WO2014192118A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2014192118A1
WO2014192118A1 PCT/JP2013/065064 JP2013065064W WO2014192118A1 WO 2014192118 A1 WO2014192118 A1 WO 2014192118A1 JP 2013065064 W JP2013065064 W JP 2013065064W WO 2014192118 A1 WO2014192118 A1 WO 2014192118A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
semiconductor chip
inductance
current path
main
Prior art date
Application number
PCT/JP2013/065064
Other languages
French (fr)
Japanese (ja)
Inventor
酒井 康裕
周一 北村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/065064 priority Critical patent/WO2014192118A1/en
Publication of WO2014192118A1 publication Critical patent/WO2014192118A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • the present invention relates to a semiconductor device used for, for example, electric railway or wind power generation.
  • Patent Document 1 discloses a first semiconductor chip formed on a first insulating substrate 104a and a second semiconductor chip formed on a second insulating substrate 104b.
  • the first main electrode (main terminal 111) is connected to the first semiconductor chip and the second semiconductor chip.
  • the second main electrode (main terminal 112) is also connected to the first semiconductor chip and the second semiconductor chip.
  • a main electrode in which a first electrode part electrically connected to the first semiconductor chip and a second electrode part electrically connected to the second semiconductor chip are connected by a connecting part may be used.
  • the impedance of the current path passing through the first electrode part and the current path passing through the second electrode part Impedance is not uniform.
  • the current values of the first semiconductor chip and the second semiconductor chip become non-uniform, and the deterioration of either the first semiconductor chip or the second semiconductor chip is accelerated. was there.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a semiconductor device that can make inductances of a plurality of current paths of a main electrode uniform.
  • a semiconductor device includes a first semiconductor chip, a second semiconductor chip, and a main electrode electrically connected to the first semiconductor chip and the second semiconductor chip.
  • the main electrode has a first electrode portion whose one end is electrically connected to the first semiconductor chip, a second electrode portion whose one end is electrically connected to the second semiconductor chip, and the first electrode portion.
  • a connecting portion connecting the other end of the second electrode portion and the other end of the second electrode portion, a main body portion connected to the connecting portion, and an external connecting portion connected to a portion of the main body portion on the first electrode portion side.
  • the inductance of the current path from one end of the first electrode portion to the external connection portion when the influence of the magnetic field from the main body portion is eliminated is from the one end of the second electrode portion to the external connection portion. It is characterized by being larger than the inductance of the current path up to.
  • Another semiconductor device includes a first semiconductor chip, a second semiconductor chip, and a main electrode electrically connected to the first semiconductor chip and the second semiconductor chip.
  • the main electrode has a first electrode portion whose one end is electrically connected to the first semiconductor chip, a second electrode portion whose one end is electrically connected to the second semiconductor chip, and the first electrode portion.
  • the distance from the first electrode part to the reverse current part, which is the part of the main body part above which the current flows in the direction opposite to the first electrode part, is the second part. It is longer than the distance from the electrode part to the main body part above the second electrode part.
  • Another semiconductor device includes a first semiconductor chip, a second semiconductor chip, the first semiconductor chip, a first main electrode electrically connected to the second semiconductor chip, and the first semiconductor chip.
  • the first main electrode has a first electrode portion whose one end is electrically connected to the first semiconductor chip, a second electrode portion whose one end is electrically connected to the second semiconductor chip, and the first A connecting portion connecting the other end of the electrode portion and the other end of the second electrode portion, a main body portion connected to the connecting portion, and an external connection connected to a portion of the main body portion on the first electrode portion side And an inductance of a current path from one end of the first electrode portion to the external connection portion when the influence of the magnetic field from the second main electrode is eliminated, and from one end of the second electrode portion
  • the inductance of the current path to the external connection is non-uniform, and the inductance of the current path from one end of the first electrode to the external connection by the magnetic field from the second main electrode, and the second electrode
  • the inductance of the current path from one end of the part to the external connection part is made uniform That.
  • the inductance of the plurality of current paths of the main electrode can be made uniform.
  • FIG. 5 is a plan view of the inside of the semiconductor device of FIG. 4.
  • FIG. 5 is an internal side view of the semiconductor device of FIG. 4 when viewed from the arrow direction.
  • FIG. 5 is a perspective view of the main electrode of a comparative example. It is the figure which showed the flow of the electric current in the main electrode at the time of IGBT energization with the arrow.
  • FIG. 1 is a perspective view of a main electrode provided in the semiconductor device according to the first embodiment of the present invention.
  • the main electrode 10 includes a first electrode portion 12. The length from the one end 12a to the other end 12b of the first electrode portion 12 is a.
  • the main electrode 10 includes a second electrode portion 14. The length from the one end 14a to the other end 14b of the second electrode portion 14 is b. a (length from one end 12a to the other end 12b of the first electrode portion 12) is longer than b (length from one end 14a to the other end 14b of the second electrode portion 14).
  • the other end 12 b of the first electrode portion 12 and the other end 14 b of the second electrode portion 14 are connected by a connecting portion 16.
  • a main body 18 is connected to the connecting portion 16.
  • the main body portion 18 is a portion extending from the connecting portion 16 in the positive Z direction.
  • a part of the main body portion 18 is defined as a reverse current portion 18a.
  • the reverse current portion 18 a is a portion of the main body portion 18 where a current in the direction opposite to the first electrode portion 12 flows above the first electrode portion 12.
  • the external connection part 20 is connected to the upper end of the main body part 18.
  • the external connection unit 20 is a part connected to the outside.
  • the external connection unit 20 is connected to a portion of the main body unit 18 on the first electrode unit 12 side. That is, since the external connection portion 20 is not directly above the coupling portion 16 but directly above the first electrode portion 12, the X coordinate of the external connection portion 20 is a value obtained by shifting the X coordinate of the coupling portion 16 to the minus side. Note that the position (X coordinate) of the external connection unit 20 cannot be changed because it is determined by the standard package structure defined by the standard.
  • FIG. 2 is a perspective view showing electrical connection between the main electrode 10 and the semiconductor chip.
  • FIG. 2 shows a first insulating substrate 50 and a second insulating substrate 52.
  • Metal patterns 60, 62, and 64 are formed on the first insulating substrate 50.
  • the back surface of the three diodes 66 a is fixed to the metal pattern 60.
  • On the metal pattern 64 the back surfaces of the three IGBTs 66b are fixed.
  • the three diodes 66a and the three IGBTs 66b are collectively referred to as a first semiconductor chip 66.
  • the surface of the diode 66 a and the metal pattern 62 are connected by a wire 68.
  • the surface of the IGBT 66 b and the metal pattern 62 are connected by a wire 68.
  • Metal patterns 70, 72, and 74 are formed on the second insulating substrate 52.
  • the back surface of the three diodes 76 a is fixed to the metal pattern 70.
  • the back surfaces of the three IGBTs 76b are fixed.
  • the three diodes 76a and the three IGBTs 76b are collectively referred to as a second semiconductor chip 76.
  • the surface of the diode 76 a and the metal pattern 72 are connected by a wire 78.
  • the surface of the IGBT 76 b and the metal pattern 72 are connected by a wire 78.
  • the one end 12 a of the first electrode portion 12 is connected to the metal pattern 62. Thereby, the one end 12a of the 1st electrode part 12 is electrically connected to the surface of the diode 66a, and the surface of IGBT66b. Accordingly, one end 12 a of the first electrode portion 12 is electrically connected to the first semiconductor chip 66.
  • the one end 14 a of the second electrode portion 14 is connected to the metal pattern 72. Thereby, the one end 14a of the 2nd electrode part 14 is electrically connected to the surface of the diode 76a, and the surface of IGBT76b. Accordingly, one end 14 a of the second electrode portion 14 is electrically connected to the second semiconductor chip 76.
  • the main electrode 10 functions as an emitter electrode that is electrically connected to the first semiconductor chip 66 and the second semiconductor chip 76.
  • FIG. 3 is a perspective view showing another main electrode.
  • Another main electrode 80 is connected to the metal patterns 60, 64, 70, 74.
  • Another main electrode 80 functions as a collector electrode.
  • another main electrode 80 is patterned in order to distinguish the other main electrode 80 from the main electrode 10.
  • FIG. 4 is an external view of the semiconductor device according to the first embodiment of the present invention.
  • This semiconductor device includes a base plate 100.
  • the base plate 100 is formed with an attachment hole 100a for screwing the semiconductor device to an external member.
  • a case 102 is formed on the base plate 100.
  • the main electrodes 10 and 104 and the other main electrodes 80 and 106 are exposed to the outside from the case 102.
  • the main electrode 104 has the same shape as the main electrode 10.
  • Another main electrode 106 has the same shape as another main electrode 80.
  • the auxiliary terminal 108 is also exposed to the outside from the case 102.
  • FIG. 5 is a plan view of the inside of the semiconductor device of FIG. In order to supply a gate drive signal to the IGBT, an insulating substrate 90, a metal pattern 92, and a resistance portion 94 are formed. 6 is an internal side view of the semiconductor device of FIG. 4 when viewed from the direction of the arrow. Solder 110 is used to connect the main electrode 10 and the metal pattern 62. In the case 102, the first semiconductor chip 66 and the second semiconductor chip are sealed with a sealing material 112. A control substrate 114 is formed on the sealing material 112.
  • FIG. 7 is a perspective view of a main electrode of a comparative example.
  • the main electrode 200 of the comparative example is different from the main electrode 10 in that the length c of the first electrode portion 202 and the length d of the second electrode portion 204 are equal.
  • a current flows in the direction of the arrow in the main electrode 200.
  • the direction of the current flowing through the first electrode unit 202 is opposite to the direction of the current flowing through the reverse current unit 18a. Therefore, since the magnetic field generated by the current flowing through the first electrode portion 202 and the magnetic field generated by the current flowing through the reverse current portion 18a cancel each other, the inductance of the first electrode portion 202 decreases.
  • the inductance of the second electrode unit 204 is not reduced. In short, the inductance of the first electrode portion 202 is lowered, but the inductance of the second electrode portion 204 is not lowered.
  • the inductance of the current path from one end 202a of the first electrode part 202 to the external connection part 20 (hereinafter, the current path from one end of the first electrode part to the external connection part is referred to as the first current path), and the second electrode Since the inductance of the current path from one end 204a of the part 204 to the external connection part 20 (hereinafter, the current path from one end of the second electrode part to the external connection part is referred to as a second current path) is different from that of the first semiconductor chip. 2
  • the semiconductor chip cannot be operated evenly.
  • FIG. 8 is a diagram showing the flow of current in the main electrode 10 with arrows when the IGBT is energized.
  • the length a from the one end 12a to the other end 12b of the first electrode portion 12 is longer than the length b from the one end 14a to the other end 14b of the second electrode portion 14. That is, the inductance of the current path (first current path) from one end of the first electrode part to the external connection part when the influence of the magnetic field from the main body part 18 is excluded is from the one end of the second electrode part to the external connection part. It is larger than the inductance of the current path up to (second current path).
  • the inductance of the first electrode section 12 is reduced by the influence of the magnetic field generated by the current flowing through the reverse current section 18a, so that the inductance of the first current path and the inductance of the second current path can be made uniform. it can.
  • FIG. 9 is a diagram showing the flow of current in the main electrode when the diode is energized by arrows. Even when the diode is energized, the inductance of the first current path and the inductance of the second current path can be made uniform as in the case of the IGBT energization.
  • the present invention relates to a technique for making the inductances of a plurality of current paths of a main electrode uniform.
  • the main electrode in addition to the emitter electrode, for example, an IGBT collector electrode, a MOS-FET source / drain main electrode, or a main electrode of a power module such as a diode, transistor, or thyristor can be employed.
  • FIG. 10 is a perspective view showing a modification of the main electrode.
  • the main electrode 250 functions as a collector electrode.
  • the length from the one end 252a to the other end 252b of the first electrode portion 252 is longer than the length from the one end 254a to the other end 254b of the second electrode portion 254.
  • the other end 252 b of the first electrode portion 252 and the other end 254 b of the second electrode portion 254 are connected by a connecting portion 256.
  • a part of the main body 258 is a reverse current portion 258a.
  • An external connection portion 260 is connected to the first electrode portion 252 side of the main body portion 258.
  • the inductance of the first current path when the influence of the magnetic field from the main body is eliminated is larger than the inductance of the second current path. . Since the inductance of the first electrode portion is reduced due to the influence of the magnetic field generated by the current flowing through the reverse current portion, the inductance of the first current path and the inductance of the second current path can be made uniform.
  • the first semiconductor chip 66 and the second semiconductor chip 76 can be formed of, for example, Si, but are not limited thereto.
  • the first semiconductor chip 66 and the second semiconductor chip 76 may be formed of SiC to increase their switching speed. Since the impedance due to the inductance component increases when the switching speed is increased, it is particularly effective to make the inductances of the first current path and the second current path uniform.
  • the first semiconductor chip 66 and the second semiconductor chip 76 are not limited to IGBTs and diodes. These modifications can also be applied to semiconductor devices according to the following embodiments.
  • the semiconductor device according to the following embodiment is different from the first embodiment only in the shape of the main electrode. Therefore, in the following embodiments, only the shape of the main electrode will be described.
  • FIG. FIG. 11 is a perspective view of the main electrode 300 provided in the semiconductor device according to the second embodiment of the present invention.
  • the length from one end 302a to the other end 302b of the first electrode portion 302 is longer than the length from one end 204a to the other end 204b of the second electrode portion 204. Therefore, the inductance of the first current path and the inductance of the second current path can be made uniform.
  • the first electrode portion 302 is not limited to the shape shown in FIG.
  • the first electrode unit 302 may be longer than the second electrode unit 204 by making the first electrode unit 302 wave-shaped or comb-shaped.
  • FIG. FIG. 12 is a perspective view of the main electrode 350 provided in the semiconductor device according to the third embodiment of the present invention.
  • the length e from one end 202a of the first electrode portion 202 to the other end 202b is longer than the length f from one end 354a to the other end 354b of the second electrode portion 354. Therefore, the inductance of the first current path and the inductance of the second current path can be made uniform.
  • the length g of the connecting portion 356 is longer than the length f of the second electrode portion 354. Therefore, compared with the main electrode according to the first embodiment, the widths of the first current path and the second current path are widened, so that the inductances of the first current path and the second current path can be lowered.
  • the main electrodes according to Embodiment 1-3 are identical in that the first electrode part is made longer than the second electrode part. These utilize the property that the inductance increases as the current path becomes longer. Therefore, as long as this property can be used, the shapes of the first electrode portion and the second electrode portion are not particularly limited.
  • FIG. FIG. 13 is a perspective view of the main electrode 400 provided in the semiconductor device according to Embodiment 4 of the present invention.
  • the second electrode portion 404 is formed thicker than the first electrode portion 202.
  • the length from the one end 404a to the other end 404b of the second electrode portion 404 is equal to the length from the one end 202a to the other end 202b of the first electrode portion 202.
  • the inductance of the electrode part decreases as the thickness of the electrode part (referring to the first electrode part or the second electrode part, hereinafter the same) increases. Since the second electrode portion 404 is formed thicker than the first electrode portion 202, the inductance of the second current path when the influence of the magnetic field from the main body is eliminated is smaller than the inductance of the first current path. Accordingly, the inductance of the first current path is reduced by the magnetic field from the reverse current section 18a, so that the inductance of the first current path and the inductance of the second current path can be made uniform.
  • FIG. FIG. 14 is a perspective view of main electrode 450 provided in the semiconductor device according to the fifth embodiment of the present invention.
  • the second electrode part 454 is wider than the first electrode part 202.
  • the length from the one end 454a to the other end 454b of the second electrode portion 454 is equal to the length from the one end 202a to the other end 202b of the first electrode portion 202.
  • the inductance of the electrode part decreases as the width of the electrode part increases. Since the second electrode part 454 is formed wider than the first electrode part 202, the inductance of the second current path when the influence of the magnetic field from the main body part is eliminated is smaller than the inductance of the first current path. Accordingly, the inductance of the first current path is reduced by the magnetic field from the reverse current section 18a, so that the inductance of the first current path and the inductance of the second current path can be made uniform.
  • FIG. FIG. 15 is a perspective view of the main electrode 500 provided in the semiconductor device according to Embodiment 6 of the present invention.
  • a coating material 502 having a higher magnetic permeability than air is attached to the first electrode portion 202.
  • the covering material 502 is, for example, ferrite.
  • the inductance of the 1st electrode part 202 increases by attaching the coating material 502 whose permeability is higher than air to the 1st electrode part 202.
  • the inductance of the first current path when the influence of the magnetic field from the main body 18 is eliminated is larger than the inductance of the second current path. Accordingly, the inductance of the first current path is reduced by the magnetic field from the reverse current section 18a, so that the inductance of the first current path and the inductance of the second current path can be made uniform.
  • the covering material 502 is not limited to ferrite as long as it has a higher magnetic permeability than air. Further, a material having a higher magnetic permeability than air may be applied to the first electrode portion 202.
  • FIG. FIG. 16 is a perspective view of main electrode 550 provided in the semiconductor device according to Embodiment 7 of the present invention.
  • a part of the second electrode portion 204 and the main body portion 18 are connected by an auxiliary connecting portion 556.
  • the auxiliary connecting portion 556 connects the central portion of the second electrode portion 204 and the main body portion 18.
  • the width of the current path connecting the second electrode part 204 and the main body part 18 is widened by the auxiliary connecting part 556. Therefore, the inductance from the second electrode part 204 to the main body part 18 decreases. That is, the inductance of the second current path when the influence of the magnetic field from the main body 18 is eliminated is smaller than the inductance of the first current path. Accordingly, the inductance of the first current path is reduced by the magnetic field from the reverse current section 18a, so that the inductance of the first current path and the inductance of the second current path can be made uniform.
  • FIG. 17 is a perspective view of main electrode 600 provided in the semiconductor device according to Embodiment 8 of the present invention.
  • the connecting portion 606 has a thin connecting portion 606a and a thick connecting portion 606b.
  • the thin connecting portion 606 a is in contact with the other end 202 b of the first electrode portion 202.
  • the thick connecting portion 606 b is in contact with the other end 204 b of the second electrode portion 204.
  • the connecting portion 606 is thicker at the portion connected to the other end 204b of the second electrode portion 204 than at the portion connected to the other end 202b of the first electrode portion 202.
  • the current in the first current path mainly passes through the thin connecting portion 606a.
  • the current in the second current path mainly passes through the thick connecting portion 606b.
  • the inductance of the current path including the connecting portion decreases. Therefore, when the influence of the magnetic field from the main body portion 18 is eliminated, the inductance of the second current path including the thick coupling portion 606b is smaller than the inductance of the first current path. Therefore, when the inductance of the first electrode unit 202 is reduced by the magnetic field from the reverse current unit 18a, the inductance of the first current path and the inductance of the second current path can be made uniform.
  • FIG. FIG. 18 is a perspective view of main electrode 650 provided in the semiconductor device according to Embodiment 9 of the present invention.
  • the connecting portion 656 includes a first connecting portion 656 a connected to the other end 202 b of the first electrode portion 202 and a second connecting portion 656 b connected to the other end 204 b of the second electrode portion 204. Since the slit 656c is formed between the first connecting portion 656a and the second connecting portion 656b, the first connecting portion 656a and the second connecting portion 656b do not contact each other.
  • a slit 18b connected to the slit 656c is formed on the first electrode portion 202 side of the main body portion 18.
  • a slit 18c is formed above the slit 18b.
  • the slits 18 b and 18 c are formed in a direction parallel to the longitudinal direction of the first electrode portion 202.
  • the current path length from one end 202a of the first electrode part 202 to the external connection part 20 is reduced from the one end 204a of the second electrode part 204 to the external connection part by the slit 656c of the coupling part 656 and the slits 18b and 18c of the main body part 18. It is longer than the current path length up to 20. Therefore, the inductance of the first current path when the influence of the magnetic field from the main body 18 is eliminated is larger than the inductance of the second current path. Accordingly, the inductance of the first current path is reduced by the magnetic field from the reverse current section 18a, so that the inductance of the first current path and the inductance of the second current path can be made uniform.
  • a slit different from the slits 656c, 18b, and 18c shown in FIG. 18 may be formed.
  • FIG. FIG. 19 is a perspective view of main electrode 700 provided in the semiconductor device according to Embodiment 10 of the present invention.
  • An opening 206 a is formed on the first electrode portion 202 side of the connecting portion 206.
  • An opening 18d is formed in a portion of the main body portion 18 on the first electrode portion 202 side.
  • the opening 18 d is preferably formed on the first electrode portion 202 side of the main body 18 and on the lower portion of the main body 18.
  • the opening 206a and the opening 18d mainly narrow the width of the first current path. Therefore, the inductance of the first current path when the influence of the magnetic field from the main body 18 is eliminated is larger than the inductance of the second current path. Accordingly, the inductance of the first current path is reduced by the magnetic field from the reverse current section 18a, so that the inductance of the first current path and the inductance of the second current path can be made uniform.
  • the opening may be formed in the first electrode portion side of the connecting portion 206 or the first electrode portion side of the main body portion without forming the opening in both the connecting portion and the main body portion.
  • FIG. FIG. 20 is a perspective view of main electrode 750 provided in the semiconductor device according to Embodiment 11 of the present invention.
  • a slit 18e extending in parallel with the first electrode portion 202 is formed in a portion of the main body portion 18 on the first electrode portion 202 side.
  • the slit 18e forms a non-energized portion 18f through which almost no current flows.
  • the distance from the first electrode part 202 to the reverse current part 18a can be made longer than the distance from the first electrode part 202 to the reverse current part when the non-conductive part is not formed. it can. Further, the distance from the first electrode portion 202 to the reverse current portion 18 a is longer than the distance from the second electrode portion 204 to the main body portion 18 above the second electrode portion 204.
  • the distance between the reverse current portion 18a and the first electrode portion 202 is increased by the slit 18e, the influence of the magnetic field from the reverse current portion 18a on the inductance of the first electrode portion 202 can be suppressed.
  • the slit 18e is formed, the first current path and the second current path are longer than when the slit 18e is not formed, so that the inductance of the first current path and the second current path is increased. Accordingly, the influence of the reverse current portion on the inductance of the first electrode portion is further reduced. Therefore, the inductance of the first current path and the second current path can be made uniform.
  • FIG. 21 is a perspective view of a main electrode according to a modification.
  • the slit 18g is formed only directly above the first electrode portion 202.
  • the slit 18g forms a non-energized portion 18h through which almost no current flows.
  • the reverse current portion 18a is greatly separated from the first electrode portion 202 and hardly affects the inductance of the first electrode portion.
  • the slit 18g is shorter than the slit 18e, the length of the first current path and the length of the second current path can be shortened.
  • the slit of the main body portion does not have to be formed in a direction parallel to the first electrode portion 202.
  • the reverse current portion can be separated from the first electrode portion by forming the slit on the first electrode portion side of the main body portion and positioning the reverse current portion above the slit. As long as this effect is obtained, the shape of the slit is not limited.
  • FIG. FIG. 22 is a perspective view of main electrode 850 provided in the semiconductor device according to Embodiment 12 of the present invention.
  • a distance y1 from the first electrode portion 202 to the reverse current portion 18a is longer than a distance y2 from the second electrode portion 204 to the main body portion 18 above the second electrode portion 204.
  • the reverse current portion 18a is far away from the first electrode portion 202 and hardly affects the inductance of the first electrode portion 202. Therefore, the inductance of the first current path and the inductance of the second current path can be made uniform.
  • FIG. FIG. 23 is a perspective view of main electrodes 200 and 900 provided in the semiconductor device according to Embodiment 13 of the present invention.
  • the main electrode 200 is the main electrode 200 of the comparative example shown in FIG.
  • the main electrode 200 is referred to as a first main electrode.
  • the first main electrode functions as an emitter electrode.
  • the second main electrode 900 functions as a collector electrode.
  • the first main electrode and the second main electrode 900 are electrically connected to the first semiconductor chip and the second semiconductor chip, respectively.
  • the second main electrode 900 includes a third electrode portion 902 whose one end 902a is electrically connected to the first semiconductor chip.
  • the second main electrode 900 includes a fourth electrode portion 904 whose one end 904a is electrically connected to the second semiconductor chip.
  • the other end 902 b of the third electrode portion 902 and the other end 904 b of the fourth electrode portion 904 are connected to the connecting portion 906.
  • the connecting portion 906 is connected to the main body portion 908.
  • An external connection portion 910 is connected to the main body portion 908 on the fourth electrode portion 904 side.
  • the direction of the current flowing through the second electrode unit 204 is opposite to the direction of the current flowing through the fourth electrode unit 904.
  • the direction of current flowing through the first electrode unit 202 is opposite to the direction of current flowing through the third electrode unit 902.
  • the distance from the second electrode part 204 to the fourth electrode part 904 is smaller than the distance from the first electrode part 202 to the third electrode part 902.
  • the amount of inductance decrease of the second electrode unit 204 due to the magnetic field generated in the fourth electrode unit 904 is larger than the amount of inductance decrease of the first electrode unit 202 due to the magnetic field generated in the third electrode unit 902. That is, the inductance of the second current path when the influence of the magnetic field from the main body 18 is excluded is smaller than the inductance of the first current path. Therefore, when the inductance of the first electrode unit 202 is reduced by the magnetic field from the reverse current unit 18a, the inductance of the first current path and the inductance of the second current path can be made uniform.
  • FIG. FIG. 24 is a perspective view of main electrodes 200 and 950 included in the semiconductor device according to Embodiment 14 of the present invention.
  • the main electrode 200 is referred to as a first main electrode.
  • the first main electrode functions as an emitter electrode of the first semiconductor chip and the second semiconductor chip.
  • the second main electrode 950 functions as a collector electrode for the first semiconductor chip and the second semiconductor chip.
  • the second main electrode 950 has a third electrode portion 952 and a fourth electrode portion 954.
  • the connecting portion 956 connects the other end of the third electrode portion 952 and the other end of the fourth electrode portion 954.
  • the connecting portion 956 is connected to the main body portion 958.
  • An external connection portion 960 is connected to the fourth electrode portion 954 side of the main body portion 958.
  • the second main electrode 950 has a fifth electrode portion 958a through which a current in the same direction as the first electrode portion 202 flows. Accordingly, the magnetic field from the reverse current portion 18a decreases the inductance of the first electrode portion 202, but the magnetic field from the fifth electrode portion 958a increases the inductance of the first electrode portion 202. Eventually, the inductance of the first electrode unit 202 is not substantially affected by the outside, so that the inductance of the first current path and the inductance of the second current path can be made uniform.
  • the second main electrode 950 according to the fourteenth embodiment of the present invention is arranged so that the magnetic field generated by the current flowing through the second main electrode 950 increases the inductance of the first electrode unit 202.
  • the important point is that the inductance increase amount of the first electrode portion 202 due to the magnetic field from the second main electrode 950 is made larger than the inductance increase amount of the second electrode portion 204 due to the magnetic field from the second main electrode 950. .
  • the second main electrode 900 is arranged such that the magnetic field generated by the current flowing through the second main electrode 900 reduces the inductance of the second electrode unit 204.
  • the important point is to increase the inductance reduction amount of the second electrode portion 204 due to the magnetic field from the second main electrode 900, rather than the inductance reduction amount of the first electrode portion 202 due to the magnetic field from the second main electrode 900. .
  • the thirteenth and fourteenth embodiments coincide with each other in that the inductance of the first current path and the inductance of the second current path when the influence of the magnetic field from the second main electrode is excluded (first characteristic). .
  • the thirteenth and fourteenth embodiments are identical in that this non-uniformity is eliminated by the magnetic field from the second main electrode (second feature). As long as it has the 1st characteristic and the 2nd characteristic, various deformation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Conversion In General (AREA)

Abstract

This semiconductor device is provided with a first semiconductor chip, a second semiconductor chip, and a main electrode which is electrically connected to the first semiconductor chip and the second semiconductor chip. The main electrode is provided with a first electrode section having one end that is electrically connected to the first semiconductor chip, a second electrode section having one end that is electrically connected to the second semiconductor chip, a connection section that connects the other end of the first electrode section and the other end of the second electrode section, a body section connected to the connection section, and an external connection section connected to a portion of the body section on the first electrode section side. The inductance of a current path from the one end of the first electrode section to the external connection section is larger than the inductance of a current path from the one end of the second electrode section to the external connection section when the effect of a magnetic field from the body section is eliminated.

Description

半導体装置Semiconductor device
 この発明は、例えば、電鉄又は風力発電などに用いられる半導体装置に関する。 The present invention relates to a semiconductor device used for, for example, electric railway or wind power generation.
 特許文献1には、第1絶縁基板104aの上に形成された第1半導体チップと第2絶縁基板104bの上に形成された第2半導体チップが開示されている。第1の主電極(主端子111)は第1半導体チップと第2半導体チップに接続されている。第2の主電極(主端子112)も第1半導体チップと第2半導体チップに接続されている。 Patent Document 1 discloses a first semiconductor chip formed on a first insulating substrate 104a and a second semiconductor chip formed on a second insulating substrate 104b. The first main electrode (main terminal 111) is connected to the first semiconductor chip and the second semiconductor chip. The second main electrode (main terminal 112) is also connected to the first semiconductor chip and the second semiconductor chip.
日本特開平10-093016号公報Japanese Patent Laid-Open No. 10-093016
 第1半導体チップに電気的に接続された第1電極部と、第2半導体チップに電気的に接続された第2電極部とが連結部で接続された主電極を用いることがある。この場合、第1電極部を経由する電流経路のインダクタンスと、第2電極部を経由する電流経路のインダクタンスを一致させることが好ましい。 A main electrode in which a first electrode part electrically connected to the first semiconductor chip and a second electrode part electrically connected to the second semiconductor chip are connected by a connecting part may be used. In this case, it is preferable that the inductance of the current path passing through the first electrode portion and the inductance of the current path passing through the second electrode portion are matched.
 しかしながら、例えば第1電極部を流れる電流により生じる磁界と、第1電極部以外の部分を流れる電流により生じる磁界とが打ち消しあい、第1電極部のインダクタンスが低下することがある。そうすると、第1電極部を経由する電流経路のインダクタンスと、第2電極部を経由する電流経路のインダクタンスを一致させることができない問題があった。 However, for example, the magnetic field generated by the current flowing through the first electrode part and the magnetic field generated by the current flowing through the part other than the first electrode part cancel each other, and the inductance of the first electrode part may decrease. Then, there was a problem that the inductance of the current path passing through the first electrode part and the inductance of the current path passing through the second electrode part could not be matched.
 第1電極部を経由する電流経路のインダクタンスと、第2電極部を経由する電流経路のインダクタンスが一致しないと、第1電極部を経由する電流経路のインピーダンスと第2電極部を経由する電流経路のインピーダンスが不均一となる。これにより、電流を流し始める際及び電流を遮断する際に、第1半導体チップと第2半導体チップの電流値が不均一となり、第1半導体チップと第2半導体チップのいずれかの劣化が早まる問題があった。 If the inductance of the current path passing through the first electrode part and the inductance of the current path passing through the second electrode part do not match, the impedance of the current path passing through the first electrode part and the current path passing through the second electrode part Impedance is not uniform. As a result, when the current starts to flow and when the current is cut off, the current values of the first semiconductor chip and the second semiconductor chip become non-uniform, and the deterioration of either the first semiconductor chip or the second semiconductor chip is accelerated. was there.
 本発明は上述の問題を解決するためになされたものであり、主電極の複数の電流経路のインダクタンスを均一にすることができる半導体装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a semiconductor device that can make inductances of a plurality of current paths of a main electrode uniform.
 本願の発明にかかる半導体装置は、第1半導体チップと、第2半導体チップと、該第1半導体チップと該第2半導体チップに電気的に接続された主電極と、を備える。該主電極は、一端が該第1半導体チップと電気的に接続された第1電極部と、一端が該第2半導体チップと電気的に接続された第2電極部と、該第1電極部の他端と該第2電極部の他端を接続する連結部と、該連結部と接続された本体部と、該本体部の該第1電極部側の部分と接続された外部接続部と、を備え、該本体部からの磁界の影響を排除したときの、該第1電極部の一端から該外部接続部までの電流経路のインダクタンスは、該第2電極部の一端から該外部接続部までの電流経路のインダクタンスより大きいことを特徴とする。 A semiconductor device according to the present invention includes a first semiconductor chip, a second semiconductor chip, and a main electrode electrically connected to the first semiconductor chip and the second semiconductor chip. The main electrode has a first electrode portion whose one end is electrically connected to the first semiconductor chip, a second electrode portion whose one end is electrically connected to the second semiconductor chip, and the first electrode portion. A connecting portion connecting the other end of the second electrode portion and the other end of the second electrode portion, a main body portion connected to the connecting portion, and an external connecting portion connected to a portion of the main body portion on the first electrode portion side. The inductance of the current path from one end of the first electrode portion to the external connection portion when the influence of the magnetic field from the main body portion is eliminated is from the one end of the second electrode portion to the external connection portion. It is characterized by being larger than the inductance of the current path up to.
 本願の発明に係る他の半導体装置は、第1半導体チップと、第2半導体チップと、該第1半導体チップと該第2半導体チップに電気的に接続された主電極と、を備える。該主電極は、一端が該第1半導体チップと電気的に接続された第1電極部と、一端が該第2半導体チップと電気的に接続された第2電極部と、該第1電極部の他端と該第2電極部の他端を接続する連結部と、該連結部と接続された本体部と、該本体部の該第1電極部側の部分と接続された外部接続部と、を備え、該第1電極部から、該本体部のうち該第1電極部の上方において該第1電極部と反対方向の電流が流れる部分である逆電流部までの距離は、該第2電極部から該第2電極部の上方の該本体部までの距離より長いことを特徴とする。 Another semiconductor device according to the present invention includes a first semiconductor chip, a second semiconductor chip, and a main electrode electrically connected to the first semiconductor chip and the second semiconductor chip. The main electrode has a first electrode portion whose one end is electrically connected to the first semiconductor chip, a second electrode portion whose one end is electrically connected to the second semiconductor chip, and the first electrode portion. A connecting portion connecting the other end of the second electrode portion and the other end of the second electrode portion, a main body portion connected to the connecting portion, and an external connecting portion connected to a portion of the main body portion on the first electrode portion side. The distance from the first electrode part to the reverse current part, which is the part of the main body part above which the current flows in the direction opposite to the first electrode part, is the second part. It is longer than the distance from the electrode part to the main body part above the second electrode part.
 本願の発明に係る他の半導体装置は、第1半導体チップと、第2半導体チップと、該第1半導体チップと該第2半導体チップに電気的に接続された第1主電極と、該第1半導体チップと該第2半導体チップに電気的に接続された第2主電極と、を備える。該第1主電極は、一端が該第1半導体チップと電気的に接続された第1電極部と、一端が該第2半導体チップと電気的に接続された第2電極部と、該第1電極部の他端と該第2電極部の他端を接続する連結部と、該連結部と接続された本体部と、該本体部の該第1電極部側の部分と接続された外部接続部と、を備え、該第2主電極からの磁界の影響を排除したときの、該第1電極部の一端から該外部接続部までの電流経路のインダクタンスと、該第2電極部の一端から該外部接続部までの電流経路のインダクタンスは不均一であり、該第2主電極からの磁界によって、該第1電極部の一端から該外部接続部までの電流経路のインダクタンスと、該第2電極部の一端から該外部接続部までの電流経路のインダクタンスを均一にすることを特徴とする。 Another semiconductor device according to the present invention includes a first semiconductor chip, a second semiconductor chip, the first semiconductor chip, a first main electrode electrically connected to the second semiconductor chip, and the first semiconductor chip. A semiconductor chip and a second main electrode electrically connected to the second semiconductor chip. The first main electrode has a first electrode portion whose one end is electrically connected to the first semiconductor chip, a second electrode portion whose one end is electrically connected to the second semiconductor chip, and the first A connecting portion connecting the other end of the electrode portion and the other end of the second electrode portion, a main body portion connected to the connecting portion, and an external connection connected to a portion of the main body portion on the first electrode portion side And an inductance of a current path from one end of the first electrode portion to the external connection portion when the influence of the magnetic field from the second main electrode is eliminated, and from one end of the second electrode portion The inductance of the current path to the external connection is non-uniform, and the inductance of the current path from one end of the first electrode to the external connection by the magnetic field from the second main electrode, and the second electrode The inductance of the current path from one end of the part to the external connection part is made uniform That.
 本発明のその他の特徴は以下に明らかにする。 Other features of the present invention will be clarified below.
 この発明によれば、主電極の複数の電流経路のインダクタンスを均一にすることができる。 According to this invention, the inductance of the plurality of current paths of the main electrode can be made uniform.
本発明の実施の形態1に係る半導体装置が備える主電極の斜視図である。It is a perspective view of the main electrode with which the semiconductor device which concerns on Embodiment 1 of this invention is provided. 主電極と半導体チップとの電気的接続を示す斜視図である。It is a perspective view which shows the electrical connection of a main electrode and a semiconductor chip. 別の主電極を示す斜視図である。It is a perspective view which shows another main electrode. 本発明の実施の形態1に係る半導体装置の外観図である。1 is an external view of a semiconductor device according to a first embodiment of the present invention. 図4の半導体装置の内部の平面図である。FIG. 5 is a plan view of the inside of the semiconductor device of FIG. 4. 図4の半導体装置を矢印方向から見たときの内部側面図である。FIG. 5 is an internal side view of the semiconductor device of FIG. 4 when viewed from the arrow direction. 比較例の主電極の斜視図である。It is a perspective view of the main electrode of a comparative example. IGBT通電時における主電極内の電流の流れを矢印で示した図である。It is the figure which showed the flow of the electric current in the main electrode at the time of IGBT energization with the arrow. ダイオード通電時における主電極内の電流の流れを矢印で示した図である。It is the figure which showed the flow of the electric current in the main electrode at the time of diode energization with the arrow. 主電極の変形例を示す斜視図である。It is a perspective view which shows the modification of a main electrode. 本発明の実施の形態2に係る半導体装置が備える主電極の斜視図である。It is a perspective view of the main electrode with which the semiconductor device which concerns on Embodiment 2 of this invention is provided. 本発明の実施の形態3に係る半導体装置が備える主電極の斜視図である。It is a perspective view of the main electrode with which the semiconductor device which concerns on Embodiment 3 of this invention is provided. 本発明の実施の形態4に係る半導体装置が備える主電極の斜視図である。It is a perspective view of the main electrode with which the semiconductor device which concerns on Embodiment 4 of this invention is provided. 本発明の実施の形態5に係る半導体装置が備える主電極の斜視図である。It is a perspective view of the main electrode with which the semiconductor device which concerns on Embodiment 5 of this invention is provided. 本発明の実施の形態6に係る半導体装置が備える主電極の斜視図である。It is a perspective view of the main electrode with which the semiconductor device which concerns on Embodiment 6 of this invention is provided. 本発明の実施の形態7に係る半導体装置が備える主電極の斜視図である。It is a perspective view of the main electrode with which the semiconductor device which concerns on Embodiment 7 of this invention is provided. 本発明の実施の形態8に係る半導体装置が備える主電極の斜視図である。It is a perspective view of the main electrode with which the semiconductor device which concerns on Embodiment 8 of this invention is provided. 本発明の実施の形態9に係る半導体装置が備える主電極の斜視図である。It is a perspective view of the main electrode with which the semiconductor device which concerns on Embodiment 9 of this invention is provided. 本発明の実施の形態10に係る半導体装置が備える主電極の斜視図である。It is a perspective view of the main electrode with which the semiconductor device which concerns on Embodiment 10 of this invention is provided. 本発明の実施の形態11に係る半導体装置が備える主電極の斜視図である。It is a perspective view of the main electrode with which the semiconductor device which concerns on Embodiment 11 of this invention is provided. 変形例に係る主電極の斜視図である。It is a perspective view of the main electrode which concerns on a modification. 本発明の実施の形態12に係る半導体装置が備える主電極の斜視図である。It is a perspective view of the main electrode with which the semiconductor device which concerns on Embodiment 12 of this invention is provided. 本発明の実施の形態13に係る半導体装置が備える主電極の斜視図である。It is a perspective view of the main electrode with which the semiconductor device which concerns on Embodiment 13 of this invention is provided. 本発明の実施の形態14に係る半導体装置が備える主電極の斜視図である。It is a perspective view of the main electrode with which the semiconductor device which concerns on Embodiment 14 of this invention is provided.
 本発明の実施の形態に係る半導体装置について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。 A semiconductor device according to an embodiment of the present invention will be described with reference to the drawings. The same or corresponding components are denoted by the same reference numerals, and repeated description may be omitted.
実施の形態1.
 図1は、本発明の実施の形態1に係る半導体装置が備える主電極の斜視図である。主電極10は、第1電極部12を備えている。第1電極部12の一端12aから他端12bまでの長さはaである。主電極10は第2電極部14を備えている。第2電極部14の一端14aから他端14bまでの長さはbである。a(第1電極部12の一端12aから他端12bまでの長さ)は、b(第2電極部14の一端14aから他端14bまでの長さ)より長い。
Embodiment 1 FIG.
FIG. 1 is a perspective view of a main electrode provided in the semiconductor device according to the first embodiment of the present invention. The main electrode 10 includes a first electrode portion 12. The length from the one end 12a to the other end 12b of the first electrode portion 12 is a. The main electrode 10 includes a second electrode portion 14. The length from the one end 14a to the other end 14b of the second electrode portion 14 is b. a (length from one end 12a to the other end 12b of the first electrode portion 12) is longer than b (length from one end 14a to the other end 14b of the second electrode portion 14).
 第1電極部12の他端12bと第2電極部14の他端14bは、連結部16によって接続されている。連結部16には本体部18が接続されている。本体部18は連結部16からZ正方向に伸びる部分である。本体部18の一部を逆電流部18aと定義する。逆電流部18aとは、本体部18のうち第1電極部12の上方において第1電極部12と反対方向の電流が流れる部分である。 The other end 12 b of the first electrode portion 12 and the other end 14 b of the second electrode portion 14 are connected by a connecting portion 16. A main body 18 is connected to the connecting portion 16. The main body portion 18 is a portion extending from the connecting portion 16 in the positive Z direction. A part of the main body portion 18 is defined as a reverse current portion 18a. The reverse current portion 18 a is a portion of the main body portion 18 where a current in the direction opposite to the first electrode portion 12 flows above the first electrode portion 12.
 本体部18の上端には外部接続部20が接続されている。外部接続部20は外部と接続される部分である。外部接続部20は、本体部18の第1電極部12側の部分に接続されている。つまり、外部接続部20は連結部16の直上ではなく第1電極部12の直上にあるので、外部接続部20のX座標は連結部16のX座標をマイナス側にシフトした値となる。なお、外部接続部20の位置(X座標)は、規格で定められた標準パッケージ構造によって決まるので変更できない。 The external connection part 20 is connected to the upper end of the main body part 18. The external connection unit 20 is a part connected to the outside. The external connection unit 20 is connected to a portion of the main body unit 18 on the first electrode unit 12 side. That is, since the external connection portion 20 is not directly above the coupling portion 16 but directly above the first electrode portion 12, the X coordinate of the external connection portion 20 is a value obtained by shifting the X coordinate of the coupling portion 16 to the minus side. Note that the position (X coordinate) of the external connection unit 20 cannot be changed because it is determined by the standard package structure defined by the standard.
 図2は、主電極10と半導体チップとの電気的接続を示す斜視図である。図2には第1絶縁基板50と第2絶縁基板52が示されている。第1絶縁基板50には金属パターン60、62、64が形成されている。金属パターン60には3つのダイオード66aの裏面が固着されている。金属パターン64には3つのIGBT66bの裏面が固着されている。3つのダイオード66aと3つのIGBT66bをまとめて第1半導体チップ66と称する。ダイオード66aの表面と金属パターン62はワイヤ68で接続されている。IGBT66bの表面と金属パターン62はワイヤ68で接続されている。 FIG. 2 is a perspective view showing electrical connection between the main electrode 10 and the semiconductor chip. FIG. 2 shows a first insulating substrate 50 and a second insulating substrate 52. Metal patterns 60, 62, and 64 are formed on the first insulating substrate 50. The back surface of the three diodes 66 a is fixed to the metal pattern 60. On the metal pattern 64, the back surfaces of the three IGBTs 66b are fixed. The three diodes 66a and the three IGBTs 66b are collectively referred to as a first semiconductor chip 66. The surface of the diode 66 a and the metal pattern 62 are connected by a wire 68. The surface of the IGBT 66 b and the metal pattern 62 are connected by a wire 68.
 第2絶縁基板52には金属パターン70、72、74が形成されている。金属パターン70には3つのダイオード76aの裏面が固着されている。金属パターン74には3つのIGBT76bの裏面が固着されている。3つのダイオード76aと3つのIGBT76bをまとめて第2半導体チップ76と称する。ダイオード76aの表面と金属パターン72はワイヤ78で接続されている。IGBT76bの表面と金属パターン72はワイヤ78で接続されている。 Metal patterns 70, 72, and 74 are formed on the second insulating substrate 52. The back surface of the three diodes 76 a is fixed to the metal pattern 70. On the metal pattern 74, the back surfaces of the three IGBTs 76b are fixed. The three diodes 76a and the three IGBTs 76b are collectively referred to as a second semiconductor chip 76. The surface of the diode 76 a and the metal pattern 72 are connected by a wire 78. The surface of the IGBT 76 b and the metal pattern 72 are connected by a wire 78.
 第1電極部12の一端12aは金属パターン62に接続されている。これにより、第1電極部12の一端12aは、ダイオード66aの表面とIGBT66bの表面に電気的に接続されている。従って、第1電極部12の一端12aは第1半導体チップ66と電気的に接続されている。 The one end 12 a of the first electrode portion 12 is connected to the metal pattern 62. Thereby, the one end 12a of the 1st electrode part 12 is electrically connected to the surface of the diode 66a, and the surface of IGBT66b. Accordingly, one end 12 a of the first electrode portion 12 is electrically connected to the first semiconductor chip 66.
 第2電極部14の一端14aは金属パターン72に接続されている。これにより、第2電極部14の一端14aは、ダイオード76aの表面とIGBT76bの表面に電気的に接続されている。従って、第2電極部14の一端14aは第2半導体チップ76と電気的に接続されている。主電極10は、第1半導体チップ66と第2半導体チップ76に電気的に接続されたエミッタ電極として機能する。 The one end 14 a of the second electrode portion 14 is connected to the metal pattern 72. Thereby, the one end 14a of the 2nd electrode part 14 is electrically connected to the surface of the diode 76a, and the surface of IGBT76b. Accordingly, one end 14 a of the second electrode portion 14 is electrically connected to the second semiconductor chip 76. The main electrode 10 functions as an emitter electrode that is electrically connected to the first semiconductor chip 66 and the second semiconductor chip 76.
 主電極10に加えてもう1つの主電極(別の主電極)が第1絶縁基板50と第2絶縁基板52に固定される。図3は、別の主電極を示す斜視図である。別の主電極80は金属パターン60、64、70、74に接続されている。別の主電極80はコレクタ電極として機能する。なお、図3では別の主電極80と主電極10を区別するために、別の主電極80に模様をつけた。 In addition to the main electrode 10, another main electrode (another main electrode) is fixed to the first insulating substrate 50 and the second insulating substrate 52. FIG. 3 is a perspective view showing another main electrode. Another main electrode 80 is connected to the metal patterns 60, 64, 70, 74. Another main electrode 80 functions as a collector electrode. In FIG. 3, another main electrode 80 is patterned in order to distinguish the other main electrode 80 from the main electrode 10.
 図4は、本発明の実施の形態1に係る半導体装置の外観図である。この半導体装置は、ベース板100を備えている。ベース板100には、半導体装置を外部の部材にねじ止めするための取り付け穴100aが形成されている。ベース板100の上にはケース102が形成されている。ケース102から主電極10、104、及び別の主電極80、106が外部に露出している。主電極104は主電極10と同じ形状である。別の主電極106は別の主電極80と同じ形状である。ケース102からは補助端子108も外部に露出している。 FIG. 4 is an external view of the semiconductor device according to the first embodiment of the present invention. This semiconductor device includes a base plate 100. The base plate 100 is formed with an attachment hole 100a for screwing the semiconductor device to an external member. A case 102 is formed on the base plate 100. The main electrodes 10 and 104 and the other main electrodes 80 and 106 are exposed to the outside from the case 102. The main electrode 104 has the same shape as the main electrode 10. Another main electrode 106 has the same shape as another main electrode 80. The auxiliary terminal 108 is also exposed to the outside from the case 102.
 図5は、図4の半導体装置の内部の平面図である。IGBTにゲート駆動信号を供給するために、絶縁基板90、金属パターン92、及び抵抗部94が形成されている。図6は、図4の半導体装置を矢印方向から見たときの内部側面図である。主電極10と金属パターン62との接続等にははんだ110を用いる。ケース102内では、第1半導体チップ66と第2半導体チップ等が封止材112で封止されている。封止材112の上に制御基板114が形成されている。 FIG. 5 is a plan view of the inside of the semiconductor device of FIG. In order to supply a gate drive signal to the IGBT, an insulating substrate 90, a metal pattern 92, and a resistance portion 94 are formed. 6 is an internal side view of the semiconductor device of FIG. 4 when viewed from the direction of the arrow. Solder 110 is used to connect the main electrode 10 and the metal pattern 62. In the case 102, the first semiconductor chip 66 and the second semiconductor chip are sealed with a sealing material 112. A control substrate 114 is formed on the sealing material 112.
 ここで、比較例について説明する。図7は、比較例の主電極の斜視図である。比較例の主電極200は、第1電極部202の長さcと第2電極部204の長さdが等しい点で主電極10と相違している。例えばIGBT通電時には、主電極200内の矢印の方向に電流が流れる。 Here, a comparative example will be described. FIG. 7 is a perspective view of a main electrode of a comparative example. The main electrode 200 of the comparative example is different from the main electrode 10 in that the length c of the first electrode portion 202 and the length d of the second electrode portion 204 are equal. For example, when the IGBT is energized, a current flows in the direction of the arrow in the main electrode 200.
 第1電極部202を流れる電流の向きと逆電流部18aを流れる電流の向きは逆方向になる。従って第1電極部202を流れる電流によって生じた磁界と、逆電流部18aを流れる電流によって生じた磁界が打ち消し合うので、第1電極部202のインダクタンスが低下する。 The direction of the current flowing through the first electrode unit 202 is opposite to the direction of the current flowing through the reverse current unit 18a. Therefore, since the magnetic field generated by the current flowing through the first electrode portion 202 and the magnetic field generated by the current flowing through the reverse current portion 18a cancel each other, the inductance of the first electrode portion 202 decreases.
 他方、第2電極部204の近くには第2電極部204を流れる電流と逆方向の電流はないので、第2電極部204を流れる電流によって生じる磁界の打ち消しはない。そのため、第2電極部204のインダクタンスの低下はない。要するに、第1電極部202のインダクタンスは低下するが、第2電極部204のインダクタンスは低下しない。よって、第1電極部202の一端202aから外部接続部20までの電流経路(以後、第1電極部の一端から外部接続部までの電流経路を第1電流経路という)のインダクタンスと、第2電極部204の一端204aから外部接続部20までの電流経路(以後、第2電極部の一端から外部接続部までの電流経路を第2電流経路という)のインダクタンスが異なるので、第1半導体チップと第2半導体チップの均等動作ができない。 On the other hand, since there is no current in the direction opposite to the current flowing through the second electrode portion 204 near the second electrode portion 204, there is no cancellation of the magnetic field caused by the current flowing through the second electrode portion 204. Therefore, the inductance of the second electrode unit 204 is not reduced. In short, the inductance of the first electrode portion 202 is lowered, but the inductance of the second electrode portion 204 is not lowered. Therefore, the inductance of the current path from one end 202a of the first electrode part 202 to the external connection part 20 (hereinafter, the current path from one end of the first electrode part to the external connection part is referred to as the first current path), and the second electrode Since the inductance of the current path from one end 204a of the part 204 to the external connection part 20 (hereinafter, the current path from one end of the second electrode part to the external connection part is referred to as a second current path) is different from that of the first semiconductor chip. 2 The semiconductor chip cannot be operated evenly.
 次いで、本発明の実施の形態1に係る半導体装置の動作について説明する。図8は、IGBT通電時における主電極10内の電流の流れを矢印で示した図である。第1電極部12の一端12aから他端12bまでの長さaは、第2電極部14の一端14aから他端14bまでの長さbより長い。つまり、本体部18からの磁界の影響を排除したときの、第1電極部の一端から外部接続部までの電流経路(第1電流経路)のインダクタンスは、第2電極部の一端から外部接続部までの電流経路(第2電流経路)のインダクタンスより大きくなっている。従って、逆電流部18aを流れる電流により生じた磁界の影響を受けて第1電極部12のインダクタンスが低下することにより、第1電流経路のインダクタンスと第2電流経路のインダクタンスを均一にすることができる。 Next, the operation of the semiconductor device according to the first embodiment of the present invention will be described. FIG. 8 is a diagram showing the flow of current in the main electrode 10 with arrows when the IGBT is energized. The length a from the one end 12a to the other end 12b of the first electrode portion 12 is longer than the length b from the one end 14a to the other end 14b of the second electrode portion 14. That is, the inductance of the current path (first current path) from one end of the first electrode part to the external connection part when the influence of the magnetic field from the main body part 18 is excluded is from the one end of the second electrode part to the external connection part. It is larger than the inductance of the current path up to (second current path). Accordingly, the inductance of the first electrode section 12 is reduced by the influence of the magnetic field generated by the current flowing through the reverse current section 18a, so that the inductance of the first current path and the inductance of the second current path can be made uniform. it can.
 図9は、ダイオード通電時における主電極内の電流の流れを矢印で示した図である。ダイオード通電時においても、IGBT通電時と同様に、第1電流経路のインダクタンスと第2電流経路のインダクタンスを均一にすることができる。 FIG. 9 is a diagram showing the flow of current in the main electrode when the diode is energized by arrows. Even when the diode is energized, the inductance of the first current path and the inductance of the second current path can be made uniform as in the case of the IGBT energization.
 本発明は、主電極の複数の電流経路のインダクタンスを均一にする技術に関する。そのため、主電極としては、エミッタ電極以外に、例えばIGBTのコレクタ電極、MOS-FETのソース・ドレイン主電極、又はダイオード、トランジスタ、若しくはサイリスタ等のパワーモジュールの主電極に採用することができる。 The present invention relates to a technique for making the inductances of a plurality of current paths of a main electrode uniform. For this reason, as the main electrode, in addition to the emitter electrode, for example, an IGBT collector electrode, a MOS-FET source / drain main electrode, or a main electrode of a power module such as a diode, transistor, or thyristor can be employed.
 図10は、主電極の変形例を示す斜視図である。主電極250はコレクタ電極として機能する。第1電極部252の一端252aから他端252bまでの長さは、第2電極部254の一端254aから他端254bまでの長さより長い。第1電極部252の他端252bと第2電極部254の他端254bは連結部256で接続されている。また、本体部258の一部は逆電流部258aとなっている。本体部258の第1電極部252側には外部接続部260が接続されている。 FIG. 10 is a perspective view showing a modification of the main electrode. The main electrode 250 functions as a collector electrode. The length from the one end 252a to the other end 252b of the first electrode portion 252 is longer than the length from the one end 254a to the other end 254b of the second electrode portion 254. The other end 252 b of the first electrode portion 252 and the other end 254 b of the second electrode portion 254 are connected by a connecting portion 256. A part of the main body 258 is a reverse current portion 258a. An external connection portion 260 is connected to the first electrode portion 252 side of the main body portion 258.
 第1電極部252は第2電極部254より長く形成されているので、本体部からの磁界の影響を排除したときの第1電流経路のインダクタンスは、第2電流経路のインダクタンスより大きくなっている。そして、逆電流部を流れる電流によって生じた磁界の影響を受けて第1電極部のインダクタンスは低下するので、第1電流経路のインダクタンスと第2電流経路のインダクタンスを均一にすることができる。 Since the first electrode portion 252 is formed longer than the second electrode portion 254, the inductance of the first current path when the influence of the magnetic field from the main body is eliminated is larger than the inductance of the second current path. . Since the inductance of the first electrode portion is reduced due to the influence of the magnetic field generated by the current flowing through the reverse current portion, the inductance of the first current path and the inductance of the second current path can be made uniform.
 第1半導体チップ66と第2半導体チップ76は例えばSiで形成することができるがこれに限定されない。第1半導体チップ66と第2半導体チップ76をSiCで形成してこれらのスイッチング速度を速くしてもよい。スイッチング速度を早くするとインダクタンス成分によるインピーダンスが増大するので、第1電流経路と第2電流経路のインダクタンスを均一にすることが特に有効である。 The first semiconductor chip 66 and the second semiconductor chip 76 can be formed of, for example, Si, but are not limited thereto. The first semiconductor chip 66 and the second semiconductor chip 76 may be formed of SiC to increase their switching speed. Since the impedance due to the inductance component increases when the switching speed is increased, it is particularly effective to make the inductances of the first current path and the second current path uniform.
 第1半導体チップ66と第2半導体チップ76は、IGBTとダイオードに限定されない。なお、これらの変形は以下の実施の形態に係る半導体装置にも応用できる。 The first semiconductor chip 66 and the second semiconductor chip 76 are not limited to IGBTs and diodes. These modifications can also be applied to semiconductor devices according to the following embodiments.
 以下の実施の形態に係る半導体装置は、主電極の形状だけが実施の形態1と相違する。そのため、以下の実施の形態では主電極の形状についてのみ説明する。 The semiconductor device according to the following embodiment is different from the first embodiment only in the shape of the main electrode. Therefore, in the following embodiments, only the shape of the main electrode will be described.
実施の形態2.
 図11は、本発明の実施の形態2に係る半導体装置が備える主電極300の斜視図である。第1電極部302の一端302aから他端302bまでの長さは、第2電極部204の一端204aから他端204bまでの長さより長い。従って、第1電流経路のインダクタンスと、第2電流経路のインダクタンスを均一にすることができる。
Embodiment 2. FIG.
FIG. 11 is a perspective view of the main electrode 300 provided in the semiconductor device according to the second embodiment of the present invention. The length from one end 302a to the other end 302b of the first electrode portion 302 is longer than the length from one end 204a to the other end 204b of the second electrode portion 204. Therefore, the inductance of the first current path and the inductance of the second current path can be made uniform.
 第1電極部302は図11の形状に限定されない。第1電極部302を波型又は櫛型とすることで、第1電極部302を第2電極部204よりも長くしても良い。 The first electrode portion 302 is not limited to the shape shown in FIG. The first electrode unit 302 may be longer than the second electrode unit 204 by making the first electrode unit 302 wave-shaped or comb-shaped.
実施の形態3.
 図12は、本発明の実施の形態3に係る半導体装置が備える主電極350の斜視図である。第1電極部202の一端202aから他端202bまでの長さeは、第2電極部354の一端354aから他端354bまでの長さfより長い。従って、第1電流経路のインダクタンスと、第2電流経路のインダクタンスを均一にすることができる。
Embodiment 3 FIG.
FIG. 12 is a perspective view of the main electrode 350 provided in the semiconductor device according to the third embodiment of the present invention. The length e from one end 202a of the first electrode portion 202 to the other end 202b is longer than the length f from one end 354a to the other end 354b of the second electrode portion 354. Therefore, the inductance of the first current path and the inductance of the second current path can be made uniform.
 また、連結部356の長さgは第2電極部354の長さfより長い。従って、実施の形態1に係る主電極と比較して、第1電流経路と第2電流経路の幅が広くなるので、第1電流経路と第2電流経路のインダクタンスを下げることができる。 Also, the length g of the connecting portion 356 is longer than the length f of the second electrode portion 354. Therefore, compared with the main electrode according to the first embodiment, the widths of the first current path and the second current path are widened, so that the inductances of the first current path and the second current path can be lowered.
 実施の形態1-3に係る主電極は、第1電極部を第2電極部よりも長くするという点で一致している。これらは、電流経路が長いほどインダクタンスが増加する性質を利用したものである。従って、この性質を利用できる限りにおいて、第1電極部と第2電極部の形状は特に限定されない。 The main electrodes according to Embodiment 1-3 are identical in that the first electrode part is made longer than the second electrode part. These utilize the property that the inductance increases as the current path becomes longer. Therefore, as long as this property can be used, the shapes of the first electrode portion and the second electrode portion are not particularly limited.
実施の形態4.
 図13は、本発明の実施の形態4に係る半導体装置が備える主電極400の斜視図である。第2電極部404は、第1電極部202より厚く形成されている。なお第2電極部404の一端404aから他端404bまでの長さは、第1電極部202の一端202aから他端202bまでの長さと等しい。
Embodiment 4 FIG.
FIG. 13 is a perspective view of the main electrode 400 provided in the semiconductor device according to Embodiment 4 of the present invention. The second electrode portion 404 is formed thicker than the first electrode portion 202. The length from the one end 404a to the other end 404b of the second electrode portion 404 is equal to the length from the one end 202a to the other end 202b of the first electrode portion 202.
 電極部(第1電極部又は第2電極部のことをいう、以後同じ)の厚みが厚いほどその電極部のインダクタンスが減少する。第2電極部404は第1電極部202より厚く形成されているので、本体部からの磁界の影響を排除したときの、第2電流経路のインダクタンスは第1電流経路のインダクタンスより小さい。従って、第1電極部202のインダクタンスが逆電流部18aからの磁界によって低下することにより、第1電流経路のインダクタンスと、第2電流経路のインダクタンスを均一にすることができる。 The inductance of the electrode part decreases as the thickness of the electrode part (referring to the first electrode part or the second electrode part, hereinafter the same) increases. Since the second electrode portion 404 is formed thicker than the first electrode portion 202, the inductance of the second current path when the influence of the magnetic field from the main body is eliminated is smaller than the inductance of the first current path. Accordingly, the inductance of the first current path is reduced by the magnetic field from the reverse current section 18a, so that the inductance of the first current path and the inductance of the second current path can be made uniform.
実施の形態5.
 図14は、本発明の実施の形態5に係る半導体装置が備える主電極450の斜視図である。第2電極部454は、第1電極部202よりも幅が広い。なお第2電極部454の一端454aから他端454bまでの長さは、第1電極部202の一端202aから他端202bまでの長さと等しい。
Embodiment 5 FIG.
FIG. 14 is a perspective view of main electrode 450 provided in the semiconductor device according to the fifth embodiment of the present invention. The second electrode part 454 is wider than the first electrode part 202. The length from the one end 454a to the other end 454b of the second electrode portion 454 is equal to the length from the one end 202a to the other end 202b of the first electrode portion 202.
 電極部の幅が広いほどその電極部のインダクタンスが減少する。第2電極部454は第1電極部202より幅が広く形成されているので、本体部からの磁界の影響を排除したときの、第2電流経路のインダクタンスは第1電流経路のインダクタンスより小さい。従って、第1電極部202のインダクタンスが逆電流部18aからの磁界によって低下することにより、第1電流経路のインダクタンスと、第2電流経路のインダクタンスを均一にすることができる。 The inductance of the electrode part decreases as the width of the electrode part increases. Since the second electrode part 454 is formed wider than the first electrode part 202, the inductance of the second current path when the influence of the magnetic field from the main body part is eliminated is smaller than the inductance of the first current path. Accordingly, the inductance of the first current path is reduced by the magnetic field from the reverse current section 18a, so that the inductance of the first current path and the inductance of the second current path can be made uniform.
実施の形態6.
 図15は、本発明の実施の形態6に係る半導体装置が備える主電極500の斜視図である。第1電極部202に空気より透磁率の高い被覆材料502が取り付けられている。被覆材料502は例えばフェライトである。
Embodiment 6 FIG.
FIG. 15 is a perspective view of the main electrode 500 provided in the semiconductor device according to Embodiment 6 of the present invention. A coating material 502 having a higher magnetic permeability than air is attached to the first electrode portion 202. The covering material 502 is, for example, ferrite.
 第1電極部202に空気より透磁率の高い被覆材料502を取り付けたことで、第1電極部202のインダクタンスが増加する。これにより、本体部18からの磁界の影響を排除したときの第1電流経路のインダクタンスは第2電流経路のインダクタンスより大きくなっている。従って、第1電極部202のインダクタンスが逆電流部18aからの磁界によって低下することにより、第1電流経路のインダクタンスと、第2電流経路のインダクタンスを均一にすることができる。 The inductance of the 1st electrode part 202 increases by attaching the coating material 502 whose permeability is higher than air to the 1st electrode part 202. Thus, the inductance of the first current path when the influence of the magnetic field from the main body 18 is eliminated is larger than the inductance of the second current path. Accordingly, the inductance of the first current path is reduced by the magnetic field from the reverse current section 18a, so that the inductance of the first current path and the inductance of the second current path can be made uniform.
 被覆材料502は、空気より透磁率の高い材料であればフェライトに限定されない。また、第1電極部202に空気よりも透磁率の高い材料を塗布してもよい。 The covering material 502 is not limited to ferrite as long as it has a higher magnetic permeability than air. Further, a material having a higher magnetic permeability than air may be applied to the first electrode portion 202.
実施の形態7.
 図16は、本発明の実施の形態7に係る半導体装置が備える主電極550の斜視図である。第2電極部204の一部と本体部18は補助連結部556で接続されている。補助連結部556は、第2電極部204の中央部と本体部18を接続する。
Embodiment 7 FIG.
FIG. 16 is a perspective view of main electrode 550 provided in the semiconductor device according to Embodiment 7 of the present invention. A part of the second electrode portion 204 and the main body portion 18 are connected by an auxiliary connecting portion 556. The auxiliary connecting portion 556 connects the central portion of the second electrode portion 204 and the main body portion 18.
 第2電極部204と本体部18を結ぶ電流経路の幅は補助連結部556により広げられている。そのため、第2電極部204から本体部18にかけてのインダクタンスが減少する。つまり、本体部18からの磁界の影響を排除したときの、第2電流経路のインダクタンスは第1電流経路のインダクタンスより小さくなっている。従って、第1電極部202のインダクタンスが逆電流部18aからの磁界によって低下することにより、第1電流経路のインダクタンスと、第2電流経路のインダクタンスを均一にすることができる。 The width of the current path connecting the second electrode part 204 and the main body part 18 is widened by the auxiliary connecting part 556. Therefore, the inductance from the second electrode part 204 to the main body part 18 decreases. That is, the inductance of the second current path when the influence of the magnetic field from the main body 18 is eliminated is smaller than the inductance of the first current path. Accordingly, the inductance of the first current path is reduced by the magnetic field from the reverse current section 18a, so that the inductance of the first current path and the inductance of the second current path can be made uniform.
実施の形態8.
 図17は、本発明の実施の形態8に係る半導体装置が備える主電極600の斜視図である。連結部606は、薄い連結部606aと厚い連結部606bを有している。薄い連結部606aは第1電極部202の他端202bに接している。厚い連結部606bは第2電極部204の他端204bに接している。つまり、連結部606は、第1電極部202の他端202bと接続される部分より、第2電極部204の他端204bと接続される部分の方が厚くなっている。
Embodiment 8 FIG.
FIG. 17 is a perspective view of main electrode 600 provided in the semiconductor device according to Embodiment 8 of the present invention. The connecting portion 606 has a thin connecting portion 606a and a thick connecting portion 606b. The thin connecting portion 606 a is in contact with the other end 202 b of the first electrode portion 202. The thick connecting portion 606 b is in contact with the other end 204 b of the second electrode portion 204. In other words, the connecting portion 606 is thicker at the portion connected to the other end 204b of the second electrode portion 204 than at the portion connected to the other end 202b of the first electrode portion 202.
 第1電流経路の電流は主として薄い連結部606aを通る。他方、第2電流経路の電流は主として厚い連結部606bを通る。ここで、連結部の厚みが厚いほどその連結部を含む電流経路のインダクタンスが減少する。従って、本体部18からの磁界の影響を排除したときの、厚い連結部606bを含む第2電流経路のインダクタンスは第1電流経路のインダクタンスより小さい。よって、第1電極部202のインダクタンスが逆電流部18aからの磁界によって低下することにより、第1電流経路のインダクタンスと、第2電流経路のインダクタンスを均一にすることができる。 The current in the first current path mainly passes through the thin connecting portion 606a. On the other hand, the current in the second current path mainly passes through the thick connecting portion 606b. Here, as the thickness of the connecting portion increases, the inductance of the current path including the connecting portion decreases. Therefore, when the influence of the magnetic field from the main body portion 18 is eliminated, the inductance of the second current path including the thick coupling portion 606b is smaller than the inductance of the first current path. Therefore, when the inductance of the first electrode unit 202 is reduced by the magnetic field from the reverse current unit 18a, the inductance of the first current path and the inductance of the second current path can be made uniform.
実施の形態9.
 図18は、本発明の実施の形態9に係る半導体装置が備える主電極650の斜視図である。連結部656は、第1電極部202の他端202bと接続された第1連結部656aと、第2電極部204の他端204bと接続された第2連結部656bを有している。第1連結部656aと第2連結部656bの間にはスリット656cが形成されているため、第1連結部656aと第2連結部656bは接しない。
Embodiment 9 FIG.
FIG. 18 is a perspective view of main electrode 650 provided in the semiconductor device according to Embodiment 9 of the present invention. The connecting portion 656 includes a first connecting portion 656 a connected to the other end 202 b of the first electrode portion 202 and a second connecting portion 656 b connected to the other end 204 b of the second electrode portion 204. Since the slit 656c is formed between the first connecting portion 656a and the second connecting portion 656b, the first connecting portion 656a and the second connecting portion 656b do not contact each other.
 本体部18の第1電極部202側には、スリット656cとつながるスリット18bが形成されている。スリット18bの上方にはスリット18cが形成されている。スリット18b、18cは、第1電極部202の長手方向と平行方向に形成されている。 A slit 18b connected to the slit 656c is formed on the first electrode portion 202 side of the main body portion 18. A slit 18c is formed above the slit 18b. The slits 18 b and 18 c are formed in a direction parallel to the longitudinal direction of the first electrode portion 202.
 連結部656のスリット656cと、本体部18のスリット18b、18cにより、第1電極部202の一端202aから外部接続部20までの電流経路長が、第2電極部204の一端204aから外部接続部20までの電流経路長より長くなっている。そのため、本体部18からの磁界の影響を排除したときの、第1電流経路のインダクタンスは第2電流経路のインダクタンスよりも大きい。従って、第1電極部202のインダクタンスが逆電流部18aからの磁界によって低下することにより、第1電流経路のインダクタンスと、第2電流経路のインダクタンスを均一にすることができる。 The current path length from one end 202a of the first electrode part 202 to the external connection part 20 is reduced from the one end 204a of the second electrode part 204 to the external connection part by the slit 656c of the coupling part 656 and the slits 18b and 18c of the main body part 18. It is longer than the current path length up to 20. Therefore, the inductance of the first current path when the influence of the magnetic field from the main body 18 is eliminated is larger than the inductance of the second current path. Accordingly, the inductance of the first current path is reduced by the magnetic field from the reverse current section 18a, so that the inductance of the first current path and the inductance of the second current path can be made uniform.
 第1電流経路の長さを第2電流経路の長さよりも長くできれば、図18に示すスリット656c、18b、18cとは異なるスリットを形成しても良い。 As long as the length of the first current path can be made longer than the length of the second current path, a slit different from the slits 656c, 18b, and 18c shown in FIG. 18 may be formed.
実施の形態10.
 図19は、本発明の実施の形態10に係る半導体装置が備える主電極700の斜視図である。連結部206の第1電極部202側には開口206aが形成されている。本体部18の第1電極部202側の部分には開口18dが形成されている。開口18dは、本体部18の第1電極部202側、かつ本体部18の下部に形成することが好ましい。
Embodiment 10 FIG.
FIG. 19 is a perspective view of main electrode 700 provided in the semiconductor device according to Embodiment 10 of the present invention. An opening 206 a is formed on the first electrode portion 202 side of the connecting portion 206. An opening 18d is formed in a portion of the main body portion 18 on the first electrode portion 202 side. The opening 18 d is preferably formed on the first electrode portion 202 side of the main body 18 and on the lower portion of the main body 18.
 電流経路の幅が狭いほどその電流経路のインダクタンスが増加する。開口206aと開口18dは、主として第1電流経路の幅を狭めるものである。そのため、本体部18からの磁界の影響を排除したときの、第1電流経路のインダクタンスは第2電流経路のインダクタンスより大きい。従って、第1電極部202のインダクタンスが逆電流部18aからの磁界によって低下することにより、第1電流経路のインダクタンスと、第2電流経路のインダクタンスを均一にすることができる。 ¡The narrower the current path, the greater the inductance of the current path. The opening 206a and the opening 18d mainly narrow the width of the first current path. Therefore, the inductance of the first current path when the influence of the magnetic field from the main body 18 is eliminated is larger than the inductance of the second current path. Accordingly, the inductance of the first current path is reduced by the magnetic field from the reverse current section 18a, so that the inductance of the first current path and the inductance of the second current path can be made uniform.
 連結部と本体部の両方に開口を形成せず、連結部206の第1電極部側、又は本体部の第1電極部側の部分に開口を形成しても良い。 The opening may be formed in the first electrode portion side of the connecting portion 206 or the first electrode portion side of the main body portion without forming the opening in both the connecting portion and the main body portion.
実施の形態11.
 図20は、本発明の実施の形態11に係る半導体装置が備える主電極750の斜視図である。本体部18の第1電極部202側の部分には第1電極部202と平行に伸びるスリット18eが形成されている。スリット18eにより、殆ど電流が流れない非通電部18fが形成されている。非通電部18fを形成することにより、第1電極部202から逆電流部18aまでの距離を、非通電部が形成されない場合の第1電極部202から逆電流部までの距離より長くすることができる。また、第1電極部202から逆電流部18aまでの距離は、第2電極部204から第2電極部204の上方の本体部18までの距離より長い。
Embodiment 11 FIG.
FIG. 20 is a perspective view of main electrode 750 provided in the semiconductor device according to Embodiment 11 of the present invention. A slit 18e extending in parallel with the first electrode portion 202 is formed in a portion of the main body portion 18 on the first electrode portion 202 side. The slit 18e forms a non-energized portion 18f through which almost no current flows. By forming the non-energized part 18f, the distance from the first electrode part 202 to the reverse current part 18a can be made longer than the distance from the first electrode part 202 to the reverse current part when the non-conductive part is not formed. it can. Further, the distance from the first electrode portion 202 to the reverse current portion 18 a is longer than the distance from the second electrode portion 204 to the main body portion 18 above the second electrode portion 204.
 スリット18eにより逆電流部18aと第1電極部202の距離が大きくなるので、逆電流部18aからの磁界による第1電極部202のインダクタンスへの影響を抑制できる。また、スリット18eが形成されたことでスリット18eが形成されない場合よりも第1電流経路と第2電流経路は長くなるので、第1電流経路と第2電流経路のインダクタンスが増加する。従って、逆電流部が第1電極部のインダクタンスに与える影響は更に低下する。よって、第1電流経路と第2電流経路のインダクタンスを均一にできる。 Since the distance between the reverse current portion 18a and the first electrode portion 202 is increased by the slit 18e, the influence of the magnetic field from the reverse current portion 18a on the inductance of the first electrode portion 202 can be suppressed. In addition, since the slit 18e is formed, the first current path and the second current path are longer than when the slit 18e is not formed, so that the inductance of the first current path and the second current path is increased. Accordingly, the influence of the reverse current portion on the inductance of the first electrode portion is further reduced. Therefore, the inductance of the first current path and the second current path can be made uniform.
 図21は、変形例に係る主電極の斜視図である。スリット18gは第1電極部202の直上のみに形成されている。スリット18gにより、殆ど電流が流れない非通電部18hが形成されている。これにより逆電流部18aは第1電極部202と大きく離れ、第1電極部のインダクタンスに殆ど影響を与えない。また、スリット18gは前述のスリット18eより短いので、第1電流経路の長さと第2電流経路の長さを短くできる。 FIG. 21 is a perspective view of a main electrode according to a modification. The slit 18g is formed only directly above the first electrode portion 202. The slit 18g forms a non-energized portion 18h through which almost no current flows. As a result, the reverse current portion 18a is greatly separated from the first electrode portion 202 and hardly affects the inductance of the first electrode portion. Moreover, since the slit 18g is shorter than the slit 18e, the length of the first current path and the length of the second current path can be shortened.
 本体部のスリットは第1電極部202と平行方向に形成しなくてもよい。スリットを本体部の第1電極部側に形成し、スリットの上方に逆電流部が位置するようにすることで逆電流部を第1電極部から離すことができる。この効果が得られる限り、スリットの形状は限定されない。 The slit of the main body portion does not have to be formed in a direction parallel to the first electrode portion 202. The reverse current portion can be separated from the first electrode portion by forming the slit on the first electrode portion side of the main body portion and positioning the reverse current portion above the slit. As long as this effect is obtained, the shape of the slit is not limited.
実施の形態12.
 図22は、本発明の実施の形態12に係る半導体装置が備える主電極850の斜視図である。第1電極部202から逆電流部18aまでの距離y1は、第2電極部204から第2電極部204の上方の本体部18までの距離y2より長い。
Embodiment 12 FIG.
FIG. 22 is a perspective view of main electrode 850 provided in the semiconductor device according to Embodiment 12 of the present invention. A distance y1 from the first electrode portion 202 to the reverse current portion 18a is longer than a distance y2 from the second electrode portion 204 to the main body portion 18 above the second electrode portion 204.
 逆電流部18aは第1電極部202と大きく離れ、第1電極部202のインダクタンスに殆ど影響を与えない。従って、第1電流経路のインダクタンスと第2電流経路のインダクタンスを均一にすることができる。 The reverse current portion 18a is far away from the first electrode portion 202 and hardly affects the inductance of the first electrode portion 202. Therefore, the inductance of the first current path and the inductance of the second current path can be made uniform.
実施の形態13.
 図23は、本発明の実施の形態13に係る半導体装置が備える主電極200、900の斜視図である。主電極200は図7に示す比較例の主電極200である。主電極200は第1主電極と称する。第1主電極はエミッタ電極として機能する。
Embodiment 13 FIG.
FIG. 23 is a perspective view of main electrodes 200 and 900 provided in the semiconductor device according to Embodiment 13 of the present invention. The main electrode 200 is the main electrode 200 of the comparative example shown in FIG. The main electrode 200 is referred to as a first main electrode. The first main electrode functions as an emitter electrode.
 第2主電極900はコレクタ電極として機能する。第1主電極と第2主電極900は、それぞれが第1半導体チップと第2半導体チップに電気的に接続される。第2主電極900は一端902aが第1半導体チップと電気的に接続される第3電極部902を備えている。第2主電極900は一端904aが第2半導体チップと電気的に接続される第4電極部904を備えている。第3電極部902の他端902bと第4電極部904の他端904bは連結部906に接続されている。連結部906は本体部908に接続されている。本体部908の第4電極部904側には外部接続部910が接続されている。 The second main electrode 900 functions as a collector electrode. The first main electrode and the second main electrode 900 are electrically connected to the first semiconductor chip and the second semiconductor chip, respectively. The second main electrode 900 includes a third electrode portion 902 whose one end 902a is electrically connected to the first semiconductor chip. The second main electrode 900 includes a fourth electrode portion 904 whose one end 904a is electrically connected to the second semiconductor chip. The other end 902 b of the third electrode portion 902 and the other end 904 b of the fourth electrode portion 904 are connected to the connecting portion 906. The connecting portion 906 is connected to the main body portion 908. An external connection portion 910 is connected to the main body portion 908 on the fourth electrode portion 904 side.
 第2電極部204を流れる電流の向きは、第4電極部904を流れる電流の向きと反対方向である。第1電極部202を流れる電流の向きは、第3電極部902を流れる電流の向きと反対方向である。第2電極部204から第4電極部904までの距離は、第1電極部202から第3電極部902までの距離より小さい。 The direction of the current flowing through the second electrode unit 204 is opposite to the direction of the current flowing through the fourth electrode unit 904. The direction of current flowing through the first electrode unit 202 is opposite to the direction of current flowing through the third electrode unit 902. The distance from the second electrode part 204 to the fourth electrode part 904 is smaller than the distance from the first electrode part 202 to the third electrode part 902.
 従って、第4電極部904で生じた磁界による第2電極部204のインダクタンス低下量は、第3電極部902で生じた磁界による第1電極部202のインダクタンス低下量より大きい。つまり、本体部18からの磁界の影響を排除したときの第2電流経路のインダクタンスは第1電流経路のインダクタンスより小さい。よって、第1電極部202のインダクタンスが逆電流部18aからの磁界によって低下することにより、第1電流経路のインダクタンスと、第2電流経路のインダクタンスを均一にすることができる。 Therefore, the amount of inductance decrease of the second electrode unit 204 due to the magnetic field generated in the fourth electrode unit 904 is larger than the amount of inductance decrease of the first electrode unit 202 due to the magnetic field generated in the third electrode unit 902. That is, the inductance of the second current path when the influence of the magnetic field from the main body 18 is excluded is smaller than the inductance of the first current path. Therefore, when the inductance of the first electrode unit 202 is reduced by the magnetic field from the reverse current unit 18a, the inductance of the first current path and the inductance of the second current path can be made uniform.
実施の形態14.
 図24は、本発明の実施の形態14に係る半導体装置が備える主電極200、950の斜視図である。主電極200を第1主電極と称する。第1主電極は第1半導体チップと第2半導体チップのエミッタ電極として機能する。第2主電極950は第1半導体チップと第2半導体チップのコレクタ電極として機能する。第2主電極950は、第3電極部952と第4電極部954を有している。連結部956は、第3電極部952の他端と第4電極部954の他端を接続している。連結部956は本体部958に接続されている。本体部958の第4電極部954側に外部接続部960が接続されている。
Embodiment 14 FIG.
FIG. 24 is a perspective view of main electrodes 200 and 950 included in the semiconductor device according to Embodiment 14 of the present invention. The main electrode 200 is referred to as a first main electrode. The first main electrode functions as an emitter electrode of the first semiconductor chip and the second semiconductor chip. The second main electrode 950 functions as a collector electrode for the first semiconductor chip and the second semiconductor chip. The second main electrode 950 has a third electrode portion 952 and a fourth electrode portion 954. The connecting portion 956 connects the other end of the third electrode portion 952 and the other end of the fourth electrode portion 954. The connecting portion 956 is connected to the main body portion 958. An external connection portion 960 is connected to the fourth electrode portion 954 side of the main body portion 958.
 第2主電極950は、第1電極部202と同一方向の電流が流れる第5電極部958aを有している。従って、逆電流部18aからの磁界は第1電極部202のインダクタンスを低下させるが、第5電極部958aからの磁界は第1電極部202のインダクタンスを大きくする。結局、第1電極部202のインダクタンスは実質的に外部からの影響を受けないので、第1電流経路のインダクタンスと第2電流経路のインダクタンスを均一にできる。 The second main electrode 950 has a fifth electrode portion 958a through which a current in the same direction as the first electrode portion 202 flows. Accordingly, the magnetic field from the reverse current portion 18a decreases the inductance of the first electrode portion 202, but the magnetic field from the fifth electrode portion 958a increases the inductance of the first electrode portion 202. Eventually, the inductance of the first electrode unit 202 is not substantially affected by the outside, so that the inductance of the first current path and the inductance of the second current path can be made uniform.
 本発明の実施の形態14に係る第2主電極950は、第2主電極950を流れる電流によって生じる磁界が第1電極部202のインダクタンスを増加させるように配置される。重要な点は、第2主電極950からの磁界による第2電極部204のインダクタンス増加量よりも、第2主電極950からの磁界による第1電極部202のインダクタンス増加量を大きくすることである。 The second main electrode 950 according to the fourteenth embodiment of the present invention is arranged so that the magnetic field generated by the current flowing through the second main electrode 950 increases the inductance of the first electrode unit 202. The important point is that the inductance increase amount of the first electrode portion 202 due to the magnetic field from the second main electrode 950 is made larger than the inductance increase amount of the second electrode portion 204 due to the magnetic field from the second main electrode 950. .
 前述の実施の形態13に係る第2主電極900は、第2主電極900を流れる電流によって生じる磁界が第2電極部204のインダクタンスを低下させるように配置される。重要な点は、第2主電極900からの磁界による第1電極部202のインダクタンス低下量よりも、第2主電極900からの磁界による第2電極部204のインダクタンス低下量を大きくすることである。 The second main electrode 900 according to the above-described thirteenth embodiment is arranged such that the magnetic field generated by the current flowing through the second main electrode 900 reduces the inductance of the second electrode unit 204. The important point is to increase the inductance reduction amount of the second electrode portion 204 due to the magnetic field from the second main electrode 900, rather than the inductance reduction amount of the first electrode portion 202 due to the magnetic field from the second main electrode 900. .
 実施の形態13、14は、第2主電極からの磁界の影響を排除したときの第1電流経路のインダクタンスと第2電流経路のインダクタンスが不均一である点(第1の特徴)で一致する。また、実施の形態13、14は、この不均一を第2主電極からの磁界によって解消する点(第2の特徴)で一致する。第1の特徴と第2の特徴を有する限り、第1主電極と第2主電極の形状及び配置は様々な変形が可能である。 The thirteenth and fourteenth embodiments coincide with each other in that the inductance of the first current path and the inductance of the second current path when the influence of the magnetic field from the second main electrode is excluded (first characteristic). . The thirteenth and fourteenth embodiments are identical in that this non-uniformity is eliminated by the magnetic field from the second main electrode (second feature). As long as it has the 1st characteristic and the 2nd characteristic, various deformation | transformation is possible for the shape and arrangement | positioning of a 1st main electrode and a 2nd main electrode.
 なお、上記の各実施の形態に係る半導体装置の特徴を適宜に組み合わせて、本発明の効果を高めても良い。 Note that the advantages of the present invention may be enhanced by appropriately combining the features of the semiconductor devices according to the above embodiments.
 10 主電極、 12 第1電極部、 12a 一端、 12b 他端、 14 第2電極部、 14a 一端、 14b 他端、 16 連結部、 18 本体部、 18a 逆電流部、 18b,18c,18e,18g スリット、 18d 開口、 18f,18h 非通電部、 20 外部接続部、 50 第1絶縁基板、 52 第2絶縁基板、 60,62,64,70,72,74,92 金属パターン、 66a,76a ダイオード、 66b,76b IGBT、 66 第1半導体チップ、 76 第2半導体チップ、 80 別の主電極、 90 絶縁基板、 94 抵抗部、 100 ベース板、 102 ケース、 104 主電極、 106 別の主電極、 108 補助端子、 112 封止材、 114 制御基板、 200,250,300,350,400,450,500,550,600,650、700,750,800,850 主電極、 202,252,302 第1電極部、 204,254,354,404,454 第2電極部、 206 連結部、 206a 開口、 502 被覆材料、 556 補助連結部、 656 連結部、 600a 薄い連結部、 600b 厚い連結部、 656a 第1連結部、 656b 第2連結部、 900,950 第2主電極、 902,952 第3電極部、 904,954 第4電極部、 958a 第5電極部 10 main electrode, 12 first electrode part, 12a one end, 12b other end, 14 second electrode part, 14a one end, 14b other end, 16 connecting part, 18 body part, 18a reverse current part, 18b, 18c, 18e, 18g Slit, 18d opening, 18f, 18h non-energized part, 20 external connection part, 50 first insulating substrate, 52 second insulating substrate, 60, 62, 64, 70, 72, 74, 92 metal pattern, 66a, 76a diode, 66b, 76b IGBT, 66 first semiconductor chip, 76 second semiconductor chip, 80 different main electrode, 90 insulating substrate, 94 resistor, 100 base plate, 102 case, 104 main electrode, 106 different main electrode, 108 auxiliary Terminal, 112 sealing material, 114 control board, 200,250,300,350,400,450,500,550,600,650, 700,750,800,850 Main electrode, 202,252,302 First electrode part, 204,254,354,404,454 No. 2-electrode part, 206 connecting part, 206a opening, 502 coating material, 556 auxiliary connecting part, 656 connecting part, 600a thin connecting part, 600b thick connecting part, 656a first connecting part, 656b second connecting part, 900,950th 2 main electrodes, 902,952 third electrode part, 904,954 fourth electrode part, 958a fifth electrode part

Claims (13)

  1.  第1半導体チップと、
     第2半導体チップと、
     前記第1半導体チップと前記第2半導体チップに電気的に接続された主電極と、を備え、
     前記主電極は、
     一端が前記第1半導体チップと電気的に接続された第1電極部と、
     一端が前記第2半導体チップと電気的に接続された第2電極部と、
     前記第1電極部の他端と前記第2電極部の他端を接続する連結部と、
     前記連結部と接続された本体部と、
     前記本体部の前記第1電極部側の部分と接続された外部接続部と、を備え、
     前記本体部からの磁界の影響を排除したときの、前記第1電極部の一端から前記外部接続部までの電流経路のインダクタンスは、前記第2電極部の一端から前記外部接続部までの電流経路のインダクタンスより大きいことを特徴とする半導体装置。
    A first semiconductor chip;
    A second semiconductor chip;
    A main electrode electrically connected to the first semiconductor chip and the second semiconductor chip,
    The main electrode is
    A first electrode part having one end electrically connected to the first semiconductor chip;
    A second electrode part having one end electrically connected to the second semiconductor chip;
    A connecting portion connecting the other end of the first electrode portion and the other end of the second electrode portion;
    A main body connected to the connecting portion;
    An external connection portion connected to a portion of the main body portion on the first electrode portion side,
    The inductance of the current path from one end of the first electrode part to the external connection part when the influence of the magnetic field from the main body part is eliminated is the current path from one end of the second electrode part to the external connection part A semiconductor device characterized by being larger than the inductance.
  2.  前記第1電極部の一端から他端までの長さは、前記第2電極部の一端から他端までの長さより長いことを特徴とする請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein a length from one end to the other end of the first electrode portion is longer than a length from one end to the other end of the second electrode portion.
  3.  前記連結部の長さが前記第2電極部の長さより長いことを特徴とする請求項2に記載の半導体装置。 3. The semiconductor device according to claim 2, wherein a length of the connecting portion is longer than a length of the second electrode portion.
  4.  前記第2電極部は、前記第1電極部より厚く形成されたことを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the second electrode portion is formed thicker than the first electrode portion.
  5.  前記第2電極部は、前記第1電極部よりも幅が広いことを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the second electrode portion is wider than the first electrode portion.
  6.  前記第1電極部に塗布又は取り付けられた、空気より透磁率の高い被覆材料を備えたことを特徴とする請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, further comprising a coating material applied or attached to the first electrode portion and having a higher magnetic permeability than air.
  7.  前記第2電極部の一部と前記本体部を接続する補助連結部を備えたことを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, further comprising an auxiliary connecting portion that connects a part of the second electrode portion and the main body portion.
  8.  前記連結部は、前記第1電極部の他端と接続される部分より、前記第2電極部の他端と接続される部分の方が厚く形成されたことを特徴とする請求項1に記載の半導体装置。 2. The connection portion according to claim 1, wherein a portion connected to the other end of the second electrode portion is formed thicker than a portion connected to the other end of the first electrode portion. Semiconductor device.
  9.  前記連結部と前記本体部は、前記第1電極部の一端から前記外部接続部までの電流経路長が、前記第2電極部の一端から前記外部接続部までの電流経路長より長くなるように形成されたスリットを有することを特徴とする請求項1に記載の半導体装置。 The connection part and the main body part have a current path length from one end of the first electrode part to the external connection part longer than a current path length from one end of the second electrode part to the external connection part. The semiconductor device according to claim 1, further comprising a formed slit.
  10.  前記連結部の前記第1電極部側、又は前記本体部の前記第1電極部側の部分には開口が形成されたことを特徴とする請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein an opening is formed in a portion of the connecting portion on the first electrode portion side or a portion of the main body portion on the first electrode portion side.
  11.  第1半導体チップと、
     第2半導体チップと、
     前記第1半導体チップと前記第2半導体チップに電気的に接続された主電極と、を備え、
     前記主電極は、
     一端が前記第1半導体チップと電気的に接続された第1電極部と、
     一端が前記第2半導体チップと電気的に接続された第2電極部と、
     前記第1電極部の他端と前記第2電極部の他端を接続する連結部と、
     前記連結部と接続された本体部と、
     前記本体部の前記第1電極部側の部分と接続された外部接続部と、を備え、
     前記第1電極部から、前記本体部のうち前記第1電極部の上方において前記第1電極部と反対方向の電流が流れる部分である逆電流部までの距離は、前記第2電極部から前記第2電極部の上方の前記本体部までの距離より長いことを特徴とする半導体装置。
    A first semiconductor chip;
    A second semiconductor chip;
    A main electrode electrically connected to the first semiconductor chip and the second semiconductor chip,
    The main electrode is
    A first electrode part having one end electrically connected to the first semiconductor chip;
    A second electrode part having one end electrically connected to the second semiconductor chip;
    A connecting portion connecting the other end of the first electrode portion and the other end of the second electrode portion;
    A main body connected to the connecting portion;
    An external connection portion connected to a portion of the main body portion on the first electrode portion side,
    The distance from the first electrode part to the reverse current part, which is the part of the main body part above which the current in the direction opposite to the first electrode part flows, is above the first electrode part. A semiconductor device characterized by being longer than a distance to the main body above the second electrode part.
  12.  前記本体部の前記第1電極部側にはスリットが形成され、
     前記スリットの上方に前記逆電流部が位置することを特徴とする請求項11に記載の半導体装置。
    A slit is formed on the first electrode part side of the main body part,
    The semiconductor device according to claim 11, wherein the reverse current portion is located above the slit.
  13.  第1半導体チップと、
     第2半導体チップと、
     前記第1半導体チップと前記第2半導体チップに電気的に接続された第1主電極と、
     前記第1半導体チップと前記第2半導体チップに電気的に接続された第2主電極と、を備え、
     前記第1主電極は、
     一端が前記第1半導体チップと電気的に接続された第1電極部と、
     一端が前記第2半導体チップと電気的に接続された第2電極部と、
     前記第1電極部の他端と前記第2電極部の他端を接続する連結部と、
     前記連結部と接続された本体部と、
     前記本体部の前記第1電極部側の部分と接続された外部接続部と、を備え、
     前記第2主電極からの磁界の影響を排除したときの、前記第1電極部の一端から前記外部接続部までの電流経路のインダクタンスと、前記第2電極部の一端から前記外部接続部までの電流経路のインダクタンスは不均一であり、
     前記第2主電極からの磁界によって、前記第1電極部の一端から前記外部接続部までの電流経路のインダクタンスと、前記第2電極部の一端から前記外部接続部までの電流経路のインダクタンスを均一にすることを特徴とする半導体装置。
    A first semiconductor chip;
    A second semiconductor chip;
    A first main electrode electrically connected to the first semiconductor chip and the second semiconductor chip;
    A second main electrode electrically connected to the first semiconductor chip and the second semiconductor chip;
    The first main electrode is
    A first electrode part having one end electrically connected to the first semiconductor chip;
    A second electrode part having one end electrically connected to the second semiconductor chip;
    A connecting portion connecting the other end of the first electrode portion and the other end of the second electrode portion;
    A main body connected to the connecting portion;
    An external connection portion connected to a portion of the main body portion on the first electrode portion side,
    When the influence of the magnetic field from the second main electrode is eliminated, the inductance of the current path from one end of the first electrode part to the external connection part, and from one end of the second electrode part to the external connection part The current path inductance is uneven,
    Due to the magnetic field from the second main electrode, the inductance of the current path from one end of the first electrode part to the external connection part and the inductance of the current path from one end of the second electrode part to the external connection part are made uniform. A semiconductor device characterized by the above.
PCT/JP2013/065064 2013-05-30 2013-05-30 Semiconductor device WO2014192118A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/065064 WO2014192118A1 (en) 2013-05-30 2013-05-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/065064 WO2014192118A1 (en) 2013-05-30 2013-05-30 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2014192118A1 true WO2014192118A1 (en) 2014-12-04

Family

ID=51988190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065064 WO2014192118A1 (en) 2013-05-30 2013-05-30 Semiconductor device

Country Status (1)

Country Link
WO (1) WO2014192118A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207705A (en) * 2015-04-16 2016-12-08 三菱電機株式会社 Semiconductor device
US11373988B2 (en) 2018-06-01 2022-06-28 Fuji Electric Co., Ltd. Semiconductor device
US11521933B2 (en) 2018-04-18 2022-12-06 Fuji Electric Co., Ltd. Current flow between a plurality of semiconductor chips
US11621647B2 (en) 2019-10-11 2023-04-04 Fuji Electric Co., Ltd. Semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249735A (en) * 1994-03-08 1995-09-26 Hitachi Ltd Parallel connection of semiconductor element
JP2001144250A (en) * 1999-11-12 2001-05-25 Mitsubishi Electric Corp Power module
JP2002353407A (en) * 2001-05-30 2002-12-06 Fuji Electric Co Ltd Conductors for connecting in parallel semiconductor elements
JP2009105454A (en) * 2009-02-10 2009-05-14 Mitsubishi Electric Corp Power semiconductor module
JP2013141371A (en) * 2012-01-06 2013-07-18 Fuji Electric Co Ltd Semiconductor power conversion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249735A (en) * 1994-03-08 1995-09-26 Hitachi Ltd Parallel connection of semiconductor element
JP2001144250A (en) * 1999-11-12 2001-05-25 Mitsubishi Electric Corp Power module
JP2002353407A (en) * 2001-05-30 2002-12-06 Fuji Electric Co Ltd Conductors for connecting in parallel semiconductor elements
JP2009105454A (en) * 2009-02-10 2009-05-14 Mitsubishi Electric Corp Power semiconductor module
JP2013141371A (en) * 2012-01-06 2013-07-18 Fuji Electric Co Ltd Semiconductor power conversion device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207705A (en) * 2015-04-16 2016-12-08 三菱電機株式会社 Semiconductor device
US9991180B2 (en) 2015-04-16 2018-06-05 Mitsubishi Electric Corporation Semiconductor device for reducing self-inductance
US11521933B2 (en) 2018-04-18 2022-12-06 Fuji Electric Co., Ltd. Current flow between a plurality of semiconductor chips
US11373988B2 (en) 2018-06-01 2022-06-28 Fuji Electric Co., Ltd. Semiconductor device
US11621647B2 (en) 2019-10-11 2023-04-04 Fuji Electric Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
JP6065771B2 (en) Semiconductor device
WO2014192118A1 (en) Semiconductor device
JP6405383B2 (en) Power transistor module
JP6271765B1 (en) Semiconductor module
WO2017163612A1 (en) Power semiconductor module
WO2018056213A1 (en) Power semiconductor module and power semiconductor device
JP7137558B2 (en) semiconductor equipment
JP5125269B2 (en) Power semiconductor module
JP2017162866A (en) Semiconductor device
JP2014187145A (en) Semiconductor module and method of manufacturing the same
JP6833101B2 (en) Semiconductor device
JP2023021365A (en) Semiconductor device and power conversion device
TWI693682B (en) Electronic device package structure
JP6394459B2 (en) Semiconductor device
JP2015097237A (en) Semiconductor device
JP6906583B2 (en) Semiconductor power module
CN204103743U (en) Intelligent power module
CN107925404A (en) Power device
NL2021292B1 (en) Electronic module
JP2017028058A (en) Electronic circuit device
JP5533923B2 (en) Semiconductor device
US20240014104A1 (en) Semiconductor Package or a Printed Circuit Board, Both Modified to One or More of Reduce, Inverse or Utilize Magnetic Coupling Caused by the Load Current of a Semiconductor Transistor
JP2022049634A (en) Semiconductor element
WO2020235429A1 (en) Bi-directional switch module and bi-directional switch
US20240312922A1 (en) Semiconductor module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP