WO2014192089A1 - Device for producing organic hydride - Google Patents
Device for producing organic hydride Download PDFInfo
- Publication number
- WO2014192089A1 WO2014192089A1 PCT/JP2013/064833 JP2013064833W WO2014192089A1 WO 2014192089 A1 WO2014192089 A1 WO 2014192089A1 JP 2013064833 W JP2013064833 W JP 2013064833W WO 2014192089 A1 WO2014192089 A1 WO 2014192089A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- catalyst layer
- hydride
- organic hydride
- hydrogenation reaction
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/25—Reduction
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
Definitions
- the present invention relates to an organic hydride production apparatus for electrochemically producing organic hydride.
- Hydrogen fuel has a low environmental impact because it is the only substance that is discharged when fuel is consumed and does not emit carbon dioxide.
- hydrogen is a gas at normal temperature and pressure, transportation, storage, and supply systems are major issues.
- organic hydride systems using hydrocarbons such as cyclohexane, methylcyclohexane, and decalin have attracted attention as hydrogen storage methods that are excellent in safety, transportability, and storage capacity. Since these hydrocarbons are liquid at room temperature, they are excellent in transportability.
- toluene and methylcyclohexane are cyclic hydrocarbons having the same carbon number, but toluene is an unsaturated hydrocarbon in which the bonds between hydrocarbons are double bonds, whereas methylcyclohexane has double bonds. It is a saturated hydrocarbon that does not have.
- Methylcyclohexane is obtained by hydrogenation reaction of toluene, and toluene is obtained by dehydrogenation reaction of methylcyclohexane. That is, hydrogen can be stored and supplied by utilizing the hydrogenation reaction and dehydrogenation reaction of these hydrocarbons.
- Patent Document 1 discloses a technique in which hydrogen is first produced and the hydrogen and toluene are reacted on a catalyst. That is, the process disclosed in Patent Document 1 is a two-stage process in which hydrogen is generated in a water electrolysis apparatus and hydrogen and toluene are reacted in a hydrogen addition reaction apparatus to generate organic hydride.
- Patent Documents 2 and 3 disclose techniques for producing an organic hydride in a single stage using a single apparatus. These are for electrochemically producing organic hydrides.
- a metal catalyst is disposed on both sides of a hydrogen ion permeable electrolyte membrane that selectively transmits hydrogen ions, water or water vapor is supplied to one side, and a hydride is supplied to the other side.
- Organic hydrides are produced by causing hydrogen addition reaction between hydrogen ions generated by electrolysis of water or water vapor on the anode side and hydrides on the cathode side.
- the reaction formulas of the anode and cathode when toluene is used as the hydride are as follows. Anode ... H 2 O ⁇ 2H + + 1 / 2O 2 + 2e - (1) Cathode... C 7 H 8 + 6H + + 6e ⁇ ⁇ C 7 H 14 (2)
- Patent Documents 2 and 3 have difficulty in obtaining high energy efficiency.
- One reason is that not only the hydrogen addition reaction of toluene shown in (2) but also the hydrogen generation reaction shown in (3) below occurs as an electrode reaction at the cathode.
- the present invention provides a chemical hydrogenation reaction in addition to a catalyst that causes an electrochemical hydrogenation reaction as a catalyst for a hydride in an apparatus for electrochemically producing an organic hydride.
- An organic hydride manufacturing apparatus in which a catalyst is disposed is provided.
- a hydrogen gas generated as a secondary can be subjected to a chemical hydrogenation reaction, and an organic hydride manufacturing apparatus with high energy efficiency is provided. Can do.
- the present invention has a configuration in which hydrogen gas generated as a secondary reaction is chemically reacted with an unsaturated hydrocarbon hydride (one to be hydrogenated) such as toluene to cause a hydrogenation reaction. Thereby, there exists an effect which prevents the fall of energy efficiency.
- the present invention causes the electrochemical hydrogenation reaction shown in (2) above as a catalyst for causing a hydrogenation reaction on a hydride in an apparatus for electrochemically producing an organic hydride.
- a catalyst for causing a chemical hydrogenation reaction as shown in (4) is arranged.
- C 7 H 8 is an example, and any substance that causes a hydrogenation reaction may be used. Unsaturated hydrocarbons can be considered as ones that cause hydrogenation reactions.
- the catalyst that causes a chemical hydrogenation reaction to the hydride it may be arranged in the cathode catalyst layer that is an electrode.
- FIG. 7 shows the organic hydride system of the present invention.
- the structure and principle of the organic hydride manufacturing apparatus 31 are described in detail in FIG. 1 and FIG.
- the control device 34 controls each device to which the arrow is directed. Note that the control device 34 may be a plurality of control devices, or may be provided individually in each device to be controlled.
- the control device 34 controls the water providing device 35 and the hydride providing device 33 so as to provide the organic hydride manufacturing device 31 with water and hydride.
- oxygen and water are discharged to an oxygen and water recovery apparatus.
- the organic hydride manufacturing apparatus 31 discharges the organic hydride and exhaust gas (such as hydride) to the organic hydride recovery apparatus via the pipe 37.
- the heater 38 is a heater for heating the pipe 37.
- a catalyst that causes a chemical hydrogenation reaction is disposed in the pipe 37, and the chemical hydrogenation reaction is more likely to occur at a higher temperature (about 100 ° C. or higher). Therefore, it is good also as a structure provided with the heater 38.
- FIG. 1 shows an electrode portion of an organic hydride manufacturing apparatus 31 of the present embodiment.
- a plan view of the cathode catalyst layer 12 on the front and back of the solid polymer electrolyte membrane 11, MEA to the anode catalyst layer 13 is formed a (M embrane E lectrode A ssembly) from the cathode side in FIG. 1, DE portion in plan view A cross-sectional view and an enlarged view F are shown.
- the cathode and the anode are formed as dense catalyst layers above and below the solid polymer electrolyte membrane 11.
- a catalyst metal 14 is supported on carbon 15 which is a catalyst carrier, as shown in the enlarged view on the right.
- the catalyst metal 14 is a catalyst that causes an electrochemical hydrogenation reaction represented by the formula (2), and forms a three-phase interface where the solid polymer electrolyte 18 and a hydride that is a reactant contact.
- the catalyst metal 16 is also a catalyst that causes an electrochemical hydrogenation reaction, but is a catalyst that is not supplied with a hydride because it is deep in the catalyst layer.
- the present invention is characterized in that, in addition to the catalyst metal 14 causing an electrochemical hydrogenation reaction, a catalyst 17 causing a chemical hydrogenation reaction is also dispersed in the cathode catalyst layer.
- a catalyst that causes a chemical hydrogenation reaction in the catalyst layer that is, in the MEA, is described in Example 3.
- the hydrogen gas generated here chemically reacts with toluene in the catalyst 17 causing a chemical hydrogenation reaction as follows.
- the catalyst 17 that causes a chemical hydrogenation reaction may be a catalyst that causes not only a reaction between hydrogen and a hydride but also a chemical reaction that increases the yield of organic hydride.
- a chemical reaction may be considered in which a substance that causes a decrease in yield and a hydride undergo a chemical reaction to generate an organic hydride.
- the carbons 15 are bonded together by a solid polymer electrolyte 18.
- the catalyst metal 14 has a network structure connected to each other via carbon 15 and forms a path for electrons necessary for the reaction (2).
- the solid polymer electrolyte 18 in the catalyst layer also has a connected network structure, and forms a passage for protons necessary for the reaction (2).
- a three-phase interface is also formed on the catalyst metal 14 that is not in direct contact with the solid polymer electrolyte membrane 11. This metal catalyst can contribute to the electrode reaction.
- the catalyst 14 for causing an electrochemical hydrogenation reaction and the catalyst 17 for causing a chemical hydrogenation reaction are in layers, and the catalyst for causing an electrochemical hydrogenation reaction.
- a catalyst layer that causes a chemical hydrogenation reaction may be formed on the surface of the layer to form a two-layer structure. Even in this case, the catalyst 14 that causes an electrochemical hydrogenation reaction must form a three-phase interface, and therefore is assumed to be in contact with the carbon 15 and the solid polymer electrolyte 18. Since the layer of the chemical hydrogenation reaction catalyst 17 has a large fine hole diameter, the hydride can pass through the chemical hydrogenation reaction catalyst 17 and reach the catalyst 14 causing the electrochemical hydrogenation reaction.
- the size of the small hole diameter can be changed by devising the voltage when applying the slurry as will be described later.
- the catalyst that causes a chemical hydrogenation reaction does not need to form a three-phase interface like the electrochemical hydrogenation reaction catalyst 14, but can be in contact with hydrogen generated by a secondary reaction and a non-hydride. Good.
- a method for producing the catalyst layer for example, there is a method of spraying (coating) a slurry obtained by mixing a catalyst and a solvent onto an electrolyte membrane using a spray coater.
- a method of spraying (coating) a slurry obtained by mixing a catalyst and a solvent onto an electrolyte membrane using a spray coater For example, in the case of two layers, first apply a catalyst slurry that causes an electrochemical hydrogenation reaction to form a catalyst layer, and then apply a catalyst slurry that causes a chemical hydrogenation reaction thereon. And two layers. The solvent is removed by drying after coating.
- FIG. 2 shows an example of the organic hydride production apparatus of the present invention.
- the organic hydride production apparatus of this embodiment is a membrane electrode assembly (MEA: M) in which an anode catalyst layer 13 is joined to one surface of a solid polymer electrolyte membrane 11 and a cathode catalyst layer 12 is joined to the other surface.
- MEA membrane electrode assembly
- the embrane E lectrode a ssembly the gas diffusion layer 25 is constituted by sandwiching separators 21 the gas flow path is formed.
- a gasket 26 for gas sealing is inserted between the pair of separators 21.
- the gas diffusion layer 25 uniformly supplies the reactant (gas or liquid) supplied to the flow path of the separator 21 within the surface of the catalyst layer, and further generates a product or exhaust (gas or liquid) generated in the catalyst layer. ) Is absorbed and discharged.
- a substrate having air permeability such as carbon paper or carbon cloth is used.
- the present embodiment may have a configuration in which a catalyst 27 that causes a chemical hydrogenation reaction is disposed in the gas diffusion layer. A detailed example in which a catalyst 27 that causes a chemical hydrogenation reaction is disposed in the gas diffusion layer is described in Example 2.
- a groove serving as a reaction gas or liquid channel is formed on the surface of the separator 21 facing the anode catalyst layer 13 and the cathode catalyst layer 12.
- Water or water vapor is supplied to the flow channel of the separator 21 on the anode side. Water or water vapor flowing through the flow channel is supplied to the anode catalyst layer via the gas diffusion layer 25.
- the cathode-side separator 21 may be provided with a catalyst 27 that causes a chemical hydrogenation reaction.
- Example 4 A detailed example in which the hydride is disposed in the cathode-side separator 21 will be described in Example 4. The hydride flowing through the flow channel is supplied to the cathode catalyst via the gas diffusion layer 25.
- the organic hydride manufacturing apparatus 31 is applied with a voltage from an external power source.
- a voltage can be applied to the separator 21.
- the separator is a conductive material, and wiring is provided from the separator, and an external power source is connected thereto.
- the separator is in contact with the catalyst layer, which is an electrode, through a gas diffusion layer (also conductive material), allowing electrons to pass through.
- the electrons transmitted from the separator are transmitted to the carbon carrier.
- the carbon carrier may not be carbon as long as it is a conductor that allows electrons to pass in addition to carbon.
- the organic hydride production apparatus 31 is also connected to a pipe 28 connected to an external organic hydride recovery apparatus (FIG. 7, 32).
- a catalyst 27 that causes a chemical hydrogenation reaction may be disposed in the pipe 28.
- the pipe 28 is not included in the organic hydride manufacturing apparatus, and may be configured outside. Further, as described above, the heater 38 may be provided in the pipe as shown in FIG.
- the catalyst 27 that causes the chemical hydrogenation reaction may not be disposed in the MEA or the like, and the catalyst 27 that causes the chemical hydrogenation reaction may be disposed only in the pipe 28.
- a catalyst that causes a chemical hydrogenation reaction is disposed in a flow path that discharges a product generated in the cathode catalyst layer. What is necessary is just to have, and it is not limited to a gas diffusion layer, a separator, and piping. Further, a catalyst that causes a chemical hydrogenation reaction may not be disposed in the cathode catalyst layer, but may be disposed only in the flow path.
- the heater 29 warms the organic hydride manufacturing apparatus, and may be provided inside or outside the organic hydride manufacturing apparatus. The higher the temperature, the easier the electrochemical reaction and chemical reaction proceed, so the MEA, gas diffusion layer, and separator are heated by the heater 29. In addition, all may be heated and the structure which heats any one of the above-mentioned may be sufficient.
- the generated hydrogen gas is treated as exhaust gas, so that the energy efficiency is low. Therefore, in the present invention, the following reaction is caused by a catalyst that causes a chemical hydrogenation reaction.
- a liquid hydride may be supplied as it is, or a vapor hydride using He gas, N 2 gas or the like as a carrier may be supplied.
- the separator 21 has conductivity, and the material is preferably a dense graphite plate, a carbon plate formed by molding a carbon material such as graphite or carbon black with a resin, or a metal material having excellent corrosion resistance such as stainless steel or titanium. It is also desirable to plate the surface of the separator 21 with a noble metal, or to apply a surface treatment by applying a conductive paint having excellent corrosion resistance and heat resistance.
- the gasket 26 is insulative, in particular, resistant to hydrogen or hydride, organic hydride, and can be any material that has little permeation and maintains confidentiality.
- insulative in particular, resistant to hydrogen or hydride, organic hydride, and can be any material that has little permeation and maintains confidentiality.
- butyl rubber, viton rubber, EPDM rubber, etc. Can be mentioned.
- a catalyst material having a hydrogen addition action on a hydride for example, Ni, Pd, Pt, Rh, Ir, Re, Ru, Mo, W, V, Os, Cr, Co Metals such as Fe and alloy catalysts thereof can be used.
- a catalyst metal that causes an electrochemical hydrogen addition reaction a noble metal that is stable even with a strong acid is desirable because it contacts a proton conductive solid polymer electrolyte in the catalyst layer.
- a catalyst other than a noble metal can be used as a catalyst metal that causes a chemical hydrogenation reaction. In that case, Ni or the like is particularly desirable in terms of cost.
- the hydrogenation catalyst either a catalytic metal that causes an electrochemical hydrogenation reaction or a catalytic metal that undergoes an electrochemical hydrogenation reaction, is made finer to reduce the cost and increase the reaction surface area by reducing the catalytic metal. It is preferable to do. For fine particle formation, it is desirable to support a catalyst metal on a support.
- any material may be used as long as it is an electrically conductive material.
- carbon is desirable because it can disperse and can easily carry a catalytic metal.
- the carbon include furnace black, channel black, acetylene black, amorphous black, carbon nanotube, carbon nanohorn, carbon black, activated carbon, and graphite. These can be used alone or in combination.
- the carrier for the catalyst that causes a chemical hydrogenation reaction is not necessarily an electrically conductive material.
- a metal oxide can be used as a support.
- the metal oxide Al 2 O 3 , ZrO 2 , Nb 2 O 5 , SiO 2 , P 2 O 5 —Al 2 O 3 or the like can be used.
- the method for supporting the catalyst metal on the carrier is not particularly limited, such as a coprecipitation method, a thermal decomposition method, and an electroless plating method.
- FIG. 1 shows an example in which the chemical hydrogenation reaction is placed in the catalyst layer, but as described above, in the gas diffusion layer, in the separator channel, in the pipe outside the cell. It can also be placed at other locations. Each location has its advantages. When arranged in the catalyst layer, a merit is that the generated hydrogen gas can be immediately hydrogenated to the hydride, and an increase in pressure due to gas generation can be prevented. However, the catalyst layer is limited to noble metals because of the presence of a strong acid proton-conducting solid polymer electrolyte.
- the advantage of dispersing in the gas diffusion layer is that the generated hydrogen gas can be immediately hydrogenated to the hydride as in the case of dispersing in the catalyst layer, and the pressure increase due to gas generation can be prevented. Is mentioned. Further, since it is not in direct contact with the strong acid proton-conducting solid polymer electrolyte, a non-noble metal catalyst can be used, and the cost can be reduced.
- the total amount of surface area in the separator flow path is large, so the amount of catalyst can be increased compared to other installation locations. For this reason, it is considered that the chance of contact between the hydrogen gas and the unreacted hydride increases, and the reaction amount increases accordingly.
- a non-noble metal catalyst can be used because it is not in direct contact with the strong acid proton-conducting solid polymer electrolyte, and the cost can be reduced.
- An advantage of installing in piping outside the cell is that the temperature can be set freely independently of the cell temperature.
- the temperature inside the cell is about 100 ° C. at most, but the temperature can be raised to 100 ° C. or more outside the cell. The higher the temperature, the easier the hydrogen addition reaction proceeds.
- the reason why the temperature in the cell cannot be increased as compared with the piping is that it cannot be raised so much because of the nature of the solid polymer electrolyte membrane 22.
- Solid polymer electrolyte membranes exhibit proton conductivity when humidified (wet with water). When the temperature is raised (especially at 100 ° C. or higher), water evaporates and water in the solid polymer electrolyte membrane decreases, which is not preferable because proton conductivity decreases and resistance increases. Since piping does not cause such a problem, it can be set to a high temperature. Further, a non-noble metal catalyst can be used also in the piping, and the cost can be reduced.
- the catalyst that causes a chemical hydrogenation reaction must be installed at any one or more of the above installation locations (in the catalyst layer, gas diffusion layer, separator, and piping). Can do. It is desirable to determine in consideration of conditions such as the scale and installation location of the electrolytic hydrogenation reactor.
- the MEA of the present invention can be produced by the following method. First, a catalyst that causes an electrochemical hydrogenation reaction, a catalyst that causes a chemical hydrogenation reaction, a solid polymer electrolyte, and a cathode catalyst paste that is mixed well with a solvent that dissolves the solid polymer electrolyte, platinum black, a solid An anode catalyst paste in which a polymer electrolyte and a solvent for dissolving the solid polymer electrolyte are added and mixed well is prepared. Each of these pastes is sprayed onto a release film such as a polyfluoroethylene (PTFE) film by a spray drying method or the like, dried at 80 ° C.
- PTFE polyfluoroethylene
- the MEA of the present invention can be produced by joining the cathode and anode catalyst layers by hot pressing with the solid polymer electrolyte membrane in the middle and peeling the release film (PTFE).
- a catalyst for causing an electrochemical hydrogen addition reaction a catalyst for causing a chemical hydrogen addition reaction, a solid polymer electrolyte, and a solvent for dissolving the solid polymer electrolyte are sufficiently added.
- Spray the mixed cathode catalyst paste and platinum black, solid polymer electrolyte, and anode catalyst paste mixed well by adding a solvent that dissolves the solid polymer electrolyte directly onto the solid polymer electrolyte membrane by spray drying method, etc. Can also be produced.
- organic polymer constituting the solid polymer electrolyte membrane examples include perfluorocarbon sulfonic acid, polystyrene, polyether ketone, polyether ether ketone, polysulfone, polyether sulfone, other engineering plastic materials, sulfonic acid groups, phosphones.
- a proton donor such as an acid group or a carboxyl group doped or chemically bonded and immobilized can be used. It is also desirable to improve the material stability by forming a crosslinked structure or partially fluorinating the material.
- a polymer material exhibiting proton conductivity is used for the solid polymer electrolyte contained in the catalyst layer.
- sulfonated or alkylenesulfonated typified by perfluorocarbon sulfonic acid resin or polyperfluorostyrene sulfonic acid resin is used.
- Fluoropolymers and polystyrenes can be mentioned.
- Other examples include polysulfones, polyether sulfones, polyether ether sulfones, polyether ether ketones, and materials obtained by introducing a proton donor such as a sulfonic acid group into a hydrocarbon polymer.
- Unsaturated hydrocarbon is used as the hydride.
- benzene, toluene, xylene, mesitylene, naphthalene, methylnaphthalene, anthracene, biphenyl, phenanthroline, and alkyl substitution products thereof or a mixture thereof can be used.
- Hydrogen can be stored by adding hydrogen to the double bond between these carbon atoms.
- the following method can be considered as an example of a method for dispersing the catalyst that causes a chemical hydrogenation reaction in the gas diffusion layer.
- a gas diffusion layer in which a catalyst for causing a chemical hydrogenation reaction is dispersed can be obtained by immersing the gas diffusion layer therein and drying it at 80 ° C. with hot air.
- the following method can be considered as an example of a method for dispersing the catalyst that causes a chemical hydrogenation reaction in the separator channel.
- a separator channel in which a catalyst causing a chemical hydrogenation reaction is dispersed can be obtained.
- the following method can be considered as an example of a method for dispersing the catalyst that causes a chemical hydrogenation reaction in the pipe.
- the solution is applied to the inside of the pipe and dried with hot air at 80 ° C., whereby the inside of the pipe in which the catalyst for causing the chemical hydrogenation reaction is dispersed can be obtained.
- MEA was prepared using a catalyst in which 30 wt% of Pt fine particles were dispersed and supported on carbon black as a catalyst for causing an electrochemical hydrogenation reaction at the cathode.
- An ion exchange membrane was used as the electrolyte membrane.
- the cathode catalyst layer was formed by directly applying the catalyst slurry to the ion exchange membrane using a spray coater. The cathode catalyst layer was applied to the ion exchange membrane in the following order.
- the ion exchange membrane was placed on a hot plate of the substrate and fixed by suction.
- the temperature of the hot plate was 50 ° C.
- a mask was applied from above, and the cathode catalyst slurry was applied with a spray coater.
- the application conditions were as follows: liquid pressure 0.01 MPa, swirl pressure 0.15 MPa, atomization pressure 0.15 MPa, gun / substrate distance 60 mm, and substrate temperature 50 ° C.
- the amount of the cathode catalyst was 0.4 mg Pt ⁇ cm ⁇ 2 .
- an anode catalyst layer was formed on the back surface thereof.
- the anode catalyst layer was formed by a transfer method.
- an anode catalyst slurry was prepared.
- As the anode catalyst slurry a mixture of platinum black, 5 wt% ion exchange membrane solution, and 221 solution in a weight ratio of 1: 1.11: 2.22 was used. It was applied onto a polytetrafluoroethylene sheet with an applicator.
- the anode catalyst layer coated on the polytetrafluoroethylene sheet was formed on the surface of the ion exchange membrane by thermal transfer using hot pressing.
- the hot press pressure was 37.2 kgf ⁇ cm ⁇ 2
- the hot press temperature was 120 ° C.
- the hot press time was 2 minutes.
- the anode catalyst amount was 4.8 mg Pt ⁇ cm ⁇ 2 .
- the fabricated MEA and the carbon cloth in which the alumina-carrying nickel was dispersed were incorporated into the organic hydride manufacturing apparatus shown in FIG.
- no treatment was performed in the flow path of the separator, and the separator was used as it was.
- Toluene was used as the hydride.
- a voltage was applied between the anode and cathode while toluene was supplied to the cathode at 10 cc / min and pure water was supplied to the anode at 5 cc / min.
- the cell temperature was 80 ° C. As a result, when a load of 1.6 V or higher was applied, current flowed and the reaction proceeded.
- FIG. 3 shows the conversion rate from toluene to methylcyclohexane calculated from the peak intensity of gas chromatography. The higher the voltage, the better the conversion, and the maximum value under this condition was 70% when 2.2V was applied.
- FIG. 4 shows the yield of produced methylcyclohexane relative to the total amount of electricity added. The higher the voltage, the better the yield, and the maximum value under this condition was 88% with a 2.2V load.
- Example 1 An MEA was produced by the same production method and conditions as in Example 1. Carbon cloth was used for the gas diffusion layer, but unlike Example 2, it was used as it was without being treated.
- FIG. 5 shows the conversion of toluene to methylcyclohexane. The highest value under this condition was 60.3% with a load of 2.2V. Compared to Example 1, the conversion rate was low. The reason is considered as follows. In the catalyst to which toluene is not supplied, it is considered that hydrogen generation occurs not by the hydrogenation reaction of toluene but by the reaction of the following formula (3).
- Example 2 the generated hydrogen gas chemically reacted with toluene to produce methylcyclohexane.
- Comparative Example 1 it is considered that the generated hydrogen gas was discharged as exhaust gas without chemically reacting.
- the gas flow rate at the outlet was measured using a gas flow meter, the gas flow rate increased in Comparative Example 1 compared to Example 2. Therefore, it is thought that the conversion rate was low.
- FIG. 6 shows the yield of produced methylcyclohexane relative to the total amount of electricity added. The higher the voltage, the better the yield, but it was lower than in Example 1 and was 78.4% at 2.2 V at the maximum. Since the generated hydrogen gas was discharged without chemically reacting, the energy efficiency for producing methylcyclohexane was lowered accordingly.
- a catalyst for causing an electrochemical hydrogenation reaction at the cathode As a catalyst for causing an electrochemical hydrogenation reaction at the cathode, a catalyst in which 30 wt% of Pt fine particles were dispersedly supported on carbon black was used. In addition, platinum supported on alumina was mixed as a catalyst for causing a chemical hydrogenation reaction at the cathode.
- the method for synthesizing the alumina-supported platinum was as follows. Alumina Al 2 O 3 was placed in an electric furnace and baked at 650 ° C. for 3 hours. The calcined alumina was immersed in a platinum colloid solution and impregnated at room temperature for 1 hour. Thereafter, the solution was removed by vacuum drying at 80 ° C. Thereafter, the catalyst was activated by calcination in an electric furnace at 650 ° C. in a hydrogen atmosphere.
- An MEA including a catalyst that causes the electrochemical hydrogenation reaction and a catalyst that causes the chemical hydrogenation reaction was prepared.
- Other MEA production conditions and methods were the same as in Example 1.
- the fabricated MEA was incorporated into the organic hydride production apparatus shown in FIG. 2, and a hydrogen addition reaction test on toluene was performed under the same conditions as in Example 1.
- the gas diffusion layer and the separator flow path were used without any treatment.
- FIG. FIG. 8 shows the conversion rate and yield when 2.2 V is applied between the anode and the cathode. Compared to Comparative Example 1, both the conversion rate and the yield increased, and the effect of introducing a catalyst that causes a chemical hydrogenation reaction into the cathode catalyst layer was recognized.
- a catalyst that causes a chemical hydrogenation reaction was placed in the separator channel.
- Alumina-supported nickel was used as a catalyst for causing a chemical hydrogenation reaction.
- MEA was produced by the same method and conditions as in Example 1. This MEA was incorporated into the organic hydride production apparatus shown in FIG. 2 using a separator in which a catalyst for causing a chemical hydrogenation reaction was placed in the flow path, and a hydrogen addition reaction test for toluene was performed under the same conditions as in Example 2. I did it. Here, the gas diffusion layer was used without any treatment. The result is shown in FIG. Compared with Comparative Example 1, both the conversion rate and the yield increased, and the effect of arranging a catalyst for causing a chemical hydrogenation reaction in the separator channel was recognized.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Provided is a device that is for producing an organic hydride, electrochemically generates the organic hydride, and has favorable energy efficiency. The device for electrochemically producing an organic hydride is characterized by, as a catalyst that causes a hydrogenation reaction of a hydrogenation subject, disposing a catalyst that causes a chemical hydrogenation reaction in addition to a catalyst that causes an electrochemical hydrogenation reaction.
Description
本発明は、電気化学的に有機ハイドライドを製造する有機ハイドライド製造装置に関する。
The present invention relates to an organic hydride production apparatus for electrochemically producing organic hydride.
二酸化炭素などによる地球温暖化が深刻になる中で,化石燃料に代わって次世代を担うエネルギー源として水素が注目されている。水素燃料は、燃料消費時に排出される物質が水だけあり、二酸化炭素を排出しないため環境への負荷が小さい。一方、水素は常温常圧で気体であるため、輸送,貯蔵,供給システムが大きな課題となっている。
As the global warming due to carbon dioxide becomes serious, hydrogen is attracting attention as an energy source for the next generation instead of fossil fuel. Hydrogen fuel has a low environmental impact because it is the only substance that is discharged when fuel is consumed and does not emit carbon dioxide. On the other hand, since hydrogen is a gas at normal temperature and pressure, transportation, storage, and supply systems are major issues.
近年、安全性、運搬性、および貯蔵能力に優れた水素貯蔵方法として、シクロヘキサンや、メチルシクロヘキサン、デカリンのような炭化水素を用いた有機ハイドライドシステムが注目されている。これらの炭化水素は、常温で液体であるため、運搬性に優れている。例えば、トルエンとメチルシクロヘキサンは同じ炭素数を有する環状炭化水素であるが、トルエンは炭化水素同士の結合が二重結合である不飽和炭化水素であるのに対して、メチルシクロヘキサンは二重結合を持たない飽和炭化水素である。トルエンの水素付加反応によりメチルシクロヘキサンが得られ、メチルシクロヘキサンの脱水素反応によりトルエンが得られる。すなわち、これらの炭化水素の水素付加反応と脱水素反応を利用することにより、水素の貯蔵とその供給が可能となる。
In recent years, organic hydride systems using hydrocarbons such as cyclohexane, methylcyclohexane, and decalin have attracted attention as hydrogen storage methods that are excellent in safety, transportability, and storage capacity. Since these hydrocarbons are liquid at room temperature, they are excellent in transportability. For example, toluene and methylcyclohexane are cyclic hydrocarbons having the same carbon number, but toluene is an unsaturated hydrocarbon in which the bonds between hydrocarbons are double bonds, whereas methylcyclohexane has double bonds. It is a saturated hydrocarbon that does not have. Methylcyclohexane is obtained by hydrogenation reaction of toluene, and toluene is obtained by dehydrogenation reaction of methylcyclohexane. That is, hydrogen can be stored and supplied by utilizing the hydrogenation reaction and dehydrogenation reaction of these hydrocarbons.
メチルシクロヘキサンなどの有機ハイドライドを製造する技術として、特許文献1では、まず水素を製造し、その水素とトルエンを触媒上で反応させる技術が開示されている。すなわち、特許文献1に開示のプロセスは、水素を水電解装置で発生させ、水素付加反応装置で水素とトルエンを反応させて有機ハイドライドを生成させるという二段階のプロセスである。
As a technique for producing an organic hydride such as methylcyclohexane, Patent Document 1 discloses a technique in which hydrogen is first produced and the hydrogen and toluene are reacted on a catalyst. That is, the process disclosed in Patent Document 1 is a two-stage process in which hydrogen is generated in a water electrolysis apparatus and hydrogen and toluene are reacted in a hydrogen addition reaction apparatus to generate organic hydride.
よって、有機ハイドライドの製造まで複数の装置が必要となり、装置が複雑化する問題が生じる。また、水素を製造してから水素付加反応まではガス状の水素であるため、貯蔵・運搬に関して問題が生じる。水素製造装置と水素付加反応装置を隣接して建設すれば、上記問題は解決されるが、建設および運用コストの問題があり、総合的なエネルギー効率も低下する。また、装置の大型化が必要であるため、設置場所が限られるといった問題もある。
Therefore, a plurality of devices are required until the production of the organic hydride, resulting in a problem that the devices become complicated. Moreover, since it is gaseous hydrogen from hydrogen production to hydrogen addition reaction, a problem arises regarding storage and transportation. If the hydrogen production apparatus and the hydrogen addition reaction apparatus are constructed adjacent to each other, the above problem can be solved, but there is a problem of construction and operation costs, and the overall energy efficiency is also lowered. Moreover, since the apparatus needs to be enlarged, there is a problem that the installation place is limited.
特許文献2及び3では、単一装置を用い一段階で有機ハイドライドを製造する技術が開示されている。これらは電気化学的に有機ハイドライドを製造するものである。例えば、特許文献3では、水素イオンを選択的に透過する水素イオン透過性電解質膜の両側に金属触媒をそれぞれ配置し、一方に水または水蒸気を供給し、もう一方に被水素化物を供給し、アノード側での水又は水蒸気の電気分解により生成された水素イオンを、カソード側で被水素化物と水素付加反応を起こし有機ハイドライドを製造している。被水素化物としてトルエンを用いた場合のアノード、カソードのそれぞれの反応式は、下記の通りである。
アノード…H2O → 2H+ + 1/2O2 + 2e- (1)
カソード…C7H8 + 6H+ + 6e- → C7H14 (2)Patent Documents 2 and 3 disclose techniques for producing an organic hydride in a single stage using a single apparatus. These are for electrochemically producing organic hydrides. For example, in Patent Document 3, a metal catalyst is disposed on both sides of a hydrogen ion permeable electrolyte membrane that selectively transmits hydrogen ions, water or water vapor is supplied to one side, and a hydride is supplied to the other side. Organic hydrides are produced by causing hydrogen addition reaction between hydrogen ions generated by electrolysis of water or water vapor on the anode side and hydrides on the cathode side. The reaction formulas of the anode and cathode when toluene is used as the hydride are as follows.
Anode ... H 2 O → 2H + + 1 / 2O 2 + 2e - (1)
Cathode… C 7 H 8 + 6H + + 6e − → C 7 H 14 (2)
アノード…H2O → 2H+ + 1/2O2 + 2e- (1)
カソード…C7H8 + 6H+ + 6e- → C7H14 (2)
Cathode… C 7 H 8 + 6H + + 6e − → C 7 H 14 (2)
しかしながら、特許文献2及び3の有機ハイドライド製造方法は、高いエネルギー効率を得ることが困難であった。その理由の一つとして、カソードにおける電極反応として、(2)で示されるトルエンの水素付加反応だけでなく、下記(3)で示される水素発生反応も生じるためである。
However, the organic hydride manufacturing methods of Patent Documents 2 and 3 have difficulty in obtaining high energy efficiency. One reason is that not only the hydrogen addition reaction of toluene shown in (2) but also the hydrogen generation reaction shown in (3) below occurs as an electrode reaction at the cathode.
2H+ + 2e- → H2 (3)
(2)で示されるトルエンの水素付加反応は、トルエン/電解質/触媒の3つが同時に接する三相界面で進行すると考えられる。しかし、トルエンが供給されない触媒上においては、(2)ではなく、(3)で示される水素発生反応が起こると考えられる。トルエンが供給されない触媒として、例えば、触媒層の奥深くにある触媒が挙げられる。また、アノード側の水が電解質膜を透過してカソード側に到達し、その水が触媒を覆ってしまうことも挙げられる。これらのトルエンが供給されない触媒は、電極厚さなどの電極構造を最適化することにより、ある程度は軽減できる可能性はあると考えられる。しかし、完全にゼロにすることは不可能であり、(3)で示される水素発生反応は避けられない問題となっている。従来の電気化学的に有機ハイドライドを製造する装置においては、発生した水素ガスは排ガスとして処理している。そのため、(3)で示される水素発生反応で消費される電力の分、エネルギー効率は低下してしまうという問題があった。 2H + + 2e - → H 2 (3)
It is thought that the hydrogenation reaction of toluene shown in (2) proceeds at a three-phase interface where three of toluene / electrolyte / catalyst are simultaneously in contact. However, it is considered that the hydrogen generation reaction indicated by (3) instead of (2) occurs on the catalyst to which toluene is not supplied. Examples of the catalyst to which toluene is not supplied include a catalyst deep in the catalyst layer. Another example is that water on the anode side passes through the electrolyte membrane and reaches the cathode side, and the water covers the catalyst. These catalysts to which toluene is not supplied may be able to be reduced to some extent by optimizing the electrode structure such as the electrode thickness. However, it is impossible to make it completely zero, and the hydrogen generation reaction shown in (3) is an unavoidable problem. In a conventional apparatus for electrochemically producing organic hydride, the generated hydrogen gas is treated as exhaust gas. Therefore, there has been a problem that the energy efficiency is reduced by the amount of power consumed in the hydrogen generation reaction shown in (3).
(2)で示されるトルエンの水素付加反応は、トルエン/電解質/触媒の3つが同時に接する三相界面で進行すると考えられる。しかし、トルエンが供給されない触媒上においては、(2)ではなく、(3)で示される水素発生反応が起こると考えられる。トルエンが供給されない触媒として、例えば、触媒層の奥深くにある触媒が挙げられる。また、アノード側の水が電解質膜を透過してカソード側に到達し、その水が触媒を覆ってしまうことも挙げられる。これらのトルエンが供給されない触媒は、電極厚さなどの電極構造を最適化することにより、ある程度は軽減できる可能性はあると考えられる。しかし、完全にゼロにすることは不可能であり、(3)で示される水素発生反応は避けられない問題となっている。従来の電気化学的に有機ハイドライドを製造する装置においては、発生した水素ガスは排ガスとして処理している。そのため、(3)で示される水素発生反応で消費される電力の分、エネルギー効率は低下してしまうという問題があった。 2H + + 2e - → H 2 (3)
It is thought that the hydrogenation reaction of toluene shown in (2) proceeds at a three-phase interface where three of toluene / electrolyte / catalyst are simultaneously in contact. However, it is considered that the hydrogen generation reaction indicated by (3) instead of (2) occurs on the catalyst to which toluene is not supplied. Examples of the catalyst to which toluene is not supplied include a catalyst deep in the catalyst layer. Another example is that water on the anode side passes through the electrolyte membrane and reaches the cathode side, and the water covers the catalyst. These catalysts to which toluene is not supplied may be able to be reduced to some extent by optimizing the electrode structure such as the electrode thickness. However, it is impossible to make it completely zero, and the hydrogen generation reaction shown in (3) is an unavoidable problem. In a conventional apparatus for electrochemically producing organic hydride, the generated hydrogen gas is treated as exhaust gas. Therefore, there has been a problem that the energy efficiency is reduced by the amount of power consumed in the hydrogen generation reaction shown in (3).
上記課題を解決するため、本発明は、電気化学的に有機ハイドライドを製造する装置において、被水素化物に対する触媒として、電気化学的水素付加反応を起こす触媒に加えて、化学的水素付加反応を起こす触媒を配置する有機ハイドライド製造装置を提供する。
In order to solve the above-mentioned problems, the present invention provides a chemical hydrogenation reaction in addition to a catalyst that causes an electrochemical hydrogenation reaction as a catalyst for a hydride in an apparatus for electrochemically producing an organic hydride. An organic hydride manufacturing apparatus in which a catalyst is disposed is provided.
本発明によれば、電気化学的に有機ハイドライドを生成させる装置において、副次的に発生する水素ガスを、化学的水素付加反応させることができ、エネルギー効率の高い有機ハイドライド製造装置を提供することができる。
According to the present invention, in an apparatus for electrochemically generating organic hydride, a hydrogen gas generated as a secondary can be subjected to a chemical hydrogenation reaction, and an organic hydride manufacturing apparatus with high energy efficiency is provided. Can do.
まず、本発明の概要を説明する。電気化学的反応により有機ハイドライドを製造する場合、水素ガスが発生する。この水素ガスは排ガスとして処理されていたため、エネルギー効率が悪い問題があった。本発明は、副次的に発生した水素ガスを、トルエンなどの不飽和炭化水素の被水素化物(水素化反応されるもの)と化学的に反応させて、水素付加反応を起こす構成である。これにより、エネルギー効率の低下を防ぐ効果を奏する。
First, the outline of the present invention will be described. When an organic hydride is produced by an electrochemical reaction, hydrogen gas is generated. Since this hydrogen gas was treated as exhaust gas, there was a problem of poor energy efficiency. The present invention has a configuration in which hydrogen gas generated as a secondary reaction is chemically reacted with an unsaturated hydrocarbon hydride (one to be hydrogenated) such as toluene to cause a hydrogenation reaction. Thereby, there exists an effect which prevents the fall of energy efficiency.
より詳細に説明すると、本発明は、電気化学的に有機ハイドライドを製造する装置において、被水素化物に水素付加反応を起こす触媒として、是前述した(2)で示す電気化学的水素付加反応を起こす触媒に加えて、(4)で示すような、化学的水素付加反応を起こす触媒を配置することを特徴とする。なお、ここにおいて、C7H8は一例であって、水素付加反応を起こすものであればよい。水素付加反応を起こすものとして、不飽和炭化水素が考えられる。
C7H8 + 3H2 → C7H14 (4)
被水素化物に化学的水素付加反応を起こす触媒の配置場所としては、電極であるカソード触媒層に配置することが挙げられる。あるいは電極とセパレータの間に配置するガス拡散層の中に配置することがあげられる。あるいは、セパレータの流路に配置することが挙げられる。あるいはセル外の配管内に配置することが挙げられる。あるいは、上記の複数の場所に配置することが挙げられる。 More specifically, the present invention causes the electrochemical hydrogenation reaction shown in (2) above as a catalyst for causing a hydrogenation reaction on a hydride in an apparatus for electrochemically producing an organic hydride. In addition to the catalyst, a catalyst for causing a chemical hydrogenation reaction as shown in (4) is arranged. Here, C 7 H 8 is an example, and any substance that causes a hydrogenation reaction may be used. Unsaturated hydrocarbons can be considered as ones that cause hydrogenation reactions.
C 7 H 8 + 3H 2 → C 7 H 14 (4)
As an arrangement place of the catalyst that causes a chemical hydrogenation reaction to the hydride, it may be arranged in the cathode catalyst layer that is an electrode. Or it arrange | positions in the gas diffusion layer arrange | positioned between an electrode and a separator. Or arrange | positioning to the flow path of a separator is mentioned. Or arrange | positioning in piping outside a cell is mentioned. Or arrange | positioning to said several places is mentioned.
C7H8 + 3H2 → C7H14 (4)
被水素化物に化学的水素付加反応を起こす触媒の配置場所としては、電極であるカソード触媒層に配置することが挙げられる。あるいは電極とセパレータの間に配置するガス拡散層の中に配置することがあげられる。あるいは、セパレータの流路に配置することが挙げられる。あるいはセル外の配管内に配置することが挙げられる。あるいは、上記の複数の場所に配置することが挙げられる。 More specifically, the present invention causes the electrochemical hydrogenation reaction shown in (2) above as a catalyst for causing a hydrogenation reaction on a hydride in an apparatus for electrochemically producing an organic hydride. In addition to the catalyst, a catalyst for causing a chemical hydrogenation reaction as shown in (4) is arranged. Here, C 7 H 8 is an example, and any substance that causes a hydrogenation reaction may be used. Unsaturated hydrocarbons can be considered as ones that cause hydrogenation reactions.
C 7 H 8 + 3H 2 → C 7 H 14 (4)
As an arrangement place of the catalyst that causes a chemical hydrogenation reaction to the hydride, it may be arranged in the cathode catalyst layer that is an electrode. Or it arrange | positions in the gas diffusion layer arrange | positioned between an electrode and a separator. Or arrange | positioning to the flow path of a separator is mentioned. Or arrange | positioning in piping outside a cell is mentioned. Or arrange | positioning to said several places is mentioned.
下記に、各実施例で本発明の実施形態の詳細を説明する。
Hereinafter, the details of the embodiments of the present invention will be described in each example.
図7は、本発明の有機ハイドライドシステムである。有機ハイドライド製造装置31の構造及び原理は、図1および図2に詳細を記している。制御装置34は、矢印が向かっている先のそれぞれの装置を制御する。なお、制御装置34は、複数の制御装置であってもよく、制御するそれぞれの装置に個別に設けられている構成であってもよい。制御装置34は、水提供装置35及び被水素化物提供装置33を制御し、有機ハイドライド製造装置31に水及び被水素化物を提供するよう制御する。有機ハイドライド製造装置31では、酸素及び水を、酸素、水回収装置に排出する。また、有機ハイドライド製造装置31は、配管37を介して、有機ハイドライド回収装置に有機ハイドライド及び排ガス(被水素化物等)を排出する。
FIG. 7 shows the organic hydride system of the present invention. The structure and principle of the organic hydride manufacturing apparatus 31 are described in detail in FIG. 1 and FIG. The control device 34 controls each device to which the arrow is directed. Note that the control device 34 may be a plurality of control devices, or may be provided individually in each device to be controlled. The control device 34 controls the water providing device 35 and the hydride providing device 33 so as to provide the organic hydride manufacturing device 31 with water and hydride. In the organic hydride manufacturing apparatus 31, oxygen and water are discharged to an oxygen and water recovery apparatus. The organic hydride manufacturing apparatus 31 discharges the organic hydride and exhaust gas (such as hydride) to the organic hydride recovery apparatus via the pipe 37.
ここで、ヒーター38は、配管37を温めるヒーターである。後述するように、配管37には、化学的水素付加反応を起こす触媒が配置されており、化学的水素付加反応は、温度が高いほうが(約100℃以上)反応が起こりやすい。そのため、ヒーター38を備える構成としてもよい。なお、化学的水素付加反応を起こす触媒は、配管37に配置しない場合もあるため、その場合にはヒーター38は不要である。
Here, the heater 38 is a heater for heating the pipe 37. As will be described later, a catalyst that causes a chemical hydrogenation reaction is disposed in the pipe 37, and the chemical hydrogenation reaction is more likely to occur at a higher temperature (about 100 ° C. or higher). Therefore, it is good also as a structure provided with the heater 38. FIG. Note that the catalyst that causes the chemical hydrogenation reaction may not be disposed in the pipe 37, and in this case, the heater 38 is unnecessary.
図1に本実施形態の有機ハイドライド製造装置31の電極部分を示す。図1には固体高分子電解質膜11の表裏にカソード触媒層12、アノード触媒層13が形成されたMEA (Membrane Electrode Assembly) をカソード側から見た平面図と、平面図におけるD-E部分の断面図と、拡大図Fを示している。
FIG. 1 shows an electrode portion of an organic hydride manufacturing apparatus 31 of the present embodiment. A plan view of the cathode catalyst layer 12 on the front and back of the solid polymer electrolyte membrane 11, MEA to the anode catalyst layer 13 is formed a (M embrane E lectrode A ssembly) from the cathode side in FIG. 1, DE portion in plan view A cross-sectional view and an enlarged view F are shown.
MEAは、D-E断面図に示すように、カソード及びアノードは緻密な触媒層として固体高分子電解質膜11の上下に形成されている。カソード触媒層12は、右の拡大図に示すように触媒担体であるカーボン15に触媒金属14が担持されている。この触媒金属14は、式(2)に示される電気化学的水素付加反応を起こす触媒であり、固体高分子電解質18および反応物質である被水素化物が接触する三相界面を形成している。また、触媒金属16も電気化学的水素付加反応を起こす触媒であるが、触媒層の奥深くにあるため、被水素化物が供給されない触媒である。本発明では、電気化学的水素付加反応を起こす触媒金属14に加えて、化学的水素付加反応を起こす触媒17もカソード触媒層中に分散されていることを特徴とする。なお、触媒層中、すなわちMEA中に化学的水素付加反応を起こす触媒を配置した具体的な実施形態については、実施例3に記す。
In the MEA, as shown in the D-E sectional view, the cathode and the anode are formed as dense catalyst layers above and below the solid polymer electrolyte membrane 11. In the cathode catalyst layer 12, a catalyst metal 14 is supported on carbon 15 which is a catalyst carrier, as shown in the enlarged view on the right. The catalyst metal 14 is a catalyst that causes an electrochemical hydrogenation reaction represented by the formula (2), and forms a three-phase interface where the solid polymer electrolyte 18 and a hydride that is a reactant contact. The catalyst metal 16 is also a catalyst that causes an electrochemical hydrogenation reaction, but is a catalyst that is not supplied with a hydride because it is deep in the catalyst layer. The present invention is characterized in that, in addition to the catalyst metal 14 causing an electrochemical hydrogenation reaction, a catalyst 17 causing a chemical hydrogenation reaction is also dispersed in the cathode catalyst layer. A specific embodiment in which a catalyst that causes a chemical hydrogenation reaction in the catalyst layer, that is, in the MEA, is described in Example 3.
被水素化物にトルエンを用いた場合、触媒金属14において、下記のトルエンの電気化学的還元反応
C7H8 + 6H+ + 6e- → C7H14 (2)
が進行する。一方、トルエンの供給されない触媒金属16においては、下記の反応が起こり、水素ガスが発生する。 When toluene is used as the hydride, the following electrochemical reduction reaction of toluene in the catalyst metal 14 C 7 H 8 + 6H + + 6e − → C 7 H 14 (2)
Progresses. On the other hand, in thecatalytic metal 16 to which toluene is not supplied, the following reaction occurs to generate hydrogen gas.
C7H8 + 6H+ + 6e- → C7H14 (2)
が進行する。一方、トルエンの供給されない触媒金属16においては、下記の反応が起こり、水素ガスが発生する。 When toluene is used as the hydride, the following electrochemical reduction reaction of toluene in the catalyst metal 14 C 7 H 8 + 6H + + 6e − → C 7 H 14 (2)
Progresses. On the other hand, in the
2H+ + 2e- → H2 (3)
従来では、ここで発生した水素ガスは排ガスとして処理されることになるため、エネルギー効率は低いものとなっていた。 2H + + 2e - → H 2 (3)
Conventionally, since the hydrogen gas generated here is treated as exhaust gas, the energy efficiency has been low.
従来では、ここで発生した水素ガスは排ガスとして処理されることになるため、エネルギー効率は低いものとなっていた。 2H + + 2e - → H 2 (3)
Conventionally, since the hydrogen gas generated here is treated as exhaust gas, the energy efficiency has been low.
本発明では、ここで発生した水素ガスが、化学的水素付加反応を起こす触媒17において、下記のようにトルエンと化学的に反応する。
In the present invention, the hydrogen gas generated here chemically reacts with toluene in the catalyst 17 causing a chemical hydrogenation reaction as follows.
C7H8 + 3H2 → C7H14 (4)
よって、水素ガスを有効利用することになり、従来に比べてエネルギー効率が高くなる。 C 7 H 8 + 3H 2 → C 7 H 14 (4)
Therefore, hydrogen gas is effectively used, and energy efficiency is higher than in the past.
よって、水素ガスを有効利用することになり、従来に比べてエネルギー効率が高くなる。 C 7 H 8 + 3H 2 → C 7 H 14 (4)
Therefore, hydrogen gas is effectively used, and energy efficiency is higher than in the past.
なお、化学的水素付加反応を起こす触媒17は、水素と被水素化物が反応するだけでなく、有機ハイドライドの収率を上げる化学反応を起こす触媒であってもよい。例えば、収率を下げる原因となっている物質と被水素化物が化学反応をし、有機ハイドライドを生成する化学反応が考えられる。
Note that the catalyst 17 that causes a chemical hydrogenation reaction may be a catalyst that causes not only a reaction between hydrogen and a hydride but also a chemical reaction that increases the yield of organic hydride. For example, a chemical reaction may be considered in which a substance that causes a decrease in yield and a hydride undergo a chemical reaction to generate an organic hydride.
また、本発明の電極構造として、カーボン15同士は固体高分子電解質18により接着されている。触媒金属14はカーボン15を介して互いにつながったネットワーク構造を有しおり、(2)の反応に必要な電子の通り道を形成している。また、触媒層中の固体高分子電解質18も同様につながったネットワーク構造を有しており、(2)の反応に必要なプロトンの通り道を形成している。本実施形態の電極では固体高分子電解質18によってプロトンの通り道を形成しているため、固体高分子電解質膜11と直接に接していない触媒金属14にも三相界面が形成されているため、多くの金属触媒が電極反応に寄与できる構造となっている。
Also, as the electrode structure of the present invention, the carbons 15 are bonded together by a solid polymer electrolyte 18. The catalyst metal 14 has a network structure connected to each other via carbon 15 and forms a path for electrons necessary for the reaction (2). Similarly, the solid polymer electrolyte 18 in the catalyst layer also has a connected network structure, and forms a passage for protons necessary for the reaction (2). In the electrode of this embodiment, since the passage of protons is formed by the solid polymer electrolyte 18, a three-phase interface is also formed on the catalyst metal 14 that is not in direct contact with the solid polymer electrolyte membrane 11. This metal catalyst can contribute to the electrode reaction.
なお、図9に示すように、電気化学的水素付加反応を起こす触媒14と、化学的水素付加反応を起こす触媒17は、それぞれ層の状態になっており、電気化学的水素付加反応を起こす触媒層の表面に化学的水素付加反応を起こす触媒層を形成して2層の構造にしてもよい。この場合においても、電気化学的水素付加反応を起こす触媒14は、三相界面を形成していなくてはならないため、カーボン15及び固体高分子電解質18に接触しているものとする。化学的水素付加反応触媒17の層は、細穴径が大きいため、被水素化物は、化学的水素付加反応触媒17の間を抜けて、電気化学的水素付加反応を起こす触媒14までたどり着ける。細穴径の大きさは後述のようにスラリーを塗布する際に、電圧を工夫すれば変えられる。化学的水素付加反応を起こす触媒は、電気化学的水素付加反応触媒14のように三相界面を形成している必要はなく、副次的反応で発生した水素と、非水素化物と接触すればよい。
As shown in FIG. 9, the catalyst 14 for causing an electrochemical hydrogenation reaction and the catalyst 17 for causing a chemical hydrogenation reaction are in layers, and the catalyst for causing an electrochemical hydrogenation reaction. A catalyst layer that causes a chemical hydrogenation reaction may be formed on the surface of the layer to form a two-layer structure. Even in this case, the catalyst 14 that causes an electrochemical hydrogenation reaction must form a three-phase interface, and therefore is assumed to be in contact with the carbon 15 and the solid polymer electrolyte 18. Since the layer of the chemical hydrogenation reaction catalyst 17 has a large fine hole diameter, the hydride can pass through the chemical hydrogenation reaction catalyst 17 and reach the catalyst 14 causing the electrochemical hydrogenation reaction. The size of the small hole diameter can be changed by devising the voltage when applying the slurry as will be described later. The catalyst that causes a chemical hydrogenation reaction does not need to form a three-phase interface like the electrochemical hydrogenation reaction catalyst 14, but can be in contact with hydrogen generated by a secondary reaction and a non-hydride. Good.
触媒層の作製方法として、例えば、触媒と溶媒を混ぜたスラリーを、スプレーコーターを用いて電解質膜にスプレー(塗布)する、という方法がある。詳細を説明すると、2層にする場合、まず電気化学的水素付加反応を起こす触媒のスラリーを塗布して触媒層を形成し、次にその上に化学的水素付加反応を起こす触媒のスラリーを塗布し、2層とする。なお、溶媒は塗布後に乾燥させて除去する。
As a method for producing the catalyst layer, for example, there is a method of spraying (coating) a slurry obtained by mixing a catalyst and a solvent onto an electrolyte membrane using a spray coater. To explain in detail, in the case of two layers, first apply a catalyst slurry that causes an electrochemical hydrogenation reaction to form a catalyst layer, and then apply a catalyst slurry that causes a chemical hydrogenation reaction thereon. And two layers. The solvent is removed by drying after coating.
図2に本発明の有機ハイドライド製造装置の一例を示す。本実施形態の有機ハイドライド製造装置は、固体高分子電解質膜11の一方の面にアノード触媒層13を、他方の面にカソード触媒層12を接合して一体化した膜電極接合体(MEA:Membrane Electrode Assembly)を、ガス拡散層25、ガス流路が形成されたセパレータ21で挟み込んで構成されている。また。一対のセパレータ21の間にはガスシールのためのガスケット26が挿入されている。
FIG. 2 shows an example of the organic hydride production apparatus of the present invention. The organic hydride production apparatus of this embodiment is a membrane electrode assembly (MEA: M) in which an anode catalyst layer 13 is joined to one surface of a solid polymer electrolyte membrane 11 and a cathode catalyst layer 12 is joined to the other surface. the embrane E lectrode a ssembly), the gas diffusion layer 25 is constituted by sandwiching separators 21 the gas flow path is formed. Also. A gasket 26 for gas sealing is inserted between the pair of separators 21.
ガス拡散層25は、セパレータ21の流路に供給された反応物質(ガスまたは液体)を触媒層の面内に均一に供給し、更に触媒層内で生成された生成物または排気(ガスまたは液体)を、吸収し排出する。素材は、カーボンペーパーあるいはカーボンクロス等の通気性を有する基体を使用する。本実施形態は、ガス拡散層内に化学的水素付加反応を起こす触媒27が配置されている構成であってもよい。ガス拡散層内に化学的水素付加反応を起こす触媒27が配置されている詳細な実施例については、実施例2に記す。
The gas diffusion layer 25 uniformly supplies the reactant (gas or liquid) supplied to the flow path of the separator 21 within the surface of the catalyst layer, and further generates a product or exhaust (gas or liquid) generated in the catalyst layer. ) Is absorbed and discharged. As a material, a substrate having air permeability such as carbon paper or carbon cloth is used. The present embodiment may have a configuration in which a catalyst 27 that causes a chemical hydrogenation reaction is disposed in the gas diffusion layer. A detailed example in which a catalyst 27 that causes a chemical hydrogenation reaction is disposed in the gas diffusion layer is described in Example 2.
セパレータ21のアノード触媒層13及びカソード触媒層12に対向する面には反応ガスまたは液体の流路となる溝が形成されている。アノード側のセパレータ21の流路溝には水または水蒸気が供給される。流路溝を流れる水または水蒸気はガス拡散層25を介してアノード触媒層に供給される。また、カソード側のセパレータ21には化学的水素付加反応を起こす触媒27が配置されていてもよい。カソード側のセパレータ21に被水素化物が配置されている詳細な実施例については、実施例4で説明する。流路溝を流れる被水素化物はガス拡散層25を介してカソード触媒に供給される。
On the surface of the separator 21 facing the anode catalyst layer 13 and the cathode catalyst layer 12, a groove serving as a reaction gas or liquid channel is formed. Water or water vapor is supplied to the flow channel of the separator 21 on the anode side. Water or water vapor flowing through the flow channel is supplied to the anode catalyst layer via the gas diffusion layer 25. Further, the cathode-side separator 21 may be provided with a catalyst 27 that causes a chemical hydrogenation reaction. A detailed example in which the hydride is disposed in the cathode-side separator 21 will be described in Example 4. The hydride flowing through the flow channel is supplied to the cathode catalyst via the gas diffusion layer 25.
なお、有機ハイドライド製造装置31は、外部電源から電圧をかけられている。セパレータ21に電圧をかけられる。セパレータは導電性材料であり、セパレータから配線がでており、そこに外部電源をつなぐ。
In addition, the organic hydride manufacturing apparatus 31 is applied with a voltage from an external power source. A voltage can be applied to the separator 21. The separator is a conductive material, and wiring is provided from the separator, and an external power source is connected thereto.
セパレータはガス拡散層(これも導電性材料)を介して、電極である触媒層と接しており、電子が通ることができます。セパレータから伝わった電子は、カーボン担体に伝わる。なお、カーボン担体は、カーボンの他に電子を通す導電体であれば、カーボンでなくても良い。
The separator is in contact with the catalyst layer, which is an electrode, through a gas diffusion layer (also conductive material), allowing electrons to pass through. The electrons transmitted from the separator are transmitted to the carbon carrier. The carbon carrier may not be carbon as long as it is a conductor that allows electrons to pass in addition to carbon.
有機ハイドライド製造装置31は、外部の有機ハイドライド回収装置(図7 32)に接続される配管28にも接続されている。配管28に化学的水素付加反応を起こす触媒27が配置されていてもよい。本実施例では、なお、配管28は、有機ハイドライド製造装置には含まれておらず、外部にある構成であっても良い。また、前述したように、図7に示すように、配管にヒーター38を備えていても良い。なお、MEA等に化学的水素付加反応を起こす触媒27が配置されず、配管28のみに、化学的水素付加反応を起こす触媒27が配置される構成であってもよい。
The organic hydride production apparatus 31 is also connected to a pipe 28 connected to an external organic hydride recovery apparatus (FIG. 7, 32). A catalyst 27 that causes a chemical hydrogenation reaction may be disposed in the pipe 28. In the present embodiment, the pipe 28 is not included in the organic hydride manufacturing apparatus, and may be configured outside. Further, as described above, the heater 38 may be provided in the pipe as shown in FIG. The catalyst 27 that causes the chemical hydrogenation reaction may not be disposed in the MEA or the like, and the catalyst 27 that causes the chemical hydrogenation reaction may be disposed only in the pipe 28.
なお、上記は、ガス拡散層、セパレータ、配管等の流路の例を示したが、化学的水素付加反応を起こす触媒は、カソード触媒層で生成された生成物を排出する流路に配置されておればよく、ガス拡散層、セパレータ、配管に限定されるものではない。また、カソード触媒層に化学的水素付加反応を起こす触媒を配置せず、流路にのみ配置してもよい。
Although the above shows an example of a flow path such as a gas diffusion layer, a separator, and a pipe, a catalyst that causes a chemical hydrogenation reaction is disposed in a flow path that discharges a product generated in the cathode catalyst layer. What is necessary is just to have, and it is not limited to a gas diffusion layer, a separator, and piping. Further, a catalyst that causes a chemical hydrogenation reaction may not be disposed in the cathode catalyst layer, but may be disposed only in the flow path.
ヒーター29は、有機ハイドライド製造装置を温めるもので、有機ハイドライド製造装置内に設けていても、外部に設けていてもいい。温度が高いほうが、電気化学的反応、化学的反応ともに進みやすいため、ヒーター29でMEA、ガス拡散層、セパレータを温める。なお、すべてを温めてもいいし、上述のどれか一つを温める構成であってもよい。
The heater 29 warms the organic hydride manufacturing apparatus, and may be provided inside or outside the organic hydride manufacturing apparatus. The higher the temperature, the easier the electrochemical reaction and chemical reaction proceed, so the MEA, gas diffusion layer, and separator are heated by the heater 29. In addition, all may be heated and the structure which heats any one of the above-mentioned may be sufficient.
図2を用いて反応機構を説明する。セパレータ21を介してアノード側に水または水蒸気を供給し、カソード側に被水素化物としてトルエンを供給した状態で、アノード‐カソード間に電圧を印加すると、アノードにおいて(1)式の水の電気分解反応が起こる。(1)式の電気分解反応により生じたプロトンが固体高分子電解質膜22を介してカソード24へ移動し、カソードにおいて(2)式の水素付加反応が起こり有機ハイドライドであるメチルシクロヘキサンが生成する。
The reaction mechanism will be described with reference to FIG. When water or water vapor is supplied to the anode side via the separator 21 and toluene is supplied as a hydride to the cathode side, when a voltage is applied between the anode and the cathode, electrolysis of water of formula (1) is performed at the anode. A reaction takes place. Protons generated by the electrolysis reaction of the formula (1) move to the cathode 24 through the solid polymer electrolyte membrane 22, and the hydrogen addition reaction of the formula (2) occurs at the cathode to generate methylcyclohexane as an organic hydride.
H2O → 2H+ + 1/2O2 + 2e- (1)
C7H8 + 6H+ + 6e- → C7H14 (2)
一方で、カソードにおいて、下記の反応により、一部水素ガスが発生する。 H 2 O → 2H + + 1 / 2O 2 + 2e − (1)
C 7 H 8 + 6H + + 6e − → C 7 H 14 (2)
On the other hand, hydrogen gas is partially generated at the cathode by the following reaction.
C7H8 + 6H+ + 6e- → C7H14 (2)
一方で、カソードにおいて、下記の反応により、一部水素ガスが発生する。 H 2 O → 2H + + 1 / 2O 2 + 2e − (1)
C 7 H 8 + 6H + + 6e − → C 7 H 14 (2)
On the other hand, hydrogen gas is partially generated at the cathode by the following reaction.
2H+ + 2e- → H2 (3)
従来では、この発生した水素ガスは排ガスとして処理されることになるため、エネルギー効率は低いものとなっていた。そこで、本発明では、化学的水素付加反応を起こす触媒により、下記の反応を起こす。 2H + + 2e - → H 2 (3)
Conventionally, the generated hydrogen gas is treated as exhaust gas, so that the energy efficiency is low. Therefore, in the present invention, the following reaction is caused by a catalyst that causes a chemical hydrogenation reaction.
従来では、この発生した水素ガスは排ガスとして処理されることになるため、エネルギー効率は低いものとなっていた。そこで、本発明では、化学的水素付加反応を起こす触媒により、下記の反応を起こす。 2H + + 2e - → H 2 (3)
Conventionally, the generated hydrogen gas is treated as exhaust gas, so that the energy efficiency is low. Therefore, in the present invention, the following reaction is caused by a catalyst that causes a chemical hydrogenation reaction.
C7H8 + 3H2 → C7H14 (4)
よって、水素ガスを有効利用することになり、従来に比べてエネルギー効率が高くなる。 C 7 H 8 + 3H 2 → C 7 H 14 (4)
Therefore, hydrogen gas is effectively used, and energy efficiency is higher than in the past.
よって、水素ガスを有効利用することになり、従来に比べてエネルギー効率が高くなる。 C 7 H 8 + 3H 2 → C 7 H 14 (4)
Therefore, hydrogen gas is effectively used, and energy efficiency is higher than in the past.
被水素化物の供給方法としては、液体状の被水素化物をそのまま供給してもよいし、HeガスやN2ガスなどをキャリアとした蒸気状の被水素化物を供給してもよい。
As a method for supplying the hydride, a liquid hydride may be supplied as it is, or a vapor hydride using He gas, N 2 gas or the like as a carrier may be supplied.
セパレータ21は導電性を有し、その材質は、緻密黒鉛プレート、黒鉛やカーボンブラックなどの炭素材料を樹脂によって成形したカーボンプレート、ステンレス鋼やチタン等の耐蝕性の優れた金属材料が望ましい。また、セパレータ21の表面を貴金属でメッキをしたり、耐食性、耐熱性の優れた導電性塗料を塗布し表面処理することも望ましい。
The separator 21 has conductivity, and the material is preferably a dense graphite plate, a carbon plate formed by molding a carbon material such as graphite or carbon black with a resin, or a metal material having excellent corrosion resistance such as stainless steel or titanium. It is also desirable to plate the surface of the separator 21 with a noble metal, or to apply a surface treatment by applying a conductive paint having excellent corrosion resistance and heat resistance.
ガスケット26は絶縁性であり、特に水素あるいは被水素化物、有機ハイドライドに対して耐性があり、それらの透過が少なく機密性が保たれる材質であればよく、例えばブチルゴム、バイトンゴム、EPDMゴム等が挙げられる。
The gasket 26 is insulative, in particular, resistant to hydrogen or hydride, organic hydride, and can be any material that has little permeation and maintains confidentiality. For example, butyl rubber, viton rubber, EPDM rubber, etc. Can be mentioned.
電気化学的水素付加反応を起こす触媒に求められる条件としては、反応には電子の移動が必要であるため、電気伝導度が必要である。また、触媒層内においてプロトン伝導性の固体高分子電解質と接触するため、強酸でも安定な触媒である必要がある。
As a condition required for a catalyst that causes an electrochemical hydrogen addition reaction, since the reaction requires movement of electrons, electrical conductivity is required. Moreover, since it contacts with the proton conductive solid polymer electrolyte in the catalyst layer, it must be a stable catalyst even with a strong acid.
一方で、化学的水素付加反応を起こす触媒に求められる条件としては、電気伝導度は必要ではなく、また、触媒層以外に配置する場合には固体高分子電解質と接しないため、非貴金属も使用可能である。
On the other hand, as a condition required for a catalyst that causes a chemical hydrogenation reaction, electrical conductivity is not necessary, and non-noble metals are used because they do not contact solid polymer electrolytes when placed outside the catalyst layer. Is possible.
本発明で用いる触媒金属には、被水素化物に対する水素付加作用を有する触媒材料を用い、例えば、Ni、Pd、Pt、Rh、Ir、Re、Ru、Mo、W、V、Os、Cr、Co、Feなどの金属及びこれらの合金触媒を用いることができる。そのうち、電気化学的水素付加反応を起こす触媒金属としては、触媒層内でプロトン伝導性の固体高分子電解質と接するため、強酸でも安定な貴金属が望ましい。一方で、化学的水素付加反応を起こす触媒金属としては、貴金属以外の触媒も使用可能である。その場合、特にコスト面からNi等が望ましい。
As the catalyst metal used in the present invention, a catalyst material having a hydrogen addition action on a hydride is used, for example, Ni, Pd, Pt, Rh, Ir, Re, Ru, Mo, W, V, Os, Cr, Co Metals such as Fe and alloy catalysts thereof can be used. Among them, as a catalyst metal that causes an electrochemical hydrogen addition reaction, a noble metal that is stable even with a strong acid is desirable because it contacts a proton conductive solid polymer electrolyte in the catalyst layer. On the other hand, a catalyst other than a noble metal can be used as a catalyst metal that causes a chemical hydrogenation reaction. In that case, Ni or the like is particularly desirable in terms of cost.
また、電気化学的水素付加反応を起こす触媒金属、電気化学的水素付加反応を起こす触媒金属のいずれもの水素付加触媒は、触媒金属の低減による低コスト化と反応表面積の増大化のため、微粒子化することが好ましい。微粒子化のために、触媒金属を担体に担持することが望ましい。
In addition, the hydrogenation catalyst, either a catalytic metal that causes an electrochemical hydrogenation reaction or a catalytic metal that undergoes an electrochemical hydrogenation reaction, is made finer to reduce the cost and increase the reaction surface area by reducing the catalytic metal. It is preferable to do. For fine particle formation, it is desirable to support a catalyst metal on a support.
電気化学的水素付加反応を起こす触媒の担体としては、電気伝導性材料であればいずれのものでも良い。特に分散性や触媒金属を容易に担持できることからカーボンが望ましい。カーボンの種類としては、例えば、ファーネスブラックやチャンネルブラック、アセチレンブラック、アモルファスブラック、カーボンナノチューブ、カーボンナノホーン、カーボンブラック、活性炭、黒鉛等が挙げられる。これらのものを単独あるいは混合して使用することができる。
As the catalyst carrier that causes the electrochemical hydrogenation reaction, any material may be used as long as it is an electrically conductive material. In particular, carbon is desirable because it can disperse and can easily carry a catalytic metal. Examples of the carbon include furnace black, channel black, acetylene black, amorphous black, carbon nanotube, carbon nanohorn, carbon black, activated carbon, and graphite. These can be used alone or in combination.
化学的水素付加反応を起こす触媒の担体としては、必ずしも電気伝導性材料である必要はない。例えば、金属酸化物を担体として用いることができる。金属酸化物としては、Al2O3、ZrO2、Nb2O5、SiO2、P2O5-Al2O3などを用いることができる。
The carrier for the catalyst that causes a chemical hydrogenation reaction is not necessarily an electrically conductive material. For example, a metal oxide can be used as a support. As the metal oxide, Al 2 O 3 , ZrO 2 , Nb 2 O 5 , SiO 2 , P 2 O 5 —Al 2 O 3 or the like can be used.
また、担体に触媒金属を担持する方法としては、共沈法、熱分解法、無電解めっき法など特に限定はない。
Further, the method for supporting the catalyst metal on the carrier is not particularly limited, such as a coprecipitation method, a thermal decomposition method, and an electroless plating method.
図1では、化学的水素付加反応を起こす触媒の配置場所には、触媒層内にある例を示していたが、上述のように、ガス拡散層内、セパレータ流路内、セル外の配管内等の場所にも配置できる。それぞれの配置場所には、それぞれメリットがある。触媒層内に配置する場合、メリットとしては発生した水素ガスを即座に被水素化物に水素付加することができ、ガス発生による圧力増加を防ぐことができることが挙げられる。ただし、触媒層内は強酸のプロトン伝導性の固体高分子電解質が存在するために、貴金属に限定される。
FIG. 1 shows an example in which the chemical hydrogenation reaction is placed in the catalyst layer, but as described above, in the gas diffusion layer, in the separator channel, in the pipe outside the cell. It can also be placed at other locations. Each location has its advantages. When arranged in the catalyst layer, a merit is that the generated hydrogen gas can be immediately hydrogenated to the hydride, and an increase in pressure due to gas generation can be prevented. However, the catalyst layer is limited to noble metals because of the presence of a strong acid proton-conducting solid polymer electrolyte.
ガス拡散層に分散する場合のメリットは、触媒層内に分散させる場合と同様に、発生した水素ガスを即座に被水素化物に水素付加することができ、ガス発生による圧力増加を防ぐことができることが挙げられる。また、強酸のプロトン伝導性の固体高分子電解質には直接接しないために、非貴金属の触媒を用いることができ、コストを下げることが可能になる。
The advantage of dispersing in the gas diffusion layer is that the generated hydrogen gas can be immediately hydrogenated to the hydride as in the case of dispersing in the catalyst layer, and the pressure increase due to gas generation can be prevented. Is mentioned. Further, since it is not in direct contact with the strong acid proton-conducting solid polymer electrolyte, a non-noble metal catalyst can be used, and the cost can be reduced.
セパレータの流路内に設置する場合のメリットとしては、セパレータの流路内はトータルでの表面積が大きいため、他の設置場所に比べて触媒量を多くできる。そのため、水素ガスと未反応被水素化物との接する機会が増え、それだけ反応量は多くなると考えられる。また、セパレータの流路内においても、強酸のプロトン伝導性の固体高分子電解質には直接接しないために非貴金属の触媒を用いることができ、コストを下げることが可能になる。
As an advantage of installing in the separator flow path, the total amount of surface area in the separator flow path is large, so the amount of catalyst can be increased compared to other installation locations. For this reason, it is considered that the chance of contact between the hydrogen gas and the unreacted hydride increases, and the reaction amount increases accordingly. Also, in the separator flow path, a non-noble metal catalyst can be used because it is not in direct contact with the strong acid proton-conducting solid polymer electrolyte, and the cost can be reduced.
セル外の配管などに設置する場合のメリットとしては、セルの温度とは別に、自由に温度設定をおこなうことができることが挙げられる。セル内の温度は高々100℃程度であるが、セル外では100℃以上に温度を高くできる。温度が高いほど、水素付加反応は進行しやすいと考えられる。ここにおいて、セル内の温度を、配管と比べて高温に出来ない理由は、あまり上げられないのは、固体高分子電解質膜22の性質のためである。固体高分子電解質膜は、加湿(水で濡らす)した場合に、プロトン導電を発現します。温度を上げた場合(特に100℃以上)には、水が蒸発してしまい、固体高分子電解質膜中の水が少なくなるため、プロトン導電率が小さくなり抵抗が大きくなるので、好ましくない。配管はそのような問題が生じないため、高温に設定可能である。更に、配管においても非貴金属の触媒を用いることができ、コストを下げることが可能になる。
An advantage of installing in piping outside the cell is that the temperature can be set freely independently of the cell temperature. The temperature inside the cell is about 100 ° C. at most, but the temperature can be raised to 100 ° C. or more outside the cell. The higher the temperature, the easier the hydrogen addition reaction proceeds. Here, the reason why the temperature in the cell cannot be increased as compared with the piping is that it cannot be raised so much because of the nature of the solid polymer electrolyte membrane 22. Solid polymer electrolyte membranes exhibit proton conductivity when humidified (wet with water). When the temperature is raised (especially at 100 ° C. or higher), water evaporates and water in the solid polymer electrolyte membrane decreases, which is not preferable because proton conductivity decreases and resistance increases. Since piping does not cause such a problem, it can be set to a high temperature. Further, a non-noble metal catalyst can be used also in the piping, and the cost can be reduced.
化学的水素付加反応を起こす触媒は、上記の設置箇所(触媒層内、ガス拡散層内、セパレータ内、配管内)のうちの、どれか一つの設置箇所、あるいは複数の設置箇所に設置することができる。電解水添反応装置の規模や設置場所等の条件を考慮して決定するのが望ましい。
The catalyst that causes a chemical hydrogenation reaction must be installed at any one or more of the above installation locations (in the catalyst layer, gas diffusion layer, separator, and piping). Can do. It is desirable to determine in consideration of conditions such as the scale and installation location of the electrolytic hydrogenation reactor.
本発明のMEAに関しては以下の方法で作製することができる。まず、電気化学的水素付加反応を起こす触媒、化学的水素付加反応を起こす触媒、固体高分子電解質、および固体高分子電解質を溶解する溶媒を加えて十分混合したカソード触媒ペーストと、白金ブラック、固体高分子電解質、および固体高分子電解質を溶解する溶媒を加えて十分混合したアノード触媒ペーストを作製する。それらのペーストを、それぞれポリフルオロエチレン(PTFE)フィルム等の剥離フィルム上に、スプレードライ法等により噴霧し、80℃で乾燥させて溶媒を蒸発させ、カソードおよびアノード触媒層を形成する。次にそれらのカソードおよびアノード触媒層を、固体高分子電解質膜を真ん中にはさんでホットプレス法によって接合し、剥離フィルム(PTFE)を剥がすことにより、本発明のMEAを作製することができる。
The MEA of the present invention can be produced by the following method. First, a catalyst that causes an electrochemical hydrogenation reaction, a catalyst that causes a chemical hydrogenation reaction, a solid polymer electrolyte, and a cathode catalyst paste that is mixed well with a solvent that dissolves the solid polymer electrolyte, platinum black, a solid An anode catalyst paste in which a polymer electrolyte and a solvent for dissolving the solid polymer electrolyte are added and mixed well is prepared. Each of these pastes is sprayed onto a release film such as a polyfluoroethylene (PTFE) film by a spray drying method or the like, dried at 80 ° C. to evaporate the solvent, and a cathode and an anode catalyst layer are formed. Next, the MEA of the present invention can be produced by joining the cathode and anode catalyst layers by hot pressing with the solid polymer electrolyte membrane in the middle and peeling the release film (PTFE).
また、本発明のMEA作製の別の一例として、電気化学的水素付加反応を起こす触媒、化学的水素付加反応を起こす触媒、固体高分子電解質、および固体高分子電解質を溶解する溶媒を加えて十分混合したカソード触媒ペーストと、白金ブラック、固体高分子電解質、および固体高分子電解質を溶解する溶媒を加えて十分混合したアノード触媒ペーストとを、スプレードライ法等により、直接固体高分子電解質膜に噴霧することでも作製することができる。
Further, as another example of MEA production of the present invention, a catalyst for causing an electrochemical hydrogen addition reaction, a catalyst for causing a chemical hydrogen addition reaction, a solid polymer electrolyte, and a solvent for dissolving the solid polymer electrolyte are sufficiently added. Spray the mixed cathode catalyst paste and platinum black, solid polymer electrolyte, and anode catalyst paste mixed well by adding a solvent that dissolves the solid polymer electrolyte directly onto the solid polymer electrolyte membrane by spray drying method, etc. Can also be produced.
固体高分子電解質膜を構成する有機高分子としては、パーフルオロカーボンスルホン酸、あるいは、ポリスチレンやポリエーテルケトン、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、その他のエンジニアリングプラスチック材料に、スルホン酸基、ホスホン酸基、カルボキシル基等のプロトン供与体をドープあるいは化学的に結合、固定化したものを用いることができる。また、上記材料において、架橋構造にしたり、部分フッ素化することで材料安定性を高めることも望ましい。
Examples of the organic polymer constituting the solid polymer electrolyte membrane include perfluorocarbon sulfonic acid, polystyrene, polyether ketone, polyether ether ketone, polysulfone, polyether sulfone, other engineering plastic materials, sulfonic acid groups, phosphones. A proton donor such as an acid group or a carboxyl group doped or chemically bonded and immobilized can be used. It is also desirable to improve the material stability by forming a crosslinked structure or partially fluorinating the material.
触媒層に含有する固体高分子電解質には、プロトン導電性を示す高分子材料を用い、例えばパーフロロカーボン系スルホン酸樹脂やポリパーフロロスチレン系スルホン酸樹脂に代表されるスルホン酸化あるいはアルキレンスルホン酸化したフッ素系ポリマーやポリスチレン類が挙げられる。その他にポリスルホン類、ポリエーテルスルホン類、ポリエーテルエーテルスルホン類、ポリエーテルエーテルケトン類、炭化水素系ポリマーにスルホン酸基等のプロトン供与体を導入した材料が挙げられる。
For the solid polymer electrolyte contained in the catalyst layer, a polymer material exhibiting proton conductivity is used. For example, sulfonated or alkylenesulfonated typified by perfluorocarbon sulfonic acid resin or polyperfluorostyrene sulfonic acid resin is used. Fluoropolymers and polystyrenes can be mentioned. Other examples include polysulfones, polyether sulfones, polyether ether sulfones, polyether ether ketones, and materials obtained by introducing a proton donor such as a sulfonic acid group into a hydrocarbon polymer.
被水素化物としては、不飽和炭化水素を用いる。例えば、ベンゼン、トルエン、キシレン、メシチレン、ナフタレン、メチルナフタレン、アントラセン、ビフェニル、フェナントロリン及びそれらのアルキル置換体のいずれか又は複数混合したものを用いることができる。これらの炭素同士の二重結合に水素が付加されることにより、水素を貯蔵することができる。
Unsaturated hydrocarbon is used as the hydride. For example, benzene, toluene, xylene, mesitylene, naphthalene, methylnaphthalene, anthracene, biphenyl, phenanthroline, and alkyl substitution products thereof or a mixture thereof can be used. Hydrogen can be stored by adding hydrogen to the double bond between these carbon atoms.
また、ガス拡散層中への化学的水素付加反応を起こす触媒の分散方法の一例としては次の方法が考えられる。化学的水素付加反応を起こす触媒を、エタノール:水=1:1の溶液に混ぜる。それにガス拡散層を浸漬し、80℃で熱風乾燥することで、化学的水素付加反応を起こす触媒が分散されたガス拡散層を得ることができる。
Also, the following method can be considered as an example of a method for dispersing the catalyst that causes a chemical hydrogenation reaction in the gas diffusion layer. A catalyst that causes a chemical hydrogenation reaction is mixed with a solution of ethanol: water = 1: 1. A gas diffusion layer in which a catalyst for causing a chemical hydrogenation reaction is dispersed can be obtained by immersing the gas diffusion layer therein and drying it at 80 ° C. with hot air.
セパレータの流路内への化学的水素付加反応を起こす触媒の分散方法の一例としては次の方法が考えられる。化学的水素付加反応を起こす触媒を、エタノール:水=1:1の溶液に混ぜる。その溶液をセパレータの流路に塗布し、80℃で熱風乾燥することで、化学的水素付加反応を起こす触媒が分散されたセパレータの流路を得ることができる。
The following method can be considered as an example of a method for dispersing the catalyst that causes a chemical hydrogenation reaction in the separator channel. A catalyst that causes a chemical hydrogenation reaction is mixed with a solution of ethanol: water = 1: 1. By applying the solution to the separator channel and drying with hot air at 80 ° C., a separator channel in which a catalyst causing a chemical hydrogenation reaction is dispersed can be obtained.
配管内への化学的水素付加反応を起こす触媒の分散方法の一例としては次の方法が考えられる。化学的水素付加反応を起こす触媒を、エタノール:水=1:1の溶液に混ぜる。その溶液を配管内に塗布し、80℃で熱風乾燥することで、化学的水素付加反応を起こす触媒が分散された配管内を得ることができる。
The following method can be considered as an example of a method for dispersing the catalyst that causes a chemical hydrogenation reaction in the pipe. A catalyst that causes a chemical hydrogenation reaction is mixed with a solution of ethanol: water = 1: 1. The solution is applied to the inside of the pipe and dried with hot air at 80 ° C., whereby the inside of the pipe in which the catalyst for causing the chemical hydrogenation reaction is dispersed can be obtained.
以下、下記の実施例により、本発明の詳細を説明する。尚、下記の実施例は、物質、重量、温度等の条件について、本発明は下記実施例に限定されるものではない。なお、各実施例では、実施例1と共通する図1、図2、図7の構成について説明を省略している。
Hereinafter, the details of the present invention will be described with reference to the following examples. In the following examples, the present invention is not limited to the following examples with respect to conditions such as substances, weight, and temperature. In each embodiment, the description of the configuration in FIGS. 1, 2, and 7 that is common to the first embodiment is omitted.
カソードで電気化学的水素付加反応を起こす触媒として、カーボンブラックにPt微粒子を30wt%分散担持した触媒を用いてMEAを作製した。電解質膜にはイオン交換膜を用いた。カソード触媒層は、スプレーコーターを用いて、直接イオン交換膜に触媒スラリーを塗布して形成した。以下の順序でカソード触媒層をイオン交換膜に塗布した。
MEA was prepared using a catalyst in which 30 wt% of Pt fine particles were dispersed and supported on carbon black as a catalyst for causing an electrochemical hydrogenation reaction at the cathode. An ion exchange membrane was used as the electrolyte membrane. The cathode catalyst layer was formed by directly applying the catalyst slurry to the ion exchange membrane using a spray coater. The cathode catalyst layer was applied to the ion exchange membrane in the following order.
まず、イオン交換膜を基板のホットプレート上に置き,吸引することで固定した。ホットプレートの温度は50℃とした。次に、その上からマスクをして、スプレーコーターでカソード触媒スラリーを塗布した。カソード触媒スラリーとして,実施例2で作製した触媒と水,5wt% イオン交換膜溶液,221溶液(1-プロパノール:2-プロパノール:水=2:2:1の溶液)を2:1.2:5.4:10.6の重量比で混合したものを用いた。塗布条件は、液圧0.01MPa,スワール圧0.15MPa,霧化圧0.15MPa,ガン/基板距離60mm,基板温度50℃とした。カソード触媒量は0.4mgPt・cm-2とした。
First, the ion exchange membrane was placed on a hot plate of the substrate and fixed by suction. The temperature of the hot plate was 50 ° C. Next, a mask was applied from above, and the cathode catalyst slurry was applied with a spray coater. As the cathode catalyst slurry, the catalyst prepared in Example 2 and water, 5 wt% ion exchange membrane solution, 221 solution (1-propanol: 2-propanol: water = 2: 2: 1 solution) 2: 1.2: 5.4: What was mixed by the weight ratio of 10.6 was used. The application conditions were as follows: liquid pressure 0.01 MPa, swirl pressure 0.15 MPa, atomization pressure 0.15 MPa, gun / substrate distance 60 mm, and substrate temperature 50 ° C. The amount of the cathode catalyst was 0.4 mg Pt · cm −2 .
カソード触媒層をイオン交換膜表面に形成したのち、その裏面にアノード触媒層を形成させた。アノード触媒層は転写法により形成した。まず、アノード触媒スラリーを作製した。アノード触媒スラリーとして、白金ブラックと5wt% イオン交換膜溶液,221溶液を、1:1.11:2.22の重量比で混合したものを用いた。それをアプリケータにより、ポリテトラフルオロエチレンシート上に塗布した。ポリテトラフルオロエチレンシート上に塗布したアノード触媒層を、ホットプレスによる熱転写でイオン交換膜表面に形成した。ホットプレス圧力は37.2kgf・cm-2,ホットプレス温度は120℃,ホットプレス時間は2分間とした。アノード触媒量は4.8mgPt・cm-2とした。
After the cathode catalyst layer was formed on the surface of the ion exchange membrane, an anode catalyst layer was formed on the back surface thereof. The anode catalyst layer was formed by a transfer method. First, an anode catalyst slurry was prepared. As the anode catalyst slurry, a mixture of platinum black, 5 wt% ion exchange membrane solution, and 221 solution in a weight ratio of 1: 1.11: 2.22 was used. It was applied onto a polytetrafluoroethylene sheet with an applicator. The anode catalyst layer coated on the polytetrafluoroethylene sheet was formed on the surface of the ion exchange membrane by thermal transfer using hot pressing. The hot press pressure was 37.2 kgf · cm −2 , the hot press temperature was 120 ° C., and the hot press time was 2 minutes. The anode catalyst amount was 4.8 mg Pt · cm −2 .
そして、ガス拡散層中に化学的水素付加反応を起こす触媒を分散させた。ガス拡散層としてカーボンクロスを用いた。化学的水素付加反応を起こす触媒として、アルミナ担持ニッケルを用いた。
Then, a catalyst that causes a chemical hydrogenation reaction was dispersed in the gas diffusion layer. Carbon cloth was used as the gas diffusion layer. Alumina-supported nickel was used as a catalyst for causing a chemical hydrogenation reaction.
アルミナAl2O3を電気炉に入れ、650℃で3時間焼成した。そして、硝酸ニッケル六水和物Ni(NO3)2・6H2Oを純水に溶解し、これに焼成したアルミナを浸漬し室温で1時間含浸させた。その後、80℃真空乾燥することで水分を除去した。その後、電気炉により650℃水素雰囲気化で焼成して触媒を活性化した。以上のように作製したアルミナ担持ニッケルを、エタノール:純水=1:1の溶液中に分散し、カーボンクロスを含浸させた。80℃で真空乾燥することで溶液を除去し、アルミナ担持ニッケルが分散されたカーボンクロスを得た。
Alumina Al 2 O 3 was placed in an electric furnace and baked at 650 ° C. for 3 hours. Then, nickel nitrate hexahydrate Ni (NO 3 ) 2 · 6H 2 O was dissolved in pure water, and the calcined alumina was immersed therein and impregnated at room temperature for 1 hour. Thereafter, moisture was removed by vacuum drying at 80 ° C. Thereafter, the catalyst was activated by calcination in an electric furnace at 650 ° C. in a hydrogen atmosphere. The alumina-supported nickel produced as described above was dispersed in a solution of ethanol: pure water = 1: 1 and impregnated with carbon cloth. The solution was removed by vacuum drying at 80 ° C. to obtain a carbon cloth having alumina-supported nickel dispersed therein.
作製したMEA、および、アルミナ担持ニッケルが分散されたカーボンクロスを図2の有機ハイドライド製造装置に組み込んだ。ここでは、セパレータの流路内には処理を施さず、そのまま用いた。被水素化物にはトルエンを用いた。カソードにトルエンを10cc/minで供給し、アノードに純水を5cc/minで供給した状態で、アノード-カソード間に電圧を印加した。セル温度は80℃でおこなった。その結果、1.6V以上負荷した場合に電流が流れ反応が進行した。2.2Vまで電圧を印加したが、電圧を高くするほど電流が大きくなり、反応が進行した。カソード排出ガスをガスクロマトグラフィで分析した所、トルエンおよびメチルシクロヘキサンが検出された。これにより、トルエンの水素付加反応によりメチルシクロヘキサンが生成されたことが確認された。図3は、ガスクロマトグラフィのピーク強度から算出した、トルエンからメチルシクロヘキサンへの転化率を示す。電圧が高くなるほど転化率が向上し、今回の条件での最高値は、2.2V印加した場合に70%であった。図4は、加えた全電気量に対する、生成したメチルシクロヘキサンの収率を示す。電圧が高くなるほど収率は向上し、今回の条件での最高値は、2.2V負荷した場合に88%であった。
The fabricated MEA and the carbon cloth in which the alumina-carrying nickel was dispersed were incorporated into the organic hydride manufacturing apparatus shown in FIG. Here, no treatment was performed in the flow path of the separator, and the separator was used as it was. Toluene was used as the hydride. A voltage was applied between the anode and cathode while toluene was supplied to the cathode at 10 cc / min and pure water was supplied to the anode at 5 cc / min. The cell temperature was 80 ° C. As a result, when a load of 1.6 V or higher was applied, current flowed and the reaction proceeded. The voltage was applied to 2.2V, but the current increased as the voltage was increased, and the reaction proceeded. When the cathode exhaust gas was analyzed by gas chromatography, toluene and methylcyclohexane were detected. Thereby, it was confirmed that methylcyclohexane was produced by the hydrogenation reaction of toluene. FIG. 3 shows the conversion rate from toluene to methylcyclohexane calculated from the peak intensity of gas chromatography. The higher the voltage, the better the conversion, and the maximum value under this condition was 70% when 2.2V was applied. FIG. 4 shows the yield of produced methylcyclohexane relative to the total amount of electricity added. The higher the voltage, the better the yield, and the maximum value under this condition was 88% with a 2.2V load.
<比較例1>
実施例1と同様の作製方法・条件で、MEAを作製した。ガス拡散層はカーボンクロスを用いたが、実施例2とは異なり、処理は施さずにそのまま用いた。 <Comparative Example 1>
An MEA was produced by the same production method and conditions as in Example 1. Carbon cloth was used for the gas diffusion layer, but unlike Example 2, it was used as it was without being treated.
実施例1と同様の作製方法・条件で、MEAを作製した。ガス拡散層はカーボンクロスを用いたが、実施例2とは異なり、処理は施さずにそのまま用いた。 <Comparative Example 1>
An MEA was produced by the same production method and conditions as in Example 1. Carbon cloth was used for the gas diffusion layer, but unlike Example 2, it was used as it was without being treated.
作製したMEAおよびガス拡散層を図2の有機ハイドライド製造装置に組み込み、実施例2と同様の条件でトルエンへの水素付加反応試験をおこなった。図5は、トルエンからメチルシクロヘキサンへの転化率を示す。今回の条件での最高値は、2.2V負荷した場合に60.3%であった。実施例1に比べて低い転化率であった。その理由として、以下が考えられる。トルエンが供給されていない触媒においては、トルエンの水素付加反応ではなく、次の(3)式の反応により水素発生が起こっていると考えられる。
The fabricated MEA and gas diffusion layer were incorporated into the organic hydride production apparatus of FIG. 2 and a hydrogen addition reaction test to toluene was performed under the same conditions as in Example 2. FIG. 5 shows the conversion of toluene to methylcyclohexane. The highest value under this condition was 60.3% with a load of 2.2V. Compared to Example 1, the conversion rate was low. The reason is considered as follows. In the catalyst to which toluene is not supplied, it is considered that hydrogen generation occurs not by the hydrogenation reaction of toluene but by the reaction of the following formula (3).
2H+ + 2e- → H2 (3)
実施例2では、発生した水素ガスは化学的にトルエンと反応してメチルシクロヘキサンが生成したが、比較例1では、化学的に反応することなく排ガスとして排出されたと考えられる。実際、ガス流量計を用いて出口でのガス流量を測定したところ、実施例2に比べて比較例1では、ガス流量が増加した。そのため、転化率も低いものになったと考えられる。 2H + + 2e - → H 2 (3)
In Example 2, the generated hydrogen gas chemically reacted with toluene to produce methylcyclohexane. In Comparative Example 1, it is considered that the generated hydrogen gas was discharged as exhaust gas without chemically reacting. Actually, when the gas flow rate at the outlet was measured using a gas flow meter, the gas flow rate increased in Comparative Example 1 compared to Example 2. Therefore, it is thought that the conversion rate was low.
実施例2では、発生した水素ガスは化学的にトルエンと反応してメチルシクロヘキサンが生成したが、比較例1では、化学的に反応することなく排ガスとして排出されたと考えられる。実際、ガス流量計を用いて出口でのガス流量を測定したところ、実施例2に比べて比較例1では、ガス流量が増加した。そのため、転化率も低いものになったと考えられる。 2H + + 2e - → H 2 (3)
In Example 2, the generated hydrogen gas chemically reacted with toluene to produce methylcyclohexane. In Comparative Example 1, it is considered that the generated hydrogen gas was discharged as exhaust gas without chemically reacting. Actually, when the gas flow rate at the outlet was measured using a gas flow meter, the gas flow rate increased in Comparative Example 1 compared to Example 2. Therefore, it is thought that the conversion rate was low.
図6は加えた全電気量に対する、生成したメチルシクロヘキサンの収率を示す。電圧が高くなるほど収率は向上したが、実施例1に比べて低く、最高で2.2Vにおいて78.4%であった。発生した水素ガスが化学的に反応することなく排出されたため、その分だけメチルシクロヘキサン生成のエネルギー効率は低いものになった。
FIG. 6 shows the yield of produced methylcyclohexane relative to the total amount of electricity added. The higher the voltage, the better the yield, but it was lower than in Example 1 and was 78.4% at 2.2 V at the maximum. Since the generated hydrogen gas was discharged without chemically reacting, the energy efficiency for producing methylcyclohexane was lowered accordingly.
カソードで電気化学的水素付加反応を起こす触媒として、カーボンブラックにPt微粒子を30wt%分散担持した触媒を用いた。また、カソードで化学的水素付加反応を起こす触媒として、アルミナ担持白金を混在させた。
As a catalyst for causing an electrochemical hydrogenation reaction at the cathode, a catalyst in which 30 wt% of Pt fine particles were dispersedly supported on carbon black was used. In addition, platinum supported on alumina was mixed as a catalyst for causing a chemical hydrogenation reaction at the cathode.
アルミナ担持白金の合成方法は次のようにおこなった。アルミナAl2O3を電気炉に入れ、650℃で3時間焼成した。そして、白金コロイド溶液に焼成したアルミナを浸漬し室温で1時間含浸させた。その後、80℃真空乾燥することで溶液を除去した。その後、電気炉により650℃水素雰囲気化で焼成して触媒を活性化した。
The method for synthesizing the alumina-supported platinum was as follows. Alumina Al 2 O 3 was placed in an electric furnace and baked at 650 ° C. for 3 hours. The calcined alumina was immersed in a platinum colloid solution and impregnated at room temperature for 1 hour. Thereafter, the solution was removed by vacuum drying at 80 ° C. Thereafter, the catalyst was activated by calcination in an electric furnace at 650 ° C. in a hydrogen atmosphere.
これらの電気化学的水素付加反応を起こす触媒、化学的水素付加反応を起こす触媒を含むMEAを作製した。カソード触媒スラリーとして,電気化学的水素付加反応を起こす触媒と化学的水素付加反応を起こす触媒,水,5wt% イオン交換膜溶液,221溶液(1-プロパノール:2-プロパノール:水=2:2:1の溶液)を1:1:1.2:5.4:10.6の重量比で混合したものを用いた。その他のMEAの作製条件・方法は実施例1と同様におこなった。
An MEA including a catalyst that causes the electrochemical hydrogenation reaction and a catalyst that causes the chemical hydrogenation reaction was prepared. As a cathode catalyst slurry, a catalyst that causes an electrochemical hydrogen addition reaction and a catalyst that causes a chemical hydrogen addition reaction, water, 5 wt% ion exchange membrane solution, 221 solution (1-propanol: 2-propanol: water = 2: 2: 1) was mixed at a weight ratio of 1: 1: 1.2: 5.4: 10.6. Other MEA production conditions and methods were the same as in Example 1.
作製したMEAを図2の有機ハイドライド製造装置に組み込み、実施例1と同様の条件でトルエンへの水素付加反応試験をおこなった。ここでは、ガス拡散層およびセパレータの流路には処理を施さず、そのまま用いた。その結果を図8に示す。図8は、アノード-カソード間に2.2V印加した際の転化率および収率である。比較例1に比べて、転化率、収率ともに増加する結果となり、カソード触媒層内に化学的水素付加反応を起こす触媒を導入した効果が認められた。
The fabricated MEA was incorporated into the organic hydride production apparatus shown in FIG. 2, and a hydrogen addition reaction test on toluene was performed under the same conditions as in Example 1. Here, the gas diffusion layer and the separator flow path were used without any treatment. The result is shown in FIG. FIG. 8 shows the conversion rate and yield when 2.2 V is applied between the anode and the cathode. Compared to Comparative Example 1, both the conversion rate and the yield increased, and the effect of introducing a catalyst that causes a chemical hydrogenation reaction into the cathode catalyst layer was recognized.
セパレータの流路内に化学的水素付加反応を起こす触媒を配置した。化学的水素付加反応を起こす触媒として、アルミナ担持ニッケルを用いた。
A catalyst that causes a chemical hydrogenation reaction was placed in the separator channel. Alumina-supported nickel was used as a catalyst for causing a chemical hydrogenation reaction.
アルミナAl2O3を電気炉に入れ、650℃で3時間焼成した。そして、硝酸ニッケル六水和物Ni(NO3)2・6H2Oを純水に溶解し、これに焼成したアルミナを浸漬し室温で1時間含浸させた。その後、80℃真空乾燥することで水分を除去した。その後、電気炉により650℃水素雰囲気化で焼成して触媒を活性化した。このアルミナ担持ニッケルをエタノール:純水=1:1の溶液中に分散し、それをセパレータ流路内に塗布した。80℃で真空乾燥することで、溶液を除去した。
Alumina Al 2 O 3 was placed in an electric furnace and baked at 650 ° C. for 3 hours. Then, nickel nitrate hexahydrate Ni (NO 3 ) 2 · 6H 2 O was dissolved in pure water, and the calcined alumina was immersed therein and impregnated at room temperature for 1 hour. Thereafter, moisture was removed by vacuum drying at 80 ° C. Thereafter, the catalyst was activated by calcination in an electric furnace at 650 ° C. in a hydrogen atmosphere. This alumina-supported nickel was dispersed in a solution of ethanol: pure water = 1: 1 and applied to the separator flow path. The solution was removed by vacuum drying at 80 ° C.
MEAは実施例1と同様の方法・条件で作製した。このMEAを、流路内に化学的水素付加反応を起こす触媒を配置したセパレータを用いて、図2の有機ハイドライド製造装置に組み込み、実施例2と同様の条件でトルエンへの水素付加反応試験をおこなった。ここでは、ガス拡散層には処理を施さず、そのまま用いた。その結果を図8に示す。比較例1に比べて、転化率、収率ともに増加する結果となり、セパレータの流路内に化学的水素付加反応を起こす触媒を配置した効果が認められた。
MEA was produced by the same method and conditions as in Example 1. This MEA was incorporated into the organic hydride production apparatus shown in FIG. 2 using a separator in which a catalyst for causing a chemical hydrogenation reaction was placed in the flow path, and a hydrogen addition reaction test for toluene was performed under the same conditions as in Example 2. I did it. Here, the gas diffusion layer was used without any treatment. The result is shown in FIG. Compared with Comparative Example 1, both the conversion rate and the yield increased, and the effect of arranging a catalyst for causing a chemical hydrogenation reaction in the separator channel was recognized.
11-----固体高分子電解質膜、12-----カソード触媒層、13-----アノード触媒層、14-----電気化学的水素付加反応を起こす触媒、15-----担体、16-----三相界面が形成されていない触媒金属、17-----化学的水素付加反応を起こす触媒金属、18-----固体高分子電解質
21-----セパレータ、22-----固体高分子電解質膜、23-----アノード触媒層、24-----カソード触媒層、25-----ガス拡散層、26-----ガスケット、27-----化学的水素付加反応を起こす触媒、 11 ----- Solid polymer electrolyte membrane, 12 ----- Cathode catalyst layer, 13 ----- Anode catalyst layer, 14 ----- Catalyst causing electrochemical hydrogenation reaction, 15- ---- Support, 16 ----- Catalyst metal without three-phase interface, 17 ----- Catalyst metal causing chemical hydrogenation reaction, 18 ----- Solid polymer electrolyte
21 ----- Separator, 22 ----- Solid polymer electrolyte membrane, 23 ----- Anode catalyst layer, 24 ----- Cathode catalyst layer, 25 ----- Gas diffusion layer, 26 ----- Gasket, 27 ----- Catalyst causing chemical hydrogenation reaction,
21-----セパレータ、22-----固体高分子電解質膜、23-----アノード触媒層、24-----カソード触媒層、25-----ガス拡散層、26-----ガスケット、27-----化学的水素付加反応を起こす触媒、 11 ----- Solid polymer electrolyte membrane, 12 ----- Cathode catalyst layer, 13 ----- Anode catalyst layer, 14 ----- Catalyst causing electrochemical hydrogenation reaction, 15- ---- Support, 16 ----- Catalyst metal without three-phase interface, 17 ----- Catalyst metal causing chemical hydrogenation reaction, 18 ----- Solid polymer electrolyte
21 ----- Separator, 22 ----- Solid polymer electrolyte membrane, 23 ----- Anode catalyst layer, 24 ----- Cathode catalyst layer, 25 ----- Gas diffusion layer, 26 ----- Gasket, 27 ----- Catalyst causing chemical hydrogenation reaction,
Claims (15)
- 被水素化物から有機ハイドライドを生成するカソード触媒層と、
前記カソード触媒層内に配置され、前記被水素化物に電気化学的水素付加反応を起こす第一の触媒と、
水からプロトンと酸素と電子を生成するアノード触媒層と、
前記カソード触媒層と前記アノード触媒層との間に設けられ、前記プロトンが前記アノード触媒層から前記カソード触媒層に移動可能な固体高分子電解質膜と、
前記カソード触媒層で発生する水素ガス及び前記被水素化物に対して、化学的水素付加反応を起こす第二の触媒と、を備えたことを特徴とする有機ハイドライド製造装置。 A cathode catalyst layer for producing organic hydride from the hydride,
A first catalyst disposed within the cathode catalyst layer and causing an electrochemical hydrogenation reaction to the hydride;
An anode catalyst layer that generates protons, oxygen, and electrons from water;
A solid polymer electrolyte membrane provided between the cathode catalyst layer and the anode catalyst layer and capable of transferring the protons from the anode catalyst layer to the cathode catalyst layer;
An organic hydride manufacturing apparatus, comprising: a second catalyst that causes a chemical hydrogen addition reaction to the hydrogen gas generated in the cathode catalyst layer and the hydride. - 前記第二の触媒は、前記カソード触媒層内に配置されていることを特徴とする請求項1に記載の有機ハイドライド製造装置。 The organic hydride manufacturing apparatus according to claim 1, wherein the second catalyst is disposed in the cathode catalyst layer.
- 前記第二の触媒は貴金属であることを特徴とする請求項2に記載の有機ハイドライド製造装置。 The organic hydride manufacturing apparatus according to claim 2, wherein the second catalyst is a noble metal.
- 前記被水素化物を前記カソード触媒層に供給する供給部を備え、
前記カソード触媒層は、電子の通り道である前記第一の触媒の担体と、プロトンの通り道である電解質を含み、
前記第一の触媒は、前記被水素化物が供給される流路上であり、かつ前記第一の触媒の担体と、前記電解質に接する位置に配置され、
前記第二の触媒は、前記被水素化物が供給する流路上であり、少なくとも前記第一の触媒の担体か、前記電解質のいずれかと接しない位置に配置されていることを特徴とする請求項3に記載の有機ハイドライド製造装置。 A supply unit for supplying the hydride to the cathode catalyst layer;
The cathode catalyst layer includes a carrier of the first catalyst that is a path for electrons and an electrolyte that is a path for protons;
The first catalyst is disposed on a flow path to which the hydride is supplied and in a position in contact with the support of the first catalyst and the electrolyte,
4. The second catalyst is disposed on a flow path supplied by the hydride, and is disposed at a position that does not contact at least either the carrier of the first catalyst or the electrolyte. The organic hydride manufacturing apparatus described in 1. - 前記カソード触媒層内の前記電気化学的水素付加反応を起こす触媒と、前記化学的水素付加反応を起こす触媒はそれぞれ層状態になっており、
前記固体高分子電解質膜を基準として、第二の触媒は、第一の触媒よりも離れた位置に配置されていることを特徴とする請求項2に記載の有機ハイドライド製造装置。 The catalyst for causing the electrochemical hydrogenation reaction in the cathode catalyst layer and the catalyst for causing the chemical hydrogenation reaction are respectively in a layer state,
3. The organic hydride manufacturing apparatus according to claim 2, wherein the second catalyst is disposed at a position distant from the first catalyst with respect to the solid polymer electrolyte membrane. - 被水素化物から有機ハイドライドを生成するカソード触媒層と、
前記カソード触媒層内に配置され、前記被水素化物に電気化学的水素付加反応を起こす第一の触媒と、
水からプロトンと酸素と電子を生成するアノード触媒層と、
前記カソード触媒層と前記アノード触媒層との間に設けられ、前記プロトンを前記アノード触媒層から前記カソード触媒層に移動可能な固体高分子電解質膜と、
前記カソード触媒層で生成された生成物を排出する流路と、
前記流路に、化学反応を起こす第二の触媒と、を備えたことを特徴とする有機ハイドライド製造装置。 A cathode catalyst layer for producing organic hydride from the hydride,
A first catalyst disposed within the cathode catalyst layer and causing an electrochemical hydrogenation reaction to the hydride;
An anode catalyst layer that generates protons, oxygen, and electrons from water;
A solid polymer electrolyte membrane provided between the cathode catalyst layer and the anode catalyst layer and capable of transferring the protons from the anode catalyst layer to the cathode catalyst layer;
A flow path for discharging the product produced in the cathode catalyst layer;
An organic hydride manufacturing apparatus comprising a second catalyst that causes a chemical reaction in the flow path. - 前記化学反応は、前記被水素化物に対して化学的水素付加反応を起こす化学反応であることを特徴とする請求項6に記載の有機ハイドライド製造装置。 The organic hydride manufacturing apparatus according to claim 6, wherein the chemical reaction is a chemical reaction that causes a chemical hydrogenation reaction to the hydride.
- 前記流路は、
前記カソード触媒層および前記アノード触媒層のそれぞれの表面に配置され、前記カソード触媒層及び前記アノード触媒層から生成物を排出するガス拡散層と、
前記ガス拡散層各々の表面に配置され、前記ガス拡散層と接する面に流路溝が形成され、前記生成物を外部に排出するセパレータであることを特徴とする請求項6に記載の有機ハイドライド製造装置。 The flow path is
A gas diffusion layer disposed on a surface of each of the cathode catalyst layer and the anode catalyst layer and discharging a product from the cathode catalyst layer and the anode catalyst layer;
The organic hydride according to claim 6, wherein the organic hydride is a separator that is disposed on a surface of each of the gas diffusion layers, has a channel groove formed on a surface in contact with the gas diffusion layer, and discharges the product to the outside. Manufacturing equipment. - 前記化学的水素付加反応を起こす触媒は、少なくとも前記ガス拡散層内または、前記セパレータの流路溝内のいずれかに配置されていることを特徴とする請求項8に記載の有機ハイドライド製造装置。 9. The organic hydride manufacturing apparatus according to claim 8, wherein the catalyst that causes the chemical hydrogenation reaction is disposed at least in either the gas diffusion layer or the flow channel of the separator.
- 前記流路は、外部に前記有機ハイドライドを排出する配管を備え、
前記配管に、前記化学的水素付加反応を起こす触媒が配置されていることを特徴とする請求項6に記載の有機ハイドライド製造装置。 The flow path includes a pipe for discharging the organic hydride to the outside,
The organic hydride manufacturing apparatus according to claim 6, wherein a catalyst that causes the chemical hydrogenation reaction is disposed in the pipe. - 更に、前記セパレータに接続され、外部に前記有機ハイドライドを排出する配管を備え、
前記配管に、前記化学的水素付加反応を起こす触媒が配置されていることを特徴とする請求項6に記載の有機ハイドライド製造装置。 Furthermore, a pipe connected to the separator and discharging the organic hydride to the outside is provided.
The organic hydride manufacturing apparatus according to claim 6, wherein a catalyst that causes the chemical hydrogenation reaction is disposed in the pipe. - 前記化学的水素付加反応を起こす触媒は、Ni、Pd、Pt、Rh、Ir、Re、Ru、Mo、W、V、Os、Cr、Co、Feまたは、これらの少なくとも一部を含む合金からなることを特徴とする請求項6に記載の有機ハイドライド製造装置。 The catalyst that causes the chemical hydrogenation reaction is made of Ni, Pd, Pt, Rh, Ir, Re, Ru, Mo, W, V, Os, Cr, Co, Fe, or an alloy containing at least a part thereof. The organic hydride manufacturing apparatus according to claim 6.
- 前記配管には、温度を上昇させるヒーターが設けられていることを特徴とする請求項10に記載の有機ハイドライド製造装置。 The organic hydride manufacturing apparatus according to claim 10, wherein the pipe is provided with a heater for raising a temperature.
- 更に、前記カソード触媒層に、前記第二の触媒が配置されたことを特徴とする請求項8に記載の有機ハイドライド製造装置。 The organic hydride manufacturing apparatus according to claim 8, wherein the second catalyst is disposed on the cathode catalyst layer.
- 前記カソード触媒層または前記ガス拡散層または前記セパレータの少なくとも一つの温度を上昇させるヒーターを備えたことを特徴とする請求項14に記載の有機ハイドライド製造装置。 The organic hydride manufacturing apparatus according to claim 14, further comprising a heater that increases a temperature of at least one of the cathode catalyst layer, the gas diffusion layer, or the separator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/064833 WO2014192089A1 (en) | 2013-05-29 | 2013-05-29 | Device for producing organic hydride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/064833 WO2014192089A1 (en) | 2013-05-29 | 2013-05-29 | Device for producing organic hydride |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014192089A1 true WO2014192089A1 (en) | 2014-12-04 |
Family
ID=51988164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/064833 WO2014192089A1 (en) | 2013-05-29 | 2013-05-29 | Device for producing organic hydride |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014192089A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018037774A1 (en) * | 2016-08-23 | 2018-03-01 | 国立大学法人横浜国立大学 | Cathode, electrolysis cell for producing organic hydride, and organic hydride production method |
CN107913653A (en) * | 2017-12-26 | 2018-04-17 | 大连理工大学盘锦产业技术研究院 | A kind of electrochemical hydrogenation device and method |
CN113789538A (en) * | 2021-11-15 | 2021-12-14 | 广东工业大学 | Gas diffusion cathode with suspension catalyst layer and electrochemical reactor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003045449A (en) * | 2001-08-01 | 2003-02-14 | Masaru Ichikawa | Chemical power generation/device for manufacturing organic hydride and chemical power generation/ manufacturing method for organic hydride |
JP2008056988A (en) * | 2006-08-31 | 2008-03-13 | Yokogawa Electric Corp | Organic electrolytically synthetic apparatus |
WO2011122155A1 (en) * | 2010-03-31 | 2011-10-06 | 株式会社日立製作所 | Device for manufacturing organic hydride |
-
2013
- 2013-05-29 WO PCT/JP2013/064833 patent/WO2014192089A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003045449A (en) * | 2001-08-01 | 2003-02-14 | Masaru Ichikawa | Chemical power generation/device for manufacturing organic hydride and chemical power generation/ manufacturing method for organic hydride |
JP2008056988A (en) * | 2006-08-31 | 2008-03-13 | Yokogawa Electric Corp | Organic electrolytically synthetic apparatus |
WO2011122155A1 (en) * | 2010-03-31 | 2011-10-06 | 株式会社日立製作所 | Device for manufacturing organic hydride |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018037774A1 (en) * | 2016-08-23 | 2018-03-01 | 国立大学法人横浜国立大学 | Cathode, electrolysis cell for producing organic hydride, and organic hydride production method |
CN107913653A (en) * | 2017-12-26 | 2018-04-17 | 大连理工大学盘锦产业技术研究院 | A kind of electrochemical hydrogenation device and method |
CN107913653B (en) * | 2017-12-26 | 2023-08-15 | 大连理工大学盘锦产业技术研究院 | Electrochemical hydrogenation device and method |
CN113789538A (en) * | 2021-11-15 | 2021-12-14 | 广东工业大学 | Gas diffusion cathode with suspension catalyst layer and electrochemical reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5705214B2 (en) | Organic hydride production equipment | |
KR101417354B1 (en) | Film electrode-bond and organic hydride manufacturing apparatus | |
WO2012043086A1 (en) | Device for manufacturing organic hydride | |
KR102471656B1 (en) | Apparatus for producing organic hydride and method for producing organic hydride using same | |
KR20060004780A (en) | Supported catalyst and fuel cell using the same | |
JP7410724B2 (en) | Organic hydride production equipment and organic hydride production method | |
US20220333257A1 (en) | Organic hydride production device | |
WO2018037774A1 (en) | Cathode, electrolysis cell for producing organic hydride, and organic hydride production method | |
JP2017190486A (en) | Catalyst layer, cathode, electrolytic synthesis cell, membrane electrode assembly, organic compound hydrogenating device and method for producing hydrogenated organic compound | |
KR20190083546A (en) | Electrochemical hydrogenation reactor and method of hydrogenation using the same | |
WO2014192089A1 (en) | Device for producing organic hydride | |
JP6998797B2 (en) | Organic hydride manufacturing equipment, organic hydride manufacturing method and energy transportation method | |
JP4846371B2 (en) | Membrane-electrode assembly for fuel cell and fuel cell system including the same | |
KR20190125885A (en) | Electrochemical dehydrogen reactor and method of dehydrogenation using the same | |
US7338587B2 (en) | Electrochemical process for oxidation of alkanes to alkenes | |
KR101117630B1 (en) | Membrane-electrode assembly for fuel cell and method for preparating the same | |
JP7105421B2 (en) | Epoxy Derivative Production Apparatus, Epoxy Derivative Production Method, and Epoxy Derivative Production Apparatus Production Method | |
WO2024034444A1 (en) | Apparatus for producing organic hydride | |
WO2022091360A1 (en) | Device for manufacturing organic hydride | |
WO2022091361A1 (en) | Organic hydride production apparatus, and method for forming cathode catalyst layer | |
KR20240051841A (en) | Method of manufacturing porous transport electrodes and polymer electrolyte membrane water electrolysis having the porous transport electrode manufactured by the method | |
KR20230119458A (en) | Deposition method using plasma | |
JP2020176023A (en) | Electrochemical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13885730 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13885730 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |