WO2014192087A1 - Laminate-type lithium-ion secondary battery module - Google Patents

Laminate-type lithium-ion secondary battery module Download PDF

Info

Publication number
WO2014192087A1
WO2014192087A1 PCT/JP2013/064831 JP2013064831W WO2014192087A1 WO 2014192087 A1 WO2014192087 A1 WO 2014192087A1 JP 2013064831 W JP2013064831 W JP 2013064831W WO 2014192087 A1 WO2014192087 A1 WO 2014192087A1
Authority
WO
WIPO (PCT)
Prior art keywords
tab
secondary battery
ion secondary
battery module
lithium ion
Prior art date
Application number
PCT/JP2013/064831
Other languages
French (fr)
Japanese (ja)
Inventor
秀和 藤村
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2013/064831 priority Critical patent/WO2014192087A1/en
Publication of WO2014192087A1 publication Critical patent/WO2014192087A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery module structure.
  • Patent Document 1 JP-A-2005-222701
  • Patent Document 1 “one of the positive and negative terminals projecting out of the multilayer film from one cell constituting the laminated battery 4 and the multilayer film are projected from the cells adjacent in the stacking direction”
  • the positive and negative electrode terminals are disposed so as to be opposed to and bonded to one of the other terminals, and the joint portion projects from the opening 10 formed in the lid 6, and the opening 10 is an elastic sealing material Is filled and the joint portion is fixed. ”(See summary).
  • JP 2012-119176 A (patent document 2).
  • the battery assembly 1 is provided with “the unit cell 2 and the holder 3 for holding the unit cell 2, and the holder 3 is the unit cell 2 from between the other holder 3 for holding the unit cell 2.
  • Patent Document 1 since one of the different-pole terminals of the unit cells on the flat plate adjacent to each other in the stacking direction is disposed to be opposed to each other and joined, concentration of stress on the film-like battery case from which the terminal is derived Can be prevented.
  • the joint portion since the joint portion protrudes from the opening formed in the case and the opening is filled with the sealing material, the joint portion is fixed to the opening of the case, so that the terminal and the terminal protrude It is possible to prevent application of force to the film-like battery case and to improve the vibration resistance of the assembled battery, but how to incorporate the protruded terminal into the laminated battery structure, which is specific The structure is not presented.
  • the fluid is communicated with the passage through which the fluid flows, and the opening portion is opened toward the electrode protruding from the holding portion, so that the fluid can be directed toward the protruding electrode without providing the duct.
  • the flow can be concentrated and the cooling effect can be enhanced.
  • a holder is required for each unit cell, a seal portion is required between the holders and the structure becomes complicated.
  • the total volume of the holder occupies a large proportion of the entire assembled battery, and no consideration is given to the mounting density.
  • only gas can be used as a cooling medium, and there is a structurally difficult aspect regarding liquid cooling.
  • the present invention provides a lithium ion secondary battery module structure that enhances the heat dissipation effect and increases the energy density per volume of a battery module in which flat unit cells or laminate type cells are stacked.
  • a battery module in which a plurality of flat plate-type or laminate-type lithium ion secondary batteries are stacked and integrated in a housing, and covers the stacked battery main body and is adjacent to the positive electrode, negative electrode tab or in the stacking direction.
  • a first case in which only one matching pair of different-polarity tabs and a tab assembly in which the same-polarity tabs are joined is projected out of the casing from the same direction, and a second casing for storing the tab and the tab assembly.
  • the second housing includes a tab storage chamber in which each tab or tab assembly is covered and accommodated one by one with a partition wall, and a connection portion of tabs to the second housing, wiring , A control circuit board of the battery assembly, and a cooling mechanism.
  • the present invention it is possible to enhance the heat dissipation effect of the battery module and to increase the energy density per volume.
  • FIG. 1 is a cross-sectional view of a laminate type laminated battery. It is a bird's-eye view of the first case. It is sectional drawing of the side of a module. It is a bird's-eye view of the 2nd case. It is AA sectional drawing of a 2nd housing
  • the inside of the module may become hot. Therefore, a module having high reliability and durability is desired, which improves the cooling performance (i.e., improves the heat dissipation and reduces the temperature difference between cells).
  • the present inventors utilized the tab as a heat dissipation surface and enhanced the heat dissipation effect of the electrode tab portion. Specifically, the heat dissipation effect of the electrode tab portion protruded from the unit cell was enhanced, and further, a structure capable of cooling even a liquid refrigerant having a larger cooling effect was examined.
  • the module's reliability and durability are improved by the improvement of the heat dissipation and the equalization of the temperature among the unit cells. Further, the energy density per volume of the battery module and the battery pack in which the battery modules are arranged can be increased.
  • the present invention is intended for a laminate type lithium ion secondary battery module in which a plurality of laminate type lithium ion secondary batteries are stacked and integrated in a housing.
  • the housing covers the stacked battery body, and the positive electrode, the negative electrode tab, or a pair of different-polarity tabs adjacent in the stacking direction, or a tab assembly in which the same-polarity tabs are joined, from the same direction. It is comprised from the 1st housing
  • the second housing includes a tab storage chamber in which each tab or tab assembly is covered and accommodated one by one with a partition wall, and a tab connection portion, a wiring, a control circuit board of a battery assembly, and cooling A mechanism is incorporated.
  • control circuit board various wiring, terminal connection parts, and cooling mechanism are integrated in the case covering the tab part separately from the case covering the unit body of the cell and the case of the tab part.
  • the first housing and the second housing are spatially separated.
  • the surface facing the first housing of the second housing is closed by a partition plate, and the partition plate is provided with an opening for inserting the tab into the tab storage chamber.
  • the second housing having the cooling channel is made of a thermally conductive metal material, and the inner wall surface of the cooling channel be provided with an electrical insulating layer.
  • the wire storage chamber may be disposed on the back side of the tab storage chamber (opposite the surface facing the first casing), in a space between the rows of the tab storage chambers arranged in two rows in the stacking direction, or the like. Is preferred.
  • the outer surface of the tab storage chamber is preferably provided with perforations.
  • the second casing being made of a metal material with good thermal conductivity.
  • a plurality of battery modules covered by the first case may be combined to form an assembled battery integrated with the second case.
  • the second case comprises a first and a second two sets of battery modules having the first case, and a second case for storing the tab and the tab assembly.
  • the first housing is disposed on both sides of the body.
  • the second housing includes a tab storage chamber in which each tab or each tab assembly is covered and stored one by one, and provided on the partition plate surface of the both sides of the second housing.
  • a tab or tab assembly of the first and second modules is inserted into the tab storage chamber from the opening, and a second gap is formed between the tab storage chambers arranged in the stacking direction of the first module.
  • the module said tab storage room is arranged.
  • Example 1 described in FIGS. 1 to 9 is an example of a module structure 100 in which laminated batteries capable of liquid cooling are stacked.
  • FIG. 1 shows an example of the appearance of the laminate type battery 1 and how to arrange the laminate direction.
  • FIG. 2 shows a cross-sectional view in the stacking direction of the laminated battery. In each unit cell, as shown in FIG.
  • the laminate type battery 1 has an electrode part (not shown) laminated a plurality of times in the order of a positive electrode, a separator, a negative electrode, a separator and a positive electrode, and has a structure in which the periphery of the electrode part is covered with an exterior film.
  • a seal thermal fusion bonding portion 3 is formed by thermally fusing the bonding surfaces of the upper and lower outer layer films 2a and 2b, and an electrode portion (positive electrode tab 4 and negative electrode tab 5) protrudes from the seal thermal fusion bonding portion 3 .
  • a plurality of laminated single cells are connected in series.
  • the positive electrode tab 4A of the uppermost laminate type battery 1A is used for connecting the external terminal of the positive electrode.
  • the negative electrode tab 5A of the laminate type battery 1A is electrically connected to the positive electrode tab 4B of the immediately lower adjacent laminate type battery 1B.
  • the negative electrode tab 5B of the battery 1B is connected to the positive electrode tab 4C of the battery 1C below it, and the negative electrode tab 5C of the battery 1C is connected to the positive electrode of the battery 1 below it.
  • the positive electrode tab 4J is connected to the negative electrode tab of the next higher battery, and the negative electrode tab 5J of the same battery is used for external terminal connection of the negative electrode.
  • FIG. 2 shows an example in which the tab is bent in a crank shape.
  • the cranked tabs 5A and 4B are welded at the joint surface 7 to form a joint tab 8.
  • FIG. 3 shows a state where ten laminate type batteries are stacked and the battery main body portion is housed in the battery main body case (first case portion) 10.
  • the tabs ⁇ group are arranged in order of the negative electrode 5A, the positive electrode 4B, the negative electrode 5C,... The positive electrode 4J from the top.
  • the tab ⁇ group is arranged in order of the positive electrode 4A, the negative electrode 5B, the positive electrode 4C,... The negative electrode 5J from the top.
  • the connection state on the tab ⁇ group side on the front side is indicated by a solid line
  • the connection state on the tab ⁇ group side corresponding to the back is indicated by a broken line. Similar to the ⁇ group, the tabs of the ⁇ group are connected by the junction tab 9.
  • FIG. 4 shows a module 100 including twelve laminated batteries 1A to 1L stacked.
  • the main body portion 1 of the laminate type battery is housed in the first housing 10, and the bonding tab portions 8 and 9 in which the positive electrode tab and the negative electrode tab are joined are housed in the tab housing housing (second housing portion) 11. (Tab assembly 9 not shown).
  • the height H 2 of the second housing 11 is made shorter than the first housing height H 1 by adjusting the length of the gap P of the bonding tab 8 to reduce the volume of the module. , Energy density per volume can be increased.
  • the upper cushioning material 12 and the lower cushioning material 13 are respectively disposed between the first casing 10 and the upper and lower end portions of the laminated laminate type battery, and the up and down direction along with the expansion and contraction of the laminated battery An amount of deformation is absorbed, and an appropriate load is always applied to the stacked batteries, so that a gap or the like does not occur between the stacked batteries against an external impact.
  • the first and second housings 10 and 11 are joined by their respective flanges 14a and 14b and connected and fixed by screws or the like, and remain rigid against external impacts, and the battery body and tab joint surfaces Prevent the force applied to the tabs themselves.
  • FIG. 5 is a bird's-eye view of the second housing 11 and shows the surface in contact with the first housing 10.
  • the inner side surface of the flange 14 b of the housing 11 is closed by a partition plate 15.
  • the partition plate 15 is provided with an opening for housing each tab according to the position of the bonding tab of the battery main body, the positive electrode tab for the external terminal, and the negative electrode tab (a bonding tab of tab ⁇ group First joint tab storage chamber opening 16 for storing a first joint tab, second joint tab storage chamber opening 17 for a joint tab of a tab ⁇ group (referred to as second joint tab), for an external terminal
  • the vertical alignment of the first bonding tab storage chamber opening 16 and the second bonding tab storage chamber opening 17 is arranged in a form displaced by 1 / 2P. Further, storage chamber openings 18 and 19 for positive and negative electrode external terminal connection tabs are provided on the first bonding tab side.
  • FIG. 6 The AA cross section of the second housing 11 is shown in FIG. 6, and the BB cross section is similarly shown in FIG.
  • a total of six refrigerant flow passage portions 20A are formed above and below the first bonding tab storage chamber 30A.
  • a total of six refrigerant flow passage portions 20B are formed in the gap portion of the second bonding tab storage chamber 30B (not shown). The structure from another angle is shown in FIG.
  • the refrigerant flow passage portion 20A provided between the first bonding tab storage chamber 30A and the refrigerant flow passage portion 20B provided between the second bonding tab storage chamber 30B are connected by the connection flow passage 21 and the refrigerant It is possible to flow in the direction of the arrow from the inlet 22 provided on the side of the housing toward the outlet 23 provided on the opposite side.
  • the refrigerant either liquid such as water or gas such as air may be used.
  • the flow direction of the refrigerant may be either direction, but in the case of the present embodiment, considering the pressure loss, the direction opposite to that in FIG. 7 is preferable because the pressure loss is small and the pump power can be small.
  • a wiring storage room 26 is provided at a position further recessed from the openings 16 and 17.
  • the control circuit board 24, positive and negative terminal connection portions 25a and 25b, fuses, voltage detection lines, other boards, connectors and the like are stored in the wiring storage room 26.
  • the positive electrode tab 4A for the external terminal is connected to the positive electrode external terminal 27a through the positive electrode terminal connection portion 25a, and similarly, the negative electrode tab 5L for the external terminal is the negative electrode through the negative electrode terminal connection portion 25b. It is connected to the external terminal 27b.
  • An openable upper lid 28 is provided to perform operations such as wiring to a control circuit board and a fuse.
  • wiring such as power lines and thermistors, voltage detection lines, communication connectors, bus bar fittings, fuses, fuse fittings, etc. in advance for the second housing 11 so that the necessary minimum number of wiring connections can be made. May be fixed.
  • the second housing 11 is preferably made of a resinous material in consideration of electrical insulation.
  • a metal material having good thermal conductivity For example, by using an aluminum housing, it is possible to reduce the thermal resistance from the bonding tab to the above-described refrigerant flow path. As a result, the amount of heat released from the bonding tab increases, and the battery temperature can be further reduced. Further, the effect of reducing the temperature difference between the stacked batteries is further improved.
  • a thin electrically insulating layer 52 is provided on the contact surface 51 on the housing side in contact with the surface 50 of the bonding tab portions 8 and 9.
  • the area of the tab is preferably as large as possible.
  • the heat dissipation (cooling) area is increased, the cooling effect is enhanced, and as a result, the amount of heat transferred from the cell to the tab side is increased.
  • the amount of heat transfer in the stacking direction is reduced, and the temperature difference between the cells can be reduced.
  • the laminate type battery is a substantially flat rectangular parallelepiped as shown in FIG. 1 and the like, and as a means for increasing the tab area, as shown in FIG. 9A, the long side of the laminate type battery is positive. / Both negative electrode tabs can be provided, or can be provided on the short side as shown in FIG.
  • the positive electrode and the negative electrode tab on one side of the long side shown in FIG.
  • the tab areas of the positive and negative electrodes are the same, and the distance Y between the tabs and the distance Z from the end are also equal, comparing the areas A1 and A2 surrounded by the broken line in the figure, which increase by the tabs, Although the degree of influence is different depending on the ratio of the long side L and the short side W, the area A2 when the tab is provided on the short side is larger than the area A1 when the tab is provided on the long side
  • A1 Tab area / (1- (2Z + Y) / L)
  • A2 tab area / (1- (2Z + Y) / W) Since L> W, A2> A1.
  • the tab may be provided on the short side.
  • FIG. 10 is a bird's-eye view showing the second housing 200 in the second embodiment.
  • the configuration of the surface on the side in contact with the first housing is the same as in FIG. 5 of the first embodiment, and the inner side surface of the flange of the housing is closed by the partition plate 15.
  • the wire storage chamber 26 is provided on the back side of each of the tab storage chambers 30A, 30B, 31, 32.
  • the wiring storage room 26 also serves as a partition with the outside air.
  • only the joint tab storage chamber is provided in the housing, and there is no separate refrigerant flow channel portion as in the first embodiment, but the flow channel of the refrigerant is formed by the wiring storage chamber 26 and the tab storage chamber. 29 are formed.
  • it is suitable for flowing a refrigerant such as air in the direction of arrow 201 in FIG.
  • the wiring storage chamber 26 may be provided at the top or bottom of the bonding tab storage chamber. In that case, it is preferable to arrange a member for forming a flow path, such as a dividing flat plate, at the position of the broken line in FIG.
  • the second case since it is not necessary to newly manufacture the refrigerant flow channel, the second case can be manufactured easier than the first embodiment.
  • FIG. 11 is a bird's-eye view showing a second housing 300 in the third embodiment.
  • the configuration of the surface in contact with the first housing of the second housing of the third embodiment is the same as that of FIG. 5 of the first embodiment, and the inner side surface of the flange of the housing is closed by the partition plate 15 ing.
  • each storage chamber opening part 16, 17, 18, 19 for accommodating those each tab according to the position of the joining tab of a battery main body, the positive electrode tab for external terminals, and the same negative electrode tab is provided, respectively There is.
  • bonding tab storage chambers 31 and 32, a first bonded body storage chamber 30A, and a second bonded body storage chamber 30B are provided as housings, and bonding is performed.
  • the tab storage chambers 30A, 30B and the tab storage chambers 31, 32 are formed of a wall material having perforations, and have perforations 301 on the outer surface.
  • the perforations 301 are illustrated only on the upper surface of each storage chamber, they are also provided on the lower surface and the side surface.
  • the wire storage chamber 26 is provided between the bonded body storage chambers 30A and 30B.
  • the wiring storage room 26 By arranging the wiring storage room 26 in the gap between the first bonding tab storage room 30A and the second bonding tab storage room 30B, the useless space part is reduced, the mounting density is increased, and the energy per module unit volume is increased. It leads to the improvement of density.
  • the tab storage room and the wiring storage room be integrally formed and made of aluminum.
  • the wiring storage chamber 26 can also contribute as a heat dissipation surface, and by increasing the heat transfer area, natural convection heat transfer is promoted and the heat dissipation characteristics are improved.
  • a thin electrical insulating layer 52 may be provided on the contact surface 51 on the housing side in contact with the surface 50 of the bonding tab. It is necessary to take measures in consideration of the electrical insulation between the junction tab and the housing.
  • FIG. 12 is a view showing the assembled battery 400 in which the stacked battery modules 401 and 402 are integrated with the second housing 42 interposed therebetween.
  • the laminated battery main body is housed inside the first casings 40 and 41 of the respective battery modules.
  • the second case 42 corresponds to a modification of the second case of the first to third embodiments.
  • First and second joint tabs 8 and 9 project from the respective modules 401 and 402 in the same manner as in the above embodiment, and are accommodated in the second housing 42.
  • the second housing 42 is a connector unit that connects two modules.
  • FIG. 13 shows a cross section AA (stacking direction) of the second housing 42 of FIG. 12
  • FIG. 14 shows a cross section BB (direction orthogonal to the stacking direction) of the second housing 42 of FIG. is there.
  • control circuit board in some cases including control of two modules with one circuit board
  • communication in the space portion 45 between the two bonding tab storage chamber rows arranged along the stacking direction Connectors and other parts are placed together.
  • the volume of the battery pack can be reduced as compared with the case where the battery pack is constructed with a single module. Therefore, the energy density per unit volume of the battery pack can be increased.
  • the present invention is not limited to such an arrangement, and two or more modules may be used as one second housing. It is possible to integrate. As a result, the assemblability is improved by the integration of the wiring storage room and the like. In addition, the omission of the tab storage case enables weight reduction of the assembled battery.
  • a tab storage case 500 in which the positive electrode tab and the negative electrode tab are joined by a tab storage case will be described with reference to FIGS.
  • the positive electrode tab and the negative electrode tab of the unit cells adjacent to each other between the stacked unit cells are joined in advance.
  • the tabs protruding from the first case are not joined, and the positive electrode tab 4A of the laminate type battery 1A, the negative electrode tab 5B of the laminate type battery 1B, and the laminate type battery
  • the positive electrode tabs 4C of 1C and the positive electrode tabs and the negative electrode tabs are alternately arranged in the stacking direction.
  • a battery module is configured by combining the tab storage case 11 for storing the projected tabs and the battery body case 10.
  • a positive electrode external terminal 27a, a negative electrode external terminal 27b, and a communication connector 27c are provided on the back of the tab housing case 11.
  • a bus bar is attached to the positive electrode external terminal 27a and the negative electrode external terminal 27b.
  • the AA cross section of the tab housing case 11 is shown in FIG.
  • the positive electrode tab 4A of the uppermost cell 1A of FIG. 15 is inserted and stored in the tab storage chamber 31 from the opening 18 of FIG.
  • An opening 51 is provided on the back side of the tab storage chamber 31 in order to connect the positive electrode tab 4A to the substrate, the connector, and the terminal connection portion 25a provided in the wiring storage chamber 26 for connecting the external terminal of the positive electrode.
  • flat plates 53a, 53b of good electrical conductivity such as copper are fixed.
  • the flat plates 53 a and 53 b are connected in advance to the terminal connection portion 25 a through the opening 51.
  • the negative electrode tab 5B of the unit cell 1B one step lower than the unit cell 1A is stored in the tab storage chamber 60
  • the positive electrode tab 4C of the unit cell 1C one lower is stored in the tab storage chamber 61.
  • flat plates 54a, 55a, 56a, and 57a of good electrical conductivity are fixed to the upper and lower surfaces of the inner walls of the tab storage chambers 60 and 61, respectively.
  • a conductive plate 58a electrically connected to the flat plates 54a, 55a, 56a, 57a is embedded in the housing in advance.
  • the flat plates 54a, 55a, 56a, 57a and the conductive plate 58a may be integrated.
  • the next pair of negative electrode tabs 5D and positive electrode tabs 4E are stored in the tab storage chambers 62, 63 provided with the flat plates 54b, 55b, 56b, 57b and the conductive plate 58b, respectively.
  • Each inserted tab makes good contact with the well-conductive flat plate provided in the tab storage chamber, thereby completing serial connection wiring between the unit cells in the laminated battery.
  • each of the tabs protruding from the battery main body housing 10 is inserted into the respective tab storage chambers provided in the tab storage housing 11 to thereby store the housing 11 and the battery main body. Integrate with the body 10 to complete the module assembly.
  • a cooling flow passage 20A is provided between the tab storage chambers, and is connected to the refrigerant inflow portion 22 provided on the side surface of the housing 11 shown in FIG. Cooling performance can be further improved by flowing the refrigerant between the tabs.
  • FIG. 17 is an enlarged view of the tab storage chamber 60 shown in FIG. 16 and shows an example of a structure for improving the contact between the tab and the good electric conductive flat plate in the tab storage chamber.
  • good electric conductive flat plates 54a and 55a are embedded respectively.
  • the flat portions 54a and 55a are respectively provided with hollow portions 64 and 65 inside, so that bulging portions 66 and 67 are formed.
  • the gap between the bulging portions is set to be smaller than the thickness of the tab 5B. Therefore, when the tab 5B is inserted, the portions 68 and 69 where the tab 5B and the flat bulging portions 66 and 67 contact with each other.
  • a bonding method or a physical bonding mechanism which does not require welding or soldering may be used.
  • the joining operation of the positive and negative electrode tabs is not necessary, and the positiveness of the assembling operation is dramatically improved.
  • the heat dissipation effect of the electrode tab portion can be enhanced, and further, the liquid refrigerant having a large cooling effect can be used for cooling.
  • the high temperature durability and the battery life are improved because of the reduction.
  • the energy density per volume of the battery pack which arranged the battery module and the battery module can be raised.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

In a battery module, a plurality of plate-type or laminate-type lithium-ion secondary batteries are stacked and integrated in a chassis. The battery module has: a first chassis covering a stacked battery main body portion and allowing only positive and negative electrode tabs and/or tab joining bodies to be projected from the same direction to the outside of the chassis, said tab joining bodies being formed by joining a set of different electrode tabs adjacent in the stacked direction and joining a set of same electrode tabs adjacent in the stacked direction; and a second chassis for housing the tabs and the tab joining bodies. The second chassis includes tab housing chambers in which the tabs or the tab joining bodies are housed while being covered with a partition, one by one. The second chassis also builds in a tab connection portion, wiring, an assembled battery control circuit board, and a cooling mechanism.

Description

ラミネート型リチウムイオン二次電池モジュールLaminated lithium ion rechargeable battery module
 本発明は、リチウムイオン二次電池モジュール構造に関する。 The present invention relates to a lithium ion secondary battery module structure.
 本技術分野の背景技術として、特開2005-222701号公報(特許文献1)がある。この公報には、「積層電池4を構成する一の単電池から多層膜の外に突出した正負極端子のいずれか一方の端子と、積層方向で隣接する単電池から多層膜の外に突出した正負極端子のいずれか他方の端子とが対向するよう配置されて接合されており、該接合部分が、蓋体6に形成された開口部10から突出しており、開口部10には弾性シール材が充填されて、接合部分が固定される。」と記載されている(要約参照)。 As background art of the present technical field, there is JP-A-2005-222701 (Patent Document 1). In this publication, “one of the positive and negative terminals projecting out of the multilayer film from one cell constituting the laminated battery 4 and the multilayer film are projected from the cells adjacent in the stacking direction” The positive and negative electrode terminals are disposed so as to be opposed to and bonded to one of the other terminals, and the joint portion projects from the opening 10 formed in the lid 6, and the opening 10 is an elastic sealing material Is filled and the joint portion is fixed. ”(See summary).
 また、特開2012-119176号公報(特許文献2)がある。この公報には、「単電池2と、単電池2を挟持するホルダー3とを備える組電池1であって、ホルダー3は、単電池2を挟持する他のホルダー3との間から単電池2の電極5が突出するように単電池2を保持する保持部6と、保持部6から電極5が突出する方向に突出し、保持部6から突出する電極5を挟むように向かい合う複数の突出部7とを備え、突出部7は、単電池2を挟持する方向に沿って形成され、流体が流れる通路10と、通路10と連通し、保持部6から突出する電極5に向けて開口する開口部11とを備える。」と記載されている(要約参照)。 In addition, there is JP 2012-119176 A (patent document 2). In this publication, the battery assembly 1 is provided with “the unit cell 2 and the holder 3 for holding the unit cell 2, and the holder 3 is the unit cell 2 from between the other holder 3 for holding the unit cell 2. A holding portion 6 for holding the unit cell 2 so that the electrode 5 protrudes, and a plurality of protruding portions 7 facing in a direction in which the electrode 5 protrudes from the holding portion 6 and sandwiching the electrode 5 protruding from the holding portion 6 , And the protrusion 7 is formed along the direction in which the unit cells 2 are held, and is in communication with the passage 10 through which the fluid flows and the passage 10, and an opening which opens toward the electrode 5 protruding from the holding portion 6 And “11” (see summary).
特開2005-222701号公報JP, 2005-222701, A 特開2012-119176号公報JP 2012-119176 A
 前記特許文献1には、積層方向に隣接する平板上単電池の異極端子同士の一方が対向するよう配置されて接合されているので、端子が導出されたフィルム状電槽への応力の集中が防止できる。また、接合部分がケースに形成された開口部から突出しており、開口部にはシール材が充填されているので、接合部分はケースの開口部に固定されるため、端子や端子が突出しているフィルム状電槽に力が加わることを防止でき、組電池の耐振性を高めることができる、とあるが、突出させた端子をどのように積層電池構造体の中に取り込むのか、その具体的な構造は提示されていない。 According to Patent Document 1, since one of the different-pole terminals of the unit cells on the flat plate adjacent to each other in the stacking direction is disposed to be opposed to each other and joined, concentration of stress on the film-like battery case from which the terminal is derived Can be prevented. In addition, since the joint portion protrudes from the opening formed in the case and the opening is filled with the sealing material, the joint portion is fixed to the opening of the case, so that the terminal and the terminal protrude It is possible to prevent application of force to the film-like battery case and to improve the vibration resistance of the assembled battery, but how to incorporate the protruded terminal into the laminated battery structure, which is specific The structure is not presented.
 また、前記特許文献2によると、流体が流れる通路と連通し、保持部から突出する電極に向けて開口する開口部を備えることで、ダクトを設けなくても突出させた電極に向けて流体を集中して流すことができ、冷却効果を高めることができる。しかしながら、単電池ごとにホルダーが必要なことから、各ホルダー間にシール部が必要となり構造が複雑となる。かつ、ホルダーの全容積が、組電池全体に占める割合が大きくなり、実装密度という面での考慮はなされていない。さらには、冷却媒体としては気体しか用い得ず、液冷却に関しては構造的に難しい面がある。 Further, according to Patent Document 2, the fluid is communicated with the passage through which the fluid flows, and the opening portion is opened toward the electrode protruding from the holding portion, so that the fluid can be directed toward the protruding electrode without providing the duct. The flow can be concentrated and the cooling effect can be enhanced. However, since a holder is required for each unit cell, a seal portion is required between the holders and the structure becomes complicated. In addition, the total volume of the holder occupies a large proportion of the entire assembled battery, and no consideration is given to the mounting density. Furthermore, only gas can be used as a cooling medium, and there is a structurally difficult aspect regarding liquid cooling.
 本発明は、平板状の単電池、あるいはラミネート型単電池を積層した電池モジュールの放熱効果を高め、かつ体積あたりのエネルギー密度を大きくするリチウムイオン二次電池モジュール構造を提供する。 The present invention provides a lithium ion secondary battery module structure that enhances the heat dissipation effect and increases the energy density per volume of a battery module in which flat unit cells or laminate type cells are stacked.
 上記課題を解決するための本発明の特徴は以下のとおりである。 The features of the present invention for solving the above problems are as follows.
 複数の平板型、あるいはラミネート型リチウムイオン二次電池を積層し、筐体で一体化した電池モジュールであって、積層された電池本体部を覆い、正極、負極のタブ、あるいはまた積層方向に隣り合う一組の異極タブ、同極タブを接合したタブ接合体のみを、同一方向から前記筐体外部に突出させる第一の筐体と、前記タブ及びタブ接合体を格納する第二の筐体を有し、第二の筐体は各タブあるいは各タブ接合体が一つずつ隔壁で覆われて収納されるタブ収納室を含み、かつ、第二の筐体にタブの接続部、配線、組電池の制御回路基板、および冷却機構が組み込まれている。 A battery module in which a plurality of flat plate-type or laminate-type lithium ion secondary batteries are stacked and integrated in a housing, and covers the stacked battery main body and is adjacent to the positive electrode, negative electrode tab or in the stacking direction. A first case in which only one matching pair of different-polarity tabs and a tab assembly in which the same-polarity tabs are joined is projected out of the casing from the same direction, and a second casing for storing the tab and the tab assembly. Having a body, the second housing includes a tab storage chamber in which each tab or tab assembly is covered and accommodated one by one with a partition wall, and a connection portion of tabs to the second housing, wiring , A control circuit board of the battery assembly, and a cooling mechanism.
 本発明によれば、電池モジュールの放熱効果を高めるとともに、体積当たりのエネルギー密度を高めることが可能となる。 According to the present invention, it is possible to enhance the heat dissipation effect of the battery module and to increase the energy density per volume.
ラミネート型電池の形状およびその積層状態の模式図である。It is a schematic diagram of the shape of a laminate type battery, and its lamination | stacking state. ラミネート型積層電池の断面図である。1 is a cross-sectional view of a laminate type laminated battery. 第一の筐体の鳥瞰図である。It is a bird's-eye view of the first case. モジュールの側面の断面図である。It is sectional drawing of the side of a module. 第二の筐体の鳥瞰図である。It is a bird's-eye view of the 2nd case. 第二の筐体側面のAA断面図である。It is AA sectional drawing of a 2nd housing | casing side. 第二の筐体正面のBB断面図である。It is BB sectional drawing of a 2nd housing | casing front. 第二の筐体側面の拡大断面図である。It is an expanded sectional view of the 2nd case side. タブ配置方法を説明するための平面図である。It is a top view for demonstrating the tab arrangement method. 第二の筐体の鳥瞰図である。It is a bird's-eye view of the 2nd case. 第二の筐体の鳥瞰図である。It is a bird's-eye view of the 2nd case. 組電池の鳥瞰図である。It is a bird's-eye view of an assembled battery. 組電池の正面AA断面図である。It is front AA sectional drawing of an assembled battery. 組電池の側面BB断面図である。It is side BB sectional drawing of an assembled battery. 第一と第二の筐体鳥瞰図である。It is a 1st and 2nd housing bird's-eye view. 第二の筐体側面のAA断面図である。It is AA sectional drawing of a 2nd housing | casing side. 第二の筐体側面の拡大断面図である。It is an expanded sectional view of the 2nd case side.
 平板状の単電池、あるいはラミネート型電池を積層して一体化したモジュールとした場合、モジュール内部が高温になる場合がある。したがって、冷却性能を向上(放熱性向上、セル間温度差の低減)させ、信頼性、耐久性の高いモジュールが望まれる。本発明者らは、タブを放熱面として活用するとともに、電極タブ部の放熱効果を高めた。具体的には、単電池から突出させた電極タブ部の放熱効果を高め、更にはより冷却効果の大きい液冷媒でも冷却できる構造を検討した。放熱性向上、単電池間の温度の均一化により、モジュールの信頼性、耐久性が向上する。また、電池モジュール、電池モジュールを配列した電池パックの体積あたりのエネルギー密度を大きくすることが可能となる。 In the case of a module in which flat unit cells or laminate type batteries are laminated and integrated, the inside of the module may become hot. Therefore, a module having high reliability and durability is desired, which improves the cooling performance (i.e., improves the heat dissipation and reduces the temperature difference between cells). The present inventors utilized the tab as a heat dissipation surface and enhanced the heat dissipation effect of the electrode tab portion. Specifically, the heat dissipation effect of the electrode tab portion protruded from the unit cell was enhanced, and further, a structure capable of cooling even a liquid refrigerant having a larger cooling effect was examined. The module's reliability and durability are improved by the improvement of the heat dissipation and the equalization of the temperature among the unit cells. Further, the energy density per volume of the battery module and the battery pack in which the battery modules are arranged can be increased.
 また、単電池のモジュール化において、各単電池から突出するタブにより、タブ間に無駄な空間が生じる。さらに配線、接続のためのスペースも必要となり、実装密度面でも改善の余地があった。そこで、無駄な空間を排除し、実装密度の向上により、電池パックの体積あたりのエネルギー密度を大きくするリチウムイオン二次電池モジュール構造を検討した。さらに、配線接続作業の削減による組み立て性の改善もできることが好ましい。 Moreover, in modularization of a cell, the useless space arises between tabs by the tab which protrudes from each cell. Furthermore, space for wiring and connection is required, and there is room for improvement in terms of mounting density. Therefore, a lithium ion secondary battery module structure was investigated in which the energy density per volume of the battery pack is increased by eliminating unnecessary space and improving the mounting density. Furthermore, it is preferable to be able to improve the assemblability by reducing the wiring connection work.
 本発明は、複数のラミネート型リチウムイオン二次電池を積層し、筐体で一体化したラミネート型リチウムイオン二次電池モジュールを対象として想定している。筐体は、積層された電池本体部を覆い、正極、負極のタブ、あるいはまた積層方向に隣合う一組の異極タブ、同極タブを接合したタブ接合体を、同一方向から前記筐体外部に突出させる第一の筐体と、前記タブ及びタブ接合体を格納する第二の筐体より構成されている。第二の筐体は、各タブあるいは各タブ接合体が一つずつ隔壁で覆われて収納されるタブ収納室を備え、かつ、タブの接続部、配線、組電池の制御回路基板、および冷却機構が組み込まれている。 The present invention is intended for a laminate type lithium ion secondary battery module in which a plurality of laminate type lithium ion secondary batteries are stacked and integrated in a housing. The housing covers the stacked battery body, and the positive electrode, the negative electrode tab, or a pair of different-polarity tabs adjacent in the stacking direction, or a tab assembly in which the same-polarity tabs are joined, from the same direction. It is comprised from the 1st housing | casing protruded outside, and the 2nd housing | casing which accommodates the said tab and tab assembly. The second housing includes a tab storage chamber in which each tab or tab assembly is covered and accommodated one by one with a partition wall, and a tab connection portion, a wiring, a control circuit board of a battery assembly, and cooling A mechanism is incorporated.
 つまり、単電池本体部を覆う筐体と、タブ部分の筐体を別とし、タブ部分を覆う筐体に制御回路基板、各種の配線、端子接続部、冷却機構を集約させ、無駄な空間の排除による実装密度向上(体積エネルギー密度の向上)を図ることとした。 In other words, the control circuit board, various wiring, terminal connection parts, and cooling mechanism are integrated in the case covering the tab part separately from the case covering the unit body of the cell and the case of the tab part, We decided to improve the mounting density (improvement of volumetric energy density) by exclusion.
 第一の筐体と第二の筐体とは、空間的に分離される。例えば第二の筐体の第一の筐体と向き合う面は仕切り板で塞がれており、仕切り板にタブをタブ収納室に挿入するための開口部が設けられている。 The first housing and the second housing are spatially separated. For example, the surface facing the first housing of the second housing is closed by a partition plate, and the partition plate is provided with an opening for inserting the tab into the tab storage chamber.
 第二の筐体のタブ収納室間の隔壁の内部には、冷却流路や、タブの接続部、配線、組電池の制御回路基板等を収納する配線収納室を設ける。冷却流路を有する第二の筐体は、熱伝導性の金属材料で作製され、冷却流路の内壁面には、電気絶縁層を設けることが好ましい。配線収納室は、タブ収納室の背面側(第一の筐体と対抗する面の反対側)、積層方向に二列に配列される前記タブ収納室の列間の空間部等に配置することが好ましい。特に、タブ収納室の外表面は、穿孔を設けられていることが好ましい。 Inside the partition between the tab storage chambers of the second housing, there are provided a cooling flow channel, a connection portion of the tabs, a wiring, a control circuit board of the assembled battery, and the like. It is preferable that the second housing having the cooling channel is made of a thermally conductive metal material, and the inner wall surface of the cooling channel be provided with an electrical insulating layer. The wire storage chamber may be disposed on the back side of the tab storage chamber (opposite the surface facing the first casing), in a space between the rows of the tab storage chambers arranged in two rows in the stacking direction, or the like. Is preferred. In particular, the outer surface of the tab storage chamber is preferably provided with perforations.
 第二の筐体が良熱伝導性の金属材料で作製されることで放熱効果を高める。もしくは、前記タブ収納室の内壁面に電気絶縁層を設け、タブあるいはタブ接合体との間に介在させることが好ましい。また、冷却流路の内壁面が電気絶縁層で覆われていることが好ましい。 The heat dissipation effect is enhanced by the second casing being made of a metal material with good thermal conductivity. Alternatively, it is preferable to provide an electrically insulating layer on the inner wall surface of the tab storage chamber and to interpose the tab or the tab assembly. Moreover, it is preferable that the inner wall surface of a cooling flow path is covered by the electrical insulation layer.
 第一の筐体で覆われた電池モジュールを複数として、第二の筐体で一体化した組電池とする構成としてもよい。具体的には、前記第一の筐体を有する第一と第二の2組の電池モジュールと、前記タブ及びタブ接合体を格納する一つの第二の筐体から構成され、第二の筐体をはさんで、その両側に前記第一の筐体が配される。第二の筐体は、各タブあるいは各タブ接合体が一つずつ隔壁で覆われて収納されるタブ収納室を含み、第二の筐体の前記両側の前記仕切り板面に設けられた前記開口部から、それぞれ第一と第二のモジュールのタブあるいはタブ接合体が前記タブ収納室に挿入され、第一のモジュールの積層方向に配列される前記タブ収納室間の間隙部に第二のモジュール前記タブ収納室が配置される。第一のモジュールのタブ収納室と第二のモジュールのタブ収納室が積層方向に交互に配列され、かつ、第二の筐体の積層方向に二列に配列された前記タブ収納室の列間の空間部に、タブの接続部、配線、組電池の制御回路基板、および冷却機構が組み込まれている。 A plurality of battery modules covered by the first case may be combined to form an assembled battery integrated with the second case. Specifically, the second case comprises a first and a second two sets of battery modules having the first case, and a second case for storing the tab and the tab assembly. The first housing is disposed on both sides of the body. The second housing includes a tab storage chamber in which each tab or each tab assembly is covered and stored one by one, and provided on the partition plate surface of the both sides of the second housing. A tab or tab assembly of the first and second modules is inserted into the tab storage chamber from the opening, and a second gap is formed between the tab storage chambers arranged in the stacking direction of the first module. The module said tab storage room is arranged. Between rows of the tab storage chambers in which the tab storage chambers of the first module and the tab storage chambers of the second module are alternately arranged in the stacking direction and arranged in two rows in the stacking direction of the second housing In the space portion of the above, the tab connection portion, the wiring, the control circuit board of the assembled battery and the cooling mechanism are incorporated.
 このような構成にすることにより、さらに、空間の排除による体積エネルギー密度の向上、配線接続作業の削減による組み立て性の改善が可能となる。 With such a configuration, it is possible to further improve the volumetric energy density by eliminating the space and to improve the assemblability by reducing the wiring connection work.
 以下、本発明について、ラミネート型電池を例として、実施例および図面を用い、詳細に説明する。なお、本発明は下記の実施例に限定されない。また、これらの例を組み合わせて採用することも可能である。 Hereinafter, the present invention will be described in detail using a laminate type battery as an example, with reference to examples and drawings. The present invention is not limited to the following examples. Moreover, it is also possible to combine and adopt these examples.
 図1から図9に記載の実施例1は、液冷却が可能なラミネート型電池を積層したモジュール構造100の例である。 Example 1 described in FIGS. 1 to 9 is an example of a module structure 100 in which laminated batteries capable of liquid cooling are stacked.
 図1に、ラミネート型電池1の外観と積層方向の並べ方の一例を示す。図2は、積層されたラミネート型電池の積層方向の断面図を示す。各単電池は、図2に示すように電池同士が密着して積層される。 FIG. 1 shows an example of the appearance of the laminate type battery 1 and how to arrange the laminate direction. FIG. 2 shows a cross-sectional view in the stacking direction of the laminated battery. In each unit cell, as shown in FIG.
 ラミネート型電池1は、正極、セパレータ、負極、セパレータ、正極、の順に複数回積層した電極部(図示せず)を有し、電極部の周囲を外装フィルムで覆われた構造を有する。上側と下側の外層フィルム2a、2bの接合面を熱融着させたシール熱融着部3を設け、シール熱融着部3から電極部(正極タブ4、負極タブ5)が突出している。 The laminate type battery 1 has an electrode part (not shown) laminated a plurality of times in the order of a positive electrode, a separator, a negative electrode, a separator and a positive electrode, and has a structure in which the periphery of the electrode part is covered with an exterior film. A seal thermal fusion bonding portion 3 is formed by thermally fusing the bonding surfaces of the upper and lower outer layer films 2a and 2b, and an electrode portion (positive electrode tab 4 and negative electrode tab 5) protrudes from the seal thermal fusion bonding portion 3 .
 本実施例では、複数のラミネート型単電池が直列に接続されている。最上段のラミネート型電池1Aの正極タブ4Aは、正極の外部端子接続用として用いられる。ラミネート型電池1Aの負極タブ5Aは、一つ下の隣接するラミネート型電池1Bの正極タブ4Bと電気的に接続される。同様に、電池1Bの負極タブ5Bは、その一つ下の電池1Cの正極タブ4Cと接続され、電池1Cの負極タブ5Cは、さらにその一つ下の電池の正極と接続される。最下段の電池1Jでは正極タブ4Jがその一つ上の電池の負極タブと接続され、同電池の負極タブ5Jが、負極の外部端子接続用として用いられる。 In the present embodiment, a plurality of laminated single cells are connected in series. The positive electrode tab 4A of the uppermost laminate type battery 1A is used for connecting the external terminal of the positive electrode. The negative electrode tab 5A of the laminate type battery 1A is electrically connected to the positive electrode tab 4B of the immediately lower adjacent laminate type battery 1B. Similarly, the negative electrode tab 5B of the battery 1B is connected to the positive electrode tab 4C of the battery 1C below it, and the negative electrode tab 5C of the battery 1C is connected to the positive electrode of the battery 1 below it. In the lowermost battery 1J, the positive electrode tab 4J is connected to the negative electrode tab of the next higher battery, and the negative electrode tab 5J of the same battery is used for external terminal connection of the negative electrode.
 正/負極タブの接続方法は適宜選択できる。図2にはタブをクランク状に屈曲させた例を示す。クランク状に屈曲させたタブ5Aと4Bが接合面7で溶接され,接合タブ8が形成されている。 The connection method of the positive / negative tabs can be selected appropriately. FIG. 2 shows an example in which the tab is bent in a crank shape. The cranked tabs 5A and 4B are welded at the joint surface 7 to form a joint tab 8.
 図3に、10個のラミネート型電池が積層され、電池本体部が電池本体筐体(第一の筐体部)10に収められた状況を示す。タブα群は上から負極5A、正極4B、負極5C、・・・正極4Jの順に配列されている。タブβ群は上から正極4A、負極5B、正極4C、・・・負極5Jの順に配列されている。図2では理解向上のため、手前側のタブα群側の接続状態を実線で、奥にあたるタブβ群側の接続状態を破線で示している。α群と同様に、β群のタブは接合タブ9で接続されている。 FIG. 3 shows a state where ten laminate type batteries are stacked and the battery main body portion is housed in the battery main body case (first case portion) 10. As shown in FIG. The tabs α group are arranged in order of the negative electrode 5A, the positive electrode 4B, the negative electrode 5C,... The positive electrode 4J from the top. The tab β group is arranged in order of the positive electrode 4A, the negative electrode 5B, the positive electrode 4C,... The negative electrode 5J from the top. In FIG. 2, for better understanding, the connection state on the tab α group side on the front side is indicated by a solid line, and the connection state on the tab β group side corresponding to the back is indicated by a broken line. Similar to the α group, the tabs of the β group are connected by the junction tab 9.
 図4に、積層した12個のラミネート型電池1A~1Lを備えるモジュール100を示す。ラミネート型電池の1の本体部は、第一の筐体10に収められ、正極タブと負極タブを接合した接合タブ部8、9がタブ収納筐体(第二の筐体部)11に収められる(タブ接合体9は図示せず)。図4において、第二の筐体11の高さH2は、接合タブ8の間隔Pの長さを調整することにより、第一の筐体高さH1よりも短くしてモジュールの体積を小さくして、体積当たりのエネルギー密度を高めることができる。 FIG. 4 shows a module 100 including twelve laminated batteries 1A to 1L stacked. The main body portion 1 of the laminate type battery is housed in the first housing 10, and the bonding tab portions 8 and 9 in which the positive electrode tab and the negative electrode tab are joined are housed in the tab housing housing (second housing portion) 11. (Tab assembly 9 not shown). In FIG. 4, the height H 2 of the second housing 11 is made shorter than the first housing height H 1 by adjusting the length of the gap P of the bonding tab 8 to reduce the volume of the module. , Energy density per volume can be increased.
 積層されたラミネート型電池の上下端部には、第一の筐体10との間に、上部緩衝材12と下部緩衝材13がそれぞれ配置され、積層された電池の膨張収縮に伴う上下方向の変形量を吸収すると共に、常に積層された電池にある適切な荷重がかかるようにされており、外部からの衝撃に対して積層電池の間でずれ等が生じないようにされている。第一、第二の筐体10,11はそれぞれのフランジ14a,14bで合わされ、ねじ等で接続固定されており、外部からの衝撃に対して堅固な状態を保ち、電池本体、タブの接合面やタブ自体に力が加わることを防止する。 The upper cushioning material 12 and the lower cushioning material 13 are respectively disposed between the first casing 10 and the upper and lower end portions of the laminated laminate type battery, and the up and down direction along with the expansion and contraction of the laminated battery An amount of deformation is absorbed, and an appropriate load is always applied to the stacked batteries, so that a gap or the like does not occur between the stacked batteries against an external impact. The first and second housings 10 and 11 are joined by their respective flanges 14a and 14b and connected and fixed by screws or the like, and remain rigid against external impacts, and the battery body and tab joint surfaces Prevent the force applied to the tabs themselves.
 図5は、第二の筐体11の鳥瞰図であり、第一の筐体10と接する側の面を示す図である。筐体11のフランジ14bの内側面は仕切り板15で塞がれている。仕切り板15には、電池本体の接合タブ、外部端子用の正極タブ、負極タブの位置に合わせて、各タブを収納するための開口部がそれぞれ設けられている(タブα群の接合タブ(第一接合タブと称す)を収納する第一接合タブ収納室開口部16、タブβ群の接合タブ(第二接合タブと称す)を収納する第二接合タブ収納室開口部17、外部端子用の正極タブを収納する開口部18、外部端子用の負極タブを収納する開口部19)。各接合タブ間のピッチをPとすると、第一接合タブ収納室開口部16と第二接合タブ収納室開口部17の上下方向の配列は1/2Pずれた形で配列されている。また、第一接合タブ側に正負極外部端子接続用タブの収納室開口部18,19が設けられている。 FIG. 5 is a bird's-eye view of the second housing 11 and shows the surface in contact with the first housing 10. The inner side surface of the flange 14 b of the housing 11 is closed by a partition plate 15. The partition plate 15 is provided with an opening for housing each tab according to the position of the bonding tab of the battery main body, the positive electrode tab for the external terminal, and the negative electrode tab (a bonding tab of tab α group First joint tab storage chamber opening 16 for storing a first joint tab, second joint tab storage chamber opening 17 for a joint tab of a tab β group (referred to as second joint tab), for an external terminal An opening 18 for accommodating the positive electrode tab, and an opening 19 for accommodating the negative electrode tab for the external terminal). Assuming that the pitch between the bonding tabs is P, the vertical alignment of the first bonding tab storage chamber opening 16 and the second bonding tab storage chamber opening 17 is arranged in a form displaced by 1 / 2P. Further, storage chamber openings 18 and 19 for positive and negative electrode external terminal connection tabs are provided on the first bonding tab side.
 第二の筐体11のAA断面を図6に、同じくBB断面を図7に示す。図6では、第一接合タブ収納室30Aの上下には冷媒流路部20Aが全部で6本形成されている。同様に、第二接合タブ収納室30Bの間隙部には冷媒流路部20Bが全部で6本形成されている(図示せず)。別の角度からの構造を図7に示す。第一接合タブ収納室30A間に設けられた冷媒流路部20Aと第二接合タブ収納室30B間に設けられた冷媒流路部20Bは接続流路21によりつながっており、冷媒を第二の筐体側面に設けた流入口22から反対側の側面に設けた流出口23に向かって矢印の方向に流すことが可能である。冷媒としては、水などの液体、あるいは空気などの気体、どちらでも使用可能である。なお、冷媒の流れ方向はどちらでもよいが、本実施例の場合、圧損を考慮すれば、図7とは逆方向の方が圧損が小さく、ポンプ動力が少なくて済むので好ましい。 The AA cross section of the second housing 11 is shown in FIG. 6, and the BB cross section is similarly shown in FIG. In FIG. 6, a total of six refrigerant flow passage portions 20A are formed above and below the first bonding tab storage chamber 30A. Similarly, a total of six refrigerant flow passage portions 20B are formed in the gap portion of the second bonding tab storage chamber 30B (not shown). The structure from another angle is shown in FIG. The refrigerant flow passage portion 20A provided between the first bonding tab storage chamber 30A and the refrigerant flow passage portion 20B provided between the second bonding tab storage chamber 30B are connected by the connection flow passage 21 and the refrigerant It is possible to flow in the direction of the arrow from the inlet 22 provided on the side of the housing toward the outlet 23 provided on the opposite side. As the refrigerant, either liquid such as water or gas such as air may be used. The flow direction of the refrigerant may be either direction, but in the case of the present embodiment, considering the pressure loss, the direction opposite to that in FIG. 7 is preferable because the pressure loss is small and the pump power can be small.
 また、図6に示すように、前記開口部16,17よりさらに奥まった所に、配線収納室26が設けられている。配線収納室26には、制御回路基板24、正負極の端子接続部25a、25b、ヒューズ、電圧検出線、その他の基板、コネクタ等が収納される。配線収納室26では、外部端子用の正極タブ4Aが正極端子接続部25aを介して正極外部端子27aとつながっており、同様に外部端子用の負極タブ5Lが負極端子接続部25bを介して負極外部端子27bとつながっている。制御回路基板、ヒューズへの配線などの作業を行うため、開閉可能な上蓋28が設けられる。なお、作業性を考え、必要最小限の配線接続で済むように、あらかじめ第二の筐体11には電力線やサーミスタ、電圧検出線などの配線や通信コネクタ、バスバー接続金具、ヒューズ、ヒューズ金具などを固定配置させてもよい。 Further, as shown in FIG. 6, a wiring storage room 26 is provided at a position further recessed from the openings 16 and 17. The control circuit board 24, positive and negative terminal connection portions 25a and 25b, fuses, voltage detection lines, other boards, connectors and the like are stored in the wiring storage room 26. In the wire storage chamber 26, the positive electrode tab 4A for the external terminal is connected to the positive electrode external terminal 27a through the positive electrode terminal connection portion 25a, and similarly, the negative electrode tab 5L for the external terminal is the negative electrode through the negative electrode terminal connection portion 25b. It is connected to the external terminal 27b. An openable upper lid 28 is provided to perform operations such as wiring to a control circuit board and a fuse. In addition, in consideration of workability, wiring such as power lines and thermistors, voltage detection lines, communication connectors, bus bar fittings, fuses, fuse fittings, etc. in advance for the second housing 11 so that the necessary minimum number of wiring connections can be made. May be fixed.
 第二の筐体11は、電気絶縁性に配慮して樹脂性の材質とすることが好ましい。また、熱伝導性の良い金属材料を用いることも可能である。たとえばアルミ製の筐体にすることにより、接合タブから上記の冷媒流路に至るまでの熱抵抗を小さくすることができる。その結果、接合タブからの放熱量が増加し、電池温度をより低減できる。また、積層電池間の温度差を小さくする効果も一層向上する。金属材料を使用する場合には、図8に示すように接合タブ部8,9の表面50と接する筐体側の接触面51に薄い電気絶縁層52を設ける。 The second housing 11 is preferably made of a resinous material in consideration of electrical insulation. In addition, it is also possible to use a metal material having good thermal conductivity. For example, by using an aluminum housing, it is possible to reduce the thermal resistance from the bonding tab to the above-described refrigerant flow path. As a result, the amount of heat released from the bonding tab increases, and the battery temperature can be further reduced. Further, the effect of reducing the temperature difference between the stacked batteries is further improved. In the case of using a metal material, as shown in FIG. 8, a thin electrically insulating layer 52 is provided on the contact surface 51 on the housing side in contact with the surface 50 of the bonding tab portions 8 and 9.
 タブの面積は、できるだけ大きくすることが好ましい。タブが大きいと、放熱(冷却)面積が増加し、冷却効果が上がり、その結果、セルからタブ側に移動する熱量が増加する。その結果、積層方向の熱移動量が減少し、セル間の温度差を低減することができる。ラミネート型電池は、図1等で明らかな通り、略平板形の直方体形状であって、タブ面積の増加を図る手段としては図9(a)に示すようにラミネート型電池の長辺側に正/負極両タブを設けたり、図9(b)に示すように短辺側に設けることができる。 The area of the tab is preferably as large as possible. When the tab is large, the heat dissipation (cooling) area is increased, the cooling effect is enhanced, and as a result, the amount of heat transferred from the cell to the tab side is increased. As a result, the amount of heat transfer in the stacking direction is reduced, and the temperature difference between the cells can be reduced. The laminate type battery is a substantially flat rectangular parallelepiped as shown in FIG. 1 and the like, and as a means for increasing the tab area, as shown in FIG. 9A, the long side of the laminate type battery is positive. / Both negative electrode tabs can be provided, or can be provided on the short side as shown in FIG.
 なお、スペース的に図9(a)に示す長辺側の一方の片側に正極、負極タブを設置することがよりコンパクトになるため好ましい。正負極のタブ面積は同一とし、かつ、タブ間距離Y及び端部からの距離Zも等しくした場合、タブによって増加する同図の破線で囲まれる面積A1とA2を比較すると、ラミネート型電池の長辺Lと短辺Wの比によって影響度は異なるものの、短辺側にタブを設けた場合の面積A2の方が、長辺側にタブを設けた場合の面積A1よりも大きくなる
  A1=タブ面積/(1-(2Z+Y)/L)
  A2=タブ面積/(1-(2Z+Y)/W)
  L>Wであるから A2>A1 となる。
In addition, it is preferable to install the positive electrode and the negative electrode tab on one side of the long side shown in FIG. Assuming that the tab areas of the positive and negative electrodes are the same, and the distance Y between the tabs and the distance Z from the end are also equal, comparing the areas A1 and A2 surrounded by the broken line in the figure, which increase by the tabs, Although the degree of influence is different depending on the ratio of the long side L and the short side W, the area A2 when the tab is provided on the short side is larger than the area A1 when the tab is provided on the long side A1 = Tab area / (1- (2Z + Y) / L)
A2 = tab area / (1- (2Z + Y) / W)
Since L> W, A2> A1.
 従って、タブ面積を増やして放熱特性を向上させ、かつ、タブ間の無駄スペースを極力抑えて、モジュールの実装密度面を上げる場合には、長辺側にタブを設置することが好ましい。本実施例では、図9(a)の形状を採用した。 Therefore, in order to increase the tab area to improve the heat dissipation characteristics and minimize the wasted space between the tabs to increase the mounting density of the module, it is preferable to install the tabs on the long side. In the present embodiment, the shape of FIG. 9 (a) is adopted.
 なお、何がしかの制約(例えばシール長であるタブの周囲長さをできるだけ短くして液漏れを防ぐ)の場合には、短辺側にタブを設置してもよい。 In addition, in the case of some restrictions (for example, the peripheral length of the tab which is the seal length is made as short as possible to prevent the liquid leakage), the tab may be provided on the short side.
 本実施例では、強制対流空冷に好適で構造が比較的単純な他の第二の筐体構造の例を説明する。図10は、実施例2における第二の筐体200を示す鳥瞰図である。 In this embodiment, an example of another second housing structure suitable for forced convection air cooling and having a relatively simple structure is described. FIG. 10 is a bird's-eye view showing the second housing 200 in the second embodiment.
 第一の筐体と接する側の面の構成は、実施例1の図5と同じであり、筐体のフランジの内側面は仕切り板15で塞がれている。電池本体の第一、第二の接合タブ、外部端子用の正極タブ及び同負極タブの位置に合わせて、それらの各タブを収納するための各収納室開口部16,17,18,19がそれぞれ設けられている。 The configuration of the surface on the side in contact with the first housing is the same as in FIG. 5 of the first embodiment, and the inner side surface of the flange of the housing is closed by the partition plate 15. There are storage chamber openings 16, 17, 18, 19 for storing the first and second bonding tabs of the battery body, the positive electrode tab for the external terminal, and the negative electrode tab, respectively, in alignment with the positions of the respective tabs. Each is provided.
 また、図10の破線で示すように、各タブ収納室30A,30B,31,32の背面側に配線収納室26を設ける。配線収納室26は、外気との仕切りの役目を兼ねる。本実施例では、筐体に接合タブ収納室だけを設けており、実施例1にあるような、別個に冷媒流路部はないが、配線収納室26とタブ収納室とにより冷媒の流路29が形成される。本実施例では図10の矢印201の方向に空気などの冷媒を流すのに好適である。 Further, as shown by the broken line in FIG. 10, the wire storage chamber 26 is provided on the back side of each of the tab storage chambers 30A, 30B, 31, 32. The wiring storage room 26 also serves as a partition with the outside air. In the present embodiment, only the joint tab storage chamber is provided in the housing, and there is no separate refrigerant flow channel portion as in the first embodiment, but the flow channel of the refrigerant is formed by the wiring storage chamber 26 and the tab storage chamber. 29 are formed. In the present embodiment, it is suitable for flowing a refrigerant such as air in the direction of arrow 201 in FIG.
 なお、上記配線収納室26を接合タブ収納室の最上段か最下段に設けてもよい。その場合には、図10の破線の位置に仕切り平板など、流路を形成するための部材を配置することが好ましい。 The wiring storage chamber 26 may be provided at the top or bottom of the bonding tab storage chamber. In that case, it is preferable to arrange a member for forming a flow path, such as a dividing flat plate, at the position of the broken line in FIG.
 本実施例では、冷媒流路を新たに製作する必要がない分、実施例1よりも第二筐体の製作が容易である。 In the present embodiment, since it is not necessary to newly manufacture the refrigerant flow channel, the second case can be manufactured easier than the first embodiment.
 本実施例では、自然対流空冷に好適で構造が比較的単純な他の第二の筐体構造の例を図11を用いて説明する。図11は、実施例3における第二の筐体300を示す鳥瞰図である。 In this embodiment, another example of the second housing structure suitable for natural convection air cooling and having a relatively simple structure will be described with reference to FIG. FIG. 11 is a bird's-eye view showing a second housing 300 in the third embodiment.
 実施例3の第二の筐体の第一の筐体と接する側の面の構成は、実施例1の図5と同じであり、筐体のフランジの内側面は仕切り板15で塞がれている。そして、電池本体の接合タブ、外部端子用の正極タブ及び同負極タブの位置に合わせて、それらの各タブを収納するための各収納室開口部16,17,18,19がそれぞれ設けられている。 The configuration of the surface in contact with the first housing of the second housing of the third embodiment is the same as that of FIG. 5 of the first embodiment, and the inner side surface of the flange of the housing is closed by the partition plate 15 ing. And each storage chamber opening part 16, 17, 18, 19 for accommodating those each tab according to the position of the joining tab of a battery main body, the positive electrode tab for external terminals, and the same negative electrode tab is provided, respectively There is.
 実施例3の第二の筐体は、実施例2と同様に、筐体として接合タブ収納室31、32、第一接合体収納室30A、第二接合体収納室30Bを設け、また、接合タブ収納室30A,30B,各タブ収納室31,32は穿孔を有する壁材で形成され、外表面には穿孔301を有する。なお、図11では、穿孔301は各収納室の上面のみに図示されているが、下面及び側面にも施されている。筐体タブ収納室表面を穿孔することにより、上下方向の自然対流による伝熱効果がより促進される。なお、穿孔したことにより空気中のごみがタブ表面に付着する恐れがあるので、接合タブ表面に薄い絶縁フィルムなどで覆うことが好ましい。 In the second case of the third embodiment, as in the second embodiment, bonding tab storage chambers 31 and 32, a first bonded body storage chamber 30A, and a second bonded body storage chamber 30B are provided as housings, and bonding is performed. The tab storage chambers 30A, 30B and the tab storage chambers 31, 32 are formed of a wall material having perforations, and have perforations 301 on the outer surface. In FIG. 11, although the perforations 301 are illustrated only on the upper surface of each storage chamber, they are also provided on the lower surface and the side surface. By perforating the surface of the housing tab storage chamber, the heat transfer effect by natural convection in the vertical direction is further promoted. In addition, since there is a possibility that dust in the air may adhere to the tab surface due to the perforation, it is preferable to cover the bonding tab surface with a thin insulating film or the like.
 加えて、接合体収納室30A、30Bの間に配線収納室26を設けている。第一接合タブ収納室30Aと第二接合タブ収納室30B間の隙間部分に配線収納室26を配置することにより、無駄な空間部分が減少し、実装密度が大きくなり、モジュール単位体積当たりのエネルギー密度の向上にもつながる。 In addition, the wire storage chamber 26 is provided between the bonded body storage chambers 30A and 30B. By arranging the wiring storage room 26 in the gap between the first bonding tab storage room 30A and the second bonding tab storage room 30B, the useless space part is reduced, the mounting density is increased, and the energy per module unit volume is increased. It leads to the improvement of density.
 更には、タブ収納室と配線収納室を一体構造とし、材質をアルミ製にすることが好ましい。配線収納室26も放熱面として寄与することができ、伝熱面積が増加することにより自然対流熱伝達が促進され、放熱特性が向上する。 Furthermore, it is preferable that the tab storage room and the wiring storage room be integrally formed and made of aluminum. The wiring storage chamber 26 can also contribute as a heat dissipation surface, and by increasing the heat transfer area, natural convection heat transfer is promoted and the heat dissipation characteristics are improved.
 なお、筐体を導電性材料で形成する場合には、実施例1の図8に示すように、接合タブ部の表面50と接する筐体側の接触面51に薄い電気絶縁層52を設けるなどの処置を施すなりして、接合タブと筐体間の電気絶縁性に配慮する必要がある。 When the housing is formed of a conductive material, as shown in FIG. 8 of the first embodiment, a thin electrical insulating layer 52 may be provided on the contact surface 51 on the housing side in contact with the surface 50 of the bonding tab. It is necessary to take measures in consideration of the electrical insulation between the junction tab and the housing.
 本実施例は、二つのモジュールで構成された組電池400について図12,13,14を用いて説明する。図12は積層された電池モジュール401、402が第二の筐体42を介在して一体化された組電池400を示す図である。それぞれの電池モジュールの第一の筐体40、41の内部には積層電池本体が収納されている。第二の筐体42は、実施例1~3の第二筐体の変形例にあたる。それぞれのモジュール401,402から上記実施例と同様に第一、第二接合タブ8,9が突出しており、第二の筐体42に収納されている。第二の筐体42は、二つのモジュールをつなぐコネクター部となる。 This embodiment will be described with reference to FIGS. 12, 13 and 14 of an assembled battery 400 configured of two modules. FIG. 12 is a view showing the assembled battery 400 in which the stacked battery modules 401 and 402 are integrated with the second housing 42 interposed therebetween. The laminated battery main body is housed inside the first casings 40 and 41 of the respective battery modules. The second case 42 corresponds to a modification of the second case of the first to third embodiments. First and second joint tabs 8 and 9 project from the respective modules 401 and 402 in the same manner as in the above embodiment, and are accommodated in the second housing 42. The second housing 42 is a connector unit that connects two modules.
 図13は図12の第二の筐体42のAA断面(積層方向)を示す図、図14は図12の第二の筐体42のBB断面(積層方向に直行する方向)を示す図である。 13 shows a cross section AA (stacking direction) of the second housing 42 of FIG. 12, and FIG. 14 shows a cross section BB (direction orthogonal to the stacking direction) of the second housing 42 of FIG. is there.
 図13に示す第二の筐体42の上半分にはモジュール401の第一接合タブ8の収納室43Aと、モジュール402の第二接合タブの収納室44Bが交互に設けられる。第二の筐体42の下半分には、モジュール401の第二接合タブ9の収納室43Bと、モジュール402の第一接合タブの収納室44Aが交互に設けられる。すなわち積層方向にモジュール401とモジュール402の接合タブ収納室が交互に配され、モジュール401の接合タブ収納室間の空いたスペースをモジュール402の接合タブ収納スペースにすることにより、それぞれ独立したモジュールを二個並べるよりも、概算ではあるが、タブの面積×積層高さ分だけの空間体積が削減できることにより、実装密度を大きくすることができる。 In the upper half of the second housing 42 shown in FIG. 13, storage chambers 43 A of the first bonding tab 8 of the module 401 and storage chambers 44 B of the second bonding tab of the module 402 are alternately provided. In the lower half of the second housing 42, storage chambers 43B of the second bonding tab 9 of the module 401 and storage chambers 44A of the first bonding tab of the module 402 are alternately provided. That is, bonding tabs storage chambers of the module 401 and the module 402 are alternately arranged in the stacking direction, and the vacant space between the bonding tab storage chambers of the module 401 is made the bonding tab storage space of the module 402, thereby respectively independent modules. The mounting density can be increased by reducing the space volume corresponding to the area of the tab × the height of the stack, although this is approximate, rather than arranging two.
 また、積層方向に沿って並べられた二つの接合タブ収納室列間の空間部45には、制御回路基板(場合によっては2つのモジュールを一つの回路基板で制御することも含まれる)や通信コネクタ、その他の部品を集約して配置されている。 In addition, the control circuit board (in some cases including control of two modules with one circuit board) and communication in the space portion 45 between the two bonding tab storage chamber rows arranged along the stacking direction Connectors and other parts are placed together.
 その結果、上記組電池400を複数個配列した電池パックを構築した場合、単モジュールで構築する場合に比べて電池パックの体積を低減できる。従って、電池パックの単位体積当たりのエネルギー密度を大きくすることができる。 As a result, when a battery pack in which a plurality of the battery packs 400 are arranged is constructed, the volume of the battery pack can be reduced as compared with the case where the battery pack is constructed with a single module. Therefore, the energy density per unit volume of the battery pack can be increased.
 なお、本実施例では、二つのモジュールを第二の筐体を挟んで配置した組電池を説明したが、このような配置に限らず、2以上のモジュールを、一つの第二の筐体で一体化することが可能である。その結果、配線収納室の一体化等により、組み立て性が向上する。また、タブ収納筐体の省略により、組電池の軽量化が可能となる。 In the present embodiment, although a battery assembly in which two modules are arranged with the second housing in between has been described, the present invention is not limited to such an arrangement, and two or more modules may be used as one second housing. It is possible to integrate. As a result, the assemblability is improved by the integration of the wiring storage room and the like. In addition, the omission of the tab storage case enables weight reduction of the assembled battery.
 本実施例では正極タブ、負極タブの接合をタブ収納筐体にて行うタブ収納筐体500について図15~図17を用いて説明する。実施例1~4は、単電池を直列に接続する場合、あらかじめ積層単電池間で隣接する単電池の正極タブと負極タブが接合されている。本実施例では、図15に示すように第一の筐体から突出したタブは接合されないままの状態であり、ラミネート型電池1Aの正極タブ4A、ラミネート型電池1Bの負極タブ5B、ラミネート型電池1Cの正極タブ4C、と積層方向に正極タブと負極タブが交互に並んでいる。これらの突出させたタブを収納するタブ収納筐体11と電池本体筐体10とをあわせて電池モジュールが構成される。 In this embodiment, a tab storage case 500 in which the positive electrode tab and the negative electrode tab are joined by a tab storage case will be described with reference to FIGS. In Examples 1 to 4, in the case where the unit cells are connected in series, the positive electrode tab and the negative electrode tab of the unit cells adjacent to each other between the stacked unit cells are joined in advance. In this embodiment, as shown in FIG. 15, the tabs protruding from the first case are not joined, and the positive electrode tab 4A of the laminate type battery 1A, the negative electrode tab 5B of the laminate type battery 1B, and the laminate type battery The positive electrode tabs 4C of 1C and the positive electrode tabs and the negative electrode tabs are alternately arranged in the stacking direction. A battery module is configured by combining the tab storage case 11 for storing the projected tabs and the battery body case 10.
 タブ収納筐体11の背面には正極外部端子27a、負極外部端子27b、通信用コネクタが27c設置されている。正極外部端子27a、負極外部端子27bにはバスバーが取り付けられるようになっている。 A positive electrode external terminal 27a, a negative electrode external terminal 27b, and a communication connector 27c are provided on the back of the tab housing case 11. A bus bar is attached to the positive electrode external terminal 27a and the negative electrode external terminal 27b.
 タブ収納筐体11のAA断面を図16に示す。図15の一番上段の単電池1Aの正極タブ4Aは、図16の開口部18からタブ収納室31に挿入、収納される。正極タブ4Aは正極の外部端子接続用として、基板、コネクタ、配線収納室26内に設けられた端子接続部25aと接続するため、タブ収納室31の背面側に開口部51が設けられている。タブ収納室31の内壁(特に上下面)には銅などの良電気伝導性の平板53a、53bが固定されている。そして、上記平板53a、53bは上記開口部51を通って、端子接続部25aに予め接続されている。 The AA cross section of the tab housing case 11 is shown in FIG. The positive electrode tab 4A of the uppermost cell 1A of FIG. 15 is inserted and stored in the tab storage chamber 31 from the opening 18 of FIG. An opening 51 is provided on the back side of the tab storage chamber 31 in order to connect the positive electrode tab 4A to the substrate, the connector, and the terminal connection portion 25a provided in the wiring storage chamber 26 for connecting the external terminal of the positive electrode. . On the inner wall (especially upper and lower surfaces) of the tab storage chamber 31, flat plates 53a, 53b of good electrical conductivity such as copper are fixed. The flat plates 53 a and 53 b are connected in advance to the terminal connection portion 25 a through the opening 51.
 次に、単電池1Aより一段下の単電池1Bの負極タブ5Bは、タブ収納室60に収納され、さらに一つ下の単電池1Cの正極タブ4Cがタブ収納室61に収納される。上記タブ収納室60、61の内壁の上下面には、前記タブ収納室31と同様に、良電気伝導性の平板54a、55a、56a、57aがそれぞれ固定されている。上記平板54a、55a、56a、57aと電気的に接続された導電板58aが筐体内にあらかじめ埋設されている。なお、上記平板54a、55a、56a、57aと上記導電板58aは一体化された構造としてもよい。同様に、次の一対の負極タブ5Dと正極タブ4Eが、平板54b、55b、56b、57bと導電板58bが設けられたタブ収納室62、63にそれぞれ収納される。挿入されたそれぞれのタブが、タブ収納室に設けられた前記良伝導性平板と良好に接触することにより、積層電池における各単電池間の直列接続配線が完成する。 Next, the negative electrode tab 5B of the unit cell 1B one step lower than the unit cell 1A is stored in the tab storage chamber 60, and the positive electrode tab 4C of the unit cell 1C one lower is stored in the tab storage chamber 61. Similar to the tab storage chamber 31, flat plates 54a, 55a, 56a, and 57a of good electrical conductivity are fixed to the upper and lower surfaces of the inner walls of the tab storage chambers 60 and 61, respectively. A conductive plate 58a electrically connected to the flat plates 54a, 55a, 56a, 57a is embedded in the housing in advance. The flat plates 54a, 55a, 56a, 57a and the conductive plate 58a may be integrated. Similarly, the next pair of negative electrode tabs 5D and positive electrode tabs 4E are stored in the tab storage chambers 62, 63 provided with the flat plates 54b, 55b, 56b, 57b and the conductive plate 58b, respectively. Each inserted tab makes good contact with the well-conductive flat plate provided in the tab storage chamber, thereby completing serial connection wiring between the unit cells in the laminated battery.
 このように、電池本体筐体10から突出したタブのそれぞれが、タブ収納筐体11に設けられたそれぞれのタブ収納室に挿入されることにより、上記の筐体11と電池本体を収納した筐体10とを一体化し、モジュール組立てが完成する。 In this manner, each of the tabs protruding from the battery main body housing 10 is inserted into the respective tab storage chambers provided in the tab storage housing 11 to thereby store the housing 11 and the battery main body. Integrate with the body 10 to complete the module assembly.
 図16に示すように、タブ収納室間には冷却流路20Aが設けられており、図15に示す筐体11側面に設けた冷媒流入部22とつながっている。各タブの間に冷媒を流すことにより、さらに冷却性能を向上させることができる。 As shown in FIG. 16, a cooling flow passage 20A is provided between the tab storage chambers, and is connected to the refrigerant inflow portion 22 provided on the side surface of the housing 11 shown in FIG. Cooling performance can be further improved by flowing the refrigerant between the tabs.
 図17は、図16に示したタブ収納室60を拡大した図であり、タブ収納室における、タブと前記良電気伝導性平板との接触性を良好にする構造の一例を示す。筐体11のタブ収納室60内壁面には、良電気伝導性平板54a、55aがそれぞれ埋設されている。上記平板54a、55aには内部に中空部64,65がそれぞれ設けられており、その結果、膨出部66,67が形成される。上記膨出部間の間隙はタブ5Bの厚みより小さく設定されており、このため、タブ5Bが挿入されるとき、タブ5Bと平板の膨出部66,67とが接触する部分68,69において、上記平板膨出部が押しつぶされるように弾性変形するが、その反力により、接触面68,69には常に平板54a,55aからタブ5Bに向かって弾性復元力、すなわち押圧が掛かることになる。これにより、長時間わたって常にタブと埋設させた良導電性平板との接触性を良好に保つことができる。 FIG. 17 is an enlarged view of the tab storage chamber 60 shown in FIG. 16 and shows an example of a structure for improving the contact between the tab and the good electric conductive flat plate in the tab storage chamber. On the inner wall surface of the tab storage chamber 60 of the housing 11, good electric conductive flat plates 54a and 55a are embedded respectively. The flat portions 54a and 55a are respectively provided with hollow portions 64 and 65 inside, so that bulging portions 66 and 67 are formed. The gap between the bulging portions is set to be smaller than the thickness of the tab 5B. Therefore, when the tab 5B is inserted, the portions 68 and 69 where the tab 5B and the flat bulging portions 66 and 67 contact with each other. Although the flat plate bulging portion is elastically deformed so as to be crushed, an elastic restoring force, that is, pressing is always applied to the contact surfaces 68 and 69 from the flat plates 54a and 55a to the tab 5B by the reaction force. . This makes it possible to maintain good contact between the tab and the well-conductive flat plate embedded at all times for a long time.
 この他にも、溶接やはんだ付けが不要な接合法や物理的接合機構を用いてもよい。例えば、良伝導電気伝導性平板とタブ収納室内壁の間に弾性体を介在させたり、タブを挿入する際の摩擦熱で融着させるなどの方法がある。 Besides this, a bonding method or a physical bonding mechanism which does not require welding or soldering may be used. For example, there is a method of interposing an elastic body between the well-conductive electrically conductive flat plate and the inner wall of the tab storage chamber, or fusing by frictional heat when inserting the tab.
 本実施例のような筐体構造とすることにより、正負極タブの接合作業が不要となり、組立ての作業正が飛躍的に向上する。 With the housing structure as in the present embodiment, the joining operation of the positive and negative electrode tabs is not necessary, and the positiveness of the assembling operation is dramatically improved.
 上記のように、本実施例の構成によれば、電極タブ部の放熱効果を高め、更にはより冷却効果の大きい液冷媒による冷却が可能となり、電池の温度上昇や単電池間の温度差が低減するため、高温耐久性や電池寿命が向上する。また、電池モジュール及び電池モジュールを配列した電池パックの体積あたりのエネルギー密度を高めることができる。 As described above, according to the configuration of the present embodiment, the heat dissipation effect of the electrode tab portion can be enhanced, and further, the liquid refrigerant having a large cooling effect can be used for cooling. The high temperature durability and the battery life are improved because of the reduction. Moreover, the energy density per volume of the battery pack which arranged the battery module and the battery module can be raised.
 なお、本実施例はラミネート型電池を例として説明を行ったが、同様に単電池を積層する形態のモジュールであれば、他の構成にも適用が可能である。 In addition, although the present Example demonstrated as an example of the lamination type battery, if it is a module of the form which laminates | stacks a cell similarly, it is applicable also to another structure.
100 モジュール構造
1 ラミネート型電池
2a 上側外層フィルム
2b 下側外層フィルム
3 シール熱融着部
4 正極タブ
5 負極タブ
7 接合面
8、9 接合タブ(タブ接合体)
10 電池本体筐体(第一の筐体部)
11  タブ収納筐体(第二の筐体部)
12 上部緩衝材
13 下部緩衝材
14 フランジ
15 仕切り板
16~19 開口部
20 冷媒流路部
21 接続流路
22 冷媒流入口
23 冷媒流出口
24 制御回路基板
25 端子接続部
26 配線収納室   
27a 正極外部端子
27b 負極外部端子
27c 通信用コネクタ
28 上蓋
29 冷媒の流路
30~32 タブ収納室
40、41 第一の筐体
42 第二の筐体
43、44 収納室
45 空間部
50 表面
51 開口部
52 電気絶縁層
53、54、55、56、57 平板
58 導電板
200、300 第二の筐体
301 穿孔
400 組電池
401、402 電池モジュール
500 タブ収納筐体
60、61、62、63 タブ収納室
64,65 中空部
66,67 膨出部
68,69 接触面
100 module structure 1 laminate type battery 2a upper outer layer film 2b lower outer layer film 3 seal heat seal part 4 positive electrode tab 5 negative electrode tab 7 joint surface 8, 9 joint tab (tab assembly)
10 Battery case (first case)
11 Tab storage case (second case)
12 upper cushioning material 13 lower cushioning material 14 flange 15 partition plate 16 to 19 opening 20 refrigerant flow passage 21 connection flow passage 22 refrigerant flow inlet 23 refrigerant flow outlet 24 control circuit board 25 terminal connection 26 wiring housing
27a positive electrode external terminal 27b negative electrode external terminal 27c communication connector 28 upper lid 29 refrigerant flow path 30 to 32 tab storage chamber 40, 41 first housing 42 second housing 43, 44 storage chamber 45 space 50 surface 51 surface 51 Opening 52 Electrical insulating layer 53, 54, 55, 56, 57 Flat plate 58 Conductive plate 200, 300 Second housing 301 Perforated 400 Assembled battery 401, 402 Battery module 500 Tab storage case 60, 61, 62, 63 Tab Storage room 64, 65 Hollow part 66, 67 Expansion part 68, 69 Contact surface

Claims (15)

  1.  積層された複数の平板型あるいはラミネート型リチウムイオン二次電池と、前記複数の電池を覆う筐体とを備えるリチウムイオン二次電池モジュールであって、
     前記リチウムイオン二次電池は、電池本体部と、電池本体部より突出した正極タブ及び負極タブを備え、
     前記筐体は、電池本体部を覆う第一の筐体と、前記正極タブ及び負極タブを格納する第二の筐体よりなり、前記正極タブ及び負極タブは、前記第一の筐体の一の面より突出していることを特徴とするリチウムイオン二次電池モジュール。
    A lithium ion secondary battery module comprising: a plurality of stacked flat plate type or laminate type lithium ion secondary batteries; and a casing covering the plurality of batteries,
    The lithium ion secondary battery includes a battery body, and a positive electrode tab and a negative electrode tab protruding from the battery body.
    The housing comprises a first housing covering a battery main body, and a second housing for storing the positive electrode tab and the negative electrode tab, wherein the positive electrode tab and the negative electrode tab are one of the first housing. A lithium ion secondary battery module characterized by protruding from the surface of
  2.  請求項1に記載のリチウムイオン二次電池モジュールにおいて、
     前記第二の筐体は、正極タブ、負極タブ、あるいは積層方向に隣合う一組のタブを接合したタブ接合体を、隔壁を介してそれぞれ収納するタブ収納室と、前記電池モジュールを制御する制御回路を収納する配線収納室と、を備えることを特徴とするリチウムイオン二次電池モジュール。
    In the lithium ion secondary battery module according to claim 1,
    The second housing controls a tab storage chamber for storing a positive electrode tab, a negative electrode tab, or a tab assembly obtained by joining a pair of adjacent tabs in the stacking direction via a partition wall, and the battery module What is claimed is: 1. A lithium ion secondary battery module comprising: a wiring storage room for storing a control circuit.
  3.  請求項2に記載のリチウムイオン二次電池モジュールにおいて、
     前記タブ接合体は、積層方向に隣合う一組の異極タブまたは同極タブが接合されていることを特徴とするリチウムイオン二次電池モジュール。
    In the lithium ion secondary battery module according to claim 2,
    In the lithium ion secondary battery module, the tab assembly includes a pair of different-polarity tabs or a same-polarity tab adjacent in the stacking direction.
  4.  請求項2に記載のリチウムイオン二次電池モジュールにおいて、
     前記配線収納室は、前記タブ収納室を介して前記第一の筐体と反対側に設けられていることを特徴とするリチウムイオン二次電池モジュール。
    In the lithium ion secondary battery module according to claim 2,
    The said wiring storage chamber is provided on the opposite side to the said 1st housing | casing via the said tab storage chamber, The lithium ion secondary battery module characterized by the above-mentioned.
  5.  請求項2に記載のリチウムイオン二次電池モジュールにおいて、
     前記タブ収納室は、前記リチウムイオン二次電池の積層方向に二列に配列され、前記配線収納室は、前記タブ収納室の列の間の空間部に設けられていることを特徴とするリチウムイオン二次電池モジュール。
    In the lithium ion secondary battery module according to claim 2,
    The tab storage chambers are arranged in two rows in the stacking direction of the lithium ion secondary battery, and the wiring storage chambers are provided in a space between the rows of the tab storage chambers. Ion secondary battery module.
  6.  請求項2に記載のリチウムイオン二次電池モジュールにおいて、
     前記第二の筐体は冷却機構を備え、前記冷却機構は、前記タブ収納室の間に冷却流路を設け、冷媒を流通させるものであることを特徴とするリチウムイオン二次電池モジュール。
    In the lithium ion secondary battery module according to claim 2,
    The second case is provided with a cooling mechanism, and the cooling mechanism is provided with a cooling flow path between the tab storage chambers to circulate the refrigerant.
  7.  請求項6に記載のリチウムイオン二次電池モジュールにおいて
     前記第二の筐体は金属材料で形成されており、前記冷却流路の内壁面は電気絶縁層で覆われていることを特徴とするリチウムイオン二次電池モジュール。
    7. The lithium ion secondary battery module according to claim 6, wherein the second casing is formed of a metal material, and the inner wall surface of the cooling flow passage is covered with an electrical insulating layer. Ion secondary battery module.
  8.  請求項2に記載のリチウムイオン二次電池モジュールにおいて、
     前記第二の筐体は金属材料で形成されており、前記タブ収納室の内壁面と前記タブあるいはタブ接合体との間には電気絶縁層が介在していることを特徴とするリチウムイオン二次電池モジュール。
    In the lithium ion secondary battery module according to claim 2,
    The second case is formed of a metal material, and an electrical insulating layer is interposed between the inner wall surface of the tab storage chamber and the tab or tab assembly. Battery module.
  9.  請求項2に記載のリチウムイオン二次電池モジュールにおいて、
     前記タブ収納室は、穿孔を有する壁材で形成されていることを特徴とするリチウムイオン二次電池モジュール。
    In the lithium ion secondary battery module according to claim 2,
    The said tab storage chamber is formed by the wall material which has perforations, The lithium ion secondary battery module characterized by the above-mentioned.
  10.  請求項1に記載のリチウムイオン二次電池モジュールにおいて、
     前記第二の筐体は、前記第一の筐体と対向する面にタブを挿入する開口を設けた仕切り板を有することを特徴とするリチウムイオン二次電池モジュール。
    In the lithium ion secondary battery module according to claim 1,
    A lithium ion secondary battery module characterized in that the second housing has a partition plate provided with an opening for inserting a tab in a surface facing the first housing.
  11.  請求項1に記載のリチウムイオン二次電池モジュールにおいて、
     複数の前記第一の筐体が、一つの前記第二の筐体で一体化されていることを特徴とするリチウムイオン二次電池モジュール。
    In the lithium ion secondary battery module according to claim 1,
    A lithium ion secondary battery module, wherein a plurality of the first housings are integrated in one of the second housings.
  12.  請求項1に記載のリチウムイオン二次電池モジュールにおいて、
     前記リチウムイオン二次電池は、略直方体形状であって、長辺の一方の辺側に正極タブ及び負極タブが配置されていることを特徴とするリチウムイオン二次電池モジュール
    In the lithium ion secondary battery module according to claim 1,
    The lithium ion secondary battery is substantially in the shape of a rectangular parallelepiped, and a positive electrode tab and a negative electrode tab are disposed on one side of a long side of the lithium ion secondary battery module.
  13.  電池本体部と電池本体部より同方向に突出した正極タブ及び負極タブとを有する平板型、あるいはラミネート型リチウムイオン二次電池を、複数積層して第一の筐体に収納したリチウムイオン二次電池モジュールを備え、第一、第二の二つの前記リチウムイオン二次電池モジュールを第二の筐体を挟んで一体化した組電池であって、
     前記正極タブ及び負極タブは、前記第一の筐体より突出しており、前記第二の筐体は、前記正極タブ及び負極タブ、積層方向に隣合う同極タブまたは異極タブを接合したタブ接合体を、隔壁を介して収納するタブ収納室を備え、
     前記第二の筐体は、前記第一の二次電池モジュールのタブを収納するタブ収納室の間に、前記第二の二次電池モジュールのタブを収納するタブ収納室を備え、前記第一、第二の二次電池モジュールのタブを収納するタブ収納室が積層方向に交互に配置されており、
     前記第二の筐体の積層方向に二列に配列された前記タブ収納室の列間部に、前記第一、第二の二次電池モジュールを制御する制御回路を収納する配線収納室が配置されていることを特徴とする組電池。
    A lithium ion secondary battery in which a plurality of flat plate type or laminate type lithium ion secondary batteries having a battery main body and a positive electrode tab and a negative electrode tab protruding in the same direction from the battery main body are stacked and accommodated in a first housing An assembled battery comprising a battery module and integrating the first and second two lithium ion secondary battery modules with a second housing interposed therebetween,
    The positive electrode tab and the negative electrode tab protrude from the first housing, and the second housing is a tab obtained by joining the positive electrode tab and the negative electrode tab, the same electrode tab or the different electrode tab adjacent in the stacking direction. It has a tab storage room for storing the junction through a partition wall,
    The second housing includes a tab storage room for storing the tab of the second secondary battery module, between the tab storage rooms for storing the tabs of the first secondary battery module, The tab storage chambers for storing the tabs of the second secondary battery module are alternately arranged in the stacking direction,
    A wire storage room for storing a control circuit for controlling the first and second secondary battery modules is disposed between row portions of the tab storage chambers arranged in two rows in the stacking direction of the second housing. An assembled battery characterized by being.
  14.  請求項13に記載された組電池であって、
     前記第二の筐体は対向する面にそれぞれ開口部を有する仕切り板を有し、一の面より前記第一の二次電池モジュール、他の面より前記第二の二次電池モジュールの前記タブあるいはタブ接合体が前記タブ収納室に挿入され、
     前記第二の筐体は冷却機構を備え、前記第二の筐体の積層方向に二列に配列された前記タブ収納室の列間部に前記冷却機構を配置したことを特徴とする組電池。
    It is the assembled battery according to claim 13,
    The second housing has partition plates each having an opening on the opposite surface, and the first secondary battery module from one surface and the tab of the second secondary battery module from the other surface Alternatively, the tab assembly is inserted into the tab storage chamber,
    The second battery is provided with a cooling mechanism, and the cooling mechanism is disposed between row portions of the tab storage chambers arranged in two rows in the stacking direction of the second housing. .
  15.  請求項13に記載された組電池であって、
     前記リチウムイオン二次電池は、略直方体形状であって、長辺の一方の辺側に正極タブ及び負極タブが配置されていることを特徴とする組電池。
    It is the assembled battery according to claim 13,
    The lithium ion secondary battery has a substantially rectangular parallelepiped shape, and a positive electrode tab and a negative electrode tab are disposed on one side of a long side.
PCT/JP2013/064831 2013-05-29 2013-05-29 Laminate-type lithium-ion secondary battery module WO2014192087A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/064831 WO2014192087A1 (en) 2013-05-29 2013-05-29 Laminate-type lithium-ion secondary battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/064831 WO2014192087A1 (en) 2013-05-29 2013-05-29 Laminate-type lithium-ion secondary battery module

Publications (1)

Publication Number Publication Date
WO2014192087A1 true WO2014192087A1 (en) 2014-12-04

Family

ID=51988162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064831 WO2014192087A1 (en) 2013-05-29 2013-05-29 Laminate-type lithium-ion secondary battery module

Country Status (1)

Country Link
WO (1) WO2014192087A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299544A (en) * 2016-10-21 2017-01-04 法乐第(北京)网络科技有限公司 Battery modules and battery bag
WO2017110433A1 (en) * 2015-12-24 2017-06-29 株式会社オートネットワーク技術研究所 Connection module
JP6472857B1 (en) * 2017-10-03 2019-02-20 カルソニックカンセイ株式会社 Assembled battery
DE102017215982A1 (en) * 2017-09-11 2019-03-14 Mahle International Gmbh Battery cell assembly
DE102017215980A1 (en) * 2017-09-11 2019-03-14 Mahle International Gmbh Battery cell assembly
CN111384464A (en) * 2018-12-29 2020-07-07 宁德时代新能源科技股份有限公司 Battery module and battery pack
GB2589564A (en) * 2019-11-26 2021-06-09 Bae Systems Plc Containment structure for a battery
CN113328146A (en) * 2021-06-15 2021-08-31 多氟多新能源科技有限公司 Method for stacking PACK of soft package lithium ion battery
CN113363673A (en) * 2021-06-28 2021-09-07 东莞新能安科技有限公司 Battery module and electronic device using same
CN113474935A (en) * 2019-03-01 2021-10-01 京瓷株式会社 Electrochemical cell module
CN114039173A (en) * 2021-10-25 2022-02-11 东莞新能安科技有限公司 Electrochemical device, battery module and electric equipment
WO2023185218A1 (en) * 2022-03-26 2023-10-05 珠海冠宇电池股份有限公司 Battery
CN117458071A (en) * 2023-11-07 2024-01-26 湖南沃尔顿新能源科技有限公司 High-density lithium ion battery structure convenient to detach

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009163932A (en) * 2007-12-28 2009-07-23 Sharp Corp Battery pack
JP2010238551A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd Battery-pack device
JP2011171114A (en) * 2010-02-18 2011-09-01 Japan Aviation Electronics Industry Ltd Connector for connecting batteries
JP2012142097A (en) * 2010-12-28 2012-07-26 Honda Motor Co Ltd Method of manufacturing storage battery module, and storage battery module
JP2012174972A (en) * 2011-02-23 2012-09-10 Jm Energy Corp Power storage device
JP2013105698A (en) * 2011-11-16 2013-05-30 Yazaki Corp Power supply device
JP2013105700A (en) * 2011-11-16 2013-05-30 Yazaki Corp Power supply device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009163932A (en) * 2007-12-28 2009-07-23 Sharp Corp Battery pack
JP2010238551A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd Battery-pack device
JP2011171114A (en) * 2010-02-18 2011-09-01 Japan Aviation Electronics Industry Ltd Connector for connecting batteries
JP2012142097A (en) * 2010-12-28 2012-07-26 Honda Motor Co Ltd Method of manufacturing storage battery module, and storage battery module
JP2012174972A (en) * 2011-02-23 2012-09-10 Jm Energy Corp Power storage device
JP2013105698A (en) * 2011-11-16 2013-05-30 Yazaki Corp Power supply device
JP2013105700A (en) * 2011-11-16 2013-05-30 Yazaki Corp Power supply device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11424513B2 (en) 2015-12-24 2022-08-23 Autonetworks Technologies, Ltd. Connection module
WO2017110433A1 (en) * 2015-12-24 2017-06-29 株式会社オートネットワーク技術研究所 Connection module
JP2017117620A (en) * 2015-12-24 2017-06-29 株式会社オートネットワーク技術研究所 Connection module
CN108431993A (en) * 2015-12-24 2018-08-21 株式会社自动网络技术研究所 Link block
CN106299544A (en) * 2016-10-21 2017-01-04 法乐第(北京)网络科技有限公司 Battery modules and battery bag
DE102017215982A1 (en) * 2017-09-11 2019-03-14 Mahle International Gmbh Battery cell assembly
DE102017215980A1 (en) * 2017-09-11 2019-03-14 Mahle International Gmbh Battery cell assembly
JP6472857B1 (en) * 2017-10-03 2019-02-20 カルソニックカンセイ株式会社 Assembled battery
WO2019069861A1 (en) * 2017-10-03 2019-04-11 カルソニックカンセイ株式会社 Battery pack
JP2019067673A (en) * 2017-10-03 2019-04-25 カルソニックカンセイ株式会社 Battery pack
CN111164790A (en) * 2017-10-03 2020-05-15 马瑞利株式会社 Battery pack
CN111384464A (en) * 2018-12-29 2020-07-07 宁德时代新能源科技股份有限公司 Battery module and battery pack
CN113474935A (en) * 2019-03-01 2021-10-01 京瓷株式会社 Electrochemical cell module
CN113474935B (en) * 2019-03-01 2024-05-03 京瓷株式会社 Electrochemical cell module
GB2589564A (en) * 2019-11-26 2021-06-09 Bae Systems Plc Containment structure for a battery
CN113328146A (en) * 2021-06-15 2021-08-31 多氟多新能源科技有限公司 Method for stacking PACK of soft package lithium ion battery
CN113363673A (en) * 2021-06-28 2021-09-07 东莞新能安科技有限公司 Battery module and electronic device using same
CN113363673B (en) * 2021-06-28 2024-03-12 东莞新能安科技有限公司 Battery module and electronic device using same
CN114039173A (en) * 2021-10-25 2022-02-11 东莞新能安科技有限公司 Electrochemical device, battery module and electric equipment
WO2023185218A1 (en) * 2022-03-26 2023-10-05 珠海冠宇电池股份有限公司 Battery
CN117458071A (en) * 2023-11-07 2024-01-26 湖南沃尔顿新能源科技有限公司 High-density lithium ion battery structure convenient to detach
CN117458071B (en) * 2023-11-07 2024-04-30 湖南沃尔顿新能源科技有限公司 High-density lithium ion battery structure convenient to detach

Similar Documents

Publication Publication Date Title
WO2014192087A1 (en) Laminate-type lithium-ion secondary battery module
JP7082665B2 (en) Battery module with improved cooling structure
JP6090711B2 (en) Secondary battery and battery module
JP5155190B2 (en) Frame member for battery module assembly
JP5154451B2 (en) Battery module
JP6780018B2 (en) Cooling array for energy storage
JP5270915B2 (en) Module housing, film-covered electrical device case, and battery pack
US9460862B2 (en) Electric storage cell, electric storage apparatus, and vehicle having electric storage apparatus
JP5374979B2 (en) Batteries and batteries
US20090220853A1 (en) Battery Module
JP5546885B2 (en) Battery pack
WO2020188948A1 (en) Battery module
KR101326182B1 (en) Battery Module Based upon Unit Module Having External Covering Member and Cartridge
JP2019508870A (en) Battery module
JP2007042453A (en) Aligned structure of storage body cell
JP2004071168A (en) Battery pack and manufacturing method of the same
JP2010135148A (en) Cell unit, battery module, and battery pack
JP7045605B2 (en) Battery module with improved cooling structure
KR101305229B1 (en) Unit Module Having External Covering Member and Heat Dissipation Member and Battery Module Comprising the Same
CN113113692A (en) Battery, battery module, battery pack and electric vehicle
JP4784067B2 (en) Power storage module
JP5837999B2 (en) Power storage cell, power storage device, and vehicle equipped with power storage device
US20230318113A1 (en) Battery pack
KR101136807B1 (en) Cartridge for Middle or Large-sized Battery Module
JP2009193872A (en) Valve mechanism and power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP