exchanger 7 is connected via the electromagnetic valve 17 and the check valve 18. It is connected to the refrigerant pipe 13B. Similarly, the refrigerant pipe 13D branched from the refrigerant pipe 13A is connected to the refrigerant pipe 13C on the downstream side of the internal heat exchanger 19 via the electromagnetic valve 21.
 その他は、図1の例と同様である。このようにレシーバドライヤ部14と過冷却部16を有しない室外熱交換器7を採用した冷媒回路Rの車両用空気調和装置1においても本発明は有効である。 Others are the same as in the example of FIG. Thus, the present invention is also effective in the vehicle air conditioner 1 of the refrigerant circuit R that employs the outdoor heat exchanger 7 that does not include the receiver dryer section 14 and the supercooling section 16.
 次に、図10は本発明の車両用空気調和装置1のもう一つの他の構成図を示している。尚、この実施例の冷媒回路Rは図9と同様である。但し、この場合、熱媒体循環回路23の熱媒体-空気熱交換器40は、空気流通路3の空気の流れに対して放熱器4の上流側であってエアミックスダンパ28の下流側に配置されている。他の構成は図9と同様である。 Next, FIG. 10 shows another configuration diagram of the vehicle air conditioner 1 of the present invention. The refrigerant circuit R in this embodiment is the same as that shown in FIG. However, in this case, the heat medium-air heat exchanger 40 of the heat medium circuit 23 is disposed upstream of the radiator 4 and downstream of the air mix damper 28 with respect to the air flow in the air flow passage 3. Has been. Other configurations are the same as those in FIG.
 この場合には空気流通路3において熱媒体-空気熱交換器40が放熱器4の上流側に位置するため、熱媒体循環回路23の動作中、空気は熱媒体-空気熱交換器40で加熱された後、放熱器4に流入するようになる。このように熱媒体-空気熱交換器40を放熱器4の上流側に配置した車両用空気調和装置1においても本発明は有効であり、特にこの場合には熱媒体循環回路23内の熱媒体の温度が低いことによる問題は生じなくなる。これにより、放熱器4との協調暖房も容易となると共に、熱媒体を予め加熱しておく所謂予備運転が不要となるが、熱媒体-空気熱交換器40を経た空気が放熱器4に流入することになるため、放熱器4との温度差が小さくなり、熱交換効率が低下する危険性がある。一方、図1や図9のように熱媒体-空気熱交換器40を、空気流通路3の空気の流れに対して放熱器4の下流側に配置すれば、図10の如く熱媒体-空気熱交換器40を上流側に配置する場合に比して、熱媒体-空気熱交換器40で加熱された空気が放熱器4に流入することが無くなり、放熱器4の温度と空気の温度差を確保して、放熱器4における熱交換性能の低下を防止することができるようになる。 In this case, since the heat medium-air heat exchanger 40 is located upstream of the radiator 4 in the air flow passage 3, the air is heated by the heat medium-air heat exchanger 40 during the operation of the heat medium circulation circuit 23. After being done, it flows into the radiator 4. Thus, the present invention is also effective in the vehicle air conditioner 1 in which the heat medium-air heat exchanger 40 is arranged on the upstream side of the radiator 4. In this case, in particular, the heat medium in the heat medium circulation circuit 23 is used. The problem caused by the low temperature is not caused. This facilitates cooperative heating with the radiator 4 and eliminates the need for so-called preliminary operation in which the heat medium is heated in advance. However, air that has passed through the heat medium-air heat exchanger 40 flows into the radiator 4. Therefore, there is a risk that the temperature difference with the radiator 4 becomes small and the heat exchange efficiency decreases. On the other hand, if the heat medium-air heat exchanger 40 is arranged on the downstream side of the radiator 4 with respect to the air flow in the air flow passage 3 as shown in FIGS. 1 and 9, the heat medium-air as shown in FIG. Compared with the case where the heat exchanger 40 is arranged upstream, the air heated by the heat medium-air heat exchanger 40 does not flow into the radiator 4, and the temperature difference between the temperature of the radiator 4 and the air Is ensured, and the heat exchange performance of the radiator 4 can be prevented from lowering.
 次に、図11は本発明の車両用空気調和装置1の更にもう一つの他の構成図を示している。この実施例の冷媒回路R及び熱媒体循環回路23の基本構成は図1と同様であるが、熱媒体循環回路23に熱媒体-冷媒熱交換器70が設けられている。この熱媒体-冷媒熱交換器70は、循環ポンプ30を出た熱媒体配管23Aと冷媒回路Rの放熱器4を出た冷媒配管13Eとを熱交換させるものであり、この熱媒体-冷媒熱交換器70において、循環ポンプ30から吐出された熱媒体は放熱器4から出た冷媒から加熱作用を受けるように構成されている。これにより、放熱器4を経た冷媒から熱媒体循環回路23を循環する熱媒体に熱を回収することができる。 Next, FIG. 11 shows still another configuration diagram of the vehicle air conditioner 1 of the present invention. The basic configurations of the refrigerant circuit R and the heat medium circulation circuit 23 in this embodiment are the same as those in FIG. 1, but a heat medium-refrigerant heat exchanger 70 is provided in the heat medium circulation circuit 23. The heat medium-refrigerant heat exchanger 70 exchanges heat between the heat medium pipe 23A exiting the circulation pump 30 and the refrigerant pipe 13E exiting the radiator 4 of the refrigerant circuit R. In the exchanger 70, the heat medium discharged from the circulation pump 30 is configured to receive a heating action from the refrigerant discharged from the radiator 4. Thus, heat can be recovered from the refrigerant that has passed through the radiator 4 to the heat medium that circulates through the heat medium circuit 23.
 このように、熱媒体循環回路23に、放熱器4を経た冷媒から熱を回収する熱媒体-冷媒熱交換器70を設けることにより、放熱器4を出た冷媒が有する熱を熱媒体循環回路23内を流れる熱媒体に回収して熱媒体-空気熱交換器40に搬送し、より効率的な暖房補助を行うことが可能となる。 In this way, the heat medium circulation circuit 23 is provided with the heat medium-refrigerant heat exchanger 70 that recovers heat from the refrigerant that has passed through the radiator 4, so that the heat of the refrigerant that has exited the radiator 4 can be transferred to the heat medium circuit. It is possible to recover the heat medium flowing in the heat transfer medium 23 and transport it to the heat medium-air heat exchanger 40 to perform more efficient heating assistance.
 次に、図12は本発明の車両用空気調和装置1の更にもう一つの他の構成図を示している。この実施例の冷媒回路R及び熱媒体循環回路23は図11の場合と同様であるが、熱媒体循環回路23の熱媒体-空気熱交換器40が、空気流通路3の空気の流れに対して放熱器4の上流側であってエアミックスダンパ28の下流側に配置されている。このような構成によっても、放熱器4を出た冷媒が有する熱を熱媒体-冷媒熱交換器70にて熱媒体循環回路23内を流れる熱媒体に回収し、熱媒体-空気熱交換器40に搬送してより効率的な暖房補助を行うことが可能となる。 Next, FIG. 12 shows still another configuration diagram of the vehicle air conditioner 1 of the present invention. The refrigerant circuit R and the heat medium circulation circuit 23 of this embodiment are the same as those in FIG. 11 except that the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 corresponds to the air flow in the air flow passage 3. Further, it is disposed upstream of the radiator 4 and downstream of the air mix damper 28. Also with such a configuration, the heat of the refrigerant that has exited the radiator 4 is recovered by the heat medium-refrigerant heat exchanger 70 to the heat medium flowing in the heat medium circuit 23, and the heat medium-air heat exchanger 40. It becomes possible to carry out more efficient heating assistance.
 次に、図13は本発明の車両用空気調和装置1の更にもう一つの他の構成図を示している。この実施例の冷媒回路R及び熱媒体循環回路23の配管構成は図1の場合と基本的に同様であるが、放熱器4は空気流通路3には設けられておらず、その外側に配置されている。その代わりに、この放熱器4にはこの場合の熱媒体-冷媒熱交換器74が熱交換関係に配設されている。 Next, FIG. 13 shows still another configuration diagram of the vehicle air conditioner 1 of the present invention. The piping configuration of the refrigerant circuit R and the heat medium circulation circuit 23 in this embodiment is basically the same as that in FIG. 1, but the radiator 4 is not provided in the air flow passage 3 and is arranged outside thereof. Has been. Instead, the radiator 4 is provided with a heat medium-refrigerant heat exchanger 74 in this case in a heat exchange relationship.
 この熱媒体-冷媒熱交換器74は、熱媒体循環回路23の循環ポンプ30と熱媒体加熱電気ヒータ35の間の熱媒体配管23Aに接続されたもので、熱媒体循環回路23の熱媒体-空気熱交換器40は空気流通路3に設けられている。係る構成で、循環ポンプ30から吐出された熱媒体は放熱器4を流れる冷媒と熱交換し、当該冷媒により加熱され、次に、熱媒体加熱電気ヒータ35(通電されて発熱している場合)で加熱された後、熱媒体-空気熱交換器40で放熱することにより、空気流通路3から車室内に供給される空気を加熱する。 This heat medium-refrigerant heat exchanger 74 is connected to the heat medium pipe 23A between the circulation pump 30 of the heat medium circulation circuit 23 and the heat medium heating electric heater 35, and the heat medium of the heat medium circulation circuit 23- The air heat exchanger 40 is provided in the air flow passage 3. With such a configuration, the heat medium discharged from the circulation pump 30 exchanges heat with the refrigerant flowing through the radiator 4, is heated by the refrigerant, and then the heat medium heating electric heater 35 (when energized to generate heat). Then, the air supplied from the air flow passage 3 to the passenger compartment is heated by releasing heat from the heat medium-air heat exchanger 40.
 このような構成の車両用空気調和装置1においても、放熱器4による暖房能力が不足する場合に、熱媒体加熱電気ヒータ35に通電して熱媒体回路23A内を流れる熱媒体を加熱することにより、暖房補助を行うことが可能となると共に、後述するように電気ヒータを空気流通路3に配設する場合に比して、電気的により安全な車室内暖房を実現することができるようになる。 Also in the vehicle air conditioner 1 having such a configuration, when the heating capability by the radiator 4 is insufficient, the heating medium heating electric heater 35 is energized to heat the heating medium flowing in the heating medium circuit 23A. As a result, it becomes possible to perform heating assistance and to realize electrically safer vehicle interior heating as compared with a case where an electric heater is provided in the air flow passage 3 as described later. .
 尚、上記各実施例では補助加熱手段として熱媒体循環回路23を採用したが、通常の電気ヒータ(例えば、PTCヒータ)73にて補助加熱手段を構成してもよい。その場合の図1に対応する構成例が図14、図9に対応する構成例が図15である。図14、図15では図1、図9の熱媒体循環回路23がこの場合の電気ヒータ73に置き換えられている。 In each of the above-described embodiments, the heat medium circulation circuit 23 is employed as the auxiliary heating unit. However, the auxiliary heating unit may be configured by a normal electric heater (for example, a PTC heater) 73. A configuration example corresponding to FIG. 1 in that case is FIG. 14, and a configuration example corresponding to FIG. 9 is FIG. 15. 14 and 15, the heat medium circulation circuit 23 of FIGS. 1 and 9 is replaced with an electric heater 73 in this case.
 その他の構成及び制御は基本的に同様であり、コントローラ32は熱媒体循環回路23の循環ポンプ30及び熱媒体加熱電気ヒータ35の代わりに、電気ヒータ73の通電を制御して、前述同様にその発熱によって放熱器4による暖房能力の補完を行うものであるので、詳細な説明は省略する。このように、車室内に供給する空気を電気ヒータ73で加熱するようにしても良く、係る構成によれば熱媒体循環回路23を用いる場合に比して構成が簡素化される利点がある。 Other configurations and controls are basically the same, and the controller 32 controls the energization of the electric heater 73 instead of the circulation pump 30 and the heat medium heating electric heater 35 of the heat medium circulation circuit 23, and the same as described above. Since the heating capacity of the radiator 4 is complemented by heat generation, detailed description thereof is omitted. Thus, the air supplied to the passenger compartment may be heated by the electric heater 73. According to such a configuration, there is an advantage that the configuration is simplified as compared with the case where the heat medium circulation circuit 23 is used.
 勿論、この電気ヒータ73を図10の場合の如く、図14や図15における放熱器4の空気上流側に配置してもよく、その場合には電気ヒータ73への通電開始初期に車室内に供給される空気温度が低下する不都合を解消できる効果がある。 Of course, the electric heater 73 may be arranged on the air upstream side of the radiator 4 in FIGS. 14 and 15 as in the case of FIG. 10, and in that case, the electric heater 73 is placed in the vehicle interior at the beginning of energization of the electric heater 73. This has the effect of eliminating the inconvenience that the temperature of the supplied air decreases.
 尚、上記各実施例では室外熱交換器7の着霜状態推定手段となるコントローラ32が、室外熱交換器7の冷媒蒸発温度TXOと、無着霜時における当該室外熱交換器7の冷媒蒸発温度TXObaseとに基づいて室外熱交換器7への着霜状態やその度合いを推定するようにしたが、請求項10以外の発明ではそれに限らず、室外熱交換器7の冷媒蒸発圧力PXOと、無着霜時における当該室外熱交換器7の冷媒蒸発圧力PXObaseとに基づいてTXO及びTXObaseの場合と同様の手順で推定してもよく、また、例えば放熱器4の実際の暖房能力である実暖房能力と、室外熱交換器7が無着霜時の放熱器4の暖房能力である無着霜時暖房能力とを比較し、それに対して実暖房能力が低下したことで、室外熱交換器7が着霜しているものと推定するようにしてもよい。 In each of the above-described embodiments, the controller 32 serving as the frost formation state estimating means of the outdoor heat exchanger 7 determines the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 and the refrigerant evaporation of the outdoor heat exchanger 7 when there is no frost formation. Although the frost formation state to the outdoor heat exchanger 7 and the degree thereof are estimated based on the temperature TXObase, the invention other than claim 10 is not limited thereto, and the refrigerant evaporation pressure PXO of the outdoor heat exchanger 7 Based on the refrigerant evaporation pressure PXObase of the outdoor heat exchanger 7 at the time of non-frosting, it may be estimated by the same procedure as in the case of TXO and TXObase, and for example, the actual heating capacity of the radiator 4 The heating capacity is compared with the non-frosting heating capacity, which is the heating capacity of the radiator 4 when the outdoor heat exchanger 7 is not frosted, and the actual heating capacity is reduced. 7 is frosting It may be estimated as.
 また、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モードの各運転モードを切り換えて実行する車両用空気調和装置1について本発明を適用したが、それに限らず、暖房モードのみ行うものにも本発明は有効である。 Further, in the embodiments, the present invention is applied to the vehicle air conditioner 1 that switches between and executes the heating mode, the dehumidifying heating mode, the dehumidifying and cooling mode, and the cooling mode. However, the present invention is not limited thereto, and only the heating mode is performed. In addition, the present invention is effective.
 更に、実施例では補助加熱手段として熱媒体循環回路23を採り上げて説明したが、請求項11以外の発明ではそれに限らず、空気流通路3に例えば電気ヒータ(補助加熱手段)を設けるものでもよい。 Further, in the embodiment, the heat medium circulation circuit 23 is taken up as the auxiliary heating means. However, the invention other than claim 11 is not limited thereto, and for example, an electric heater (auxiliary heating means) may be provided in the air flow passage 3. .
 更にまた、上記各実施例で説明した冷媒回路Rの構成や各数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。 Furthermore, the configuration and each numerical value of the refrigerant circuit R described in the above embodiments are not limited thereto, and it goes without saying that they can be changed without departing from the spirit of the present invention.
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 11 蒸発能力制御弁
 17、20、21、22 電磁弁
 23 熱媒体循環回路(補助加熱手段)
 26 吸込切換ダンパ
 27 室内送風機(ブロワファン)
 28 エアミックスダンパ
 30 循環ポンプ(循環手段)
 32 コントローラ(制御手段)
 35 熱媒体加熱電気ヒータ(電気ヒータ)
 40 熱媒体-空気熱交換器
 R 冷媒回路
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 2 Compressor 3 Air flow path 4 Radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber 11 Evaporation capacity control valve 17, 20, 21, 22 Electromagnetic valve 23 Heat medium circulation Circuit (Auxiliary heating means)
26 Suction Switching Damper 27 Indoor Blower (Blower Fan)
28 Air mix damper 30 Circulation pump (circulation means)
32 controller (control means)
35 Heating medium heating electric heater (electric heater)
40 Heat medium-air heat exchanger R Refrigerant circuit

Claims (11)

  1.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を放熱又は吸熱させる室外熱交換器と、
     制御手段とを備え、
     該制御手段により少なくとも、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、
     前記空気流通路から前記車室内に供給する空気を加熱するための補助加熱手段を備え、
     前記制御手段は、前記室外熱交換器に着霜しない範囲で前記放熱器が発生可能な最大暖房能力の目標値である無着霜最大暖房能力予測値QmaxNfstを算出し、
     該無着霜最大暖房能力予測値QmaxNfstと、要求される前記放熱器の暖房能力である要求暖房能力Qtgtとに基づき、前記室外熱交換器に着霜させずに前記要求暖房能力Qtgtを達成するよう、前記放熱器による加熱と前記補助加熱手段による加熱を制御することを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant;
    An air flow passage through which air to be supplied into the passenger compartment flows;
    A radiator for radiating the refrigerant to heat the air supplied from the air flow passage to the vehicle interior;
    A heat absorber for absorbing the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior;
    An outdoor heat exchanger that is provided outside the vehicle cabin to dissipate or absorb heat from the refrigerant;
    Control means,
    The vehicle air conditioner executes a heating mode in which at least the refrigerant discharged from the compressor is radiated by the radiator, the pressure of the radiated refrigerant is reduced, and the heat is absorbed by the outdoor heat exchanger. In the device
    An auxiliary heating means for heating the air supplied from the air flow passage to the vehicle interior;
    The control means calculates a non-frosting maximum heating capacity prediction value QmaxNfst, which is a target value of the maximum heating capacity that can be generated by the radiator within a range where frost is not formed on the outdoor heat exchanger,
    Based on the predicted non-frosting maximum heating capacity value QmaxNfst and the required heating capacity Qtgt which is the required heating capacity of the radiator, the required heating capacity Qtgt is achieved without causing the outdoor heat exchanger to be frosted. The vehicle air conditioner is characterized by controlling heating by the radiator and heating by the auxiliary heating means.
  2.  前記制御手段は、前記無着霜最大暖房能力予測値QmaxNfstが、前記要求暖房能力Qtgtより小さくなる場合、前記放熱器の目標暖房能力TGQhpを前記無着霜最大暖房能力予測値QmaxNfstとし、前記要求暖房能力Qtgtより不足する分を前記補助加熱手段による加熱により補完することを特徴とする請求項1に記載の車両用空気調和装置。 When the predicted non-frosting maximum heating capacity predicted value QmaxNfst is smaller than the required heating capacity Qtgt, the control means sets the target heating capacity TGQhp of the radiator as the predicted non-frosting maximum heating capacity QmaxNfst, and The air conditioning apparatus for a vehicle according to claim 1, wherein a portion deficient in the heating capacity Qtgt is supplemented by heating by the auxiliary heating means.
  3.  前記制御手段は、前記無着霜最大暖房能力予測値QmaxNfstが前記要求暖房能力Qtgt以上である場合、前記放熱器の目標暖房能力TGQhpを前記要求暖房能力Qtgtとし、前記補助加熱手段による加熱は停止することを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。 When the predicted non-frosting maximum heating capacity predicted value QmaxNfst is equal to or greater than the required heating capacity Qtgt, the control means sets the target heating capacity TGQhp of the radiator to the required heating capacity Qtgt and stops heating by the auxiliary heating means. The vehicle air conditioner according to claim 1 or 2, wherein the vehicle air conditioner is provided.
  4.  前記制御手段は、外気温度に基づき、若しくは、それに時刻、日射、降雨、位置、気象条件を加えて前記無着霜最大暖房能力予測値QmaxNfstを算出することを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。 The said control means calculates the said non-frost maximum heating capacity prediction value QmaxNfst based on outside temperature, or adding time, solar radiation, rainfall, a position, and a meteorological condition to it. The vehicle air conditioner according to claim 3.
  5.  前記制御手段は、起動直後に請求項1乃至請求項4のうちの何れかに記載の制御を実行することを特徴とする車両用空気調和装置。 The vehicle air conditioner, wherein the control means executes the control according to any one of claims 1 to 4 immediately after startup.
  6.  前記制御手段は、前記室外熱交換器への着霜状態を推定する着霜状態推定手段を有し、起動直後ではない場合、該着霜状態推定手段の推定に基づき、前記室外熱交換器へ霜が生じたとき、若しくは、前記室外熱交換器への着霜が予測されるとき、前記補助加熱手段による加熱を実行することを特徴とする請求項1乃至請求項5のうちの何れかに記載の車両用空気調和装置。 The control means has frosting state estimation means for estimating a frosting state to the outdoor heat exchanger, and if not immediately after startup, based on the estimation of the frosting state estimation means, to the outdoor heat exchanger The heating by the auxiliary heating means is executed when frost occurs or when frost formation on the outdoor heat exchanger is predicted. The vehicle air conditioning apparatus described.
  7.  前記制御手段は、前記室外熱交換器への着霜の度合いに基づき、当該室外熱交換器への着霜を抑制し、若しくは、防止する前記補助加熱手段の目標暖房能力TGQechを算出すると共に、
     前記放熱器の目標暖房能力TGQhpを、前記要求暖房能力Qtgtから前記補助加熱手段の目標暖房能力TGQechを差し引いた値とすることを特徴とする請求項6に記載の車両用空気調和装置。
    The control means calculates the target heating capacity TGQech of the auxiliary heating means for suppressing or preventing frost formation on the outdoor heat exchanger based on the degree of frost formation on the outdoor heat exchanger,
    The vehicle air conditioner according to claim 6, wherein the target heating capacity TGQhp of the radiator is a value obtained by subtracting the target heating capacity TGQech of the auxiliary heating means from the required heating capacity Qtgt.
  8.  前記制御手段は、前記放熱器の目標暖房能力TGQhpが所定の値より小さい場合、前記圧縮機の運転を停止することを特徴とする請求項7に記載の車両用空気調和装置。 The vehicle air conditioner according to claim 7, wherein the control unit stops the operation of the compressor when a target heating capacity TGQhp of the radiator is smaller than a predetermined value.
  9.  前記制御手段は、前記着霜状態推定手段の推定に基づき、前記室外熱交換器へ霜が生じていないと推定されるとき、前記補助加熱手段による加熱を、徐々に若しくは段階的に低下させ、最終的に停止させることを特徴とする請求項6乃至請求項8のうちの何れかに記載の車両用空気調和装置。 The control means, when it is estimated that frost is not generated in the outdoor heat exchanger based on the estimation of the frosting state estimation means, gradually or stepwise reduces the heating by the auxiliary heating means, The vehicle air conditioner according to any one of claims 6 to 8, which is finally stopped.
  10.  前記制御手段は、前記室外熱交換器の冷媒蒸発温度TXOと、無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseとに基づき、前記室外熱交換器への着霜状態、又は、着霜の度合いを推定することを特徴とする請求項6乃至請求項9のうちの何れかに記載の車両用空気調和装置。 The control means, based on the refrigerant evaporation temperature TXO of the outdoor heat exchanger and the refrigerant evaporation temperature TXObase of the outdoor heat exchanger at the time of non-frosting, the frosting state on the outdoor heat exchanger, The vehicle air conditioner according to any one of claims 6 to 9, wherein the degree of frost is estimated.
  11.  前記空気流通路から前記車室内に供給する空気を加熱するための熱媒体-空気熱交換器と、電気ヒータと、循環手段とを有し、前記電気ヒータにより加熱された熱媒体を前記循環手段により前記熱媒体-空気熱交換器に循環する熱媒体循環回路から前記補助加熱手段を構成したことを特徴とする請求項1乃至請求項10のうちの何れかに記載の車両用空気調和装置。 A heat medium-air heat exchanger for heating air supplied from the air flow passage to the vehicle interior; an electric heater; and a circulation means. The heat medium heated by the electric heater is supplied to the circulation means. The vehicle air conditioner according to any one of claims 1 to 10, wherein the auxiliary heating means is constituted by a heat medium circulation circuit that circulates to the heat medium-air heat exchanger.
PCT/JP2014/063963 2013-05-28 2014-05-27 Vehicular air-conditioning device WO2014192740A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112014002612.3T DE112014002612T5 (en) 2013-05-28 2014-05-27 Vehicle air conditioning apparatus
US14/890,770 US9909794B2 (en) 2013-05-28 2014-05-27 Vehicular air-conditioning device
CN201480030551.0A CN105246718B (en) 2013-05-28 2014-05-27 Air conditioner for motor vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-112086 2013-05-28
JP2013112086A JP6125330B2 (en) 2013-05-28 2013-05-28 Air conditioner for vehicles

Publications (1)

Publication Number Publication Date
WO2014192740A1 true WO2014192740A1 (en) 2014-12-04

Family

ID=51988769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063963 WO2014192740A1 (en) 2013-05-28 2014-05-27 Vehicular air-conditioning device

Country Status (5)

Country Link
US (1) US9909794B2 (en)
JP (1) JP6125330B2 (en)
CN (1) CN105246718B (en)
DE (1) DE112014002612T5 (en)
WO (1) WO2014192740A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3026173A1 (en) * 2014-09-24 2016-03-25 Valeo Systemes Thermiques METHOD FOR CONTROLLING A HEATING, VENTILATION AND / OR AIR CONDITIONING INSTALLATION AND CORRESPONDING INSTALLATION, USING AN ELECTRIC HEATING DEVICE

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6073652B2 (en) * 2012-11-09 2017-02-01 サンデンホールディングス株式会社 Air conditioner for vehicles
JP5999637B2 (en) * 2012-11-09 2016-09-28 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6271195B2 (en) * 2013-09-18 2018-01-31 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6207958B2 (en) * 2013-10-07 2017-10-04 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6418779B2 (en) * 2014-05-08 2018-11-07 サンデンホールディングス株式会社 Air conditioner for vehicles
CN104776630B (en) * 2015-04-28 2017-05-03 广东美的暖通设备有限公司 Multi-split system
JP6571430B2 (en) 2015-07-21 2019-09-04 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicles
JP6738157B2 (en) * 2016-02-26 2020-08-12 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
CN106080111A (en) * 2016-07-29 2016-11-09 肇庆高新区凯盈顺汽车设计有限公司 Thermal management system of electric automobile
JP6692723B2 (en) * 2016-09-02 2020-05-13 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
JP2018079722A (en) * 2016-11-14 2018-05-24 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle
JP6884028B2 (en) 2017-04-26 2021-06-09 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
JP2018203063A (en) * 2017-06-05 2018-12-27 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air-conditioning device
FR3067796A1 (en) * 2017-06-16 2018-12-21 Valeo Systemes Thermiques HEAT PUMP HEATING CIRCUIT FOR A MOTOR VEHICLE AND METHOD FOR MANAGING THE SAME
DE102017211397A1 (en) * 2017-07-04 2019-01-10 Volkswagen Aktiengesellschaft Method for operating an air conditioning device for a motor vehicle
JP2019043423A (en) * 2017-09-05 2019-03-22 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner
JP6925288B2 (en) * 2018-01-30 2021-08-25 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
JP7036489B2 (en) * 2018-01-31 2022-03-15 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
JP7153174B2 (en) * 2018-05-28 2022-10-14 サンデン株式会社 Vehicle air conditioner
DE102018132423A1 (en) * 2018-12-17 2020-06-18 Volkswagen Aktiengesellschaft Method for operating an air conditioning system for a vehicle
DE102018132479A1 (en) * 2018-12-17 2020-06-18 Volkswagen Aktiengesellschaft Method for controlling an airflow shutoff device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000343934A (en) * 1999-06-08 2000-12-12 Mitsubishi Heavy Ind Ltd Heat pump type vehicle air conditioner
JP2001246930A (en) * 2000-03-06 2001-09-11 Denso Corp Heat pump device for vehicle
JP2012144177A (en) * 2011-01-13 2012-08-02 Sanden Corp Vehicle air conditioning device
JP2012176660A (en) * 2011-02-25 2012-09-13 Sanden Corp Air conditioning device for vehicle
JP2012176658A (en) * 2011-02-25 2012-09-13 Sanden Corp Air conditioning system for vehicle

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241222B1 (en) 2011-07-21 2013-03-13 기아자동차주식회사 Heat pump system control method for vehicle
US6430951B1 (en) * 1991-04-26 2002-08-13 Denso Corporation Automotive airconditioner having condenser and evaporator provided within air duct
JP3985384B2 (en) 1998-09-24 2007-10-03 株式会社デンソー Refrigeration cycle equipment
JP5446524B2 (en) * 2009-07-08 2014-03-19 株式会社デンソー Air conditioner for vehicles
JP2012096779A (en) 2010-10-07 2012-05-24 Mitsubishi Heavy Ind Ltd Heat-medium heating device and vehicle air conditioning device provided with the same
CN103328238B (en) 2011-01-21 2015-11-25 三电有限公司 Vehicle air conditioning device
CN103158486B (en) 2011-12-19 2016-06-15 杭州三花研究院有限公司 A kind of automotive air-conditioning system
US20130227973A1 (en) * 2012-03-05 2013-09-05 Halla Climate Control Corporation Heat pump system for vehicle and method of controlling the same
JP6125312B2 (en) * 2013-04-26 2017-05-10 サンデンホールディングス株式会社 Air conditioner for vehicles
CN104121724B (en) * 2013-04-27 2018-10-26 浙江三花汽车零部件有限公司 A kind of air-conditioning system and a kind of heat exchanger
JP6192434B2 (en) * 2013-08-23 2017-09-06 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6197657B2 (en) * 2014-01-14 2017-09-20 株式会社デンソー Thermal management system for vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000343934A (en) * 1999-06-08 2000-12-12 Mitsubishi Heavy Ind Ltd Heat pump type vehicle air conditioner
JP2001246930A (en) * 2000-03-06 2001-09-11 Denso Corp Heat pump device for vehicle
JP2012144177A (en) * 2011-01-13 2012-08-02 Sanden Corp Vehicle air conditioning device
JP2012176660A (en) * 2011-02-25 2012-09-13 Sanden Corp Air conditioning device for vehicle
JP2012176658A (en) * 2011-02-25 2012-09-13 Sanden Corp Air conditioning system for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3026173A1 (en) * 2014-09-24 2016-03-25 Valeo Systemes Thermiques METHOD FOR CONTROLLING A HEATING, VENTILATION AND / OR AIR CONDITIONING INSTALLATION AND CORRESPONDING INSTALLATION, USING AN ELECTRIC HEATING DEVICE

Also Published As

Publication number Publication date
US20160084555A1 (en) 2016-03-24
US9909794B2 (en) 2018-03-06
CN105246718B (en) 2017-12-26
JP6125330B2 (en) 2017-05-10
JP2014231261A (en) 2014-12-11
DE112014002612T5 (en) 2016-03-10
CN105246718A (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP6125330B2 (en) Air conditioner for vehicles
JP6040099B2 (en) Air conditioner for vehicles
JP6192434B2 (en) Air conditioner for vehicles
JP6192435B2 (en) Air conditioner for vehicles
JP6125312B2 (en) Air conditioner for vehicles
JP6073652B2 (en) Air conditioner for vehicles
JP6418779B2 (en) Air conditioner for vehicles
JP6223753B2 (en) Air conditioner for vehicles
JP6339419B2 (en) Air conditioner for vehicles
WO2014188984A1 (en) Vehicle air conditioner
WO2019039153A1 (en) Vehicle air-conditioning device
WO2014084343A1 (en) Vehicle air-conditioning device
JP2018177083A (en) Vehicular air conditioner
WO2020066719A1 (en) Vehicle air conditioner
WO2016047590A1 (en) Air-conditioning apparatus for vehicle
JP6571430B2 (en) Air conditioner for vehicles
JP6047387B2 (en) Air conditioner for vehicles
WO2018211957A1 (en) Vehicle air-conditioning device
WO2019058826A1 (en) Vehicle air conditioner
JP6047388B2 (en) Air conditioner for vehicles
WO2018088124A1 (en) Vehicular air conditioner
JP2019018708A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804088

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14890770

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014002612

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804088

Country of ref document: EP

Kind code of ref document: A1