WO2014192685A1 - Drying apparatus and drying method - Google Patents

Drying apparatus and drying method Download PDF

Info

Publication number
WO2014192685A1
WO2014192685A1 PCT/JP2014/063814 JP2014063814W WO2014192685A1 WO 2014192685 A1 WO2014192685 A1 WO 2014192685A1 JP 2014063814 W JP2014063814 W JP 2014063814W WO 2014192685 A1 WO2014192685 A1 WO 2014192685A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
drying
coating film
temperature
gas barrier
Prior art date
Application number
PCT/JP2014/063814
Other languages
French (fr)
Japanese (ja)
Inventor
蔵方 慎一
廣瀬 達也
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014192685A1 publication Critical patent/WO2014192685A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/14Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation involving heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/005Treatment of dryer exhaust gases
    • F26B25/006Separating volatiles, e.g. recovering solvents from dryer exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/30Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun from infrared-emitting elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/02Sheets of indefinite length

Definitions

  • the present invention relates to a drying apparatus and a drying method.
  • a gas barrier film that shields permeation of a gas such as water and oxygen is used in order to improve storage stability.
  • a metal or metal oxide film having low gas permeability is provided as a gas barrier layer on a substrate such as a resin film.
  • a method of forming a gas barrier layer by depositing a metal or a metal oxide on a substrate by a plasma CVD method is also known.
  • the coating film formed by the wet process contains a large amount of solvent, it is necessary to dry the coating film before the modification treatment.
  • the coating film formed by the wet process is likely to be uneven in drying and it is difficult to make the film thickness uniform.
  • an organic solvent is generally used for the coating solution, and the viscosity tends to be low.
  • a coating solution containing a silicon compound tends to have a low viscosity of 100 mPa ⁇ s or less.
  • the thickener is not preferable because it can cause deterioration in gas barrier properties.
  • a condensation drying process is performed in which a condensing plate faces the coating film surface with a narrow gap, and the vapor of the solvent from the coating film is condensed and dried on the condensing surface of the condensing plate.
  • a condensation drying process precise drying can be performed with a simple operation of controlling the distance between the coating film surface and the condensation surface and the temperature of the coating film surface and the condensation surface without using convection heat transfer. it can.
  • the temperature of the coating film surface is adjusted by heating the substrate using a heating device.
  • temperature unevenness of the coating film surface occurs due to thermal convection, and uniform drying is caused. It becomes difficult.
  • the coating film has a low viscosity and the coating film surface is adjusted to a temperature of 50 ° C. or higher, the evaporation rate of the solvent is not constant due to the temperature unevenness, and the drying unevenness becomes remarkable.
  • drying unevenness occurs, a uniform film thickness cannot be obtained, and sufficient gas barrier properties cannot be obtained.
  • the problem of the present invention is to improve the uniformity of drying.
  • a drying device characterized in that heating is performed by the heating device so that the temperature of the coating film on the substrate increases stepwise.
  • the said 1 or several heating apparatus is inclined and arrange
  • the described drying apparatus is provided.
  • the heating devices are arranged such that the surface temperatures of the plurality of heating devices are the same, and the distance from the substrate is gradually reduced in the transport direction of the substrate.
  • the described drying apparatus is provided.
  • the plurality of heating devices are arranged in the transport direction of the substrate in order from the lowest surface temperature so that the surface temperatures of the plurality of heating devices are different from each other and the distance from the substrate is equal.
  • a drying apparatus according to claim 1 is provided.
  • a condensing plate facing the coating film on the substrate to be conveyed is a drying method for condensing and drying the solvent vapor from the coating film,
  • the substrate is heated so that the temperature of the coating film on the substrate increases stepwise by one or a plurality of heating devices disposed at positions facing the condenser plate via the substrate.
  • a drying method is provided.
  • the temperature of the coating film can be increased stepwise, and the occurrence of thermal convection due to a rapid temperature increase can be suppressed.
  • the temperature unevenness of the coating film surface due to thermal convection can be suppressed, the evaporation rate of the solvent can be kept constant even in the temperature rising process, and the drying uniformity can be improved.
  • FIG. 1 shows a configuration of a thin film forming apparatus 100 using the drying apparatus 1A according to the first embodiment.
  • FIG. 2 shows the inside of the drying apparatus 1A from the conveyance direction y of the substrate f1.
  • the thin film forming apparatus 100 applies a coating liquid onto the substrate f1 by the coating apparatus 3 to form a coating film f2, and the drying apparatus 1A dries the coating film f2.
  • a thin film is formed on the substrate f1.
  • the thin film forming apparatus 100 further includes a drying device 4, and the residual solvent can be removed by the drying device 4. Further, the thin film forming apparatus 100 includes the reforming device 5 and can modify the coating film f2.
  • the substrate f ⁇ b> 1 is sent to the coating device 3 by the unwinder 21, conveyed by the rollers 22, 23, and 24, and taken up by the winder 25.
  • the coating device 3 applies a coating solution containing a solvent on the substrate f1 by a wet process.
  • the coating method of the coating apparatus 3 include a casting method, an inkjet method, a spray method, a printing method, a slot method using a slit type die coater, an ESD (Electro Spray Deposition) method, and an ESDUS (Evaporative Spray Deposition from Ultra-dilute Solution). ) Law.
  • a post-weighing type in which an application liquid is applied in excess of the amount necessary to form a coating film having a required film thickness, and then the excess is removed.
  • a pre-weighing type in which a coating solution is applied in a necessary amount is known. Any coating method can be applied, but the pre-weighing type is preferable from the viewpoints of high accuracy, high speed, thin film, improved coating film quality, suitability for lamination, and the like. Moreover, a closed system is preferable from the viewpoints of suppressing the exposure of the coating liquid, suppressing the change in concentration, maintaining the cleanliness, and preventing the contamination of foreign matters. Therefore, among the above coating methods, a slot method using a slit type die coater and an ink jet method are preferable.
  • the drying apparatus 1A includes a condensing plate 11 facing the coating film f2 on the substrate f1.
  • the drying apparatus 1A condenses the vapor of the solvent contained in the coating film f2 by the condensing plate 11, and dries the coating film f2.
  • the drying device 1 ⁇ / b> A further includes a heating device 12.
  • the drying apparatus 1A is preferably installed immediately after the coating apparatus 3 so that it can be dried immediately after the coating liquid is applied. By starting drying immediately after application, it is possible to prevent uneven drying due to the surrounding airflow or natural convection in the drying apparatus 1A. Although it depends on the conveyance speed of the substrate f1, the time from the start of application to the start of drying is preferably within 30 seconds, and more preferably within 10 seconds. It should be noted that an airflow blocking means such as a blocking plate or a case is provided between the coating device 3 and the drying device 1A, or an airflow rectifying means such as a rectifying plate or a rectifying fan is provided to convection around the coating film f2. It can also be suppressed.
  • the condensing plate 11 condenses the vapor of the solvent from the coating film f2 on the condensing surface 11a facing the coating film surface f2a.
  • the material of the condenser plate 11 can be selected as appropriate in consideration of thermal conductivity, weight, processability, processing accuracy, and resistance to solvents.
  • Examples of the material of the condensing plate 11 include metals such as aluminum, copper, iron, and SUS (stainless steel) or alloys thereof, plastic, and wood. Of these, aluminum is preferred because of its excellent workability and thermal conductivity.
  • the condensing plate 11 may have a plurality of slits formed on the condensing surface 11a.
  • the solvent condensed by the slit can be discharged from the condensing surface 11a, and a decrease in condensation efficiency due to the saturation of the solvent can be suppressed.
  • the slit may be formed in parallel with the transport direction y, or may be formed in parallel with the width direction x orthogonal to the transport direction y.
  • the solvent condensed on the condensation surface 11a is transported by the capillary force of the slit and is discharged from the condensation surface 11a.
  • it is good also as providing the side plate drooping from the side surface of the condensation plate 11, and collect
  • the condensing plate 11 may be subjected to a surface treatment on the condensing surface 11a in order to prevent contamination and efficiently discharge the condensed solvent.
  • the condensation surface 11a can be subjected to water repellent treatment or hydrophilic treatment.
  • the heating device 12 heats the coating film f2 through the substrate f1 and promotes evaporation of the solvent.
  • the heating device 12 is disposed at a position facing the condenser plate 11 via the substrate f1.
  • the heating device 12 has a planar shape, and is disposed to be inclined with respect to the substrate surface so that the distance from the substrate f1 is shortened stepwise in the transport direction y of the substrate f1. The shorter the distance from the heating device 12, the better the substrate f1 is heated. Therefore, the temperature of the coating film f2 on the substrate f1 rises stepwise in the transport direction y.
  • the coating film f2 When the coating film f2 is heated to a high temperature of 50 ° C. or higher in consideration of the drying efficiency, thermal convection is likely to occur due to the temperature difference between the upstream and downstream in the transport direction y of the substrate f1. Although the solvent is evaporated even while the temperature is rising, if the coating film f2 has a low viscosity, temperature unevenness of the coating film f2 occurs due to convection, and the evaporation rate of the solvent is not constant, so that drying unevenness is likely to occur. . Prior to condensation drying, the substrate f1 may be transported and heated in a uniform temperature environment as in a heating furnace, and may be condensed and dried after it has been transported for a certain period of time and no thermal convection occurs.
  • Examples of the heating method of the heating device 12 include a heating method using hot air, infrared rays, ultraviolet rays, microwaves, electric resistance, and the like. Among these, from the viewpoint of suppressing drying unevenness due to convection and improving the uniformity of drying, it is preferable to perform heating by radiant heat such as infrared rays. For example, a panel-shaped infrared heater can be used as the heating device 12.
  • FIG. 1 shows an example in which one heating device 12 is tilted, but a plurality of heating devices can be connected and tilted according to the length of the condensing plate 11 in the transport direction y.
  • the temperature increase rate of the coating film f2 can be adjusted by changing the inclination angle of the heating device 12, the surface temperature of the heating device 12, and the like. As shown in FIG. 3, the temperature rise rate of the coating film f2 is at least within a range of 0 to 30 mm when the position of the substrate f1 where condensation drying is started is 0 mm in the transport direction y of the substrate f1. It is preferable to adjust so that the width of the increase is within 40 ° C. in units of 10 mm. Within this range, thermal convection due to the temperature difference of the coating film f2 can be suppressed.
  • the temperature of the coating film f2 may continue to be increased by the inclined heating device 12, but there is also heat radiation from the substrate f1, and it converges to a certain temperature.
  • the surface temperature of the heating device 12, the distance between the heating device 12 and the substrate f1, and the like may be adjusted so that this constant temperature matches the target temperature.
  • one heating device 12 is inclined so that the temperature of the coating film f2 is increased stepwise to the target temperature.
  • the other heating device 12 can be arranged in parallel so as to face the substrate f1.
  • the drying device 1 can also include a preheating device such as a heat roller upstream of the heating device 12 in the transport direction y. With the preheating device, the coating film f2 can be preheated so that the temperature rises more slowly.
  • a preheating device such as a heat roller upstream of the heating device 12 in the transport direction y.
  • the drying speed of the drying apparatus 1A can be controlled by adjusting the temperature Tc of the condensing surface 11a and the temperature Th (Th> Tc) of the coating film surface f2a.
  • the drying speed increases as the difference in the vapor pressure of the solvent at each temperature Tc and Th increases.
  • the temperature Tc of the condensing surface 11a can be set to room temperature without particularly controlling, and the temperature Th of the coating film surface f2a can be controlled to a temperature sufficiently higher than the room temperature.
  • the temperature Th of the coating film surface f2a can be adjusted by heating the heating device 12 as described above. If necessary, a cooling device can be used together with the heating device 12 to control the temperature Th of the coating film surface f2a.
  • the temperature Tc of the condensing surface 11a may be higher or lower than room temperature as long as it is lower than the temperature Th of the coating film surface f2a, but is preferably in the range of 5 to 30 ° C, and in the range of 10 to 20 ° C. It is more preferable that By controlling the temperature Tc within the above range, an increase in cost required for heating can be suppressed. Further, it is easy to uniformly control the temperature of the entire condensing surface 11a, and it is easy to suppress drying unevenness due to temperature unevenness, and consequently film thickness unevenness of the coating film f2. From the same viewpoint, the temperature unevenness in the condensing surface 11a is preferably within 2 ° C.
  • the dew point of the atmosphere In order to prevent substances other than the solvent such as moisture in the atmosphere from condensing on the condensation surface 11a, it is preferable to lower the dew point of the atmosphere or reduce the pressure between the condensation surface 11a and the coating film surface f2a. Further, in order to prevent the solvent from condensing in a member of the drying apparatus 1A other than the condensing plate 11, such as a housing, it is preferable to adjust the temperature of the member other than the condensing plate 11 to be equal to or higher than the temperature Tc of the condensing surface 11a. .
  • the temperature Th of the coating film surface f2a may be higher or lower than the room temperature as long as it is higher than the temperature Tc of the condensing surface 11a, but is preferably in the range of 30 to 100 ° C, preferably in the range of 30 to 70 ° C. It is more preferable that By setting the temperature Th to 30 ° C. or higher, moisture in the atmosphere other than the solvent is condensed and it is easy to suppress a decrease in drying efficiency. By setting the temperature to 100 ° C. or lower, it is easy to suppress an increase in cost due to a high temperature, conveyance failure due to the modification of the substrate f1, and the like.
  • the temperature unevenness in the coating film surface f2a is preferably within 2 ° C.
  • the drying speed of the drying apparatus 1A can also be controlled by adjusting the distance d between the condensation surface 11a and the coating film surface f2a.
  • By setting the distance d to 0.1 mm or more it is easy to avoid contact between the coating film f2 and the condensing plate 11 due to flapping of the substrate f1, and it is possible to reduce the cost associated with high accuracy of the arrangement of the condensing plate 11.
  • the distance d between the condensation surface 11a and the coating film surface f2a is preferably maintained at a constant value.
  • the drying speed in the coating film surface f2a can be made constant, and the uniformity of drying can be improved.
  • the drying device 4 is a drying device for post-processing provided for removing the residual solvent.
  • the drying method of the drying device 4 may be the same condensation drying as the drying device 1A, or may be another drying method.
  • Other drying methods include drying using hot air, infrared rays, microwaves, ultrasonic waves, etc., vacuum drying, supercritical drying, moisture absorption drying, cooling drying, and the like.
  • a coating film containing a silicon compound having a polysilazane skeleton can be formed as a gas barrier layer of a gas barrier film, and the coating film can be uniformly dried.
  • the gas barrier film is a film having a gas barrier layer exhibiting low oxygen permeability and water vapor permeability, and imparts excellent storage stability to an electronic device using the gas barrier film.
  • the gas barrier performance required for the gas barrier layer varies depending on the electronic device in which the gas barrier film is used.
  • the gas barrier layer has a water vapor permeability (temperature 60 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2%) measured in accordance with JIS K7129: 2008 of 3 ⁇ 10 ⁇ 3 g / m 2 ⁇ 24 h or less.
  • the oxygen permeability measured according to JIS K7126: 2006 is 1 ⁇ 10 ⁇ 3 g / m 2 ⁇ 24 h ⁇ atm or less, it can be preferably used for an electronic device.
  • the viscosity of the coating film tends to be as low as 100 mPa ⁇ s or less.
  • the coating solution flows greatly, the evaporation rate of the solvent is not constant, and drying unevenness is likely to occur.
  • the drying apparatus 1A does not use convective heat transfer, there is almost no unevenness in the flow of the coating liquid and the evaporation rate of the solvent, and uniform drying even when the coating film f2 has a low viscosity of 100 mPa ⁇ s or less. Since it can be realized, it is particularly effective for forming the gas barrier layer described above.
  • the coating film surface f2a when the temperature Th of the coating film surface f2a is adjusted to a high temperature of 50 ° C. or more in consideration of drying efficiency, the coating film is heated due to a temperature difference between the upstream and downstream in the transport direction y when heated rapidly with a strong heat flux. Thermal convection is likely to occur on the surface f2a. Even in the process of increasing to the temperature Th, the solvent is evaporated, and if the coating film f2 has a low viscosity, temperature unevenness occurs on the coating film surface f2a due to thermal convection, and the evaporation rate of the solvent is not constant. It tends to happen.
  • the drying apparatus 1A raises the temperature of the coating film f2 step by step, thermal convection hardly occurs and temperature unevenness in the temperature rising process can be suppressed.
  • the evaporation rate of the solvent becomes constant even during the temperature rise process, and uniform drying is possible, which is particularly effective for forming a gas barrier layer having a low viscosity coating film.
  • a procedure for forming a thin film will be described by taking as an example a case where a coating film containing a silicon compound having a polysilazane skeleton is formed and the coating film is dried to form a gas barrier layer.
  • the gas barrier film substrate f ⁇ b> 1 is set in the thin film forming apparatus 100.
  • a colorless and transparent resin film is preferably used as the substrate f1 of the gas barrier film.
  • the resin film material include polyester, methacrylic acid, methacrylic acid-maleic acid copolymer, polystyrene, fluorinated resin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane, and polyether.
  • Examples include ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, cycloolefin copolymer, fluorene ring-modified polycarbonate, alicyclic ring-modified polycarbonate, fluorene ring-modified polyester, and acryloyl compound.
  • the thickness of the substrate f1 used for the gas barrier film can be appropriately selected depending on the application.
  • the thickness of the substrate f1 is in the range of 1 to 800 ⁇ m, preferably in the range of 10 to 200 ⁇ m. From the viewpoint of reducing the size and weight of the electronic device, it is more preferably in the range of 10 to 50 ⁇ m.
  • Substrate f1 can be produced by melting and extruding a resin composition as a raw material using an extruder having an annular die or a T die and quenching, and is substantially unstretched with no resin orientation. A substrate f1 is obtained. This unstretched substrate f1 is stretched by uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching or tubular simultaneous biaxial stretching in the transport direction and / or width direction of the substrate f1. A substrate f1 can also be obtained.
  • the width direction refers to a direction orthogonal to the transport direction on the substrate f1.
  • the draw ratio is preferably in the range of 2 to 10 times in the transport direction and the width direction.
  • the surface of the substrate f1 on which the gas barrier layer is formed may be subjected to surface treatment such as excimer treatment, corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment in order to improve adhesion with the laminated gas barrier layer. Good.
  • the substrate f1 may be provided with a primer layer in order to flatten the surface of the substrate f1 and improve the adhesion with the gas barrier layer.
  • the primer layer preferably contains a curable resin such as an active energy ray curable resin or a thermoplastic resin.
  • OPSTAR registered trademark
  • the OPSTAR series is a compound obtained by bonding an organic compound having a polymerizable unsaturated group to silica fine particles.
  • thermosetting material examples include thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, silicon resin, polyamidoamine-epichlorohydrin resin, and the like. Can be mentioned.
  • thermosetting materials include SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid silicone manufactured by Adeka, Unidic (registered trademark) V-8000 series manufactured by DIC, EPICLON (registered trademark) EXA -4710 (ultra high heat resistant epoxy resin), X-12-2400 (silicon resin) manufactured by Shin-Etsu Chemical Co., Ltd., SSG coat (inorganic or organic nanocomposite material) manufactured by Nitto Boseki Co., Ltd., and the like.
  • Solvents used in the coating solution containing the curable material include alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, ethylene glycol and propylene glycol, terpenes such as ⁇ - or ⁇ -terpineol, and acetone.
  • Ketones such as methyl ethyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone, 2-heptanone, 4-heptanone, aromatic hydrocarbons such as toluene, xylene, tetramethylbenzene, cellosolve, methyl cellosolve, ethyl cellosolve , Carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether Ter, dipropylene glycol monoethyl ether, triethylene glycol monomethyl ether, glycol ethers such as triethylene glycol monoethyl ether, ethyl acetate, butyl acetate, cellosolve acetate, ethyl cellosolve acetate, butyl cello
  • the thickness of the primer layer is not particularly limited, but is preferably in the range of 0.1 to 10.0 ⁇ m.
  • the substrate f1 may have a bleedout preventing layer formed on the surface opposite to the surface on which the gas barrier layer of the substrate f1 is laminated.
  • a bleed out preventing layer can be formed in the same manner as the primer layer.
  • the thin film forming apparatus 100 starts transporting the substrate f1, and the coating apparatus 3 applies the coating liquid for the gas barrier layer onto the substrate f1 to form the coating film f2.
  • the coating solution for the gas barrier layer can be prepared by dissolving or dispersing a silicon compound having a polysilazane skeleton in a solvent.
  • the polysilazane skeleton is a basic skeleton of a polymer containing a Si—N bond, and is a precursor of ceramics such as silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), or silicon oxynitride (SiO x N y ). is there.
  • Examples of the silicon compound having a polysilazane skeleton include a silicon compound having a structure represented by the following general formula (1).
  • the silicon compound is generally called polysilazane.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an aryl group, a vinyl group or a (trialkoxysilyl) alkyl group.
  • the alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group may further have a substituent.
  • Examples of the alkyl group for R 1 , R 2 and R 3 include straight, branched or cyclic alkyl groups having 1 to 8 carbon atoms. More specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n -Hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like.
  • Examples of the aryl group for R 1 , R 2 and R 3 include aryl groups having 6 to 30 carbon atoms. More specifically, a non-condensed hydrocarbon group such as a phenyl group, a biphenyl group, a terphenyl group; a pentarenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptaenyl group, a biphenylenyl group, a fluorenyl group, an acenaphthylenyl group, a preadenyl group
  • a condensed polycyclic hydrocarbon group such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrysenyl group
  • Examples of the (trialkoxysilyl) alkyl group of R 1 , R 2 and R 3 include an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specific examples include 3- (triethoxysilyl) propyl group and 3- (trimethoxysilyl) propyl group.
  • examples of the substituent present in the alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group include an alkyl group, a halogen atom, a hydroxy group (—OH), a mercapto group (—SH), a cyano group. Groups (—CN), sulfo groups (—SO 3 H), carboxy groups (—COOH), nitro groups (—NO 2 ) and the like.
  • the substituent which the alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group may have is the same as the substituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. Absent. For example, when R 1 to R 3 are alkyl groups, they are not further substituted with an alkyl group.
  • R 1 , R 2 and R 3 are hydrogen atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, phenyl group, vinyl group, 3- (triethoxysilyl) A propyl group or a 3- (trimethoxysilylpropyl) group.
  • n is an integer of 1 or more. n is preferably determined so that the number average molecular weight Mn of the silicon compound having the structure represented by the general formula (1) is in the range of 150 to 150,000 g / mol.
  • perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms the resulting gas barrier layer exhibits high density, Particularly preferred.
  • Perhydropolysilazane is presumed to have a structure including a linear structure and a ring structure centered on a 6-membered ring and an 8-membered ring.
  • Perhydropolysilazane has a number average molecular weight Mn measured in terms of polystyrene by gel permeation chromatography of about 600 to 2000, and is a liquid or solid substance.
  • Perhydropolysilazane is commercially available as a solution dissolved in an organic solvent, and the commercially available product can be used as it is as a coating solution for the gas barrier layer.
  • Commercially available products that can be used as the coating solution include AQUAMICA (registered trademark) series NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20 manufactured by AZ Electronic Materials. NL150A, NP110, NP140, SP140 and the like.
  • Organopolysilazane in which at least one of R 1 , R 2 and R 3 is a hydrogen atom and at least one is an organic group such as an alkyl group, also has good adhesion to the substrate f1 and is a ceramicized gas barrier layer Even when the toughness is imparted to the gas barrier layer to increase the thickness of the gas barrier layer, the generation of cracks can be suppressed, which is preferable.
  • Perhydropolysilazane or organopolysilazane may be selected depending on the application, and both may be used in combination.
  • a silicon alkoxide-added polysilazane obtained by reacting a silicon alkoxide with a silicon compound having a structure represented by the above general formula (1) (Japanese Patent Laid-Open No.
  • the solvent used for the coating solution is an organic solvent inert to the silicon compound. Is preferred.
  • aprotic solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons and halogen hydrocarbons; esters such as ethyl acetate and butyl acetate; ketones such as acetone and methyl ethyl ketone; Mention may be made of ethers such as butyl ether, dioxane, tetrahydrofuran, mono- or polyalkylene glycol dialkyl ethers (diglymes).
  • a solvent can be selected according to the solubility of a silicon compound, the evaporation rate of a solvent, etc., and may use 1 type (s) or 2 or more types.
  • the silicon compound content in the coating solution varies depending on the film thickness of the gas barrier layer and the pot life of the coating solution, but is preferably in the range of 0.2 to 80.0% by weight, more preferably 1 to 50% by weight. %, Particularly preferably in the range of 5 to 35% by weight.
  • the coating solution may contain a catalyst in order to promote silica conversion during the modification treatment.
  • catalysts include N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N′-tetramethyl-1,3 -Amine catalysts such as diaminopropane, N, N, N ', N'-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, Pd compounds such as propionic acid Pd, Rh acetylacetonate, etc. And metal catalysts and N-heterocyclic compounds.
  • a basic catalyst is preferable, and an amine catalyst is preferable.
  • the content of the catalyst in the coating solution is preferably in the range of 0.1 to 10.0 mol%, more preferably in the range of 0.5 to 7.0 mol% with respect to the content of the silicon compound. Is within. By setting the content of the catalyst within the above range, it is possible to avoid excessive silanol formation, film density reduction, film defect increase, and the like due to rapid progress of the reaction.
  • coating of the coating film f2 can be determined according to the film thickness calculated
  • the viscosity of the coating film f2 can be appropriately selected depending on the gas barrier performance required for the gas barrier layer and the solubility or decomposability of the silicon compound.
  • an organic solvent is used as described above, so that the viscosity of the coating solution is as low as 100 mPa ⁇ s or less.
  • the drying apparatus 1A since the coating liquid easily flows and uneven drying tends to occur, the usefulness of the drying apparatus 1A capable of uniform drying is great.
  • the specific viscosity of the coating film is preferably in the range of 0.3 to 10.0 mPa ⁇ s from the viewpoint of increasing the coating speed and improving the coating property, and 1.0 to 10.0 mPa ⁇ s. More preferably within the range of s.
  • the drying apparatus 1A condenses and dries the coating film f2 of the gas barrier layer.
  • the drying apparatus 1 ⁇ / b> A heats the substrate f ⁇ b> 1 being transported by the heating apparatus 12.
  • the solvent in the coating film f2 is evaporated by heating the substrate f1
  • the vapor is condensed by the condensing plate 11 facing the coating film f2, and the coating film f2 is dried.
  • the thickness of the gas barrier layer after drying is preferably in the range of 1 nm to 100 ⁇ m, more preferably in the range of about 10 nm to 10 ⁇ m, still more preferably in the range of 50 nm to 1 ⁇ m, particularly preferably. It is in the range of 100 to 500 nm. If the film thickness is 1 nm or more, sufficient gas barrier performance can be obtained, and if it is 100 ⁇ m or less, stable coating properties and high light transmittance are obtained.
  • the modification treatment is a treatment in which part or all of the silicon compound contained in the coating film f2 of the gas barrier layer is converted into silica and converted into ceramics.
  • Examples of the modification treatment include a method of irradiating ultraviolet light having a wavelength of 400 nm or less, a method of irradiating vacuum ultraviolet light (VUV; Vacuum Ultra Violet) having a wavelength of less than 180 nm, and the like.
  • the coating device 3 is used to form a coating film f2 of an organic layer such as an organic EL element, a solar cell, a transistor, a memory, a sensor, etc., and the coating film f2 is dried by the drying device 1A.
  • a thin film can be formed.
  • the film thickness is uniform so that the functions required for the organic layer can be obtained by uniform drying by the drying apparatus 1A. This is effective.
  • the drying apparatus 1A faces the coating film f2 on the transported substrate f1, condenses the solvent vapor from the coating film f2, and condenses the drying plate 11.
  • a heating device 12 that is disposed at a position facing the condensing plate 11 via the substrate f1 and heats the substrate f1, and is heated so that the temperature of the coating film f2 on the substrate f1 increases stepwise. Heat by device 12.
  • the heating device 12 is disposed to be inclined with respect to the substrate surface so that the distance from the substrate f1 is shortened stepwise in the transport direction y of the substrate f1.
  • the temperature of the coating film f2 can be raised stepwise, and the occurrence of thermal convection due to a rapid temperature rise can be suppressed.
  • the temperature unevenness of the coating film surface due to thermal convection can be suppressed, the evaporation rate of the solvent can be kept constant even in the temperature rising process, and the drying uniformity can be improved.
  • FIG. 4A shows a configuration of a drying apparatus 1B according to the second embodiment.
  • a drying apparatus 1B can be used instead of the drying apparatus 1A.
  • the drying device 1B includes the same condensation plate 11 as the drying device 1A, and includes three heating devices 141, 142, and 143 at positions facing the condensation plate 11 via the substrate f1. .
  • the surface temperatures of the heating devices 141 to 143 are all the same. That the surface temperature is the same means that the surface temperature is within a range of about ⁇ 2.5 ° C.
  • Each of the heating devices 141 to 143 has a planar shape and is disposed in parallel with the substrate surface. Further, each of the heating devices 141 to 143 is arranged such that the distance from the substrate f1 becomes shorter in the order of the heating device 141, the heating device 142, and the heating device 143.
  • the surface temperatures of the respective heating devices 141 to 143 are the same, but the substrate f1 is heated better as the distance from the respective heating devices 141 to 143 is shortened, so that the temperature of the substrate f1 increases stepwise in the transport direction y. It will be.
  • the three heating devices 141 to 143 may be arranged so that the distance from the substrate f1 is shortened only within the range of 0 to 30 mm after the condensation drying of the substrate f1 is started. .
  • a plurality of heating devices having different surface temperatures are arranged in order from the lowest surface temperature so that the distance from the substrate f1 becomes equal. They can also be arranged side by side in the transport direction y.
  • FIG. 5 shows a configuration of a drying apparatus 1C according to the third embodiment.
  • a drying apparatus 1C can be used instead of the drying apparatus 1A.
  • the drying apparatus 1C includes the same condensation plate 11 as the drying apparatus 1A, and includes three heating devices 151, 152, and 153 at positions facing the condensation plate 11 through the substrate f1. .
  • Each of the heating devices 151 to 153 has a planar shape and is arranged side by side in the transport direction y of the substrate f1 so that the distance from the substrate f1 is equal.
  • the surface temperatures of the heating devices 151 to 153 are different, and the surface temperatures are lower in the order of the heating device 151, the heating device 152, and the heating device 153.
  • a heating device 151 having a surface temperature of 20 ° C. a heating device 152 having a surface temperature of 45 ° C.
  • a heating device 153 having a surface temperature of 60 ° C. may be used. it can. Since each of the heating devices 151 to 153 is arranged in the transport direction y in order from the lowest surface temperature, the temperature of the coating film f2 on the substrate f1 increases stepwise in the transport direction y.
  • FIG. 6 shows a configuration of a drying apparatus 1D according to the fourth embodiment using a heat roller.
  • a drying apparatus 1D can be used instead of the drying apparatus 1A.
  • the drying apparatus 1D includes the same condensation plate 11 as the drying apparatus 1A, and includes three heating devices 161, 162, and 163 at positions facing the condensation plate 11 via the substrate f1. .
  • Each of the heating devices 161 to 163 is a heat roller, and heats the substrate f1 while transporting it.
  • the surface temperature of each of the heating devices 161 to 163 is lower in the order of the heating device 161, the heating device 162, and the heating device 163.
  • Each of the heating devices 161 to 163 is arranged in the transport direction y of the substrate f1 in order from the one having the same distance to the substrate f1 and the lowest surface temperature. Therefore, the temperature of the coating film f2 on the substrate f1 rises stepwise in the transport direction y.
  • a slit with a width of 2 mm and a depth of 2 mm is formed at intervals of 2 mm in the width direction on one surface of an aluminum plate having a length in the width direction of 400 mm, a length in the transport direction of 200 mm, and a thickness of 20 mm. Then, a condenser plate was produced.
  • a panel-shaped infrared heater SG4020 (manufactured by YAC DENKO) was prepared as a heating device.
  • the infrared heater SG4020 had a length in the width direction of 400 mm, a length in the transport direction of 200 mm, and a surface temperature of 160 ° C.
  • One infrared heater SG4020 is disposed at a position facing the above-prepared condensing plate through the substrate, and the infrared heater SG4020 is made to the substrate surface so that the distance from the substrate is gradually reduced in the transport direction.
  • a drying device K1 having the same configuration as the drying device 1A shown in FIG. 1 was produced.
  • drying device K2 In the production of the drying device K1, three infrared heaters SG4020 were arranged in parallel so as to face the substrate at a position facing the produced condensing plate through the substrate. Next, each of the three infrared heaters SG4020 is arranged in a staircase so that the position at which condensation drying is started is 0 mm, and the distance from the substrate is gradually reduced in the transport direction within the range of 0 to 30 mm. Except for this, a drying apparatus K2 was prepared in the same manner as the drying apparatus K1. The drying device K2 has the same configuration as the drying device 1B shown in FIG. 4B.
  • a condenser plate was produced in the same manner as the drying device K1.
  • three heat rollers incorporating warm water as a heat source were prepared as heating devices.
  • the surface temperature of each heat roller was 20 ° C, 45 ° C and 60 ° C, respectively.
  • three heat rollers are arranged along the substrate conveyance path in the order of the low surface temperature at the position facing the above-prepared condensing plate through the substrate, and the same configuration as the drying apparatus 1D shown in FIG.
  • a drying device K3 was prepared.
  • drying apparatus K21 In the production of the drying device K1, a drying device K21 was produced in the same manner as the drying device K1, except that one infrared heater SG4020 was arranged in parallel so as to face the substrate.
  • drying device K22 In the production of the drying device K21, a drying device K22 was produced in the same manner as the drying device K21 except that an air nozzle DX-300 (manufactured by Kikuchi Co., Ltd.), which is a hot air dryer, was disposed instead of the condenser plate.
  • an air nozzle DX-300 manufactured by Kikuchi Co., Ltd.
  • a polyester film manufactured by Teijin DuPont Films Co., Ltd., extremely low heat yield PET
  • the polyester film had a width in the width direction of 0.35 m, a length in the conveyance direction of 50 m, and a thickness of 125 ⁇ m.
  • a UV curable organic / inorganic hybrid hard coat agent OPSTAR Z7535 manufactured by JSR was applied by a slot method so that the film thickness after drying was 4 ⁇ m. After coating, the coating was dried at 80 ° C. for 3 minutes, and cured by irradiation with light of 1.0 J / cm 2 using a high-pressure mercury lamp in an air atmosphere to form a bleed-out prevention layer.
  • UV curable organic / inorganic hybrid hard coat agent OPSTAR Z7501 (manufactured by JSR) is applied to the surface of the substrate opposite to the surface provided with the bleed-out prevention layer so that the film thickness after drying becomes 4 ⁇ m.
  • the coating was dried at 80 ° C. for 3 minutes, and cured by irradiation with 1.0 J / cm 2 of light using a high-pressure mercury lamp in an air atmosphere to form a primer layer.
  • the produced drying apparatus K1 and coating apparatus were arranged in the same manner as the thin film forming apparatus 100 shown in FIG.
  • a coating apparatus a slit type die coater having a width of 0.3 m and a slit interval of 100 ⁇ m was used.
  • a coating film of a gas barrier layer was formed by a coating apparatus, and the coating film was dried by a drying device K1.
  • Aquamica NN120-20 manufactured by AZ Electronic Materials
  • AZ Electronic Materials which is a 20% by mass dibutyl ether solution of perhydropolysilazane
  • dibutyl ether a 20% by mass dibutyl ether solution of perhydropolysilazane
  • a butyl ether solution was prepared.
  • the coating conditions of the coating device are as follows. (Application conditions) Substrate transport speed: 10 m / min Environmental temperature during application: 15 ° C Applied length in the width direction: 0.3 m Applied length in transport direction: 50m The conveyance speed of the substrate was measured with a laser Doppler velocimeter LV203 (manufactured by Mitsubishi Electric Corporation).
  • Coating film thickness coating amount (g / m 2 ) / specific gravity of coating solution (g / m 3 )
  • Application amount (g / m 2 ) application liquid supply speed (g / sec) / ⁇ length in the width direction applied (m) ⁇ application speed (m / sec) ⁇
  • the drying conditions of the drying device K1 are as follows. (Drying conditions) Condensing surface temperature Tc: 15 ° C. Coating surface temperature Th0: 15 ° C Coating film surface temperature Th1: 20 ° C Temperature Th2 of coating film surface: 45 ° C Temperature Th3 of coating film surface: 60 ° C Distance d between condensation surface and coating film surface: 2 mm Substrate transport speed: 10 m / min
  • the distance d between the condensation surface and the coating film surface was adjusted by adjusting the positional relationship between the condensation plate and the substrate transport roller. Further, the temperatures Th0 to Th3 on the coating film surface are positions where the position where the condensation drying is started by the condenser plate is 0 mm as shown in FIG. 3, and the substrate is transported by 0, 10, 20 and 30 mm from the position. Represents the temperature Th of the coating film surface.
  • the temperature Th0 to Th3 of the coating film surface at each position is measured by a radiation temperature sensor FT-30 (manufactured by Keyence Corporation), and the inclination angle of the infrared heater SG4020 is adjusted in advance so that each temperature Th0 to Th3 becomes the above temperature. did.
  • the coating film obtained was irradiated with vacuum ultraviolet light to convert the perhydropolysilazane in the gas barrier layer into silica to obtain a gas barrier layer.
  • the vacuum ultraviolet light was irradiated using a stage movable xenon (Xe) excimer irradiation apparatus MECLM-1-200 (irradiation wavelength: 172 nm, excimer lamp light intensity: 312 mW / cm 2 ) manufactured by MD Excimer.
  • Xe stage movable xenon
  • the flow rate of nitrogen gas and oxygen gas introduced into the vacuum ultraviolet irradiation chamber is measured with a flow meter, and the nitrogen concentration is adjusted so that the oxygen concentration during irradiation is in the range of 0.2 to 0.4% by volume.
  • the flow rate ratio (nitrogen gas / oxygen gas) of gas and oxygen gas was adjusted.
  • gas barrier films 12 and 13 In the production of the gas barrier film 11, the inclination angle of the infrared heater SG4020 of the drying device K1 is adjusted to change the coating film temperatures Th0 to Th3 to the temperatures shown in Table 1 below and perform condensation drying. Produced the gas barrier films 12 and 13 in the same manner as the gas barrier film 11.
  • gas barrier film 14 In the production of the gas barrier film 13, the position at which condensation drying is started by the condenser plate is 0 mm, and the temperature Th of the coating film surface at the position where the substrate is transported 19 mm from the position is measured as the temperature Th2 *.
  • Each gas barrier film 14 was produced in the same manner as the gas barrier film 11 except that the drying was performed by adjusting the inclination angle of the infrared heater SG4020 of the drying device K1 so that the temperature Th2 * was 60 ° C. .
  • gas barrier films 4 and 5 In the production of the gas barrier film 11, the gas barrier films 4 and 5 were produced in the same manner as the drying device K1, except that the drying device K1 was changed to the drying devices K2 and K3, respectively.
  • gas barrier films 6 and 7 In the production of the gas barrier film 11, the gas barrier films 6 and 7 were produced in the same manner as the drying device K1, except that the drying device K1 was changed to the drying devices K21 and K22, respectively.
  • the obtained film thickness variation was ranked as follows as the uniformity of drying. 5: Variation in film thickness is less than 0.5 and very uniform drying 4: Variation in film thickness is 0.5 or more and less than 1.0, and uniform drying is achieved 3: The film thickness variation is 1.0 or more and less than 5.0, and the film thickness variation is observed, but the film is uniformly dried to a practical level. 2: The film thickness variation is 5.0 or more and 10. It is less than 0, and drying unevenness can be confirmed. 1: Variation in film thickness is 10.0 or more, and there are many drying irregularities
  • the rate of change of the obtained peak intensity before and after storage was evaluated for rank as follows as the stability of the gas barrier layer. 5: Change rate of peak intensity is less than 0.5 and shows very excellent stability 4: Change rate of peak intensity is 0.5 or more and less than 0.7 and shows excellent stability 3: The peak intensity change rate is 0.7 or more and less than 0.8, and shows a practically stable degree. 2: The peak intensity change rate is 0.8 or more and less than 0.9, and the stability is low. : The rate of change in peak intensity is 0.9 or more, and the stability is very low
  • the mask was removed in a vacuum state, and aluminum was deposited from another deposition source to cover the entire surface including the calcium layer, thereby forming a sealing layer.
  • the vacuum state is released, and it is quickly transferred to a dry nitrogen gas atmosphere, and an ultraviolet curable resin T470 / UR7134 (manufactured by Nagase ChemteX) is applied on the film surface on which the sealing layer is formed. Quartz glass having a thickness of 0.2 mm was disposed.
  • An evaluation cell was produced by irradiating ultraviolet light through quartz glass to cure the ultraviolet curable resin.
  • A represents the area (cm 2 ) of the calcium layer.
  • represents the area (cm 2 ) of the corrosion region of the calcium layer.
  • d 0 represents the thickness (cm) of the calcium layer.
  • is a correction factor for the thickness of the calcium layer, and is determined within a range of 1 ⁇ ⁇ (M 2 / d 2 ) / (M 1 / d 1 ).
  • d 1 represents the density of calcium (g / cm 3 )
  • d 2 represents the density of calcium hydroxide (g / cm 3 ).
  • M 1 represents the molecular weight of calcium
  • M 2 represents the molecular weight of calcium hydroxide.
  • the obtained water vapor permeability was ranked as follows as gas barrier properties under high temperature and high humidity. 5: Water vapor permeability is less than 0.1 and shows very good gas barrier properties 4: Water vapor permeability is 0.1 or more and less than 0.3 and shows excellent gas barrier properties 3: Water vapor permeability is It is 0.3 or more and less than 0.6, and shows a practical gas barrier property. 2: Water vapor permeability is 0.6 or more and less than 0.8, and gas barrier property is low 1: Water vapor permeability is 0.8 or more. Yes, gas barrier property is very low
  • Table 1 below shows the evaluation results.
  • the temperature Th2 * is displayed in the column of the temperature Th2 of the gas barrier film 14.
  • the gas barrier films 11 to 14 and 2 to 5 according to the examples even when the viscosity of the coating film is as low as about 0.5 or 1.0 mPa ⁇ s, Uniform drying is possible, and sufficient storage stability and gas barrier properties of the gas barrier layer are obtained. Compared with the gas barrier film 6 according to the comparative example, it is surmised that the heat convection is suppressed by the stepwise temperature increase of the coating film and uniform drying is possible. According to the gas barrier films 6 and 7 according to the comparative examples, the uniformity of drying becomes insufficient, and the performance required as a gas barrier layer is not obtained. This is presumably because when the viscosity of the coating film is low, liquid flow due to convection occurs or thermal convection due to rapid heating occurs, and the evaporation rate of the solvent is not constant on the surface of the coating film.
  • the present invention can be used in a drying apparatus and a drying method for condensing solvent vapor from a coating film.

Abstract

The present invention improves drying uniformity. A drying apparatus (1A) is provided with: a condenser plate (11) that faces a coating film on a substrate (f1) to be transferred, and dries said coating film by condensing solvent vapor from the coating film; and one or a plurality of heating devices (12) that is disposed at a position facing the condenser plate (11) with the substrate (f1) therebetween, and heats the substrate (f1). The drying apparatus (1A) is heated by the heating device/devices (12) in such a manner that the temperature of the coating film on the substrate (f1) gradually rises. The one or plurality of heating devices (12) is disposed at an inclination to the substrate surface in such a manner that the distance between the heating device/devices (12) and the substrate (f1) gradually decreases in the transfer direction (y) of the substrate (f1).

Description

乾燥装置及び乾燥方法Drying apparatus and drying method
 本発明は、乾燥装置及び乾燥方法に関する。 The present invention relates to a drying apparatus and a drying method.
 液晶表示素子、有機エレクトロルミネッセンス素子、太陽電池のような電子デバイスには、保存安定性を向上させるため、水、酸素等のガスの透過を遮蔽するガスバリア性フィルムが利用されている。
 ガスバリア性フィルムは、樹脂フィルム等の基板上に、ガスの透過性が低い金属又は金属酸化物の膜がガスバリア層として設けられている。
In an electronic device such as a liquid crystal display element, an organic electroluminescence element, or a solar cell, a gas barrier film that shields permeation of a gas such as water and oxygen is used in order to improve storage stability.
In the gas barrier film, a metal or metal oxide film having low gas permeability is provided as a gas barrier layer on a substrate such as a resin film.
 従来、プラズマCVD法(Chemical Vapor Deposition:化学気相成長法、化学蒸着法ともいう)によって、基板上に金属又は金属酸化物を蒸着させて、ガスバリア層を形成する方法が知られている。
 また、ポリシラザンと呼ばれるケイ素化合物を主成分とする塗布液を基板上に塗布した後、改質処理を施して酸化ケイ素等のセラッミクスへと転化させ、ガスバリア層を形成する方法も知られている。
Conventionally, a method of forming a gas barrier layer by depositing a metal or a metal oxide on a substrate by a plasma CVD method (Chemical Vapor Deposition) is also known.
There is also known a method of forming a gas barrier layer by applying a coating solution containing a silicon compound called polysilazane as a main component on a substrate and then converting it to a ceramic such as silicon oxide.
 ガスバリア層は、膜厚が厚いほどガスバリア性が高まるが、ケイ素化合物を含有する塗布膜を単純に厚膜化すると、セラミックスへ転化した後、クラックが生じやすくなる。
 高いガスバリア性を得ながらクラックを抑えるため、ケイ素化合物を含有する塗布液をウェットプロセスにより塗布して塗布膜を形成し、真空紫外線を照射する改質処理を施す工程を2回以上繰り返すことにより、基板上に複数のガスバリア層を積層する技術が開示されている(例えば、特許文献1参照)。
As the film thickness of the gas barrier layer increases, the gas barrier property increases. However, if the coating film containing a silicon compound is simply thickened, cracks are likely to occur after conversion to ceramics.
In order to suppress cracking while obtaining a high gas barrier property, a coating solution containing a silicon compound is applied by a wet process to form a coating film, and a process of performing a modification treatment of irradiating vacuum ultraviolet rays is repeated twice or more, A technique for laminating a plurality of gas barrier layers on a substrate is disclosed (for example, see Patent Document 1).
 上記ウェットプロセスにより形成された塗布膜は溶媒を多量に含むため、改質処理の前に塗布膜を乾燥する必要がある。しかしながら、ウェットプロセスにより形成された塗布膜は、乾燥ムラが生じやすく、膜厚の均一化が難しいことが知られている。
 乾燥ムラの要因としては、一般的に塗布液には有機溶媒が用いられ、低粘度となりやすいことが挙げられる。特に、ケイ素化合物を含む塗布液は100mPa・s以下の低粘度になりやすい。増粘剤を使用することも考えられるが、増粘剤はガスバリア性が劣化する要因となり得るため、好ましくない。
Since the coating film formed by the wet process contains a large amount of solvent, it is necessary to dry the coating film before the modification treatment. However, it is known that the coating film formed by the wet process is likely to be uneven in drying and it is difficult to make the film thickness uniform.
As a cause of drying unevenness, an organic solvent is generally used for the coating solution, and the viscosity tends to be low. In particular, a coating solution containing a silicon compound tends to have a low viscosity of 100 mPa · s or less. Although it is conceivable to use a thickener, the thickener is not preferable because it can cause deterioration in gas barrier properties.
 ウェットプロセスで塗布された塗布膜の乾燥方法としては、塗布膜面に狭い間隙で凝縮板を対面させ、当該凝縮板の凝縮面において塗布膜からの溶媒の蒸気を凝縮して乾燥する凝縮乾燥プロセスが提案されている(例えば、特許文献2参照)。
 この凝縮乾燥プロセスによれば、対流伝熱を用いることなく、塗布膜面と凝縮面間の距離及び塗布膜面と凝縮面の温度を制御するという簡易な操作で、精密な乾燥を行うことができる。
As a method for drying a coating film applied by a wet process, a condensation drying process is performed in which a condensing plate faces the coating film surface with a narrow gap, and the vapor of the solvent from the coating film is condensed and dried on the condensing surface of the condensing plate. Has been proposed (see, for example, Patent Document 2).
According to this condensation drying process, precise drying can be performed with a simple operation of controlling the distance between the coating film surface and the condensation surface and the temperature of the coating film surface and the condensation surface without using convection heat transfer. it can.
特開2009-255040号公報JP 2009-255040 A 特表2003-524847号公報Special table 2003-524847
 上記塗布膜面の温度は、加熱装置を用いて基板を加熱することにより調整されているが、強い熱流速で急激に加熱すると、熱対流によって塗布膜面の温度ムラが生じ、均一な乾燥が難しくなる。
 特に、塗布膜が低粘度であり、塗布膜面を50℃以上の温度に調整する場合、温度ムラによって溶媒の蒸発速度が一定せず、乾燥ムラは顕著となる。
 乾燥ムラが生じると、均一な膜厚が得られず、十分なガスバリア性が得られない。
The temperature of the coating film surface is adjusted by heating the substrate using a heating device. However, if the substrate is heated suddenly at a strong heat flow rate, temperature unevenness of the coating film surface occurs due to thermal convection, and uniform drying is caused. It becomes difficult.
In particular, when the coating film has a low viscosity and the coating film surface is adjusted to a temperature of 50 ° C. or higher, the evaporation rate of the solvent is not constant due to the temperature unevenness, and the drying unevenness becomes remarkable.
When drying unevenness occurs, a uniform film thickness cannot be obtained, and sufficient gas barrier properties cannot be obtained.
 本発明の課題は、乾燥の均一性を向上させることである。 The problem of the present invention is to improve the uniformity of drying.
 請求項1に記載の発明によれば、
 搬送される基板上の塗布膜と対面し、当該塗布膜からの溶媒の蒸気を凝縮して乾燥する凝縮板と、
 前記基板を介して前記凝縮板と対向する位置に配置され、前記基板を加熱する1又は複数の加熱装置と、を備え、
 前記基板上の塗布膜の温度が段階的に上昇するように、前記加熱装置により加熱することを特徴とする乾燥装置が提供される。
According to the invention of claim 1,
A condensing plate facing the coating film on the substrate to be transported, condensing the solvent vapor from the coating film and drying;
One or a plurality of heating devices that are disposed at positions facing the condenser plate via the substrate and heat the substrate,
There is provided a drying device characterized in that heating is performed by the heating device so that the temperature of the coating film on the substrate increases stepwise.
 請求項2に記載の発明によれば、
 前記1又は複数の加熱装置は、前記基板との距離が前記基板の搬送方向において段階的に短くなるように、基板面に対して傾斜して配置されていることを特徴とする請求項1に記載の乾燥装置が提供される。
According to invention of Claim 2,
The said 1 or several heating apparatus is inclined and arrange | positioned with respect to the board | substrate surface so that the distance with the said board | substrate may shorten in steps in the conveyance direction of the said board | substrate. The described drying apparatus is provided.
 請求項3に記載の発明によれば、
 前記複数の加熱装置の表面温度が同じであり、前記基板との距離が前記基板の搬送方向において段階的に短くなるように、各加熱装置が配置されていることを特徴とする請求項1に記載の乾燥装置が提供される。
According to invention of Claim 3,
The heating devices are arranged such that the surface temperatures of the plurality of heating devices are the same, and the distance from the substrate is gradually reduced in the transport direction of the substrate. The described drying apparatus is provided.
 請求項4に記載の発明によれば、
 前記複数の加熱装置の表面温度がそれぞれ異なり、前記基板との距離が等しくなるように、表面温度が低い方から順に前記基板の搬送方向に並べて、各加熱装置が配置されていることを特徴とする請求項1に記載の乾燥装置が提供される。
According to invention of Claim 4,
The plurality of heating devices are arranged in the transport direction of the substrate in order from the lowest surface temperature so that the surface temperatures of the plurality of heating devices are different from each other and the distance from the substrate is equal. A drying apparatus according to claim 1 is provided.
 請求項5に記載の発明によれば、
 前記1又は複数の加熱装置は、輻射熱による加熱を行うことを特徴とする請求項1~4のいずれか一項に記載の乾燥装置が提供される。
According to the invention of claim 5,
The drying apparatus according to any one of claims 1 to 4, wherein the one or more heating apparatuses perform heating by radiant heat.
 請求項6に記載の発明によれば、
 前記塗布膜は、粘度が100mPa・s以下であることを特徴とする請求項1~5のいずれか一項に記載の乾燥装置が提供される。
According to the invention of claim 6,
The drying apparatus according to any one of Claims 1 to 5, wherein the coating film has a viscosity of 100 mPa · s or less.
 請求項7に記載の発明によれば、
 前記塗布膜は、ポリシラザン骨格を有するケイ素化合物を含有することを特徴とする請求項1~6のいずれか一項に記載の乾燥装置が提供される。
According to the invention of claim 7,
The drying apparatus according to any one of claims 1 to 6, wherein the coating film contains a silicon compound having a polysilazane skeleton.
 請求項8に記載の発明によれば、
 搬送される基板上の塗布膜と対面する凝縮板により、当該塗布膜からの溶媒の蒸気を凝縮して乾燥する乾燥方法であって、
 前記基板を介して前記凝縮板と対向する位置に配置された1又は複数の加熱装置により、前記基板上の塗布膜の温度が段階的に上昇するように、前記基板を加熱することを特徴とする乾燥方法が提供される。
According to the invention described in claim 8,
A condensing plate facing the coating film on the substrate to be conveyed is a drying method for condensing and drying the solvent vapor from the coating film,
The substrate is heated so that the temperature of the coating film on the substrate increases stepwise by one or a plurality of heating devices disposed at positions facing the condenser plate via the substrate. A drying method is provided.
 本発明によれば、塗布膜の温度を段階的に上昇させることができ、急激な温度上昇による熱対流の発生を抑えることできる。熱対流による塗布膜面の温度ムラを抑えて、温度の上昇過程においても溶媒の蒸発速度を一定にすることができ、乾燥の均一性を向上させることができる。 According to the present invention, the temperature of the coating film can be increased stepwise, and the occurrence of thermal convection due to a rapid temperature increase can be suppressed. The temperature unevenness of the coating film surface due to thermal convection can be suppressed, the evaporation rate of the solvent can be kept constant even in the temperature rising process, and the drying uniformity can be improved.
第1の実施の形態に係る乾燥装置が用いられた薄膜形成装置の構成を示す正面図である。It is a front view which shows the structure of the thin film forming apparatus in which the drying apparatus which concerns on 1st Embodiment was used. 図1の乾燥装置の内部を基板の搬送方向から表した側面図である。It is the side view which represented the inside of the drying apparatus of FIG. 1 from the conveyance direction of the board | substrate. 凝縮乾燥が開始された位置からの基板の搬送距離を表す図である。It is a figure showing the conveyance distance of the board | substrate from the position where condensation drying was started. 第2の実施の形態に係る乾燥装置の構成を示す正面図である。It is a front view which shows the structure of the drying apparatus which concerns on 2nd Embodiment. 第2の実施の形態に係る乾燥装置の変形例を示す正面図である。It is a front view which shows the modification of the drying apparatus which concerns on 2nd Embodiment. 第3の実施の形態に係る乾燥装置の構成を示す正面図である。It is a front view which shows the structure of the drying apparatus which concerns on 3rd Embodiment. 第4の実施の形態に係る乾燥装置の構成を示す正面図である。It is a front view which shows the structure of the drying apparatus which concerns on 4th Embodiment.
 以下、図面を参照して本発明の乾燥装置及び乾燥方法の実施の形態について説明する。 Hereinafter, embodiments of the drying apparatus and the drying method of the present invention will be described with reference to the drawings.
 図1は、第1の実施の形態に係る乾燥装置1Aが用いられた薄膜形成装置100の構成を示している。
 図2は、乾燥装置1Aの内部を基板f1の搬送方向yから表している。
 薄膜形成装置100は、図1及び図2に示すように、塗布装置3により基板f1上に塗布液を塗布して塗布膜f2を形成し、乾燥装置1Aにより当該塗布膜f2を乾燥して、基板f1上に薄膜を形成する。
 薄膜形成装置100は、さらに乾燥装置4を備え、乾燥装置4により残留溶媒を除去することもできる。また、薄膜形成装置100は改質装置5を備え、塗布膜f2を改質処理することもできる。
FIG. 1 shows a configuration of a thin film forming apparatus 100 using the drying apparatus 1A according to the first embodiment.
FIG. 2 shows the inside of the drying apparatus 1A from the conveyance direction y of the substrate f1.
As shown in FIGS. 1 and 2, the thin film forming apparatus 100 applies a coating liquid onto the substrate f1 by the coating apparatus 3 to form a coating film f2, and the drying apparatus 1A dries the coating film f2. A thin film is formed on the substrate f1.
The thin film forming apparatus 100 further includes a drying device 4, and the residual solvent can be removed by the drying device 4. Further, the thin film forming apparatus 100 includes the reforming device 5 and can modify the coating film f2.
 基板f1は、図1に示すように、アンワインダー21により塗布装置3に送り出され、ローラー22、23及び24により搬送されて、ワインダー25により巻き取られる。 As shown in FIG. 1, the substrate f <b> 1 is sent to the coating device 3 by the unwinder 21, conveyed by the rollers 22, 23, and 24, and taken up by the winder 25.
 塗布装置3は、ウェットプロセスにより溶媒を含む塗布液を基板f1上に塗布する。塗布装置3の塗布方法としては、例えばキャスト法、インクジェット法、スプレー法、印刷法、スリット型ダイコーターを用いたスロット法、ESD(Electro Spray Deposition)法、ESDUS(Evaporative Spray Deposition from Ultra-dilute Solution)法等が
挙げられる。
The coating device 3 applies a coating solution containing a solvent on the substrate f1 by a wet process. Examples of the coating method of the coating apparatus 3 include a casting method, an inkjet method, a spray method, a printing method, a slot method using a slit type die coater, an ESD (Electro Spray Deposition) method, and an ESDUS (Evaporative Spray Deposition from Ultra-dilute Solution). ) Law.
 連続的に搬送される基板f1上に塗布する方法として、必要な膜厚の塗布膜を形成するのに必要な量より余分に塗布液を塗布し、その後、余剰分を除去する後計量型と、必要な量だけ塗布液を塗布する前計量型とが知られている。いずれの塗布方法も適用可能であるが、塗布の高精度化、高速化、薄膜化、塗布膜の品質向上、積層への適性等の観点から、前計量型が好ましい。また、塗布液の暴露抑制、濃度変化の抑制、クリーン度の維持、異物の混入防止という観点から、閉じた系であることが好ましい。そのため、上記塗布方法のなかでも、スリット型ダイコーターを用いたスロット法、インクジェット法が好ましい。 As a method of coating on the substrate f1 that is continuously transported, a post-weighing type in which an application liquid is applied in excess of the amount necessary to form a coating film having a required film thickness, and then the excess is removed. A pre-weighing type in which a coating solution is applied in a necessary amount is known. Any coating method can be applied, but the pre-weighing type is preferable from the viewpoints of high accuracy, high speed, thin film, improved coating film quality, suitability for lamination, and the like. Moreover, a closed system is preferable from the viewpoints of suppressing the exposure of the coating liquid, suppressing the change in concentration, maintaining the cleanliness, and preventing the contamination of foreign matters. Therefore, among the above coating methods, a slot method using a slit type die coater and an ink jet method are preferable.
 乾燥装置1Aは、図1及び図2に示すように、基板f1上の塗布膜f2と対面する凝縮板11を備えている。乾燥装置1Aは、凝縮板11により塗布膜f2が含有する溶媒の蒸気を凝縮し、塗布膜f2を乾燥する。
 乾燥装置1Aは、さらに加熱装置12を備えている。
As shown in FIGS. 1 and 2, the drying apparatus 1A includes a condensing plate 11 facing the coating film f2 on the substrate f1. The drying apparatus 1A condenses the vapor of the solvent contained in the coating film f2 by the condensing plate 11, and dries the coating film f2.
The drying device 1 </ b> A further includes a heating device 12.
 乾燥装置1Aは、塗布液の塗布後すぐに乾燥できるように、塗布装置3の直後に設置されることが好ましい。塗布後すぐに乾燥を開始することにより、周囲の気流又は乾燥装置1A内における自然対流に起因する乾燥ムラを防ぐことができる。基板f1の搬送速度にもよるが、塗布後、乾燥を開始するまでの時間は、30秒以内であることが好ましく、10秒以内であることがより好ましい。
 なお、塗布装置3と乾燥装置1A間に、遮断板、ケース等の気流の遮断手段を設けるか、整流板、整流用のファン等の気流の整流手段を設けて、塗布膜f2周辺の対流を抑えるようにすることもできる。
The drying apparatus 1A is preferably installed immediately after the coating apparatus 3 so that it can be dried immediately after the coating liquid is applied. By starting drying immediately after application, it is possible to prevent uneven drying due to the surrounding airflow or natural convection in the drying apparatus 1A. Although it depends on the conveyance speed of the substrate f1, the time from the start of application to the start of drying is preferably within 30 seconds, and more preferably within 10 seconds.
It should be noted that an airflow blocking means such as a blocking plate or a case is provided between the coating device 3 and the drying device 1A, or an airflow rectifying means such as a rectifying plate or a rectifying fan is provided to convection around the coating film f2. It can also be suppressed.
 凝縮板11は、塗布膜面f2aと対面する凝縮面11aにおいて、塗布膜f2からの溶媒の蒸気を凝縮する。
 凝縮板11の材料は、熱伝導性、重量、加工性、加工精度及び溶媒に対する耐性を考慮して、適宜選択することができる。凝縮板11の材料としては、例えばアルミニウム、銅、鉄、SUS(ステンレス鋼)等の金属又はこれらの合金、プラスチック、木材等が挙げられる。なかでも、加工性及び熱伝導性に優れることから、アルミニウムが好ましい。
The condensing plate 11 condenses the vapor of the solvent from the coating film f2 on the condensing surface 11a facing the coating film surface f2a.
The material of the condenser plate 11 can be selected as appropriate in consideration of thermal conductivity, weight, processability, processing accuracy, and resistance to solvents. Examples of the material of the condensing plate 11 include metals such as aluminum, copper, iron, and SUS (stainless steel) or alloys thereof, plastic, and wood. Of these, aluminum is preferred because of its excellent workability and thermal conductivity.
 凝縮板11は、凝縮面11aに複数のスリットが形成されていてもよい。スリットにより凝縮した溶媒を凝縮面11aから排出することができ、溶媒の飽和による凝縮効率の低下を抑えることができる。
 スリットは、搬送方向yと平行に形成されていてもよいし、搬送方向yと直交する幅手方向xと平行に形成されていてもよい。凝縮面11a上で凝縮した溶媒は、スリットの毛管力によって搬送され、凝縮面11aから排出される。
 スリットを設ける場合、凝縮板11の側面から垂下する側面板を設け、当該側面板によりスリットに沿って排出された溶媒を回収することとしてもよい。
The condensing plate 11 may have a plurality of slits formed on the condensing surface 11a. The solvent condensed by the slit can be discharged from the condensing surface 11a, and a decrease in condensation efficiency due to the saturation of the solvent can be suppressed.
The slit may be formed in parallel with the transport direction y, or may be formed in parallel with the width direction x orthogonal to the transport direction y. The solvent condensed on the condensation surface 11a is transported by the capillary force of the slit and is discharged from the condensation surface 11a.
When providing a slit, it is good also as providing the side plate drooping from the side surface of the condensation plate 11, and collect | recovering the solvent discharged | emitted along the slit by the said side plate.
 凝縮板11は、汚れ防止及び凝縮した溶媒の効率的な排出のため、凝縮面11aが表面処理されていてもよい。
 例えば、凝縮面11aは撥水処理又は親水処理され得る。
The condensing plate 11 may be subjected to a surface treatment on the condensing surface 11a in order to prevent contamination and efficiently discharge the condensed solvent.
For example, the condensation surface 11a can be subjected to water repellent treatment or hydrophilic treatment.
 加熱装置12は、基板f1を介して塗布膜f2を加熱し、溶媒の蒸発を促す。
 加熱装置12は、基板f1を介して凝縮板11と対向する位置に配置されている。
The heating device 12 heats the coating film f2 through the substrate f1 and promotes evaporation of the solvent.
The heating device 12 is disposed at a position facing the condenser plate 11 via the substrate f1.
 加熱装置12は、平面状であり、基板f1との距離が基板f1の搬送方向yにおいて段階的に短くなるように、基板面に対して傾斜して配置されている。基板f1は加熱装置12との距離が短いほどよく加熱されるので、基板f1上の塗布膜f2の温度は搬送方向yにおいて段階的に上昇することになる。 The heating device 12 has a planar shape, and is disposed to be inclined with respect to the substrate surface so that the distance from the substrate f1 is shortened stepwise in the transport direction y of the substrate f1. The shorter the distance from the heating device 12, the better the substrate f1 is heated. Therefore, the temperature of the coating film f2 on the substrate f1 rises stepwise in the transport direction y.
 乾燥の効率を考慮して塗布膜f2を50℃以上の高温に加熱する場合、急激に加熱すると、基板f1の搬送方向yの上流と下流の温度差によって熱対流が発生しやすい。温度の上昇中にも溶媒は蒸発しているが、塗布膜f2が低粘度であると、対流により塗布膜f2の温度ムラが生じ、溶媒の蒸発速度が一定しないため、乾燥ムラが生じやすくなる。
 凝縮乾燥前に、加熱炉のように均一な温度環境内に基板f1を搬送して加熱し、一定時間搬送して熱対流が生じなくなった後、凝縮乾燥することも考えられる。しかしながら、この方法では、設備コストが増大する。また、蒸発しやすい溶媒を用いている場合又は塗布膜f2の膜厚が小さい場合は、加熱炉内で多くの溶媒が蒸発し、乾燥ムラが生じることも考えられる。
 しかしながら、上述のように加熱装置12により段階的に塗布膜f2の温度を上昇させることにより、熱対流の発生を抑えることができる。熱対流による塗布膜f2の温度ムラを抑えて、溶媒の蒸発速度を一定とすることができ、均一な乾燥が可能となる。
When the coating film f2 is heated to a high temperature of 50 ° C. or higher in consideration of the drying efficiency, thermal convection is likely to occur due to the temperature difference between the upstream and downstream in the transport direction y of the substrate f1. Although the solvent is evaporated even while the temperature is rising, if the coating film f2 has a low viscosity, temperature unevenness of the coating film f2 occurs due to convection, and the evaporation rate of the solvent is not constant, so that drying unevenness is likely to occur. .
Prior to condensation drying, the substrate f1 may be transported and heated in a uniform temperature environment as in a heating furnace, and may be condensed and dried after it has been transported for a certain period of time and no thermal convection occurs. However, this method increases the equipment cost. Moreover, when the solvent which is easy to evaporate is used or when the film thickness of the coating film f2 is small, it is also conceivable that a large amount of the solvent evaporates in the heating furnace, resulting in drying unevenness.
However, by increasing the temperature of the coating film f2 stepwise by the heating device 12 as described above, generation of thermal convection can be suppressed. Temperature unevenness of the coating film f2 due to thermal convection can be suppressed, the evaporation rate of the solvent can be made constant, and uniform drying is possible.
 加熱装置12の加熱方法としては、例えば熱風、赤外線、紫外線、マイクロ波、電気抵抗等を用いた加熱方法が挙げられる。なかでも、対流による乾燥ムラを抑えて乾燥の均一性を高める観点から、赤外線等の輻射熱による加熱を行うことが好ましい。例えば、加熱装置12としてパネル状の赤外線ヒーターを用いることができる。 Examples of the heating method of the heating device 12 include a heating method using hot air, infrared rays, ultraviolet rays, microwaves, electric resistance, and the like. Among these, from the viewpoint of suppressing drying unevenness due to convection and improving the uniformity of drying, it is preferable to perform heating by radiant heat such as infrared rays. For example, a panel-shaped infrared heater can be used as the heating device 12.
 図1は、1つの加熱装置12を傾斜させた例を示しているが、凝縮板11の搬送方向yの長さに応じて、複数の加熱装置を連結して傾斜させることもできる。 FIG. 1 shows an example in which one heating device 12 is tilted, but a plurality of heating devices can be connected and tilted according to the length of the condensing plate 11 in the transport direction y.
 塗布膜f2の昇温速度は、加熱装置12の傾斜角度、加熱装置12の表面温度等を変更することにより調整することができる。
 塗布膜f2の昇温速度は、図3に示すように、基板f1の搬送方向yにおいて、凝縮乾燥が開始された基板f1の位置を0mmとしたとき、少なくとも0~30mmの範囲内において、温度の上昇幅が10mm単位で40℃以内となるように調整されることが好ましい。この範囲内であれば、塗布膜f2の温度差による熱対流を抑えることができる。
The temperature increase rate of the coating film f2 can be adjusted by changing the inclination angle of the heating device 12, the surface temperature of the heating device 12, and the like.
As shown in FIG. 3, the temperature rise rate of the coating film f2 is at least within a range of 0 to 30 mm when the position of the substrate f1 where condensation drying is started is 0 mm in the transport direction y of the substrate f1. It is preferable to adjust so that the width of the increase is within 40 ° C. in units of 10 mm. Within this range, thermal convection due to the temperature difference of the coating film f2 can be suppressed.
 基板f1の凝縮乾燥が開始されてから30mm以降の位置においても、傾斜する加熱装置12によって塗布膜f2の昇温が続くこともあるが、基板f1からの放熱もあり、一定の温度に収束していく。この一定の温度が、目的の温度に一致するように、加熱装置12の表面温度、加熱装置12と基板f1との距離等を調整すればよい。
 複数の加熱装置12を用いる場合、基板f1の位置が0~30mmの範囲内においては1つの加熱装置12を傾斜させて、塗布膜f2の温度が目的の温度まで段階的に上昇するように加熱し、30mm以降は目的の温度を維持するように、他の加熱装置12を基板f1と対面するように平行に配置することもできる。
Even at a position after 30 mm after the condensation drying of the substrate f1 is started, the temperature of the coating film f2 may continue to be increased by the inclined heating device 12, but there is also heat radiation from the substrate f1, and it converges to a certain temperature. To go. The surface temperature of the heating device 12, the distance between the heating device 12 and the substrate f1, and the like may be adjusted so that this constant temperature matches the target temperature.
When a plurality of heating devices 12 are used, when the position of the substrate f1 is within a range of 0 to 30 mm, one heating device 12 is inclined so that the temperature of the coating film f2 is increased stepwise to the target temperature. In order to maintain the target temperature after 30 mm, the other heating device 12 can be arranged in parallel so as to face the substrate f1.
 なお、乾燥装置1は、加熱装置12よりも搬送方向y上流に、ヒートローラー等の予備加熱装置を備えることもできる。予備加熱装置により、より緩やかな昇温速度となるように、塗布膜f2を予備加熱することが可能となる。 In addition, the drying device 1 can also include a preheating device such as a heat roller upstream of the heating device 12 in the transport direction y. With the preheating device, the coating film f2 can be preheated so that the temperature rises more slowly.
 乾燥装置1Aの乾燥速度は、凝縮面11aの温度Tcと、塗布膜面f2aの温度Th(Th>Tc)とを調整することにより、制御することができる。
 乾燥速度は、各温度Tc及びThにおける溶媒の蒸気圧差が大きいほど、高速化する。
The drying speed of the drying apparatus 1A can be controlled by adjusting the temperature Tc of the condensing surface 11a and the temperature Th (Th> Tc) of the coating film surface f2a.
The drying speed increases as the difference in the vapor pressure of the solvent at each temperature Tc and Th increases.
 凝縮面11aの温度Tcの制御方法としては、送風又は送液による凝縮板11の加熱又は冷却が挙げられる。凝縮面11aの温度Tcを特に制御せずに室温とし、塗布膜面f2aの温度Thを室温より十分に高い温度に制御することもできる。
 塗布膜面f2aの温度Thは、上述のように加熱装置12の加熱により調整することができる。必要に応じて、加熱装置12に冷却装置を併用し、塗布膜面f2aの温度Thを制御することも可能である。
As a method for controlling the temperature Tc of the condensing surface 11a, heating or cooling of the condensing plate 11 by blowing or liquid feeding can be mentioned. The temperature Tc of the condensing surface 11a can be set to room temperature without particularly controlling, and the temperature Th of the coating film surface f2a can be controlled to a temperature sufficiently higher than the room temperature.
The temperature Th of the coating film surface f2a can be adjusted by heating the heating device 12 as described above. If necessary, a cooling device can be used together with the heating device 12 to control the temperature Th of the coating film surface f2a.
 凝縮面11aの温度Tcは、塗布膜面f2aの温度Thより低ければ、室温より高くても低くてもよいが、5~30℃の範囲内であることが好ましく、10~20℃の範囲内であることがより好ましい。
 温度Tcを上記範囲内に制御することにより、加熱に要するコストの上昇を抑えることができる。また、凝縮面11a全体の温度を均一に制御しやすく、温度ムラに起因する乾燥ムラ、ひいては塗布膜f2の膜厚ムラを抑制しやすい。同様の観点から、凝縮面11a内の温度ムラは、2℃以内であることが好ましい。
The temperature Tc of the condensing surface 11a may be higher or lower than room temperature as long as it is lower than the temperature Th of the coating film surface f2a, but is preferably in the range of 5 to 30 ° C, and in the range of 10 to 20 ° C. It is more preferable that
By controlling the temperature Tc within the above range, an increase in cost required for heating can be suppressed. Further, it is easy to uniformly control the temperature of the entire condensing surface 11a, and it is easy to suppress drying unevenness due to temperature unevenness, and consequently film thickness unevenness of the coating film f2. From the same viewpoint, the temperature unevenness in the condensing surface 11a is preferably within 2 ° C.
 凝縮面11aに、溶媒以外の物質、例えば大気中の水分等が凝縮することを防ぐため、大気の露点を下げるか、凝縮面11aと塗布膜面f2a間を減圧することが好ましい。
 また、凝縮板11以外の乾燥装置1Aの部材、例えば筐体等に溶媒が凝縮することを防ぐため、凝縮板11以外の部材の温度を、凝縮面11aの温度Tc以上に調整することが好ましい。
In order to prevent substances other than the solvent such as moisture in the atmosphere from condensing on the condensation surface 11a, it is preferable to lower the dew point of the atmosphere or reduce the pressure between the condensation surface 11a and the coating film surface f2a.
Further, in order to prevent the solvent from condensing in a member of the drying apparatus 1A other than the condensing plate 11, such as a housing, it is preferable to adjust the temperature of the member other than the condensing plate 11 to be equal to or higher than the temperature Tc of the condensing surface 11a. .
 塗布膜面f2aの温度Thは、凝縮面11aの温度Tcより高ければ、室温より高くても低くてもよいが、30~100℃の範囲内であることが好ましく、30~70℃の範囲内であることがより好ましい。
 温度Thを30℃以上とすることにより、溶媒以外の大気中の水分等が凝縮し、乾燥効率が低下することを抑制しやすい。100℃以下とすることにより、高温化に伴うコストの上昇、基板f1の変性による搬送不良等を抑制しやすい。また、基板f1全体の温度を均一に制御しやすく、温度ムラに起因する乾燥ムラ、ひいては塗布膜f2の膜厚ムラを抑制しやすい。同様の観点から、塗布膜面f2a内の温度ムラは、2℃以内であることが好ましい。
The temperature Th of the coating film surface f2a may be higher or lower than the room temperature as long as it is higher than the temperature Tc of the condensing surface 11a, but is preferably in the range of 30 to 100 ° C, preferably in the range of 30 to 70 ° C. It is more preferable that
By setting the temperature Th to 30 ° C. or higher, moisture in the atmosphere other than the solvent is condensed and it is easy to suppress a decrease in drying efficiency. By setting the temperature to 100 ° C. or lower, it is easy to suppress an increase in cost due to a high temperature, conveyance failure due to the modification of the substrate f1, and the like. In addition, it is easy to uniformly control the temperature of the entire substrate f1, and it is easy to suppress drying unevenness due to temperature unevenness, and consequently film thickness unevenness of the coating film f2. From the same viewpoint, the temperature unevenness in the coating film surface f2a is preferably within 2 ° C.
 乾燥装置1Aの乾燥速度は、凝縮面11aと塗布膜面f2a間の距離dを調整することによっても、制御することができる。
 距離dは、小さいほど溶媒が凝縮しやすく、乾燥速度が上がるが、好ましくは0.1~10.0mmの範囲内であり、より好ましくは0.1~4.0mmの範囲内である。
 距離dを0.1mm以上とすることにより、基板f1のばたつきによる塗布膜f2と凝縮板11との接触を回避しやすいとともに、凝縮板11の配置の高精度化に伴うコストを削減できる。また、凝縮した溶媒の塗布膜f2への付着を回避しやすく、付着による乾燥ムラを抑制することができる。距離dを10.0mm以内とすることにより、周囲の対流の影響を減じて乾燥ムラを防ぎ、乾燥速度を上げて生産性を向上させることができる。
The drying speed of the drying apparatus 1A can also be controlled by adjusting the distance d between the condensation surface 11a and the coating film surface f2a.
The smaller the distance d is, the more easily the solvent is condensed and the drying speed is increased, but it is preferably in the range of 0.1 to 10.0 mm, more preferably in the range of 0.1 to 4.0 mm.
By setting the distance d to 0.1 mm or more, it is easy to avoid contact between the coating film f2 and the condensing plate 11 due to flapping of the substrate f1, and it is possible to reduce the cost associated with high accuracy of the arrangement of the condensing plate 11. Moreover, it is easy to avoid adhesion of the condensed solvent to the coating film f2, and drying unevenness due to adhesion can be suppressed. By setting the distance d within 10.0 mm, it is possible to reduce the influence of surrounding convection and prevent drying unevenness, increase the drying speed, and improve productivity.
 凝縮面11aと塗布膜面f2a間の距離dは、一定値に保持されることが好ましい。
 距離dが一定値であることにより、塗布膜面f2a内の乾燥速度を一定とすることができ、乾燥の均一性を向上させることができる。
The distance d between the condensation surface 11a and the coating film surface f2a is preferably maintained at a constant value.
When the distance d is a constant value, the drying speed in the coating film surface f2a can be made constant, and the uniformity of drying can be improved.
 乾燥装置4は、残留溶媒の除去のために設けられた後処理用の乾燥装置である。
 乾燥装置4の乾燥方法は、乾燥装置1Aと同じ凝縮乾燥であってもよいし、他の乾燥方法であってもよい。他の乾燥方法としては、熱風、赤外線、マイクロ波、超音波等を用いた乾燥、真空乾燥、超臨界法による乾燥、吸湿乾燥、冷却乾燥等が挙げられる。
The drying device 4 is a drying device for post-processing provided for removing the residual solvent.
The drying method of the drying device 4 may be the same condensation drying as the drying device 1A, or may be another drying method. Other drying methods include drying using hot air, infrared rays, microwaves, ultrasonic waves, etc., vacuum drying, supercritical drying, moisture absorption drying, cooling drying, and the like.
 上記薄膜形成装置100によれば、ガスバリア性フィルムのガスバリア層として、ポリシラザン骨格を有するケイ素化合物を含有する塗布膜を形成し、当該塗布膜を均一に乾燥することができる。
 ガスバリア性フィルムは、低い酸素透過度及び水蒸気透過度を示すガスバリア層を備えたフィルムであり、ガスバリア性フィルムが用いられた電子デバイスに、優れた保存安定性を付与する。
 ガスバリア層に求められるガスバリア性能は、ガスバリア性フィルムが用いられる電子デバイスによって異なる。一般的には、ガスバリア層は、JIS K7129:2008に従って測定された水蒸気透過度(温度60±0.5℃、相対湿度90±2%)が3×10-3g/m・24h以下であり、JIS K7126:2006に従って測定された酸素透過度が1×10-3g/m・24h・atm以下であると、電子デバイスに好ましく使用できる。
According to the thin film forming apparatus 100, a coating film containing a silicon compound having a polysilazane skeleton can be formed as a gas barrier layer of a gas barrier film, and the coating film can be uniformly dried.
The gas barrier film is a film having a gas barrier layer exhibiting low oxygen permeability and water vapor permeability, and imparts excellent storage stability to an electronic device using the gas barrier film.
The gas barrier performance required for the gas barrier layer varies depending on the electronic device in which the gas barrier film is used. In general, the gas barrier layer has a water vapor permeability (temperature 60 ± 0.5 ° C., relative humidity 90 ± 2%) measured in accordance with JIS K7129: 2008 of 3 × 10 −3 g / m 2 · 24 h or less. Yes, when the oxygen permeability measured according to JIS K7126: 2006 is 1 × 10 −3 g / m 2 · 24 h · atm or less, it can be preferably used for an electronic device.
 ポリシラザン骨格を有するケイ素化合物に対しては、溶媒として有機溶媒が用いられるため、塗布膜の粘度が100mPa・s以下の低粘度になりやすい。このような低粘度の塗布膜を対流伝熱により乾燥すると塗布液が大きく流動し、溶媒の蒸発速度も一定せずに、乾燥ムラが起こりやすい。
 しかしながら、上記乾燥装置1Aは対流伝熱を用いないため、塗布液の流動及び溶媒の蒸発速度のムラがほとんどなく、塗布膜f2が100mPa・s以下の低粘度である場合にも均一な乾燥を実現できるため、上述したガスバリア層の形成には特に有効である。
For a silicon compound having a polysilazane skeleton, an organic solvent is used as a solvent, and therefore, the viscosity of the coating film tends to be as low as 100 mPa · s or less. When such a low-viscosity coating film is dried by convection heat transfer, the coating solution flows greatly, the evaporation rate of the solvent is not constant, and drying unevenness is likely to occur.
However, since the drying apparatus 1A does not use convective heat transfer, there is almost no unevenness in the flow of the coating liquid and the evaporation rate of the solvent, and uniform drying even when the coating film f2 has a low viscosity of 100 mPa · s or less. Since it can be realized, it is particularly effective for forming the gas barrier layer described above.
 また、乾燥の効率を考慮して塗布膜面f2aの温度Thを50℃以上の高温に調整する場合、強い熱流束で急激に加熱すると、搬送方向yの上流と下流の温度差によって、塗布膜面f2a上で熱対流が生じやすい。温度Thまでの上昇過程においても溶媒は蒸発しており、塗布膜f2が低粘度であると、熱対流により塗布膜面f2aに温度ムラが生じ、溶媒の蒸発速度が一定しないため、乾燥ムラが起こりやすくなる。
 しかしながら、上記乾燥装置1Aは塗布膜f2の温度を段階的に上昇させるため、熱対流の発生がほとんどなく、温度の上昇過程における温度ムラを抑えることができる。これにより、温度の上昇過程においても溶媒の蒸発速度が一定となって、均一な乾燥が可能となるため、塗布膜が低粘度であるガスバリア層の形成には特に有効である。
In addition, when the temperature Th of the coating film surface f2a is adjusted to a high temperature of 50 ° C. or more in consideration of drying efficiency, the coating film is heated due to a temperature difference between the upstream and downstream in the transport direction y when heated rapidly with a strong heat flux. Thermal convection is likely to occur on the surface f2a. Even in the process of increasing to the temperature Th, the solvent is evaporated, and if the coating film f2 has a low viscosity, temperature unevenness occurs on the coating film surface f2a due to thermal convection, and the evaporation rate of the solvent is not constant. It tends to happen.
However, since the drying apparatus 1A raises the temperature of the coating film f2 step by step, thermal convection hardly occurs and temperature unevenness in the temperature rising process can be suppressed. Thus, the evaporation rate of the solvent becomes constant even during the temperature rise process, and uniform drying is possible, which is particularly effective for forming a gas barrier layer having a low viscosity coating film.
 以下、ポリシラザン骨格を有するケイ素化合物を含有する塗布膜を形成し、当該塗布膜を乾燥してガスバリア層を形成する場合を例に、薄膜形成時の手順を説明する。 Hereinafter, a procedure for forming a thin film will be described by taking as an example a case where a coating film containing a silicon compound having a polysilazane skeleton is formed and the coating film is dried to form a gas barrier layer.
 まず、薄膜形成装置100に、ガスバリア性フィルムの基板f1をセットする。
 ガスバリア性フィルムの基板f1としては、無色透明な樹脂フィルムが好ましく用いられる。
 樹脂フィルムの材料としては、例えばポリエステル、メタクリル、メタクリル酸-マレイン酸共重合体、ポリスチレン、フッ素化樹脂、ポリイミド、フッ素化ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、セルロースアシレート、ポリウレタン、ポリエーテルエーテルケトン、ポリカーボネート、脂環式ポリオレフィン、ポリアリレート、ポリエーテルスルホン、ポリスルホン、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート、脂環変性ポリカーボネート、フルオレン環変性ポリエステル、アクリロイル化合物等が挙げられる。
First, the gas barrier film substrate f <b> 1 is set in the thin film forming apparatus 100.
As the substrate f1 of the gas barrier film, a colorless and transparent resin film is preferably used.
Examples of the resin film material include polyester, methacrylic acid, methacrylic acid-maleic acid copolymer, polystyrene, fluorinated resin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane, and polyether. Examples include ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, cycloolefin copolymer, fluorene ring-modified polycarbonate, alicyclic ring-modified polycarbonate, fluorene ring-modified polyester, and acryloyl compound.
 ガスバリア性フィルムに用いられる基板f1の厚さは、用途によって適宜選択することができる。一般的には、基板f1の厚さは、1~800μmの範囲内であり、好ましくは10~200μmの範囲内である。電子デバイスの小型化及び軽量化の観点から、さらに好ましくは10~50μmの範囲内である。 The thickness of the substrate f1 used for the gas barrier film can be appropriately selected depending on the application. In general, the thickness of the substrate f1 is in the range of 1 to 800 μm, preferably in the range of 10 to 200 μm. From the viewpoint of reducing the size and weight of the electronic device, it is more preferably in the range of 10 to 50 μm.
 基板f1は、環状ダイ又はTダイを有する押出機を用いて、原料となる樹脂組成物を溶融して押し出し、急冷することにより製造することができ、実質的に樹脂の配向が無い未延伸の基板f1が得られる。
 この未延伸の基板f1を、基板f1の搬送方向及び/又は幅手方向に、一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸又はチューブラー式同時二軸延伸して、延伸された基板f1を得ることもできる。幅手方向は、基板f1上で搬送方向に直交する方向をいう。延伸倍率は、搬送方向及び幅手方向にそれぞれ2~10倍の範囲内であることが好ましい。
Substrate f1 can be produced by melting and extruding a resin composition as a raw material using an extruder having an annular die or a T die and quenching, and is substantially unstretched with no resin orientation. A substrate f1 is obtained.
This unstretched substrate f1 is stretched by uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching or tubular simultaneous biaxial stretching in the transport direction and / or width direction of the substrate f1. A substrate f1 can also be obtained. The width direction refers to a direction orthogonal to the transport direction on the substrate f1. The draw ratio is preferably in the range of 2 to 10 times in the transport direction and the width direction.
 ガスバリア層を形成する基板f1の表面は、積層されるガスバリア層との接着性向上のため、例えばエキシマ処理、コロナ放電処理、火炎処理、酸化処理、プラズマ処理等の表面処理が施されていてもよい。 The surface of the substrate f1 on which the gas barrier layer is formed may be subjected to surface treatment such as excimer treatment, corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment in order to improve adhesion with the laminated gas barrier layer. Good.
 基板f1は、基板f1の表面を平坦化し、ガスバリア層との接着性を向上させるため、プライマー層が設けられていてもよい。
 プライマー層は、活性エネルギー線硬化性樹脂、熱可塑性樹脂等の硬化性樹脂を含有することが好ましい。
The substrate f1 may be provided with a primer layer in order to flatten the surface of the substrate f1 and improve the adhesion with the gas barrier layer.
The primer layer preferably contains a curable resin such as an active energy ray curable resin or a thermoplastic resin.
 上記活性エネルギー線硬化性材料の具体例としては、JSR社製のUV硬化型有機/無機ハイブリッドハードコート剤であるOPSTAR(登録商標)シリーズを用いることができる。当該OPSTARシリーズは、シリカ微粒子に重合性不飽和基を有する有機化合物を結合させてなる化合物である。 As a specific example of the active energy ray curable material, OPSTAR (registered trademark) series which is a UV curable organic / inorganic hybrid hard coat agent manufactured by JSR Corporation can be used. The OPSTAR series is a compound obtained by bonding an organic compound having a polymerizable unsaturated group to silica fine particles.
 熱硬化性材料の具体例には、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂、ポリアミドアミン-エピクロルヒドリン樹脂等が挙げられる。熱硬化性材料の市販品としては、セラミックコート社製のSP COAT耐熱クリアー塗料、アデカ社製のナノハイブリッドシリコーン、DIC社製のユニディック(登録商標)V-8000シリーズ、EPICLON(登録商標)EXA-4710(超高耐熱性エポキシ樹脂)、信越化学工業社製のX-12-2400(シリコン樹脂)、日東紡績社製のSSGコート(無機又は有機ナノコンポジット材料)等が挙げられる。 Specific examples of the thermosetting material include thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, silicon resin, polyamidoamine-epichlorohydrin resin, and the like. Can be mentioned. Commercially available thermosetting materials include SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid silicone manufactured by Adeka, Unidic (registered trademark) V-8000 series manufactured by DIC, EPICLON (registered trademark) EXA -4710 (ultra high heat resistant epoxy resin), X-12-2400 (silicon resin) manufactured by Shin-Etsu Chemical Co., Ltd., SSG coat (inorganic or organic nanocomposite material) manufactured by Nitto Boseki Co., Ltd., and the like.
 上記硬化性材料を含む塗布液に用いられる溶媒としては、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、エチレングリコール、プロピレングリコール等のアルコール類、α-もしくはβ-テルピネオール等のテルペン類等、アセトン、メチルエチルケトン、シクロヘキサノン、N-メチル-2-ピロリドン、ジエチルケトン、2-ヘプタノン、4-ヘプタノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、2-メトキシエチルアセテート、シクロヘキシルアセテート、2-エトキシエチルアセテート、3-メトキシブチルアセテート等の酢酸エステル類、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、3-エトキシプロピオン酸エチル、安息香酸メチル、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等を挙げることができる。 Solvents used in the coating solution containing the curable material include alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, ethylene glycol and propylene glycol, terpenes such as α- or β-terpineol, and acetone. , Ketones such as methyl ethyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone, 2-heptanone, 4-heptanone, aromatic hydrocarbons such as toluene, xylene, tetramethylbenzene, cellosolve, methyl cellosolve, ethyl cellosolve , Carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether Ter, dipropylene glycol monoethyl ether, triethylene glycol monomethyl ether, glycol ethers such as triethylene glycol monoethyl ether, ethyl acetate, butyl acetate, cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, carbitol acetate, ethyl carbitol Acetates such as acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 2-methoxyethyl acetate, cyclohexyl acetate, 2-ethoxyethyl acetate, 3-methoxybutyl acetate, diethylene glycol dialkyl ether, Dipropylene glycol dialkyl ether, 3-etho Shipuropion ethyl, methyl benzoate, N, N- dimethylacetamide, N, may be mentioned N- dimethylformamide.
 プライマー層の膜厚は、特に限定されないが、0.1~10.0μmの範囲内にあることが好ましい。 The thickness of the primer layer is not particularly limited, but is preferably in the range of 0.1 to 10.0 μm.
 基板f1は、基板f1中の添加剤がブリードアウト(析出)することを防ぐため、基板f1のガスバリア層が積層される面とは反対の面に、ブリードアウト防止層が形成されていてもよい。
 上述したプライマー層は、基本的にブリードアウトを防止する機能を有するので、上記プライマー層と同様にしてブリードアウト防止層を形成することができる。
In order to prevent the additive in the substrate f1 from bleeding out (deposition), the substrate f1 may have a bleedout preventing layer formed on the surface opposite to the surface on which the gas barrier layer of the substrate f1 is laminated. .
Since the primer layer described above basically has a function of preventing bleed out, a bleed out preventing layer can be formed in the same manner as the primer layer.
 次に、薄膜形成装置100は、基板f1の搬送を開始し、塗布装置3がガスバリア層の塗布液を基板f1上に塗布し、塗布膜f2を形成する。 Next, the thin film forming apparatus 100 starts transporting the substrate f1, and the coating apparatus 3 applies the coating liquid for the gas barrier layer onto the substrate f1 to form the coating film f2.
 ガスバリア層の塗布液は、ポリシラザン骨格を有するケイ素化合物を、溶媒に溶解又は分散させることで調製することができる。
 ポリシラザン骨格とは、Si-N結合を含むポリマーの基本骨格をいい、酸化ケイ素(SiO)、窒化ケイ素(Si)又は酸窒化ケイ素(SiO)等のセラミックスの前駆体である。
 ポリシラザン骨格を有するケイ素化合物としては、下記一般式(1)で表される構造を有するケイ素化合物が挙げられる。当該ケイ素化合物は、一般にポリシラザンと呼ばれている。
The coating solution for the gas barrier layer can be prepared by dissolving or dispersing a silicon compound having a polysilazane skeleton in a solvent.
The polysilazane skeleton is a basic skeleton of a polymer containing a Si—N bond, and is a precursor of ceramics such as silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), or silicon oxynitride (SiO x N y ). is there.
Examples of the silicon compound having a polysilazane skeleton include a silicon compound having a structure represented by the following general formula (1). The silicon compound is generally called polysilazane.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)において、R、R及びRは、それぞれ独立に、水素原子、アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基を表す。当該アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基は、さらに置換基を有していてもよい。 In the general formula (1), R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an aryl group, a vinyl group or a (trialkoxysilyl) alkyl group. The alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group may further have a substituent.
 R、R及びRのアルキル基としては、炭素原子数1~8の直鎖、分岐鎖又は環状のアルキル基が挙げられる。より具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。 Examples of the alkyl group for R 1 , R 2 and R 3 include straight, branched or cyclic alkyl groups having 1 to 8 carbon atoms. More specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n -Hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like.
 R、R及びRのアリール基としては、炭素原子数6~30のアリール基が挙げられる。より具体的には、フェニル基、ビフェニル基、ターフェニル基等の非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基等の縮合多環炭化水素基が挙げられる。 Examples of the aryl group for R 1 , R 2 and R 3 include aryl groups having 6 to 30 carbon atoms. More specifically, a non-condensed hydrocarbon group such as a phenyl group, a biphenyl group, a terphenyl group; a pentarenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptaenyl group, a biphenylenyl group, a fluorenyl group, an acenaphthylenyl group, a preadenyl group A condensed polycyclic hydrocarbon group such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, etc. Can be mentioned.
 R、R及びRの(トリアルコキシシリル)アルキル基としては、炭素原子数1~8のアルコキシ基で置換されたシリル基を有する炭素原子数1~8のアルキル基が挙げられる。より具体的には、3-(トリエトキシシリル)プロピル基、3-(トリメトキシシリル)プロピル基等が挙げられる。 Examples of the (trialkoxysilyl) alkyl group of R 1 , R 2 and R 3 include an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specific examples include 3- (triethoxysilyl) propyl group and 3- (trimethoxysilyl) propyl group.
 場合によって、上記アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基に存在する置換基としては、例えばアルキル基、ハロゲン原子、ヒドロキシ基(-OH)、メルカプト基(-SH)、シアノ基(-CN)、スルホ基(-SOH)、カルボキシ基(-COOH)、ニトロ基(-NO)等がある。
 上記アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基が有し得る置換基は、置換されるアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基と同じであることはない。例えば、R~Rがアルキル基の場合、さらにアルキル基で置換されることはない。
In some cases, examples of the substituent present in the alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group include an alkyl group, a halogen atom, a hydroxy group (—OH), a mercapto group (—SH), a cyano group. Groups (—CN), sulfo groups (—SO 3 H), carboxy groups (—COOH), nitro groups (—NO 2 ) and the like.
The substituent which the alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group may have is the same as the substituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. Absent. For example, when R 1 to R 3 are alkyl groups, they are not further substituted with an alkyl group.
 好ましいR、R及びRは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、フェニル基、ビニル基、3-(トリエトキシシリル)プロピル基又は3-(トリメトキシシリルプロピル)基である。 Preferred R 1 , R 2 and R 3 are hydrogen atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, phenyl group, vinyl group, 3- (triethoxysilyl) A propyl group or a 3- (trimethoxysilylpropyl) group.
 上記一般式(1)において、nは1以上の整数である。
 nは、上記一般式(1)で表される構造を有するケイ素化合物の数平均分子量Mnが、150~150000g/モルの範囲内となるように定められることが好ましい。
In the general formula (1), n is an integer of 1 or more.
n is preferably determined so that the number average molecular weight Mn of the silicon compound having the structure represented by the general formula (1) is in the range of 150 to 150,000 g / mol.
 一般式(1)で表される構造を有するケイ素化合物のなかでも、R、R及びRすべてが水素原子であるパーヒドロポリシラザンは、得られるガスバリア層が高い緻密性を示すことから、特に好ましい。
 パーヒドロポリシラザンは、直鎖構造と6員環及び8員環を中心とする環構造とを含む構造であると推定されている。パーヒドロポリシラザンは、ゲルパーミエーションクロマトグラフィによりポリスチレン換算で測定された数平均分子量Mnが、約600~2000程度であり、液体又は固体の物質である。
Among the silicon compounds having the structure represented by the general formula (1), perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms, the resulting gas barrier layer exhibits high density, Particularly preferred.
Perhydropolysilazane is presumed to have a structure including a linear structure and a ring structure centered on a 6-membered ring and an 8-membered ring. Perhydropolysilazane has a number average molecular weight Mn measured in terms of polystyrene by gel permeation chromatography of about 600 to 2000, and is a liquid or solid substance.
 パーヒドロポリシラザンは、有機溶媒中に溶解させた溶液として市販されており、市販品をそのままガスバリア層の塗布液として使用することができる。
 塗布液として用いることができる市販品としては、AZエレクトロニックマテリアルズ社製のアクアミカ(登録商標)シリーズNN120-10、NN120-20、NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL120-20、NL150A、NP110、NP140、SP140等が挙げられる。
Perhydropolysilazane is commercially available as a solution dissolved in an organic solvent, and the commercially available product can be used as it is as a coating solution for the gas barrier layer.
Commercially available products that can be used as the coating solution include AQUAMICA (registered trademark) series NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20 manufactured by AZ Electronic Materials. NL150A, NP110, NP140, SP140 and the like.
 R、R及びRのうち、少なくとも1つが水素原子であり、少なくとも1つがアルキル基等の有機基であるオルガノポリシラザンも、基板f1との接着性が良好となり、セラミックス化されたガスバリア層に靭性を付与して、ガスバリア層を厚膜化した場合でもクラックの発生を抑えることができるため、好ましい。
 用途に応じて、パーヒドロポリシラザン又はオルガノポリシラザンを選択すればよく、両方を併用することもできる。
Organopolysilazane, in which at least one of R 1 , R 2 and R 3 is a hydrogen atom and at least one is an organic group such as an alkyl group, also has good adhesion to the substrate f1 and is a ceramicized gas barrier layer Even when the toughness is imparted to the gas barrier layer to increase the thickness of the gas barrier layer, the generation of cracks can be suppressed, which is preferable.
Perhydropolysilazane or organopolysilazane may be selected depending on the application, and both may be used in combination.
 ガスバリア層に使用できるケイ素化合物の他の例としては、上記一般式(1)で表される構造を有するケイ素化合物に、ケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報参照)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報参照)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報参照)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報参照)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報参照)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報参照)等が挙げられる。これらは、低温でセラミックス化するケイ素化合物の例である。 As another example of the silicon compound that can be used for the gas barrier layer, a silicon alkoxide-added polysilazane obtained by reacting a silicon alkoxide with a silicon compound having a structure represented by the above general formula (1) (Japanese Patent Laid-Open No. 5-238827) Glycidol-added polysilazane obtained by reacting glycidol (see JP-A-6-122852), alcohol-added polysilazane obtained by reacting alcohol (see JP-A-6-240208), metal carboxylate A metal carboxylate-added polysilazane obtained by reacting with a metal (see JP-A-6-299118), and an acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329) Add metal fine particles) Resulting Te metal particles added polysilazane (see JP-A-7-196986) and the like. These are examples of silicon compounds that ceramize at low temperatures.
 ポリシラザン骨格を有するケイ素化合物は、ヒドロキシ基、アミノ基等の反応性基と反応し、容易に加水分解されるため、塗布液に用いられる溶媒としては、当該ケイ素化合物に対して不活性の有機溶媒が好ましい。
 具体的には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、ハロゲン炭化水素等の非プロトン性溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン、モノ又はポリアルキレングリコールジアルキルエーテル(ジグライム類)等のエーテル類を挙げることができる。
 溶媒は、ケイ素化合物の溶解度や溶媒の蒸発速度等に応じて選択することができ、1種又は2種以上を使用してもよい。
Since the silicon compound having a polysilazane skeleton reacts with a reactive group such as a hydroxy group or an amino group and is easily hydrolyzed, the solvent used for the coating solution is an organic solvent inert to the silicon compound. Is preferred.
Specifically, aprotic solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons and halogen hydrocarbons; esters such as ethyl acetate and butyl acetate; ketones such as acetone and methyl ethyl ketone; Mention may be made of ethers such as butyl ether, dioxane, tetrahydrofuran, mono- or polyalkylene glycol dialkyl ethers (diglymes).
A solvent can be selected according to the solubility of a silicon compound, the evaporation rate of a solvent, etc., and may use 1 type (s) or 2 or more types.
 塗布液におけるケイ素化合物の含有量は、ガスバリア層の膜厚及び塗布液のポットライフによっても異なるが、好ましくは0.2~80.0重量%の範囲内であり、より好ましくは1~50重量%の範囲内であり、特に好ましくは5~35重量%の範囲内である。 The silicon compound content in the coating solution varies depending on the film thickness of the gas barrier layer and the pot life of the coating solution, but is preferably in the range of 0.2 to 80.0% by weight, more preferably 1 to 50% by weight. %, Particularly preferably in the range of 5 to 35% by weight.
 上記塗布液は、改質処理時のシリカ転化を促進するため、触媒を含有することもできる。
 使用できる触媒としては、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン、N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等の金属触媒、N-複素環式化合物が挙げられる。なかでも、塩基性触媒が好ましく、アミン触媒が好ましい。
 上記塗布液における触媒の含有量は、ケイ素化合物の含有量に対して、好ましくは0.1~10.0モル%の範囲内であり、より好ましくは0.5~7.0モル%の範囲内である。触媒の含有量を上記範囲内とすることにより、反応の急激な進行による過剰なシラノール形成、膜密度の低下、膜欠陥の増大等を避けることができる。
The coating solution may contain a catalyst in order to promote silica conversion during the modification treatment.
Usable catalysts include N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N′-tetramethyl-1,3 -Amine catalysts such as diaminopropane, N, N, N ', N'-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, Pd compounds such as propionic acid Pd, Rh acetylacetonate, etc. And metal catalysts and N-heterocyclic compounds. Of these, a basic catalyst is preferable, and an amine catalyst is preferable.
The content of the catalyst in the coating solution is preferably in the range of 0.1 to 10.0 mol%, more preferably in the range of 0.5 to 7.0 mol% with respect to the content of the silicon compound. Is within. By setting the content of the catalyst within the above range, it is possible to avoid excessive silanol formation, film density reduction, film defect increase, and the like due to rapid progress of the reaction.
 塗布膜f2の塗布時の膜厚は、乾燥後に求められる膜厚に応じて決定することができる。
 塗布時の膜厚が大きいほど、塗布液が流動しやすく乾燥ムラが生じやすいため、均一な乾燥が可能な乾燥装置1Aの有用性は大きい。
The film thickness at the time of application | coating of the coating film f2 can be determined according to the film thickness calculated | required after drying.
As the film thickness at the time of application increases, the coating liquid easily flows and uneven drying tends to occur. Therefore, the usefulness of the drying apparatus 1A capable of uniform drying is great.
 塗布膜f2の粘度は、ガスバリア層に求められるガスバリア性能とケイ素化合物の溶解度又は分解性により、適宜選択することができる。
 ポリシラザン骨格を有するケイ素化合物に対しては、上述のように有機溶媒が使用されるため、塗布液の粘度が100mPa・s以下の低粘度となる。塗布膜f2において、塗布液が流動しやすく乾燥ムラが生じやすいため、均一な乾燥が可能な乾燥装置1Aの有用性は大きい。
 具体的な塗布膜の粘度としては、0.3~10.0mPa・sの範囲内であることが、塗布速度を高速化し、塗工性を高める観点から好ましく、1.0~10.0mPa・sの範囲内であることがより好ましい。
The viscosity of the coating film f2 can be appropriately selected depending on the gas barrier performance required for the gas barrier layer and the solubility or decomposability of the silicon compound.
For a silicon compound having a polysilazane skeleton, an organic solvent is used as described above, so that the viscosity of the coating solution is as low as 100 mPa · s or less. In the coating film f2, since the coating liquid easily flows and uneven drying tends to occur, the usefulness of the drying apparatus 1A capable of uniform drying is great.
The specific viscosity of the coating film is preferably in the range of 0.3 to 10.0 mPa · s from the viewpoint of increasing the coating speed and improving the coating property, and 1.0 to 10.0 mPa · s. More preferably within the range of s.
 次に、乾燥装置1Aが、ガスバリア層の塗布膜f2を凝縮乾燥する。
 乾燥装置1Aは、搬送される基板f1を、加熱装置12により加熱する。基板f1の加熱により塗布膜f2中の溶媒が蒸発すると、塗布膜f2に対面する凝縮板11によりその蒸気を凝縮して、塗布膜f2を乾燥する。
Next, the drying apparatus 1A condenses and dries the coating film f2 of the gas barrier layer.
The drying apparatus 1 </ b> A heats the substrate f <b> 1 being transported by the heating apparatus 12. When the solvent in the coating film f2 is evaporated by heating the substrate f1, the vapor is condensed by the condensing plate 11 facing the coating film f2, and the coating film f2 is dried.
 乾燥後のガスバリア層の膜厚は、1nm~100μmの範囲内であることが好ましく、より好ましくは10nm~10μm程度の範囲内であり、さらに好ましくは50nm~1μmの範囲内であり、特に好ましくは100~500nmの範囲内である。
 膜厚が1nm以上であれば十分なガスバリア性能を得ることができ、100μm以下であれば、安定した塗布性及び高い光線透過性が得られる。
The thickness of the gas barrier layer after drying is preferably in the range of 1 nm to 100 μm, more preferably in the range of about 10 nm to 10 μm, still more preferably in the range of 50 nm to 1 μm, particularly preferably. It is in the range of 100 to 500 nm.
If the film thickness is 1 nm or more, sufficient gas barrier performance can be obtained, and if it is 100 μm or less, stable coating properties and high light transmittance are obtained.
 塗布膜f2を乾燥後、改質装置5により基板f1上の塗布膜f2を改質処理することにより、ガスバリア層が得られる。
 改質処理は、ガスバリア層の塗布膜f2が含有するケイ素化合物の一部又は全部をシリカ転化させ、セラミックス化する処理である。
 改質処理としては、波長が400nm以下の紫外光を照射する方法、波長が180nm未満の真空紫外光(VUV;Vacuum Ultra Violet)を照射する方法等が挙げられる。
After the coating film f2 is dried, the reforming apparatus 5 modifies the coating film f2 on the substrate f1, thereby obtaining a gas barrier layer.
The modification treatment is a treatment in which part or all of the silicon compound contained in the coating film f2 of the gas barrier layer is converted into silica and converted into ceramics.
Examples of the modification treatment include a method of irradiating ultraviolet light having a wavelength of 400 nm or less, a method of irradiating vacuum ultraviolet light (VUV; Vacuum Ultra Violet) having a wavelength of less than 180 nm, and the like.
 以上、ガスバリア性フィルムのガスバリア層を形成する例を説明したが、プライマー層、ブリードアウト層等の他の層も薄膜形成装置100により形成することもできる。
 ガスバリア性フィルム以外にも、塗布装置3を用いて、有機EL素子、太陽電池、トランジスター、メモリー、センサー等の有機層の塗布膜f2を形成し、乾燥装置1Aにより当該塗布膜f2を乾燥して薄膜を形成することが可能である。
 有機層の形成においても、塗布液に有機溶媒が使用され、塗布膜f2が低粘度となる場合、乾燥装置1Aによる均一な乾燥によって、有機層に求められる機能が得られるように膜厚を均一化することができるため、有効である。
The example of forming the gas barrier layer of the gas barrier film has been described above, but other layers such as a primer layer and a bleed-out layer can also be formed by the thin film forming apparatus 100.
Besides the gas barrier film, the coating device 3 is used to form a coating film f2 of an organic layer such as an organic EL element, a solar cell, a transistor, a memory, a sensor, etc., and the coating film f2 is dried by the drying device 1A. A thin film can be formed.
Also in the formation of the organic layer, when an organic solvent is used for the coating solution and the coating film f2 has a low viscosity, the film thickness is uniform so that the functions required for the organic layer can be obtained by uniform drying by the drying apparatus 1A. This is effective.
 以上のように、第1の実施の形態に係る乾燥装置1Aは、搬送される基板f1上の塗布膜f2と対面し、当該塗布膜f2からの溶媒の蒸気を凝縮して乾燥する凝縮板11と、基板f1を介して凝縮板11と対向する位置に配置され、基板f1を加熱する加熱装置12と、を備え、基板f1上の塗布膜f2の温度が段階的に上昇するように、加熱装置12により加熱する。加熱装置12は、基板f1との距離が基板f1の搬送方向yにおいて段階的に短くなるように、基板面に対して傾斜して配置されている。 As described above, the drying apparatus 1A according to the first embodiment faces the coating film f2 on the transported substrate f1, condenses the solvent vapor from the coating film f2, and condenses the drying plate 11. And a heating device 12 that is disposed at a position facing the condensing plate 11 via the substrate f1 and heats the substrate f1, and is heated so that the temperature of the coating film f2 on the substrate f1 increases stepwise. Heat by device 12. The heating device 12 is disposed to be inclined with respect to the substrate surface so that the distance from the substrate f1 is shortened stepwise in the transport direction y of the substrate f1.
 これにより、塗布膜f2の温度を段階的に上昇させることができ、急激な温度上昇による熱対流の発生を抑えることができる。熱対流による塗布膜面の温度ムラを抑えて、温度の上昇過程においても溶媒の蒸発速度を一定にすることができ、乾燥の均一性を向上させることができる。 Thereby, the temperature of the coating film f2 can be raised stepwise, and the occurrence of thermal convection due to a rapid temperature rise can be suppressed. The temperature unevenness of the coating film surface due to thermal convection can be suppressed, the evaporation rate of the solvent can be kept constant even in the temperature rising process, and the drying uniformity can be improved.
〔第2の実施の形態〕
 基板f1上の塗布膜f2の温度を段階的に上昇させるため、それぞれの表面温度が同じである複数の加熱装置を、基板f1を介して凝縮板11と対向し、当該基板f1との距離が搬送方向yにおいて段階的に短くなるように、配置することもできる。
[Second Embodiment]
In order to raise the temperature of the coating film f2 on the substrate f1 stepwise, a plurality of heating devices having the same surface temperature are opposed to the condenser plate 11 through the substrate f1, and the distance from the substrate f1 is It can also be arranged so as to be shortened stepwise in the transport direction y.
 図4Aは、第2の実施の形態に係る乾燥装置1Bの構成を示している。上述した薄膜形成装置100において、乾燥装置1Aに代えて乾燥装置1Bを用いることができる。
 図4Aに示すように、乾燥装置1Bは、乾燥装置1Aと同じ凝縮板11を備え、基板f1を介して凝縮板11と対向する位置に、3つの加熱装置141、142及び143を備えている。
FIG. 4A shows a configuration of a drying apparatus 1B according to the second embodiment. In the thin film forming apparatus 100 described above, a drying apparatus 1B can be used instead of the drying apparatus 1A.
As shown in FIG. 4A, the drying device 1B includes the same condensation plate 11 as the drying device 1A, and includes three heating devices 141, 142, and 143 at positions facing the condensation plate 11 via the substrate f1. .
 加熱装置141~143の表面温度はすべて同じ温度である。表面温度が同じであるとは、表面温度±2.5℃程度の範囲内にあることをいう。
 各加熱装置141~143は平面状であり、基板面と平行に配置されている。また、各加熱装置141~143は、基板f1との距離が、加熱装置141、加熱装置142、加熱装置143の順に短くなるように配置されている。
 各加熱装置141~143の表面温度は同じであるが、基板f1は各加熱装置141~143との距離が短くなるほどよく加熱されるので、基板f1の温度は搬送方向yにおいて段階的に上昇することになる。
The surface temperatures of the heating devices 141 to 143 are all the same. That the surface temperature is the same means that the surface temperature is within a range of about ± 2.5 ° C.
Each of the heating devices 141 to 143 has a planar shape and is disposed in parallel with the substrate surface. Further, each of the heating devices 141 to 143 is arranged such that the distance from the substrate f1 becomes shorter in the order of the heating device 141, the heating device 142, and the heating device 143.
The surface temperatures of the respective heating devices 141 to 143 are the same, but the substrate f1 is heated better as the distance from the respective heating devices 141 to 143 is shortened, so that the temperature of the substrate f1 increases stepwise in the transport direction y. It will be.
 3つの加熱装置141~143は、図4Bに示すように、基板f1の凝縮乾燥が開始されてから0~30mmの範囲内においてのみ、基板f1との距離が短くなるように配置されてもよい。 As shown in FIG. 4B, the three heating devices 141 to 143 may be arranged so that the distance from the substrate f1 is shortened only within the range of 0 to 30 mm after the condensation drying of the substrate f1 is started. .
〔第3の実施の形態〕
 基板f1上の塗布膜f2の温度を段階的に上昇させるため、それぞれの表面温度が異なる複数の加熱装置を、表面温度が低い方から順に、基板f1との距離が等しくなるように基板f1の搬送方向yに並べて配置することもできる。
[Third Embodiment]
In order to raise the temperature of the coating film f2 on the substrate f1 stepwise, a plurality of heating devices having different surface temperatures are arranged in order from the lowest surface temperature so that the distance from the substrate f1 becomes equal. They can also be arranged side by side in the transport direction y.
 図5は、第3の実施の形態に係る乾燥装置1Cの構成を示している。上述した薄膜形成装置100において、乾燥装置1Aに代えて乾燥装置1Cを用いることができる。
 図5に示すように、乾燥装置1Cは、乾燥装置1Aと同じ凝縮板11を備え、基板f1を介して凝縮板11と対向する位置に、3つの加熱装置151、152及び153を備えている。
FIG. 5 shows a configuration of a drying apparatus 1C according to the third embodiment. In the thin film forming apparatus 100 described above, a drying apparatus 1C can be used instead of the drying apparatus 1A.
As shown in FIG. 5, the drying apparatus 1C includes the same condensation plate 11 as the drying apparatus 1A, and includes three heating devices 151, 152, and 153 at positions facing the condensation plate 11 through the substrate f1. .
 各加熱装置151~153は平面状であり、基板f1との距離が等しくなるように、基板f1の搬送方向yに並べて配置されている。
 加熱装置151~153の表面温度はそれぞれ異なり、加熱装置151、加熱装置152、加熱装置153の順に表面温度が低い。例えば、塗布膜面f2aの温度Thを60℃に調整する場合、表面温度が20℃の加熱装置151、表面温度が45℃の加熱装置152、表面温度が60℃の加熱装置153を用いることができる。
 各加熱装置151~153は、表面温度が低い方から順に搬送方向yに並べて配置されているので、基板f1上の塗布膜f2の温度は搬送方向yにおいて段階的に上昇することになる。
Each of the heating devices 151 to 153 has a planar shape and is arranged side by side in the transport direction y of the substrate f1 so that the distance from the substrate f1 is equal.
The surface temperatures of the heating devices 151 to 153 are different, and the surface temperatures are lower in the order of the heating device 151, the heating device 152, and the heating device 153. For example, when the temperature Th of the coating film surface f2a is adjusted to 60 ° C., a heating device 151 having a surface temperature of 20 ° C., a heating device 152 having a surface temperature of 45 ° C., and a heating device 153 having a surface temperature of 60 ° C. may be used. it can.
Since each of the heating devices 151 to 153 is arranged in the transport direction y in order from the lowest surface temperature, the temperature of the coating film f2 on the substrate f1 increases stepwise in the transport direction y.
〔第4の実施の形態〕
 上述した平面状の加熱装置151~153に代えて、熱源を内蔵し、基板f1を搬送しながら加熱するヒートローラーを用いることもできる。
 図6は、ヒートローラーを用いた、第4の実施の形態に係る乾燥装置1Dの構成を示している。上述した薄膜形成装置100において、乾燥装置1Aに代えて乾燥装置1Dを用いることができる。
 図6に示すように、乾燥装置1Dは、乾燥装置1Aと同じ凝縮板11を備え、基板f1を介して凝縮板11と対向する位置に、3つの加熱装置161、162及び163を備えている。
[Fourth Embodiment]
Instead of the above-described planar heating devices 151 to 153, a heat roller that incorporates a heat source and heats the substrate f1 may be used.
FIG. 6 shows a configuration of a drying apparatus 1D according to the fourth embodiment using a heat roller. In the thin film forming apparatus 100 described above, a drying apparatus 1D can be used instead of the drying apparatus 1A.
As shown in FIG. 6, the drying apparatus 1D includes the same condensation plate 11 as the drying apparatus 1A, and includes three heating devices 161, 162, and 163 at positions facing the condensation plate 11 via the substrate f1. .
 各加熱装置161~163はヒートローラーであり、基板f1を搬送しながら加熱する。
 各加熱装置161~163の表面温度は、加熱装置161、加熱装置162、加熱装置163の順に低い。各加熱装置161~163は、基板f1との距離が等しく、表面温度が低い方から順に基板f1の搬送方向yに並べて配置されている。そのため、基板f1上の塗布膜f2の温度は搬送方向yにおいて段階的に上昇することになる。
Each of the heating devices 161 to 163 is a heat roller, and heats the substrate f1 while transporting it.
The surface temperature of each of the heating devices 161 to 163 is lower in the order of the heating device 161, the heating device 162, and the heating device 163. Each of the heating devices 161 to 163 is arranged in the transport direction y of the substrate f1 in order from the one having the same distance to the substrate f1 and the lowest surface temperature. Therefore, the temperature of the coating film f2 on the substrate f1 rises stepwise in the transport direction y.
 以下、実施例をあげて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 下記実施例において「部」又は「%」の表示を用いることがあるが、特に断りがない限り「重量部」又は「重量%」を表す。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
In the following examples, “parts” or “%” may be used, and “parts by weight” or “% by weight” is indicated unless otherwise specified.
〔乾燥装置K1の作製〕
 幅手方向の長さが400mm、搬送方向の長さが200mm、厚さが20mmであるアルミニウム板の一方の表面に、幅が2mm、深さが2mmのスリットを幅手方向に2mm間隔で形成し、凝縮板を作製した。
[Production of drying apparatus K1]
A slit with a width of 2 mm and a depth of 2 mm is formed at intervals of 2 mm in the width direction on one surface of an aluminum plate having a length in the width direction of 400 mm, a length in the transport direction of 200 mm, and a thickness of 20 mm. Then, a condenser plate was produced.
 パネル状の赤外線ヒーターSG4020(ワイエイシーデンコー社製)を、加熱装置として用意した。赤外線ヒーターSG4020は、幅手方向の長さが400mm、搬送方向の長さが200mmであり、表面温度は160℃であった。1枚の赤外線ヒーターSG4020を、基板を介して上記作製された凝縮板と対向する位置に配置し、基板との距離が搬送方向において段階的に短くなるように、赤外線ヒーターSG4020を基板面に対して傾斜させて、図1に示す乾燥装置1Aと同様の構成の乾燥装置K1を作製した。 A panel-shaped infrared heater SG4020 (manufactured by YAC DENKO) was prepared as a heating device. The infrared heater SG4020 had a length in the width direction of 400 mm, a length in the transport direction of 200 mm, and a surface temperature of 160 ° C. One infrared heater SG4020 is disposed at a position facing the above-prepared condensing plate through the substrate, and the infrared heater SG4020 is made to the substrate surface so that the distance from the substrate is gradually reduced in the transport direction. Thus, a drying device K1 having the same configuration as the drying device 1A shown in FIG. 1 was produced.
〔乾燥装置K2の作製〕
 乾燥装置K1の作製において、3枚の赤外線ヒーターSG4020を、基板を介して上記作製された凝縮板と対向する位置に、基板と対面するように平行に配置した。次に、凝縮乾燥が開始される位置を0mmとし、0~30mmの範囲内において基板との距離が搬送方向において段階的に短くなるように、3枚の赤外線ヒーターSG4020のそれぞれを階段状に配置したこと以外は、乾燥装置K1と同様にして乾燥装置K2を作成した。乾燥装置K2は、図4Bに示す乾燥装置1Bと同様の構成であった。
[Production of drying device K2]
In the production of the drying device K1, three infrared heaters SG4020 were arranged in parallel so as to face the substrate at a position facing the produced condensing plate through the substrate. Next, each of the three infrared heaters SG4020 is arranged in a staircase so that the position at which condensation drying is started is 0 mm, and the distance from the substrate is gradually reduced in the transport direction within the range of 0 to 30 mm. Except for this, a drying apparatus K2 was prepared in the same manner as the drying apparatus K1. The drying device K2 has the same configuration as the drying device 1B shown in FIG. 4B.
〔乾燥装置K3の作製〕
 乾燥装置K1と同様にして、凝縮板を作製した。
 また、温水を熱源として内蔵する3つのヒートローラーを、加熱装置として用意した。各ヒートローラーの表面温度は、それぞれ20℃、45℃及び60℃であった。次に、3つのヒートローラーを、基板を介して上記作製された凝縮板と対向する位置に、表面温度が低い順に基板の搬送経路に沿って並べて、図6に示す乾燥装置1Dと同様の構成の乾燥装置K3を作製した。
[Production of drying apparatus K3]
A condenser plate was produced in the same manner as the drying device K1.
In addition, three heat rollers incorporating warm water as a heat source were prepared as heating devices. The surface temperature of each heat roller was 20 ° C, 45 ° C and 60 ° C, respectively. Next, three heat rollers are arranged along the substrate conveyance path in the order of the low surface temperature at the position facing the above-prepared condensing plate through the substrate, and the same configuration as the drying apparatus 1D shown in FIG. A drying device K3 was prepared.
〔乾燥装置K21の作製〕
 乾燥装置K1の作製において、1枚の赤外線ヒーターSG4020を、基板と対面するように平行に配置したこと以外は乾燥装置K1と同様にして、乾燥装置K21を作製した。
[Production of drying apparatus K21]
In the production of the drying device K1, a drying device K21 was produced in the same manner as the drying device K1, except that one infrared heater SG4020 was arranged in parallel so as to face the substrate.
〔乾燥装置K22の作製〕
 乾燥装置K21の作製において、凝縮板に代えて温風ドライヤーであるエアノズルDX-300(キクチ社製)を配置したこと以外は乾燥装置K21と同様にして、乾燥装置K22を作製した。
[Production of drying device K22]
In the production of the drying device K21, a drying device K22 was produced in the same manner as the drying device K21 except that an air nozzle DX-300 (manufactured by Kikuchi Co., Ltd.), which is a hot air dryer, was disposed instead of the condenser plate.
〔ガスバリア性フィルム11の作製〕
 (基板の作製)
 基板として、両面が易接着加工されたポリエステルフィルム(帝人デュポンフィルム社製、極低熱収PET)を用いた。当該ポリエステルフィルムは、幅手方向の長さが0.35m、搬送方向の長さが50m、厚さが125μmであった。
 上記基板の一方の面に、UV硬化型有機/無機ハイブリッドハードコート剤OPSTAR Z7535(JSR社製)を、乾燥後の膜厚が4μmになるようにスロット法で塗布した。塗布後、温度80℃で3分間乾燥し、空気雰囲気下、高圧水銀ランプを使用して、1.0J/cmの光を照射して硬化させ、ブリードアウト防止層を形成した。
[Preparation of gas barrier film 11]
(Production of substrate)
As the substrate, a polyester film (manufactured by Teijin DuPont Films Co., Ltd., extremely low heat yield PET) whose both surfaces were easily bonded was used. The polyester film had a width in the width direction of 0.35 m, a length in the conveyance direction of 50 m, and a thickness of 125 μm.
On one surface of the substrate, a UV curable organic / inorganic hybrid hard coat agent OPSTAR Z7535 (manufactured by JSR) was applied by a slot method so that the film thickness after drying was 4 μm. After coating, the coating was dried at 80 ° C. for 3 minutes, and cured by irradiation with light of 1.0 J / cm 2 using a high-pressure mercury lamp in an air atmosphere to form a bleed-out prevention layer.
 次に、上記基板のブリードアウト防止層が設けられた面と反対の面に、UV硬化型有機/無機ハイブリッドハードコート剤OPSTAR Z7501(JSR社製)を、乾燥後の膜厚が4μmになるようにスロット法で塗布した。塗布後、温度80℃で3分間乾燥し、空気雰囲気下、高圧水銀ランプを使用して、1.0J/cmの光を照射して硬化させ、プライマー層を形成した。 Next, UV curable organic / inorganic hybrid hard coat agent OPSTAR Z7501 (manufactured by JSR) is applied to the surface of the substrate opposite to the surface provided with the bleed-out prevention layer so that the film thickness after drying becomes 4 μm. Was applied by the slot method. After application, the coating was dried at 80 ° C. for 3 minutes, and cured by irradiation with 1.0 J / cm 2 of light using a high-pressure mercury lamp in an air atmosphere to form a primer layer.
 (ガスバリア層の作製)
 上記作製された乾燥装置K1と塗布装置を、図1に示す薄膜形成装置100と同様に配置した。塗布装置として、幅手方向の長さが0.3m、スリット間隔が100μmのスリット型ダイコーターを用いた。
 基板のプライマー層上に、塗布装置によりガスバリア層の塗布膜を形成し、乾燥装置K1により塗布膜を乾燥した。
(Production of gas barrier layer)
The produced drying apparatus K1 and coating apparatus were arranged in the same manner as the thin film forming apparatus 100 shown in FIG. As a coating apparatus, a slit type die coater having a width of 0.3 m and a slit interval of 100 μm was used.
On the primer layer of the substrate, a coating film of a gas barrier layer was formed by a coating apparatus, and the coating film was dried by a drying device K1.
 塗布工程では、塗布液として、パーヒドロポリシラザンの20質量%ジブチルエーテル溶液であるアクアミカNN120-20(AZエレクトロニックマテリアルズ社製)を、さらにジブチルエーテルで希釈して、パーヒドロポリシラザンの10質量%ジブチルエーテル溶液を調製した。 In the coating step, as a coating solution, Aquamica NN120-20 (manufactured by AZ Electronic Materials), which is a 20% by mass dibutyl ether solution of perhydropolysilazane, is further diluted with dibutyl ether, and 10% by mass of perhydropolysilazane is dissolved. A butyl ether solution was prepared.
 塗布装置の塗布条件は、以下の通りである。
 (塗布条件)
 基板の搬送速度:10m/min 
 塗布時の環境温度:15℃
 塗布した幅手方向の長さ:0.3m
 塗布した搬送方向の長さ:50m
 上記基板の搬送速度は、レーザードップラー速度計LV203(三菱電機社製)により測定した。
The coating conditions of the coating device are as follows.
(Application conditions)
Substrate transport speed: 10 m / min
Environmental temperature during application: 15 ° C
Applied length in the width direction: 0.3 m
Applied length in transport direction: 50m
The conveyance speed of the substrate was measured with a laser Doppler velocimeter LV203 (manufactured by Mitsubishi Electric Corporation).
 塗布膜の粘度をデジタル粘度計HV-50(ブルックフィールド社製)により測定したところ、0.5mPa・sであった。
 また、塗布膜の膜厚を、下記式により算出したところ、4μmであった。
 塗布膜の膜厚=塗布量(g/m)/塗布液の比重(g/m
 塗布量(g/m)=塗布液の供給速度(g/sec)/{塗布した幅手方向の長さ(m)×塗布速度(m/sec)}
The viscosity of the coated film was measured with a digital viscometer HV-50 (manufactured by Brookfield) and found to be 0.5 mPa · s.
Moreover, it was 4 micrometers when the film thickness of the coating film was computed by the following formula.
Coating film thickness = coating amount (g / m 2 ) / specific gravity of coating solution (g / m 3 )
Application amount (g / m 2 ) = application liquid supply speed (g / sec) / {length in the width direction applied (m) × application speed (m / sec)}
 乾燥装置K1の乾燥条件は、以下の通りである。
 (乾燥条件)
 凝縮面の温度Tc:15℃
 塗布膜面の温度Th0:15℃
 塗布膜面の温度Th1:20℃
 塗布膜面の温度Th2:45℃
 塗布膜面の温度Th3:60℃
 凝縮面と塗布膜面間の距離d:2mm
 基板の搬送速度:10m/min
The drying conditions of the drying device K1 are as follows.
(Drying conditions)
Condensing surface temperature Tc: 15 ° C.
Coating surface temperature Th0: 15 ° C
Coating film surface temperature Th1: 20 ° C
Temperature Th2 of coating film surface: 45 ° C
Temperature Th3 of coating film surface: 60 ° C
Distance d between condensation surface and coating film surface: 2 mm
Substrate transport speed: 10 m / min
 なお、凝縮面と塗布膜面間の距離dは、凝縮板と基板の搬送ローラーの位置関係を調整することにより調整した。
 また、上記塗布膜面の各温度Th0~Th3は、図3に示すように凝縮板により凝縮乾燥が開始される位置を0mmとし、当該位置から基板が0、10、20及び30mm搬送された位置での塗布膜面の温度Thを表す。各位置における塗布膜面の温度Th0~Th3を、放射温度センサーFT-30(キーエンス社製)により測定し、各温度Th0~Th3が上記温度となるように、赤外線ヒーターSG4020の傾斜角度をあらかじめ調整した。
The distance d between the condensation surface and the coating film surface was adjusted by adjusting the positional relationship between the condensation plate and the substrate transport roller.
Further, the temperatures Th0 to Th3 on the coating film surface are positions where the position where the condensation drying is started by the condenser plate is 0 mm as shown in FIG. 3, and the substrate is transported by 0, 10, 20 and 30 mm from the position. Represents the temperature Th of the coating film surface. The temperature Th0 to Th3 of the coating film surface at each position is measured by a radiation temperature sensor FT-30 (manufactured by Keyence Corporation), and the inclination angle of the infrared heater SG4020 is adjusted in advance so that each temperature Th0 to Th3 becomes the above temperature. did.
 乾燥後、得られた塗布膜に対して、真空紫外光を照射し、ガスバリア層中のパーヒドロポリシラザンをシリカ転化させて、ガスバリア層を得た。
 真空紫外光は、MDエキシマ社製のステージ可動型キセノン(Xe)エキシマ照射装置MECLM-1-200(照射波長:172nm、エキシマランプ光強度:312mW/cm)を用いて照射した。照射時、光源と基板間の距離が1mmとなるように基板を搬送し、基板の温度(ステージ加熱温度)を100℃に保持した。基板の搬送速度は、1.5m/minであった。また、真空紫外光の照射庫内に導入する窒素ガス及び酸素ガスの流量をフローメーターにより測定し、照射時の酸素濃度が0.2~0.4体積%の範囲になるように、当該窒素ガスと酸素ガスの流量比(窒素ガス/酸素ガス)を調整した。
After drying, the coating film obtained was irradiated with vacuum ultraviolet light to convert the perhydropolysilazane in the gas barrier layer into silica to obtain a gas barrier layer.
The vacuum ultraviolet light was irradiated using a stage movable xenon (Xe) excimer irradiation apparatus MECLM-1-200 (irradiation wavelength: 172 nm, excimer lamp light intensity: 312 mW / cm 2 ) manufactured by MD Excimer. At the time of irradiation, the substrate was transported so that the distance between the light source and the substrate was 1 mm, and the substrate temperature (stage heating temperature) was maintained at 100 ° C. The conveyance speed of the substrate was 1.5 m / min. In addition, the flow rate of nitrogen gas and oxygen gas introduced into the vacuum ultraviolet irradiation chamber is measured with a flow meter, and the nitrogen concentration is adjusted so that the oxygen concentration during irradiation is in the range of 0.2 to 0.4% by volume. The flow rate ratio (nitrogen gas / oxygen gas) of gas and oxygen gas was adjusted.
〔ガスバリア性フィルム12及び13の作製〕
 ガスバリア性フィルム11の作製において、乾燥装置K1の赤外線ヒーターSG4020の傾斜角度を調整して、塗布膜の温度Th0~Th3が下記表1に示す温度となるように変更して凝縮乾燥を行った以外は、ガスバリア性フィルム11と同様にして各ガスバリア性フィルム12及び13を作製した。
[Production of gas barrier films 12 and 13]
In the production of the gas barrier film 11, the inclination angle of the infrared heater SG4020 of the drying device K1 is adjusted to change the coating film temperatures Th0 to Th3 to the temperatures shown in Table 1 below and perform condensation drying. Produced the gas barrier films 12 and 13 in the same manner as the gas barrier film 11.
〔ガスバリア性フィルム14の作製〕
 ガスバリア性フィルム13の作製において、凝縮板により凝縮乾燥が開始される位置を0mmとし、当該位置から基板が19mm搬送された位置での塗布膜面の温度Thを、温度Th2として測定し、当該温度Th2が60℃となるように、乾燥装置K1の赤外線ヒーターSG4020の傾斜角度を調整して凝縮乾燥を行ったこと以外は、ガスバリア性フィルム11と同様にして各ガスバリア性フィルム14を作製した。
[Preparation of gas barrier film 14]
In the production of the gas barrier film 13, the position at which condensation drying is started by the condenser plate is 0 mm, and the temperature Th of the coating film surface at the position where the substrate is transported 19 mm from the position is measured as the temperature Th2 *. Each gas barrier film 14 was produced in the same manner as the gas barrier film 11 except that the drying was performed by adjusting the inclination angle of the infrared heater SG4020 of the drying device K1 so that the temperature Th2 * was 60 ° C. .
〔ガスバリア性フィルム2及び3の作製〕
 ガスバリア性フィルム11の作製において、ガスバリア層の塗布膜の粘度が、それぞれ1.0及び10.0mPa・sとなるように、アクアミカNN120-20の希釈度を変更して塗布液を調製したこと以外はガスバリア性フィルム11と同様にして、各ガスバリア性フィルム2及び3を作製した。
[Production of gas barrier films 2 and 3]
In preparation of the gas barrier film 11, except that the coating liquid was prepared by changing the dilution of Aquamica NN120-20 so that the viscosity of the coating film of the gas barrier layer was 1.0 and 10.0 mPa · s, respectively. In the same manner as in the gas barrier film 11, gas barrier films 2 and 3 were produced.
〔ガスバリア性フィルム4及び5の作製〕
 ガスバリア性フィルム11の作製において、乾燥装置K1を乾燥装置K2及びK3にそれぞれ変更したこと以外は乾燥装置K1と同様にして、各ガスバリア性フィルム4及び5を作製した。
[Production of gas barrier films 4 and 5]
In the production of the gas barrier film 11, the gas barrier films 4 and 5 were produced in the same manner as the drying device K1, except that the drying device K1 was changed to the drying devices K2 and K3, respectively.
〔ガスバリア性フィルム6及び7の作製〕
 ガスバリア性フィルム11の作製において、乾燥装置K1を乾燥装置K21及びK22にそれぞれ変更したこと以外は乾燥装置K1と同様にして、各ガスバリア性フィルム6及び7を作製した。
[Production of gas barrier films 6 and 7]
In the production of the gas barrier film 11, the gas barrier films 6 and 7 were produced in the same manner as the drying device K1, except that the drying device K1 was changed to the drying devices K21 and K22, respectively.
〔評価〕
 作製された各ガスバリア性フィルム11~14及び2~7について、下記評価を行った。
[Evaluation]
The produced gas barrier films 11 to 14 and 2 to 7 were evaluated as follows.
(1)乾燥の均一性
 各ガスバリア性フィルム11~14及び2~7のガスバリア層の膜厚を、膜厚測定器F-20(フィルメトリクス社製)を用いて測定した。測定は、幅手方向に0.01m間隔で、搬送方向の位置を変えて行い、300点の測定値を得た。300点の測定値から、膜厚の最大値、最小値、平均値を求めて、下記式により膜厚のばらつきを求めた。
 膜厚のばらつき={(最大値-最小値)/平均値}×100
(1) Uniformity of drying The film thicknesses of the gas barrier layers of the respective gas barrier films 11 to 14 and 2 to 7 were measured using a film thickness measuring device F-20 (manufactured by Filmetrics). The measurement was performed at intervals of 0.01 m in the width direction, changing the position in the transport direction, and 300 measured values were obtained. The maximum value, the minimum value, and the average value of the film thickness were determined from the 300 measured values, and the film thickness variation was determined by the following formula.
Variation in film thickness = {(maximum value−minimum value) / average value} × 100
 求めた膜厚のばらつきを、乾燥の均一性として下記のようにランク評価した。
 5:膜厚のばらつきが0.5未満であり、非常に均一な乾燥ができている
 4:膜厚のばらつきが0.5以上1.0未満であり、均一な乾燥ができている
 3:膜厚のばらつきが1.0以上5.0未満であり、膜厚のばらつきが見られるが、実用可能な程度に均一な乾燥ができている
 2:膜厚のばらつきが5.0以上10.0未満であり、乾燥ムラが確認できる。
 1:膜厚のばらつきが10.0以上であり、乾燥ムラが多い
The obtained film thickness variation was ranked as follows as the uniformity of drying.
5: Variation in film thickness is less than 0.5 and very uniform drying 4: Variation in film thickness is 0.5 or more and less than 1.0, and uniform drying is achieved 3: The film thickness variation is 1.0 or more and less than 5.0, and the film thickness variation is observed, but the film is uniformly dried to a practical level. 2: The film thickness variation is 5.0 or more and 10. It is less than 0, and drying unevenness can be confirmed.
1: Variation in film thickness is 10.0 or more, and there are many drying irregularities
(2)ガスバリア層の安定性
 各ガスバリア性フィルム11~14及び2~7の赤外線スペクトルを、室温(温度25℃、相対湿度65%)下において、Nicolet380(サーモフィッシャーサイエンティフィック社製)を用いて測定した。
 測定後、各ガスバリア性フィルム11~14及び2~7を、温度85℃、相対湿度85%の高温高湿下に調整した恒温恒湿オーブンYamato Humidic ChamberIG47M(ヤマト科学社製)内に、120時間連続で保存した。その後、室温下に戻した各ガスバリア性フィルム11~14及び2~7の赤外線スペクトルを再度測定した。
 高温高湿下に保存する前後で測定された各赤外線スペクトルの800~850cm-1の吸収帯域において、Si-Nに由来するピークのピーク強度を求め、当該ピーク強度の高温高湿下での保存前後の変化率を下記式により算出した。
 ピーク強度の変化率=保存後のピーク強度/保存前のピーク強度
(2) Stability of gas barrier layer The infrared spectrum of each of the gas barrier films 11 to 14 and 2 to 7 is used with Nicolet 380 (manufactured by Thermo Fisher Scientific) at room temperature (temperature 25 ° C., relative humidity 65%). Measured.
After the measurement, the gas barrier films 11 to 14 and 2 to 7 were placed in a constant temperature and humidity oven Yamato Humidic Chamber IG47M (manufactured by Yamato Kagaku Co., Ltd.) adjusted to a high temperature and high humidity of 85 ° C. and 85% relative humidity for 120 hours. Stored continuously. Thereafter, the infrared spectra of the gas barrier films 11 to 14 and 2 to 7 which were returned to room temperature were measured again.
In the absorption band of 800 to 850 cm −1 of each infrared spectrum measured before and after storage under high temperature and high humidity, the peak intensity of the peak derived from Si—N is obtained, and the peak intensity is stored under high temperature and high humidity. The rate of change before and after was calculated by the following formula.
Change rate of peak intensity = peak intensity after storage / peak intensity before storage
 得られたピーク強度の保存前後の変化率を、ガスバリア層の安定性として下記のようにしてランク評価した。
 5:ピーク強度の変化率が0.5未満であり、非常に優れた安定性を示す
 4:ピーク強度の変化率が0.5以上0.7未満であり、優れた安定性を示す
 3:ピーク強度の変化率が0.7以上0.8未満であり、実用可能な程度の安定性を示す
 2:ピーク強度の変化率が0.8以上0.9未満であり、安定性が低い
 1:ピーク強度の変化率が0.9以上であり、安定性が非常に低い
The rate of change of the obtained peak intensity before and after storage was evaluated for rank as follows as the stability of the gas barrier layer.
5: Change rate of peak intensity is less than 0.5 and shows very excellent stability 4: Change rate of peak intensity is 0.5 or more and less than 0.7 and shows excellent stability 3: The peak intensity change rate is 0.7 or more and less than 0.8, and shows a practically stable degree. 2: The peak intensity change rate is 0.8 or more and less than 0.9, and the stability is low. : The rate of change in peak intensity is 0.9 or more, and the stability is very low
(3)ガスバリア性
 各ガスバリア性フィルム11~14及び2~7の水蒸気透過度(g/m・24h)を、特開2005-283561号公報等に記載のカルシウム腐食法により求めた。
 まず、各ガスバリア性フィルム11~14及び2~7を切り出し、真空蒸着装置JEE-400(日本電子社製)を用いて、切り出した試料の一部にカルシウムを蒸着させて、12mm×12mmのカルシウム層を9つ設けた。蒸着時、各カルシウム層以外はマスクした。
(3) Gas barrier properties The water vapor permeability (g / m 2 · 24 h) of each of the gas barrier films 11 to 14 and 2 to 7 was determined by the calcium corrosion method described in JP-A-2005-283561.
First, the gas barrier films 11 to 14 and 2 to 7 are cut out, and using a vacuum deposition apparatus JEE-400 (manufactured by JEOL Ltd.), calcium is vapor-deposited on a part of the cut out sample to obtain 12 mm × 12 mm calcium. Nine layers were provided. At the time of vapor deposition, the portions other than each calcium layer were masked.
 真空状態のままマスクを除去し、もう一つの蒸着源からアルミニウムを蒸着させて、カルシウム層を含む全面を覆い、封止層を形成した。次に、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下へ移し、封止層が形成されたフィルム面上に紫外線硬化型樹脂T470/UR7134(ナガセケムテックス製)を塗布し、その上に厚さ0.2mmの石英ガラスを配置した。石英ガラス越しに紫外線を照射し、紫外線硬化型樹脂を硬化させて、評価用セルを作製した。 The mask was removed in a vacuum state, and aluminum was deposited from another deposition source to cover the entire surface including the calcium layer, thereby forming a sealing layer. Next, the vacuum state is released, and it is quickly transferred to a dry nitrogen gas atmosphere, and an ultraviolet curable resin T470 / UR7134 (manufactured by Nagase ChemteX) is applied on the film surface on which the sealing layer is formed. Quartz glass having a thickness of 0.2 mm was disposed. An evaluation cell was produced by irradiating ultraviolet light through quartz glass to cure the ultraviolet curable resin.
 得られた各ガスバリア性フィルム11~14及び2~7の評価用セルを、温度85℃・相対湿度85%に調整した恒温恒湿オーブンYamato Humidic ChamberIG47M内に120時間連続で保存した。
 保存時間T(h)がT=0及びT=120である場合の評価用セルを撮影して得られた各画像から、カルシウムの腐食領域を画像処理により抽出した。抽出した腐食領域の面積から、腐食に要した水蒸気量を、水蒸気透過量として、下記式により算出した。
 水蒸気透過量(g/m・24h)=X×18×2×(10/A)×(24/T)
The obtained cells for evaluation of the gas barrier films 11 to 14 and 2 to 7 were stored continuously in a constant temperature and humidity oven Yamato Humidic Chamber IG47M adjusted to a temperature of 85 ° C. and a relative humidity of 85% for 120 hours.
From each image obtained by photographing the evaluation cell when the storage time T (h) is T = 0 and T = 120, a corrosion area of calcium was extracted by image processing. From the area of the extracted corrosion area, the amount of water vapor required for corrosion was calculated as the amount of water vapor permeation by the following formula.
Water vapor transmission rate (g / m 2 · 24 h) = X × 18 × 2 × (10 4 / A) × (24 / T)
 上記式において、Xはカルシウムが水と反応して生成された水酸化カルシウムのモル量を表し、X=(δ×d×α×d)/Mで表される。
 Aは、カルシウム層の面積(cm)を表す。
 δは、カルシウム層の腐食領域の面積(cm)を表す。dは、カルシウム層の厚さ(cm)を表す。αはカルシウム層の厚さの補正係数であり、1<α≦(M/d)/(M/d)の範囲内で決定される。dは、カルシウムの密度(g/cm)を表し、dは、水酸化カルシウムの密度(g/cm)を表す。Mは、カルシウムの分子量を表し、Mは水酸化カルシウムの分子量を表す。
In the above formula, X represents the molar amount of calcium hydroxide produced by the reaction of calcium with water, and is represented by X = (δ × d 0 × α × d 2 ) / M 2 .
A represents the area (cm 2 ) of the calcium layer.
δ represents the area (cm 2 ) of the corrosion region of the calcium layer. d 0 represents the thickness (cm) of the calcium layer. α is a correction factor for the thickness of the calcium layer, and is determined within a range of 1 <α ≦ (M 2 / d 2 ) / (M 1 / d 1 ). d 1 represents the density of calcium (g / cm 3 ), and d 2 represents the density of calcium hydroxide (g / cm 3 ). M 1 represents the molecular weight of calcium, and M 2 represents the molecular weight of calcium hydroxide.
 T=0及びT=120である場合に求められた各水蒸気透過量から、高温高湿下に保存する前後における水蒸気透過量の変化率を、水蒸気透過度として下記式により求めた。
 水蒸気透過度(g/m・24h)
     =(T=0の場合の水蒸気透過量)/(T=120の場合の水蒸気透過量)
From the respective water vapor transmission amounts obtained when T = 0 and T = 120, the rate of change of the water vapor transmission amount before and after storage under high temperature and high humidity was determined as the water vapor transmission rate by the following formula.
Water vapor permeability (g / m 2 · 24h)
= (Water vapor transmission amount when T = 0) / (Water vapor transmission amount when T = 120)
 得られた水蒸気透過度を、高温高湿下でのガスバリア性として下記のようにランク評価した。
 5:水蒸気透過度が0.1未満であり、非常に優れたガスバリア性を示す
 4:水蒸気透過度が0.1以上0.3未満であり、優れたガスバリア性を示す
 3:水蒸気透過度が0.3以上0.6未満であり、実用可能なガスバリア性を示す
 2:水蒸気透過度が0.6以上0.8未満であり、ガスバリア性が低い
 1:水蒸気透過度が0.8以上であり、ガスバリア性が非常に低い
The obtained water vapor permeability was ranked as follows as gas barrier properties under high temperature and high humidity.
5: Water vapor permeability is less than 0.1 and shows very good gas barrier properties 4: Water vapor permeability is 0.1 or more and less than 0.3 and shows excellent gas barrier properties 3: Water vapor permeability is It is 0.3 or more and less than 0.6, and shows a practical gas barrier property. 2: Water vapor permeability is 0.6 or more and less than 0.8, and gas barrier property is low 1: Water vapor permeability is 0.8 or more. Yes, gas barrier property is very low
 下記表1は、評価結果を示す。
 表1中、ガスバリア性フィルム14の温度Th2の欄には、温度Th2を表示している。
Figure JPOXMLDOC01-appb-T000002
Table 1 below shows the evaluation results.
In Table 1, the temperature Th2 * is displayed in the column of the temperature Th2 of the gas barrier film 14.
Figure JPOXMLDOC01-appb-T000002
 上記表1に示すように、実施例に係るガスバリア性フィルム11~14及び2~5によれば、塗布膜の粘度が0.5又は1.0mPa・s程度と低粘度である場合にも、均一な乾燥が可能であり、十分なガスバリア層の保存性及びガスバリア性が得られている。比較例に係るガスバリア性フィルム6と比較すると、塗布膜の段階的な温度上昇により熱対流を抑えて、均一な乾燥が可能になったと推察される。
 比較例に係るガスバリア性フィルム6及び7によれば、乾燥の均一性が不十分となり、ガスバリア層として必要な性能が得られていない。これは、塗布膜の粘度が低いと、対流による液流動が起こるか、急激な加熱による熱対流が生じ、塗布膜面上で溶媒の蒸発速度が一定しないためと推定される。
As shown in Table 1 above, according to the gas barrier films 11 to 14 and 2 to 5 according to the examples, even when the viscosity of the coating film is as low as about 0.5 or 1.0 mPa · s, Uniform drying is possible, and sufficient storage stability and gas barrier properties of the gas barrier layer are obtained. Compared with the gas barrier film 6 according to the comparative example, it is surmised that the heat convection is suppressed by the stepwise temperature increase of the coating film and uniform drying is possible.
According to the gas barrier films 6 and 7 according to the comparative examples, the uniformity of drying becomes insufficient, and the performance required as a gas barrier layer is not obtained. This is presumably because when the viscosity of the coating film is low, liquid flow due to convection occurs or thermal convection due to rapid heating occurs, and the evaporation rate of the solvent is not constant on the surface of the coating film.
 本発明は、塗布膜からの溶媒の蒸気を凝縮する乾燥装置及び乾燥方法に利用することができる。 The present invention can be used in a drying apparatus and a drying method for condensing solvent vapor from a coating film.
100  薄膜形成装置
f1  基板
f2  塗布膜
f2a  塗布膜面
1A~1D  乾燥装置
11  凝縮板
11a  凝縮面
12、141~143、151~153、161~163  加熱装置
3  塗布装置
100 Thin film forming device f1 Substrate f2 Coating film f2a Coating film surface 1A to 1D Drying device 11 Condensing plate 11a Condensing surface 12, 141 to 143, 151 to 153, 161 to 163 Heating device 3 Coating device

Claims (8)

  1.  搬送される基板上の塗布膜と対面し、当該塗布膜からの溶媒の蒸気を凝縮して乾燥する凝縮板と、
     前記基板を介して前記凝縮板と対向する位置に配置され、前記基板を加熱する1又は複数の加熱装置と、を備え、
     前記基板上の塗布膜の温度が段階的に上昇するように、前記加熱装置により加熱することを特徴とする乾燥装置。
    A condensing plate facing the coating film on the substrate to be transported, condensing the solvent vapor from the coating film and drying;
    One or a plurality of heating devices that are disposed at positions facing the condenser plate via the substrate and heat the substrate,
    A drying apparatus, wherein the heating apparatus heats the coating film on the substrate so that the temperature of the coating film increases stepwise.
  2.  前記1又は複数の加熱装置は、前記基板との距離が前記基板の搬送方向において段階的に短くなるように、基板面に対して傾斜して配置されていることを特徴とする請求項1に記載の乾燥装置。 The said 1 or several heating apparatus is inclined and arrange | positioned with respect to the board | substrate surface so that the distance with the said board | substrate may shorten in steps in the conveyance direction of the said board | substrate. The drying apparatus as described.
  3.  前記複数の加熱装置の表面温度が同じであり、前記基板との距離が前記基板の搬送方向において段階的に短くなるように、各加熱装置が配置されていることを特徴とする請求項1に記載の乾燥装置。 The heating devices are arranged such that the surface temperatures of the plurality of heating devices are the same, and the distance from the substrate is gradually reduced in the transport direction of the substrate. The drying apparatus as described.
  4.  前記複数の加熱装置の表面温度がそれぞれ異なり、前記基板との距離が等しくなるように、表面温度が低い方から順に前記基板の搬送方向に並べて、各加熱装置が配置されていることを特徴とする請求項1に記載の乾燥装置。 The plurality of heating devices are arranged in the transport direction of the substrate in order from the lowest surface temperature so that the surface temperatures of the plurality of heating devices are different from each other and the distance from the substrate is equal. The drying apparatus according to claim 1.
  5.  前記1又は複数の加熱装置は、輻射熱による加熱を行うことを特徴とする請求項1~4のいずれか一項に記載の乾燥装置。 The drying device according to any one of claims 1 to 4, wherein the one or more heating devices perform heating by radiant heat.
  6.  前記塗布膜は、粘度が100mPa・s以下であることを特徴とする請求項1~5のいずれか一項に記載の乾燥装置。 The drying apparatus according to any one of claims 1 to 5, wherein the coating film has a viscosity of 100 mPa · s or less.
  7.  前記塗布膜は、ポリシラザン骨格を有するケイ素化合物を含有することを特徴とする請求項1~6のいずれか一項に記載の乾燥装置。 The drying apparatus according to any one of claims 1 to 6, wherein the coating film contains a silicon compound having a polysilazane skeleton.
  8.  搬送される基板上の塗布膜と対面する凝縮板により、当該塗布膜からの溶媒の蒸気を凝縮して乾燥する乾燥方法であって、
     前記基板を介して前記凝縮板と対向する位置に配置された1又は複数の加熱装置により、前記基板上の塗布膜の温度が段階的に上昇するように、前記基板を加熱することを特徴とする乾燥方法。
    A condensing plate facing the coating film on the substrate to be conveyed is a drying method for condensing and drying the solvent vapor from the coating film,
    The substrate is heated so that the temperature of the coating film on the substrate increases stepwise by one or a plurality of heating devices disposed at positions facing the condenser plate via the substrate. How to dry.
PCT/JP2014/063814 2013-05-27 2014-05-26 Drying apparatus and drying method WO2014192685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013110536A JP2016145649A (en) 2013-05-27 2013-05-27 Drying apparatus and drying method
JP2013-110536 2013-05-27

Publications (1)

Publication Number Publication Date
WO2014192685A1 true WO2014192685A1 (en) 2014-12-04

Family

ID=51988716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063814 WO2014192685A1 (en) 2013-05-27 2014-05-26 Drying apparatus and drying method

Country Status (2)

Country Link
JP (1) JP2016145649A (en)
WO (1) WO2014192685A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186075A1 (en) * 2015-05-21 2016-11-24 三井化学東セロ株式会社 Method for manufacturing gas-barrier layered product
CN109225772A (en) * 2018-10-19 2019-01-18 江苏昱博自动化设备有限公司 A kind of automatic glue application method
US10532545B2 (en) 2014-04-22 2020-01-14 Oji Holdings Corporation Composite and method for producing the same
CN113042334A (en) * 2019-12-26 2021-06-29 震旦(中国)有限公司 Intelligent paint drying chamber

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6568838B2 (en) * 2016-10-18 2019-08-28 上村工業株式会社 Drying equipment
CN114367414B (en) * 2022-01-14 2023-04-18 江阴市乐事康工业设计有限公司 Coating and heating process and equipment for lithium battery pole piece

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235181A (en) * 2003-01-28 2004-08-19 Showa Aircraft Ind Co Ltd Reflow device
JP2009099835A (en) * 2007-10-18 2009-05-07 Toppan Printing Co Ltd Heat treating device for resist-coated substrate, and heat treating method therefor
JP4631242B2 (en) * 2001-09-27 2011-02-16 富士フイルム株式会社 Coating film drying method and apparatus
JP2012250181A (en) * 2011-06-03 2012-12-20 Konica Minolta Holdings Inc Method of manufacturing barrier film and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631242B2 (en) * 2001-09-27 2011-02-16 富士フイルム株式会社 Coating film drying method and apparatus
JP2004235181A (en) * 2003-01-28 2004-08-19 Showa Aircraft Ind Co Ltd Reflow device
JP2009099835A (en) * 2007-10-18 2009-05-07 Toppan Printing Co Ltd Heat treating device for resist-coated substrate, and heat treating method therefor
JP2012250181A (en) * 2011-06-03 2012-12-20 Konica Minolta Holdings Inc Method of manufacturing barrier film and electronic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10532545B2 (en) 2014-04-22 2020-01-14 Oji Holdings Corporation Composite and method for producing the same
WO2016186075A1 (en) * 2015-05-21 2016-11-24 三井化学東セロ株式会社 Method for manufacturing gas-barrier layered product
JPWO2016186075A1 (en) * 2015-05-21 2018-03-01 三井化学東セロ株式会社 Method for producing gas barrier laminate
TWI692495B (en) * 2015-05-21 2020-05-01 日商三井化學東賽璐股份有限公司 Method for producing gas-barrier laminate
CN109225772A (en) * 2018-10-19 2019-01-18 江苏昱博自动化设备有限公司 A kind of automatic glue application method
CN113042334A (en) * 2019-12-26 2021-06-29 震旦(中国)有限公司 Intelligent paint drying chamber

Also Published As

Publication number Publication date
JP2016145649A (en) 2016-08-12

Similar Documents

Publication Publication Date Title
WO2014192685A1 (en) Drying apparatus and drying method
JP5895687B2 (en) Gas barrier film
JP5402818B2 (en) Gas barrier film and method for producing gas barrier film
JP5888329B2 (en) Gas barrier film, method for producing gas barrier film, and electronic device
WO2012067230A1 (en) Gas barrier film, method of producing a gas barrier film, and electronic device
US20150364720A1 (en) Gas barrier film
JPWO2014163062A1 (en) Method for producing gas barrier film, gas barrier film and electronic device
JP2012131194A (en) Gas barrier film
JP2013208867A (en) Gas barrier film, and electronic device
WO2014192667A1 (en) Drying apparatus and drying method
JP2014240462A (en) Gas barrier film, method for manufacturing gas barrier film, and apparatus for manufacturing gas barrier film
JP2014240051A (en) Gas barrier film, manufacturing method of gas barrier film, and manufacturing apparatus of gas barrier film
JP2012228859A (en) Gas barrier film and method of manufacturing the same
WO2014192668A1 (en) Drying apparatus and drying method
JP2016022595A (en) Gas barrier film, production method thereof, and electronic device having gas barrier film
JP5273074B2 (en) Barrier film manufacturing method
JP2017077668A (en) Gas barrier laminate and organic electroluminescent element
US20150255737A1 (en) Transparent silicone resin composition for non vacuum deposition and barrier stacks including the same
JP5900164B2 (en) Coating film drying apparatus and drying method
WO2015083706A1 (en) Gas barrier film and method for producing same
JP6003241B2 (en) Coating film drying apparatus and drying method
WO2015025782A1 (en) Device for producing gas barrier film and method for producing gas barrier film
JP4911413B2 (en) Oxide thin film forming equipment
JP2014023993A (en) Method and device for manufacturing gas barrier film
JP6222224B2 (en) Method for producing gas barrier film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP