JP6003241B2 - Coating film drying apparatus and drying method - Google Patents
Coating film drying apparatus and drying method Download PDFInfo
- Publication number
- JP6003241B2 JP6003241B2 JP2012124519A JP2012124519A JP6003241B2 JP 6003241 B2 JP6003241 B2 JP 6003241B2 JP 2012124519 A JP2012124519 A JP 2012124519A JP 2012124519 A JP2012124519 A JP 2012124519A JP 6003241 B2 JP6003241 B2 JP 6003241B2
- Authority
- JP
- Japan
- Prior art keywords
- drying
- coating film
- substrate
- gap holding
- condensing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Drying Of Solid Materials (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Apparatus (AREA)
Description
本発明は、塗布膜の乾燥装置及び乾燥方法に関する。 The present invention relates to a coating film drying apparatus and a drying method.
有機エレクトロルミネッセンス(EL:Electro Luminescence)素子や有機薄膜太陽電池等における有機薄膜の成膜方法として、真空プロセスを必要とせず、連続生産が容易であることから、スピンコート法、キャスト法、インクジェット法、スプレー法、印刷法等のウェットプロセスによる塗布方法が注目されている。しかしながら、ウェットプロセスによれば、塗布膜を乾燥する工程において乾燥ムラが生じることがあり、均一な膜厚を得ることが難しい。要因の1つとして、溶解度を上げるために、塗布液の溶媒として揮発性の高い有機溶剤が用いられることが挙げられる。 As a method for forming an organic thin film in an organic electroluminescence (EL) element, an organic thin film solar cell or the like, a vacuum process is not required and continuous production is easy. Therefore, a spin coating method, a casting method, and an ink jet method are used. Attention has been focused on application methods by wet processes such as spraying and printing. However, according to the wet process, drying unevenness may occur in the step of drying the coating film, and it is difficult to obtain a uniform film thickness. One of the factors is that a highly volatile organic solvent is used as a solvent for the coating solution in order to increase the solubility.
従来、均一な乾燥が可能な乾燥方法として、塗布膜面に凝縮板を対面させ、凝縮板により塗布膜中の溶媒を凝縮させる乾燥方法が開示されている(例えば、特許文献1参照)。この乾燥方法によれば、対流を用いずに、凝縮板と塗布膜間の距離とそれぞれの表面温度とを制御することによって、精密な乾燥が可能である。 Conventionally, as a drying method capable of uniform drying, a drying method in which a condensing plate faces a coating film surface and a solvent in the coating film is condensed by the condensing plate has been disclosed (for example, see Patent Document 1). According to this drying method, precise drying is possible by controlling the distance between the condenser plate and the coating film and the respective surface temperatures without using convection.
乾燥を均一にしながら、乾燥速度を上げるためには、凝縮板と塗布膜間の距離を小さくすればよいが、長尺の基板を乾燥する場合には、乾燥工程全般にわたってその距離精度を維持する必要がある。乾燥ムラは、塗布直後に発生することが多く、初期段階での乾燥が乾燥の均一性に寄与するところが大きいことから、塗布直後の乾燥の初期段階のみ凝縮板と塗布膜間の距離を小さくし、保持する乾燥方法が提案されている(例えば、特許文献2参照)。 In order to increase the drying speed while maintaining uniform drying, the distance between the condenser plate and the coating film may be reduced. However, when drying a long substrate, the distance accuracy is maintained throughout the drying process. There is a need. Unevenness of drying often occurs immediately after coating, and drying at the initial stage greatly contributes to the uniformity of drying.Therefore, the distance between the condenser plate and the coating film is reduced only in the initial stage of drying immediately after coating. A holding drying method has been proposed (see, for example, Patent Document 2).
しかしながら、上記特許文献2によれば、凝縮板と塗布膜間の距離が搬送方向の位置によって異なるため、乾燥の均一性が十分とはいえない。有機EL素子等の電子デバイスがその機能を良好に発揮するために必要な膜厚の均一性を得るため、凝縮板と塗布膜間の距離をより精度良く保持し、乾燥の均一性をより向上させることが求められている。 However, according to Patent Document 2, the distance between the condensing plate and the coating film varies depending on the position in the transport direction, so that the uniformity of drying is not sufficient. In order to obtain the uniformity of the film thickness necessary for the electronic devices such as organic EL elements to perform their functions well, the distance between the condenser plate and the coating film is maintained with higher accuracy and the drying uniformity is further improved. It is demanded to make it.
本発明の課題は、塗布膜の乾燥の均一性を向上させることである。 An object of the present invention is to improve the uniformity of drying of a coating film.
請求項1に記載の発明によれば、
基板上の塗布膜と対面する凝縮板を備え、当該凝縮板により塗布膜からの溶媒の蒸気を凝縮し、乾燥する乾燥装置において、
前記凝縮板の凝縮面と前記基板上の塗布膜面間の距離を一定値に保持する間隙保持手段を備え、
前記間隙保持手段が前記凝縮面と前記基板間に配置された塗布膜の乾燥装置が提供される。
According to the invention of claim 1,
In a drying apparatus comprising a condensing plate facing the coating film on the substrate, condensing the solvent vapor from the coating film with the condensing plate, and drying,
A gap holding means for holding a distance between the condensation surface of the condensation plate and the coating film surface on the substrate at a constant value;
A coating film drying apparatus is provided in which the gap holding means is disposed between the condensing surface and the substrate .
請求項2に記載の発明によれば、
前記間隙保持手段が、前記凝縮面と前記基板間に配置されて前記凝縮板を支持し、搬送する間隙保持ローラーである請求項1に記載の塗布膜の乾燥装置が提供される。
According to invention of Claim 2,
2. The coating film drying apparatus according to claim 1, wherein the gap holding unit is a gap holding roller that is disposed between the condensation surface and the substrate to support and convey the condensation plate.
請求項3に記載の発明によれば、
前記間隙保持手段が、前記凝縮面と前記基板間に配置された間隙保持テープである請求項1に記載の塗布膜の乾燥装置が提供される。
According to invention of
2. The coating film drying apparatus according to claim 1, wherein the gap holding means is a gap holding tape disposed between the condensing surface and the substrate .
請求項4に記載の発明によれば、
前記間隙保持テープの高さが、0.1〜4.0mmの範囲内である請求項3に記載の塗布膜の乾燥装置が提供される。
According to invention of Claim 4,
The coating film drying apparatus according to
請求項5に記載の発明によれば、
前記凝縮板は、溶媒の吸収材を含有する請求項1〜4の何れか一項に記載の塗布膜の乾燥装置が提供される。
According to the invention of claim 5,
The said condensing plate is provided with the drying apparatus of the coating film as described in any one of Claims 1-4 containing the absorber of a solvent.
請求項6に記載の発明によれば、
基板上の塗布膜と対面する凝縮板を配置し、当該凝縮板により塗布膜からの溶媒の蒸気を凝縮し、乾燥する塗布膜の乾燥方法において、
前記凝縮板の凝縮面と前記基板間に間隙保持手段を配置し、当該間隙保持手段により前記凝縮板の凝縮面と前記基板上の塗布膜面間の距離を一定値に保持する塗布膜の乾燥方法が提供される。
According to the invention of claim 6,
In the drying method of the coating film, the condenser plate facing the coating film on the substrate is arranged, the vapor of the solvent from the coating film is condensed by the condensation plate, and dried.
Wherein the gap holding means is arranged on the base plates and the condensing surface of the condenser plates, by the gap holding means of the coating film that holds the distance between the coating film surface on the substrate and the condensing surface of the condensing plate at a constant value A drying method is provided.
本発明によれば、乾燥工程全体において精度良く、凝縮板の凝縮面と基板上の塗布膜面間の距離を一定値に保持することができ、塗布膜面内の乾燥速度を一定として、乾燥の均一性を向上させることができる。 According to the present invention, the distance between the condensing surface of the condensing plate and the coating film surface on the substrate can be maintained at a constant value with high accuracy in the entire drying process, and the drying speed in the coating film surface is kept constant. Can improve the uniformity.
以下、図面を参照して本発明の塗布膜の乾燥装置及び乾燥方法の実施の形態について説明する。 Embodiments of a coating film drying apparatus and drying method of the present invention will be described below with reference to the drawings.
図1は、本実施の形態に係る塗布膜の乾燥装置1Aが用いられた製造ライン例を示している。
図1に示す製造ラインは、ローラー22、23によって把持され、搬送される基板f1上に、塗布装置3により有機層の塗布液を塗布し、乾燥装置1Aによりその塗布膜を乾燥する。
なお、乾燥装置1Aより後に、残留溶媒の除去等を目的として、後処理用の乾燥装置を設置してもよい。その乾燥方法としては、特に限定されず、例えば熱風、赤外線、平面加熱等の固体伝熱乾燥、マイクロ波等を用いた内部発熱乾燥、真空乾燥、超臨界乾燥、超音波乾燥等の固定非加熱系乾燥、吸湿乾燥、冷却乾燥、凝縮乾燥等の気体乾燥のような公知の方法を選択することができる。
FIG. 1 shows an example of a production line in which a coating
In the production line shown in FIG. 1, an organic layer coating solution is applied by a
In addition, you may install the drying apparatus for post-processing after the
基板f1は、塗膜の対象物である。基板f1として、金属、ガラス基板、樹脂フィルム等の可撓性材料からなる基材や、基材自体を塗膜するときは基材の支持体等が用いられる。基板f1上にはいくつかの有機層が既に形成されていてもよい。
基板f1は、アンワインダー21によって塗布装置3に送り出され、塗布、乾燥後に、ワインダー24によって巻き取られる。
The substrate f1 is a coating object. As the substrate f1, a base material made of a flexible material such as a metal, a glass substrate or a resin film, or a base material support when the base material itself is coated is used. Some organic layers may already be formed on the substrate f1.
The substrate f1 is sent out to the
塗布装置3は、スピンコート法、キャスト法、インクジェット法、スプレー法、印刷法に代表されるようなウェットプロセスの他、スリット型ダイコーターを用いたスロット法、ESD(Electro Spray Deposition)法、ESDUS(Evaporative Spray Deposition from Ultra-ditule Solution)法等によって、塗布液を塗布する。溶媒を含む塗布液を塗布できるのであれば、塗布装置3の塗布方法は特に限定されない。
In addition to wet processes such as spin coating, casting, ink-jet, spraying, and printing, the
連続的に搬送される基板f1上に塗布する方法として、必要な膜厚の塗布膜を形成するのに必要な量より余分に塗布液を塗布し、その後、余剰分を除去する後計量型と、必要な量だけ塗布液を塗布する前計量型とが知られている。何れの塗布方法も適用可能であるが、塗布の高精度、高速化、薄膜化、塗布膜の品質向上、積層への適性等の観点から、前計量型が好ましい。また、塗布液の暴露抑制、濃度変化の抑制、クリーン度の維持、異物の混入防止という観点から、閉じた系であることが好ましい。そのため、上記塗布方法のなかでも、スリット型ダイコーターを用いたスロット法、スプレー法、インクジェット法が好ましい。 As a method of coating on the substrate f1 that is continuously transported, a post-weighing type in which an application liquid is applied in excess of the amount necessary to form a coating film having a required film thickness, and then the excess is removed. A pre-weighing type in which a coating solution is applied in a necessary amount is known. Any coating method can be applied, but the pre-weighing type is preferable from the viewpoints of high accuracy of coating, high speed, thin film, improved coating film quality, suitability for lamination, and the like. Moreover, a closed system is preferable from the viewpoints of suppressing the exposure of the coating liquid, suppressing the change in concentration, maintaining the cleanliness, and preventing the contamination of foreign matters. Therefore, among the above coating methods, a slot method using a slit type die coater, a spray method, and an ink jet method are preferable.
塗布液は、有機材料を溶媒に溶解又は分散させて調製することができる。
陽極と陰極間に、正孔輸送層、発光層、電子輸送層等の有機層が順に積層された有機EL素子の場合、正孔輸送層の有機材料として、例えばトリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、チオフェンオリゴマー等の導電性高分子オリゴマーが挙げられる。
The coating solution can be prepared by dissolving or dispersing an organic material in a solvent.
In the case of an organic EL device in which organic layers such as a hole transport layer, a light-emitting layer, and an electron transport layer are sequentially stacked between an anode and a cathode, examples of organic materials for the hole transport layer include triazole derivatives, oxazole derivatives, and oxazines. Azole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline-based co-weights Examples thereof include conductive polymer oligomers such as coalescence and thiophene oligomers.
発光層の有機材料としては、繰り返し単位を持たない低分子化合物でも、繰り返し単位を持つ高分子化合物でもよく、ビニル基やエポキシ基等の重合性基を有する低分子化合物でもよい。
具体的には、発光層の有機材料として、カルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有する化合物、カルボリン誘導体、ジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換された誘導体を表す。)等が挙げられる。
また、発光層の有機材料として燐光性化合物も挙げられる。燐光性化合物は、元素の周期表で8族〜10族の金属を含有する錯体系化合物であり、イリジウム化合物、オスミウム化合物、白金化合物、希土類錯体等が挙げられる。
The organic material for the light emitting layer may be a low molecular compound having no repeating unit, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group.
Specifically, compounds having a basic skeleton such as carbazole derivatives, triarylamine derivatives, aromatic borane derivatives, nitrogen-containing heterocyclic compounds, thiophene derivatives, furan derivatives, oligoarylene compounds, and carboline derivatives as organic materials for the light-emitting layer And diazacarbazole derivatives (herein, diazacarbazole derivatives are derivatives in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom).
Moreover, a phosphorescent compound is also mentioned as an organic material of a light emitting layer. The phosphorescent compound is a complex compound containing a group 8 to group 10 metal in the periodic table of elements, and examples thereof include iridium compounds, osmium compounds, platinum compounds, and rare earth complexes.
電子輸送層の有機材料としては、例えばニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体、オキサジアゾール誘導体等が挙げられる。 Examples of the organic material for the electron transport layer include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, oxadiazole derivatives, and the like.
有機EL素子以外にも、塗布装置3は、太陽電池、トランジスター、メモリー、センサー等の有機層を形成することができる。そのような有機材料としては、ポリチオフェン等の導電性高分子の他、ペンタセン、ナフタレン誘導体等が挙げられる。
In addition to the organic EL element, the
塗布液に用いられる溶媒としては、溶質である有機材料にもよるが、例えば純水、2−エトキシエタノール、2−メトキシエタノール等のアルコール類、クロロホルム、塩化メチレン、テトラクロロエチレン、ジクロロエタン、テトラヒドロフラン等のハロゲン系、キシレン、トルエン、へキサン、シクロヘキシルベンゼン、アニソール等の芳香族炭化水素系、アセトン、メチルエチルケトン等のケトン系、酢酸、酢酸メチル、酢酸エチル、酢酸ブチル、アセトニトリル等のエステル系、ジエチルエーテル、ジメチルスルホスキド等が挙げられる。 The solvent used in the coating solution depends on the organic material that is a solute. For example, pure water, alcohols such as 2-ethoxyethanol and 2-methoxyethanol, and halogens such as chloroform, methylene chloride, tetrachloroethylene, dichloroethane, and tetrahydrofuran , Aromatic hydrocarbons such as xylene, toluene, hexane, cyclohexylbenzene, and anisole, ketones such as acetone and methyl ethyl ketone, esters such as acetic acid, methyl acetate, ethyl acetate, butyl acetate, and acetonitrile, diethyl ether, dimethyl And sulfoskid.
塗布液は、塗布範囲を制御する目的や、塗布後の表面張力勾配に伴う液流動(例えば、コーヒーリングと呼ばれる現象を引き起こす液流動)を抑制する目的に応じて、界面活性剤や複数種の溶媒を含有することができる。
界面活性剤としては、溶媒に含まれる水分の影響、レベリング性、基板f1への濡れ性等の観点から、例えばアニオン性又はノニオン性の界面活性剤等が挙げられる。具体的には、含フッ素系活性剤等、国際公開第08/146681パンフレット、特開平2−41308号公報等に挙げられた界面活性剤を用いることができる。
Depending on the purpose of controlling the application range and the purpose of controlling the liquid flow accompanying the surface tension gradient after application (for example, the liquid flow causing a phenomenon called coffee ring) A solvent can be contained.
Examples of the surfactant include an anionic or nonionic surfactant from the viewpoint of the influence of moisture contained in the solvent, leveling properties, wettability to the substrate f1, and the like. Specifically, surfactants listed in International Publication No. 08/146661, JP-A-2-41308, etc., such as fluorine-containing activator, can be used.
塗布膜の膜厚は、有機層として必要とされる機能と有機材料の溶解度又は分散性により、適宜選択することができる。膜厚が大きいほど流動による乾燥ムラが発生しやすく、均一な乾燥が可能な乾燥装置1Aの有用性は大きい。
塗布膜の膜厚としては、具体的には1〜90μmの範囲内であることが好ましい。
The thickness of the coating film can be appropriately selected depending on the function required for the organic layer and the solubility or dispersibility of the organic material. As the film thickness increases, drying unevenness due to flow tends to occur, and the usefulness of the
Specifically, the thickness of the coating film is preferably in the range of 1 to 90 μm.
塗布膜の粘度についても、膜厚と同様に、有機層として必要とされる機能と有機材料の溶解度又は分散性により、適宜選択することができる。粘度が小さいほど流動による乾燥ムラが発生しやすく、均一な乾燥が可能な乾燥装置1Aの有用性は大きい。
塗布膜の粘度としては、具体的には0.3〜100mPa・sの範囲内であることが好ましく、0.5〜10mPa・sの範囲内であることが好ましい。
Similarly to the film thickness, the viscosity of the coating film can be appropriately selected depending on the function required for the organic layer and the solubility or dispersibility of the organic material. As the viscosity is smaller, drying unevenness due to flow tends to occur, and the usefulness of the
Specifically, the viscosity of the coating film is preferably in the range of 0.3 to 100 mPa · s, and more preferably in the range of 0.5 to 10 mPa · s.
〔乾燥装置〕
図2は、乾燥装置1A内部を基板f1の搬送方向yから見た正面図である。
乾燥装置1Aは、図1及び図2に示すように、基板f1上の塗布膜f2と対面する凝縮板11を備え、凝縮板11により基板f1上の塗布膜f2が含有する溶媒の蒸気を凝縮し、塗布膜f2を乾燥する。
[Drying equipment]
FIG. 2 is a front view of the inside of the
As shown in FIGS. 1 and 2, the
乾燥装置1Aは、塗膜後すぐに乾燥できるように、塗布装置3の直後に設置されることが好ましい。塗膜から乾燥までの間、周囲の気流や乾燥装置1Aにおいて生じる自然対流の影響があるが、塗膜後すぐに乾燥を開始することにより、気流の影響による乾燥ムラを防ぐことができる。搬送速度にもよるが、塗膜から乾燥までの時間は、30秒以内であることが好ましく、10秒以内であることがより好ましい。なお、塗布装置3から乾燥装置1Aまでの間、周囲の気流の遮断手段として遮断板を設けることもできるし、塗布膜f2上で気流が生じないように、周囲の気流の整流手段として整流板や整流用のファンを設けることもできる
The
乾燥装置1Aは、複数のローラー131により基板f1を搬送している。
また、乾燥装置1Aは、複数のローラー132によりシート状の凝縮板11を、基板f1上の塗布膜f2と対面させて搬送している。凝縮板11は、アンワインダー141により送り出され、ワインダー142により巻き取られるが、ローラー132により凝縮板11を巻き回して繰り返し使用する構成であってもよい。
The drying apparatus 1 </ b> A transports the substrate f <b> 1 by a plurality of
In addition, the
乾燥装置1Aは、基板f1と対面して配置された加熱装置12を備えている。
加熱装置12は、基板f1を介して塗布膜f2を加熱し、溶媒の蒸発を促す。加熱方法は特に限定されず、例えば熱風(加熱ガス)、赤外線、UV、平面加熱等の伝熱による加熱、マイクロ波による電気抵抗を用いた内部加熱等の加熱方法が挙げられる。
The
The
凝縮板11の材質は特に限定されないが、凝縮板11が溶媒の吸収材を含有することが好ましい。吸収材を含有することにより、凝縮面11a上で凝縮した溶媒を凝縮板11が吸収して、凝縮面11aから溶媒を排出することができ、さらなる溶媒の凝縮を促進することができる。なお、凝縮面11aとは、塗布膜面f2aと対面し、塗布膜f2からの溶媒が凝縮する凝縮板11の表面をいう。塗布膜面f2aは、塗布膜f2の表面である。
The material of the condensing
そのような吸収材としては、例えば多孔質材、ハイシリカゼオライト、活性炭等が挙げられる。また、吸収材からなるシートを樹脂フィルム等に貼り合せて凝縮板11を構成することもできる。例えば、特開2005−232308号公報に記載されている溶媒吸収材や、特開2003−191598号公報に記載されている溶媒吸収層を備えた樹脂フィルム等を凝縮板11として用いることができる。
Examples of such absorbent materials include porous materials, high silica zeolite, activated carbon, and the like. Further, the condensing
また、凝縮の鈍化を防ぐ観点から、凝縮板11として熱容量が大きい材料を用いることが好ましい。溶媒を凝縮させるためには、凝縮面11aを塗布膜面f2aより低温に維持する必要がある。熱容量が大きい凝縮板11を用いることにより、加熱装置12の加熱によって塗布膜f2から放射熱が生じた場合でも、放射熱による凝縮面11aの温度上昇を抑制し、凝縮の鈍化を防ぐことができる。
具体的には、熱容量が2700kJ/m3・K以上であることが好ましく、大きいほどよい。
Moreover, it is preferable to use a material having a large heat capacity as the condensing
Specifically, the heat capacity is preferably 2700 kJ / m 3 · K or more, and the larger the better.
そのような熱容量を持つ材料としては、ジルコニア、鋳鉄、アルミナ等が挙げられ、加工性や熱伝導率を考慮して適宜選択することができる。特に、凝縮板11は、温度制御の容易性からある程度の熱伝導率が求められ、熱伝導率が大きいほど凝縮板11の温度を所望の温度の定常状態に移行させることが容易となる。
Examples of the material having such a heat capacity include zirconia, cast iron, alumina, and the like, and can be appropriately selected in consideration of workability and thermal conductivity. In particular, the
凝縮板11は、凝縮した溶媒を凝縮面11aから排出し、さらなる凝縮を促進するため、凝縮面11aに複数のスリットを有することができる。スリットの延在方向は、幅手方向x又は搬送方向yの何れであってもよい。スリットの毛管力によって凝縮面11a上に凝縮した溶媒を幅手方向x又は搬送方向yの端部へと搬送し、排出する。
スリットを設ける場合、凝縮板11の側面から垂下する側面板や溶媒回収用の容器を設け、スリットに沿って端部に排出された溶媒を側面板により回収することとしてもよい。
The condensing
When the slit is provided, a side plate hanging from the side surface of the condensing
凝縮板11は、凝縮面11aが表面処理されていてもよい。
例えば、汚れ防止又は凝縮した溶媒の効率的な排出のため、凝縮面11aを撥水処理又は親水処理することができる。
撥水処理としては、特開2005−343016号公報、特開2000−254582号公報に記載されているように、フルオロアルキル基、アルキル基等を有するシラン化合物等の撥水性材料を、フローコーティング法、ディップコーティング法等によって塗布する処理が挙げられる。また、特開2005−23122号公報に記載されているように、撥水撥油性を持つポリフロオロアルキル基を有する重合体を用いて作製されたハニカム構造又はピラー構造のフィルムを凝縮面に貼付してもよい。
The condensing
For example, the
As the water repellent treatment, as described in JP-A-2005-343016 and JP-A-2000-254582, a water-repellent material such as a silane compound having a fluoroalkyl group, an alkyl group or the like is used as a flow coating method. And a treatment applied by a dip coating method or the like. In addition, as described in JP-A-2005-23122, a honeycomb structure or pillar structure film manufactured using a polymer having a polyfluoroalkyl group having water and oil repellency is applied to the condensation surface. May be.
他の表面処理としては、乾燥ムラを防ぐためのラビング処理が挙げられる。また、濡れ性を向上させるため、凝縮面11aを粗く仕上げることもできる。
その他、ベルト、ワイプ、ポンプ等の機械力によって、凝縮面11a上の溶媒を排出してもよい。
Examples of other surface treatment include rubbing treatment to prevent drying unevenness. Moreover, in order to improve wettability, the
In addition, the solvent on the
乾燥装置1Aの乾燥速度は、凝縮面11aの温度Tcと、塗布膜面f2aの温度Th(Th>Tc)を調整することにより、制御することができる。
凝縮板11の温度制御方法としては特に限定されないが、シート状であることを考慮すると、送風による加熱や冷却は塗布膜f2との接触を招く可能性がある。よって、冷媒によって凝縮板11を予め冷却しておくか、凝縮面11aの温度Tcを室温に設定して塗布膜面f2aの温度Thを室温以上に設定することが好ましい。
必要に応じて、加熱装置12に冷却装置を併用し、塗布膜面f2aの温度Thを制御することが可能である。
The drying speed of the
The temperature control method of the
If necessary, a cooling device can be used together with the
凝縮面11aの温度Tcは、塗布膜面f2aの温度Thより低ければ、室温より高くても低くてもよいが、5〜30℃の範囲内であることが好ましく、10〜20℃の範囲内であることがより好ましい。上記範囲内に制御することにより、加熱に要するコストの上昇を抑えることができる。また、凝縮面11a全体の均一な温度制御が容易となって、温度ムラに起因する乾燥ムラ、ひいては塗布膜f2の膜厚ムラを抑制しやすい。同様の観点から、凝縮面11a内の温度ムラは、2℃以内であることが好ましい。
The temperature Tc of the condensing
凝縮面11aに、溶媒以外の物質、例えば大気中の水分等が凝縮することを防ぐため、大気の露点を下げるか、凝縮面11aと塗布膜面f2a間を減圧することが好ましい。
また、凝縮板11以外の乾燥装置1Aの部材、例えば筐体、ローラー131、132等に溶媒が凝縮することを防ぐため、凝縮板11以外の部材の温度を、凝縮面11aの温度Tc以上に調整することが好ましい。
In order to prevent substances other than the solvent such as moisture in the atmosphere from condensing on the
Further, in order to prevent the solvent from condensing on the members of the
塗布膜面f2aの温度Thは、凝縮面11aの温度Tcより高ければ、室温より高くても低くてもよいが、30〜100℃の範囲内であることが好ましく、30〜70℃の範囲内であることがより好ましい。30℃以上とすることにより、溶媒以外の大気中の水分等が凝縮し、乾燥効率が低下することを抑制しやすい。100℃以下とすることにより、高温化に伴うコストの上昇、基板f1の変性による搬送不良等を抑制しやすい。また、基板f1全体の均一な温度制御が容易となり、温度ムラに起因する乾燥ムラ、ひいては塗布膜f2の膜厚ムラを抑制しやすい。同様の観点から、塗布膜面f2a内の温度ムラは、2℃以内であることが好ましい。
The temperature Th of the coating film surface f2a may be higher or lower than room temperature as long as it is higher than the temperature Tc of the condensing
乾燥装置1Aの乾燥速度は、凝縮面11aと塗布膜面f2a間の距離dを調整することによっても、制御することができる。距離dは、小さいほど溶媒が凝縮しやすく、乾燥速度が上がるが、好ましくは0.1〜10mmの範囲内であり、より好ましくは0.1〜4mmの範囲内である。0.1mm以上とすることにより、基板f1のばたつきによる塗布膜f2と凝縮板11との接触を回避しやすいとともに、凝縮板11の配置の高精度化に伴うコストを削減できる。また、凝縮した溶媒の塗布膜f2への付着を回避しやすく、付着による乾燥ムラを抑制することができる。また、10mm以内とすることにより、周囲の対流の影響を減じて乾燥ムラを防ぎ、乾燥速度を上げて生産性を向上させることができる。
The drying speed of the
凝縮面11aと塗布膜面f2a間の距離dを、一定値に保持することにより、塗布膜面f2a内の乾燥速度を一定とすることができ、乾燥の均一性を向上させることができる。
乾燥装置1Aは、凝縮板11と基板f1間に配置された間隙保持ローラー15aを備え、間隙保持ローラー15aが凝縮板11を下部から支持して搬送することにより、乾燥工程全体において距離dを一定値に保持している。
By keeping the distance d between the condensing
The
乾燥ムラは、塗布膜f2の粘度が低い塗布直後に発生することが多く、初期段階での乾燥が均一な乾燥に寄与するところが大きい。よって、塗布直後に位置する間隙保持ローラー15aを、搬送方向yに一定の長さを持つベルトに代え、初期段階ではより確実に距離dを一定値に保持できるように構成することもできる。
Unevenness of drying often occurs immediately after application where the viscosity of the coating film f2 is low, and the drying at the initial stage contributes to uniform drying. Therefore, the
〔乾燥装置の他の実施の形態〕
図3は、他の実施の形態に係る乾燥装置1Bを示している。図4は、乾燥装置1B内部を搬送方向yから見た正面図である。
乾燥装置1Bは、間隙保持手段として、図3及び図4に示すように、凝縮板11と基板f1間に配置された間隙保持テープ15bを備え、間隙保持テープ15bにより凝縮面11aと塗布膜面f2a間の距離dを一定値に保持している。間隙保持テープ15bが介在することにより、凝縮板11と塗布膜f2間に入り込む気流を遮断し、外風の影響を低減することもできる。
[Other Embodiments of Drying Apparatus]
FIG. 3 shows a
As shown in FIGS. 3 and 4, the drying
乾燥装置1Bは、複数のローラー133により間隙保持テープ15bを搬送している。間隙保持テープ15bは、基板f1、凝縮板11に接触してもよいし、しなくてもよい。接触した場合でも、間隙保持テープ15bの高さh分の間隙を保持することができる。間隙保持テープ15bは、アンワインダー143により送り出され、ワインダー144により巻き取られる。なお、ローラー133により間隙保持テープ15bを巻き回し、繰り返し使用する構成でもよい。
The drying apparatus 1 </ b> B transports the
間隙保持テープ15bの高さhは、保持すべき距離dに応じて設定することができる。塗布膜f2の膜厚が距離dに比較して小さく、h≒dとみなせるのであれば、高さhは、距離dの好ましい範囲に対応して、0.1〜10mmの範囲内であることが好ましく、0.1〜4mmの範囲内であることがより好ましい。
The height h of the
図5は、凝縮板11側から見た基板f1の上面図である。
間隙保持テープ15bは、図4及び図5に示すように、塗布膜f2の幅手方向xの両端に対応する位置に配置されている。塗布膜f2が幅手方向xに長く、幅手方向x中央付近で基板f1又は凝縮板11にたるみが生じる場合は、図6に示すように、間隙保持テープ15bを中央にも配置することができる。
FIG. 5 is a top view of the substrate f1 viewed from the
As shown in FIGS. 4 and 5, the
間隙保持テープ15bは、平面状のテープでもよいが、表面に凹凸を有していてもよい。凹凸によって、間隙保持テープ15bの材料を減じることができ、コストを低減することが可能である。また、凹凸を形成する材料の添加量や濃度を変えることにより、高さhの調整が容易となる。
例えば、間隙保持テープ15bとして、特開2011−49084号公報に記載されているように、凸状物を有するテープを用いることができる。
The
For example, as the
図7は、表面に凸部151を有する間隙保持テープ15bを拡大した上面図であり、図8は、図7のQ−Q線における凸部151の断面図である。
図8に示すようなドーム状の凸部151は、エンボス加工等によって形成することもできるし、紫外線硬化剤等を滴下し、紫外線を照射して硬化させることによっても形成することができる。
なお、凸部151を有する場合、図8に示すように凸部151を含めた高さhが上述の範囲内であることが好ましい。
7 is an enlarged top view of the
The dome-shaped
In addition, when it has the
〔乾燥方法〕
本実施の形態に係る塗布膜の乾燥方法は、図1及び図2、又は図3及び図4に示すように、基板f1上の塗布膜f2に凝縮板11を対面させて配置し、塗布膜f2からの溶媒の蒸気を凝縮面11aに凝縮させて乾燥する。乾燥時、凝縮板11と基板f1間に間隙保持手段として間隙保持ローラー15a又は間隙保持テープ15bを配置し、間隙保持ローラー15a又は間隙保持テープ15bにより凝縮面11aと塗布膜面f2a間の距離dを一定値に保持する。
[Drying method]
As shown in FIG. 1 and FIG. 2 or FIG. 3 and FIG. 4, the drying method of the coating film according to the present embodiment places the condensing
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されない。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these.
〔間隙保持ローラーの作製〕
SUS304を用いて、幅手方向の長さ0.04m、ロール径0.01mの間隙保持ローラーを作製した。
[Preparation of gap holding roller]
Using SUS304, a gap holding roller having a width of 0.04 m and a roll diameter of 0.01 m was produced.
〔間隙保持テープE1の作製〕
幅手方向の長さ0.04m、搬送方向の長さ40m、厚さ0.10mmのポリエチレンナフタレートフィルム(帝人・デュポン社製、以下、PENフィルムという)に、10mm角のエンボス加工を行い、高さhが2.00mmの間隙保持テープE1を作製した。
[Preparation of gap holding tape E1]
10 mm square embossing is performed on a polyethylene naphthalate film (manufactured by Teijin DuPont, hereinafter referred to as PEN film) having a length of 0.04 m in the width direction, a length of 40 m in the conveyance direction, and a thickness of 0.10 mm. A gap holding tape E1 having a height h of 2.00 mm was produced.
〔間隙保持テープE2の作製〕
幅手方向の長さ0.04m、搬送方向の長さ40m、厚さ0.05mmのPENフィルム(帝人・デュポン社製)上に、ピエゾ型インクジェットヘッドを用いて、下記凸部の塗布液の液滴を吐出した。インクジェットヘッドによる吐出条件は下記の通りである。
(凸部の塗布液)
ジペンタエリストールヘキサアクリレート(2量体及び3量体以上の成分を含む) 100質量部
ジメトキシベンゾフェノン(光反応開始剤) 4質量部
プロピレングリコールモノメチルエーテル 30質量部
メチルエチルケトン 100質量部
(液滴の吐出条件)
インクジェットヘッドのノズル吐出口の間隔:0.05mm
インクジェットヘッドのノズル吐出口の数 :500個
1滴の平均吐出量 :50pL(ピコリットル)
[Preparation of gap holding tape E2]
Using a piezo-type ink jet head on a PEN film (manufactured by Teijin DuPont) with a length of 0.04 m in the width direction, a length of 40 m in the conveyance direction, and a thickness of 0.05 mm, Droplets were discharged. The discharge conditions by the ink jet head are as follows.
(Protruding liquid)
Dipentaerystol hexaacrylate (including dimer and trimer components) 100 parts by weight Dimethoxybenzophenone (photoinitiator) 4 parts by weight Propylene glycol monomethyl ether 30 parts by weight Methyl ethyl ketone 100 parts by weight (Discharge of droplets) conditions)
Ink jet head nozzle discharge interval: 0.05 mm
Number of nozzle discharge ports of inkjet head: 500 pieces Average discharge amount of one drop: 50 pL (picoliter)
吐出後、20秒後に温度100℃で乾燥し、硬化処理装置により150mJ/cm2の照射強度の紫外線を照射し、図7及び図8に示すようなドーム状の凸部を有する間隙保持テープE2を作製した。
この凸部の直径を、寸法測定顕微鏡(測定顕微鏡と2次元データ処理装置、ミツトヨ社製)により測定したところ、60μmであった。また、凸部を含めた間隙保持テープE2全体の高さhを、厚み測定機(シックネスゲージ、ミツトヨ社製)により測定したところ、0.09mmであった。間隙保持テープE2を10平方cmで切り出し、ルーペにより目視で観察して凸部の個数を数え、1平方cmあたりの数を凸部の密度として求めたところ、50個/cm2であった。
20 seconds after discharge, the film is dried at a temperature of 100 ° C., irradiated with ultraviolet rays having an irradiation intensity of 150 mJ / cm 2 by a curing processing apparatus, and has a dome-shaped convex portion as shown in FIG. 7 and FIG. Was made.
The diameter of the convex portion was measured with a dimension measuring microscope (measuring microscope and two-dimensional data processing device, manufactured by Mitutoyo Corporation), and was 60 μm. Moreover, when the height h of the entire gap holding tape E2 including the convex portion was measured by a thickness measuring machine (thickness gauge, manufactured by Mitutoyo Corporation), it was 0.09 mm. The gap-holding tape E2 was cut out at 10 square centimeters, visually observed with a loupe, the number of convex portions was counted, and the number per square centimeter was determined as the density of the convex portions, and was 50 / cm 2 .
〔間隙保持テープE3の作製〕
間隙保持テープE1の基材である厚さ0.10mmのPENフィルムをそのまま間隙保持テープE3として用いた。間隙保持テープE3は平面テープである。
[Preparation of gap holding tape E3]
The PEN film having a thickness of 0.10 mm, which is the base material of the gap holding tape E1, was used as the gap holding tape E3 as it was. The gap holding tape E3 is a flat tape.
〔間隙保持テープE4〜E6の作製〕
間隙保持テープE1の作製において、エンボス加工の条件を変更し、間隙保持テープ全体の高さhを表1に示すように変更した以外は、間隙保持テープE1と同様にして間隙保持テープE4〜E6を作製した。
[Preparation of gap holding tapes E4 to E6]
In producing the gap holding tape E1, the gap holding tapes E4 to E6 are the same as the gap holding tape E1, except that the embossing conditions are changed and the height h of the whole gap holding tape is changed as shown in Table 1. Was made.
〔凝縮板P1の作製〕
アルミ箔とポリエステルフィルムを貼り合わせたアルペット20−100(PANAC社製、厚さ123μm、幅手方向の長さ0.40m)を、凝縮板P1として用いた。
[Production of condensing plate P1]
Alpet 20-100 (manufactured by PANAC, thickness: 123 μm, length in the width direction: 0.40 m) obtained by bonding an aluminum foil and a polyester film was used as the condenser plate P1.
〔凝縮板P2の作製〕
アルミ箔とポリエステルフィルムを貼り合わせたアルペット20−100(PANAC社製、厚さ123μm、幅手方向の長さ0.33mm)を、凝縮板P2として用いた。
[Production of condensing plate P2]
Alpet 20-100 (manufactured by PANAC, thickness 123 μm, length in the width direction 0.33 mm) in which an aluminum foil and a polyester film are bonded together was used as the condenser plate P2.
〔凝縮板P3の作製〕
気相用粒状活性炭GS(クラレ社製)80質量部に、ポリテトラフルオロエチレン(PTFE)10質量部、カーボンブラック10質量部を添加し、混練して厚さ300μmのSUS基材上に圧延成形し、凝縮板P3を作製した。凝縮板P3は、圧延成形された面が凝縮面として用いられる。
[Production of condensing plate P3]
Addition of 10 parts by mass of polytetrafluoroethylene (PTFE) and 10 parts by mass of carbon black to 80 parts by mass of granular activated carbon GS for gas phase (manufactured by Kuraray Co., Ltd.), knead and roll forming on a 300 μm thick SUS substrate Then, the condenser plate P3 was produced. As for the condensing plate P3, a roll-formed surface is used as a condensing surface.
〔乾燥装置K1の試作〕
図1及び図2に示す乾燥装置1Aと同様の構成の乾燥装置を試作し、作製した凝縮板P1をセットした。さらに、作製した間隙保持ローラーを、図1及び図2に示す間隙保持ローラー15aの位置に配置し、間隙保持ローラーにより凝縮板P1を下部から支持し搬送する乾燥装置K1を試作した。
[Prototype of drying device K1]
A drying apparatus having the same configuration as that of the
〔乾燥装置K2の試作〕
図3及び図4に示す乾燥装置1Bと同様の構成で、凝縮板と間隙保持テープの交換が可能な乾燥装置K2を試作した。
[Prototype of drying device K2]
A drying apparatus K2 having a configuration similar to that of the
〔乾燥装置K3の試作〕
図1及び図2に示す乾燥装置1Aと同様の構成で、間隙保持ローラー15aを設けずに乾燥装置を試作し、作製した凝縮板P1をセットして乾燥装置K3とした。
[Prototype of drying device K3]
With the same configuration as the
〔有機EL素子1の作製〕
ポリエチレンテレフタレートフィルム(帝人・デュポン社製、幅手方向の長さ0.33m、搬送方向の長さ40.0m、厚さ100μm)の基板上に、スパッター装置を用いて厚さ100nmのITO(Indium Tin Oxide;酸化インジウムスズ)膜を陽極として形成した。
[Production of Organic EL Element 1]
On a substrate of a polyethylene terephthalate film (manufactured by Teijin DuPont, 0.33 m in the width direction, 40.0 m in the transport direction, and 100 μm in thickness), a 100 nm thick ITO (Indium) using a sputtering apparatus A tin oxide film was formed as an anode.
さらに、Baytron P Al 4083(ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート)、Bayer社製)を、純水で70%に希釈した溶液を、後述する発光層と同じ塗布条件でスロット塗布法により幅手方向の長さ0.17mで塗布し、正孔注入層を形成した。塗布後、基板の表面温度80℃にて1時間乾燥した。別途用意した基板にて、同条件にて塗布し、形成された正孔注入層の膜厚を測定したところ、30nmであった。 Further, a solution obtained by diluting Baytron P Al 4083 (poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate), Bayer Co.) to 70% with pure water under the same coating conditions as those of the light emitting layer to be described later is used. The hole injection layer was formed by coating with a length of 0.17 m in the width direction by a coating method. After coating, the substrate was dried at a surface temperature of 80 ° C. for 1 hour. It was 30 nm when it apply | coated on the conditions prepared on the board | substrate prepared separately and the film thickness of the formed positive hole injection layer was measured.
この基板を、窒素雰囲気下、JIS B 9920に準拠し、測定した清浄度がクラス100で、露点温度が−80℃以下、酸素濃度0.8ppmのグローブボックスへ移した。次に、下記正孔輸送層の塗布液を調製し、後述する発光層と同じ塗布条件でスロット塗布法により、グローブボックス内で幅手方向の長さ0.17mで基板上に塗布して、正孔輸送層を形成した。塗布後、基板の表面温度80℃で30分間加熱乾燥した。別途用意した基板にて、同条件にて塗布し、形成された正孔輸送層の膜厚を測定したところ、20nmであった。
(正孔輸送層の塗布液)
モノクロロベンゼン 100.0g
ADS254BE(ポリ−(N,N′−ビス(4−ブチルフェニル)−N,N′−ビス(フェニル)ベンジジン、アメリカン・ダイ・ソース社製) 0.5g
This substrate was transferred to a glove box under a nitrogen atmosphere in accordance with JIS B 9920, the measured cleanliness was class 100, the dew point temperature was −80 ° C. or lower, and the oxygen concentration was 0.8 ppm. Next, the following hole transport layer coating solution was prepared, and coated on the substrate with a length of 0.17 m in the width direction in the glove box by the slot coating method under the same coating conditions as the light emitting layer described later, A hole transport layer was formed. After coating, the substrate was dried by heating at a surface temperature of 80 ° C. for 30 minutes. It was 20 nm when it apply | coated on the board | substrate prepared separately on the same conditions and the film thickness of the formed positive hole transport layer was measured.
(Hole transport layer coating solution)
Monochlorobenzene 100.0g
ADS254BE (Poly- (N, N′-bis (4-butylphenyl) -N, N′-bis (phenyl) benzidine, manufactured by American Die Source)) 0.5 g
次いで、窒素雰囲気下で、下記発光層の塗布液を調製した。この塗布液の固形分濃度は0.01質量%、粘度は0.6mPa・sであった。粘度は、JIS Z 8803に従い、粘度計DV−II+Pro(ブルックフィールド社製)を用いて、温度25℃の環境下で測定した。
(発光層の塗布液)
酢酸ブチル 10.0000g
H−A 0.1000g
D−A 0.0110g
D−B 0.0002g
D−C 0.0002g
Subsequently, the following light emitting layer coating liquid was prepared under nitrogen atmosphere. The coating solution had a solid content concentration of 0.01% by mass and a viscosity of 0.6 mPa · s. The viscosity was measured in an environment at a temperature of 25 ° C. using a viscometer DV-II + Pro (manufactured by Brookfield) in accordance with JIS Z 8803.
(Light emitting layer coating solution)
Butyl acetate 10.00000g
H-A 0.1000g
D-A 0.0110 g
D-B 0.0002g
D-C 0.0002g
上記有機材料H−A、D−A、D−B、D−Cは、下記化合物を表している。
調製した発光層の塗布液を、スリット型ダイコーターを用いてスロット塗布法により基板上に塗布した。スリット型ダイコーターの幅手方向の長さは0.17mであり、スリット間隔は100μmであった。塗布条件は、以下の通りである。
(塗布条件)
塗布速度:10m/min
塗布時の環境温度:25℃
塗布した幅手方向の長さ: 0.1m
塗布した搬送方向の長さ:40.0m
ウェット膜厚:4μm
なお、塗布速度は、レーザードップラー速度計LV203により測定した。
また、ウェット膜厚は、下記式により算出した。
ウェット膜厚=塗布液の供給量/(塗布した幅手方向の長さ×塗布速度)
The prepared light emitting layer coating solution was applied onto a substrate by a slot coating method using a slit type die coater. The length of the slit type die coater in the width direction was 0.17 m, and the slit interval was 100 μm. The application conditions are as follows.
(Application conditions)
Application speed: 10 m / min
Environmental temperature during application: 25 ° C
Applied length in width direction: 0.1m
Applied length in transport direction: 40.0m
Wet film thickness: 4μm
The coating speed was measured with a laser Doppler velocimeter LV203.
Moreover, the wet film thickness was computed by the following formula.
Wet film thickness = supply amount of coating solution / (length in the width direction applied x coating speed)
塗布後、試作の乾燥装置K1により、下記乾燥条件で乾燥した。なお、乾燥装置K1において、凝縮板P1と基板の搬送ローラー、間隙保持ローラーの配置位置を調整し、下記凝縮面と塗布膜面間の距離dを2.00mmに調整した。
(乾燥条件)
凝縮面の温度Tc:20℃、
塗布膜面の温度Th:25℃
凝縮面と塗布膜面間の距離d:2.00mm
After the application, it was dried under the following drying conditions by a prototype drying apparatus K1. In the drying apparatus K1, the arrangement positions of the condensing plate P1, the substrate transport roller, and the gap holding roller were adjusted, and the distance d between the condensing surface and the coating film surface was adjusted to 2.00 mm.
(Drying conditions)
Condensing surface temperature Tc: 20 ° C.
Temperature Th of coating film surface: 25 ° C
Distance d between condensation surface and coating film surface: 2.00 mm
乾燥時、エアーノズルDY−300(キクチ社製、幅手方向の長さ0.33m、スリット間隔100μm)を乾燥装置K1に隣接して設置し、基板の搬送方向及び幅手方向に送風し、外風が有る環境下で乾燥した。このときの風速を、風速変換機6332D(カノマックス社製)を用いて測定し、1.0m/sに調整した。 At the time of drying, an air nozzle DY-300 (manufactured by Kikuchi Co., Ltd., 0.33 m in the width direction, slit interval 100 μm) is installed adjacent to the drying device K1, and blown in the substrate transport direction and the width direction, Dried in an environment with outside wind. The wind speed at this time was measured using a wind speed converter 6332D (manufactured by Kanomax Co., Ltd.) and adjusted to 1.0 m / s.
次に、窒素雰囲気下、下記電子輸送層の塗布液を調製した。
(電子輸送層の塗布液)
2,2,3,3−テトラフルオロ−1−プロパノール 100.00g
ET−A 0.75g
ET−Aは、下記化合物を表している。
(Coating liquid for electron transport layer)
2,2,3,3-tetrafluoro-1-propanol 100.00 g
ET-A 0.75g
ET-A represents the following compound.
調製した電子輸送層の塗布液を、上記発光層と同じ塗布条件により塗布し、基板の表面温度80℃で30分加熱乾燥して、電子輸送層を形成した。別途用意した基板にて同条件にて塗布し、形成された電子輸送層の膜厚を測定したところ、膜厚は40nmであった。 The prepared coating solution for the electron transport layer was coated under the same coating conditions as those for the light emitting layer, and was dried by heating at a substrate surface temperature of 80 ° C. for 30 minutes to form an electron transport layer. The film thickness was 40 nm when it apply | coated on the conditions prepared on the board | substrate prepared separately and the film thickness of the formed electron carrying layer was measured.
電子輸送層まで形成すると、基板を大気曝露せずに蒸着機に移動し、4×10−4Paまで減圧した。なお、フッ化カリウム及びアルミニウムをそれぞれタンタル製抵抗加熱ボートに入れ、蒸着機に取り付けておいた。
まず、フッ化カリウムの入った抵抗加熱ボートを通電して加熱し、基板上にフッ化カリウムからなる電子注入層を3nm形成した。次いで、アルミニウムの入った抵抗加熱ボートを通電、加熱し、蒸着速度1〜2nm/sで、アルミニウムからなる膜厚100nmの陰極を形成した。
When the electron transport layer was formed, the substrate was moved to the vapor deposition machine without being exposed to the atmosphere, and the pressure was reduced to 4 × 10 −4 Pa. Note that potassium fluoride and aluminum were each placed in a tantalum resistance heating boat and attached to a vapor deposition machine.
First, a resistance heating boat containing potassium fluoride was energized and heated to form a 3 nm electron injection layer made of potassium fluoride on the substrate. Next, a resistance heating boat containing aluminum was energized and heated to form a cathode having a thickness of 100 nm made of aluminum at a deposition rate of 1 to 2 nm / s.
陰極が形成された基板を、大気曝露させることなく、窒素雰囲気下、JIS B9920に準拠して測定された清浄度がクラス100で、露点温度が−80℃以下、酸素濃度0.8ppmのグローブボックスへ移動した。グローブボックス内で、捕水剤である酸化バリウムを添付したガラス製の封止缶にて封止し、有機EL素子1を得た。なお、捕水剤である酸化バリウムは、アルドリッチ社製の高純度酸化バリウム粉末を、粘着剤付きのフッ素系半透過膜(ミクロテックスS−NTF8031Q、日東電工製)でガラス製封止缶に貼り付けたものを予め準備して使用した。封止缶と有機EL素子1の接着には、紫外線硬化型の接着剤を用い、紫外線を照射することで両者を接着し封止素子を作製した。 A glove box having a cleanliness of class 100, a dew point temperature of -80 ° C. or less, and an oxygen concentration of 0.8 ppm measured in accordance with JIS B9920 in a nitrogen atmosphere without exposing the substrate on which the cathode is formed to the atmosphere. Moved to. In the glove box, it sealed with the glass sealing can which attached the barium oxide which is a water catching agent, and the organic EL element 1 was obtained. Barium oxide, a water-absorbing agent, is a high-purity barium oxide powder manufactured by Aldrich, which is attached to a glass sealing can with a fluorine-based semipermeable membrane (Microtex S-NTF8031Q, manufactured by Nitto Denko) with an adhesive. The attached one was prepared and used in advance. For adhesion between the sealing can and the organic EL element 1, an ultraviolet curable adhesive was used, and both were adhered by irradiating ultraviolet rays to produce a sealing element.
〔有機EL素子2の作製〕
有機EL素子1の作製において、乾燥装置K1に代えて乾燥装置K2を用いて発光層の塗布膜を乾燥した以外は、有機EL素子1と同様にして有機EL素子2を作製した。
なお、乾燥装置K2において、凝縮板P2と間隙保持テープE1をセットした。基板上に形成された各層の膜厚は保持しようとする凝縮板P2の凝縮面と塗布膜面間の距離dに比べて非常に小さい。よって、凝縮面と基板間の距離が凝縮面と塗布膜面間の距離dにほぼ等しいとみなして、凝縮板P2の凝縮面と基板間の距離dが2.00mmとなるように、凝縮板P2、基板の搬送ローラーの配置位置を調整した。
[Production of Organic EL Element 2]
In the production of the organic EL element 1, the organic EL element 2 was produced in the same manner as the organic EL element 1 except that the coating film of the light emitting layer was dried using the drying apparatus K2 instead of the drying apparatus K1.
In the drying device K2, the condenser plate P2 and the gap holding tape E1 were set. The thickness of each layer formed on the substrate is very small compared to the distance d between the condensing surface of the condensing plate P2 to be held and the coating film surface. Therefore, it is assumed that the distance between the condensing surface and the substrate is substantially equal to the distance d between the condensing surface and the coating film surface, so that the distance d between the condensing surface of the condensing plate P2 and the substrate is 2.00 mm. P2, the arrangement position of the conveyance roller of the substrate was adjusted.
〔有機EL素子3〜8の作製〕
有機EL素子2の作製において、表1に示すように乾燥装置K2にセットする凝縮板と間隙保持テープを交換し、凝縮板の凝縮面と基板間の距離が表1に示す距離dとなるように凝縮板、基板の搬送ローラーの配置位置を調整した以外は、有機EL素子2と同様にして有機EL素子3〜8をそれぞれ作製した。
[Production of
In the production of the organic EL element 2, the condensing plate and the gap holding tape set in the drying device K2 are exchanged as shown in Table 1, and the distance between the condensing surface of the condensing plate and the substrate becomes the distance d shown in Table 1.
〔有機EL素子9〜11の作製〕
有機EL素子1の作製において、乾燥装置K1に代えて、乾燥装置K3を用いて発光層の乾燥を行った以外は、有機EL素子1と同様にして有機EL素子9を作製した。
また、有機EL素子9の作製において、凝縮板P1の凝縮面と基板間の距離を表1に示す距離dとなるように凝縮板P1、基板の搬送ローラーの配置位置を調整した以外は、有機EL素子9と同様にして有機EL素子10、11をそれぞれ作製した。
[Preparation of organic EL elements 9 to 11]
In the production of the organic EL element 1, an organic EL element 9 was produced in the same manner as the organic EL element 1 except that the light emitting layer was dried using a drying device K3 instead of the drying device K1.
In the production of the organic EL element 9, the organic EL element 9 is organic except that the arrangement position of the condensing plate P1 and the substrate transport roller is adjusted so that the distance between the condensing surface of the condensing plate P1 and the substrate is the distance d shown in Table 1.
<評価>
〔乾燥速度〕
発光層の塗布膜の乾燥前後で、LT−9000(キーエンス社製)により膜厚を測定した。測定された膜厚の差から乾燥速度(g/mm2・s)を求めた。
<Evaluation>
[Drying speed]
The film thickness was measured by LT-9000 (manufactured by Keyence Corporation) before and after drying the coating film of the light emitting layer. The drying rate (g / mm 2 · s) was determined from the measured difference in film thickness.
〔乾燥の均一性〕
有機EL素子の輝度は、発光層の膜厚と相関関係があり、発光層の膜厚は乾燥の均一性と相関関係があることから、各有機EL素子1〜11の輝度を測定し、そのばらつきを発光層の膜厚の均一性、すなわち乾燥の均一性として評価した。まず、輝度計CS2000(コニカミノルタセンシング社製)を用いて、各有機EL素子1〜11の輝度を、幅手方向に0.01m間隔で、搬送方向の位置を変えて300点測定した。300点の測定値のうち、最大輝度値、最小輝度値、平均輝度値を求めて、下記式により輝度のばらつきを求めた。
輝度のばらつき={(最大輝度値−最小輝度値)/平均輝度}×100
[Dryness uniformity]
Since the luminance of the organic EL element has a correlation with the film thickness of the light emitting layer, and the film thickness of the light emitting layer has a correlation with the uniformity of drying, the luminance of each of the organic EL elements 1 to 11 is measured. The variation was evaluated as the uniformity of the light emitting layer thickness, that is, the uniformity of drying. First, using a luminance meter CS2000 (manufactured by Konica Minolta Sensing Co., Ltd.), the luminance of each of the organic EL elements 1 to 11 was measured at 300 points at intervals of 0.01 m in the width direction while changing the position in the transport direction. Among the 300 measured values, the maximum luminance value, the minimum luminance value, and the average luminance value were obtained, and the luminance variation was obtained by the following equation.
Variation in luminance = {(maximum luminance value−minimum luminance value) / average luminance} × 100
求めた輝度のばらつきから、乾燥の均一性を下記のように評価した。
◎:輝度のばらつきが0.5未満であり、非常に均一な乾燥ができている。
○:輝度のばらつきが0.5以上1.0未満であり、均一な乾燥ができている。
△:輝度のばらつきが1.0以上5.0未満であり、膜厚にばらつきはみられるが、実用可能な程度に均一な乾燥ができている。
×:輝度のばらつきが5.0以上であり、均一に乾燥できていない。
From the obtained variation in luminance, the uniformity of drying was evaluated as follows.
(Double-circle): The dispersion | variation in a brightness | luminance is less than 0.5, and it has performed very uniform drying.
A: The variation in luminance is 0.5 or more and less than 1.0, and uniform drying is achieved.
(Triangle | delta): The dispersion | variation in brightness | luminance is 1.0 or more and less than 5.0, and although the dispersion | variation is seen in a film thickness, it has dried uniformly as much as it is practical.
X: The variation in luminance is 5.0 or more, and it cannot be uniformly dried.
〔発光寿命〕
各有機EL素子1〜8に対し、正面輝度1000cd/m2となるように電流を与え、連続駆動した。正面輝度が、初期の半分の500cd/m2になるまでに要した時間を、半減期として測定した。有機EL素子8の半減期の測定値を100とし、下記式により、各有機EL素子1〜8の発光寿命を求めた。
各有機EL素子の発光寿命=(各有機EL素子の半減期)/(有機EL素子8の半減期)
[Luminescence life]
A current was applied to each of the organic EL elements 1 to 8 so that the front luminance was 1000 cd / m 2, and the organic EL elements 1 to 8 were continuously driven. The time required for the front luminance to reach 500 cd / m 2 which was half the initial luminance was measured as the half-life. The measured value of the half-life of the organic EL element 8 was set to 100, and the light emission lifetimes of the organic EL elements 1 to 8 were obtained by the following formula.
Luminescence life of each organic EL element = (half life of each organic EL element) / (half life of organic EL element 8)
求めた発光寿命を、下記のようにランク評価した。
○:0.9<発光寿命
△:0.5<発光寿命≦0.9
×: 発光寿命≦0.5
△、○のランクを、合格ランクとする。
The obtained light emission lifetime was ranked as follows.
○: 0.9 <light emission life Δ: 0.5 <light emission life ≦ 0.9
×: Luminescence life ≦ 0.5
The rank of △ and ○ is set as the pass rank.
下記表1は、評価結果を示している。
なお、有機EL素子9〜11は、均一性の評価が低いため、発光寿命の評価は行わなかった。
In addition, since the organic EL elements 9-11 had low evaluation of uniformity, evaluation of the light emission lifetime was not performed.
表1に示すように、実施例に係る有機EL素子1〜8によれば、凝縮面と塗布膜面間の距離dにかかわらず、何れも高い乾燥の均一性が得られている。また、発光寿命も良好であることから、乾燥後に高い膜厚の均一性が得られていることが分かる。一方、比較例に係る有機EL素子9の場合、距離dを保持できず、凝縮板P1が塗布膜に接触した。有機EL素子10、11の場合、接触はみられなかったが、外風の影響を受けて実用可能な程度に乾燥の均一性が得られなかったと推測される。
As shown in Table 1, according to the organic EL elements 1 to 8 according to the examples, high drying uniformity is obtained regardless of the distance d between the condensation surface and the coating film surface. Moreover, since the light emission lifetime is also good, it can be seen that high film thickness uniformity is obtained after drying. On the other hand, in the case of the organic EL element 9 according to the comparative example, the distance d could not be maintained, and the condenser plate P1 was in contact with the coating film. In the case of the
1A、1B 乾燥装置
11 凝縮板
11a 凝縮面
12 加熱装置
131、132、22、23 ローラー
141、143、21 アンワインダー
142、144、24 ワインダー
15a 間隙保持ローラー
15b 間隙保持テープ
151 凸部
3 塗布装置
f1 基板
f2 塗布膜
f2a 塗布膜面
1A,
Claims (6)
前記凝縮板の凝縮面と前記基板上の塗布膜面間の距離を一定値に保持する間隙保持手段を備え、
前記間隙保持手段が前記凝縮面と前記基板間に配置された塗布膜の乾燥装置。 In a drying apparatus comprising a condensing plate facing the coating film on the substrate, condensing the solvent vapor from the coating film with the condensing plate, and drying,
A gap holding means for holding a distance between the condensation surface of the condensation plate and the coating film surface on the substrate at a constant value;
An apparatus for drying a coating film, wherein the gap holding means is disposed between the condensation surface and the substrate .
前記凝縮板の凝縮面と前記基板間に間隙保持手段を配置し、当該間隙保持手段により前記凝縮板の凝縮面と前記基板上の塗布膜面間の距離を一定値に保持する塗布膜の乾燥方法。 In the drying method of the coating film, the condenser plate facing the coating film on the substrate is arranged, the vapor of the solvent from the coating film is condensed by the condensation plate, and dried.
Wherein the gap holding means is arranged on the base plates and the condensing surface of the condenser plates, by the gap holding means of the coating film that holds the distance between the coating film surface on the substrate and the condensing surface of the condensing plate at a constant value Drying method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012124519A JP6003241B2 (en) | 2012-05-31 | 2012-05-31 | Coating film drying apparatus and drying method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012124519A JP6003241B2 (en) | 2012-05-31 | 2012-05-31 | Coating film drying apparatus and drying method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013250002A JP2013250002A (en) | 2013-12-12 |
JP6003241B2 true JP6003241B2 (en) | 2016-10-05 |
Family
ID=49848863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012124519A Expired - Fee Related JP6003241B2 (en) | 2012-05-31 | 2012-05-31 | Coating film drying apparatus and drying method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6003241B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108011050B (en) | 2016-11-01 | 2019-11-08 | 株式会社日本有机雷特显示器 | The manufacturing method of organic EL display panel and black drying device |
JP7076135B2 (en) | 2018-07-27 | 2022-05-27 | 株式会社Joled | Manufacturing method of organic EL display panel |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5813133A (en) * | 1996-09-04 | 1998-09-29 | Minnesota Mining And Manufacturing Company | Coated substrate drying system with magnetic particle orientation |
US6134808A (en) * | 1998-05-18 | 2000-10-24 | Minnesota Mining And Manufacturing Company | Gap drying with insulation layer between substrate and heated platen |
-
2012
- 2012-05-31 JP JP2012124519A patent/JP6003241B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013250002A (en) | 2013-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11094919B2 (en) | Method of vacuum drying film layer and display device | |
JP5876292B2 (en) | Apparatus and method for solution coating thin layers | |
JP2008071726A (en) | Apparatus for manufacturing organic el sheet | |
WO2014192685A1 (en) | Drying apparatus and drying method | |
JP6003241B2 (en) | Coating film drying apparatus and drying method | |
JP5900164B2 (en) | Coating film drying apparatus and drying method | |
JP5056682B2 (en) | Method for manufacturing organic electroluminescence element, organic electroluminescence element and apparatus for manufacturing the same | |
EP2147129A1 (en) | Process for making contained layers | |
JP2013249999A (en) | Drying device and drying method for coating film | |
JP2014009880A (en) | Drying apparatus and method for coating film | |
JP5212474B2 (en) | Method for manufacturing organic electroluminescence element | |
JP5677253B2 (en) | Film forming method and film forming apparatus | |
JP2013249998A (en) | Drying device and drying method for coating film | |
JP5700043B2 (en) | Method for forming organic thin film layer, method for producing organic electroluminescence element | |
WO2013105534A1 (en) | Thin film-forming method and thin film-forming device | |
JP2011258684A (en) | Method of manufacturing non-contact taking-up device, and organic electroluminescent element manufactured by method of manufacturing non-contact taking-up device | |
JP2013250000A (en) | Drying device and drying method for coating film | |
JP2012514299A (en) | Electroforming nozzle device and solution coating method | |
WO2014192667A1 (en) | Drying apparatus and drying method | |
JPWO2009051036A1 (en) | Thin film forming method and organic electronics element | |
WO2012121237A1 (en) | Vapor-deposition device and thin-film formation method | |
WO2012121238A1 (en) | Vapor-deposition sheet, vapor-deposition device, and method for manufacturing vapor-deposition sheet | |
JP2012074277A (en) | Manufacturing method for organic el element | |
JP5580335B2 (en) | Apparatus and method for preventing scattering for continuous printing | |
JP2013225453A (en) | Manufacturing method of structure having functional film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151027 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160331 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160809 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160822 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6003241 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |