WO2014191367A1 - Composition antimicrobienne à base de silicone - Google Patents

Composition antimicrobienne à base de silicone Download PDF

Info

Publication number
WO2014191367A1
WO2014191367A1 PCT/EP2014/060857 EP2014060857W WO2014191367A1 WO 2014191367 A1 WO2014191367 A1 WO 2014191367A1 EP 2014060857 W EP2014060857 W EP 2014060857W WO 2014191367 A1 WO2014191367 A1 WO 2014191367A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
groups
antimicrobial agent
antimicrobial
alkyl
Prior art date
Application number
PCT/EP2014/060857
Other languages
English (en)
Inventor
Jean-François Bardeau
Sergell ROGALSKYI
Oksana TARASIUK
Liudmyla LOSHYNA
Olga BULKO
Original Assignee
Universite Du Maine
Centre National De La Recherche Scientifique (C.N.R.S)
Institute Of Bioorganic Chemistry And Petrochemistry Of National Academy Of Sciences Of Ukraine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Du Maine, Centre National De La Recherche Scientifique (C.N.R.S), Institute Of Bioorganic Chemistry And Petrochemistry Of National Academy Of Sciences Of Ukraine filed Critical Universite Du Maine
Priority to US14/893,945 priority Critical patent/US20160106104A1/en
Priority to EP14728865.8A priority patent/EP3003029A1/fr
Publication of WO2014191367A1 publication Critical patent/WO2014191367A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/40Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides
    • A01N47/42Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides containing —N=CX2 groups, e.g. isothiourea
    • A01N47/44Guanidine; Derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/501,3-Diazoles; Hydrogenated 1,3-diazoles

Definitions

  • the present invention relates to polymeric compositions with antimicrobial properties, more particularly to silicone-based antimicrobial compositions.
  • the surfaces of polymer-based articles and coatings that are exposed to moisture are rapidly colonized by harmful bacteria, molds, yeasts, which can cause odors, deterioration of said articles and coatings, as well as infections, including in the case of plastic articles inserted into the human body, such as probes or catheters.
  • antimicrobial agents also called biocides
  • Cross-linked silicone-containing materials containing a silver derivative have been prepared to limit the proliferation of micro-organisms present in drinking water or water (domestic toilets, swimming-pool waters) that can be put in contact with each other. directly or indirectly with human or animal individuals (FR 2 694 563).
  • Polymeric matrices containing quaternary ammonium salts have also been prepared to limit the growth of bacterial colonies
  • one of the major drawbacks of existing antimicrobial polymer materials and coatings is the release of said biocides when said materials or coatings are in contact with aqueous media, continuously or occasionally. Such a release reduces the antimicrobial properties of the materials or coatings and causes a phenomenon of poisoning of the medium in contact with materials or coatings by the released biocide.
  • poisoning reference is made to the unwanted release of active molecules, especially biocides, in an aqueous medium in direct or indirect contact with human or animal individuals, such as the human or animal body, or water of drink for example.
  • An object of the present invention is to provide novel polymeric compositions with antimicrobial properties that do not have the drawbacks of those of the state of the art.
  • Another object of the present invention is to provide antimicrobial articles and coatings that are water resistant, i.e., that do not release or very little antimicrobial agent.
  • Another object of the present invention is to provide antimicrobial articles and coatings which are thermally stable.
  • the subject of the present invention is a silicone-based composition comprising an antimicrobial agent.
  • the present invention relates to a composition, comprising:
  • said antimicrobial agent being chosen from the group consisting of ionene polymers, and ionic liquids with a molecular mass of less than 1400 g / mol.
  • the present invention also relates to an antimicrobial article, comprising:
  • At least one antimicrobial agent dispersed within said cross-linked silicone as mentioned above.
  • Silicones or polysiloxanes, are inorganic compounds formed of a silicon-oxygen chain - [Si-O] n -, where n is typically from 100 to 10,000, in which the silicon atoms are substituted by various substituents .
  • substituent mention may be made, for example, of CC 6 alkyl groups, typically methyl groups, or halogen atoms, typically fluorine or chlorine.
  • a non-crosslinked silicone is a silicone in which there is no branching between the silicon-oxygen - [Si-O] n - chains. Uncrosslinked silicones are generally fluid at room temperature. We also talk about silicone oils. Conversely, a cross-linked silicone is a silicone in which there are branches between the silicon-oxygen - [Si-O] n - chains. Such branches or crosslinking are typically obtained by adding a hardener, or crosslinking agent, to a non-crosslinked silicone composition as defined above.
  • a crosslinked silicone according to the invention advantageously has a mechanical behavior similar to rubber for forming flexible and flexible articles, such as tubes or catheters for example.
  • an "antimicrobial agent” is an organic compound having antimicrobial activity, which stops or inhibits the proliferation of microorganisms, such as bacteria (Gram + and Gram-), fungi, in particular molds and molds. yeast, etc.
  • the antimicrobial agents of the invention are generally capable of eliminating microorganisms and / or preventing their growth.
  • the antimicrobial agents of the invention preferably have a broad spectrum of antimicrobial activity and low toxicity.
  • the incorporation of the antimicrobial agents of the invention makes it possible to obtain articles and coatings resistant in particular to Candida albicans, T. Mentagrophytes, Escherichia coli, Bacillus coli, Aspergillus niger, Staphylococcus aureus, etc.
  • the incorporation of the antimicrobial agents of the invention makes it possible to obtain articles and coatings resistant to:
  • bacteria such as Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Enterobacter aerogenes, Enterococcus faecalis, Enterococcus faecium and / or Acinetobacter baumannii,
  • yeasts such as Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis and / or Candida krusei, and / or
  • molds such as Aspergillus niger, Penicillium chrysogenum, Cladosporium sphaerospermum, Stachybotrys chartarum and / or Alternaria alternata.
  • Silicones are one of the most tested and widely used materials in the medical field among all biomaterials and are known for their intrinsic biocompatibility and biodurability. These characteristics are due to their chemical composition, intrinsic thermal stability, low surface tension and hydrophobicity. Because of these properties, silicones are used to make catheters, drains and other medical products.
  • the non-crosslinked silicones according to the invention typically have an average molecular weight of from 1,000 to 50,000 g / mol, more particularly from 5,000 to 50,000 g / mol.
  • uncrosslinked silicone mention may be made of poly (dimethylsiloxane) or PDMS.
  • the materials resulting from the crosslinking of PDMS are highly inert medical materials which also have excellent chemical resistance. In vitro, these materials are not conducive to bacterial adhesion.
  • the mass proportion of non-crosslinked silicone in the composition of the invention is typically greater than 60%, preferably 70%, advantageously 80%, for example ranging from 90% to 99% relative to the total mass of the composition. .
  • the mass proportion of antimicrobial agent in the composition of the invention is typically from 1% to 10%, preferably from 1% to 9%, advantageously from 2% to 8%, preferentially from 3% to 7%, more preferably from 4% to 6%, for example equal to 2% or 5% relative to the total mass of the composition.
  • the mass proportion of antimicrobial agent (and any additives) in the composition of the invention is such that it does not lead to a modification of the intrinsic properties of the silicone (non-crosslinked or crosslinked) in which it is scattered.
  • the term "dispersed" means that the antimicrobial agent is mixed homogeneously with the silicone in the composition of the invention.
  • composition of the invention is preferably a homogeneous mixture comprising at least one non-crosslinked silicone and at least one antimicrobial agent as defined in the present description.
  • composition of the invention consists of a non-crosslinked silicone and an antimicrobial agent as defined below.
  • the antimicrobial agent present in the composition of the invention may belong to different classes of compounds.
  • the antimicrobial agent is an ionene polymer.
  • ionene polymer means a polymer consisting of repeating units (monomers) in the form of salt. Most often, the repeating units comprise at least one nitrogen atom in ammonium form "N + " and at least one counter-anion A " , organic or inorganic.
  • the antimicrobial agent may especially be a poly (polymethylene) guanidine salt, comprising n repeating units of formula (I-1):
  • p is from 2 to 12
  • n is from 4 to 140
  • - HA is selected from the group consisting of (CF 3 S0 2) 2 NH, HPF 6 and R-S0 3 H, R is selected from the group consisting of perfluoroalkyl groups, C 4 - C 12 and aryl groups in C 4 -Ci 0 substituted by at least one group R ', and
  • R ' is selected from the group consisting of H; C 1-8 alkyl groups; -NH-CO-R "wherein R” is an alkyl group having Ci 7 or an aryl group, C 4 -C 0; and -NH-S0 2 -C 6 H 4 -R '"wherein R'" is a hydrogen atom or a C 1 -C 6 alkyl group.
  • p is equal to 6.
  • HA is R-SO 3 H where R is a phenyl or naphthyl group substituted with a C 1 -C 24 alkyl group.
  • the "alkyl” groups represent saturated hydrocarbon groups, in a linear or branched chain, comprising from 1 to 24 carbon atoms. Mention may in particular be made, when they are linear, the methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, nonyl, decyl and dodecyl groups. When they are branched or substituted by one or more alkyl groups, mention may be made especially of isopropyl, tert-butyl, 2-ethylhexyl, 2-methylbutyl, 2-methylpentyl, 1-methylpentyl and 3-methylheptyl groups.
  • the "perfluoroalkyl” groups represent alkyl groups, generally linear, in which all the hydrogen atoms have been replaced by fluorine atoms.
  • the perfluoroalkyl groups C 4 -C 12 have the formulas C 4 F 9 to C 12 F 25 .
  • the "aryl” groups represent a hydrocarbon aromatic system, mono or bicyclic comprising from 4 to 10 carbon atoms. Among the aryl groups, there may be mentioned the phenyl or naphthyl group.
  • heteroaryl When the aryl group comprises at least one heteroatom selected from N, O and S, the term "heteroaryl” is used.
  • monocyclic heteroaryl group there may be mentioned, inter alia, pyrrole, furan, thiophene, imidazole, pyrazole, oxazole, thiazole and pyridine.
  • bicyclic heteroaryl group there may be mentioned indole.
  • the antimicrobial agent is a poly (hexamethylene) guanidine salt, comprising n repeating units of formula (1-1 '):
  • n and HA are as defined above.
  • HA is R-SO 3 H where R is a phenyl or naphthyl group substituted by a C 1 -C 24 alkyl group.
  • the poly (polymethylene) guanidine (PpMG) salts are known as biocides with a broad spectrum of activity (MK Oule et al., Poly (hexamethylene) guanidine hydrochloride - based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections, Journal of Medical Microbiology, vol 57, 1523-1528 (2006)).
  • the poly (polymethylene) guanidine (PpMG) salts are thermally stable under the conditions of manufacture of the antimicrobial compositions and antimicrobial articles according to the invention.
  • the antimicrobial articles according to the invention comprising a salt of PpMG, more particularly of PHMG, have very little or no salting out of said salts when in contact with an aqueous medium, and this, even for a prolonged period, typically over a month, or even a year.
  • HA represents dodecylbenzenesulphonic of formula:
  • poly (hexamethylene) guanidine dodecylbenzenesulfonate also called PHMG-DBS
  • n 6 and HA is dodecylbenzenesulfonic acid.
  • the antimicrobial agent may also be a poly (polymethylene) imidazolium salt, comprising n repeating units of formula (I-2): in which :
  • n 6 to 12
  • A is selected from the group consisting of BF 4 " , PF 6 “ and (CF 3 S0 2 ) 2 N “ .
  • m is equal to 6.
  • the antimicrobial agent is an ionic liquid with a molecular mass of less than 1400 g / mol.
  • ionic liquid means a salt, consisting of an anion and a cation, having a melting temperature below 100 ° C, and often even below room temperature. Some ionic liquids are in the liquid state at room temperature and are called ionic liquids at room temperature. These have practical advantages over ionic liquids with a high melting temperature and are therefore more widely used.
  • the cations are generally of the dialkylimidazolium, tetraalkylammonium, tetraalkylphosphonium or alkylpyridium type.
  • the anions are generally of the tetrafluoroborate, hexafluorophosphate, halide, mesylate, tosylate, or triflate type.
  • the cations of the ionic liquids of the invention are organic.
  • the molecular weight of the ionic liquids of the invention is preferably from 200 to 1350 g / mol, preferably from 200 to 600 g / mol.
  • the antimicrobial agent may in particular be a 1,3-dialkylimidazolium ionic liquid having the formula (11-1):
  • - A " is selected from the group consisting of BF 4 ⁇ , PF 6 " and (CF 3 S0 2 ) 2 N ⁇ ,
  • Ri is an alkyl group having Ci 6 or an alkylaryl group, C 5 -C 6, and R 2 is selected from the group consisting of alkyl groups, C 4 -C 6 alkylaryl groups, C 5 -C 6, and groups of formula (11-1 '):
  • n is from 6 to 12, Ri and A " being as defined above.
  • alkylaryl denotes an -alkyl-aryl group, the terms alkyl and aryl being as defined above.
  • alkylaryl especially denotes a benzyl group (-CH 2 -C 6 1-5).
  • R 1 is a methyl group.
  • R 2 is an alkyl C 8 -C 2.
  • A is BF 4 ⁇ .
  • the 1,3-dialkylimidazolium ionic liquids of formula (11-1) have a broad spectrum of activity, are thermally stable under the conditions of manufacture of the antimicrobial compositions and antimicrobial articles according to the invention.
  • the ionic liquids are also water resistant.
  • the antimicrobial articles according to the invention comprising such ionic liquids have very little or no salting out of said ionic liquids when in contact with an aqueous medium, and this, even for a prolonged period, typically over a month, even a year.
  • Ri is a methyl group
  • R 2 is an alkyl C 8 -C 2
  • 1-octyl-3-methylimidazolinium tetrafluoroborate also known as OMIM-BF 4
  • 1-dodecyl-3 tetrafluoroborate methylimidazolinium also called DMIM-BF 4
  • the antimicrobial agent may also be an ionic guanidinium liquid corresponding to formula (II-2):
  • R 1 represents a hydrogen atom or a C 1 -C 6 alkyl group
  • R 2 represents a C 4 -C 16 alkyl group
  • - HA is selected from the group consisting of (CF 3 S0 2) 2 NH, HPF 6 and R-S0 3 H
  • R is selected from the group consisting of perfluoroalkyl groups, C 4 - C 12 and aryl groups in C 4 -Ci 0 substituted by a group R '
  • - R' is selected from the group consisting of H
  • the antimicrobial agent may also be a phosphonium ionic liquid corresponding to formula (11-3):
  • R is alkyl C 4 -C 2
  • R ' is selected from the group consisting of C 2 -C 6 alkyl groups, C 5 -C 6 alkylaryl groups, and groups of formula (II-3'):
  • ⁇ '" is from 6 to 12, R being as defined above, and - A " is selected from the group consisting of BF 4 ⁇ , (CF 3 S0 2 ) 2 N ⁇ , PF 6 " , P (0) (OR 1 ) 2 O- and R 2 -SO 3 " ,
  • R 1 is a C 4 -C 8 alkyl group
  • R 2 is selected from the group consisting of perfluoroalkyl groups having 4 - Ci 2 alkyl groups, C 8 -C 8, aryl groups and C 4 -Cio substituted with a group R 3, and
  • R 3 is selected from the group consisting of H; C18 al alkyl groups; -NH-CO-R 4 wherein R 4 is a C group or a C17 aryl group, C 4 -C 0; and -NH-S0 2 -C 6 H 4 -R 5 groups in which R 5 is a hydrogen atom or a CC 6 alkyl group.
  • the present invention also relates to the use of a composition according to the invention, for the preparation of an antimicrobial article.
  • compositions according to the invention are useful for the preparation of articles and coatings of various sizes and shapes.
  • the antimicrobial articles of the invention can be used in the medical field.
  • Catheter infections are mainly caused by Gram + and Gram- bacteria. Fungal infections are less common than bacterial infections, but they tend to be more serious and a growing problem. They now account for about 10% of all nosocomial infections. Urinary catheters, prosthetic heart valves and pacemakers are also often associated with fungal infections. Biofilms containing both bacteria and yeasts have been shown to be associated with endotracheal tube, biliary stent, vocal silicone prosthesis and acrylic prosthesis infections.
  • the antimicrobial articles of the invention are particularly useful for combating nosocomial infections related to the colonization of implantable chambers (long-term intravenous devices used for the delivery of chemotherapies in the treatment of cancers) and catheters.
  • the antimicrobial articles according to the invention make it possible to respond to these problems, while avoiding the diffusion of antimicrobial agents in vivo (poisoning phenomenon).
  • the antimicrobial articles according to the invention can be used as a catheter, surgical drainage, probe (tracheal, urinary, digestive, etc.), or prosthesis (breasts, etc.).
  • the antimicrobial articles of the invention may also be used in the domestic and food field.
  • the antimicrobial articles of the invention can be used to make tubes for the delivery of food liquids such as coffee, fruit juices, soups, or other food or non-food liquids.
  • Another application is the making of silicone touch keys of computer keyboards, gaskets for sanitary or industrial applications, or tubes for the flow of gas or air in aircraft.
  • Another application of the articles of the invention relates to the field of interior housing (for example bathroom seals) and the automobile.
  • the antimicrobial articles of the invention have an antimicrobial agent release rate of less than 5% per year, preferably less than 1% per year, or even less than 0.1% per year.
  • release rate is meant the ratio of the amount of antimicrobial agent released by the antimicrobial article in a year, to the mass of antimicrobial agent initially present within the antimicrobial article.
  • the release rate can be measured by X-ray fluorescence spectrometry.
  • Fluorescence X-ray spectrometry (SFX or FX, or in English XRF for X-ray fluorescence) is a method of chemical analysis using a physical property of matter, the fluorescence of X-rays.
  • the material When one bombards matter with X-rays, the material re-emits energy in the form, among others, of X-rays; it is the X-ray fluorescence, or X-ray secondary emission.
  • the X-ray spectrum emitted by the material is characteristic of the composition of the sample. By analyzing this spectrum, we can deduce the elemental composition of the sample, that is to say the mass concentrations of elements, and thus observe the evolution over time of the antimicrobial agent concentration of antimicrobial articles. the invention.
  • the antimicrobial articles of the invention advantageously have a substantially zero antimicrobial agent release rate.
  • substantially zero is meant that over a period of at least six months, or even a year, the amount of antimicrobial agent released by the antimicrobial articles of the invention is zero or barely detectable by means of such as X-ray fluorescence spectrometry (ie, it is in the order of the accuracy of the measurement, ie 1 ppm for X-ray fluorescence spectrometry).
  • the present invention also relates to a process for preparing an antimicrobial article, comprising the steps of:
  • the term "hardener” means a reactive chemical compound capable of crosslinking a silicone, that is to say, to create branches between the linear chains - [Si-O] n - of the non-crosslinked silicone.
  • any commercial silicone hardener such as tetraalkoxytitanium type compounds or tetraethoxysilane.
  • the mixture of a non-crosslinked silicone and an antimicrobial agent is typically carried out with mechanical or magnetic stirring, possibly using ultrasound, and optionally heating the mixture.
  • stirring and / or heating conditions are adapted to obtain complete solubilization of the antimicrobial agent in the non-crosslinked silicone.
  • the mixture obtained is typically homogenized and then cast on a surface on which said film will form by crosslinking.
  • the mixture obtained is typically homogenized and then cast in a mold, or extruded via a nozzle, whose shape corresponds to that of the article that is wish to obtain.
  • the crosslinking mode may be adapted depending on the hardener used and the mechanical properties of the article that will be desired.
  • crosslinking can be carried out by UV exposure, IR exposure, heat treatment or chemical treatment.
  • antimicrobial agents were used:
  • Agent 1 poly (hexamethylene) guanidine dodecylbenzenesulfonate (PHMG-DBS)
  • Agent 2 1-octyl-3-methylimidazolium tetrafluoroborate (OMIM-BF 4 )
  • Agent 3 1-Dodecyl-3-methylimidazolium tetrafluoroborate (DMIM-BF 4 )
  • PHMG-DBS was prepared according to the method described in WO 201 1/131773.
  • compositions C1, C2 and C3 were prepared by dissolving agent 1, agent 2 or agent 3 respectively in liquid silicone (FORMASIL).
  • the mass proportion of agent 1, 2 or 3 is 2% or 5% relative to the total weight of the composition C1, C2 or C3.
  • a hardener tetraethoxysilane was then added (5% by weight) to each of compositions C1, C2 and C3 and the resulting mixture was left standing for 24 hours at room temperature, to obtain flexible films and semi-transparent F1 , F2 and F3 (5 cm in diameter).
  • control film F0 was also prepared, comprising no antimicrobial agent.
  • Microbiological analyzes were performed with the Escherichia coli strain (GM 2163).
  • the bacteria were cultured overnight in 5 ml of LB culture medium.
  • the medium was then sterilized by autoclaving (20 min at 15 psi) at 37 ° C to a concentration of 10 8 CFU per ml (optical density 0.2 to 620 nm).
  • 40 ⁇ l of the bacterial suspension thus prepared was deposited on an LB agar culture medium.
  • Four culture media were thus inoculated identically.
  • Each film (F0, F1, F2 or F3) was then deposited on one of the 4 previously inoculated culture media. These films have been left in contact with cultured for 6h at 37 ⁇ ⁇ , then were removed, and the culture media were stored for 18h at 37 ° C.
  • Films of different compositions are tested on bacteria and fungi, such as yeasts and molds.
  • Strains of bacteria responsible for catheter sepsis are tested, namely: Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Enterobacter aerogenes, Enterococcus faecalis, Enterococcus faecium and Acinetobacter baumannii.
  • Yeasts responsible for catheter sepsis are also tested, namely: Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis and Candida krusei.
  • the antibacterial activity of the silicone compositions of the invention was tested on 6 bacterial lines, according to the protocol of ISO 22196 (second edition, 201 1).
  • the bacteria lines tested are: Klebsiella pneumoniae DSM 16609, Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 8739, Acinetobacter baumannii CIP 70.34 and Enterobacter cloacae DSM 30054.
  • Silicone films were prepared according to Examples 2 and 3, comprising 0%, 2% or 5% antimicrobial agent PHMG-DBS, OMIM-BF 4 or DMIM-BF 4 (7 types of silicone films were therefore prepared).
  • Silicon film squares of dimensions 25 mm x 25 mm were cut, as well as squares of polypropylene of dimension 20 mm x 20 mm. These were autoclaved at 115 ° C for 20 minutes.
  • the bacteria were grown overnight at 37 ⁇ in the agar culture medium. Bacterial suspensions were then prepared in Nutrient Broth culture medium with a bacterial concentration of 6.10 5 CFU / ml.
  • each silicone film was placed in a new petri dish and was washed with 10 ml of antibacterial agent (SCDLP, according to the standard ISO protocol) to recover the bacteria. After 5 washes, the SCDLP suspension was diluted to 10 -6 and 1 ml of resulting solution was placed on a PCA agar plate (duplicated). Each plate was incubated at 37 ⁇ for 24 hours. The number of colonies on each Petri dish was then counted. The viability of the bacteria according to the results obtained was calculated by means of the following formula:
  • N (100xCxOx10) / 400
  • N is the number of viable bacteria observed per cm 2 of each sample tested
  • C denotes the average count of colonies on each PCA agar plate
  • D is the dilution factor used for counting.
  • Table 1 Viability of bacteria (log 10 (V)) according to the type of silicone film
  • a reference in the log 10 (A /) measurements means that the number of viable bacteria between the two samples differs by a factor of 10.
  • the silicone films of the invention are resistant against the bacteria tested, in contrast to the control silicone film which does not include an antimicrobial agent. A dose of 2% antimicrobial agent is sufficient for most bacteria tested.
  • Example 5B Yeast Tests According to ISO 22196
  • the antibacterial activity of the silicone compositions of the invention was tested on the Candida albicans yeast line IHEM 14796, in accordance with the protocol of ISO 22196 (second edition, 201 1).
  • Table 2 Yeast viability (log 10 (V)) according to the type of silicone film
  • the silicone films of the invention are resistant against the tested yeast, unlike the control silicone film which does not include an antimicrobial agent.
  • Example 5C Mushroom Tests According to ISO 16869
  • the antifungal activity of the silicone compositions of the invention was tested on the fungus line Penicillium chrysogenum IHEM 20859, according to the protocol of ISO 16869 (second edition, 2008).
  • each silicone film sample was placed in a petri dish between a bottom layer of Nutrient's agar (20 ml) and an upper layer of Peptone Dextrose agar in which fungal spores were dispersed. The rest of the protocol of the above standard was followed.
  • the silicone films of the invention are resistant against the tested fungus, in contrast to the control silicone film which does not include an antimicrobial agent.
  • the low antimicrobial content (5% by weight) makes it possible to preserve the mechanical properties of the silicone.
  • the antimicrobial films have a thermal stability of at least 350% and are water resistant.
  • composition of the antimicrobial films F1, F2 and F3 prepared in Example 3 was analyzed by X-ray fluorescence spectroscopy (device AC-1 M (manufactured in Ukraine), measuring accuracy of 1 ppm) just after their manufacture.
  • Antimicrobial films do not release antimicrobial agents even after prolonged exposure to water.

Abstract

La présente invention concerne une composition, comprenant : - au moins une silicone non réticulée, et - au moins un agent antimicrobien dispersé au sein de ladite silicone, ledit agent antimicrobien étant choisi dans le groupe constitué des polymères d'ionènes, et des liquides ioniques de masse moléculaire inférieure à 1400 g/mol.

Description

COMPOSITION ANTIMICROBIENNE A BASE DE SILICONE
La présente invention concerne des compositions polymériques aux propriétés antimicrobiennes, plus particulièrement des compositions antimicrobiennes à base de silicone.
Les surfaces des articles et revêtements à base de polymères qui sont exposées à l'humidité sont rapidement colonisées par des bactéries nocives, des moisissures, des levures, qui peuvent provoquer des odeurs, la détérioration desdits articles et revêtements, ainsi que des infections, notamment dans le cas d'articles plastiques insérés dans le corps humain, comme des sondes ou des cathéters.
L'utilisation d'agents antimicrobiens, aussi appelés biocides, est alors recommandée pour éviter la prolifération de microorganismes à la surface de tels articles et revêtements plastiques.
De nombreuses familles de biocides, organiques ou inorganiques, ont déjà été utilisées pour conférer des propriétés antimicrobiennes aux surfaces d'articles et revêtements à base de polymères.
Des matériaux à base de silicone réticulée, contenant un dérivé d'argent, ont été préparés pour limiter la prolifération de micro-organismes présents dans les eaux de boissons ou les eaux (toilettes domestiques, eaux de piscines) susceptibles d'être mises en contact direct ou indirect avec des individus humains ou animaux (FR 2 694 563).
L'inconvénient de ces matériaux est que leurs propriétés antimicrobiennes sont basées sur la libération lente en milieux aqueux des dérivés d'argent.
Des matrices polymères contenant des sels d'ammonium quaternaire ont également été préparées pour limiter le développement de colonies de bactéries
(US 6 572 926, WO 99/32157). Cependant, l'inconvénient de ces matériaux est qu'une partie des molécules biocides est continuellement relâchée dans le milieu environnant.
Par ailleurs, l'imprégnation par la chlorhexidine/sulfadiazine argent ou par l'association minocycline/rifampicine est utilisée pour diminuer le risque d'infection des cathéters. Néanmoins, ces utilisations favorisent l'émergence de bactéries résistantes aux antiseptiques et/ou aux antibiotiques et ne sont donc pas recommandées.
Ainsi, un des inconvénients majeurs des matériaux et des revêtements polymériques antimicrobiens existants est le relargage desdits biocides lorsque lesdits matériaux ou revêtements sont au contact de milieux aqueux, de manière continue ou occasionnelle. Un tel relargage diminue les propriétés antimicrobiennes des matériaux ou revêtements et provoque un phénomène d'empoisonnement du milieu au contact des matériaux ou revêtements par le biocide relargué. Par « empoisonnement », on fait ici référence à la libération non souhaitée de molécules actives, notamment de biocides, dans un milieu aqueux en contact direct ou indirect avec des individus humains ou animaux, tel que le corps humain ou animal, ou encore des eaux de boisson par exemple.
Un autre inconvénient des biocides organiques est leur manque de stabilité thermique, ce qui rend difficile la production de matériaux et de revêtements antimicrobiens, particulièrement lorsque celle-ci est effectuée à haute température.
Un objectif de la présente invention est de fournir de nouvelles compositions polymériques aux propriétés antimicrobiennes ne présentant pas les inconvénients de celles de l'état de la technique.
Un autre objectif de la présente invention est de fournir des articles et des revêtements antimicrobiens qui soient résistants à l'eau, c'est-à-dire qui ne relarguent pas ou très peu d'agent antimicrobien.
Un autre objectif de la présente invention est de fournir des articles et des revêtements antimicrobiens qui soient thermiquement stables.
A ce titre, la présente invention a pour objet une composition à base de silicone comprenant un agent antimicrobien.
La présente invention a pour objet une composition, comprenant :
au moins une silicone non réticulée, et
- au moins un agent antimicrobien dispersé au sein de ladite silicone, ledit agent antimicrobien étant choisi dans le groupe constitué des polymères d'ionènes, et des liquides ioniques de masse moléculaire inférieure à 1400 g/mol.
La présente invention a également pour objet un article antimicrobien, comprenant :
- au moins une silicone réticulée, et
- au moins un agent antimicrobien dispersé au sein de ladite silicone réticulée, comme mentionné ci-dessus.
Les silicones, ou polysiloxanes, sont des composés inorganiques formés d'une chaîne silicium-oxygène -[Si-0]n-, où n est typiquement compris de 100 à 10 000, dans laquelle les atomes de silicium sont substitués par des substituants variés. A titre de substituant, on peut par exemple citer des groupes alkyles en C C6, typiquement des groupes méthyle, ou des atomes d'halogène, typiquement de fluor ou de chlore.
Une silicone non réticulée est une silicone dans laquelle il n'y a pas de ramification entre les chaînes silicium-oxygène -[Si-0]n-. Les silicones non réticulées sont généralement fluides à température ambiante. On parle aussi d'huiles de silicone. A l'inverse, une silicone réticulée est une silicone dans laquelle il existe des ramifications entre les chaînes silicium-oxygène -[Si-0]n-. De telles ramifications, ou réticulations, sont typiquement obtenues par addition d'un durcisseur, ou agent réticulant, à une composition de silicone non réticulée comme définie ci-dessus. Une silicone réticulée selon l'invention présente avantageusement un comportement mécanique similaire au caoutchouc permettant de former des articles souples et flexibles, tels que des tubes ou des cathéters par exemple.
Dans le cadre de la présente invention, un « agent antimicrobien » est un composé organique présentant une activité antimicrobienne, qui stoppe ou inhibe la prolifération de microorganismes, tels que des bactéries (Gram+ et Gram-), des champignons, en particulier des moisissures et des levures, etc. Les agents antimicrobiens de l'invention sont généralement aptes à éliminer les microorganismes et/ou à empêcher leur croissance.
Les agents antimicrobiens de l'invention présentent de préférence un spectre large d'activité antimicrobienne et une faible toxicité.
De préférence, l'incorporation des agents antimicrobiens de l'invention permet d'obtenir des articles et des revêtements résistants notamment à Candida albicans, T. Mentagrophytes, Escherichia coli, Bacillus coli, Aspergillus niger, Staphylococcus aureus etc.
Selon certains modes de réalisation, l'incorporation des agents antimicrobiens de l'invention permet d'obtenir des articles et des revêtements résistants à :
- des bactéries telles que Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Enterobacter aerogenes, Enterococcus faecalis, Enterococcus faecium et/ou Acinetobacter baumannii,
- des levures telles que Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis et/ou Candida krusei, et/ou
- des moisissures telles que Aspergillus niger, Pénicillium chrysogenum, Cladosporium sphaerospermum, Stachybotrys chartarum et/ou Alternaria alternata.
Les silicones sont l'une des matières les plus testées et largement utilisées dans le domaine médical parmi tous les biomatériaux et sont connues pour leur biocompatibilité intrinsèque et biodurabilité. Ces caractéristiques sont dues à leur composition chimique, à leur stabilité thermique intrinsèque, à leur faible tension superficielle et à leur hydrophobicité. En raison de ces propriétés, les silicones sont utilisées pour réaliser des cathéters, des drains et autres produits médicaux. Les silicones non réticulées selon l'invention présentent typiquement une masse moléculaire moyenne comprise de 1 000 à 50 000 g/mol, plus particulièrement de 5 000 à 50 000 g/mol.
A titre de silicone non réticulée, on peut citer le poly(diméthylsiloxane) ou PDMS. Les matériaux issus de la réticulation du PDMS sont des matériaux médicaux hautement inertes qui présentent par ailleurs une excellente résistance chimique. In vitro, ces matériaux sont peu propices à l'adhésion bactérienne.
La proportion massique de silicone non réticulée dans la composition de l'invention est typiquement supérieure à 60%, de préférence à 70%, avantageusement à 80%, par exemple comprise de 90% à 99% par rapport à la masse totale de la composition.
La proportion massique d'agent antimicrobien dans la composition de l'invention est typiquement de 1 % à 10%, de préférence de 1 % à 9%, avantageusement de 2% à 8%, préférentiellement de 3% à 7%, plus préférentiellement de 4% à 6%, par exemple égale à 2% ou 5% par rapport à la masse totale de la composition.
Avantageusement, la proportion massique d'agent antimicrobien (et d'éventuels additifs) dans la composition de l'invention est telle qu'elle n'entraîne pas de modification des propriétés intrinsèques de la silicone (non réticulée ou réticulée) dans laquelle il est dispersé.
Dans le cadre de la présente invention, on entend par « dispersé » que l'agent antimicrobien est mélangé de manière homogène avec la silicone au sein de la composition de l'invention.
Ainsi, la composition de l'invention est de préférence un mélange homogène comprenant au moins une silicone non réticulée et au moins un agent antimicrobien tel que défini dans la présente description. Selon un mode de réalisation particulier, la composition de l'invention est constituée d'une silicone non réticulée et d'un agent antimicrobien tel que défini ci-après.
L'agent antimicrobien présent dans la composition de l'invention peut appartenir à différentes classes de composés.
Selon un mode de réalisation, l'agent antimicrobien est un polymère d'ionènes. Dans le cadre de la présente invention, on entend par « polymère d'ionènes » un polymère constitué d'unités répétitives (monomères) sous forme de sel. Le plus souvent, les unités répétitives comprennent au moins un atome d'azote sous forme ammonium « N+ » et au moins un contre-anion A", organique ou inorganique. L'agent antimicrobien peut notamment être un sel de poly(polyméthylène) guanidine, comprenant n unités répétitives de formule (1-1 ) :
Figure imgf000006_0001
dans laquelle :
- p est compris de 2 à 12,
- n est compris de 4 à 140,
- HA est choisi dans le groupe constitué de (CF3S02)2NH, HPF6 et R-S03H, R est choisi dans le groupe constitué des groupes perfluoroalkyles en C4- C12 et des groupes aryles en C4-Ci0 substitués par au moins un groupe R', et
R' est choisi dans le groupe constitué de H ; des groupes alkyles en C Ci8 ; des groupes -NH-CO-R" dans lesquels R" est un groupe alkyle en C Ci7 ou un groupe aryle en C4-Ci0 ; et des groupes -NH-S02-C6H4-R'" dans lesquels R'" est un atome d'hydrogène ou un groupe alkyle en Ci-Ce. De préférence, dans la formule (1-1 ), p est égal à 6.
De préférence, dans la formule (1-1 ), HA est R-S03H où R est un groupe phényle ou naphtyle substitué par un groupe alkyle en CrC24.
Selon la présente invention, la notation « . » dans « =NH.HA », utilisée pour représenter un sel, signifie un sel de formule « =NH2 +.A" ».
Selon la présente invention, les groupes « alkyles » représentent des groupes hydrocarbonés saturés, en chaîne linéaire ou ramifiée, comprenant de 1 à 24 atomes de carbone. On peut notamment citer, lorsqu'ils sont linéaires, les groupes méthyle, éthyle, propyle, butyle, pentyle, hexyle, octyle, nonyle, décyle et dodécyle. On peut notamment citer, lorsqu'ils sont ramifiés ou substitués par un ou plusieurs groupes alkyles, les groupes isopropyle, tert-butyle, 2-éthylhexyle, 2-méthylbutyle, 2-méthylpentyle, 1 - méthylpentyle et 3-méthylheptyle.
Selon la présente invention, les groupes « perfluoroalkyles » représentent des groupes alkyles, généralement linéaires, dans lesquels tous les atomes d'hydrogène ont été remplacés par des atomes de fluor. Les groupes perfluoroalkyles en C4-Ci2 ont pour formules C4F9 à Ci2F25. Selon la présente invention, les groupes « aryles » représentent un système aromatique hydrocarboné, mono ou bicyclique comprenant de 4 à 10 atomes de carbone. Parmi les groupes aryles, on peut notamment citer le groupe phényle ou naphtyle.
Lorsque le groupe aryle comprend au moins un hétéroatome choisi parmi N, O et S, on parle de groupe « hétéroaryle ». A titre de groupe hétéroaryle monocyclique, on peut notamment citer, entres autres, le pyrrole, le furane, le thiophène, l'imidazole, le pyrazole, l'oxazole, le thiazole et la pyridine. A titre de groupe hétéroaryle bicyclique, on peut notamment citer l'indole.
De préférence, l'agent antimicrobien est un sel de poly(hexaméthylène) guanidine, comprenant n unités répétitives de formule (1-1 ') :
Figure imgf000007_0001
dans laquelle n et HA sont tels que définis ci-dessus.
De préférence, dans la formule (1-1 '), HA est R-S03H où R est un groupe phényle ou naphtyle substitué par un groupe alkyle en Ci-C24.
Les sels de poly(polyméthylène) guanidine (PpMG), plus particulièrement les sels de poly(hexaméthylène) guanidine (PHMG) sont connus en tant que biocides présentant un large spectre d'activité (M. K. Oulé et al. Poly(hexamethylene)guanidine hydrochloride- based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections, Journal of Médical Microbiology, vol. 57, 1523-1528 (2006)).
Les sels de poly(polyméthylène) guanidine (PpMG), plus particulièrement les sels de poly(hexaméthylène) guanidine (PHMG), sont thermiquement stables dans les conditions de fabrication des compositions antimicrobiennes et des articles antimicrobiens selon l'invention.
Lesdits sels sont également résistants à l'eau. En particulier, les articles antimicrobiens selon l'invention comprenant un sel de PpMG, plus particulièrement de PHMG, présentent très peu, voire aucun relargage desdits sels lorsqu'ils sont en contact d'un milieu aqueux, et ce, même de manière prolongée, typiquement sur un mois, voire un an.
Lesdits articles conservent ainsi avantageusement leurs propriétés antimicrobiennes sur de longues périodes, tout en évitant tout phénomène d'empoisonnement du milieu dans lequel ils sont présents par relargage desdits sels. De préférence, dans les formules (1-1 ) et (1-1 '), HA représente dodécylbenzènesulfonique de formule :
Figure imgf000008_0001
A titre d'agent antimicrobien de type sel de PpMG, on peut citer le dodécylbenzènesulfonate de poly(hexaméthylène) guanidine (aussi appelé PHMG-DBS), qui correspond à un sel de formule (1-1 ) dans laquelle n = 6 et HA est l'acide dodécylbenzènesulfonique.
L'agent antimicrobien peut aussi être un sel de poly(polyméthylène) imidazolium, comprenant n' unités répétitives de formule (I-2) :
Figure imgf000008_0002
dans laquelle :
- m est compris de 6 à 12,
- n' est compris de 10 à 100, et
- A est choisi dans le groupe constitué de BF4 ", PF6 " et (CF3S02)2N".
De préférence, dans la formule (I-2), m est égal à 6.
Selon un autre mode de réalisation, l'agent antimicrobien est un liquide ionique de masse moléculaire inférieure à 1400 g/mol.
Dans le cadre de la présente invention, on entend par « liquide ionique » un sel, constitué d'un anion et d'un cation, possédant une température de fusion inférieure à 100 °C, et souvent même inférieure à la température ambiante. Certains liquides ioniques sont à l'état liquide à température ambiante et sont appelés des liquides ioniques à température ambiante. Ces derniers ont des avantages pratiques vis-à-vis des liquides ioniques à haute température de fusion et sont donc plus utilisés.
Dans les liquides ioniques de l'invention, les cations sont généralement de type dialkylimidazolium, tétraalkylammonium, tétraalkylphosphonium ou alkylpyridium.
Dans les liquides ioniques de l'invention, les anions sont généralement de type tétrafluoroborate, hexafluorophosphate, halogénure, mésylate, tosylate, ou triflate.
De préférence, les cations des liquides ioniques de l'invention sont organiques.
La masse moléculaire des liquides ioniques de l'invention est de préférence comprise de 200 à 1350 g/mol, de préférence comprise de 200 à 600 g/mol. L'agent antimicrobien peut notamment être un liquide ionique 1 ,3-dialkylimidazolium répondant à la formule (11-1 ) :
Figure imgf000009_0001
dans laquelle :
- A" est choisi dans le groupe constitué de BF4 ~, PF6 " et (CF3S02)2N~,
Ri est un groupe alkyle en C Ci6 ou un groupe alkylaryle en C5-Ci6, et R2 est choisi dans le groupe constitué des groupes alkyles en C4-Ci6, des groupes alkylaryles en C5-Ci6, et des groupes de formule (11-1 ') :
Figure imgf000009_0002
dans laquelle n" est compris de 6 à 12, Ri et A" étant tels que définis ci- dessus.
Selon la présente invention, le terme « alkylaryle » désigne un groupe -alkyle-aryle, les termes alkyle et aryle étant tels que définis ci-dessus.
Le terme « alkylaryle » désigne notamment un groupe benzyle (-CH2-C6l-l5) .
De préférence, dans la formule (11-1 ), Ri est un groupe méthyle.
De préférence, dans la formule (11-1 ), R2 est un groupe alkyle en C8-Ci2.
De préférence, dans la formule (11-1 ), A est BF4 ~.
Les liquides ioniques 1 ,3-dialkylimidazolium de formule (11-1 ) possèdent un large spectre d'activité, sont thermiquement stables dans les conditions de fabrication des compositions antimicrobiennes et des articles antimicrobiens selon l'invention.
Lesdits liquides ioniques sont également résistants à l'eau. En particulier, les articles antimicrobiens selon l'invention comprenant de tels liquides ioniques, présentent très peu, voire aucun relargage desdits liquides ioniques lorsqu'ils en contact d'un milieu aqueux, et ce, même de manière prolongée, typiquement sur un mois, voire un an.
Lesdits articles conservent ainsi avantageusement leurs propriétés antimicrobiennes sur de longues périodes, tout en évitant tout phénomène d'empoisonnement du milieu dans lequel ils sont présents par relargage desdits liquides ioniques. De préférence, dans la formule (11-1 ) :
Ri est un groupe méthyle,
R2 est un groupe alkyle en C8-Ci2, et
- A" est BF4 ~.
A titre d'agent antimicrobien de type liquide ionique de la famille des 1 ,3-dialkylimidazoliums, on peut citer le tétrafluoroborate de 1 -octyl-3-méthylimidazolinium (aussi appelé OMIM-BF4) et le tétrafluoroborate de 1 -dodécyl-3-méthylimidazolinium (aussi appelé DMIM-BF4).
Ces liquides ioniques spécifiques présentent une activité antimicrobienne à spectre large et une faible toxicité (voir Y. Yu, Y. Nie, Environ. Protec, 2, 298-303 (201 1 ) et B.F. Gilmore, M.J. Earl, Chimica oggi/Chemistry Today, 29 (2): 50-53 (201 1 )).
L'agent antimicrobien peut également être un liquide ionique guanidinium répondant à la formule (II-2) :
Figure imgf000010_0001
dans laquelle :
- Ri représente un atome d'hydrogène ou un groupe alkyle en Ci2-Ci6,
R2 représente un groupe alkyle en C4-Ci6,
- HA est choisi dans le groupe constitué de (CF3S02)2NH, HPF6 et R-S03H, R est choisi dans le groupe constitué des groupes perfluoroalkyles en C4- C12 et des groupes aryles en C4-Ci0 substitués par un groupe R', et - R' est choisi dans le groupe constitué de H ; des groupes alkyles en C
Ci8 ; des groupes -NH-CO-R" dans lesquels R" est un groupe alkyle en C Ci7 ou un groupe aryle en C4-Ci0 ; et des groupes -NH-S02-C6H4-R"' dans lesquels R'" est un atome d'hydrogène ou un groupe alkyle en Ci-Ce. L'agent antimicrobien peut aussi être un liquide ionique phosphonium répondant à la formule (11-3) :
R
R-P+-R' (||-3)
R A"
dans laquelle :
R est un groupe alkyle en C4-Ci2,
R' est choisi dans le groupe constitué des groupes alkyles en C2-Ci6, des groupes alkylaryles en C5-Ci6, et des groupes de formule (II-3') :
Figure imgf000011_0001
dans laquelle η'" est compris de 6 à 12, R étant tel que défini ci-dessus, et - A" est choisi dans le groupe constitué de BF4 ~, (CF3S02)2N~, PF6 ", P(0)(OR1)20- et R2-S03 ",
Ri est un groupe alkyle en C4-C8,
R2 est choisi dans le groupe constitué des groupes perfluoroalkyles en C4- Ci2, des groupes alkyles en C8-Ci8, et des groupes aryles en C4-Cio substitués par un groupe R3, et
R3 est choisi dans le groupe constitué de H ; des groupes alkyles en C Ci8 ; des groupes -NH-CO-R4 dans lesquels R4 est un groupe alkyle en C C17 ou un groupe aryle en C4-Ci0 ; et des groupes -NH-S02-C6H4-R5 dans lesquels R5 est un atome d'hydrogène ou un groupe alkyle en C C6.
La présente invention a aussi pour objet l'utilisation d'une composition selon l'invention, pour la préparation d'un article antimicrobien.
Les compositions selon l'invention sont utiles pour la préparation d'articles et de revêtements de tailles et de formes diverses.
On peut notamment préparer des articles sous forme de film destiné à être déposé sur des supports rigides ou souples, de film souple, de tube flexible ou de cathéter.
Les articles antimicrobiens de l'invention peuvent être utilisés dans le domaine médical.
Les infections de cathéters sont principalement causées par des bactéries Gram+ et Gram-. Les infections fongiques sont moins fréquentes que les infections bactériennes, mais elles ont tendance à être plus graves et constituent un problème croissant. Elles représentent aujourd'hui environ 10% de toutes les infections nosocomiales. Les cathéters urinaires, les valves cardiaques prothétiques et les stimulateurs cardiaques sont également souvent associés à des infections fongiques. Il a été montré que des biofilms contenant à la fois des bactéries et des levures étaient également associés à des infections de tubes endotrachéaux, de stents biliaires, de prothèses de silicone vocales et de prothèses dentaires acryliques.
Les articles antimicrobiens de l'invention sont notamment utiles pour lutter contre les infections nosocomiales liées à la colonisation de chambres implantables (dispositifs intraveineux de longue durée utilisés pour la délivrance des chimiothérapies dans le traitement des cancers) et des cathéters. Ainsi, les articles antimicrobiens selon l'invention permettent de répondre à ces problèmes, tout en évitant la diffusion des agents antimicrobiens in vivo (phénomène d'empoisonnement).
Les articles antimicrobiens selon l'invention peuvent être utilisés en tant que cathéter, drainage chirurgical, sonde (trachéale, urinaire, digestive, etc), ou prothèse (seins, etc).
Ils présentent l'avantage d'être bien supportés par la peau et les tissus à leur contact.
Les articles antimicrobiens de l'invention peuvent également être utilisés dans le domaine domestique et alimentaire.
Les articles antimicrobiens de l'invention peuvent servir à confectionner des tubes pour l'acheminement de liquides alimentaires tels que du café, des jus de fruits, des soupes, ou d'autres liquides alimentaires ou non alimentaires.
Une autre application est la confection de touches tactiles en silicone de claviers d'ordinateur, de joints d'étanchéité pour des applications sanitaire ou industrielle, ou des tubes pour la circulation de gaz ou d'air dans les avions.
Une autre application des articles de l'invention concerne le domaine de l'habitat intérieur (par exemple joints des salles de bains) et de l'automobile.
Avantageusement, les articles antimicrobiens de l'invention présentent un taux de relargage d'agent antimicrobien inférieur à 5% par an, de préférence inférieur à 1 % par an, voire inférieur à 0,1 % par an.
Par « taux de relargage », on entend le rapport de la masse d'agent antimicrobien relarguée par l'article antimicrobien au cours d'une année, sur la masse d'agent antimicrobien présente initialement au sein de l'article antimicrobien.
Le taux de relargage peut être mesuré par spectrométrie de fluorescence X.
La spectrométrie de fluorescence X (SFX ou FX, ou en anglais XRF pour X-ray fluorescence) est une méthode d'analyse chimique utilisant une propriété physique de la matière, la fluorescence de rayons X. Lorsque l'on bombarde de la matière avec des rayons X, la matière réémet de l'énergie sous la forme, entre autres, de rayons X ; c'est la fluorescence X, ou émission secondaire de rayons X. Le spectre des rayons X émis par la matière est caractéristique de la composition de l'échantillon. En analysant ce spectre, on peut en déduire la composition élémentaire de l'échantillon, c'est-à-dire les concentrations massiques en éléments, et ainsi observer l'évolution au cours du temps de la concentration en agent antimicrobien des articles antimicrobiens de l'invention.
Les articles antimicrobiens de l'invention présentent avantageusement un taux de relargage d'agent antimicrobien sensiblement nul. Par « sensiblement nul », on entend que, sur une période d'au moins six mois, voire une année, la quantité d'agent antimicrobien relarguée par les articles antimicrobiens de l'invention est nulle ou bien à peine détectable par des moyens d'analyse tels que la spectrométrie de fluorescence X (c'est-à-dire qu'elle est de l'ordre de la précision de la mesure, soit 1 ppm pour la spectrométrie de fluorescence X).
La présente invention a aussi pour objet un procédé de préparation d'un article antimicrobien, comprenant les étapes de :
- mélange d'une silicone non réticulée et d'un agent antimicrobien tel que défini ci-dessus afin d'obtenir une composition liquide,
- addition d'un durcisseur à ladite composition liquide,
- réticulation de la silicone du mélange ainsi obtenu, et
- récupération de l'article antimicrobien ainsi formé.
Selon la présente invention, le terme « durcisseur » désigne un composé chimique réactif apte à réticuler une silicone, c'est-à-dire à créer des ramifications entre les chaînes linéaires -[Si-0]n- de la silicone non réticulée.
A titre de durcisseur, on peut notamment citer tout durcisseur de silicone commercial, tel que les composés de type tétraalcoxytitane ou le tétraéthoxysilane.
Le mélange d'une silicone non réticulée et d'un agent antimicrobien est typiquement effectué sous agitation mécanique ou magnétique, éventuellement en utilisant des ultrasons, et éventuellement en chauffant le mélange. De préférence, les conditions d'agitation et/ou de chauffage sont adaptées pour obtenir une solubilisation totale de l'agent antimicrobien dans la silicone non réticulée.
Dans le cas d'un film antimicrobien, après addition du durcisseur, le mélange obtenu est typiquement homogénéisé puis coulé sur une surface sur laquelle se formera ledit film par réticulation.
Dans le cas d'un article antimicrobien de forme prédéterminée, après addition du durcisseur, le mélange obtenu est typiquement homogénéisé puis coulé dans un moule, ou bien extrudé via une buse, dont la forme correspond à celle de l'article que l'on souhaite obtenir.
Le mode de réticulation pourra être adapté en fonction du durcisseur utilisé et des propriétés mécaniques de l'article que l'on souhaitera obtenir.
Par exemple, la réticulation peut être effectuée par exposition UV, exposition IR, traitement thermique ou traitement chimique. EXEMPLES
Exemple 1 : Agents antimicrobiens
Les agents antimicrobiens suivants ont été utilisés :
Agent 1 : dodécylbenzènesulfonate de poly(hexaméthylène) guanidine (PHMG-DBS)
Agent 2 : tétrafluoroborate de 1 -octyl-3-méthylimidazolium (OMIM-BF4)
Agent 3 : tétrafluoroborate de 1 -dodécyl-3-méthylimidazolium (DMIM-BF4)
PHMG-DBS a été préparé selon la méthode décrite dans WO 201 1/131773.
Exemple 2 : Préparation de compositions de silicone
Les compositions C1 , C2 et C3 ont été préparées en dissolvant respectivement l'agent 1 , l'agent 2 ou l'agent 3, dans de la silicone liquide (FORMASIL).
La proportion massique d'agent 1 , 2 ou 3 est de 2% ou 5% par rapport au poids total de la composition C1 , C2 ou C3.
Exemple 3 : Préparation de films antimicrobiens
Un durcisseur (tétraéthoxysilane) a ensuite été ajouté (5% en poids) à chacune des compositions C1 , C2 et C3 et le mélange obtenu a été laissé au repos pendant 24 heures à température ambiante, pour obtenir des films souples et semi-transparents F1 , F2 et F3 (5 cm de diamètre).
De la même manière, on a préparé également un film témoin F0, ne comprenant aucun agent antimicrobien.
Exemple 4 : Analyses microbiologiques
Les analyses microbiologiques ont été réalisées avec la souche d'Escherichia coli (GM 2163).
Les bactéries ont été cultivées une nuit dans 5 ml de milieu de culture LB. Le milieu a ensuite été stérilisé en autoclave (20 min à 15 psi) à 37°C jusqu'à une concentration of 108 CFU par ml (densité optique de 0,2 à 620 nm). Puis, on a déposé 40 μΙ de la suspension de bactéries ainsi préparée sur un milieu de culture LB agar. On a inoculé ainsi quatre milieux de culture de manière identique.
Chaque film (F0, F1 , F2 ou F3) a ensuite été déposé sur un des 4 milieux de culture préalablement inoculés. Lesdits films ont été laissés au contact des milieux de culture pendant 6h à 37 <Ό, puis ont été retirés, et les milieux de culture ont été conservés pendant 18h à 37°C.
On a observé les résultats à l'œil nu.
On n'a observé aucune différence entre la zone du milieu de culture qui a été en contact avec le film FO et la zone qui ne l'a pas été. L'application du film témoin FO sur le milieu de culture n'a donc eu aucun effet, positif ou négatif, sur le développement des bactéries.
En revanche, les zones des milieux de culture qui ont respectivement été en contact avec le film F1 , le film F2 et le film F3, sont apparues plus claires ce qui traduit l'absence de bactéries à ces endroits. Les zones qui n'ont pas été en contact avec le film F1 , F2 ou F3 étaient quant à elles toujours couvertes de bactéries.
L'application du film F1 , F2 ou F3 sur le milieu de culture a ainsi éliminé les bactéries et a empêché leur développement sur la zone de contact entre le film et la surface d'agar. L'activité antimicrobienne des films F1 , F2 et F3 correspondant à l'invention a ainsi été démontrée.
Exemple 5 : Analyses in vitro et in vivo
Des films de différentes compositions (6%, 4%, 2%, 1 %, 0,5%, 0% en masse en agent antimicrobien) sont testés sur des bactéries et des champignons, tels que des levures et des moisissures.
Des souches de bactéries responsables de septicémies sur cathéter sont testées, à savoir : Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Enterobacter aerogenes, Enterococcus faecalis, Enterococcus faecium et Acinetobacter baumannii.
Des levures responsables de septicémies sur cathéter sont également testées, à savoir : Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis et Candida krusei.
Des tests in vitro à 25qC, en chambre ou étuve à hygrométrie contrôlée (humidité relative HR>95-98%), conformément à la norme ISO 846:1997 (Plastiques - Évaluation de l'action des micro-organismes), sont réalisés sur une série de champignons dont l'impact sanitaire est bien connu dans l'habitat, à savoir : Aspergillus niger, Pénicillium chrysogenum, Cladosporium sphaerospermum, Stachybotrys chartarum et Alternaria alternata.
Des tests in vivo sont également réalisés sur des rats afin de garantir la biocompatibilité des films antimicrobiens. Pour cela, des échantillons de films de silicone modifiée sont introduits dans des artères des rats, et après quelques jours, on vérifie qu'aucun signe de thrombose, d'infection ou d'activation plaquettaire ne peut être observé. Exemple 5A : Tests sur bactéries selon la norme ISO 22196
L'activité antibactérienne des compositions silicones de l'invention a été testée sur 6 lignées de bactéries, conformément au protocole de la norme ISO 22196 (deuxième édition, 201 1 ).
Les lignées de bactéries testées sont : Klebsiella pneumoniae DSM 16609, Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 8739, Acinetobacter baumannii CIP 70.34 et Enterobacter cloacae DSM 30054.
Des films de silicone ont été préparés conformément aux exemples 2 et 3, comprenant 0%, 2% ou 5% d'agent antimicrobien PHMG-DBS, OMIM-BF4 ou DMIM-BF4 (7 types de films de silicone ont donc été préparés).
Des carrés de films de silicone de dimensions 25 mm x 25 mm ont été découpés, ainsi que des carrés de polypropylène de dimension 20 mm x 20 mm. Ces derniers ont été passés à l'autoclave à 1 15°C pendant 20 minutes.
Les bactéries ont été cultivées une nuit à 37<Ό dans du milieu de culture agar. Des suspensions de bactéries ont ensuite été préparées dans du milieu de culture Nutrient Broth avec une concentration de bactéries de 6.105 CFU/ml.
Chaque carré de silicone (non stérilisé) a été placé sur un couvercle de boîte de Pétri de diamètre 55 mm, qui lui-même a été placé dans une boîte de Pétri de diamètre 94 mm. 100 μΙ de suspension de bactéries ont été déposés sur chaque carré de silicone et étalés à l'aide d'un carré de polypropylène. 10 ml d'eau stérile ont été ajoutés dans le fond de la boîte de Pétri de diamètre 94 mm afin d'assurer une humidité relative élevée durant l'incubation à 37<Ό pendant 24 heures. Pour chaque type de film de silicone, trois exemplaires ont été réalisés.
Après incubation, chaque film de silicone a été placée dans une nouvelle boîte de Pétri et a été lavé avec 10 ml d'agent antibactérien (SCDLP, d'après le protocole standard de la norme ISO) pour récupérer les bactéries. Après 5 lavages, la suspension de SCDLP a été diluée jusqu'à 10~6, et 1 ml de solution obtenue a été placé sur une plaque de gélose PCA (dupliquée). Chaque plaque a été incubée à 37<Ό pendant 24 heures. Le nombre de colonies sur chaque boîte de Pétri a ensuite été compté. La viabilité des bactéries en fonction des résultats obtenus a été calculée au moyen de la formule suivante :
N = (100xCxOx10)/400
dans laquelle :
N désigne le nombre de bactéries viables observées par cm2 de chaque échantillon testé,
C désigne le comptage moyen de colonies sur chaque plaque de gélose PCA, et
D désigne le facteur de dilution utilisé pour le comptage.
Les résultats des mesures de viabilité des bactéries, exprimées en log10( V), sont rassemblés dans le Tableau 1 , la limite de détection ayant été fixée à un nombre de bactéries récupérées égal à 10 (soit log 0(A ) = 1 ,4).
Tableau 1 : Viabilité de bactéries (log10( V)) en fonction du type de film de silicone
Figure imgf000017_0001
ans a mesure o es r su tats sont expr m s en og10, c aque un t e rence dans les mesures de log10(A/) signifie que le nombre de bactéries viables entre les deux échantillons diffère d'un facteur 10.
Les films de silicone de l'invention sont résistants contre les bactéries testées, au contraire du film de silicone de contrôle ne comprenant pas d'agent antimicrobien. Une dose de 2% en agent antimicrobien est suffisante pour la plupart des bactéries testées. Exemple 5B : Tests sur levure selon la norme ISO 22196
L'activité antibactérienne des compositions silicones de l'invention a été testée sur la lignée de levure Candida albicans IHEM 14796, conformément au protocole de la norme ISO 22196 (deuxième édition, 201 1 ).
Les films de silicone préparés à l'exemple 5A ont été utilisés.
Le protocole suivi est identique à celui de l'exemple 5A.
Les résultats des mesures sont rassemblés dans le Tableau 2.
Tableau 2 : Viabilité de levures (log10( V)) en fonction du type de film de silicone
Figure imgf000018_0001
Les films de silicone de l'invention son résistants contre la levure testée, au contraire du film de silicone de contrôle ne comprenant pas d'agent antimicrobien.
Exemple 5C : Tests sur champignon selon la norme ISO 16869
L'activité antifongique des compositions silicones de l'invention a été testée sur la lignée de champignon Pénicillium chrysogenum IHEM 20859, conformément au protocole de la norme ISO 16869 (deuxième édition, 2008).
Les films de silicone préparés à l'exemple 5A ont été utilisés.
Le protocole de la norme a été légèrement modifié pour rendre les résultats plus significatifs. Ainsi, chaque échantillon de film de silicone a été placé dans une boîte de Pétri entre une couche inférieure de Nutrient sait agar (20 ml) et une couche supérieure de Peptone Dextrose agar dans laquelle des spores de champignons ont été dispersées. Le reste du protocole de la norme susmentionnée a été suivi.
Les milieux de culture ont été incubés à 25°C pendant au moins 48h, et jusqu'à 7 jours. Les résultats sont évalués à l'œil nu :
- la note 0 est attribuée lorsqu'aucune croissance n'est observée,
- la note 1 est attribuée lorsqu'un début de croissance est observée, et
- la note 2 est attribuée lorsqu'une croissance évidente est observée.
Les résultats des observations sont rassemblés dans le Tableau 3.
Tableau 3 : Observation de la croissance de champignons en fonction du type de film de silicone
Figure imgf000019_0001
Les films de silicone de l'invention sont résis ants contre le champignon testé, au contraire du film de silicone de contrôle ne comprenant pas d'agent antimicrobien.
Exemple 6 : Tests de stabilité des films antimicrobiens
Le stockage des films antimicrobiens F1 , F2 et F3 préparés à l'exemple 3 pendant plusieurs mois à une température de 37°C n'affecte pas leurs propriétés antimicrobiennes.
La faible teneur en agent antimicrobien (5% en masse) permet de conserver les propriétés mécaniques de la silicone.
Les films antimicrobiens ont une stabilité thermique jusqu'au moins 350^ et sont résistants à l'eau.
Exemple 7 : Test de mesure de la migration des agents antimicrobiens en milieu aqueux
La composition des films antimicrobiens F1 , F2 et F3 préparés à l'exemple 3 a été analysée par spectroscopie de fluorescence X (dispositif AC-1 M (fabriqué en Ukraine), précision de mesure de 1 ppm) juste après leur fabrication.
Après un séjour de six mois dans de l'eau, une nouvelle analyse des films par spectroscopie de fluorescence X a été réalisée.
Aucune variation de la concentration en agent antimicrobien dans lesdits films n'a été observée.
Les films antimicrobiens ne relarguent pas d'agent antimicrobien, même après un séjour prolongé au contact de l'eau.

Claims

REVENDICATIONS
1 . Composition, comprenant :
au moins une silicone non réticulée, et
- au moins un agent antimicrobien dispersé au sein de ladite silicone, ledit agent antimicrobien étant choisi dans le groupe constitué des polymères d'ionènes, et des liquides ioniques de masse moléculaire inférieure à 1400 g/mol.
2. Composition selon la revendication 1 , dans laquelle la silicone non réticulée est un poly(diméthylsiloxane).
Composition selon l'une quelconque des revendications 1 ou 2, dans laquelle la proportion massique d'agent antimicrobien est de 1 % à 10% par rapport à la masse totale de la composition.
4. Composition selon l'une quelconque des revendications 1 à 3, dans laquelle l'agent antimicrobien est un sel de poly(polyméthylène) guanidine, comprenant n unités répétitives de formule (1-1 ) :
Figure imgf000020_0001
; laquelle :
- p est compris de 2 à 12,
- n est compris de 4 à 140,
- HA est choisi dans le groupe constitué de (CF3S02)2NH, HPF6 et R-S03H, R est choisi dans le groupe constitué des groupes perfluoroalkyles en C4- C12 et des groupes aryles en C4-Ci0 substitués par au moins un groupe R', et
R' est choisi dans le groupe constitué de H ; des groupes alkyles en C Cis ; des groupes -NH-CO-R" dans lesquels R" est un groupe alkyle en C1 -C17 ou un groupe aryle en C4-Ci0 ; et des groupes -NH-S02-C6H4-R'" dans lesquels R'" est un atome d'hydrogène ou un groupe alkyle en Ci-Ce.
5. Composition selon la revendication 4, dans laquelle n = 6 et HA représente l'acide dodécylbenzènesulfoni ue de formule :
Figure imgf000021_0001
6. Composition selon l'une quelconque des revendications 1 à 3, dans laquelle l'agent antimicrobien est un sel de poly(polyméthylène) imidazolium, comprenant n' unités répétitives de formule (I-2) :
Figure imgf000021_0002
dans laquelle :
- m est compris de 6 à 12,
- n' est compris de 10 à 100, et
- A" est choisi dans le groupe constitué de BF4 ~, PF6 " et (CF3S02)2N~.
Composition selon l'une quelconque des revendications 1 à 3, dar laquelle l'agent antimicrobien est un liquide ionique 1 ,3-dialkylimidazoliu répondant à la formul -1 ) :
Figure imgf000021_0003
dans laquelle :
- A" est choisi dans le groupe constitué de BF4 ", PF6 " et (CF3S02)2N~,
Ri est un groupe alkyle en C1 -C16 ou un groupe alkylaryle en C5-Ci6, et R2 est choisi dans le groupe constitué des groupes alkyles en C4-Ci6, des groupes alkylaryles en C5-Ci6, et des groupes de formule (11-1 ') :
f=\
-(ΟΗ2)Γ Ν\^ R . ( ΐ ι-ΐ ') dans laquelle n" est compris de 6 à 12, Ri et A" étant tels que définis ci- dessus. Composition selon la revendication 7, dans laquelle l'agent antimicrobien est le tétrafluoroborate de 1 -octyl-3-méthylimidazolinium ou le tétrafluoroborate de 1 -dodécyl-3-méthylimidazolinium.
Composition selon l'une quelconque des revendications 1 à 3, dans laquelle l'agent antimicrobien est un liquide ionique guanidinium répondant à la formule (II-2) :
Figure imgf000022_0001
dans laquelle :
- Ri représente un atome d'hydrogène ou un groupe alkyle en Ci2-Ci6,
R2 représente un groupe alkyle en C4-Ci6,
- HA est choisi dans le groupe constitué de (CF3S02)2NH, HPF6 et R-S03H, R est choisi dans le groupe constitué des groupes perfluoroalkyles en C4- C12 et des groupes aryles en C4-Ci0 substitués par un groupe R', et - R' est choisi dans le groupe constitué de H ; des groupes alkyles en C
Cis ; des groupes -NH-CO-R" dans lesquels R" est un groupe alkyle en C1 -C17 ou un groupe aryle en C4-Ci0 ; et des groupes -NH-SO2-C6H4-R'" dans lesquels R'" est un atome d'hydrogène ou un groupe alkyle en CrC6. 10. Composition selon l'une quelconque des revendications 1 à 3, dans laquelle l'agent antimicrobien est un liquide ionique phosphonium répondant à la formule (II-3) :
R
R-P+-R' (||-3)
R A"
dans laquelle :
R est un groupe alkyle en C4-Ci2,
- R' est choisi dans le groupe constitué des groupes alkyles en C2-Ci6, des groupes alkylaryles en C5-Ci6, et des groupes de formule (II-3') :
A" p
+/ (II-3')
- (CH2)- -P-R
\
R dans laquelle η'" est compris de 6 à 12, R étant tel que défini ci-dessus, et A" est choisi dans le groupe constitué de BF4 ", (CF3S02)2N~, PF6 ", P(0)(ORi)20- et R2-S03 ",
Ri est un groupe alkyle en C4-C8,
R2 est choisi dans le groupe constitué des groupes perfluoroalkyles en C4- C12, des groupes alkyles en C8-Ci8, et des groupes aryles en C4-Ci 0 substitués par un groupe R3, et
R3 est choisi dans le groupe constitué de H ; des groupes alkyles en C Cis ; des groupes -NH-CO-R4 dans lesquels R4 est un groupe alkyle en C C17 ou un groupe aryle en C4-Ci 0 ; et des groupes -NH-S02-C6H4-R5 dans lesquels R5 est un atome d'hydrogène ou un groupe alkyle en C C6.
Article antimicrobien, comprenant :
au moins une silicone réticulée, et
au moins un agent antimicrobien dispersé au sein de ladite silicone réticulée, ledit agent antimicrobien étant tel que défini dans l'une quelconque des revendications 1 à 10.
12. Article antimicrobien selon la revendication 1 1 , présentant un taux de relargage de l'agent antimicrobien inférieur à 5% par an.
PCT/EP2014/060857 2013-05-28 2014-05-26 Composition antimicrobienne à base de silicone WO2014191367A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/893,945 US20160106104A1 (en) 2013-05-28 2014-05-26 Silicone-based antimicrobial composition
EP14728865.8A EP3003029A1 (fr) 2013-05-28 2014-05-26 Composition antimicrobienne à base de silicone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1354800 2013-05-28
FR1354800A FR3006149B1 (fr) 2013-05-28 2013-05-28 Composition antimicrobienne a base de silicone

Publications (1)

Publication Number Publication Date
WO2014191367A1 true WO2014191367A1 (fr) 2014-12-04

Family

ID=48874357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/060857 WO2014191367A1 (fr) 2013-05-28 2014-05-26 Composition antimicrobienne à base de silicone

Country Status (4)

Country Link
US (1) US20160106104A1 (fr)
EP (1) EP3003029A1 (fr)
FR (1) FR3006149B1 (fr)
WO (1) WO2014191367A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104744866B (zh) * 2015-03-30 2016-08-17 苏州大学 一种聚离子液体抗菌复合膜及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3518678A1 (fr) * 2016-09-30 2019-08-07 Flechsig Patent Company LLC Procédé pour protéger des plantes contre les organismes nuisibles en utilisant une composition pesticide à persistance et dégradabilité réglables
CN113795518B (zh) 2019-05-14 2023-06-09 科洛普拉斯特公司 包含甘油、环糊精和奥替尼啶的弹性体硅酮组合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2694563A1 (fr) 1992-08-07 1994-02-11 Flamel Tech Sa Composition élastomère de silicone, réticulée, contenant un dérivé d'argent et utilisable, notamment, pour le traitement biocide des eaux souillées.
WO1999032157A2 (fr) 1997-12-23 1999-07-01 Biosafe, Inc. Procede de creation d'un agent biostatique au moyen de polymeres reticules enchevetres
DE102006020644A1 (de) * 2006-04-28 2007-10-31 Bayer Innovation Gmbh Antiseptikahaltige Silikonelastomere
WO2011131773A1 (fr) 2010-04-23 2011-10-27 Centre National De La Recherche Scientifique (C.N.R.S) Nouvelle composition antimicrobienne, son utilisation et sa préparation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2694563A1 (fr) 1992-08-07 1994-02-11 Flamel Tech Sa Composition élastomère de silicone, réticulée, contenant un dérivé d'argent et utilisable, notamment, pour le traitement biocide des eaux souillées.
WO1999032157A2 (fr) 1997-12-23 1999-07-01 Biosafe, Inc. Procede de creation d'un agent biostatique au moyen de polymeres reticules enchevetres
US6572926B1 (en) 1997-12-23 2003-06-03 Biosafe, Inc. Biostatic product using interpenetrating network polymers
DE102006020644A1 (de) * 2006-04-28 2007-10-31 Bayer Innovation Gmbh Antiseptikahaltige Silikonelastomere
WO2011131773A1 (fr) 2010-04-23 2011-10-27 Centre National De La Recherche Scientifique (C.N.R.S) Nouvelle composition antimicrobienne, son utilisation et sa préparation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
B.F. GILMORE; M.J. EARL, CHIMICA OGGI/CHEMISTRY TODAY, vol. 29, no. 2, 2011, pages 50 - 53
M. K. OULÉ ET AL.: "Poly(hexamethylene)guanidine hydrochloride-based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections", JOURNAL OF MEDICAL MICROBIOLOGY, vol. 57, 2006, pages 1523 - 1528
M. K. OULE ET AL: "Polyhexamethylene guanidine hydrochloride-based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections", JOURNAL OF MEDICAL MICROBIOLOGY, vol. 57, no. 12, 1 December 2008 (2008-12-01), pages 1523 - 1528, XP055099201, ISSN: 0022-2615, DOI: 10.1099/jmm.0.2008/003350-0 *
Y. YU; Y. NIE, ENVIRON. PROTEC., vol. 2, 2011, pages 298 - 303

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104744866B (zh) * 2015-03-30 2016-08-17 苏州大学 一种聚离子液体抗菌复合膜及其制备方法

Also Published As

Publication number Publication date
FR3006149B1 (fr) 2016-05-27
EP3003029A1 (fr) 2016-04-13
FR3006149A1 (fr) 2014-12-05
US20160106104A1 (en) 2016-04-21

Similar Documents

Publication Publication Date Title
García-Fernández et al. Antibacterial strategies from the sea: polymer-bound cl-catechols for prevention of biofilm formation
AU2009204189B2 (en) Disinfectant alcohol-soluble quaternary ammonium polymers
Dai et al. Biodegradable poly (ester-co-acrylate) with antifoulant pendant groups for marine anti-biofouling
Contreras-Garcia et al. Biofilm inhibition and drug-eluting properties of novel DMAEMA-modified polyethylene and silicone rubber surfaces
US8343523B2 (en) Disinfectant with durable activity based on alcohol-soluble quaternary ammonium polymers and copolymers
Nostro et al. Development and characterization of essential oil component-based polymer films: a potential approach to reduce bacterial biofilm
Liu et al. Amino acid-based zwitterionic polymer surfaces highly resist long-term bacterial adhesion
JPWO2009098850A1 (ja) ヒスチジン銀錯体を含有する液状組成物、殺菌剤組成物及びヒスチジン銀錯体の安定化方法
Tihan et al. Chloramphenicol collagen sponges for local drug delivery in dentistry
EP3003029A1 (fr) Composition antimicrobienne à base de silicone
Gregorova et al. Lignin-containing polyethylene films with antibacterial activity
Nowacka et al. Poly (silsesquioxanes) and poly (siloxanes) grafted with N-acetylcysteine for eradicating mature bacterial biofilms in water environment
JP2013532161A (ja) バイオフィルムの形成を防止および制御するためのエキソ多糖類
JP2007106763A (ja) 表面の殺菌または消毒方法
US10947366B2 (en) Hollow mineral tubes comprising essential oils and uses thereof
EP2161311B1 (fr) Revêtements microbiocides
Uzoma et al. Recent design approaches, adhesion mechanisms, and applications of antibacterial surfaces
CA2305496A1 (fr) Systeme a base d&#39;un biocide et d&#39;un silicone polyether et son utilisation pour la desinfection des surfaces dures
Sisti et al. Antibacterial coatings on poly (fluoroethylenepropylene) films via grafting of 3-hexadecyl-1-vinylimidazolium bromide
US20220322671A1 (en) Methods to reduce contamination, biofilm and fouling from water systems, surfaces, and products
EP4284404A1 (fr) Complexes polysaccharide de porphyridium sp./cuivre monovalent, produits apparentés et leurs procédés de préparation
CA2740353C (fr) Compositions antisalissures photoreticulables, films obtenus a partir de ces compositions et utilisations correspondantes
FR2959938A1 (fr) Sonde urinaire comportant des proanthocyanidines et son mode d&#39;utilisation
FR2696903A1 (fr) Composition germicide et savon la contenant.
Rodríguez-Hernández et al. Bacterial Infections: Few Concepts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14728865

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014728865

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14893945

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE