WO2014191672A1 - Assemblage a liaison auto-serrante en temperature - Google Patents

Assemblage a liaison auto-serrante en temperature Download PDF

Info

Publication number
WO2014191672A1
WO2014191672A1 PCT/FR2014/051233 FR2014051233W WO2014191672A1 WO 2014191672 A1 WO2014191672 A1 WO 2014191672A1 FR 2014051233 W FR2014051233 W FR 2014051233W WO 2014191672 A1 WO2014191672 A1 WO 2014191672A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
head
nut
assembly
assembly according
Prior art date
Application number
PCT/FR2014/051233
Other languages
English (en)
Inventor
Thomas REVEL
Benoit Carrere
Eric Conete
Pierre Camy
Original Assignee
Herakles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Herakles filed Critical Herakles
Priority to CN201480031098.5A priority Critical patent/CN105556136B/zh
Priority to CA2911465A priority patent/CA2911465C/fr
Priority to RU2015155719A priority patent/RU2655194C2/ru
Priority to EP14731730.9A priority patent/EP3004658B1/fr
Priority to JP2016516221A priority patent/JP6334685B2/ja
Priority to BR112015028292-0A priority patent/BR112015028292B1/pt
Publication of WO2014191672A1 publication Critical patent/WO2014191672A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B39/00Locking of screws, bolts or nuts
    • F16B39/02Locking of screws, bolts or nuts in which the locking takes place after screwing down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B37/00Nuts or like thread-engaging members
    • F16B37/14Cap nuts; Nut caps or bolt caps
    • F16B37/145Sleeve nuts, e.g. combined with bolts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/02Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread
    • F16B5/0241Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread with the possibility for the connection to absorb deformation, e.g. thermal or vibrational

Definitions

  • thermostructural composite material parts such as a ceramic matrix (CMC) or carbon / carbon (C / C) composite material, a material typically formed of a porous substrate, such as a porous fibrous substrate densified by a ceramic matrix.
  • the fibers of the substrate may in particular be carbon or ceramic.
  • the matrix is made of a refractory ceramic such as, for example, carbide, nitride, boride or refractory oxide.
  • Thermostructural composite materials are remarkable for their mechanical properties, which make them suitable for constituting structural elements, and for their ability to retain these properties at high temperatures.
  • the invention relates more particularly to the aerodynamic and thermal behaviors of the mechanical connections used to assemble parts made of thermostructural composite material when they are intended to be bathed in high temperature streams, as for example in the case of the manufacture of all or part of aircraft engine outboard assemblies such as exhaust cones (also known as “plugs” or “exhaust”) or variable section nozzle flaps.
  • the parts to be assembled are generally relatively thin (thickness of a few millimeters) and must meet aerodynamic requirements, which leads to preferentially use rivets to achieve mechanical connections between parts.
  • rivets are generally used having, on one side of the assembly, a countersunk head housed in a countersink in one of the parts to be assembled and on the other side, a column or washer allowing a resumption of the differential expansions between the rivets, which dilate significantly, and the parts in thermostructural composite materials, which dilate little.
  • the integration of the rivet head into a countersink on one side of the assembly provides good aerodynamic performance but only on this side of the assembly because the presence of the column and part of the rivet body on the other side of the assembly creates a significant drag.
  • thermostructural composite material parts with rivets, such as those sold under the trademark Fybrfast®, these rivets comprising, on one side, a head and, on the other side, an end that is crushed and flattened in order to fix the pieces together.
  • Fybrfast® sold under the trademark
  • the aim of the invention is to propose a solution for assembling composite material parts using one or more fastening systems which have a coefficient of thermal expansion greater than the coefficient of thermal expansion of the composite material parts, the fastening system in front of or very little impact the aerodynamic performance of the assembly.
  • an assembly comprising a first piece and a second piece of composite material held against each other by at least one fastening system comprising a screw comprising a countersunk head from which a threaded portion extends. and a nut having a countersunk head from which extends a shank having a tapping cooperating with the threaded part of the screw, the head of the screw bearing against a countersink in the first part, the head of the nut being supported in a countersink in the second part, the fastening system being adapted to tilt at least one of the two heads towards the countersink in which it is housed during the axial expansion of said fastening system.
  • the assembly of the invention is made with mechanical connections that are integrated on each side thereof, that is to say that do not exceed the outer surface of the assembled parts.
  • the assembly of the invention can, therefore, be bathed on both sides in a high temperature flow without degradation of aerodynamic performance by the connecting systems.
  • the fastening system used is designed to apply additional holding force by tilting at least one of the heads of the system during the temperature rise, which compensates for the expansion, in particular axial, of each system. fixing and maintain a hot clamping force.
  • one of the countersunk heads of the fastening system comprises a plurality of radial slots and has an angle greater than that of the countersink of the part in which it is housed, the head in question being maintained in prestressing in said countersink.
  • the screw and the nut are made of a material chosen by at least one of the following materials: Inconel® 625 or 718, Waspaloy®, Haynes® 282®, stainless steel A286 and all other high-performance steel.
  • the fastening system comprises a pin extending inside the fastening system between the head of the screw and the head of the nut, the pin having a coefficient of expansion higher thermal coefficient of thermal expansion of the screw and the nut.
  • the pin expands more strongly than the fixing system and exerts at its lower ends. and greater thrust forces on the inner portions of the heads of the screw and the nut.
  • the heads then swing towards the countersink in which they are housed during the axial expansion of the pin and each exert efforts on the parts that keep hot the clamping force exerted on the parts by the fastening system.
  • the head of the screw and the head of the nut each comprise lights. These lights facilitate the elastic deformation of said heads during expansion and retraction of the pin.
  • the first and second parts are made of ceramic matrix composite material.
  • the first and second parts each have a thickness of less than 3 mm.
  • the first and second parts are aeronautical engine rear body parts.
  • FIG. 1 is a schematic perspective view showing the realization of an assembly according to one embodiment of the invention
  • Figures 2A and 2B are schematic views respectively in section and from above showing the assembly of Figure 1 cold;
  • FIGS. 3A and 3B are diagrammatic views respectively in section and from above showing the assembly of FIG. 1 when exposed to a high temperature flow;
  • FIG. 4 is a schematic perspective view showing the realization of an assembly according to an embodiment of the invention.
  • Figure 5 is a schematic sectional view showing the assembly of Figure 4 cold
  • Figure 6 is a schematic sectional view showing the assembly of Figure 4 when exposed to high temperatures.
  • the present invention generally applies to any assembly between composite material parts using one or more fastening systems which have a coefficient of thermal expansion greater than the coefficient of thermal expansion of the composite material parts, the fastening system not having or very little impact on the aerodynamic performance of the assembly.
  • the parts to be assembled can be in particular thermostructural composite ceramic matrix (CMC), that is to say any material formed of a refractory fiber reinforcement (carbon or ceramic) densified by a ceramic matrix also refractory, such as C / SiC, SiC / SiC, C / C-SiC, etc.
  • CMC thermostructural composite ceramic matrix
  • the parts can also be made of other thermostructural composite materials having a low coefficient of expansion such as C / C materials (reinforcement and carbon matrix).
  • the assembly according to the invention is particularly, but not exclusively, intended to be used for the realization of all or part of aft engine body assemblies such as exhaust cones (also called “plugs” or “plugs”). exhaust ”) or variable section nozzle flaps.
  • FIG. 1 an assembly 100 between two pieces 10 and 20 of CMC thermostructural composite material is produced by means of a fastening system 50 comprising a screw 30 and a nut 40 which are placed in orifices 11 and 21 formed in Exhibits 10 and 20.
  • the 30 comprises a countersunk head 31 from which extends a threaded portion 32, the countersunk head 31 being housed in a countersink 12 formed in the part 10.
  • the nut 40 also comprises a countersunk head 41 from which extends a barrel 42 having a tapping 43 intended to cooperate with the threaded portion 32 of the screw 30.
  • the screw and the nut can be made in particular of one of the following materials: Inconel® 625 or 718, Waspaloy®, Haynes® 282®, stainless steel A286 and all other steel high performance.
  • the milled heads 31 and 41 each comprise a plurality of radial slots 310 and 410.
  • the countersunk head 31 of the screw 30 has an angle ⁇ 3 ⁇ which is greater than the angle ⁇ of the countersink 12 in which it must be housed.
  • the milled head 41 of the nut 40 has an angle ⁇ ⁇ which is greater than the angle 022 of the countersink 22 in which it must be accommodated.
  • the screw 30 is screwed into the nut 40 according to a clamping force to place the milled heads 31 and
  • the fastening system expands in particular in an axial direction DA as illustrated in Figure 3A.
  • the countersunk heads 31 and 41 held so far preloaded in their respective countersink 12 and 22 then swing towards the countersink in which they are housed during the axial expansion of the fastening system.
  • the slots 310 and 410 then return to their rest configuration as illustrated for the slots 410 of the head 41 in FIG. 3B.
  • the heads 31 and 41 then exert each of the forces EM3I and E I on the parts 10 and 20 which make it possible to keep the clamping force exerted on the parts by the fastening system hot.
  • the assembly 100 resumes the cold configuration shown in FIGS. 2A and 2B.
  • FIG. 4 illustrate an assembly according to another embodiment of the invention.
  • an assembly 300 between two parts 60 and 70 made of composite material thermostructural CMC is achieved by means of a fastening system 200 comprising a screw 80 and a nut 90 which are placed in orifices 61 and 71 formed in the parts 60 and 70.
  • the screw 80 comprises a countersunk head 81 to from which extends a threaded portion 82, the countersunk head 81 being housed in a countersink 62 formed in the part 60.
  • the nut 90 also comprises a countersunk head 91 from which extends a drum 92 having a tapping 93 for cooperating with the threaded portion 82 of the screw 80.
  • the countersunk head 91 of the nut 90 is housed in a countersink 72 formed in the part 70.
  • a pin 110 is further inserted into the internal volume 101 defined between the screw 80 and the nut 90 when the fastening system 200 is mounted ( Figure 5).
  • the pin 110 is dimensioned so as to be in contact with the heads 81 and 91 of the screw 80 and the nut 90. More specifically, the lower end 111 of the pin 110 is in contact with an inner portion 810 of the head 81 of the screw 80 located at its contiguous portion with the threaded portion 82 while the upper end 112 of the pin 110 is in contact with an inner portion 910 of the head 91 of the nut 90 at its adjoining portion with the drum 92.
  • the pin 110 has a coefficient of thermal expansion
  • the heads 81 and 91 each exert EMSI and EM9I forces on the parts 60 and 70 which make it possible to keep hot the clamping force exerted on the parts by the fastening system. Once cooled, the assembly 100 resumes the cold configuration shown in FIG.
  • the pin 110 further comprises a central shoulder 113 which keeps it in position in the internal volume 101 and balance the thrust forces it exerts on the heads 81 and 91
  • the heads 81 and 91 each respectively comprise lights 810 and 910 which facilitate the elastic deformation of said heads during expansion and retraction of the pin 110.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Plates (AREA)

Abstract

Un assemblage (100) comprenant une première pièce (10) et une deuxième pièce (20) en matériau composite maintenues l'une contre l'autre par au moins un système de fixation (50) comprenant une vis (30) comportant une tête fraisée (31) à partir de laquelle s'étend une partie filetée (32) et un écrou (40) comportant une tête fraisée (41) à partir de laquelle s'étend un fût (42) comportant un taraudage (43) coopérant avec la partie filetée (32) de la vis (30). La tête (31) de la vis (30) est en appui contre une fraisure (12) ménagée dans la première pièce (10). La tête de l'écrou (41) est en appui dans une fraisure (22) ménagée dans la deuxième pièce (20). Le système de fixation (50) est apte à faire basculer chaque tête (31 41) en direction de la fraisure (12; 22) dans laquelle elle est logée lors de la dilatation axiale du système de fixation (50).

Description

Assemblage à liaison auto-serrante en température
Arrière-plan de l'invention L'invention concerne l'assemblage par liaison mécanique de pièces en matériau composite thermostructural, tel qu'un matériau composite à matrice céramique (CMC) ou carbone/carbone (C/C), matériau typiquement formé d'un substrat poreux, tel qu'un substrat fibreux poreux densifié par une matrice céramique. Les fibres du substrat peuvent être notamment en carbone ou céramique. La matrice est en une céramique réfractaire telle que, par exemple, carbure, nitrure, borure ou oxyde réfractaire. Les matériaux composites thermostructuraux sont remarquables par leurs propriétés mécaniques, qui les rendent aptes à constituer des éléments de structure, et par leur capacité à conserver ces propriétés à des températures élevées.
L'invention concerne plus particulièrement les comportements aérodynamique et thermique des liaisons mécaniques utilisées pour assembler des pièces en matériau composite thermostructural lorsque celles-ci sont destinées à être baignées dans des flux haute température, comme par exemple dans le cas de la fabrication de tout ou partie d'ensembles d'arrière-corps de moteur aéronautique tels que des cônes d'échappement (encore appelés « plugs » ou « exhaust ») ou de volets de tuyère à section variable.
Dans ces applications, les pièces à assembler sont en général relativement fines (épaisseur de quelques millimètres) et doivent répondre à des exigences aérodynamiques, ce qui conduit à utiliser préférentiellement des rivets pour réaliser les liaisons mécaniques entre les pièces. Dans le cas des assemblages utilisés pour réaliser des parties d'arrière-corps de moteur aéronautique, on utilise généralement des rivets présentant, d'un côté de l'assemblage, une tête fraisée logée dans une fraisure ménagée dans une des pièces à assembler et, de l'autre côté, une colonnette ou rondelle permettant une reprise des dilatations différentielles entre le rivets, qui se dilatent significativement, et les pièces en matériaux composite thermostructural, qui se dilatent peu. L'intégration de la tête du rivet dans une fraisure présente d'un côté de l'assemblage permet d'obtenir de bonnes performances aérodynamiques mais seulement de ce côté de l'assemblage car la présence de la colonnette et d'une partie du corps du rivet de l'autre côté de l'assemblage crée une traînée importante.
Une autre solution utilisée dans la réalisation des volets de tuyère à section variable consiste à lier les pièces en matériau composite thermostructural avec des rivets, tels que ceux commercialisés sous la marque Fybrfast®, ces rivets comprenant, d'un côté, une tête et, de l'autre côté, une extrémité qui est écrasée et aplatie afin de fixer les pièces entre elles. Cependant, avec ce type de rivet, la tête et la partie du corps écrasée du rivet dépassent de chaque côté de l'assemblage et se trouvent, par conséquent, au-delà de la ligne aérodynamique de l'assemblage.
Objet et résumé de l'invention
L'invention a pour but de proposer une solution pour l'assemblage de pièces en matériau composite utilisant un ou plusieurs systèmes de fixation qui présentent un coefficient de dilatation thermique supérieur au coefficient de dilatation thermique des pièces en matériau composite, le système de fixation ne devant pas ou très peu impacter les performances aérodynamiques de l'assemblage.
Ce but est atteint avec un assemblage comprenant une première pièce et une deuxième pièce en matériau composite maintenues l'une contre l'autre par au moins un système de fixation comprenant une vis comportant une tête fraisée à partir de laquelle s'étend une partie filetée et un écrou comportant une tête fraisée à partir de laquelle s'étend un fût comportant un taraudage coopérant avec la partie filetée de la vis, la tête de la vis étant en appui contre une fraisure ménagée dans la première pièce, la tête de l'écrou étant en appui dans une fraisure ménagée dans la deuxième pièce, le système de fixation étant apte à faire basculer au moins une des deux têtes en direction de la fraisure dans laquelle elle est logée lors de la dilatation axiale dudit système de fixation.
Ainsi, l'assemblage de l'invention est réalisé avec des liaisons mécaniques qui sont intégrées de chaque côté de celui-ci, c'est-à-dire qui ne dépassent pas de la surface externe des pièces assemblées. L'assemblage de l'invention peut, par conséquent, être baigné des deux côtés dans un flux haute température sans dégradation des performances aérodynamiques par les systèmes de liaison.
En outre, le système de fixation utilisé est conçu pour appliquer un effort de maintien supplémentaire par basculement d'au moins une des têtes du système lors des montées en température, ce qui permet de compenser la dilatation, en particulier axiale, de chaque système de fixation et de conserver un effort de serrage à chaud.
Selon un mode de réalisation de l'assemblage conforme à l'invention, une des têtes fraisées du système de fixation comporte une pluralité de fentes radiales et présente un angle supérieur à celui de la fraisure de la pièce dans laquelle elle est logée, la tête en question étant maintenue en précontrainte dans ladite fraisure. Ainsi, lorsque l'assemblage est exposé à un flux haute température, le système de fixation se dilate et la tête, maintenue jusqu'ici en précontrainte, bascule alors en direction de la fraisure dans laquelle elle est logée. En basculant ainsi, la tête exerce alors des efforts supplémentaires qui permettent de maintenir à chaud l'effort de serrage exercé sur les pièces par le système de fixation.
Selon un aspect de l'assemblage de l'invention, la vis et l'écrou sont en un matériau choisi par au moins un des matériaux suivants : Inconel® 625 ou 718, Waspaloy®, Haynes® 282®, acier inoxydable A286 et tout autre acier haute performance.
Selon un autre mode de réalisation de l'invention, le système de fixation comprend un pion s'étendant à l'intérieur du système de fixation entre la tête de la vis et la tête de l'écrou, le pion présentant un coefficient de dilatation thermique supérieur au coefficient de dilatation thermique de la vis et de l'écrou. Ainsi, lorsque l'assemblage est soumis à des températures élevées, par exemple dans le cas où il est baigné dans un flux chaud de gaz de combustion, le pion se dilate plus fortement que le système de fixation et exerce au niveau de ses extrémités inférieure et supérieure des forces de poussée sur les portions internes des têtes de la vis et de l'écrou. Les têtes basculent alors en direction de la fraisure dans laquelle elles sont logées lors de la dilatation axiale du pion et exercent chacune des efforts sur les pièces qui permettent de maintenir à chaud l'effort de serrage exercé sur les pièces par le système de fixation. Selon un aspect de l'assemblage de l'invention, la vis et l'écrou sont en Inconel® 718 (CTE6oooc = 14,8) tandis que le pion est en acier inoxydable A286 (formule 26NCT25 et CTE6oo°c = 18).. Selon un même aspect de l'assemblage de l'invention, la vis et l'écrou sont en titane (CTE6oo°c = 9,9) tandis que le pion est en Waspaloy® (CTE6oo°c = 14,6).
Selon un autre aspect de l'assemblage de l'invention, la tête de la vis et la tête de l'écrou comportent chacune des lumières. Ces lumières facilitent la déformation élastique desdites têtes lors des dilatations et rétractations du pion.
Selon un autre aspect de l'assemblage de l'invention, les première et deuxième pièces sont en matériau composite à matrice céramique.
Selon encore un autre aspect de l'assemblage de l'invention, les première et deuxième pièces présentent chacune une épaisseur inférieure à 3 mm.
Selon toujours un autre aspect de l'assemblage de l'invention, les première et deuxième pièces sont des pièces d'arrière-corps de moteur aéronautique.
Brève description des dessins
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, sur lesquels:
- la figure 1 est une vue schématique en perspective montrant la réalisation d'un assemblage conformément à un mode de réalisation de l'invention,
- les figures 2A et 2B sont des vues schématiques respectivement en coupe et de dessus montrant l'assemblage de la figure 1 à froid ;
- les figures 3A et 3B sont des vues schématiques respectivement en coupe et de dessus montrant l'assemblage de la figure 1 lorsqu'il est exposé à un flux haute température ; - la figure 4 est une vue schématique en perspective montrant la réalisation d'un assemblage conformément à un mode de réalisation de l'invention,
- la figure 5 est une vue schématique en coupe montrant l'assemblage de la figure 4 à froid ;
- la figure 6 est une vue schématique en coupe montrant l'assemblage de la figure 4 lorsqu'il est exposé à de hautes températures.
Description détaillée de mode de réalisation
La présente invention s'applique d'une manière générale à tout assemblage entre des pièces en matériau composite utilisant un ou plusieurs systèmes de fixation qui présentent un coefficient de dilatation thermique supérieur au coefficient de dilatation thermique des pièces en matériau composite, le système de fixation ne devant pas ou très peu impacter les performance aérodynamique de l'assemblage.
Les pièces à assembler peuvent être notamment en composite thermostructural à matrice céramique (CMC), c'est-à-dire tout matériau formé d'un renfort en fibres réfractaires (carbone ou céramique) densifié par une matrice céramique elle aussi réfractaire, tels que des matériaux C/SiC, SiC/SiC, C/C-SiC, etc. Les pièces peuvent être également en d'autres matériaux composites thermostructuraux présentant un faible coefficient de dilatation tels les matériaux C/C (renfort et matrice en carbone).
L'assemblage selon l'invention est notamment, mais non exclusivement, destiné à être utilisé pour la réalisation tout ou partie d'ensembles d'arrière-corps de moteur aéronautique tels que des cônes d'échappement (encore appelés « plugs » ou « exhaust ») ou volets de tuyère à section variable.
Les figures 1, 2A, 2B, 3A et 3B illustrent un assemblage conformément à un mode de réalisation de l'invention. Comme illustré sur la figure 1, un assemblage 100 entre deux pièces 10 et 20 en matériau composite thermostructural CMC est réalisé au moyen d'un système de fixation 50 comprenant une vis 30 et un écrou 40 qui sont placés dans des orifices 11 et 21 ménagés dans les pièces 10 et 20. Plus précisément, la vis 30 comporte une tête fraisée 31 à partir de laquelle s'étend une partie filetée 32, la tête fraisée 31 étant logée dans une fraisure 12 ménagée dans la pièce 10. L'écrou 40 comporte également une tête fraisée 41 à partir de laquelle s'étend un fût 42 comportant un taraudage 43 destiné à coopérer avec la partie filetée 32 de la vis 30. La tête fraisée 41 de l'écrou
40 est logée dans une fraisure 22 ménagée dans la pièce 20. La vis et l'écrou peuvent être notamment réalisés en un des matériaux suivants : Inconel® 625 ou 718, Waspaloy®, Haynes® 282®, acier inoxydable A286 et tout autre acier haute performance.
Dans le mode de réalisation décrit ici, les têtes fraisées 31 et 41 comportent chacune une pluralité de fentes radiales 310 et 410. En outre, la tête fraisée 31 de la vis 30 présente un angle β3ΐ qui est supérieur à l'angle an de la fraisure 12 dans laquelle elle doit être logée. De même, la tête fraisée 41 de l'écrou 40 présente un angle β ΐ qui est supérieur à l'angle 022 de la fraisure 22 dans laquelle elle doit être logée. Comme illustrée sur les figures 2A et 2B, la vis 30 est vissée dans l'écrou 40 suivant un effort de serrage permettant de placer les têtes fraisées 31 et
41 en précontrainte dans leur fraisure respectives 12 et 22. Dans cet état précontraint, les têtes 31 et 41 sont élastiquement déformées grâce à la présence des fentes 310 et 410.
Lorsque l'assemblage 100 est soumis à des températures élevées, par exemple dans le cas où il est baigné dans un flux chaud de gaz de combustion, le système de fixation se dilate en particulier dans une direction axiale DA comme illustrée sur la figure 3A. Les têtes fraisées 31 et 41 maintenues jusqu'ici en précontrainte dans leur fraisure respectives 12 et 22 basculent alors en direction de la fraisure dans laquelle elles sont logées lors de la dilatation axiale du système de fixation. Les fentes 310 et 410 retrouvent alors leur configuration de repos comme illustrée pour les fentes 410 de la tête 41 sur la figure 3B. Les têtes 31 et 41 exercent alors chacune des efforts EM3I et E I sur les pièces 10 et 20 qui permettent de maintenir à chaud l'effort de serrage exercé sur les pièces par le système de fixation. Une fois refroidi, l'assemblage 100 reprend la configuration à froid représentée sur les figures 2A et 2B.
Les figures 4, 5 et 6 illustrent un assemblage conformément à un autre mode de réalisation de l'invention. Comme illustré sur la figure 4, un assemblage 300 entre deux pièces 60 et 70 en matériau composite thermostructural CMC est réalisé au moyen d'un système de fixation 200 comprenant une vis 80 et un écrou 90 qui sont placés dans des orifices 61 et 71 ménagés dans les pièces 60 et 70. Plus précisément, la vis 80 comporte une tête fraisée 81 à partir de laquelle s'étend une partie filetée 82, la tête fraisée 81 étant logée dans une fraisure 62 ménagée dans la pièce 60. L'écrou 90 comporte également une tête fraisée 91 à partir de laquelle s'étend un fût 92 comportant un taraudage 93 destiné à coopérer avec la partie filetée 82 de la vis 80. La tête fraisée 91 de l'écrou 90 est logée dans une fraisure 72 ménagée dans la pièce 70.
Dans le mode de réalisation décrit ici, un pion 110 est en outre inséré dans le volume interne 101 définit entre la vis 80 et l'écrou 90 lorsque le système de fixation 200 est monté (figure 5). Le pion 110 est dimensionné de manière à être en contact avec les têtes 81 et 91 de la vis 80 et de l'écrou 90. Plus précisément, l'extrémité inférieure 111 du pion 110 est en contact avec une portion interne 810 de la tête 81 de la vis 80 située au niveau de sa partie jointive avec la partie filetée 82 tandis que l'extrémité supérieure 112 du pion 110 est en contact avec une portion interne 910 de la tête 91 de l'écrou 90 au niveau de sa partie jointive avec le fût 92.
Le pion 110 présente un coefficient de dilatation thermique
(CTE) supérieur au coefficient de dilatation thermique de la vis 80 et de l'écrou 90. Ainsi, lorsque l'assemblage 300 est soumis à des températures élevées, par exemple dans le cas où il est baigné dans un flux chaud de gaz de combustion, le pion 110 se dilate plus fortement que le système de fixation 200 et exerce au niveau de ses extrémités inférieure et supérieure 111 et 112 des forces de poussée Fin et F112 respectivement sur les portions internes 810 et 910 des têtes 81 et 91 (Figure 6). Les têtes 81 et 91 basculent alors en direction de la fraisure dans laquelle elles sont logées lors de la dilatation axiale du pion 110. Les têtes 81 et 91 exercent chacune des efforts EMSI et EM9I sur les pièces 60 et 70 qui permettent de maintenir à chaud l'effort de serrage exercé sur les pièces par le système de fixation. Une fois refroidi, l'assemblage 100 reprend la configuration à froid représentée sur la figure 5.
A titre d'exemple non limitatifs, la vis et l'écrou peuvent être réalisés en Inconel® 718 (CTE6oo°c = 14,8) tandis que le pion est en acier inoxydable A286 (formule 26NCT25 et CTE6oo°c = 18). Selon une autre variante non limitative, la vis et l'écrou sont réalisés en titane (CTE6oo°c = 9,9) tandis que le pion est en Waspaloy® (CTE6oo°c = 14,6).
Dans l'exemple décrit ici, le pion 110 comporte en outre un épaulement central 113 qui permet de maintenir celui-ci dans en position dans le volume interne 101 et d'équilibrer les forces de poussée qu'il exerce sur les têtes 81 et 91. En outre, dans l'exemple présenté ici, les têtes 81 et 91 comportent chacune respectivement des lumières 810 et 910 qui facilitent la déformation élastique desdites têtes lors des dilatations et rétractations du pion 110.

Claims

REVENDICATIONS
1. Assemblage (100) comprenant une première pièce (10) et une deuxième pièce (20) en matériau composite maintenues l'une contre l'autre par au moins un système de fixation (50) comprenant une vis (30) comportant une tête fraisée (31) à partir de laquelle s'étend une partie filetée (32) et un écrou (40) comportant une tête fraisée (41) à partir de laquelle s'étend un fût (42) comportant un taraudage (43) coopérant avec la partie filetée (32) de la vis (30), la tête (31) de la vis (30) étant en appui contre une fraisure (12) ménagée dans la première pièce (10), la tête de l'écrou (41) étant en appui dans une fraisure (22) ménagée dans la deuxième pièce (20), le système de fixation (50) étant apte à faire basculer au moins une des deux têtes (31, 41) en direction de la fraisure (12; 22) dans laquelle elle est logée lors de la dilatation axiale dudit système de fixation (50).
2. Assemblage selon la revendication 1, caractérisé en ce qu'au moins une des têtes fraisées (31, 41) du système de fixation comporte une pluralité de fentes radiales (310; 410) et présente un angle ^; β41) supérieur à celui (α12, α22) de la fraisure (12; 22) de la pièce dans laquelle elle est logée et en ce que ladite au moins une tête (31; 41) est maintenue en précontrainte dans ladite fraisure (12; 22).
3. Assemblage selon la revendication 2, caractérisé en ce que la vis (30) et l'écrou (40) sont en un matériau choisi par au moins un des matériaux suivants : Inconel® 625 ou 718, Waspaloy®, Haynes® 282®, acier inoxydable A286 et acier haute performance.
4. Assemblage selon la revendication 1, caractérisé en ce que le système de fixation (200) comprend un pion (110) s'étendant à l'intérieur dudit système de fixation entre la tête (81) de la vis (80) et la tête (91) de l'écrou (90) et en ce que le pion (110) présente un coefficient de dilatation thermique supérieur au coefficient de dilatation thermique de la vis (80) et de l'écrou (90).
5. Assemblage selon la revendication 4, caractérisé en ce que la vis (30; 80) et l'écrou (40; 90) sont en Inconel® 718 (CŒ60o°c = 14,8) et en ce que le pion est en en acier inoxydable A286 (formule 26NCT25 et CTE6oo°c = 18).
6. Assemblage selon la revendication 4, caractérisé en ce que la vis (30; 80) et l'écrou (40; 90) sont en titane (CTE6oo°c = 9,9) tandis que le pion est en Waspaloy® (CTE6oo°c = 14,6).
7. Assemblage selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la tête (81) de la vis (80) et la tête (91) de l'écrou (90) comportent chacune des lumières (810; 910).
8. Assemblage selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les première et deuxième pièces (10, 20; 60, 70) sont en matériau composite à matrice céramique.
9. Assemblage selon l'une quelconque des revendications 1 à 8, caractérisé en ce que les première et deuxième pièces (10, 20; 60, 70) présentent chacune une épaisseur inférieure à 3 mm.
10. Assemblage selon l'une quelconque des revendications 1 à 9, caractérisé en ce que les première et deuxième pièces (10, 20; 60, 70) sont des pièces d'arrière-corps de moteur aéronautique.
PCT/FR2014/051233 2013-05-28 2014-05-27 Assemblage a liaison auto-serrante en temperature WO2014191672A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480031098.5A CN105556136B (zh) 2013-05-28 2014-05-27 具有温度自锁连接的装配件
CA2911465A CA2911465C (fr) 2013-05-28 2014-05-27 Assemblage a liaison auto-serrante en temperature
RU2015155719A RU2655194C2 (ru) 2013-05-28 2014-05-27 Узел с соединением, самозапирающимся под действием температуры
EP14731730.9A EP3004658B1 (fr) 2013-05-28 2014-05-27 Assemblage a liaison auto-serrante en temperature
JP2016516221A JP6334685B2 (ja) 2013-05-28 2014-05-27 温度セルフロック結合部を有する集成体
BR112015028292-0A BR112015028292B1 (pt) 2013-05-28 2014-05-27 Montagem que compreende uma primeira peça e uma segunda peça feitas de material compósito

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1354818A FR3006394B1 (fr) 2013-05-28 2013-05-28 Assemblage a liaison auto-serrante en temperature
FR1354818 2013-05-28

Publications (1)

Publication Number Publication Date
WO2014191672A1 true WO2014191672A1 (fr) 2014-12-04

Family

ID=49322487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/051233 WO2014191672A1 (fr) 2013-05-28 2014-05-27 Assemblage a liaison auto-serrante en temperature

Country Status (9)

Country Link
US (1) US9267531B2 (fr)
EP (1) EP3004658B1 (fr)
JP (1) JP6334685B2 (fr)
CN (1) CN105556136B (fr)
BR (1) BR112015028292B1 (fr)
CA (1) CA2911465C (fr)
FR (1) FR3006394B1 (fr)
RU (1) RU2655194C2 (fr)
WO (1) WO2014191672A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11506238B2 (en) * 2013-06-14 2022-11-22 James Alan Monroe Thermally stabilized fastener system and method
DE102013011655B4 (de) * 2013-07-12 2016-10-27 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Bremsbelaghalterung einer Scheibenbremse für ein Nutzfahrzeug
US9421442B2 (en) * 2014-07-18 2016-08-23 Callaway Golf Company Golf club screw
US20160069375A1 (en) * 2014-09-10 2016-03-10 Engineered Components Company Fixed length fastener assembly
JP6332475B2 (ja) * 2015-01-22 2018-05-30 日産自動車株式会社 炭素繊維強化樹脂材の締結構造
FR3038007B1 (fr) * 2015-06-24 2017-07-28 Herakles Systeme de synchronisation de volets pour tuyere a section variable
FR3044701B1 (fr) * 2015-12-03 2017-11-24 Snecma Rotor pour une turbomachine ou un banc d'essai
GB2545662B (en) * 2015-12-21 2020-02-19 Airbus Operations Ltd Fastener system and assembly
KR102281998B1 (ko) * 2017-08-30 2021-07-27 삼성전자 주식회사 이종재질 통신장치 함체
NO344799B1 (no) * 2017-11-01 2020-05-04 Bondura Tech As Boltsammenstilling for aksial og radial oppspenning av elementer sammenføyd ved hjelp av skruer
CN108468694A (zh) * 2018-04-10 2018-08-31 贵州精立航太科技有限公司 一种高温高强度铆钉
DE102018221157A1 (de) * 2018-12-06 2020-06-10 Mahle International Gmbh Fügevorrichtung und Fügeverfahren zur Herstellung einer Verbindung zwischen Bauteilen
EP3987188A1 (fr) * 2019-06-19 2022-04-27 Malte Fürstenberg Ensemble de fixation et procédé de fabrication
CN112158620B (zh) * 2020-09-22 2022-08-05 福建恒安集团有限公司 一种婴儿拉拉裤对折后的伺服输送机构
CN112555254B (zh) * 2020-12-12 2022-05-06 西安交通大学 一种陶瓷基复合材料的连接方法及铆钉结构
EP4264063B1 (fr) * 2020-12-15 2024-10-23 Safran Ceramics Assemblage pour une turbomachine
USD980707S1 (en) * 2021-02-15 2023-03-14 Min Woo Lee Bolt
USD1026634S1 (en) * 2021-05-06 2024-05-14 Michael W. Hicok Panel cover fastener

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3459447A (en) * 1966-12-13 1969-08-05 Huck Mfg Co Flush fastener for panel assembly including soft core material
US4671583A (en) * 1983-02-24 1987-06-09 The Boeing Company Fastening device and method for composite structures
US5497616A (en) * 1994-11-16 1996-03-12 Rolls-Royce Inc. High temperature mounting for stress relief of a dovetail
US6405425B1 (en) * 1998-12-11 2002-06-18 Novator Ab Fastening assembly and method for fastening a multi-layered laminate together

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US63497A (en) * 1867-04-02 Conrad frank
US323508A (en) * 1885-08-04 James hilton
US1511445A (en) * 1921-08-02 1924-10-14 Clarkson Robert Separable button
US1909941A (en) * 1932-04-25 1933-05-23 Rau Fastener Company Fastening device
US2348589A (en) * 1943-05-24 1944-05-09 Tennessee Coal Iron And Railro Fastening means
US2511051A (en) * 1946-06-19 1950-06-13 Dzus William Fastening device
US3462114A (en) * 1966-11-21 1969-08-19 Walden H O Dell Sr Lug screw for construction forms
US3414304A (en) * 1966-11-22 1968-12-03 Hi Shear Corp Apparatus for fastening a discontinuous body to another structure and the resulting joint
US5244326A (en) * 1992-05-19 1993-09-14 Arne Henriksen Closed end ridged neck threaded fastener
JP3194331B2 (ja) * 1994-03-10 2001-07-30 石川島播磨重工業株式会社 セラミックス部品と金属部品のボルト締結部構造
JPH08291814A (ja) * 1995-04-21 1996-11-05 Sanpori:Kk ボルト・ナットの締付構造とそれに使用するナット
US6012763A (en) * 1996-10-03 2000-01-11 Anchor Bolt & Screw Company Trailer door fastener
AU2562901A (en) * 1999-12-10 2001-06-18 Novator Ab Fastening assembly and method for fastening a composite laminate together
DE10017692A1 (de) * 2000-04-08 2002-04-04 Bayerische Motoren Werke Ag Vorrichtung zum Befestigen zweier Bauteile
RU2217629C1 (ru) * 2002-04-17 2003-11-27 Открытое акционерное общество "ОКБ Сухого" Крепежное устройство
JP2005009582A (ja) * 2003-06-19 2005-01-13 Sumitomo Electric Ind Ltd 低温用の締結構造
US20060182513A1 (en) * 2005-02-15 2006-08-17 Dortch John P Fastener and method for using same
US7344346B2 (en) * 2005-08-10 2008-03-18 Hung-Chih Hsu Fast fasten and loose resistant bolt and nut structure
US20080080947A1 (en) * 2006-01-10 2008-04-03 Mcgrade Steve Ballistic resistant jacket bolt
GB0803366D0 (en) * 2008-02-26 2008-04-02 Rolls Royce Plc Nose cone assembly
JP5055178B2 (ja) * 2008-03-24 2012-10-24 三菱重工業株式会社 航空機組立品
JP5406699B2 (ja) * 2009-12-24 2014-02-05 株式会社アクロス 円錐面を備えたファスナー
CN101900159B (zh) * 2010-07-08 2012-05-23 山东伟基炭科技有限公司 防止高温下螺栓连接组件失效的方法及所采用的卸载装置
CN102141073B (zh) * 2011-01-13 2012-10-10 西北工业大学 一种高温自紧固连接装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3459447A (en) * 1966-12-13 1969-08-05 Huck Mfg Co Flush fastener for panel assembly including soft core material
US4671583A (en) * 1983-02-24 1987-06-09 The Boeing Company Fastening device and method for composite structures
US5497616A (en) * 1994-11-16 1996-03-12 Rolls-Royce Inc. High temperature mounting for stress relief of a dovetail
US6405425B1 (en) * 1998-12-11 2002-06-18 Novator Ab Fastening assembly and method for fastening a multi-layered laminate together

Also Published As

Publication number Publication date
US20140356094A1 (en) 2014-12-04
FR3006394A1 (fr) 2014-12-05
FR3006394B1 (fr) 2015-06-19
EP3004658B1 (fr) 2019-08-14
RU2655194C2 (ru) 2018-05-24
US9267531B2 (en) 2016-02-23
CN105556136B (zh) 2017-10-10
JP2016526132A (ja) 2016-09-01
JP6334685B2 (ja) 2018-05-30
BR112015028292A2 (pt) 2017-07-25
CA2911465A1 (fr) 2014-12-04
CN105556136A (zh) 2016-05-04
EP3004658A1 (fr) 2016-04-13
CA2911465C (fr) 2021-08-10
RU2015155719A (ru) 2017-06-30
BR112015028292B1 (pt) 2021-08-24
RU2015155719A3 (fr) 2018-03-02

Similar Documents

Publication Publication Date Title
EP3004658B1 (fr) Assemblage a liaison auto-serrante en temperature
EP3325819B1 (fr) Assemblage par liaison mécanique comportant au moins une pièce en matériau composite
EP3011191B1 (fr) Assemblage a liaison auto-serrante en température
EP3390782B1 (fr) Ensemble d'anneau de turbine avec maintien élastique a froid.
EP2375045A1 (fr) Ensemble d'arrière-corps muni de liaisons souples à butée
EP3017172B1 (fr) Dispositif de liaison entre deux segments d'une tuyère propulsive
EP3347572A1 (fr) Turbine de turbomachine comprenant un etage distributeur en materiau composite a matrice ceramique
EP3478956B1 (fr) Moteur-fusée a divergent composite
WO2013060956A1 (fr) Dispositif de fixation d'une pièce creuse
FR3056256A1 (fr) Moteur-fusee a divergent segmente
FR3127425A1 (fr) Assemblage destiné à une turbomachine pour aéronef
FR3114625A1 (fr) Assemblage avec compensation géométrique de dilatations thermiques différentielles
FR3124228A1 (fr) Bride de liaison pour le raccordement d’un carter d’échappement et d’un cône d’éjection de gaz d’échappement d’un turboréacteur d’aéronef
FR2587756A1 (fr) Methode et dispositif d'isolation thermique d'un organe en relation avec les gaz de combustion contenus dans un cylindre d'un moteur a combustion interne au moyen de lames de gaz et de couches de materiau isolant

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480031098.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14731730

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014731730

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2911465

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016516221

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015028292

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015155719

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015028292

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151110