WO2014192668A1 - Drying apparatus and drying method - Google Patents

Drying apparatus and drying method Download PDF

Info

Publication number
WO2014192668A1
WO2014192668A1 PCT/JP2014/063773 JP2014063773W WO2014192668A1 WO 2014192668 A1 WO2014192668 A1 WO 2014192668A1 JP 2014063773 W JP2014063773 W JP 2014063773W WO 2014192668 A1 WO2014192668 A1 WO 2014192668A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
drying
silane
substrate
gas barrier
Prior art date
Application number
PCT/JP2014/063773
Other languages
French (fr)
Japanese (ja)
Inventor
蔵方 慎一
廣瀬 達也
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014192668A1 publication Critical patent/WO2014192668A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/24Arrangements of devices using drying processes not involving heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement

Definitions

  • the present invention relates to a drying apparatus and a drying method.
  • a gas barrier film that shields permeation of a gas such as water and oxygen is used in order to improve storage stability.
  • a metal or metal oxide film having low gas permeability is provided as a gas barrier layer on a substrate such as a resin film.
  • a method of forming a gas barrier layer by depositing a metal or a metal oxide on a substrate by a plasma CVD method is also known.
  • the coating film formed by the wet process contains a large amount of solvent, it is necessary to dry the coating film before the modification treatment.
  • the coating film formed by the wet process is likely to be uneven in drying and it is difficult to make the film thickness uniform.
  • an organic solvent is generally used for the coating solution, and the viscosity tends to be low.
  • a coating solution containing a silicon compound tends to have a low viscosity of 100 mPa ⁇ s or less.
  • the thickener is not preferable because it can cause deterioration in gas barrier properties.
  • a condensation drying process is performed in which a condensing plate faces the coating film surface with a narrow gap, and the vapor of the solvent from the coating film is condensed and dried on the condensing surface of the condensing plate.
  • a condensation drying process precise drying can be performed with a simple operation of controlling the distance between the coating film surface and the condensation surface and the temperature of the coating film surface and the condensation surface without using convection heat transfer. it can.
  • the silicon compound contained in the coating film of the gas barrier layer reacts with oxygen or water in the air to generate a highly reactive silane-based gas.
  • the silane-based gas is generated during the condensation drying, the solvent is prevented from condensing and the drying efficiency is lowered.
  • the silane-based gas reacts with moisture in the atmosphere and the silicon compound is deposited, and easily adheres to the condensation surface.
  • a minute slit is formed on the condensing surface in order to discharge the solvent droplets adhering to the condensing surface, the slit is buried by the deposited silicon compound. Therefore, the capillary force of the slit for discharging the solvent is lost, the discharge of the solvent is hindered, and the drying efficiency is also lowered.
  • the silicon compound adhering to the condensing plate peels off and adheres to the coating film, increasing the failure of the coating film.
  • An object of the present invention is to suppress a decrease in drying efficiency of condensation drying and to reduce the failure of the coating film.
  • a drying apparatus comprising a condensing plate facing a coating film on a substrate, condensing the solvent vapor from the coating film with the condensing plate, and drying,
  • the coating film contains a silicon compound that generates a silane-based gas
  • a drying apparatus comprising a recovery means for recovering a silane-based gas generated from the coating film before drying by the condenser plate.
  • the collection unit is a planar collection member that is disposed to face the coating film on the substrate.
  • a condensing plate facing the coating film on the substrate is a drying method for condensing and drying the solvent vapor from the coating film,
  • a drying method characterized in that when a coating film containing a silicon compound that generates a silane-based gas is dried, the silane-based gas generated from the coating film is recovered by a recovery means before drying by the condenser plate.
  • the present invention it is possible to reduce silane-based gas that is generated from the coating film during condensation drying and hinders condensation of the solvent. It can suppress that the deposit of a silane type gas adheres to a condensation plate, and the condensing effect
  • FIG. 2 is a cross-sectional view taken along line Z2-Z2 in FIG.
  • FIG. 3 is a cross-sectional view taken along line Z1-Z1 in FIG. It is a front view which shows the example of the other collection
  • FIG. 1 shows a configuration of a thin film forming apparatus 100 in which the drying apparatus 1 according to the present embodiment is used.
  • FIG. 2 is a sectional view taken along line Z2-Z2 of FIG.
  • the thin film forming apparatus 100 forms a coating film f ⁇ b> 2 by applying a coating solution onto the substrate f ⁇ b> 1 by the coating apparatus 3, and dries the coating film f ⁇ b> 2 by the drying apparatus 1.
  • a thin film is formed on the substrate f1.
  • the thin film forming apparatus 100 further includes a drying device 4 in order to remove the residual solvent. Further, the thin film forming apparatus 100 includes the reforming device 5 and can modify the coating film f2.
  • the substrate f ⁇ b> 1 is sent to the coating device 3 by the unwinder 21, transported by the rollers 22 and 23, and wound by the winder 24.
  • the coating apparatus 3 applies a coating solution containing a solvent on the substrate f1 by a wet process.
  • a coating method of the coating device 3 for example, a casting method, an inkjet method, a spray method, a printing method, a slot method using a slit type die coater, an ESD (Electro Spray Spray Deposition) method, an ESDUS (Evaporative Spray Deposition A from Ultra-dilute Solution) ) Law.
  • a post-weighing type in which an application liquid is applied in excess of the amount necessary to form a coating film having a required film thickness, and then the excess is removed.
  • a pre-weighing type in which a coating solution is applied in a necessary amount is known. Any coating method can be applied, but the pre-weighing type is preferable from the viewpoints of high accuracy, high speed, thin film, improved coating film quality, suitability for lamination, and the like. Moreover, a closed system is preferable from the viewpoints of suppressing the exposure of the coating liquid, suppressing the change in concentration, maintaining the cleanliness, and preventing the contamination of foreign matters. Therefore, among the above coating methods, a slot method using a slit type die coater and an ink jet method are preferable.
  • the drying device 1 is preferably installed immediately after the coating device 3 so that it can be dried immediately after the coating liquid is applied. By starting the drying immediately after the application, it is possible to prevent drying unevenness caused by the surrounding airflow or natural convection in the drying apparatus 1. Although it depends on the conveyance speed of the substrate f1, the time from the start of application to the start of drying is preferably within 30 seconds, and more preferably within 10 seconds.
  • airflow blocking means such as a blocking plate and a case is provided between the coating apparatus 3 and the drying apparatus 1 or airflow rectifying means such as a rectifying plate and a rectifying fan is provided to convection around the coating film f2. It can also be suppressed.
  • the drying apparatus 1 includes a condensing plate 11 that faces the coating film f2 on the substrate f1.
  • the drying apparatus 1 condenses the vapor of the solvent contained in the coating film f2 by the condensing plate 11, and dries the coating film f2.
  • the drying device 1 includes a heating device 12, a recovery member 13, and a heat roller 14.
  • the condensing plate 11 condenses the vapor of the solvent from the coating film f2 on the condensing surface 11a facing the coating film surface f2a.
  • the material of the condenser plate 11 can be selected as appropriate in consideration of thermal conductivity, weight, processability, processing accuracy, and resistance to solvents.
  • Examples of the material of the condensing plate 11 include metals such as aluminum, copper, iron, and SUS (stainless steel) or alloys thereof, plastic, and wood. Of these, aluminum is preferred because of its excellent workability and thermal conductivity.
  • the condensing plate 11 may have a plurality of slits formed on the condensing surface 11a.
  • the solvent condensed by the slit can be discharged from the condensing surface 11a, and a decrease in condensation efficiency due to the saturation of the solvent can be suppressed.
  • the slit may be formed in parallel with the transport direction y, or may be formed in parallel with the width direction x orthogonal to the transport direction y.
  • the solvent condensed on the condensation surface 11a is transported by the capillary force of the slit and is discharged from the condensation surface 11a.
  • it is good also as providing the side plate drooping from the side surface of the condensation plate 11, and collect
  • the condensing plate 11 may be subjected to a surface treatment on the condensing surface 11a in order to prevent contamination and efficiently discharge the condensed solvent.
  • the condensation surface 11a can be subjected to water repellent treatment or hydrophilic treatment.
  • the heating device 12 heats the coating film f2 through the substrate f1 and promotes evaporation of the solvent.
  • the heating device 12 is disposed at a position facing the condenser plate 11 via the substrate f1.
  • Examples of the heating method of the heating device 12 include a heating method using hot air, infrared rays, ultraviolet rays, microwaves, electric resistance, and the like.
  • the recovery member 13 is recovery means for recovering the silane-based gas generated from the coating film f2 before the coating film f2 is condensed and dried by the condensing plate 11.
  • a silane-based gas refers to a gas containing silicon (Si) and having high reactivity with moisture (H 2 O) or oxygen gas in the atmosphere.
  • Examples of the silane-based gas include monosilane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), trichlorosilane (SiHCl 3 ), tetrachlorosilane (SiCl 4 ), and tetrafluoride. silicon (SiF 4), and the like.
  • the silane-based gas is generated from the coating film f2 even during condensation-drying, thereby preventing the condensation of the solvent, resulting in a decrease in drying efficiency.
  • the silane-based gas that has come into contact with the condenser plate 11 precipitates, reducing the condensation action of the condenser plate 11 and increasing the number of failures in which the deposit adheres to the coating film f2.
  • the recovery member 13 recovers the silane-based gas generated from the coating film f2 before the condensation drying, thereby suppressing a decrease in the drying efficiency of the condensation drying and reducing a failure due to the deposit of the silane-based gas.
  • FIG. 3 is a cross-sectional view taken along the line Z1-Z1 of FIG.
  • the recovery member 13 has a planar shape and is disposed so as to face the coating film f ⁇ b> 2 on the substrate f ⁇ b> 1 upstream of the condensing plate 11 in the transport direction y.
  • the silane-based gas When the silane-based gas is generated from the coating film f2, the silane-based gas reacts with water in the atmosphere and the silicon compound is deposited on the surface of the recovery member 13 and adheres thereto.
  • the recovery member 13 may be a plate shape, a sheet shape, or a disk shape as long as it is planar.
  • the roll body of the collection member 13 can be unwound and a silane gas can be attached thereto, and then wound up. Further, the endless collection member 13 can be wound around a roller and rotated.
  • the silane-based gas can be collected while rotating the disk-shaped collection member 13. After the silane-based gas is sufficiently adhered to the recovery member 13, the recovery member 13 may be replaced to increase the efficiency of recovery of the silane-based gas.
  • the recovery member 13 can be made of a metal such as glass, aluminum, copper, iron, SUS, or an alloy thereof. Glass with high transparency is preferable because the degree of recovery of the silane-based gas can be visually determined.
  • the recovery member 13 is preferably heated in order to generate and recover as much silane-based gas as possible before condensation drying.
  • the heating method is not particularly limited.
  • a heating device can be installed above the collection member 13 to heat the collection member 13.
  • the temperature of the recovery member 13 during heating can be set to about 60 ° C., for example.
  • the distance D between the recovery member 13 and the coating film surface f2a can be set as appropriate, but the distance D is preferably in the range of 0.1 to 10.0 mm from the viewpoint of increasing the recovery efficiency. If the distance D is 0.1 mm or more, it is easy to avoid contact between the coating film f2 and the recovery member 13 due to flapping of the substrate f1, and if it is 10.0 mm or less, silane-based gas precipitates on the surface of the recovery member 13 And diffusion of the silane-based gas can be suppressed.
  • the solid content ratio of the coating film f2 after the silane-based gas is recovered by the recovery member 13 is preferably 30% by mass or more.
  • the silane-based gas can be recovered from the coating film f2 to such an extent that a decrease in the drying efficiency of condensation drying can be suppressed.
  • the solid content ratio is determined as follows. A sample of the coating film f2 after the silane-based gas is recovered, that is, the sample of the coating film f2 immediately after the substrate f1 exceeds the recovery member 13, is measured and the mass is measured. Next, the sample is put in an aluminum plate and heat-treated at a temperature of 80 ° C. for 3 hours by a heating plate. After the heat treatment, the mass (g) of the sample-containing aluminum plate is measured, and the mass (g) of the residual solvent per unit area remaining in the sample after the heat treatment from the mass difference before and after the heat treatment and the area of the sample. / M 2 ) and the solid content ratio is determined by the following formula.
  • the coating film f2 is heated to a high temperature or the time for the substrate f1 to face the recovery member 13 is increased. Adjust it. For example, by increasing the length of the recovery member 13 in the transport direction y or decreasing the transport speed of the substrate f1, the time for the substrate f1 to face the recovery member 13 becomes longer, and more silane-based gas is recovered. be able to.
  • the heat roller 14 is a transport roller for the substrate f1 and incorporates a heat source. As shown in FIG. 1, the heat roller 14 is arranged upstream of the collection member 13 in the transport direction y, and heats the transported substrate f ⁇ b> 1 in order to promote generation of silane-based gas.
  • the surface temperature of the heat roller 14 can be set to about 80 ° C., for example.
  • the heat roller 14 is installed upstream of the collection member 13 in the transport direction y, but may be installed at a position facing the collection member 13 via the substrate f1.
  • the drying apparatus 1 includes an irradiation apparatus that irradiates active energy rays, and the irradiation apparatus applies the coating film f2 just before facing the recovery member 13 or faces it. It is also possible to irradiate active energy rays to the coating film f2. Examples of the active energy rays include visible light, infrared rays, ultraviolet rays, X-rays, ⁇ rays, ⁇ rays, ⁇ rays, and electron beams.
  • the drying speed of the drying device 1 can be controlled by adjusting the temperature Tc of the condensing surface 11a and the temperature Th (Th> Tc) of the coating film surface f2a.
  • the drying speed increases as the difference in the vapor pressure of the solvent at each temperature Tc and Th increases.
  • a method for controlling the temperature Tc of the condensing surface 11a heating or cooling of the condensing plate 11 by blowing or liquid feeding can be mentioned.
  • the temperature Tc of the condensing surface 11a can be set to room temperature without particularly controlling, and the temperature Th of the coating film surface f2a can be controlled to a temperature sufficiently higher than the room temperature.
  • the temperature Th of the coating film surface f2a can be adjusted by heating with the heating device 12. If necessary, a cooling device can be used together with the heating device 12 to control the temperature Th of the coating film surface f2a.
  • the temperature Tc of the condensing surface 11a may be higher or lower than room temperature as long as it is lower than the temperature Th of the coating film surface f2a, but is preferably in the range of 5 to 30 ° C, and in the range of 10 to 20 ° C. It is more preferable that By controlling the temperature Tc within the above range, an increase in cost required for heating can be suppressed. Further, it is easy to uniformly control the temperature of the entire condensing surface 11a, and it is easy to suppress drying unevenness due to temperature unevenness, and consequently film thickness unevenness of the coating film f2. From the same viewpoint, the temperature unevenness in the condensing surface 11a is preferably within 2 ° C.
  • the temperature of the member other than the condensing plate 11 is preferably adjusted to be equal to or higher than the temperature Tc of the condensing surface 11a.
  • the temperature Th of the coating film surface f2a may be higher or lower than the room temperature as long as it is higher than the temperature Tc of the condensing surface 11a, but is preferably in the range of 30 to 100 ° C, preferably in the range of 30 to 70 ° C. It is more preferable that By setting the temperature Th to 30 ° C. or higher, moisture in the atmosphere other than the solvent is condensed and it is easy to suppress a decrease in drying efficiency. By setting the temperature to 100 ° C. or lower, it is easy to suppress an increase in cost due to a high temperature, conveyance failure due to the modification of the substrate f1, and the like.
  • the temperature unevenness in the coating film surface f2a is preferably within 2 ° C.
  • the drying speed of the drying device 1 can also be controlled by adjusting the distance d between the condensation surface 11a and the coating film surface f2a.
  • the distance d between the condensation surface 11a and the coating film surface f2a is preferably maintained at a constant value.
  • the drying speed in the coating film surface f2a can be made constant, and the uniformity of drying can be improved.
  • the drying device 4 is a drying device for post-processing provided to remove the residual solvent from the drying device 1.
  • the drying method of the drying device 4 may be the same condensation drying as the drying device 1, or may be another drying method.
  • Other drying methods include drying using hot air, infrared rays, microwaves, ultrasonic waves, etc., vacuum drying, supercritical drying, moisture absorption drying, cooling drying, and the like.
  • a coating film containing a silicon compound having a polysilazane skeleton can be formed as a gas barrier layer of a gas barrier film, and the coating film can be uniformly dried.
  • the gas barrier film is a film having a gas barrier layer exhibiting low oxygen permeability and water vapor permeability, and imparts excellent storage stability to an electronic device using the gas barrier film.
  • the gas barrier performance required for the gas barrier layer varies depending on the electronic device in which the gas barrier film is used.
  • the gas barrier layer has a water vapor permeability (temperature 60 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2%) measured in accordance with JIS K7129: 2008 of 3 ⁇ 10 ⁇ 3 g / m 2 ⁇ 24 h or less.
  • the oxygen permeability measured according to JIS K7126: 2006 is 1 ⁇ 10 ⁇ 3 g / m 2 ⁇ 24 h ⁇ atm or less, it can be preferably used for an electronic device.
  • an organic solvent is used as a solvent, so that the viscosity of the coating film f2 is likely to be a low viscosity of 100 mPa ⁇ s or less.
  • the coating liquid flows greatly, the evaporation rate of the solvent is not constant, and drying unevenness is likely to occur.
  • the drying apparatus 1 does not use convective heat transfer, there is almost no unevenness in the flow of the coating liquid and the evaporation rate of the solvent, and uniform drying is possible even when the coating film f2 has a low viscosity of 100 mPa ⁇ s or less. Since it can be realized, it is particularly effective for forming the gas barrier layer described above.
  • a silicon compound having a polysilazane skeleton is likely to generate a silane-based gas. It has been found that when the coating film f2 is a silicon compound having a polysilazane skeleton, a large amount of silane-based gas is generated immediately after coating. Although the silane-based gas lowers the condensing action, the drying apparatus 1 performs the condensation drying after collecting the silane-based gas as much as possible by the collecting member 13, so that the silane-based gas generated during the condensation drying can be reduced. Therefore, even when the coating film of the gas barrier layer contains a silicon compound having a polysilazane skeleton, it is possible to achieve uniform drying while suppressing a decrease in drying efficiency, which is particularly effective.
  • a procedure for forming a thin film will be described by taking as an example a case where a coating film containing a silicon compound having a polysilazane skeleton is formed and the coating film is dried to form a gas barrier layer.
  • the gas barrier film substrate f ⁇ b> 1 is set in the thin film forming apparatus 100.
  • a colorless and transparent resin film is preferably used as the substrate f1 of the gas barrier film.
  • the resin film material include polyester, methacrylic acid, methacrylic acid-maleic acid copolymer, polystyrene, fluorinated resin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane, and polyether.
  • Examples include ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, cycloolefin copolymer, fluorene ring-modified polycarbonate, alicyclic ring-modified polycarbonate, fluorene ring-modified polyester, and acryloyl compound.
  • the thickness of the substrate f1 used for the gas barrier film can be appropriately selected depending on the application.
  • the thickness of the substrate f1 is in the range of 1 to 800 ⁇ m, preferably in the range of 10 to 200 ⁇ m. From the viewpoint of reducing the size and weight of the electronic device, it is more preferably in the range of 10 to 50 ⁇ m.
  • Substrate f1 can be produced by melting and extruding a resin composition as a raw material using an extruder having an annular die or a T die and quenching, and is substantially unstretched with no resin orientation. A substrate f1 is obtained. This unstretched substrate f1 is stretched by uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching or tubular simultaneous biaxial stretching in the transport direction and / or width direction of the substrate f1. A substrate f1 can also be obtained.
  • the width direction refers to a direction orthogonal to the transport direction on the substrate f1.
  • the draw ratio is preferably in the range of 2 to 10 times in the transport direction and the width direction.
  • the surface of the substrate f1 on which the gas barrier layer is formed may be subjected to surface treatment such as excimer treatment, corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment in order to improve adhesion with the laminated gas barrier layer. Good.
  • the substrate f1 may be provided with a primer layer in order to flatten the surface of the substrate f1 and improve the adhesion with the gas barrier layer.
  • the primer layer preferably contains a curable resin such as an active energy ray curable resin or a thermoplastic resin.
  • OPSTAR registered trademark
  • the OPSTAR series is a compound obtained by bonding an organic compound having a polymerizable unsaturated group to silica fine particles.
  • thermosetting material examples include thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, silicon resin, polyamidoamine-epichlorohydrin resin, and the like. Can be mentioned.
  • thermosetting materials include SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid silicone manufactured by Adeka, Unidic (registered trademark) V-8000 series manufactured by DIC, EPICLON (registered trademark) EXA -4710 (ultra high heat resistant epoxy resin), X-12-2400 (silicon resin) manufactured by Shin-Etsu Chemical Co., Ltd., SSG coat (inorganic or organic nanocomposite material) manufactured by Nitto Boseki Co., Ltd., and the like.
  • Solvents used in the coating solution containing the curable material include alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, ethylene glycol and propylene glycol, terpenes such as ⁇ - or ⁇ -terpineol, and acetone.
  • Ketones such as methyl ethyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone, 2-heptanone, 4-heptanone, aromatic hydrocarbons such as toluene, xylene, tetramethylbenzene, cellosolve, methyl cellosolve, ethyl cellosolve , Carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether Ter, dipropylene glycol monoethyl ether, triethylene glycol monomethyl ether, glycol ethers such as triethylene glycol monoethyl ether, ethyl acetate, butyl acetate, cellosolve acetate, ethyl cellosolve acetate, butyl cello
  • the thickness of the primer layer is not particularly limited, but is preferably in the range of 0.1 to 10.0 ⁇ m.
  • the substrate f1 may have a bleedout preventing layer formed on the surface opposite to the surface on which the gas barrier layer of the substrate f1 is laminated.
  • a bleed out preventing layer can be formed in the same manner as the primer layer.
  • the thin film forming apparatus 100 starts transporting the substrate f1, and the coating apparatus 3 applies the coating liquid for the gas barrier layer onto the substrate f1 to form the coating film f2.
  • the coating solution for the gas barrier layer can be prepared by dissolving or dispersing a silicon compound having a polysilazane skeleton in a solvent.
  • the polysilazane skeleton is a basic skeleton of a polymer containing a Si—N bond, and is a precursor of ceramics such as silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), or silicon oxynitride (SiO x N y ). is there.
  • Examples of the silicon compound having a polysilazane skeleton include a silicon compound having a structure represented by the following general formula (1).
  • the silicon compound is generally called polysilazane.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an aryl group, a vinyl group or a (trialkoxysilyl) alkyl group.
  • the alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group may further have a substituent.
  • Examples of the alkyl group for R 1 , R 2 and R 3 include straight, branched or cyclic alkyl groups having 1 to 8 carbon atoms. More specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n -Hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like.
  • Examples of the aryl group for R 1 , R 2 and R 3 include aryl groups having 6 to 30 carbon atoms. More specifically, a non-condensed hydrocarbon group such as a phenyl group, a biphenyl group, a terphenyl group; a pentarenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptaenyl group, a biphenylenyl group, a fluorenyl group, an acenaphthylenyl group, a preadenyl group
  • a condensed polycyclic hydrocarbon group such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrysenyl group
  • Examples of the (trialkoxysilyl) alkyl group of R 1 , R 2 and R 3 include an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specific examples include 3- (triethoxysilyl) propyl group and 3- (trimethoxysilyl) propyl group.
  • examples of the substituent present in the alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group include an alkyl group, a halogen atom, a hydroxy group (—OH), a mercapto group (—SH), a cyano group. Groups (—CN), sulfo groups (—SO 3 H), carboxy groups (—COOH), nitro groups (—NO 2 ) and the like.
  • the substituent which the alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group may have is the same as the substituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. Absent. For example, when R 1 to R 3 are alkyl groups, they are not further substituted with an alkyl group.
  • R 1 , R 2 and R 3 are hydrogen atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, phenyl group, vinyl group, 3- (triethoxysilyl) A propyl group or a 3- (trimethoxysilylpropyl) group.
  • n is an integer of 1 or more. n is preferably determined so that the number average molecular weight Mn of the silicon compound having the structure represented by the general formula (1) is in the range of 150 to 150,000 g / mol.
  • perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms the resulting gas barrier layer exhibits high density, Particularly preferred.
  • Perhydropolysilazane is presumed to have a structure including a linear structure and a ring structure centered on a 6-membered ring and an 8-membered ring.
  • Perhydropolysilazane has a number average molecular weight Mn measured in terms of polystyrene by gel permeation chromatography of about 600 to 2000, and is a liquid or solid substance.
  • Perhydropolysilazane is commercially available as a solution dissolved in an organic solvent, and the commercially available product can be used as it is as a coating solution for the gas barrier layer.
  • Commercially available products that can be used as the coating solution include AQUAMICA (registered trademark) series NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20 manufactured by AZ Electronic Materials. NL150A, NP110, NP140, SP140 and the like.
  • Organopolysilazane in which at least one of R 1 , R 2 and R 3 is a hydrogen atom and at least one is an organic group such as an alkyl group, also has good adhesion to the substrate f1 and is a ceramicized gas barrier layer Even when the toughness is imparted to the gas barrier layer to increase the thickness of the gas barrier layer, the generation of cracks can be suppressed, which is preferable.
  • Perhydropolysilazane or organopolysilazane may be selected depending on the application, and both may be used in combination.
  • a silicon alkoxide-added polysilazane obtained by reacting a silicon alkoxide with a silicon compound having a structure represented by the above general formula (1) (Japanese Patent Laid-Open No.
  • the solvent used for the coating solution is an organic solvent inert to the silicon compound. Is preferred.
  • aprotic solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons and halogen hydrocarbons; esters such as ethyl acetate and butyl acetate; ketones such as acetone and methyl ethyl ketone; Mention may be made of ethers such as butyl ether, dioxane, tetrahydrofuran, mono- or polyalkylene glycol dialkyl ethers (diglymes).
  • a solvent can be selected according to the solubility of a silicon compound, the evaporation rate of a solvent, etc., and may use 1 type (s) or 2 or more types.
  • the silicon compound content in the coating solution varies depending on the film thickness of the gas barrier layer and the pot life of the coating solution, but is preferably in the range of 0.2 to 80.0% by weight, more preferably 1 to 50% by weight. %, Particularly preferably in the range of 5 to 35% by weight.
  • the coating solution may contain a catalyst in order to promote silica conversion during the modification treatment.
  • catalysts include N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N′-tetramethyl-1,3 -Amine catalysts such as diaminopropane, N, N, N ', N'-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, Pd compounds such as propionic acid Pd, Rh acetylacetonate, etc. And metal catalysts and N-heterocyclic compounds.
  • a basic catalyst is preferable, and an amine catalyst is preferable.
  • the content of the catalyst in the coating solution is preferably in the range of 0.1 to 10.0 mol%, more preferably in the range of 0.5 to 7.0 mol% with respect to the content of the silicon compound. Is within. By setting the content of the catalyst within the above range, it is possible to avoid excessive silanol formation, film density reduction, film defect increase, and the like due to rapid progress of the reaction.
  • coating of the coating film f2 can be determined according to the film thickness calculated
  • the viscosity of the coating film f2 can be appropriately selected depending on the gas barrier performance required for the gas barrier layer and the solubility or decomposability of the silicon compound.
  • an organic solvent is used as described above, so that the viscosity of the coating solution is as low as 100 mPa ⁇ s or less.
  • the specific viscosity of the coating film is preferably in the range of 0.3 to 10.0 mPa ⁇ s from the viewpoint of increasing the coating speed and improving the coating property, and 1.0 to 10.0 mPa ⁇ s. More preferably within the range of s.
  • the drying apparatus 1 collects the silane-based gas generated from the coating film f2 of the gas barrier layer.
  • the drying apparatus 1 heats the coating film f ⁇ b> 2 through the substrate f ⁇ b> 1 by the heat roller 14, and collects the silane-based gas generated from the coating film f ⁇ b> 2 by the collection member 13.
  • the drying device 1 condenses and dries the coating film f2 of the gas barrier layer.
  • the drying device 1 heats the substrate f1 by the heating device 12.
  • the solvent in the coating film f2 is evaporated by heating the substrate f1
  • the vapor is condensed by the condensing plate 11 facing the coating film f2, and the coating film f2 is dried.
  • the thickness of the gas barrier layer after drying is preferably in the range of 1 nm to 100 ⁇ m, more preferably in the range of about 10 nm to 10 ⁇ m, still more preferably in the range of 50 nm to 1 ⁇ m, particularly preferably. It is in the range of 100 to 500 nm. If the film thickness is 1 nm or more, sufficient gas barrier performance can be obtained, and if it is 100 ⁇ m or less, stable coating properties and high light transmittance are obtained.
  • the modification treatment is a treatment in which part or all of the silicon compound contained in the coating film f2 of the gas barrier layer is converted into silica and converted into ceramics.
  • Examples of the modification treatment include a method of irradiating ultraviolet light having a wavelength of 400 nm or less, a method of irradiating vacuum ultraviolet light (VUV; Vacuum Ultra Violet) having a wavelength of less than 180 nm, and the like.
  • the coating device 3 is used to form a coating film f2 of an organic layer such as an organic EL element, a solar cell, a transistor, a memory, a sensor, etc., and the coating device f2 is dried by the drying device 1 A thin film can be formed. Also in the formation of the organic layer, when an organic solvent is used for the coating solution and the coating film f2 has a low viscosity, the film thickness is uniform so that the functions required for the organic layer can be obtained by uniform drying by the drying device 1. This is effective.
  • the drying apparatus 1 includes the condensing plate 11 that faces the coating film f2 on the substrate f1, and condenses the solvent vapor from the coating film f2 by the condensing plate 11 to dry.
  • the coating film f2 contains a silicon compound that generates a silane-based gas, and serves as a recovery unit that recovers the silane-based gas generated from the coating film f2 before drying the condensing plate 11.
  • a flat recovery member 13 is provided so as to face the upper coating film f2.
  • the silane-based gas Since the silane-based gas is collected in advance, the silane-based gas generated from the coating film f2 during the condensation drying and hindering the condensation of the solvent can be reduced. A decrease in the condensing action of the condensing plate 11 due to the silane-based gas can be suppressed, and a decrease in the drying efficiency of the condensation drying can be suppressed. Due to the reduction of the silane-based gas, the amount of deposits adhering to the condensing surface 11a is also reduced, so that the failure of deposits adhering to the coating film f2 can be reduced.
  • the drying device 1 may include a blowing device and / or a suction device for forming an air flow for discharging the silane-based gas in addition to the recovery member 13.
  • FIG. 4 shows an example in which the blower 15 and the suction device 16 are arranged before and after the collection member 13 in the transport direction y.
  • the blower 15 sends out air between the collection member 13 and the coating film f2, and discharges the silane-based gas generated from the coating film f2.
  • the suction device 16 sucks air containing a silane-based gas and discharges the silane-based gas generated from the coating film f2.
  • the recovery member 13 collects and recovers silane-based gas on the surface.
  • the recovery member 13 is also an air guide plate.
  • the air flow for discharging the silane-based gas is preferably formed so as to go from the downstream side to the upstream side in the transport direction y, as indicated by the white arrow in FIG.
  • an airflow is formed from upstream to downstream in the transport direction y.
  • convection is generated, and the generation of silane-based gas is promoted by the convection. be able to. It is also possible to prevent the silane-based gas from flowing into the condenser plate 11.
  • the drying device 1 includes only one of the blower 15 and the suction device 16 and sends out air by the blower 15 or sucks air by the suction device 16 to discharge the silane-based gas from the coating film f2. May be.
  • a quartz glass plate having a length in the width direction of 400 mm, a length in the transport direction of 300 mm, and a thickness of 20 mm was disposed upstream of the condensing plate in the transport direction of the substrate as a silane-based gas recovery member. Further, an infrared heater was installed on the quartz glass plate to produce a drying device K1 having the same configuration as the drying device 1 of FIG. The distance between the infrared heater and the quartz glass plate was adjusted so that the temperature of the quartz glass plate was 60 ° C.
  • drying device K21 In the production of the drying device K1, the drying device K21 is produced in the same manner as the drying device K1, except that the quartz glass plate and the infrared heater on the quartz glass plate are not provided, and only the condensing plate and the heating device are configured. did.
  • a polyester film manufactured by Teijin DuPont Films Co., Ltd., extremely low heat yield PET
  • the polyester film had a width in the width direction of 0.35 m, a length in the conveyance direction of 50 m, and a thickness of 125 ⁇ m.
  • a UV curable organic / inorganic hybrid hard coat agent OPSTAR Z7535 manufactured by JSR was applied by a slot method so that the film thickness after drying was 4 ⁇ m. After coating, the coating was dried at 80 ° C. for 3 minutes, and cured by irradiation with light of 1.0 J / cm 2 using a high-pressure mercury lamp in an air atmosphere to form a bleed-out prevention layer.
  • UV curable organic / inorganic hybrid hard coat agent OPSTAR Z7501 (manufactured by JSR) is applied to the surface of the substrate opposite to the surface provided with the bleed-out prevention layer so that the film thickness after drying becomes 4 ⁇ m.
  • the coating was dried at 80 ° C. for 3 minutes, and cured by irradiation with 1.0 J / cm 2 of light using a high-pressure mercury lamp in an air atmosphere to form a primer layer.
  • the produced drying apparatus K1 and coating apparatus were arranged in the same manner as the thin film forming apparatus 100 shown in FIG.
  • a coating apparatus a slit type die coater having a width of 0.3 m and a slit interval of 100 ⁇ m was used.
  • a coating film of a gas barrier layer was formed by a coating apparatus, and after the silane-based gas was collected by a drying apparatus K1, the coating film was dried.
  • the coating solution for the gas barrier layer was prepared as follows. 4 g of Aquamica NN120-20 (20% by weight dibutyl ether solution of perhydropolysilazane, AZ Electronic Materials) and 1 g of Aquamica NAX120-20 (19% by weight of perhydropolysilazane containing 1% by weight amine catalyst) Dibutyl ether solution, manufactured by AZ Electronic Materials) was mixed. 4.636 g was taken from this mixture, 0.613 g of ALCH (aluminum ethyl acetoacetate diisopropylate, manufactured by Kawaken Fine Chemical Co., Ltd.) and 10.151 g of dibutyl ether were added, mixed and applied. A liquid was obtained.
  • ALCH aluminum ethyl acetoacetate diisopropylate
  • the coating conditions of the coating device are as follows. (Application conditions) Substrate transport speed: 10 m / min Environmental temperature during application: 25 ° C Applied length in the width direction: 0.3 m Applied length in transport direction: 50m The conveyance speed of the substrate was measured with a laser Doppler velocimeter LV203 (manufactured by Mitsubishi Electric Corporation).
  • Coating film thickness coating amount (g / m 2 ) / specific gravity of coating solution (g / m 3 )
  • Application amount (g / m 2 ) application liquid supply speed (g / sec) / ⁇ length in the width direction applied (m) ⁇ application speed (m / sec) ⁇
  • the conditions for collecting the silane-based gas in the drying device K1 are as follows. (Recovery conditions) Temperature of recovery member: 60 ° C Substrate transport speed: 10 m / min
  • the drying conditions of the drying device K1 are as follows. (Drying conditions) Condensing surface temperature Tc: 20 ° C. Temperature Th of coating film surface: 40 ° C Distance d between condensation surface and coating film surface: 2 mm Substrate transport speed: 10 m / min
  • the distance d between the condensation surface and the coating film surface was adjusted by adjusting the positional relationship between the condensation plate and the substrate transport roller.
  • the temperature Th of the coating film surface was measured by a radiation temperature sensor FT-30 (manufactured by Keyence Corporation), and was adjusted to the above temperature by changing the distance between the substrate and the infrared heater SG4040.
  • the solid content ratio of the coating film was measured as follows. A sample was taken from the coating film at the exit of the silane-based gas recovery step, and the mass was measured. The collected sample was placed in an aluminum plate and heat-treated with a heating plate at a temperature of 80 ° C. for 3 hours. After the heat treatment, the mass (g) of the sample-containing aluminum plate is measured, and the mass (g) of the residual solvent per unit area remaining in the sample after the heat treatment from the mass difference before and after the heat treatment and the area of the sample.
  • the coating film obtained was irradiated with vacuum ultraviolet light to convert the perhydropolysilazane in the gas barrier layer into silica to obtain a gas barrier layer.
  • the vacuum ultraviolet light was irradiated using a stage movable xenon (Xe) excimer irradiation apparatus MECLM-1-200 (irradiation wavelength: 172 nm, excimer lamp light intensity: 312 mW / cm 2 ) manufactured by MD Excimer.
  • Xe stage movable xenon
  • the flow rate of nitrogen gas and oxygen gas introduced into the vacuum ultraviolet irradiation chamber is measured with a flow meter, and the nitrogen concentration is adjusted so that the oxygen concentration during irradiation is in the range of 0.2 to 0.4% by volume.
  • the flow rate ratio (nitrogen gas / oxygen gas) of gas and oxygen gas was adjusted.
  • gas barrier film 5 In the production of the gas barrier film 1, a gas barrier film 5 was produced in the same manner as the gas barrier film 1 except that the drying device K1 was changed to the drying device K21. In production of the gas barrier film 5, the solid content ratio of the coating film was measured in the same manner as in the gas barrier film 1, and it was 5% by mass.
  • Drying efficiency When the coating film of the gas barrier layer was condensed and dried, the drying speed was calculated at regular intervals within the range of 0 to 10 m and 190 to 200 m in the length of the substrate transport direction. .
  • the drying rate was calculated by the following formula using the measured values obtained by measuring the film thickness of the coating film immediately before and after condensing and drying, that is, immediately before facing the condensing plate, and immediately after exceeding the condensing plate. .
  • a film thickness measuring device F-20 manufactured by Filmetrics
  • Drying speed ⁇ (Film thickness before condensation drying) ⁇ (film thickness after condensation drying) ⁇ / (substrate transport time during condensation drying)
  • the average value of each drying speed calculated within the range of 0 to 10 m was determined as the initial drying speed 1. Further, the average value of the respective drying speeds calculated within the range of 190 to 200 m was determined as the drying speed 2 at the 200 m substrate position.
  • Drying speed 2 / Drying speed 1 is 0.99 or more and there is no reduction in drying efficiency 4: Drying speed 2 / Drying speed 1 is in the range of 0.95 or more and less than 0.99, and the drying efficiency is There is almost no reduction 3: Drying speed 2 / Drying speed 1 is in the range of 0.90 or more and less than 0.95, and a decrease in drying efficiency is observed, but there is no practical problem 2: Drying speed 2 / Drying speed 1 Is in the range of 0.80 or more and less than 0.90, the drying efficiency is low, and practical use is difficult 1: Drying speed 2 / Drying speed 1 is less than 0.80, and the reduction of the drying efficiency is remarkable. Not practical
  • the rate of change of the obtained peak intensity before and after storage was evaluated for rank as follows as the stability of the gas barrier layer. 5: Change rate of peak intensity is less than 0.5 and shows very excellent stability 4: Change rate of peak intensity is 0.5 or more and less than 0.7 and shows excellent stability 3: The change rate of peak intensity is 0.7 or more and less than 0.8, and shows practically usable stability 2: The change rate of peak intensity is 0.8 or more and less than 0.9, and the stability is low 1 : The rate of change in peak intensity is 0.9 or more, and the stability is very low
  • the water vapor permeability (g / m 2 ⁇ 24 h) of each of the gas barrier films 1 to 5 was determined by the calcium corrosion method described in JP-A-2005-283561. First, the gas barrier films 1 to 5 were cut out, and using a vacuum evaporation apparatus JEE-400 (manufactured by JEOL Ltd.), calcium was vapor-deposited on a part of the cut out sample, and nine 12 mm ⁇ 12 mm calcium layers were formed. Provided. At the time of vapor deposition, the portions other than each calcium layer were masked.
  • the mask was removed in a vacuum state, and aluminum was deposited from another deposition source to cover the entire surface including the calcium layer, thereby forming a sealing layer.
  • the vacuum state is released, and it is quickly transferred to a dry nitrogen gas atmosphere, and an ultraviolet curable resin T470 / UR7134 (manufactured by Nagase ChemteX) is applied on the film surface on which the sealing layer is formed. Quartz glass having a thickness of 0.2 mm was disposed.
  • An evaluation cell was produced by irradiating ultraviolet light through quartz glass to cure the ultraviolet curable resin.
  • A represents the area (cm 2 ) of the calcium layer.
  • represents the area (cm 2 ) of the corrosion area of calcium.
  • d 0 represents the thickness (cm) of the calcium layer.
  • is a correction factor for the thickness of the calcium layer, and is determined within a range of 1 ⁇ ⁇ (M 2 / d 2 ) / (M 1 / d 1 ).
  • d 1 represents the density of calcium (g / cm 3 )
  • d 2 represents the density of calcium hydroxide (g / cm 3 ).
  • M 1 represents the molecular weight of calcium
  • M 2 represents the molecular weight of calcium hydroxide.
  • the obtained water vapor permeability was ranked as follows as gas barrier properties under high temperature and high humidity. 5: Water vapor permeability is less than 0.1 and shows very good gas barrier properties 4: Water vapor permeability is 0.1 or more and less than 0.3 and shows excellent gas barrier properties 3: Water vapor permeability is It is 0.3 or more and less than 0.6, and shows a practical gas barrier property. 2: Water vapor permeability is 0.6 or more and less than 0.8, and gas barrier property is low 1: Water vapor permeability is 0.8 or more. Yes, gas barrier property is very low
  • the gas barrier films 1 to 4 according to the examples compared with the gas barrier film 5 according to the comparative example, all of them have a smaller number of failures, and a decrease in drying efficiency is suppressed. Yes. Moreover, the gas barrier layer excellent in stability and gas barrier property is obtained by uniform drying. Since the silane-based gas was collected before the condensation drying, it is assumed that the number of failures due to silane-based gas deposits has decreased. In addition, the condensation of the solvent was not hindered, and the decrease in the condensing action of the condensing plate was also suppressed, so it is assumed that the decrease in the drying efficiency was suppressed.
  • the substrate was transported 200 m, and when the condensation surface was confirmed, deposits were adhered. Since the drying device K21 used for the condensation drying was not provided with a silane-based gas recovery member, the silane-based gas prevented the solvent from condensing, and deposits adhered to the condensation surface, significantly reducing the condensation action. It is speculated that the drying efficiency was lowered. Moreover, it is guessed that the deposit on the condensation surface adhered to the coating film and the number of failures increased.
  • the present invention can be used in a drying apparatus and a drying method for condensing solvent vapor from a coating film containing a silicon compound that generates a silane-based gas.

Abstract

The present invention suppresses a decrease in condensation drying efficiency, and reduces the failure of a coating film. A drying apparatus (1) is provided with a condenser plate (11) facing a coating film of a substrate (f1), and dries said coating film by condensing solvent vapor from the coating film using the condenser plate (11). The coating film contains a silicon compound that produces silane gas, and is provided with a flat recovery member (13), which is positioned so as to face the coating film on the substrate (f1), as a recovery means for recovering the silane gas produced from the coating film before the condenser plate (11) dries.

Description

乾燥装置及び乾燥方法Drying apparatus and drying method
 本発明は、乾燥装置及び乾燥方法に関する。 The present invention relates to a drying apparatus and a drying method.
 液晶表示素子、有機エレクトロルミネッセンス素子、太陽電池のような電子デバイスには、保存安定性を向上させるため、水、酸素等のガスの透過を遮蔽するガスバリア性フィルムが利用されている。
 ガスバリア性フィルムは、樹脂フィルム等の基板上に、ガスの透過性が低い金属又は金属酸化物の膜がガスバリア層として設けられている。
In an electronic device such as a liquid crystal display element, an organic electroluminescence element, or a solar cell, a gas barrier film that shields permeation of a gas such as water and oxygen is used in order to improve storage stability.
In the gas barrier film, a metal or metal oxide film having low gas permeability is provided as a gas barrier layer on a substrate such as a resin film.
 従来、プラズマCVD法(Chemical Vapor Deposition:化学気相成長法、化学蒸着法ともいう)によって、基板上に金属又は金属酸化物を蒸着させて、ガスバリア層を形成する方法が知られている。
 また、ポリシラザンと呼ばれるケイ素化合物を主成分とする塗布液を基板上に塗布した後、改質処理を施して酸化ケイ素等のセラッミクスへと転化させ、ガスバリア層を形成する方法も知られている。
Conventionally, a method of forming a gas barrier layer by depositing a metal or a metal oxide on a substrate by a plasma CVD method (Chemical Vapor Deposition) is also known.
There is also known a method of forming a gas barrier layer by applying a coating solution containing a silicon compound called polysilazane as a main component on a substrate and then converting it to a ceramic such as silicon oxide.
 ガスバリア層は、膜厚が厚いほどガスバリア性が高まるが、ケイ素化合物を含有する塗布膜を単純に厚膜化すると、セラミックスへ転化した後、クラックが生じやすくなる。
 高いガスバリア性を得ながらクラックを抑えるため、ケイ素化合物を含有する塗布液をウェットプロセスにより塗布して塗布膜を形成し、真空紫外線を照射する改質処理を施す工程を2回以上繰り返すことにより、基板上に複数のガスバリア層を積層する技術が開示されている(例えば、特許文献1参照)。
As the film thickness of the gas barrier layer increases, the gas barrier property increases. However, if the coating film containing a silicon compound is simply thickened, cracks are likely to occur after conversion to ceramics.
In order to suppress cracking while obtaining a high gas barrier property, a coating solution containing a silicon compound is applied by a wet process to form a coating film, and a process of performing a modification treatment of irradiating vacuum ultraviolet rays is repeated twice or more, A technique for laminating a plurality of gas barrier layers on a substrate is disclosed (for example, see Patent Document 1).
 上記ウェットプロセスにより形成された塗布膜は溶媒を多量に含むため、改質処理の前に塗布膜を乾燥する必要がある。しかしながら、ウェットプロセスにより形成された塗布膜は、乾燥ムラが生じやすく、膜厚の均一化が難しいことが知られている。
 乾燥ムラの要因としては、一般的に塗布液には有機溶媒が用いられ、低粘度となりやすいことが挙げられる。特に、ケイ素化合物を含む塗布液は100mPa・s以下の低粘度になりやすい。増粘剤を使用することも考えられるが、増粘剤はガスバリア性が劣化する要因となり得るため、好ましくない。
Since the coating film formed by the wet process contains a large amount of solvent, it is necessary to dry the coating film before the modification treatment. However, it is known that the coating film formed by the wet process is likely to be uneven in drying and it is difficult to make the film thickness uniform.
As a cause of drying unevenness, an organic solvent is generally used for the coating solution, and the viscosity tends to be low. In particular, a coating solution containing a silicon compound tends to have a low viscosity of 100 mPa · s or less. Although it is conceivable to use a thickener, the thickener is not preferable because it can cause deterioration in gas barrier properties.
 ウェットプロセスで塗布された塗布膜の乾燥方法としては、塗布膜面に狭い間隙で凝縮板を対面させ、当該凝縮板の凝縮面において塗布膜からの溶媒の蒸気を凝縮して乾燥する凝縮乾燥プロセスが提案されている(例えば、特許文献2参照)。
 この凝縮乾燥プロセスによれば、対流伝熱を用いることなく、塗布膜面と凝縮面間の距離及び塗布膜面と凝縮面の温度を制御するという簡易な操作で、精密な乾燥を行うことができる。
As a method for drying a coating film applied by a wet process, a condensation drying process is performed in which a condensing plate faces the coating film surface with a narrow gap, and the vapor of the solvent from the coating film is condensed and dried on the condensing surface of the condensing plate. Has been proposed (see, for example, Patent Document 2).
According to this condensation drying process, precise drying can be performed with a simple operation of controlling the distance between the coating film surface and the condensation surface and the temperature of the coating film surface and the condensation surface without using convection heat transfer. it can.
特開2009-255040号公報JP 2009-255040 A 特表2003-524847号公報Special table 2003-524847
 しかしながら、上記ガスバリア層の塗布膜が含有するケイ素化合物は、空気中の酸素又は水と反応して、反応性の高いシラン系ガスを発生させる。凝縮乾燥中にシラン系ガスが発生すると、溶媒の凝縮を妨げるため、乾燥効率が低下する。 However, the silicon compound contained in the coating film of the gas barrier layer reacts with oxygen or water in the air to generate a highly reactive silane-based gas. When the silane-based gas is generated during the condensation drying, the solvent is prevented from condensing and the drying efficiency is lowered.
 また、シラン系ガスが大気中の水分等と反応してケイ素化合物が析出し、凝縮面に付着しやすい。
 凝縮面に付着した溶媒の液滴を排出するため、凝縮面に微小なスリットが形成されている場合、析出したケイ素化合物によってこのスリットが埋没してしまう。そのため、溶媒を排出するスリットの毛管力が失われ、溶媒の排出が阻害されて、やはり乾燥効率を低下させることとなる。
 さらに、凝縮板に付着したケイ素化合物が剥がれ落ちて塗布膜に付着し、塗布膜の故障が増える。
In addition, the silane-based gas reacts with moisture in the atmosphere and the silicon compound is deposited, and easily adheres to the condensation surface.
When a minute slit is formed on the condensing surface in order to discharge the solvent droplets adhering to the condensing surface, the slit is buried by the deposited silicon compound. Therefore, the capillary force of the slit for discharging the solvent is lost, the discharge of the solvent is hindered, and the drying efficiency is also lowered.
Furthermore, the silicon compound adhering to the condensing plate peels off and adheres to the coating film, increasing the failure of the coating film.
 本発明の課題は、凝縮乾燥の乾燥効率の低下を抑え、塗布膜の故障を減らすことである。 An object of the present invention is to suppress a decrease in drying efficiency of condensation drying and to reduce the failure of the coating film.
 請求項1に記載の発明によれば、
 基板上の塗布膜と対面する凝縮板を備え、当該凝縮板により塗布膜からの溶媒の蒸気を凝縮して乾燥する乾燥装置であって、
 前記塗布膜は、シラン系ガスを発生させるケイ素化合物を含有し、
 前記凝縮板による乾燥の前に、前記塗布膜から発生するシラン系ガスを回収する回収手段を備えることを特徴とする乾燥装置が提供される。
According to the invention of claim 1,
A drying apparatus comprising a condensing plate facing a coating film on a substrate, condensing the solvent vapor from the coating film with the condensing plate, and drying,
The coating film contains a silicon compound that generates a silane-based gas,
Provided is a drying apparatus comprising a recovery means for recovering a silane-based gas generated from the coating film before drying by the condenser plate.
 請求項2に記載の発明によれば、
 前記回収手段は、前記基板上の塗布膜と対面して配置される平面状の回収部材であることを特徴とする請求項1に記載の乾燥装置が提供される。
According to invention of Claim 2,
The drying apparatus according to claim 1, wherein the collection unit is a planar collection member that is disposed to face the coating film on the substrate.
 請求項3に記載の発明によれば、
 前記回収部材は、加熱されていることを特徴とする請求項2に記載の乾燥装置が提供される。
According to invention of Claim 3,
The drying apparatus according to claim 2, wherein the recovery member is heated.
 請求項4に記載の発明によれば、
 前記回収手段によりシラン系ガスを回収した後の塗布膜の固形分比率は、30質量%以上であることを特徴とする請求項1~3のいずれか一項に記載の乾燥装置が提供される。
According to invention of Claim 4,
The drying apparatus according to any one of claims 1 to 3, wherein a solid content ratio of the coating film after the silane-based gas is recovered by the recovery means is 30% by mass or more. .
 請求項5に記載の発明によれば、
 前記ケイ素化合物は、ポリシラザン骨格を有するケイ素化合物であることを特徴とする請求項1~4のいずれか一項に記載の乾燥装置が提供される。
According to the invention of claim 5,
The drying apparatus according to any one of claims 1 to 4, wherein the silicon compound is a silicon compound having a polysilazane skeleton.
 請求項6に記載の発明によれば、
 基板上の塗布膜と対面する凝縮板により、当該塗布膜からの溶媒の蒸気を凝縮して乾燥する乾燥方法であって、
 シラン系ガスを発生させるケイ素化合物を含有する塗布膜を乾燥する際、前記凝縮板による乾燥の前に、前記塗布膜から発生するシラン系ガスを回収手段により回収することを特徴とする乾燥方法が提供される。
According to the invention of claim 6,
A condensing plate facing the coating film on the substrate is a drying method for condensing and drying the solvent vapor from the coating film,
A drying method characterized in that when a coating film containing a silicon compound that generates a silane-based gas is dried, the silane-based gas generated from the coating film is recovered by a recovery means before drying by the condenser plate. Provided.
 本発明によれば、凝縮乾燥中に塗布膜から発生し、溶媒の凝縮を妨げるシラン系ガスを減らすことができる。凝縮板にシラン系ガスの析出物が付着して、凝縮板の凝縮作用が低下することを抑えることができ、凝縮乾燥の乾燥効率の低下を抑えることができる。シラン系ガスの減少にともなって、凝縮板上に付着する析出物も減るため、析出物が剥がれて塗布膜上に付着する故障を減らすことができる。 According to the present invention, it is possible to reduce silane-based gas that is generated from the coating film during condensation drying and hinders condensation of the solvent. It can suppress that the deposit of a silane type gas adheres to a condensation plate, and the condensing effect | action of a condensation plate falls, and can suppress the fall of the drying efficiency of condensation drying. As the silane-based gas decreases, the amount of deposits adhering to the condensing plate also decreases, so that it is possible to reduce failures where the deposits peel off and adhere to the coating film.
本実施の形態に係る乾燥装置が用いられた薄膜形成装置の構成を示す正面図である。It is a front view which shows the structure of the thin film forming apparatus with which the drying apparatus which concerns on this Embodiment was used. 図1のZ2-Z2線における断面図を表している。FIG. 2 is a cross-sectional view taken along line Z2-Z2 in FIG. 図1のZ1-Z1線における断面図を表している。FIG. 3 is a cross-sectional view taken along line Z1-Z1 in FIG. シラン系ガスの他の回収手段の例を示す正面図である。It is a front view which shows the example of the other collection | recovery means of silane type gas.
 以下、図面を参照して本発明の乾燥装置及び乾燥方法の実施の形態について説明する。 Hereinafter, embodiments of the drying apparatus and the drying method of the present invention will be described with reference to the drawings.
 図1は、本実施の形態に係る乾燥装置1が用いられた薄膜形成装置100の構成を示している。
 図2は、図1のZ2-Z2線における断面図である。
 薄膜形成装置100は、図1及び図2に示すように、塗布装置3により基板f1上に塗布液を塗布して塗布膜f2を形成し、乾燥装置1により当該塗布膜f2を乾燥して、基板f1上に薄膜を形成する。
 薄膜形成装置100は、残留溶媒を除去するため、さらに乾燥装置4を備えている。また、薄膜形成装置100は改質装置5を備え、塗布膜f2を改質処理することもできる。
FIG. 1 shows a configuration of a thin film forming apparatus 100 in which the drying apparatus 1 according to the present embodiment is used.
FIG. 2 is a sectional view taken along line Z2-Z2 of FIG.
As shown in FIGS. 1 and 2, the thin film forming apparatus 100 forms a coating film f <b> 2 by applying a coating solution onto the substrate f <b> 1 by the coating apparatus 3, and dries the coating film f <b> 2 by the drying apparatus 1. A thin film is formed on the substrate f1.
The thin film forming apparatus 100 further includes a drying device 4 in order to remove the residual solvent. Further, the thin film forming apparatus 100 includes the reforming device 5 and can modify the coating film f2.
 基板f1は、図1に示すように、アンワインダー21により塗布装置3に送り出され、ローラー22及び23により搬送されて、ワインダー24により巻き取られる。 As shown in FIG. 1, the substrate f <b> 1 is sent to the coating device 3 by the unwinder 21, transported by the rollers 22 and 23, and wound by the winder 24.
 塗布装置3は、ウェットプロセスにより溶媒を含む塗布液を基板f1上に塗布する。塗布装置3の塗布方法としては、例えばキャスト法、インクジェット法、スプレー法、印刷法、スリット型ダイコーターを用いたスロット法、ESD(Electro Spray Deposition)法、ESDUS(Evaporative Spray Deposition from Ultra-dilute Solution)法等が挙げられる。 The coating apparatus 3 applies a coating solution containing a solvent on the substrate f1 by a wet process. As a coating method of the coating device 3, for example, a casting method, an inkjet method, a spray method, a printing method, a slot method using a slit type die coater, an ESD (Electro Spray Spray Deposition) method, an ESDUS (Evaporative Spray Deposition A from Ultra-dilute Solution) ) Law.
 連続的に搬送される基板f1上に塗布する方法として、必要な膜厚の塗布膜を形成するのに必要な量より余分に塗布液を塗布し、その後、余剰分を除去する後計量型と、必要な量だけ塗布液を塗布する前計量型とが知られている。いずれの塗布方法も適用可能であるが、塗布の高精度化、高速化、薄膜化、塗布膜の品質向上、積層への適性等の観点から、前計量型が好ましい。また、塗布液の暴露抑制、濃度変化の抑制、クリーン度の維持、異物の混入防止という観点から、閉じた系であることが好ましい。そのため、上記塗布方法のなかでも、スリット型ダイコーターを用いたスロット法、インクジェット法が好ましい。 As a method of coating on the substrate f1 that is continuously transported, a post-weighing type in which an application liquid is applied in excess of the amount necessary to form a coating film having a required film thickness, and then the excess is removed. A pre-weighing type in which a coating solution is applied in a necessary amount is known. Any coating method can be applied, but the pre-weighing type is preferable from the viewpoints of high accuracy, high speed, thin film, improved coating film quality, suitability for lamination, and the like. Moreover, a closed system is preferable from the viewpoints of suppressing the exposure of the coating liquid, suppressing the change in concentration, maintaining the cleanliness, and preventing the contamination of foreign matters. Therefore, among the above coating methods, a slot method using a slit type die coater and an ink jet method are preferable.
 乾燥装置1は、塗布液の塗布後すぐに乾燥できるように、塗布装置3の直後に設置されることが好ましい。塗布後すぐに乾燥を開始することにより、周囲の気流又は乾燥装置1内における自然対流に起因する乾燥ムラを防ぐことができる。基板f1の搬送速度にもよるが、塗布後、乾燥を開始するまでの時間は、30秒以内であることが好ましく、10秒以内であることがより好ましい。
 なお、塗布装置3と乾燥装置1間に、遮断板、ケース等の気流の遮断手段を設けるか、整流板、整流用のファン等の気流の整流手段を設けて、塗布膜f2周辺の対流を抑えるようにすることもできる。
The drying device 1 is preferably installed immediately after the coating device 3 so that it can be dried immediately after the coating liquid is applied. By starting the drying immediately after the application, it is possible to prevent drying unevenness caused by the surrounding airflow or natural convection in the drying apparatus 1. Although it depends on the conveyance speed of the substrate f1, the time from the start of application to the start of drying is preferably within 30 seconds, and more preferably within 10 seconds.
In addition, airflow blocking means such as a blocking plate and a case is provided between the coating apparatus 3 and the drying apparatus 1 or airflow rectifying means such as a rectifying plate and a rectifying fan is provided to convection around the coating film f2. It can also be suppressed.
 乾燥装置1は、図1及び図2に示すように、基板f1上の塗布膜f2と対面する凝縮板11を備えている。乾燥装置1は、凝縮板11により塗布膜f2が含有する溶媒の蒸気を凝縮し、塗布膜f2を乾燥する。
 また、乾燥装置1は、加熱装置12、回収部材13及びヒートローラー14を備えている。
As shown in FIGS. 1 and 2, the drying apparatus 1 includes a condensing plate 11 that faces the coating film f2 on the substrate f1. The drying apparatus 1 condenses the vapor of the solvent contained in the coating film f2 by the condensing plate 11, and dries the coating film f2.
Further, the drying device 1 includes a heating device 12, a recovery member 13, and a heat roller 14.
 凝縮板11は、塗布膜面f2aと対面する凝縮面11aにおいて、塗布膜f2からの溶媒の蒸気を凝縮する。
 凝縮板11の材料は、熱伝導性、重量、加工性、加工精度及び溶媒に対する耐性を考慮して、適宜選択することができる。凝縮板11の材料としては、例えばアルミニウム、銅、鉄、SUS(ステンレス鋼)等の金属又はこれらの合金、プラスチック、木材等が挙げられる。なかでも、加工性及び熱伝導性に優れることから、アルミニウムが好ましい。
The condensing plate 11 condenses the vapor of the solvent from the coating film f2 on the condensing surface 11a facing the coating film surface f2a.
The material of the condenser plate 11 can be selected as appropriate in consideration of thermal conductivity, weight, processability, processing accuracy, and resistance to solvents. Examples of the material of the condensing plate 11 include metals such as aluminum, copper, iron, and SUS (stainless steel) or alloys thereof, plastic, and wood. Of these, aluminum is preferred because of its excellent workability and thermal conductivity.
 凝縮板11は、凝縮面11aに複数のスリットが形成されていてもよい。スリットにより凝縮した溶媒を凝縮面11aから排出することができ、溶媒の飽和による凝縮効率の低下を抑えることができる。
 スリットは、搬送方向yと平行に形成されていてもよいし、搬送方向yと直交する幅手方向xと平行に形成されていてもよい。凝縮面11a上で凝縮した溶媒は、スリットの毛管力によって搬送され、凝縮面11aから排出される。
 スリットを設ける場合、凝縮板11の側面から垂下する側面板を設け、当該側面板によりスリットに沿って排出された溶媒を回収することとしてもよい。
The condensing plate 11 may have a plurality of slits formed on the condensing surface 11a. The solvent condensed by the slit can be discharged from the condensing surface 11a, and a decrease in condensation efficiency due to the saturation of the solvent can be suppressed.
The slit may be formed in parallel with the transport direction y, or may be formed in parallel with the width direction x orthogonal to the transport direction y. The solvent condensed on the condensation surface 11a is transported by the capillary force of the slit and is discharged from the condensation surface 11a.
When providing a slit, it is good also as providing the side plate drooping from the side surface of the condensation plate 11, and collect | recovering the solvent discharged | emitted along the slit by the said side plate.
 凝縮板11は、汚れ防止及び凝縮した溶媒の効率的な排出のため、凝縮面11aが表面処理されていてもよい。
 例えば、凝縮面11aは撥水処理又は親水処理され得る。
The condensing plate 11 may be subjected to a surface treatment on the condensing surface 11a in order to prevent contamination and efficiently discharge the condensed solvent.
For example, the condensation surface 11a can be subjected to water repellent treatment or hydrophilic treatment.
 加熱装置12は、基板f1を介して塗布膜f2を加熱し、溶媒の蒸発を促す。
 加熱装置12は、基板f1を介して凝縮板11と対向する位置に配置されている。
 加熱装置12の加熱方法としては、例えば熱風、赤外線、紫外線、マイクロ波、電気抵抗等を用いた加熱方法が挙げられる。
The heating device 12 heats the coating film f2 through the substrate f1 and promotes evaporation of the solvent.
The heating device 12 is disposed at a position facing the condenser plate 11 via the substrate f1.
Examples of the heating method of the heating device 12 include a heating method using hot air, infrared rays, ultraviolet rays, microwaves, electric resistance, and the like.
 回収部材13は、凝縮板11により塗布膜f2を凝縮乾燥する前に、塗布膜f2から発生するシラン系ガスを回収する回収手段である。
 シラン系ガスとは、ケイ素(Si)を含み、大気中の水分(HO)又は酸素ガスと高い反応性を示すガスをいう。シラン系ガスとしては、例えばモノシラン(SiH)、ジシラン(Si)、二塩化シラン(SiHCl)、三塩化シラン(SiHCl)、四塩化シラン(SiCl)、四フッ化ケイ素(SiF)等が挙げられる。
The recovery member 13 is recovery means for recovering the silane-based gas generated from the coating film f2 before the coating film f2 is condensed and dried by the condensing plate 11.
A silane-based gas refers to a gas containing silicon (Si) and having high reactivity with moisture (H 2 O) or oxygen gas in the atmosphere. Examples of the silane-based gas include monosilane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), trichlorosilane (SiHCl 3 ), tetrachlorosilane (SiCl 4 ), and tetrafluoride. silicon (SiF 4), and the like.
 塗布膜f2が、シラン系ガスを発生させるケイ素化合物を含有する場合、凝縮乾燥中にも塗布膜f2からシラン系ガスが発生し、溶媒の凝縮を妨げるため、乾燥効率が低下する。また、凝縮板11に接触したシラン系ガスが析出して、凝縮板11の凝縮作用を低下させるとともに、析出物が塗布膜f2に付着する故障が増える。
 回収部材13は、塗布膜f2から発生するシラン系ガスを凝縮乾燥前に回収することにより、凝縮乾燥の乾燥効率の低下を抑え、シラン系ガスの析出物による故障を減らす。
When the coating film f2 contains a silicon compound that generates a silane-based gas, the silane-based gas is generated from the coating film f2 even during condensation-drying, thereby preventing the condensation of the solvent, resulting in a decrease in drying efficiency. In addition, the silane-based gas that has come into contact with the condenser plate 11 precipitates, reducing the condensation action of the condenser plate 11 and increasing the number of failures in which the deposit adheres to the coating film f2.
The recovery member 13 recovers the silane-based gas generated from the coating film f2 before the condensation drying, thereby suppressing a decrease in the drying efficiency of the condensation drying and reducing a failure due to the deposit of the silane-based gas.
 図3は、図1のZ1-Z1線における断面図である。
 回収部材13は、図1及び図3に示すように、平面状であり、凝縮板11よりも搬送方向y上流において、基板f1上の塗布膜f2と対面するように配置されている。
 塗布膜f2からシラン系ガスが発生すると、シラン系ガスは大気中の水等と反応し、回収部材13の表面上にケイ素化合物が析出して付着する。
FIG. 3 is a cross-sectional view taken along the line Z1-Z1 of FIG.
As shown in FIGS. 1 and 3, the recovery member 13 has a planar shape and is disposed so as to face the coating film f <b> 2 on the substrate f <b> 1 upstream of the condensing plate 11 in the transport direction y.
When the silane-based gas is generated from the coating film f2, the silane-based gas reacts with water in the atmosphere and the silicon compound is deposited on the surface of the recovery member 13 and adheres thereto.
 回収部材13は、平面状であれば、板状、シート状又は円盤状であり得る。
 回収部材13がシート状である場合、回収部材13のロール体を巻き出してシラン性ガスを付着させた後、巻き取るようにすることができる。また、無端状の回収部材13をローラーに巻き回して回動させることもできる。
 回収部材13が円盤状である場合、円盤状の回収部材13を回転させながら、シラン系ガスを回収することもできる。
 回収部材13にシラン系ガスを十分に付着させた後、当該回収部材13を交換することにより、シラン系ガスの回収の効率を高めるようにしてもよい。
The recovery member 13 may be a plate shape, a sheet shape, or a disk shape as long as it is planar.
When the collection member 13 is in the form of a sheet, the roll body of the collection member 13 can be unwound and a silane gas can be attached thereto, and then wound up. Further, the endless collection member 13 can be wound around a roller and rotated.
When the collection member 13 is disk-shaped, the silane-based gas can be collected while rotating the disk-shaped collection member 13.
After the silane-based gas is sufficiently adhered to the recovery member 13, the recovery member 13 may be replaced to increase the efficiency of recovery of the silane-based gas.
 回収部材13は、ガラス、アルミニウム、銅、鉄、SUS等の金属又はこれらの合金等により構成することができる。透明性が高いガラスは、シラン系ガスの回収の程度を目視で判断できるため好ましい。 The recovery member 13 can be made of a metal such as glass, aluminum, copper, iron, SUS, or an alloy thereof. Glass with high transparency is preferable because the degree of recovery of the silane-based gas can be visually determined.
 回収部材13は、凝縮乾燥前にシラン系ガスをできるだけ多く発生させて回収するため、加熱されていることが好ましい。
 加熱方法は特に限定されず、例えば、回収部材13の上方に加熱装置を設置して回収部材13を加熱することができる。加熱時の回収部材13の温度は、例えば60℃程度に設定することができる。
The recovery member 13 is preferably heated in order to generate and recover as much silane-based gas as possible before condensation drying.
The heating method is not particularly limited. For example, a heating device can be installed above the collection member 13 to heat the collection member 13. The temperature of the recovery member 13 during heating can be set to about 60 ° C., for example.
 回収部材13と塗布膜面f2a間の距離Dは適宜設定できるが、回収の効率を高める観点から、距離Dが0.1~10.0mmの範囲内にあることが好ましい。距離Dが0.1mm以上であると、基板f1のばたつきによる塗布膜f2と回収部材13の接触を回避しやすく、10.0mm以下であると、シラン系ガスが回収部材13の表面上で析出しやすく、シラン系ガスの拡散を抑えることができる。 The distance D between the recovery member 13 and the coating film surface f2a can be set as appropriate, but the distance D is preferably in the range of 0.1 to 10.0 mm from the viewpoint of increasing the recovery efficiency. If the distance D is 0.1 mm or more, it is easy to avoid contact between the coating film f2 and the recovery member 13 due to flapping of the substrate f1, and if it is 10.0 mm or less, silane-based gas precipitates on the surface of the recovery member 13 And diffusion of the silane-based gas can be suppressed.
 回収部材13によりシラン系ガスが回収された後の塗布膜f2の固形分比率は、30質量%以上であることが好ましい。
 固形分比率が30質量%以上であると、凝縮乾燥の乾燥効率の低下を抑えることができる程度に、塗布膜f2からシラン系ガスを回収することができる。
The solid content ratio of the coating film f2 after the silane-based gas is recovered by the recovery member 13 is preferably 30% by mass or more.
When the solid content ratio is 30% by mass or more, the silane-based gas can be recovered from the coating film f2 to such an extent that a decrease in the drying efficiency of condensation drying can be suppressed.
 固形分比率は、次のようにして求められる。
 シラン系ガスが回収された後の塗布膜f2、すなわち基板f1が回収部材13を超えた直後の塗布膜f2のサンプルを採取し、質量を測定する。次に、サンプルをアルミプレートに入れて、加熱プレートにより温度80℃で3時間加熱処理する。加熱処理後、サンプル入りのアルミプレートの質量(g)を測定し、加熱処理前後の質量差とサンプルの面積とから加熱処理後もサンプルに残留している単位面積あたりの残留溶媒の質量(g/m)を算出し、下記式により固形分比率を求める。
 固形分比率(質量%)
  =単位面積あたりの固形分塗布量(g/m)/{単位面積あたりの固形分塗布量(g/m)+単位面積あたりの残留溶媒の質量(g/m)}×100
The solid content ratio is determined as follows.
A sample of the coating film f2 after the silane-based gas is recovered, that is, the sample of the coating film f2 immediately after the substrate f1 exceeds the recovery member 13, is measured and the mass is measured. Next, the sample is put in an aluminum plate and heat-treated at a temperature of 80 ° C. for 3 hours by a heating plate. After the heat treatment, the mass (g) of the sample-containing aluminum plate is measured, and the mass (g) of the residual solvent per unit area remaining in the sample after the heat treatment from the mass difference before and after the heat treatment and the area of the sample. / M 2 ) and the solid content ratio is determined by the following formula.
Solid content ratio (% by mass)
= Solid coating amount per unit area (g / m 2 ) / {Solid coating amount per unit area (g / m 2 ) + Mass of residual solvent per unit area (g / m 2 )} × 100
 塗布膜f2の固形分比率が30質量%以上となるようにシラン系ガスを回収するには、塗布膜f2を高温に加熱するか、基板f1が回収部材13と対面する時間が長くなるように調整すればよい。例えば、回収部材13の搬送方向yの長さを長くするか、基板f1の搬送速度を低下させることにより、基板f1が回収部材13と対面する時間が長くなり、シラン系ガスをより多く回収することができる。 In order to recover the silane-based gas so that the solid content ratio of the coating film f2 is 30% by mass or more, the coating film f2 is heated to a high temperature or the time for the substrate f1 to face the recovery member 13 is increased. Adjust it. For example, by increasing the length of the recovery member 13 in the transport direction y or decreasing the transport speed of the substrate f1, the time for the substrate f1 to face the recovery member 13 becomes longer, and more silane-based gas is recovered. be able to.
 ヒートローラー14は、基板f1の搬送ローラーであり、熱源を内蔵している。
 ヒートローラー14は、図1に示すように回収部材13よりも搬送方向y上流に配置され、シラン系ガスの発生を促すため、搬送する基板f1を加熱する。
The heat roller 14 is a transport roller for the substrate f1 and incorporates a heat source.
As shown in FIG. 1, the heat roller 14 is arranged upstream of the collection member 13 in the transport direction y, and heats the transported substrate f <b> 1 in order to promote generation of silane-based gas.
 ヒートローラー14の表面温度は、例えば80℃程度とすることができる。
 ヒートローラー14は、回収部材13よりも搬送方向y上流に設置されているが、基板f1を介して回収部材13と対向する位置に設置されていてもよい。
The surface temperature of the heat roller 14 can be set to about 80 ° C., for example.
The heat roller 14 is installed upstream of the collection member 13 in the transport direction y, but may be installed at a position facing the collection member 13 via the substrate f1.
 同様にシラン系ガスの発生を促進する観点から、乾燥装置1は、活性エネルギー線を照射する照射装置を備え、当該照射装置により、回収部材13と対面する直前の塗布膜f2か、又は対面している塗布膜f2に活性エネルギー線を照射することもできる。活性エネルギー線としては、例えば可視光、赤外線、紫外線、X線、α線、β線、γ線、電子線等が挙げられる。 Similarly, from the viewpoint of promoting the generation of the silane-based gas, the drying apparatus 1 includes an irradiation apparatus that irradiates active energy rays, and the irradiation apparatus applies the coating film f2 just before facing the recovery member 13 or faces it. It is also possible to irradiate active energy rays to the coating film f2. Examples of the active energy rays include visible light, infrared rays, ultraviolet rays, X-rays, α rays, β rays, γ rays, and electron beams.
 乾燥装置1の乾燥速度は、凝縮面11aの温度Tcと、塗布膜面f2aの温度Th(Th>Tc)とを調整することにより、制御することができる。
 乾燥速度は、各温度Tc及びThにおける溶媒の蒸気圧差が大きいほど、高速化する。
 凝縮面11aの温度Tcの制御方法としては、送風又は送液による凝縮板11の加熱又は冷却が挙げられる。凝縮面11aの温度Tcを特に制御せずに室温とし、塗布膜面f2aの温度Thを室温より十分に高い温度に制御することもできる。
 塗布膜面f2aの温度Thは、加熱装置12の加熱により調整することができる。必要に応じて、加熱装置12に冷却装置を併用し、塗布膜面f2aの温度Thを制御することも可能である。
The drying speed of the drying device 1 can be controlled by adjusting the temperature Tc of the condensing surface 11a and the temperature Th (Th> Tc) of the coating film surface f2a.
The drying speed increases as the difference in the vapor pressure of the solvent at each temperature Tc and Th increases.
As a method for controlling the temperature Tc of the condensing surface 11a, heating or cooling of the condensing plate 11 by blowing or liquid feeding can be mentioned. The temperature Tc of the condensing surface 11a can be set to room temperature without particularly controlling, and the temperature Th of the coating film surface f2a can be controlled to a temperature sufficiently higher than the room temperature.
The temperature Th of the coating film surface f2a can be adjusted by heating with the heating device 12. If necessary, a cooling device can be used together with the heating device 12 to control the temperature Th of the coating film surface f2a.
 凝縮面11aの温度Tcは、塗布膜面f2aの温度Thより低ければ、室温より高くても低くてもよいが、5~30℃の範囲内であることが好ましく、10~20℃の範囲内であることがより好ましい。
 温度Tcを上記範囲内に制御することにより、加熱に要するコストの上昇を抑えることができる。また、凝縮面11a全体の温度を均一に制御しやすく、温度ムラに起因する乾燥ムラ、ひいては塗布膜f2の膜厚ムラを抑制しやすい。同様の観点から、凝縮面11a内の温度ムラは、2℃以内であることが好ましい。
The temperature Tc of the condensing surface 11a may be higher or lower than room temperature as long as it is lower than the temperature Th of the coating film surface f2a, but is preferably in the range of 5 to 30 ° C, and in the range of 10 to 20 ° C. It is more preferable that
By controlling the temperature Tc within the above range, an increase in cost required for heating can be suppressed. Further, it is easy to uniformly control the temperature of the entire condensing surface 11a, and it is easy to suppress drying unevenness due to temperature unevenness, and consequently film thickness unevenness of the coating film f2. From the same viewpoint, the temperature unevenness in the condensing surface 11a is preferably within 2 ° C.
 凝縮面11aに、溶媒以外の物質、例えば大気中の水分等が凝縮することを防ぐため、大気の露点を下げるか、凝縮面11aと塗布膜面f2a間を減圧することが好ましい。
 また、凝縮板11以外の乾燥装置1の部材、例えば筐体等に溶媒が凝縮することを防ぐため、凝縮板11以外の部材の温度を、凝縮面11aの温度Tc以上に調整することが好ましい。
In order to prevent substances other than the solvent such as moisture in the atmosphere from condensing on the condensation surface 11a, it is preferable to lower the dew point of the atmosphere or reduce the pressure between the condensation surface 11a and the coating film surface f2a.
Further, in order to prevent the solvent from condensing in a member of the drying apparatus 1 other than the condensing plate 11, such as a housing, the temperature of the member other than the condensing plate 11 is preferably adjusted to be equal to or higher than the temperature Tc of the condensing surface 11a. .
 塗布膜面f2aの温度Thは、凝縮面11aの温度Tcより高ければ、室温より高くても低くてもよいが、30~100℃の範囲内であることが好ましく、30~70℃の範囲内であることがより好ましい。
 温度Thを30℃以上とすることにより、溶媒以外の大気中の水分等が凝縮し、乾燥効率が低下することを抑制しやすい。100℃以下とすることにより、高温化に伴うコストの上昇、基板f1の変性による搬送不良等を抑制しやすい。また、基板f1全体の温度を均一に制御しやすく、温度ムラに起因する乾燥ムラ、ひいては塗布膜f2の膜厚ムラを抑制しやすい。同様の観点から、塗布膜面f2a内の温度ムラは、2℃以内であることが好ましい。
The temperature Th of the coating film surface f2a may be higher or lower than the room temperature as long as it is higher than the temperature Tc of the condensing surface 11a, but is preferably in the range of 30 to 100 ° C, preferably in the range of 30 to 70 ° C. It is more preferable that
By setting the temperature Th to 30 ° C. or higher, moisture in the atmosphere other than the solvent is condensed and it is easy to suppress a decrease in drying efficiency. By setting the temperature to 100 ° C. or lower, it is easy to suppress an increase in cost due to a high temperature, conveyance failure due to the modification of the substrate f1, and the like. In addition, it is easy to uniformly control the temperature of the entire substrate f1, and it is easy to suppress drying unevenness due to temperature unevenness, and consequently film thickness unevenness of the coating film f2. From the same viewpoint, the temperature unevenness in the coating film surface f2a is preferably within 2 ° C.
 乾燥装置1の乾燥速度は、凝縮面11aと塗布膜面f2a間の距離dを調整することによっても、制御することができる。
 距離dは、小さいほど溶媒が凝縮しやすく、乾燥速度が上がるが、好ましくは0.1~10.0mmの範囲内であり、より好ましくは0.1~4.0mmの範囲内である。
 距離dを0.1mm以上とすることにより、基板f1のばたつきによる塗布膜f2と凝縮板11との接触を回避しやすいとともに、凝縮板11の配置の高精度化に伴うコストを削減できる。また、凝縮した溶媒の塗布膜f2への付着を回避しやすく、付着による乾燥ムラを抑制することができる。距離dを10.0mm以内とすることにより、周囲の対流の影響を減じて乾燥ムラを防ぎ、乾燥速度を上げて生産性を向上させることができる。
The drying speed of the drying device 1 can also be controlled by adjusting the distance d between the condensation surface 11a and the coating film surface f2a.
The smaller the distance d is, the more easily the solvent is condensed and the drying speed is increased, but it is preferably in the range of 0.1 to 10.0 mm, more preferably in the range of 0.1 to 4.0 mm.
By setting the distance d to 0.1 mm or more, it is easy to avoid contact between the coating film f2 and the condensing plate 11 due to flapping of the substrate f1, and it is possible to reduce the cost associated with high accuracy of the arrangement of the condensing plate 11. Moreover, it is easy to avoid adhesion of the condensed solvent to the coating film f2, and drying unevenness due to adhesion can be suppressed. By setting the distance d within 10.0 mm, it is possible to reduce the influence of surrounding convection and prevent drying unevenness, increase the drying speed, and improve productivity.
 凝縮面11aと塗布膜面f2a間の距離dは、一定値に保持されることが好ましい。
 距離dが一定値であることにより、塗布膜面f2a内の乾燥速度を一定とすることができ、乾燥の均一性を向上させることができる。
The distance d between the condensation surface 11a and the coating film surface f2a is preferably maintained at a constant value.
When the distance d is a constant value, the drying speed in the coating film surface f2a can be made constant, and the uniformity of drying can be improved.
 乾燥装置4は、乾燥装置1による残留溶媒を除去するために設けられた、後処理用の乾燥装置である。
 乾燥装置4の乾燥方法は、乾燥装置1と同じ凝縮乾燥であってもよいし、他の乾燥方法であってもよい。他の乾燥方法としては、熱風、赤外線、マイクロ波、超音波等を用いた乾燥、真空乾燥、超臨界法による乾燥、吸湿乾燥、冷却乾燥等が挙げられる。
The drying device 4 is a drying device for post-processing provided to remove the residual solvent from the drying device 1.
The drying method of the drying device 4 may be the same condensation drying as the drying device 1, or may be another drying method. Other drying methods include drying using hot air, infrared rays, microwaves, ultrasonic waves, etc., vacuum drying, supercritical drying, moisture absorption drying, cooling drying, and the like.
 薄膜形成装置100によれば、ガスバリア性フィルムのガスバリア層として、ポリシラザン骨格を有するケイ素化合物を含有する塗布膜を形成し、当該塗布膜を均一に乾燥することができる。
 ガスバリア性フィルムは、低い酸素透過度及び水蒸気透過度を示すガスバリア層を備えたフィルムであり、ガスバリア性フィルムが用いられた電子デバイスに、優れた保存安定性を付与する。
 ガスバリア層に求められるガスバリア性能は、ガスバリア性フィルムが用いられる電子デバイスによって異なる。一般的には、ガスバリア層は、JIS K7129:2008に従って測定された水蒸気透過度(温度60±0.5℃、相対湿度90±2%)が3×10-3g/m・24h以下であり、JIS K7126:2006に従って測定された酸素透過度が1×10-3g/m・24h・atm以下であると、電子デバイスに好ましく使用できる。
According to the thin film forming apparatus 100, a coating film containing a silicon compound having a polysilazane skeleton can be formed as a gas barrier layer of a gas barrier film, and the coating film can be uniformly dried.
The gas barrier film is a film having a gas barrier layer exhibiting low oxygen permeability and water vapor permeability, and imparts excellent storage stability to an electronic device using the gas barrier film.
The gas barrier performance required for the gas barrier layer varies depending on the electronic device in which the gas barrier film is used. In general, the gas barrier layer has a water vapor permeability (temperature 60 ± 0.5 ° C., relative humidity 90 ± 2%) measured in accordance with JIS K7129: 2008 of 3 × 10 −3 g / m 2 · 24 h or less. Yes, when the oxygen permeability measured according to JIS K7126: 2006 is 1 × 10 −3 g / m 2 · 24 h · atm or less, it can be preferably used for an electronic device.
 ポリシラザン骨格を有するケイ素化合物に対しては、溶媒として有機溶媒が用いられるため、塗布膜f2の粘度が100mPa・s以下の低粘度になりやすい。このような低粘度の塗布膜f2を対流伝熱により乾燥すると塗布液が大きく流動し、溶媒の蒸発速度も一定せずに、乾燥ムラが起こりやすい。
 しかしながら、上記乾燥装置1は対流伝熱を用いないため、塗布液の流動及び溶媒の蒸発速度のムラがほとんどなく、塗布膜f2が100mPa・s以下の低粘度である場合にも均一な乾燥を実現できるため、上述したガスバリア層の形成には特に有効である。
For a silicon compound having a polysilazane skeleton, an organic solvent is used as a solvent, so that the viscosity of the coating film f2 is likely to be a low viscosity of 100 mPa · s or less. When such a low-viscosity coating film f2 is dried by convection heat transfer, the coating liquid flows greatly, the evaporation rate of the solvent is not constant, and drying unevenness is likely to occur.
However, since the drying apparatus 1 does not use convective heat transfer, there is almost no unevenness in the flow of the coating liquid and the evaporation rate of the solvent, and uniform drying is possible even when the coating film f2 has a low viscosity of 100 mPa · s or less. Since it can be realized, it is particularly effective for forming the gas barrier layer described above.
 また、ポリシラザン骨格を有するケイ素化合物は、シラン系ガスを発生させやすい。塗布膜f2がポリシラザン骨格を有するケイ素化合物である場合、塗布直後から大量のシラン系ガスが発生することが分かっている。
 シラン系ガスは凝縮作用を低下させるが、乾燥装置1は回収部材13によってシラン系ガスをできるだけ回収した後、凝縮乾燥を行うため、凝縮乾燥中に発生するシラン系ガスを少なくすることができる。そのため、ガスバリア層の塗布膜が、ポリシラザン骨格を有するケイ素化合物を含有する場合にも乾燥効率の低下を抑えて、均一な乾燥が可能であり、特に有効である。
A silicon compound having a polysilazane skeleton is likely to generate a silane-based gas. It has been found that when the coating film f2 is a silicon compound having a polysilazane skeleton, a large amount of silane-based gas is generated immediately after coating.
Although the silane-based gas lowers the condensing action, the drying apparatus 1 performs the condensation drying after collecting the silane-based gas as much as possible by the collecting member 13, so that the silane-based gas generated during the condensation drying can be reduced. Therefore, even when the coating film of the gas barrier layer contains a silicon compound having a polysilazane skeleton, it is possible to achieve uniform drying while suppressing a decrease in drying efficiency, which is particularly effective.
 以下、ポリシラザン骨格を有するケイ素化合物を含有する塗布膜を形成し、当該塗布膜を乾燥してガスバリア層を形成する場合を例に、薄膜形成時の手順を説明する。 Hereinafter, a procedure for forming a thin film will be described by taking as an example a case where a coating film containing a silicon compound having a polysilazane skeleton is formed and the coating film is dried to form a gas barrier layer.
 まず、薄膜形成装置100に、ガスバリア性フィルムの基板f1をセットする。
 ガスバリア性フィルムの基板f1としては、無色透明な樹脂フィルムが好ましく用いられる。
 樹脂フィルムの材料としては、例えばポリエステル、メタクリル、メタクリル酸-マレイン酸共重合体、ポリスチレン、フッ素化樹脂、ポリイミド、フッ素化ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、セルロースアシレート、ポリウレタン、ポリエーテルエーテルケトン、ポリカーボネート、脂環式ポリオレフィン、ポリアリレート、ポリエーテルスルホン、ポリスルホン、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート、脂環変性ポリカーボネート、フルオレン環変性ポリエステル、アクリロイル化合物等が挙げられる。
First, the gas barrier film substrate f <b> 1 is set in the thin film forming apparatus 100.
As the substrate f1 of the gas barrier film, a colorless and transparent resin film is preferably used.
Examples of the resin film material include polyester, methacrylic acid, methacrylic acid-maleic acid copolymer, polystyrene, fluorinated resin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane, and polyether. Examples include ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, cycloolefin copolymer, fluorene ring-modified polycarbonate, alicyclic ring-modified polycarbonate, fluorene ring-modified polyester, and acryloyl compound.
 ガスバリア性フィルムに用いられる基板f1の厚さは、用途によって適宜選択することができる。一般的には、基板f1の厚さは、1~800μmの範囲内であり、好ましくは10~200μmの範囲内である。電子デバイスの小型化及び軽量化の観点から、さらに好ましくは10~50μmの範囲内である。 The thickness of the substrate f1 used for the gas barrier film can be appropriately selected depending on the application. In general, the thickness of the substrate f1 is in the range of 1 to 800 μm, preferably in the range of 10 to 200 μm. From the viewpoint of reducing the size and weight of the electronic device, it is more preferably in the range of 10 to 50 μm.
 基板f1は、環状ダイ又はTダイを有する押出機を用いて、原料となる樹脂組成物を溶融して押し出し、急冷することにより製造することができ、実質的に樹脂の配向が無い未延伸の基板f1が得られる。
 この未延伸の基板f1を、基板f1の搬送方向及び/又は幅手方向に、一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸又はチューブラー式同時二軸延伸して、延伸された基板f1を得ることもできる。幅手方向は、基板f1上で搬送方向に直交する方向をいう。延伸倍率は、搬送方向及び幅手方向にそれぞれ2~10倍の範囲内であることが好ましい。
Substrate f1 can be produced by melting and extruding a resin composition as a raw material using an extruder having an annular die or a T die and quenching, and is substantially unstretched with no resin orientation. A substrate f1 is obtained.
This unstretched substrate f1 is stretched by uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching or tubular simultaneous biaxial stretching in the transport direction and / or width direction of the substrate f1. A substrate f1 can also be obtained. The width direction refers to a direction orthogonal to the transport direction on the substrate f1. The draw ratio is preferably in the range of 2 to 10 times in the transport direction and the width direction.
 ガスバリア層を形成する基板f1の表面は、積層されるガスバリア層との接着性向上のため、例えばエキシマ処理、コロナ放電処理、火炎処理、酸化処理、プラズマ処理等の表面処理が施されていてもよい。 The surface of the substrate f1 on which the gas barrier layer is formed may be subjected to surface treatment such as excimer treatment, corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment in order to improve adhesion with the laminated gas barrier layer. Good.
 基板f1は、基板f1の表面を平坦化し、ガスバリア層との接着性を向上させるため、プライマー層が設けられていてもよい。
 プライマー層は、活性エネルギー線硬化性樹脂、熱可塑性樹脂等の硬化性樹脂を含有することが好ましい。
The substrate f1 may be provided with a primer layer in order to flatten the surface of the substrate f1 and improve the adhesion with the gas barrier layer.
The primer layer preferably contains a curable resin such as an active energy ray curable resin or a thermoplastic resin.
 上記活性エネルギー線硬化性材料の具体例としては、JSR社製のUV硬化型有機/無機ハイブリッドハードコート剤であるOPSTAR(登録商標)シリーズを用いることができる。当該OPSTARシリーズは、シリカ微粒子に重合性不飽和基を有する有機化合物を結合させてなる化合物である。 As a specific example of the active energy ray curable material, OPSTAR (registered trademark) series which is a UV curable organic / inorganic hybrid hard coat agent manufactured by JSR Corporation can be used. The OPSTAR series is a compound obtained by bonding an organic compound having a polymerizable unsaturated group to silica fine particles.
 熱硬化性材料の具体例には、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂、ポリアミドアミン-エピクロルヒドリン樹脂等が挙げられる。熱硬化性材料の市販品としては、セラミックコート社製のSP COAT耐熱クリアー塗料、アデカ社製のナノハイブリッドシリコーン、DIC社製のユニディック(登録商標)V-8000シリーズ、EPICLON(登録商標)EXA-4710(超高耐熱性エポキシ樹脂)、信越化学工業社製のX-12-2400(シリコン樹脂)、日東紡績社製のSSGコート(無機又は有機ナノコンポジット材料)等が挙げられる。 Specific examples of the thermosetting material include thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, silicon resin, polyamidoamine-epichlorohydrin resin, and the like. Can be mentioned. Commercially available thermosetting materials include SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid silicone manufactured by Adeka, Unidic (registered trademark) V-8000 series manufactured by DIC, EPICLON (registered trademark) EXA -4710 (ultra high heat resistant epoxy resin), X-12-2400 (silicon resin) manufactured by Shin-Etsu Chemical Co., Ltd., SSG coat (inorganic or organic nanocomposite material) manufactured by Nitto Boseki Co., Ltd., and the like.
 上記硬化性材料を含む塗布液に用いられる溶媒としては、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、エチレングリコール、プロピレングリコール等のアルコール類、α-もしくはβ-テルピネオール等のテルペン類等、アセトン、メチルエチルケトン、シクロヘキサノン、N-メチル-2-ピロリドン、ジエチルケトン、2-ヘプタノン、4-ヘプタノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、2-メトキシエチルアセテート、シクロヘキシルアセテート、2-エトキシエチルアセテート、3-メトキシブチルアセテート等の酢酸エステル類、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、3-エトキシプロピオン酸エチル、安息香酸メチル、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等を挙げることができる。 Solvents used in the coating solution containing the curable material include alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, ethylene glycol and propylene glycol, terpenes such as α- or β-terpineol, and acetone. , Ketones such as methyl ethyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone, 2-heptanone, 4-heptanone, aromatic hydrocarbons such as toluene, xylene, tetramethylbenzene, cellosolve, methyl cellosolve, ethyl cellosolve , Carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether Ter, dipropylene glycol monoethyl ether, triethylene glycol monomethyl ether, glycol ethers such as triethylene glycol monoethyl ether, ethyl acetate, butyl acetate, cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, carbitol acetate, ethyl carbitol Acetates such as acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 2-methoxyethyl acetate, cyclohexyl acetate, 2-ethoxyethyl acetate, 3-methoxybutyl acetate, diethylene glycol dialkyl ether, Dipropylene glycol dialkyl ether, 3-etho Shipuropion ethyl, methyl benzoate, N, N- dimethylacetamide, N, may be mentioned N- dimethylformamide.
 プライマー層の膜厚は、特に限定されないが、0.1~10.0μmの範囲内にあることが好ましい。 The thickness of the primer layer is not particularly limited, but is preferably in the range of 0.1 to 10.0 μm.
 基板f1は、基板f1中の添加剤がブリードアウト(析出)することを防ぐため、基板f1のガスバリア層が積層される面とは反対の面に、ブリードアウト防止層が形成されていてもよい。
 上述したプライマー層は、基本的にブリードアウトを防止する機能を有するので、上記プライマー層と同様にしてブリードアウト防止層を形成することができる。
In order to prevent the additive in the substrate f1 from bleeding out (deposition), the substrate f1 may have a bleedout preventing layer formed on the surface opposite to the surface on which the gas barrier layer of the substrate f1 is laminated. .
Since the primer layer described above basically has a function of preventing bleed out, a bleed out preventing layer can be formed in the same manner as the primer layer.
 次に、薄膜形成装置100は、基板f1の搬送を開始し、塗布装置3がガスバリア層の塗布液を基板f1上に塗布し、塗布膜f2を形成する。 Next, the thin film forming apparatus 100 starts transporting the substrate f1, and the coating apparatus 3 applies the coating liquid for the gas barrier layer onto the substrate f1 to form the coating film f2.
 ガスバリア層の塗布液は、ポリシラザン骨格を有するケイ素化合物を、溶媒に溶解又は分散させることで調製することができる。
 ポリシラザン骨格とは、Si-N結合を含むポリマーの基本骨格をいい、酸化ケイ素(SiO)、窒化ケイ素(Si)又は酸窒化ケイ素(SiO)等のセラミックスの前駆体である。
 ポリシラザン骨格を有するケイ素化合物としては、下記一般式(1)で表される構造を有するケイ素化合物が挙げられる。当該ケイ素化合物は、一般にポリシラザンと呼ばれている。
The coating solution for the gas barrier layer can be prepared by dissolving or dispersing a silicon compound having a polysilazane skeleton in a solvent.
The polysilazane skeleton is a basic skeleton of a polymer containing a Si—N bond, and is a precursor of ceramics such as silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), or silicon oxynitride (SiO x N y ). is there.
Examples of the silicon compound having a polysilazane skeleton include a silicon compound having a structure represented by the following general formula (1). The silicon compound is generally called polysilazane.
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
 上記一般式(1)において、R、R及びRは、それぞれ独立に、水素原子、アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基を表す。当該アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基は、さらに置換基を有していてもよい。 In the general formula (1), R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an aryl group, a vinyl group or a (trialkoxysilyl) alkyl group. The alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group may further have a substituent.
 R、R及びRのアルキル基としては、炭素原子数1~8の直鎖、分岐鎖又は環状のアルキル基が挙げられる。より具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。 Examples of the alkyl group for R 1 , R 2 and R 3 include straight, branched or cyclic alkyl groups having 1 to 8 carbon atoms. More specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n -Hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like.
 R、R及びRのアリール基としては、炭素原子数6~30のアリール基が挙げられる。より具体的には、フェニル基、ビフェニル基、ターフェニル基等の非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基等の縮合多環炭化水素基が挙げられる。 Examples of the aryl group for R 1 , R 2 and R 3 include aryl groups having 6 to 30 carbon atoms. More specifically, a non-condensed hydrocarbon group such as a phenyl group, a biphenyl group, a terphenyl group; a pentarenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptaenyl group, a biphenylenyl group, a fluorenyl group, an acenaphthylenyl group, a preadenyl group A condensed polycyclic hydrocarbon group such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, etc. Can be mentioned.
 R、R及びRの(トリアルコキシシリル)アルキル基としては、炭素原子数1~8のアルコキシ基で置換されたシリル基を有する炭素原子数1~8のアルキル基が挙げられる。より具体的には、3-(トリエトキシシリル)プロピル基、3-(トリメトキシシリル)プロピル基等が挙げられる。 Examples of the (trialkoxysilyl) alkyl group of R 1 , R 2 and R 3 include an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specific examples include 3- (triethoxysilyl) propyl group and 3- (trimethoxysilyl) propyl group.
 場合によって、上記アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基に存在する置換基としては、例えばアルキル基、ハロゲン原子、ヒドロキシ基(-OH)、メルカプト基(-SH)、シアノ基(-CN)、スルホ基(-SOH)、カルボキシ基(-COOH)、ニトロ基(-NO)等がある。
 上記アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基が有し得る置換基は、置換されるアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基と同じであることはない。例えば、R~Rがアルキル基の場合、さらにアルキル基で置換されることはない。
In some cases, examples of the substituent present in the alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group include an alkyl group, a halogen atom, a hydroxy group (—OH), a mercapto group (—SH), a cyano group. Groups (—CN), sulfo groups (—SO 3 H), carboxy groups (—COOH), nitro groups (—NO 2 ) and the like.
The substituent which the alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group may have is the same as the substituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. Absent. For example, when R 1 to R 3 are alkyl groups, they are not further substituted with an alkyl group.
 好ましいR、R及びRは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、フェニル基、ビニル基、3-(トリエトキシシリル)プロピル基又は3-(トリメトキシシリルプロピル)基である。 Preferred R 1 , R 2 and R 3 are hydrogen atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, phenyl group, vinyl group, 3- (triethoxysilyl) A propyl group or a 3- (trimethoxysilylpropyl) group.
 上記一般式(1)において、nは1以上の整数である。
 nは、上記一般式(1)で表される構造を有するケイ素化合物の数平均分子量Mnが、150~150000g/モルの範囲内となるように定められることが好ましい。
In the general formula (1), n is an integer of 1 or more.
n is preferably determined so that the number average molecular weight Mn of the silicon compound having the structure represented by the general formula (1) is in the range of 150 to 150,000 g / mol.
 一般式(1)で表される構造を有するケイ素化合物のなかでも、R、R及びRすべてが水素原子であるパーヒドロポリシラザンは、得られるガスバリア層が高い緻密性を示すことから、特に好ましい。
 パーヒドロポリシラザンは、直鎖構造と6員環及び8員環を中心とする環構造とを含む構造であると推定されている。パーヒドロポリシラザンは、ゲルパーミエーションクロマトグラフィによりポリスチレン換算で測定された数平均分子量Mnが、約600~2000程度であり、液体又は固体の物質である。
Among the silicon compounds having the structure represented by the general formula (1), perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms, the resulting gas barrier layer exhibits high density, Particularly preferred.
Perhydropolysilazane is presumed to have a structure including a linear structure and a ring structure centered on a 6-membered ring and an 8-membered ring. Perhydropolysilazane has a number average molecular weight Mn measured in terms of polystyrene by gel permeation chromatography of about 600 to 2000, and is a liquid or solid substance.
 パーヒドロポリシラザンは、有機溶媒中に溶解させた溶液として市販されており、市販品をそのままガスバリア層の塗布液として使用することができる。
 塗布液として用いることができる市販品としては、AZエレクトロニックマテリアルズ社製のアクアミカ(登録商標)シリーズNN120-10、NN120-20、NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL120-20、NL150A、NP110、NP140、SP140等が挙げられる。
Perhydropolysilazane is commercially available as a solution dissolved in an organic solvent, and the commercially available product can be used as it is as a coating solution for the gas barrier layer.
Commercially available products that can be used as the coating solution include AQUAMICA (registered trademark) series NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20 manufactured by AZ Electronic Materials. NL150A, NP110, NP140, SP140 and the like.
 R、R及びRのうち、少なくとも1つが水素原子であり、少なくとも1つがアルキル基等の有機基であるオルガノポリシラザンも、基板f1との接着性が良好となり、セラミックス化されたガスバリア層に靭性を付与して、ガスバリア層を厚膜化した場合でもクラックの発生を抑えることができるため、好ましい。
 用途に応じて、パーヒドロポリシラザン又はオルガノポリシラザンを選択すればよく、両方を併用することもできる。
Organopolysilazane, in which at least one of R 1 , R 2 and R 3 is a hydrogen atom and at least one is an organic group such as an alkyl group, also has good adhesion to the substrate f1 and is a ceramicized gas barrier layer Even when the toughness is imparted to the gas barrier layer to increase the thickness of the gas barrier layer, the generation of cracks can be suppressed, which is preferable.
Perhydropolysilazane or organopolysilazane may be selected depending on the application, and both may be used in combination.
 ガスバリア層に使用できるケイ素化合物の他の例としては、上記一般式(1)で表される構造を有するケイ素化合物に、ケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報参照)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報参照)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報参照)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報参照)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報参照)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報参照)等が挙げられる。これらは、低温でセラミックス化するケイ素化合物の例である。 As another example of the silicon compound that can be used for the gas barrier layer, a silicon alkoxide-added polysilazane obtained by reacting a silicon alkoxide with a silicon compound having a structure represented by the above general formula (1) (Japanese Patent Laid-Open No. 5-238827) Glycidol-added polysilazane obtained by reacting glycidol (see JP-A-6-122852), alcohol-added polysilazane obtained by reacting alcohol (see JP-A-6-240208), metal carboxylate A metal carboxylate-added polysilazane obtained by reacting with a metal (see JP-A-6-299118), and an acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329) Add metal fine particles) Resulting Te metal particles added polysilazane (see JP-A-7-196986) and the like. These are examples of silicon compounds that ceramize at low temperatures.
 ポリシラザン骨格を有するケイ素化合物は、ヒドロキシ基、アミノ基等の反応性基と反応し、容易に加水分解されるため、塗布液に用いられる溶媒としては、当該ケイ素化合物に対して不活性の有機溶媒が好ましい。
 具体的には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、ハロゲン炭化水素等の非プロトン性溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン、モノ又はポリアルキレングリコールジアルキルエーテル(ジグライム類)等のエーテル類を挙げることができる。
 溶媒は、ケイ素化合物の溶解度や溶媒の蒸発速度等に応じて選択することができ、1種又は2種以上を使用してもよい。
Since the silicon compound having a polysilazane skeleton reacts with a reactive group such as a hydroxy group or an amino group and is easily hydrolyzed, the solvent used for the coating solution is an organic solvent inert to the silicon compound. Is preferred.
Specifically, aprotic solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons and halogen hydrocarbons; esters such as ethyl acetate and butyl acetate; ketones such as acetone and methyl ethyl ketone; Mention may be made of ethers such as butyl ether, dioxane, tetrahydrofuran, mono- or polyalkylene glycol dialkyl ethers (diglymes).
A solvent can be selected according to the solubility of a silicon compound, the evaporation rate of a solvent, etc., and may use 1 type (s) or 2 or more types.
 塗布液におけるケイ素化合物の含有量は、ガスバリア層の膜厚及び塗布液のポットライフによっても異なるが、好ましくは0.2~80.0重量%の範囲内であり、より好ましくは1~50重量%の範囲内であり、特に好ましくは5~35重量%の範囲内である。 The silicon compound content in the coating solution varies depending on the film thickness of the gas barrier layer and the pot life of the coating solution, but is preferably in the range of 0.2 to 80.0% by weight, more preferably 1 to 50% by weight. %, Particularly preferably in the range of 5 to 35% by weight.
 上記塗布液は、改質処理時のシリカ転化を促進するため、触媒を含有することもできる。
 使用できる触媒としては、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン、N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等の金属触媒、N-複素環式化合物が挙げられる。なかでも、塩基性触媒が好ましく、アミン触媒が好ましい。
 上記塗布液における触媒の含有量は、ケイ素化合物の含有量に対して、好ましくは0.1~10.0モル%の範囲内であり、より好ましくは0.5~7.0モル%の範囲内である。触媒の含有量を上記範囲内とすることにより、反応の急激な進行による過剰なシラノール形成、膜密度の低下、膜欠陥の増大等を避けることができる。
The coating solution may contain a catalyst in order to promote silica conversion during the modification treatment.
Usable catalysts include N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N′-tetramethyl-1,3 -Amine catalysts such as diaminopropane, N, N, N ', N'-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, Pd compounds such as propionic acid Pd, Rh acetylacetonate, etc. And metal catalysts and N-heterocyclic compounds. Of these, a basic catalyst is preferable, and an amine catalyst is preferable.
The content of the catalyst in the coating solution is preferably in the range of 0.1 to 10.0 mol%, more preferably in the range of 0.5 to 7.0 mol% with respect to the content of the silicon compound. Is within. By setting the content of the catalyst within the above range, it is possible to avoid excessive silanol formation, film density reduction, film defect increase, and the like due to rapid progress of the reaction.
 塗布膜f2の塗布時の膜厚は、乾燥後に求められる膜厚に応じて決定することができる。
 塗布時の膜厚が大きいほど、塗布液が流動しやすく乾燥ムラが生じやすいため、均一な乾燥が可能な乾燥装置1の有用性は大きい。
The film thickness at the time of application | coating of the coating film f2 can be determined according to the film thickness calculated | required after drying.
The greater the film thickness at the time of coating, the more easily the coating liquid flows and uneven drying occurs. Therefore, the usefulness of the drying apparatus 1 capable of uniform drying is great.
 塗布膜f2の粘度は、ガスバリア層に求められるガスバリア性能とケイ素化合物の溶解度又は分解性により、適宜選択することができる。
 ポリシラザン骨格を有するケイ素化合物に対しては、上述のように有機溶媒が使用されるため、塗布液の粘度が100mPa・s以下の低粘度となる。塗布膜f2において、塗布液が流動しやすく乾燥ムラが生じやすいため、均一な乾燥が可能な乾燥装置1の有用性は大きい。
 具体的な塗布膜の粘度としては、0.3~10.0mPa・sの範囲内であることが、塗布速度を高速化し、塗工性を高める観点から好ましく、1.0~10.0mPa・sの範囲内であることがより好ましい。
The viscosity of the coating film f2 can be appropriately selected depending on the gas barrier performance required for the gas barrier layer and the solubility or decomposability of the silicon compound.
For a silicon compound having a polysilazane skeleton, an organic solvent is used as described above, so that the viscosity of the coating solution is as low as 100 mPa · s or less. In the coating film f2, since the coating liquid easily flows and uneven drying tends to occur, the usefulness of the drying apparatus 1 capable of uniform drying is great.
The specific viscosity of the coating film is preferably in the range of 0.3 to 10.0 mPa · s from the viewpoint of increasing the coating speed and improving the coating property, and 1.0 to 10.0 mPa · s. More preferably within the range of s.
 次に、乾燥装置1が、ガスバリア層の塗布膜f2から発生するシラン系ガスを回収する。
 乾燥装置1は、ヒートローラー14により基板f1を介して塗布膜f2を加熱し、塗布膜f2から発生したシラン系ガスを回収部材13により回収する。
Next, the drying apparatus 1 collects the silane-based gas generated from the coating film f2 of the gas barrier layer.
The drying apparatus 1 heats the coating film f <b> 2 through the substrate f <b> 1 by the heat roller 14, and collects the silane-based gas generated from the coating film f <b> 2 by the collection member 13.
 シラン系ガスを回収すると、乾燥装置1はガスバリア層の塗布膜f2を凝縮乾燥する。
 乾燥装置1は、基板f1を加熱装置12により加熱する。基板f1の加熱により塗布膜f2中の溶媒が蒸発すると、塗布膜f2に対面する凝縮板11によりその蒸気を凝縮して、塗布膜f2を乾燥する。
When the silane-based gas is recovered, the drying device 1 condenses and dries the coating film f2 of the gas barrier layer.
The drying device 1 heats the substrate f1 by the heating device 12. When the solvent in the coating film f2 is evaporated by heating the substrate f1, the vapor is condensed by the condensing plate 11 facing the coating film f2, and the coating film f2 is dried.
 乾燥後のガスバリア層の膜厚は、1nm~100μmの範囲内であることが好ましく、より好ましくは10nm~10μm程度の範囲内であり、さらに好ましくは50nm~1μmの範囲内であり、特に好ましくは100~500nmの範囲内である。
 膜厚が1nm以上であれば十分なガスバリア性能を得ることができ、100μm以下であれば、安定した塗布性及び高い光線透過性が得られる。
The thickness of the gas barrier layer after drying is preferably in the range of 1 nm to 100 μm, more preferably in the range of about 10 nm to 10 μm, still more preferably in the range of 50 nm to 1 μm, particularly preferably. It is in the range of 100 to 500 nm.
If the film thickness is 1 nm or more, sufficient gas barrier performance can be obtained, and if it is 100 μm or less, stable coating properties and high light transmittance are obtained.
 塗布膜f2を乾燥後、改質装置5により基板f1上の塗布膜f2を改質処理することにより、ガスバリア層が得られる。
 改質処理は、ガスバリア層の塗布膜f2が含有するケイ素化合物の一部又は全部をシリカ転化させ、セラミックス化する処理である。
 改質処理としては、波長が400nm以下の紫外光を照射する方法、波長が180nm未満の真空紫外光(VUV;Vacuum Ultra Violet)を照射する方法等が挙げられる。
After the coating film f2 is dried, the reforming apparatus 5 modifies the coating film f2 on the substrate f1, thereby obtaining a gas barrier layer.
The modification treatment is a treatment in which part or all of the silicon compound contained in the coating film f2 of the gas barrier layer is converted into silica and converted into ceramics.
Examples of the modification treatment include a method of irradiating ultraviolet light having a wavelength of 400 nm or less, a method of irradiating vacuum ultraviolet light (VUV; Vacuum Ultra Violet) having a wavelength of less than 180 nm, and the like.
 以上、ガスバリア性フィルムのガスバリア層を形成する例を説明したが、プライマー層、ブリードアウト層等の他の層も薄膜形成装置100により形成することもできる。
 ガスバリア性フィルム以外にも、塗布装置3を用いて、有機EL素子、太陽電池、トランジスター、メモリー、センサー等の有機層の塗布膜f2を形成し、乾燥装置1により当該塗布膜f2を乾燥して薄膜を形成することが可能である。
 有機層の形成においても、塗布液に有機溶媒が使用され、塗布膜f2が低粘度となる場合、乾燥装置1による均一な乾燥によって、有機層に求められる機能が得られるように膜厚を均一化することができるため、有効である。
The example of forming the gas barrier layer of the gas barrier film has been described above, but other layers such as a primer layer and a bleed-out layer can also be formed by the thin film forming apparatus 100.
In addition to the gas barrier film, the coating device 3 is used to form a coating film f2 of an organic layer such as an organic EL element, a solar cell, a transistor, a memory, a sensor, etc., and the coating device f2 is dried by the drying device 1 A thin film can be formed.
Also in the formation of the organic layer, when an organic solvent is used for the coating solution and the coating film f2 has a low viscosity, the film thickness is uniform so that the functions required for the organic layer can be obtained by uniform drying by the drying device 1. This is effective.
 以上のように、本実施の形態に係る乾燥装置1は、基板f1上の塗布膜f2と対面する凝縮板11を備え、当該凝縮板11により塗布膜f2からの溶媒の蒸気を凝縮して乾燥する乾燥装置であって、塗布膜f2は、シラン系ガスを発生させるケイ素化合物を含有し、凝縮板11の乾燥前に、塗布膜f2から発生するシラン系ガスを回収する回収手段として、基板f1上の塗布膜f2と対面して配置される平面状の回収部材13を備えている。 As described above, the drying apparatus 1 according to the present embodiment includes the condensing plate 11 that faces the coating film f2 on the substrate f1, and condenses the solvent vapor from the coating film f2 by the condensing plate 11 to dry. The coating film f2 contains a silicon compound that generates a silane-based gas, and serves as a recovery unit that recovers the silane-based gas generated from the coating film f2 before drying the condensing plate 11. A flat recovery member 13 is provided so as to face the upper coating film f2.
 あらかじめシラン系ガスを回収するので、凝縮乾燥中に塗布膜f2から発生し、溶媒の凝縮を妨げるシラン系ガスを減らすことができる。シラン系ガスによる凝縮板11の凝縮作用の低下を抑えることができ、凝縮乾燥の乾燥効率の低下を抑えることができる。シラン系ガスの減少により、凝縮面11aに付着する析出物も減るため、析出物が塗布膜f2上に付着する故障を減らすことができる。 Since the silane-based gas is collected in advance, the silane-based gas generated from the coating film f2 during the condensation drying and hindering the condensation of the solvent can be reduced. A decrease in the condensing action of the condensing plate 11 due to the silane-based gas can be suppressed, and a decrease in the drying efficiency of the condensation drying can be suppressed. Due to the reduction of the silane-based gas, the amount of deposits adhering to the condensing surface 11a is also reduced, so that the failure of deposits adhering to the coating film f2 can be reduced.
〔他の実施の形態〕
 シラン系ガスの他の回収手段として、乾燥装置1は、上記回収部材13に加え、シラン系ガスを排出する気流を形成する送風装置及び/又は吸引装置を備えることもできる。
 図4は、回収部材13の搬送方向yの前後に、送風装置15及び吸引装置16を配置した例を示している。
 送風装置15は、回収部材13と塗布膜f2間にエアーを送り出して、塗布膜f2から発生したシラン系ガスを排出する。
 吸引装置16は、シラン系ガスを含むエアーを吸引して、塗布膜f2から発生したシラン系ガスを排出する。
 回収部材13は、表面上でシラン系ガスを析出させて回収する。回収部材13は、エアーのガイド板でもある。
[Other Embodiments]
As another recovery means for the silane-based gas, the drying device 1 may include a blowing device and / or a suction device for forming an air flow for discharging the silane-based gas in addition to the recovery member 13.
FIG. 4 shows an example in which the blower 15 and the suction device 16 are arranged before and after the collection member 13 in the transport direction y.
The blower 15 sends out air between the collection member 13 and the coating film f2, and discharges the silane-based gas generated from the coating film f2.
The suction device 16 sucks air containing a silane-based gas and discharges the silane-based gas generated from the coating film f2.
The recovery member 13 collects and recovers silane-based gas on the surface. The recovery member 13 is also an air guide plate.
 シラン系ガスを排出させる気流は、図4において白の矢印により表すように、搬送方向yの下流から上流へ向かうように形成することが好ましい。基板f1の搬送に伴って搬送方向yの上流から下流へ気流が形成されるが、この気流と逆の方向の気流を形成することにより対流が生じ、当該対流によってシラン系ガスの発生を促進することができる。また、凝縮板11へのシラン系ガスの流入を防ぐことも可能である。 The air flow for discharging the silane-based gas is preferably formed so as to go from the downstream side to the upstream side in the transport direction y, as indicated by the white arrow in FIG. As the substrate f1 is transported, an airflow is formed from upstream to downstream in the transport direction y. By forming an airflow in a direction opposite to the airflow, convection is generated, and the generation of silane-based gas is promoted by the convection. be able to. It is also possible to prevent the silane-based gas from flowing into the condenser plate 11.
 送風装置15及び吸引装置16は、いずれか一方のみでもシラン系ガスを排出するための気流を形成できる。乾燥装置1は、送風装置15又は吸引装置16のいずれか一方のみ備えて、送風装置15によりエアーを送り出すか、又は吸引装置16によりエアーを吸引して、塗布膜f2からのシラン系ガスを排出してもよい。 Only one of the blower 15 and the suction device 16 can form an air flow for discharging the silane-based gas. The drying device 1 includes only one of the blower 15 and the suction device 16 and sends out air by the blower 15 or sucks air by the suction device 16 to discharge the silane-based gas from the coating film f2. May be.
 以下、実施例をあげて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 下記実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「重量部」又は「重量%」を表す。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
In the following examples, “part” or “%” is used, and “part by weight” or “% by weight” is represented unless otherwise specified.
〔乾燥装置K1の作製〕
 幅手方向の長さが400mm、搬送方向の長さが1000mm、厚さが20mmであるアルミニウム板の一方の表面に、幅が2mm、深さが2mmのスリットを幅手方向に2mm間隔で形成し、凝縮板を作製した。
 また、幅手方向の長さが400mm、搬送方向の長さが400mmの赤外線ヒーターSG4040(ワイエイシーデンコー社製)を、加熱装置として用意した。3枚の赤外線ヒーターSG4040をつなげて、基板を介して上記作製された凝縮板と対向する位置に、基板と対面するように配置した。
[Production of drying apparatus K1]
Slits with a width of 2 mm and a depth of 2 mm are formed at intervals of 2 mm in the width direction on one surface of an aluminum plate having a length in the width direction of 400 mm, a length in the transport direction of 1000 mm, and a thickness of 20 mm. Then, a condenser plate was produced.
In addition, an infrared heater SG4040 (manufactured by YAC Denco) having a length in the width direction of 400 mm and a length in the transport direction of 400 mm was prepared as a heating device. Three infrared heaters SG4040 were connected to each other so as to face the substrate at a position facing the produced condensing plate through the substrate.
 幅手方向の長さが400mm、搬送方向の長さが300mm、厚さが20mmの石英ガラス板を、シラン系ガスの回収部材として、上記凝縮板より基板の搬送方向上流に配置した。
 さらに、石英ガラス板の上部に赤外線ヒーターを設置して、図1の乾燥装置1と同様の構成を持つ乾燥装置K1を作製した。石英ガラス板の温度が60℃となるように、赤外線ヒーターと石英ガラス板間の距離を調整した。
A quartz glass plate having a length in the width direction of 400 mm, a length in the transport direction of 300 mm, and a thickness of 20 mm was disposed upstream of the condensing plate in the transport direction of the substrate as a silane-based gas recovery member.
Further, an infrared heater was installed on the quartz glass plate to produce a drying device K1 having the same configuration as the drying device 1 of FIG. The distance between the infrared heater and the quartz glass plate was adjusted so that the temperature of the quartz glass plate was 60 ° C.
〔乾燥装置K21の作製〕
 乾燥装置K1の作製において、石英ガラス板及び石英ガラス板上の赤外線ヒーターを配置せずに、凝縮板と加熱装置のみの構成としたこと以外は乾燥装置K1と同様にして、乾燥装置K21を作製した。
[Production of drying apparatus K21]
In the production of the drying device K1, the drying device K21 is produced in the same manner as the drying device K1, except that the quartz glass plate and the infrared heater on the quartz glass plate are not provided, and only the condensing plate and the heating device are configured. did.
〔ガスバリア性フィルム1の作製〕
 (基板の作製)
 基板として、両面が易接着加工されたポリエステルフィルム(帝人デュポンフィルム社製、極低熱収PET)を用いた。当該ポリエステルフィルムは、幅手方向の長さが0.35m、搬送方向の長さが50m、厚さが125μmであった。
 上記基板の一方の面に、UV硬化型有機/無機ハイブリッドハードコート剤OPSTAR Z7535(JSR社製)を、乾燥後の膜厚が4μmになるようにスロット法で塗布した。塗布後、温度80℃で3分間乾燥し、空気雰囲気下、高圧水銀ランプを使用して、1.0J/cmの光を照射して硬化させ、ブリードアウト防止層を形成した。
[Preparation of gas barrier film 1]
(Production of substrate)
As the substrate, a polyester film (manufactured by Teijin DuPont Films Co., Ltd., extremely low heat yield PET) whose both surfaces were easily bonded was used. The polyester film had a width in the width direction of 0.35 m, a length in the conveyance direction of 50 m, and a thickness of 125 μm.
On one surface of the substrate, a UV curable organic / inorganic hybrid hard coat agent OPSTAR Z7535 (manufactured by JSR) was applied by a slot method so that the film thickness after drying was 4 μm. After coating, the coating was dried at 80 ° C. for 3 minutes, and cured by irradiation with light of 1.0 J / cm 2 using a high-pressure mercury lamp in an air atmosphere to form a bleed-out prevention layer.
 次に、上記基板のブリードアウト防止層が設けられた面と反対の面に、UV硬化型有機/無機ハイブリッドハードコート剤OPSTAR Z7501(JSR社製)を、乾燥後の膜厚が4μmになるようにスロット法で塗布した。塗布後、温度80℃で3分間乾燥し、空気雰囲気下、高圧水銀ランプを使用して、1.0J/cmの光を照射して硬化させ、プライマー層を形成した。 Next, UV curable organic / inorganic hybrid hard coat agent OPSTAR Z7501 (manufactured by JSR) is applied to the surface of the substrate opposite to the surface provided with the bleed-out prevention layer so that the film thickness after drying becomes 4 μm. Was applied by the slot method. After application, the coating was dried at 80 ° C. for 3 minutes, and cured by irradiation with 1.0 J / cm 2 of light using a high-pressure mercury lamp in an air atmosphere to form a primer layer.
 (ガスバリア層の作製)
 上記作製された乾燥装置K1と塗布装置を、図1に示す薄膜形成装置100と同様に配置した。塗布装置として、幅手方向の長さが0.3m、スリット間隔が100μmのスリット型ダイコーターを用いた。
 基板のプライマー層上に、塗布装置によりガスバリア層の塗布膜を形成し、乾燥装置K1によりシラン系ガスを回収した後、塗布膜を乾燥した。
(Production of gas barrier layer)
The produced drying apparatus K1 and coating apparatus were arranged in the same manner as the thin film forming apparatus 100 shown in FIG. As a coating apparatus, a slit type die coater having a width of 0.3 m and a slit interval of 100 μm was used.
On the primer layer of the substrate, a coating film of a gas barrier layer was formed by a coating apparatus, and after the silane-based gas was collected by a drying apparatus K1, the coating film was dried.
 ガスバリア層の塗布液は次のようにして調製した。
 4gのアクアミカNN120-20(パーヒドロポリシラザンの20質量%ジブチルエーテル溶液、AZエレクトロニックマテリアルズ社製)と、1gのアクアミカNAX120-20(1質量%のアミン触媒を含有するパーヒドロポリシラザンの19質量%ジブチルエーテル溶液、AZエレクトロニックマテリアルズ社製)とを混合した。この混合物から4.636gを採取して、0.613gのALCH(アルミニウムエチルアセトアセテート・ジイソプロピレート、川研ファインケミカル社製)と、10.151gのジブチルエーテルとを添加し、混合して、塗布液を得た。
The coating solution for the gas barrier layer was prepared as follows.
4 g of Aquamica NN120-20 (20% by weight dibutyl ether solution of perhydropolysilazane, AZ Electronic Materials) and 1 g of Aquamica NAX120-20 (19% by weight of perhydropolysilazane containing 1% by weight amine catalyst) Dibutyl ether solution, manufactured by AZ Electronic Materials) was mixed. 4.636 g was taken from this mixture, 0.613 g of ALCH (aluminum ethyl acetoacetate diisopropylate, manufactured by Kawaken Fine Chemical Co., Ltd.) and 10.151 g of dibutyl ether were added, mixed and applied. A liquid was obtained.
 塗布装置の塗布条件は、以下の通りである。
 (塗布条件)
 基板の搬送速度:10m/min 
 塗布時の環境温度:25℃
 塗布した幅手方向の長さ:0.3m
 塗布した搬送方向の長さ:50m
 上記基板の搬送速度は、レーザードップラー速度計LV203(三菱電機社製)により測定した。
The coating conditions of the coating device are as follows.
(Application conditions)
Substrate transport speed: 10 m / min
Environmental temperature during application: 25 ° C
Applied length in the width direction: 0.3 m
Applied length in transport direction: 50m
The conveyance speed of the substrate was measured with a laser Doppler velocimeter LV203 (manufactured by Mitsubishi Electric Corporation).
 塗布膜の粘度をデジタル粘度計HV-50(ブルックフィールド社製)により測定したところ、0.5mPa・sであった。
 また、塗布膜の膜厚を、下記式により算出したところ、4μmであった。
 塗布膜の膜厚=塗布量(g/m)/塗布液の比重(g/m
 塗布量(g/m)=塗布液の供給速度(g/sec)/{塗布した幅手方向の長さ(m)×塗布速度(m/sec)}
The viscosity of the coated film was measured with a digital viscometer HV-50 (manufactured by Brookfield) and found to be 0.5 mPa · s.
Moreover, it was 4 micrometers when the film thickness of the coating film was computed by the following formula.
Coating film thickness = coating amount (g / m 2 ) / specific gravity of coating solution (g / m 3 )
Application amount (g / m 2 ) = application liquid supply speed (g / sec) / {length in the width direction applied (m) × application speed (m / sec)}
 乾燥装置K1のシラン系ガスの回収条件は、以下の通りである。
 (回収条件)
 回収部材の温度:60℃
 基板の搬送速度:10m/min
The conditions for collecting the silane-based gas in the drying device K1 are as follows.
(Recovery conditions)
Temperature of recovery member: 60 ° C
Substrate transport speed: 10 m / min
 乾燥装置K1の乾燥条件は、以下の通りである。
 (乾燥条件)
 凝縮面の温度Tc:20℃、
 塗布膜面の温度Th:40℃
 凝縮面と塗布膜面間の距離d:2mm
 基板の搬送速度:10m/min
The drying conditions of the drying device K1 are as follows.
(Drying conditions)
Condensing surface temperature Tc: 20 ° C.
Temperature Th of coating film surface: 40 ° C
Distance d between condensation surface and coating film surface: 2 mm
Substrate transport speed: 10 m / min
 なお、凝縮面と塗布膜面間の距離dは、凝縮板と基板の搬送ローラーの位置関係を調整することにより調整した。
 また、上記塗布膜面の温度Thは、放射温度センサーFT-30(キーエンス社製)により測定し、基板と赤外線ヒーターSG4040との距離を変えて、上記温度となるように調整した。
The distance d between the condensation surface and the coating film surface was adjusted by adjusting the positional relationship between the condensation plate and the substrate transport roller.
The temperature Th of the coating film surface was measured by a radiation temperature sensor FT-30 (manufactured by Keyence Corporation), and was adjusted to the above temperature by changing the distance between the substrate and the infrared heater SG4040.
 シラン系ガスの回収工程の出口、すなわち基板の搬送方向において石英ガラス板の設置位置の直後において、塗布膜の固形分比率を測定したところ、30質量%であった。
 塗布膜の固形分比率は、次のようにして測定した。
 シラン系ガスの回収工程の出口において塗布膜からサンプルを採取し、質量を測定した。採取したサンプルをアルミプレートに入れ、加熱プレートで温度80℃で3時間加熱処理した。加熱処理後、サンプル入りのアルミプレートの質量(g)を測定し、加熱処理前後の質量差とサンプルの面積とから加熱処理後もサンプルに残留している単位面積あたりの残留溶媒の質量(g/m)を算出し、下記式により固形分比率を求める。
 固形分比率(質量%)
  =単位面積あたりの固形分塗布量(g/m)/{単位面積あたりの固形分塗布量(g/m)+単位面積あたりの残留溶媒の質量(g/m)}×100
When the solid content ratio of the coating film was measured at the exit of the silane-based gas recovery step, that is, immediately after the installation position of the quartz glass plate in the substrate transport direction, it was 30% by mass.
The solid content ratio of the coating film was measured as follows.
A sample was taken from the coating film at the exit of the silane-based gas recovery step, and the mass was measured. The collected sample was placed in an aluminum plate and heat-treated with a heating plate at a temperature of 80 ° C. for 3 hours. After the heat treatment, the mass (g) of the sample-containing aluminum plate is measured, and the mass (g) of the residual solvent per unit area remaining in the sample after the heat treatment from the mass difference before and after the heat treatment and the area of the sample. / M 2 ) and the solid content ratio is determined by the following formula.
Solid content ratio (% by mass)
= Solid coating amount per unit area (g / m 2 ) / {Solid coating amount per unit area (g / m 2 ) + Mass of residual solvent per unit area (g / m 2 )} × 100
 乾燥後、得られた塗布膜に対して、真空紫外光を照射し、ガスバリア層中のパーヒドロポリシラザンをシリカ転化させて、ガスバリア層を得た。
 真空紫外光は、MDエキシマ社製のステージ可動型キセノン(Xe)エキシマ照射装置MECLM-1-200(照射波長:172nm、エキシマランプ光強度:312mW/cm)を用いて照射した。照射時、光源と基板間の距離が1mmとなるように基板を搬送し、基板の温度(ステージ加熱温度)を100℃に保持した。基板の搬送速度は、1.5m/minであった。また、真空紫外光の照射庫内に導入する窒素ガス及び酸素ガスの流量をフローメーターにより測定し、照射時の酸素濃度が0.2~0.4体積%の範囲になるように、当該窒素ガスと酸素ガスの流量比(窒素ガス/酸素ガス)を調整した。
After drying, the coating film obtained was irradiated with vacuum ultraviolet light to convert the perhydropolysilazane in the gas barrier layer into silica to obtain a gas barrier layer.
The vacuum ultraviolet light was irradiated using a stage movable xenon (Xe) excimer irradiation apparatus MECLM-1-200 (irradiation wavelength: 172 nm, excimer lamp light intensity: 312 mW / cm 2 ) manufactured by MD Excimer. At the time of irradiation, the substrate was transported so that the distance between the light source and the substrate was 1 mm, and the substrate temperature (stage heating temperature) was maintained at 100 ° C. The conveyance speed of the substrate was 1.5 m / min. In addition, the flow rate of nitrogen gas and oxygen gas introduced into the vacuum ultraviolet irradiation chamber is measured with a flow meter, and the nitrogen concentration is adjusted so that the oxygen concentration during irradiation is in the range of 0.2 to 0.4% by volume. The flow rate ratio (nitrogen gas / oxygen gas) of gas and oxygen gas was adjusted.
〔ガスバリア性フィルム2~4の作製〕
 ガスバリア性フィルム1の作製において、シラン系ガスの回収工程の出口で測定される塗布膜の固形分比率が下記表1に示す固形分比率となるように、基板の搬送速度を調整したこと以外はガスバリア性フィルム1と同様にして、各ガスバリア性フィルム2~4を作製した。
 各ガスバリア性フィルム2~4の作製において、ガスバリア性フィルム1と同様にして塗布膜の固形分比率を測定したところ、それぞれ40、29及び20質量%であった。
[Production of gas barrier films 2 to 4]
In the production of the gas barrier film 1, except that the substrate conveyance speed was adjusted so that the solid content ratio of the coating film measured at the exit of the silane-based gas recovery step was the solid content ratio shown in Table 1 below. In the same manner as the gas barrier film 1, gas barrier films 2 to 4 were produced.
In the production of each gas barrier film 2 to 4, when the solid content ratio of the coating film was measured in the same manner as the gas barrier film 1, it was 40, 29, and 20% by mass, respectively.
〔ガスバリア性フィルム5の作製〕
 ガスバリア性フィルム1の作製において、乾燥装置K1を乾燥装置K21に変更したこと以外はガスバリア性フィルム1と同様にして、ガスバリア性フィルム5を作製した。
 ガスバリア性フィルム5の作製において、ガスバリア性フィルム1と同様にして塗布膜の固形分比率を測定したところ、5質量%であった。
[Preparation of gas barrier film 5]
In the production of the gas barrier film 1, a gas barrier film 5 was produced in the same manner as the gas barrier film 1 except that the drying device K1 was changed to the drying device K21.
In production of the gas barrier film 5, the solid content ratio of the coating film was measured in the same manner as in the gas barrier film 1, and it was 5% by mass.
〔評価〕
 作製された各ガスバリア性フィルム1~5について、下記評価を行った。
[Evaluation]
The produced gas barrier films 1 to 5 were evaluated as follows.
(1)乾燥効率
 ガスバリア層の塗布膜を凝縮乾燥する際、基板の搬送方向の長さが0~10mの範囲内及び190~200mの範囲内のそれぞれにおいて、一定間隔ごとに乾燥速度を算出した。乾燥速度は、凝縮乾燥の前後、すなわち凝縮板と対面する直前の塗布膜と、凝縮板を超えた直後の塗布膜の膜厚を測定し、得られた測定値を用いて下記式により算出した。膜厚の測定には、膜厚測定器F-20(フィルメトリクス社製)を用いた。
 乾燥速度=
 {(凝縮乾燥前の膜厚)-(凝縮乾燥後の膜厚)}/(凝縮乾燥時の基板の搬送時間)
(1) Drying efficiency When the coating film of the gas barrier layer was condensed and dried, the drying speed was calculated at regular intervals within the range of 0 to 10 m and 190 to 200 m in the length of the substrate transport direction. . The drying rate was calculated by the following formula using the measured values obtained by measuring the film thickness of the coating film immediately before and after condensing and drying, that is, immediately before facing the condensing plate, and immediately after exceeding the condensing plate. . For measuring the film thickness, a film thickness measuring device F-20 (manufactured by Filmetrics) was used.
Drying speed =
{(Film thickness before condensation drying) − (film thickness after condensation drying)} / (substrate transport time during condensation drying)
 0~10mの範囲内で算出された各乾燥速度の平均値を、初期の乾燥速度1として求めた。また、190~200mの範囲内で算出された各乾燥速度の平均値を、200mの基板位置における乾燥速度2として求めた。 The average value of each drying speed calculated within the range of 0 to 10 m was determined as the initial drying speed 1. Further, the average value of the respective drying speeds calculated within the range of 190 to 200 m was determined as the drying speed 2 at the 200 m substrate position.
 得られた乾燥速度1及び乾燥速度2から、乾燥効率を下記のように評価した。
 5:乾燥速度2/乾燥速度1が0.99以上であり、乾燥効率の低下がない
 4:乾燥速度2/乾燥速度1が0.95以上0.99未満の範囲内にあり、乾燥効率の低下がほとんどない
 3:乾燥速度2/乾燥速度1が0.90以上0.95未満の範囲内にあり、乾燥効率の低下が見られるが、実用上問題無い
 2:乾燥速度2/乾燥速度1が0.80以上0.90未満の範囲内にあり、乾燥効率が低下しており、実用が難しい
 1:乾燥速度2/乾燥速度1が0.80未満であり、乾燥効率の低下が著しく、実用できない
From the obtained drying speed 1 and drying speed 2, the drying efficiency was evaluated as follows.
5: Drying speed 2 / Drying speed 1 is 0.99 or more and there is no reduction in drying efficiency 4: Drying speed 2 / Drying speed 1 is in the range of 0.95 or more and less than 0.99, and the drying efficiency is There is almost no reduction 3: Drying speed 2 / Drying speed 1 is in the range of 0.90 or more and less than 0.95, and a decrease in drying efficiency is observed, but there is no practical problem 2: Drying speed 2 / Drying speed 1 Is in the range of 0.80 or more and less than 0.90, the drying efficiency is low, and practical use is difficult 1: Drying speed 2 / Drying speed 1 is less than 0.80, and the reduction of the drying efficiency is remarkable. Not practical
(2)故障発生数
 各ガスバリア性フィルム1~5のガスバリア層の表面上で異物が付着している不良箇所を、画像測定システムNEXIV VMR-6555(ニコン社製)を用いて測定した。幅手方向に0.01m間隔で、搬送方向の位置を変えて900点で測定を行った。測定された不良箇所の数を、故障発生数として、下記のようにしてランク評価した。
 5:故障発生数が1未満
 4:故障発生数が1以上3未満
 3:故障発生数が3以上5未満
 2:故障発生数が5以上7未満
 1:故障発生数が7以上
(2) Number of Failures Measured on the surface of the gas barrier layer of each of the gas barrier films 1 to 5 was a defective portion where foreign matter was adhered using an image measurement system NEXIV VMR-6555 (Nikon Corporation). Measurements were performed at 900 points at different intervals in the transport direction at intervals of 0.01 m in the width direction. The rank evaluation was performed as follows, with the number of measured defective portions as the number of failure occurrences.
5: Number of failures occurring less than 1 4: Number of failures occurring from 1 to less than 3 3: Number of failures occurring from 3 to less than 5 2: Number of failures occurring from 5 to less than 7 1: Number of failures occurring 7 or more
(3)ガスバリア層の安定性
 各ガスバリア性フィルム1~5の赤外線スペクトルを、室温(温度25℃、相対湿度65%)下において、Nicolet380(サーモフィッシャーサイエンティフィック社製)を用いて測定した。
 測定後、各ガスバリア性フィルム1~5を、温度85℃、相対湿度85%の高温高湿下に調整した恒温恒湿オーブンYamato Humidic ChamberIG47M(ヤマト科学社製)内に、120時間連続で保存した。その後、室温下に戻した各ガスバリア性フィルム1~5の赤外線スペクトルを再度測定した。
 高温高湿下に保存する前後で測定された各赤外線スペクトルの800~850cm-1の吸収帯域において、Si-Nに由来するピークのピーク強度を求め、当該ピーク強度の高温高湿下での保存前後の変化率を下記式により算出した。
 ピーク強度の変化率=保存後のピーク強度/保存前のピーク強度
(3) Stability of gas barrier layer The infrared spectrum of each of the gas barrier films 1 to 5 was measured using Nicolet 380 (manufactured by Thermo Fisher Scientific) at room temperature (temperature 25 ° C., relative humidity 65%).
After the measurement, each of the gas barrier films 1 to 5 was stored continuously in a constant temperature and humidity oven Yamato Humidic Chamber IG47M (manufactured by Yamato Scientific Co., Ltd.) adjusted to a high temperature and high humidity of 85 ° C. and 85% relative humidity for 120 hours. . Thereafter, the infrared spectrum of each of the gas barrier films 1 to 5 returned to room temperature was measured again.
In the absorption band of 800 to 850 cm −1 of each infrared spectrum measured before and after storage under high temperature and high humidity, the peak intensity of the peak derived from Si—N is obtained, and the peak intensity is stored under high temperature and high humidity. The rate of change before and after was calculated by the following formula.
Change rate of peak intensity = peak intensity after storage / peak intensity before storage
 得られたピーク強度の保存前後の変化率を、ガスバリア層の安定性として下記のようにしてランク評価した。
 5:ピーク強度の変化率が0.5未満であり、非常に優れた安定性を示す
 4:ピーク強度の変化率が0.5以上0.7未満であり、優れた安定性を示す
 3:ピーク強度の変化率が0.7以上0.8未満であり、実用上使用可能な安定性を示す
 2:ピーク強度の変化率が0.8以上0.9未満であり、安定性が低い
 1:ピーク強度の変化率が0.9以上であり、安定性が非常に低い
The rate of change of the obtained peak intensity before and after storage was evaluated for rank as follows as the stability of the gas barrier layer.
5: Change rate of peak intensity is less than 0.5 and shows very excellent stability 4: Change rate of peak intensity is 0.5 or more and less than 0.7 and shows excellent stability 3: The change rate of peak intensity is 0.7 or more and less than 0.8, and shows practically usable stability 2: The change rate of peak intensity is 0.8 or more and less than 0.9, and the stability is low 1 : The rate of change in peak intensity is 0.9 or more, and the stability is very low
(4)ガスバリア性
 各ガスバリア性フィルム1~5の水蒸気透過度(g/m・24h)を、特開2005-283561号公報等に記載のカルシウム腐食法により求めた。
 まず、各ガスバリア性フィルム1~5を切り出し、真空蒸着装置JEE-400(日本電子社製)を用いて、切り出した試料の一部にカルシウムを蒸着させて、12mm×12mmのカルシウム層を9つ設けた。蒸着時、各カルシウム層以外はマスクした。
(4) Gas barrier properties The water vapor permeability (g / m 2 · 24 h) of each of the gas barrier films 1 to 5 was determined by the calcium corrosion method described in JP-A-2005-283561.
First, the gas barrier films 1 to 5 were cut out, and using a vacuum evaporation apparatus JEE-400 (manufactured by JEOL Ltd.), calcium was vapor-deposited on a part of the cut out sample, and nine 12 mm × 12 mm calcium layers were formed. Provided. At the time of vapor deposition, the portions other than each calcium layer were masked.
 真空状態のままマスクを除去し、もう一つの蒸着源からアルミニウムを蒸着させて、カルシウム層を含む全面を覆い、封止層を形成した。次に、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下へ移し、封止層が形成されたフィルム面上に紫外線硬化型樹脂T470/UR7134(ナガセケムテックス製)を塗布し、その上に厚さ0.2mmの石英ガラスを配置した。石英ガラス越しに紫外線を照射し、紫外線硬化型樹脂を硬化させて、評価用セルを作製した。 The mask was removed in a vacuum state, and aluminum was deposited from another deposition source to cover the entire surface including the calcium layer, thereby forming a sealing layer. Next, the vacuum state is released, and it is quickly transferred to a dry nitrogen gas atmosphere, and an ultraviolet curable resin T470 / UR7134 (manufactured by Nagase ChemteX) is applied on the film surface on which the sealing layer is formed. Quartz glass having a thickness of 0.2 mm was disposed. An evaluation cell was produced by irradiating ultraviolet light through quartz glass to cure the ultraviolet curable resin.
 得られた各ガスバリア性フィルム1~5の評価用セルを、温度85℃・相対湿度85%に調整した恒温恒湿オーブンYamato Humidic ChamberIG47M内に120時間連続で保存した。
 保存時間T(h)がT=0及びT=120である場合の評価用セルを撮影して得られた各画像から、カルシウムの腐食領域を画像処理により抽出した。抽出した腐食領域の面積から、腐食に要した水蒸気量を、水蒸気透過量として、下記式により算出した。
 水蒸気透過量(g/m・24h)=X×18×2×(10/A)×(24/T)
The obtained cells for evaluation of the respective gas barrier films 1 to 5 were stored in a constant temperature and humidity oven Yamato Humidic Chamber IG47M adjusted to a temperature of 85 ° C. and a relative humidity of 85% for 120 hours continuously.
From each image obtained by photographing the evaluation cell when the storage time T (h) is T = 0 and T = 120, a corrosion area of calcium was extracted by image processing. From the area of the extracted corrosion area, the amount of water vapor required for corrosion was calculated as the amount of water vapor permeation by the following formula.
Water vapor transmission rate (g / m 2 · 24 h) = X × 18 × 2 × (10 4 / A) × (24 / T)
 上記式において、Xはカルシウムが水と反応して生成された水酸化カルシウムのモル量を表し、X=(δ×d×α×d)/Mで表される。
 Aは、カルシウム層の面積(cm)を表す。
 δは、カルシウムの腐食領域の面積(cm)を表す。dは、カルシウム層の厚さ(cm)を表す。αはカルシウム層の厚さの補正係数であり、1<α≦(M/d)/(M/d)の範囲内で決定される。dは、カルシウムの密度(g/cm)を表し、dは、水酸化カルシウムの密度(g/cm)を表す。Mは、カルシウムの分子量を表し、Mは水酸化カルシウムの分子量を表す。
In the above formula, X represents the molar amount of calcium hydroxide produced by the reaction of calcium with water, and is represented by X = (δ × d 0 × α × d 2 ) / M 2 .
A represents the area (cm 2 ) of the calcium layer.
δ represents the area (cm 2 ) of the corrosion area of calcium. d 0 represents the thickness (cm) of the calcium layer. α is a correction factor for the thickness of the calcium layer, and is determined within a range of 1 <α ≦ (M 2 / d 2 ) / (M 1 / d 1 ). d 1 represents the density of calcium (g / cm 3 ), and d 2 represents the density of calcium hydroxide (g / cm 3 ). M 1 represents the molecular weight of calcium, and M 2 represents the molecular weight of calcium hydroxide.
 T=0及びT=120である場合に求められた各水蒸気透過量から、高温高湿下に保存する前後における水蒸気透過量の変化率を、水蒸気透過度として下記式により求めた。
 水蒸気透過度(g/m・24h)
   =(T=0の場合の水蒸気透過量)/(T=120の場合の水蒸気透過量)
From the respective water vapor transmission amounts obtained when T = 0 and T = 120, the rate of change of the water vapor transmission amount before and after storage under high temperature and high humidity was determined as the water vapor transmission rate by the following formula.
Water vapor permeability (g / m 2 · 24h)
= (Water vapor transmission amount when T = 0) / (Water vapor transmission amount when T = 120)
 得られた水蒸気透過度を、高温高湿下でのガスバリア性として下記のようにランク評価した。
 5:水蒸気透過度が0.1未満であり、非常に優れたガスバリア性を示す
 4:水蒸気透過度が0.1以上0.3未満であり、優れたガスバリア性を示す
 3:水蒸気透過度が0.3以上0.6未満であり、実用可能なガスバリア性を示す
 2:水蒸気透過度が0.6以上0.8未満であり、ガスバリア性が低い
 1:水蒸気透過度が0.8以上であり、ガスバリア性が非常に低い
The obtained water vapor permeability was ranked as follows as gas barrier properties under high temperature and high humidity.
5: Water vapor permeability is less than 0.1 and shows very good gas barrier properties 4: Water vapor permeability is 0.1 or more and less than 0.3 and shows excellent gas barrier properties 3: Water vapor permeability is It is 0.3 or more and less than 0.6, and shows a practical gas barrier property. 2: Water vapor permeability is 0.6 or more and less than 0.8, and gas barrier property is low 1: Water vapor permeability is 0.8 or more. Yes, gas barrier property is very low
 下記表1は、評価結果を示している。
Figure JPOXMLDOC01-appb-T000002
 
Table 1 below shows the evaluation results.
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例に係るガスバリア性フィルム1~4によれば、比較例に係るガスバリア性フィルム5に比較して、いずれも故障発生数が少なく、乾燥効率の低下が抑えられている。また、均一な乾燥により、安定性及びガスバリア性に優れたガスバリア層が得られている。凝縮乾燥前にシラン系ガスを回収していたため、シラン系ガスの析出物による故障発生数が減少したと推察される。また、溶媒の凝縮が阻害されず、凝縮板の凝縮作用の低下も抑えられたため、乾燥効率の低下が抑えられたと推察される。 As shown in Table 1, according to the gas barrier films 1 to 4 according to the examples, compared with the gas barrier film 5 according to the comparative example, all of them have a smaller number of failures, and a decrease in drying efficiency is suppressed. Yes. Moreover, the gas barrier layer excellent in stability and gas barrier property is obtained by uniform drying. Since the silane-based gas was collected before the condensation drying, it is assumed that the number of failures due to silane-based gas deposits has decreased. In addition, the condensation of the solvent was not hindered, and the decrease in the condensing action of the condensing plate was also suppressed, so it is assumed that the decrease in the drying efficiency was suppressed.
 ガスバリア性フィルム5の作製時、基板を200m搬送したところで、凝縮面を確認したところ、析出物が付着していた。凝縮乾燥に用いた乾燥装置K21にはシラン系ガスの回収部材が設けられていいなかったため、シラン系ガスによって溶媒の凝縮が妨げられ、凝縮面上に析出物が付着して凝縮作用を著しく低下させ、乾燥効率が低下したと推察される。また、凝縮面上の析出物が、塗布膜に付着し、故障発生数が増大したと推察される。 When the gas barrier film 5 was produced, the substrate was transported 200 m, and when the condensation surface was confirmed, deposits were adhered. Since the drying device K21 used for the condensation drying was not provided with a silane-based gas recovery member, the silane-based gas prevented the solvent from condensing, and deposits adhered to the condensation surface, significantly reducing the condensation action. It is speculated that the drying efficiency was lowered. Moreover, it is guessed that the deposit on the condensation surface adhered to the coating film and the number of failures increased.
 本発明は、シラン系ガスを発生させるケイ素化合物を含有する塗布膜からの溶媒の蒸気を凝縮する乾燥装置及び乾燥方法に利用することができる。 The present invention can be used in a drying apparatus and a drying method for condensing solvent vapor from a coating film containing a silicon compound that generates a silane-based gas.
100  薄膜形成装置
f1  基板
f2  塗布膜
f2a  塗布膜面
1  乾燥装置
11  凝縮板
11a  凝縮面
12  加熱装置
13  回収部材
14  ヒートローラー
3  塗布装置
DESCRIPTION OF SYMBOLS 100 Thin film forming apparatus f1 Substrate f2 Coating film f2a Coating film surface 1 Drying device 11 Condensing plate 11a Condensing surface 12 Heating device 13 Recovery member 14 Heat roller 3 Coating device

Claims (6)

  1.  基板上の塗布膜と対面する凝縮板を備え、当該凝縮板により塗布膜からの溶媒の蒸気を凝縮して乾燥する乾燥装置であって、
     前記塗布膜は、シラン系ガスを発生させるケイ素化合物を含有し、
     前記凝縮板による乾燥の前に、前記塗布膜から発生するシラン系ガスを回収する回収手段を備えることを特徴とする乾燥装置。
    A drying apparatus comprising a condensing plate facing a coating film on a substrate, condensing the solvent vapor from the coating film with the condensing plate, and drying,
    The coating film contains a silicon compound that generates a silane-based gas,
    A drying apparatus comprising a recovery means for recovering a silane-based gas generated from the coating film before drying by the condenser plate.
  2.  前記回収手段は、前記基板上の塗布膜と対面して配置される平面状の回収部材であることを特徴とする請求項1に記載の乾燥装置。 2. The drying apparatus according to claim 1, wherein the recovery means is a planar recovery member disposed so as to face the coating film on the substrate.
  3.  前記回収部材は、加熱されていることを特徴とする請求項2に記載の乾燥装置。 The drying apparatus according to claim 2, wherein the recovery member is heated.
  4.  前記回収手段によりシラン系ガスを回収した後の塗布膜の固形分比率は、30質量%以上であることを特徴とする請求項1~3のいずれか一項に記載の乾燥装置。 The drying apparatus according to any one of claims 1 to 3, wherein a solid content ratio of the coating film after the silane-based gas is recovered by the recovery means is 30% by mass or more.
  5.  前記ケイ素化合物は、ポリシラザン骨格を有するケイ素化合物であることを特徴とする請求項1~4のいずれか一項に記載の乾燥装置。 The drying apparatus according to any one of claims 1 to 4, wherein the silicon compound is a silicon compound having a polysilazane skeleton.
  6.  基板上の塗布膜と対面する凝縮板により、当該塗布膜からの溶媒の蒸気を凝縮して乾燥する乾燥方法であって、
     シラン系ガスを発生させるケイ素化合物を含有する塗布膜を乾燥する際、前記凝縮板による乾燥の前に、前記塗布膜から発生するシラン系ガスを回収手段により回収することを特徴とする乾燥方法。
    A condensing plate facing the coating film on the substrate is a drying method for condensing and drying the solvent vapor from the coating film,
    A drying method characterized in that, when a coating film containing a silicon compound that generates a silane-based gas is dried, the silane-based gas generated from the coating film is recovered by a recovery means before drying by the condenser plate.
PCT/JP2014/063773 2013-05-27 2014-05-26 Drying apparatus and drying method WO2014192668A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-110533 2013-05-27
JP2013110533A JP2016145648A (en) 2013-05-27 2013-05-27 Drying apparatus and drying method

Publications (1)

Publication Number Publication Date
WO2014192668A1 true WO2014192668A1 (en) 2014-12-04

Family

ID=51988700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063773 WO2014192668A1 (en) 2013-05-27 2014-05-26 Drying apparatus and drying method

Country Status (2)

Country Link
JP (1) JP2016145648A (en)
WO (1) WO2014192668A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111365947A (en) * 2020-03-16 2020-07-03 上海东富龙科技股份有限公司 Full-closed automatic feeding and discharging type raw material vacuum freeze drying equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111076520A (en) * 2019-12-17 2020-04-28 大连橡胶塑料机械有限公司 Drying device for microporous film by phase separation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007276283A (en) * 2006-04-07 2007-10-25 Futamura Chemical Co Ltd Method for manufacturing film
JP2008137002A (en) * 2006-11-07 2008-06-19 Fujifilm Corp Method for drying coating film and apparatus therefor, and optical film using the same
JP2011025244A (en) * 2010-09-09 2011-02-10 Fujifilm Corp Method and apparatus for drying coating film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007276283A (en) * 2006-04-07 2007-10-25 Futamura Chemical Co Ltd Method for manufacturing film
JP2008137002A (en) * 2006-11-07 2008-06-19 Fujifilm Corp Method for drying coating film and apparatus therefor, and optical film using the same
JP2011025244A (en) * 2010-09-09 2011-02-10 Fujifilm Corp Method and apparatus for drying coating film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111365947A (en) * 2020-03-16 2020-07-03 上海东富龙科技股份有限公司 Full-closed automatic feeding and discharging type raw material vacuum freeze drying equipment

Also Published As

Publication number Publication date
JP2016145648A (en) 2016-08-12

Similar Documents

Publication Publication Date Title
US9359505B2 (en) Gas barrier film, process for production of gas barrier film, and electronic device
JP5880442B2 (en) GAS BARRIER FILM, METHOD FOR PRODUCING GAS BARRIER FILM, AND ELECTRONIC DEVICE
WO2014192685A1 (en) Drying apparatus and drying method
JP5888329B2 (en) Gas barrier film, method for producing gas barrier film, and electronic device
US20150364720A1 (en) Gas barrier film
JP5786940B2 (en) Gas barrier film and method for producing the same
JP5895687B2 (en) Gas barrier film
WO2012090665A1 (en) Method for manufacturing gas-barrier film, gas-barrier film, and electronic device
JP6638182B2 (en) Laminated films and flexible electronic devices
JP2008159824A (en) Device for manufacturing silicon-oxide thin-film, and method for forming it
JP5747915B2 (en) Method for producing gas barrier film
WO2014192668A1 (en) Drying apparatus and drying method
JP2014240462A (en) Gas barrier film, method for manufacturing gas barrier film, and apparatus for manufacturing gas barrier film
JP6998734B2 (en) Laminates and devices containing them
JP6717371B2 (en) Light irradiation device and light irradiation method
WO2014192667A1 (en) Drying apparatus and drying method
JP2014240051A (en) Gas barrier film, manufacturing method of gas barrier film, and manufacturing apparatus of gas barrier film
JP2016022595A (en) Gas barrier film, production method thereof, and electronic device having gas barrier film
JP2017077668A (en) Gas barrier laminate and organic electroluminescent element
JP2011194319A (en) Method of manufacturing barrier film
WO2015025782A1 (en) Device for producing gas barrier film and method for producing gas barrier film
JP2014023993A (en) Method and device for manufacturing gas barrier film
JP6295865B2 (en) Gas barrier film
JP4911413B2 (en) Oxide thin film forming equipment
JP2019036517A (en) Coating liquid, ink for ink jet using the coating liquid, encapsulation film and forming method for encapsulation film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14803534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP