WO2014186989A1 - 一种滚动转子(活塞)式压缩机 - Google Patents

一种滚动转子(活塞)式压缩机 Download PDF

Info

Publication number
WO2014186989A1
WO2014186989A1 PCT/CN2013/076669 CN2013076669W WO2014186989A1 WO 2014186989 A1 WO2014186989 A1 WO 2014186989A1 CN 2013076669 W CN2013076669 W CN 2013076669W WO 2014186989 A1 WO2014186989 A1 WO 2014186989A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling rotor
valve plate
ceramic
rotor
piston
Prior art date
Application number
PCT/CN2013/076669
Other languages
English (en)
French (fr)
Inventor
谢灿生
杨双节
Original Assignee
潮州三环(集团)股份有限公司
南充三环电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潮州三环(集团)股份有限公司, 南充三环电子有限公司 filed Critical 潮州三环(集团)股份有限公司
Publication of WO2014186989A1 publication Critical patent/WO2014186989A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/20Manufacture essentially without removing material
    • F04C2230/22Manufacture essentially without removing material by sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/04Composite, e.g. fibre-reinforced

Definitions

  • This invention generally relates to a compressor, and more particularly to a rolling rotor (piston) compressor.
  • BACKGROUND OF THE INVENTION Current rolling compressors, also known as rolling piston compressors, have compression assemblies Basically, metal castings are used. Due to the good machinability of metal parts, the surface finish is easy to achieve Rz 0.8 m, Ra ⁇ 0.1 ⁇ ⁇ . In order to improve the wear resistance and rigidity of metal parts, the metal materials are basically modified. Sex. However, the characteristics of metal materials, such as large expansion coefficient, thermal deformation, low hardness, non-wear resistance, high density, etc., are difficult to solve by modification.
  • the Vickers hardness of metal materials is 380-450, and the hardness of modified metals Generally 450-550, therefore, the gap of the compression component will be reserved during design to prevent the component from thermally deforming the card machine.
  • the operating temperature of the compression zone of the compressor is very high, which tends to cause wear, carbonization, gap leakage, low compression efficiency or residue of the metal compression assembly. Problems such as burning of the compressor.
  • the technical problem to be solved by the embodiments of the present invention is to provide a rolling rotor (piston) type compressor which can better avoid wear gap leakage, carbonization and deformation card machine, and has low energy consumption and high efficiency.
  • the technical solution adopted by the present invention is:
  • a rolling rotor (piston) compressor includes a housing and a motor, a crankshaft and a compression assembly disposed within the housing, the motor including a motor rotor and a motor stator, the crankshaft including a spindle and a countershaft at both ends and An eccentric between the main shaft and the counter shaft, the compression assembly comprising a cylinder, a rolling rotor located in the cylinder, a valve plate located in the valve groove of the cylinder, and a valve spring, the two ends of the cylinder corresponding to the crankshaft a main shaft and a sub-shaft at both ends are provided with a main bearing and a sub-bearing for supporting a crankshaft, the main shaft being drivingly connected to the motor rotor, the eccentric being located in the rolling rotor and being in contact with the rolling rotor, One end of the valve piece is connected to the rolling rotor, and the other end is connected to the valve leaf spring.
  • the valve leaf spring is located at the inner end of the valve groove, the rolling rotor and the valve piece are formed by ceramic pressing, and one or more modifiers Mg, Ti, Ca and carbon fibers are added to the ceramic powder, and sintered by high temperature.
  • the size of the ceramic crystal is controlled, and the sintered ceramic is machined to form a ceramic rolling rotor and a valve piece.
  • the surface finish of the ceramic rolling rotor and the valve plate meets the working requirements.
  • the surface finish of the ceramic rolling rotor reaches Rz 0.8 m, Ra ⁇ 0.1 ⁇ ; the surface finish of the ceramic valve is not as strict as that of the rolling rotor, and the surface finish of the ceramic valve is achieved.
  • the modifier added in the ceramic powder is uniformly mixed by ball milling, and the modifier is added in a total mass percentage of Mg 0.2-0.8%, Ti 0.08-0.3%, Ca 0.5. -1.5%, carbon fiber 0.05-0.5% or Mg 0.8-2.0%, Ti 0.08-0.3%, Ca 0.5-1.5% or Mg 0.2-0.8%, Ti 0.08-0.3%, carbon fiber 0.05-0.5% or Mg 0.5-1.3 %, carbon fiber 0.05-0.5%.
  • the ceramic valve piece and the rolling rotor body are dry-formed and then isostatically pressed at a pressure of not less than 180 MPa.
  • the rolling rotor and the valve plate are made of alumina ceramic.
  • the formed ceramic body is sintered at a high temperature in an air furnace, the sintering temperature is not lower than 1550 ° C, and the grain size is not more than 10 ⁇ m.
  • the machining method is micro-grinding technology, the micro-grinding rod diameter ds ⁇ 0.01 mm, and the micro-grinding rod rotation speed ws > 30000 rpm, so that the processed ceramic rolling
  • the surface finish of the rotor reaches Rz 0.8 m, Ra ⁇ 0.1 ⁇ , and the surface finish of the ceramic valve sheet reaches Rz 1.6 ⁇ , Ra 0.2 m.
  • the product is fixed to the machine tool in a chilled manner.
  • the rolling rotor and the valve plate are made of silicon carbide ceramic.
  • the formed ceramic body is sintered at a high temperature, sintered by atmosphere or vacuum sintered, the temperature is not lower than 1400 ° C, and the grain size is not more than 8 ⁇ .
  • the machining method is ultra-high speed grinding processing technology, the grinding speed exceeds 300 m/s, and the processing speed of the rolling rotor reaches 500 m/s, after processing
  • the surface finish of the ceramic rolling rotor reaches Rz 0.8 m, Ra ⁇ 0.1 ⁇ , and the surface finish of the ceramic valve plate reaches Rz 1.6 ⁇ m, Ra 0.2 ⁇ m.
  • the rolling rotor and the valve plate are made of silicon nitride ceramic.
  • the formed ceramic body is sintered at a high temperature and sintered in a nitrogen atmosphere at a sintering temperature of not less than 1600 ° C and a grain size of not more than 8 ⁇ m.
  • the machining method is ultra-high speed grinding processing technology, the grinding speed exceeds 300 m/s, and the processing speed of the rolling rotor reaches 500 m/s, processing
  • the surface finish of the ceramic rolling rotor reaches Rz 0.8 m, Ra ⁇ 0.1 ⁇ ⁇ , and the surface finish of the ceramic valve reaches Rz 1.6 ⁇ m, Ra 0.2 ⁇ m. Further, during the machining process, the product is fixed on the machine tool in an ice-cold manner.
  • the embodiments of the present invention have the following beneficial effects:
  • the rolling rotor (piston) compressor embodiment of the present invention, the compression assembly valve plate and the rolling rotor are made of ceramic material, and modified by using a modifier for the ceramic material itself, innovative machining process, which makes the ceramic valve and ceramic rolling rotor successfully used in the rolling rotor.
  • the ceramic valve and ceramic rolling rotor have small thermal expansion coefficient, small thermal deformation, high hardness and wear resistance. Excellent performance such as low density and self-lubrication, and the design of the gap between the valve plate and the valve groove, the gap between the rolling rotor and the cylinder can be small, the compression efficiency is greatly improved, and wear, carbonization and heat are not easily generated.
  • FIG. 1 is a cross-sectional structural view showing an embodiment of a rolling rotor (piston) type compressor according to the present invention
  • FIG. 2 is a partial cross-sectional view of the embodiment shown in FIG.
  • Figure 3 is a schematic view showing the structure of a rolling rotor product in an embodiment of a rolling rotor (piston) type compressor according to the present invention
  • Figure 4 is a schematic view showing the structure of a valve sheet product in an embodiment of a rolling rotor (piston) type compressor of the present invention
  • Figure 5 is a schematic view of micro-grinding.
  • Rolling rotor (piston) compressors also known as rolling piston compressors or fixed vane compressors, are a type of rotary compressor. The principle is to use a eccentric cylindrical rotor to rotate the cylinder to change the working volume of the cylinder, thereby achieving gas suction, compression and exhaust, and thus belongs to a volumetric compressor.
  • a rolling rotor (piston) compressor embodiment of the present invention includes a housing 1 and a motor, a crankshaft 4 and a compression assembly disposed in the housing 1, the motor 1 including The motor rotor 2 and the motor stator 3, the crankshaft 4 includes a main shaft 41 and a counter shaft 42 at both ends, and an eccentric 43 between the main shaft and the counter shaft, the compression assembly including the cylinder 5 and a rolling rotor located in the cylinder 5 7 (also referred to as a rolling piston), a valve plate 8 located in a valve groove in the cylinder 5, and a valve spring 81, the two ends of the cylinder 1 corresponding to the main shaft 41 and the counter shaft 42 at both ends of the crankshaft 4 are provided for Supporting a main bearing 61 of the crankshaft and a countershaft 62, the main shaft 41 being drivingly coupled to the motor rotor 2, the eccentric 43 being located in the rolling rotor 7 and being in contact with the rolling rotor 7, the valve
  • the rolling rotor 7 rolls along the inner wall of the cylinder 5, forming a crescent-shaped working chamber with the cylinder, and the valve plate 8 (also referred to as a sliding plate or sliding baffle) is biased by the force of the spring to make the end close to the rotor.
  • the crescent-shaped working chamber is divided into two parts, a compression chamber 12a and an inhalation chamber 12b, and the valve piece 8 reciprocates along the valve disc channel as the rolling rotor 7 rolls.
  • the end of the cylinder is further provided with an end cover, which forms a closed cylinder volume with the inner wall of the cylinder 5, the outer wall of the rolling rotor 7, the cutting point and the valve plate 8.
  • the rotor 3 of the motor drives the crankshaft 4 to rotate, and the rotation of the crankshaft 4 drives
  • the rolling rotor 7 rolls on the inner wall surface of the cylinder 5, the cylinder volume varies with the rolling rotor rotation angle, and the pressure of the gas in the volume changes with the size of the elementary volume, thereby completing the working process of the compressor and realizing the refrigerant entering the cylinder block. Compression and exhaust.
  • the rolling rotor 7 and the valve plate 8 are formed by ceramic pressing, and one or more modifiers Mg, Ti, Ca and carbon fibers are added to the ceramic powder, and the ceramic crystal size is controlled by high temperature sintering, and then sintered.
  • the ceramic is machined to form a ceramic rolling rotor and valve plate, and the surface finish of the ceramic rolling rotor is Rz 0.8 m, Ra ⁇ 0.1 ⁇ ⁇ ; the surface finish of the ceramic valve plate reaches Rz 1.6 m, Ra ⁇ 0.2 ⁇ m.
  • compressors have become more demanding on the wear resistance and rigidity of compression assemblies.
  • inverter air conditioners it is required to rotate the components at a high speed, and the compression components in the compressed refrigerant gas can maintain good rigidity.
  • No component deformation mainly deformation of the valve plate
  • the host is stuck; it also requires good wear resistance, no wear of the valve plate and rolling rotor, gap leakage, resulting in low compression efficiency; Reduce the power consumption of the component itself and make the device more energy efficient. Therefore, higher demands are placed on the compression components of the compressor, in particular the valve plate and the rolling rotor.
  • Ceramic materials have excellent thermal expansion coefficient, small thermal deformation, high hardness, wear resistance, low density, self-lubricating, etc. However, except for zirconia ceramics with good processing properties and high surface finish, other engineering ceramics are difficult to process. Highly smooth, however, Oxidation 4 ceramics are susceptible to heat aging and are not suitable for use in compressors. Therefore, no ceramic components have been applied to air-conditioning compressors so far.
  • the present invention addresses this shortcoming by innovating ceramic materials.
  • the machining process has enabled the successful application of ceramic discs and ceramic rolling rotors to rolling rotor (piston) compressors.
  • the air conditioner compressor is more efficient, longer lasting and more energy efficient.
  • the rolling rotor 7 and the valve plate 8 are made of alumina ceramic, and the purity of the alumina is preferably higher than 95%.
  • the modifier added in the ceramic powder is uniformly mixed by ball milling, and all of the four modifiers of Mg, Ti, Ca and carbon fiber may be added, or a plurality of four additives may be selected, for example, Mg is selected.
  • Mg is selected.
  • the total mass percentage of each modifier is Mg 0.2-0.8%, Ti 0.08-0.3%, Ca 0.5-1.5%, and carbon fiber 0.05-0.5%;
  • the respective mass percentages are: 0.8-2.0% of Mg, 0.08-0.3% of Ti, and 0.5-1.5% of Ca; if Mg, Ti, and carbon fibers are selected, the total amount of each is added.
  • the mass percentage is: Mg 0.2-0.8%, Ti 0.08-0.3%, carbon fiber 0.05-0.5%; and when Mg or carbon fiber is selected, the following is the case: Mg 0.5-1.3%, carbon fiber 0.05-0.5%.
  • the ceramic valve piece and the rolling rotor body are dry-pressed and then isostatically pressed at a pressure of not less than 180 MPa.
  • the formed alumina ceramic body is sintered at a high temperature in an air furnace at a sintering temperature of not less than 1550 ° C and a grain size of not more than 10 ⁇ m.
  • the sintered alumina ceramic it is preferably machined by a micro-grinding technique, the micro-grinding rod diameter ds ⁇ 0.01 mm, and the micro-grinding rod speed ws > 30000 rpm.
  • Figure 5 is a schematic view of micro-grinding processing, 100 is a micro-grinding rod, 101 is a grinding track, and 102 is a ground product.
  • a micro-grinding technique is more suitable, and of course, an ultra-high-speed grinding technique as employed in the eleventh and twelfth embodiments can also be employed.
  • the product is fixed on the machine tool in an ice-cold manner, thereby preventing stress from being generated in the product processing, and causing the deformation to affect the dimensional accuracy of the shape.
  • the difference from the first embodiment is that the addition amount of the four modifiers added to the ceramic powder accounts for the total mass percentage: Mg 0.5%, Ti 0.3%, Ca 0.5 %, carbon fiber: 0.1%.
  • the difference from the first embodiment is that the total amount of the four modifiers added in the ceramic powder is: MgO.8%, TiO.15%, Cal.5 %, carbon fiber 0.05%.
  • the fourth embodiment differs from the first embodiment in that three modifiers are added to the ceramic powder, namely Mg, Ti, and Ca, respectively, and the respective mass percentages are: Mg 0.8%. , Ti 0.1%, Cal.3%.
  • the difference from the fourth embodiment is that the modifier added in the ceramic powder is added in a total mass percentage of: Mgl. 0%, TiO. 2%, Cal. 4%. .
  • the difference from the fourth embodiment is that the modifier added in the ceramic powder is added in a total mass percentage of: Mg 2.0%, TiO. 25%, Ca 0.8%. .
  • the difference from the first embodiment is that three kinds of modifiers are added to the ceramic powder, namely Mg, Ti, and carbon fibers, and the respective mass percentages are: Mg 0.25%. , Ti 0.28%, carbon fiber 0.4%.
  • the modifier added to the ceramic powder accounts for a total mass percentage: Mg 0.7%, TiO. 18%, and carbon fiber 0.08%.
  • the difference from the first embodiment is that the modifier added to the ceramic powder is Mg and carbon fiber, and the respective mass percentages are: 0.5% of Mg and 0.45% of carbon fiber.
  • the modifier added to the ceramic powder accounts for a total mass percentage: Mgl.3%, and carbon fiber 0.06%.
  • the processed product (rolling rotor 7 and valve plate 8) has a dimensional tolerance and a geometric tolerance of 0.001 mm, a rolling rotor surface finish of Rz ⁇ 0.8 ⁇ m, and a valve piece Rz 1.6 m (see Fig. 3.
  • Figure 4 is a schematic view of the structure of the rolling rotor product;
  • Figure 4 is a schematic view of the structure of the valve piece product) The surface finish required to reach the rolling rotor and the valve piece.
  • the rolling rotor 7 and the valve plate 8 are press-formed using a silicon carbide ceramic.
  • the modifier added in the ceramic powder is uniformly mixed by ball milling, and may be added with Mg, Ti, Ca, carbon fiber and four modifiers, and the total mass percentage of each modifier is: Mg 0.2-0.8%, Ti 0.08-0.3%, Ca 0.5-1.5%, carbon fiber 0.05-0.5%; may also choose three of them, such as Mg 0.8-2.0%, Ti 0.08-0.3%, Ca 0.5-1.5% or For example, Mg 0.2-0.8%, Ti 0.08-0.3%, carbon fiber 0.05-0.5%, or two kinds, such as Mg 0.5-1.3%, carbon fiber 0.05-0.5%.
  • modifiers according to other options.
  • the eleventh embodiment corresponding to the first embodiment, four kinds of modifiers are added to the ceramic powder, and the total mass percentage of each modifier is Mg: 0.2%, Ti: 0.08%. , Ca: 1.0%, carbon fiber: 0.5%.
  • the ceramic valve piece and the rolling rotor body are dry-pressed and then isostatically pressed at a pressure of not less than 180 MPa.
  • the formed silicon carbide ceramic body is sintered at a high temperature, and is sintered or vacuum sintered at a temperature of not less than 1400 ° C and a grain size of not more than 8 ⁇ m.
  • the grinding speed exceeds 300 m/s, and the rolling speed of the rolling rotor reaches 500 m/s.
  • the machining method can also be the micro-grinding technique as in the first embodiment.
  • the product is fixed on the machine tool in an ice-cold manner, which prevents the product from heating and generating stress, which causes the deformation to affect the dimensional accuracy of the shape.
  • Embodiments of the present invention have other embodiments when selecting a rolling rotor and a valve plate from a silicon carbide ceramic, which differs from the eleventh embodiment in that Mg, Ti, Ca are added to the ceramic powder.
  • the specific amount of carbon fiber added is different, or four kinds of Mg, Ti, Ca, and carbon fiber are selectively added.
  • the specific selection method and the addition amount can be respectively corresponding to the modifiers selected in the second to the ninth embodiments, that is, respectively, according to the use of the second embodiment.
  • the agent and the added amount are added to the silicon carbide ceramic powder, and of course, it may not correspond to the methods of the second to the ninth embodiment, and other addition options and addition amounts are employed.
  • Other technical features are the same as those in the eleventh embodiment. Therefore, in order to save space, the various embodiments will not be described again.
  • the processed product (rolling rotor ⁇ and valve plate 8) has a dimensional tolerance and a geometric tolerance of less than 0.001 mm.
  • the rolling rotor 7 and the valve plate 8 are press-formed using a silicon nitride ceramic.
  • the modifier added in the ceramic powder is uniformly mixed by ball milling, and may be added with Mg, Ti, Ca, carbon fiber and four modifiers, and the total mass percentage of each modifier is: Mg 0.2-0.8%, Ti 0.08-0.3%, Ca 0.5-1.5%, carbon fiber 0.05-0.5%; may also choose three of them, such as Mg 0.8-2.0%, Ti 0.08-0.3%, Ca 0.5-1.5% or For example, Mg 0.2-0.8%, Ti 0.08-0.3%, carbon fiber 0.05-0.5%, or two types, such as Mg 0.5-1.3%, carbon fiber 0.05-0.5%.
  • modifiers according to other options.
  • four kinds of modifiers are added to the ceramic powder, and the total mass percentage of each modifier is Mg: 0.2%, Ti: 0.08%. , Ca: 1.0%, carbon fiber: 0.5%.
  • the ceramic valve piece and the rolling rotor body are dry-pressed and then isostatically pressed at a pressure of not less than 180 MPa.
  • the formed silicon nitride ceramic body is sintered at a high temperature and sintered in a nitrogen atmosphere at a sintering temperature of not less than 1600 ° C and a grain size of not more than 8 ⁇ m.
  • the machining method can also be The grinding processing technique as in the first embodiment. During the machining process, the product is fixed on the machine tool in an ice-cold manner, which prevents the product from heating and generating stress, which causes the deformation to affect the dimensional accuracy.
  • Embodiments of the present invention have other embodiments when the rolling rotor and the valve plate are made of a silicon nitride ceramic, which differs from the embodiment 12 in that Mg, Ti, and Ca are added to the ceramic powder.
  • the specific addition amount of the carbon fiber is different, or some of the four modifiers of Mg, Ti, Ca, and carbon fiber are selectively added, and the specific selection manner and the added amount may be respectively compared with the second embodiment to the ninth embodiment.
  • the modifiers selected to be used, correspondingly, are added to the silicon nitride ceramic powder according to the modifiers and addition amounts used in Examples 2 to 9, respectively, and may of course not be in the manner of Examples 2 to 9. - Corresponding, and using other addition options and additions. As for other technical features, it is the same as that of the embodiment 12. Therefore, in order to save space, the various embodiments will not be described again.
  • the processed product (rolling rotor ⁇ and valve plate 8) has a dimensional tolerance and a geometric tolerance of less than 0.001 mm.
  • the compression assembly valve plate and the rolling rotor are made of a ceramic material, and the ceramic material itself is modified by using a modifier, and an innovative machining process is performed so that the rolling rotor is compressed.
  • the ceramic valve plate and the ceramic rolling rotor are successfully used on the machine.
  • the ceramic valve plate and the ceramic rolling rotor have the advantages of small thermal expansion coefficient, small thermal deformation, high hardness, wear resistance, low density, self-lubrication, etc. Therefore, the gap between the valve plate and the valve groove, the gap between the rolling rotor and the cylinder can be greatly reduced or even reduced by half, which greatly improves the compression efficiency and is less prone to wear, carbonization and thermal deformation. Card machine problem.
  • the gap between the rolling rotor and the cylinder, and the gap between the valve piece and the valve groove are easily designed if the design is too small.
  • the gap between the rolling rotor and the cylinder wall is generally designed to be 0.06 w 0.03 mm.
  • the gap between the valve plate and the valve groove is generally designed.
  • the gap between the rolling rotor 7 and the wall surface of the cylinder 5 to which it is attached may be designed to be less than 0.02 mm, and the gap between the valve plate 8 and the valve groove may be designed to be less than 0.03 mm. It is smaller than the existing design, and at the same time, the gap is reduced, and problems such as abrasion, carbonization, and thermal deformation of the card machine are not generated.
  • alumina ceramics can have a Vickers hardness of 1800, while metal materials generally have a hardness of 380-550.
  • the rotor and the valve plate do not have the problem of carbonization due to high temperature during operation, but the metal material is prone to wear and carbonization problems, causing the roller and the cylinder to be stuck and appearing.
  • the small density of the ceramic material, such as alumina ceramic was 3.8g / cm 3, silicon nitride ceramic 3.2g / cm 3, and the metal castings are generally greater than the density of 7.8g / cm 3, manufactured ceramic roller
  • the valve plate can greatly reduce the weight of the compression component, reduce its own power consumption, improve efficiency, and make it more energy efficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

公开了一种滚动转子(活塞)式压缩机,其包括设置在壳体(1)内的电机、曲轴(4)和压缩组件,压缩组件包括气缸(5)、位于气缸(5)内的滚动转子(7)、阀片(8)及阀片弹簧(81),曲轴(4)的主轴(41)与电机转子(2)传动连接,曲轴(4)的偏心轮在滚动转子(7)内与其相接,阀片(8)一端与滚动转子(7)相接,另一端连接于阀片弹簧(81),滚动转子(7)和阀片(8)采用陶瓷压制成型,在陶瓷粉料中添加改性剂Mg、Ti、Ca和碳纤维中的一种以上,通过高温烧结并控制陶瓷晶体尺寸,对烧结后的陶瓷进行机加工形成陶瓷滚动转子(7)和阀片(8)。此压缩组件间隙可以很小,组件更耐磨损,压缩效率更高,压缩组件热变形小,不会出现工作时高温碳化的问题,可避免组件热变形、碳化层磨损脱落卡机,寿命更长,更加节能。

Description

一种滚动转子 (活塞 ) 式压缩机 技术领域 本发明涉及一种压缩机, 尤其涉及一种滚动转子(活塞) 式压缩机 背景技术 目前滚动式压缩机, 又称滚动活塞压缩机, 其压缩组件基本都是采用金属 铸件, 由于金属件的机加工性能好, 表面光洁度容易做到 Rz 0.8 m, Ra < 0.1 μ ιη,为了改善金属件的耐磨性和刚性, 基本都是对金属材料进行改性。 然而, 金属材料的特性, 如膨胀系数大, 热变形, 硬度低、 不耐磨, 密度大等, 很难 通过改性得到解决, 一般金属材料维氏硬度为 380-450,改性的金属硬度一般 450-550, 因此,在设计时压缩组件的间隙都会预留很大, 防止出现组件热变形卡 机。 另外由于压缩机工作时, 组件摩擦的热量和压缩制冷剂产生的热量使压缩 机压缩区工作温度很高, 容易使金属压缩组件磨损、 碳化、 产生间隙泄漏、 压 缩效率低或出现残渣卡机导致压缩机烧毁等问题。
另外金属组件的质量都很大, 一般不低于 7.8 g/cm3 , 组件的重量大, 导致 在工作过程中自身功耗比较大, 不能更好的节能。 发明内容 本发明实施例所要解决的技术问题在于, 提供一种可以更好的避免磨损间 隙泄漏、 碳化和变形卡机, 且能耗小、 效率高的滚动转子(活塞) 式压缩机。
为了解决上述技术问题, 本发明所采取的技术方案是:
一种滚动转子 (活塞) 式压缩机, 包括壳体和设置在壳体内的电机、 曲轴 和压缩组件, 所述电机包括电机转子和电机定子, 所述曲轴包括位于两端的主 轴和副轴以及位于主轴和副轴之间的偏心轮, 所述压缩组件包括气缸、 位于气 缸内的滚动转子、 位于气缸内的阀片槽内的阀片及阀片弹簧, 所述气缸的两端 对应所述曲轴两端的主轴和副轴设有用于支撑曲轴的主轴承和副轴承, 所述主 轴与所述电机转子传动连接, 所述偏心轮位于所述滚动转子内并与所述滚动转 子相接, 所述阀片一端与所述滚动转子相接, 另一端连接于所述阀片弹簧, 所 述阀片弹簧位于阀片槽的里端, 所述滚动转子和阀片采用陶瓷压制成型, 在陶 瓷粉料中添加改性剂 Mg、 Ti、 Ca和碳纤维中的一种以上, 通过高温烧结并控制 陶瓷晶体尺寸, 对烧结后的陶瓷进行机加工形成陶瓷滚动转子和阀片。 所形成 的陶瓷滚动转子和阀片表面光洁度符合工作要求, 陶瓷滚动转子表面光洁度达 到 Rz 0.8 m, Ra<0.1 μιη; 陶瓷阀片的表面光洁度要求不如滚动转子那么严 格, 陶瓷阀片的表面光洁度达到 Rz 1.6μιη, Ra 0.2 m。
作为上述技术方案的改进, 在陶瓷粉料中所添加的改性剂经过球磨进行混 合均匀, 改性剂的加入量占总的质量百分比为 Mg 0.2-0.8%、 Ti 0.08-0.3%、 Ca 0.5-1.5% 、 碳纤维 0.05-0.5%或者 Mg 0.8-2.0%、 Ti 0.08-0.3%、 Ca 0.5-1.5%或 者 Mg 0.2-0.8%、 Ti 0.08-0.3%、 碳纤维 0.05-0.5%或者 Mg 0.5-1.3%、 碳纤维 0.05-0.5%。
作为上述技术方案的改进, 在压制成型滚动转子和阀片坯体时, 陶瓷阀片 和滚动转子坯体经过干压成型, 再经过不低于 180MPa的压力等静压成型。
作为本发明一种滚动转子 (活塞) 式压缩机技术方案的改进, 滚动转子和 阀片采用氧化铝陶瓷。
作为上述技术方案的改进, 成型后的陶瓷坯体在空气炉中高温烧结, 烧结 温度不低于 1550°C , 晶粒尺寸不超过 10 μ m。
作为上述技术方案的改进, 对于烧结后的氧化铝陶瓷, 所述机加工方式为 微磨削加工技术, 微磨棒直径 ds < 0.01mm, 微磨棒转速 ws > 30000rpm, 使加 工后的陶瓷滚动转子表面光洁度达到 Rz 0.8 m, Ra<0.1 μιη, 陶瓷阀片的表 面光洁度达到 Rz 1.6μιη, Ra 0.2 m。 进一步的, 机加工过程中, 产品采用 冰镇的方式将其固定在机床上。 作为本发明一种滚动转子 (活塞) 式压缩机技 术方案的另一种改进, 滚动转子和阀片采用碳化硅陶瓷。
作为上述技术方案的改进, 成型后的陶瓷坯体经高温烧结, 采用气氛烧结 或真空烧结, 温度不低于 1400°C, 晶粒尺寸不超过 8μιη。
作为上述技术方案的改进, 对于烧结后的碳化硅陶瓷, 所述机加工方式为 超高速磨削加工技术, 磨削速度超过 300m/s,滚动转子的加工磨削速度达到 500m/s, 加工后的陶瓷滚动转子表面光洁度达到 Rz 0.8 m, Ra<0.1 μιη, 陶 瓷阀片的表面光洁度达到 Rz 1.6 μ m, Ra 0.2 μ m。进一步的,机加工过程中, 作为本发明一种滚动转子 (活塞) 式压缩机技术方案的再一种改进, 滚动 转子和阀片采用氮化硅陶瓷。
作为上述技术方案的改进, 成型后的陶瓷坯体经高温烧结, 采用氮气气氛 烧结, 烧结温度不低于 1600 °C , 晶粒尺寸不超过 8 μ ιη。
作为上述技术方案的改进, 对于烧结后的氮化硅陶瓷, 所述机加工方式为 超高速磨削加工技术, 磨削速度超过 300m/s,滚动转子的加工磨削速度达到 500m/s, 加工后的陶瓷滚动转子表面光洁度达到 Rz 0.8 m, Ra < 0.1 μ ιη, 陶 瓷阀片的表面光洁度达到 Rz 1.6 μ m, Ra 0.2 μ m。进一步的,机加工过程中, 产品采用冰镇的方式将其固定在机床上。
实施本发明实施例, 具有如下有益效果: 本发明滚动转子 (活塞) 式压缩 机实施例, 其压缩组件阀片和滚动转子采用陶瓷材料, 并且通过对陶瓷材料本 身使用改性剂进行改性、 创新机加工工艺, 使得在滚动转子是压缩机上成功运 用陶瓷阀片和陶瓷滚动转子, 所述采用的陶瓷阀片和陶瓷滚动转子, 具有热膨 胀系数小, 热变形小、 硬度高、 耐磨损、 密度小、 自润滑等优异的性能, 而且 使得其设计时, 阀片与阀片槽的间隙、 滚动转子与气缸的间隙可以很小, 大大 提高了压缩效率, 而且不容易出现磨损、 碳化、 热变形卡机的问题; 此外, 陶 瓷材料的密度艮小,采用陶瓷制造滚子和阀片,可以大大降低压缩组件的重量, 降低其自身功耗, 提高效率, 能其节能效率更高。 附图说明 图 1是本发明一种滚动转子(活塞) 式压缩机实施例的剖视结构示意图; 图 2是图 1所示实施例中 Α-Α向局部剖视图;
图 3是本发明一种滚动转子(活塞) 式压缩机实施例中滚动转子产品的结 构示意图;
图 4是本发明一种滚动转子(活塞) 式压缩机实施例中阀片产品的结构示 意图;
图 5是微磨削加工示意图。
具体实施方式 下面结合附图进一步说明本发明的具体实施方式。 实施例一
滚动转子 (活塞) 式压缩机, 又称滚动活塞压缩机或固定滑片压缩机, 是 回转式压缩机的一种型式。 其原理是利用一个偏心圓筒形转子在气缸内的转动 来改变气缸的工作容积, 从而实现气体的吸气、 压缩和排气, 因而也属于容积 式压缩机。
如图 1、 图 2所示, 本发明一种滚动转子(活塞)式压缩机实施例, 其包括 壳体 1和设置在壳体 1 内的电机、 曲轴 4和压缩组件, 所述电机 1 包括电机转 子 2和电机定子 3 ,所述曲轴 4包括位于两端的主轴 41和副轴 42以及位于主轴 和副轴之间的偏心轮 43 , 所述压缩组件包括气缸 5、位于气缸 5内的滚动转子 7 (亦称滚动活塞)、位于气缸 5内的阀片槽内的阀片 8及阀片弹簧 81 , 所述气缸 1的两端对应所述曲轴 4两端的主轴 41和副轴 42设有用于支撑曲轴的主轴承 61和副轴 62, 所述主轴 41与所述电机转子 2传动连接, 所述偏心轮 43位于 所述滚动转子 7内并与所述滚动转子 7相接,所述阀片 8—端与所述滚动转子 7 相接, 另一端连接于所述阀片弹簧 81 , 所述阀片弹簧 81位于阀片槽的里端。 如 图 2所示, 滚动转子 7沿气缸 5内壁滚动, 与气缸形成一个月牙形的工作腔, 阀片 8 (亦称滑片或者滑动挡板)靠弹簧的作用力使其端部与转子紧密接触, 将 月牙形工作腔分隔为压缩腔 12a和吸气腔 12b两部分, 阀片 8随滚动转子 7的 滚动沿阀片槽道作往复运动。 气缸两端还设有端盖, 其与气缸 5 内壁、 滚动转 子 7外壁、 切点、 阀片 8构成封闭的气缸容积, 压缩机运行时, 电机转子 3带 动曲轴 4转动, 曲轴 4的转动带动滚动转子 7在气缸 5内壁面滚动, 气缸容积 大小随滚动转子转角变化, 容积内气体的压力则随基元容积的大小而改变, 从 而完成压缩机的工作过程, 实现对进入气缸体内的制冷剂的压缩和排气。
所述滚动转子 7和阀片 8采用陶瓷压制成型,在陶瓷粉料中添加改性剂 Mg、 Ti、 Ca和碳纤维中的一种以上, 通过高温烧结并控制陶瓷晶体尺寸, 之后对烧 结后的陶瓷进行机加工形成陶瓷滚动转子和阀片, 并使陶瓷滚动转子表面光洁 度达到 Rz 0.8 m, Ra < 0.1 μ ιη; 陶瓷阀片表面光洁度达到 Rz 1.6 m, Ra < 0.2 μ m。
近些年来, 随着冷冻系统和空调系统中使用压缩机的小型化和变频化, 压 缩机对压缩组件的耐磨性和刚性的要求更加苛刻。 特别是随着变频空调的发展, 既要求组件在高速旋转, 压缩制冷剂气体中各压缩组件能够保持良好的刚性, 不出现组件变形 (主要是阀片变形), 卡死主机; 又要求具有良好的耐磨性, 不 出现阀片和滚动转子磨损, 出现间隙泄漏, 导致压缩效率低下的问题; 同时要 求组件质量轻, 减少组件自身的功耗, 使设备更加节能。 因此对压缩机的压缩 组件,尤其是阀片和滚动转子提出了更高的要求。陶瓷材料具有热膨胀系数小, 热变形小、 硬度高、 耐磨损、 密度小、 自润滑等优异的性能, 但除氧化锆陶瓷 机加工性能好, 表面光洁度高外, 其他工程陶瓷很难加工到很高的光洁度, 然 而氧化 4告陶瓷容易受热老化, 不适合压缩机的使用环境, 因此到目前为止市场 没有陶瓷组件应用到空调压缩机上, 本发明就是针对此缺点, 通过改性陶瓷材 料,创新机加工工艺,使陶瓷阀片和陶瓷滚动转子成功应用到滚动转子(活塞) 式压缩机上。 使空调压缩机的效率更高、 寿命更长、 更加节能。
在本实施例一中, 滚动转子 7和阀片 8采用氧化铝陶瓷, 氧化铝纯度优选 高于 95%。 在陶瓷粉料中所添加的改性剂经过球磨进行混合均匀, 既可将 Mg、 Ti、 Ca、碳纤维四种改性剂全部添加,也可在四种中选择几种添加,如选用 Mg、 Ti、 Ca, 或者选用 Mg、 Ti、 碳纤维或者选择其中两种, 如 Mg、 碳纤维等等, 当然还可以是其他的选择。 当四种改性剂全部添加时, 各改性剂的加入量占总 的质量百分比为 Mg 0.2-0.8%、 Ti 0.08-0.3%、 Ca 0.5-1.5% 、 碳纤维 0.05-0.5%; 当选择使用 Mg、 Ti、 Ca时, 各自加入量占总的质量百分比为: Mg 0.8-2.0%、 Ti 0.08-0.3%、 Ca 0.5-1.5%; 若选择使用 Mg、 Ti、 碳纤维时, 各自加入量占总的 质量百分比为: Mg 0.2-0.8%、 Ti 0.08-0.3%、碳纤维 0.05-0.5%;而选择使用 Mg、 碳纤维时,是如下情况: Mg 0.5-1.3%,碳纤维 0.05-0.5%。 当然,需要说明的是, 前述的只是几种改性剂添加的例子而已, 还可以视情况在四种改性剂中按其他 方式选择添加。 在本实施例一中, 在陶瓷粉料中添加四种改性剂, 各改性剂的 加入量占总的质量百分比分别为 Mg: 0.2%, Ti: 0.08%, Ca: 1.0%, 碳纤维: 0.5%。
在压制成型滚动转子和阀片坯体时, 陶瓷阀片和滚动转子坯体经过干压成 型, 再经过不低于 180MPa的压力等静压成型。
成型后的氧化铝陶瓷坯体在空气炉中高温烧结, 烧结温度不低于 1550°C , 晶粒尺寸不超过 10 μ ιη。
对于烧结后的氧化铝陶瓷, 优选采用微磨削加工技术对其进行机加工, 微 磨棒直径 ds < 0.01mm,微磨棒转速 ws > 30000rpm。图 5为微磨削加工示意图, 其中 100为微磨棒, 101为磨削轨迹, 102为被磨削的产品。 对于氧化铝陶瓷这 样的硬脆材料, 更适宜采用微磨削加工技术, 当然其也可以采用如实施例十一 与实施例十二所采用的超高速磨削加工技术。
进一步的, 在机加工过程中, 产品采用冰镇的方式将其固定在机床上, 从 而可以防止产品加工发热产生应力, 导致形变影响形位尺寸精度。
实施例二
在实施例二中, 其与实施例一的区别在于, 在陶瓷粉料中添加的四种改性 剂的加入量占总的质量百分比为: Mg0.5%, Ti0.3%, Ca0.5%, 碳纤维: 0.1%。
实施例三
在实施例三中, 其与实施例一的区别在于, 在陶瓷粉料中添加的四种改性 剂的加入量占总的质量百分比为: MgO.8%, TiO.15%, Cal.5%, 碳纤维 0.05%。
实施例四
在实施例四中,其与实施例一的区别在于,在陶瓷粉料中添加三种改性剂, 分别为 Mg、 Ti、 Ca, 且各自加入量占总的质量百分比为: Mg0.8%、 Ti0.1%, Cal.3%。
实施例五
在实施例五中, 其与实施例四的区别在于, 在陶瓷粉料中添加的改性剂, 各自加入量占总的质量百分比为: Mgl.0%、 TiO.2%, Cal.4%。
实施例六
在实施例六中, 其与实施例四的区别在于, 在陶瓷粉料中添加的改性剂, 各自加入量占总的质量百分比为: Mg2.0%、 TiO.25%, Ca0.8%。
实施例七
在实施例七中,其与实施例一的区别在于,在陶瓷粉料中添加三种改性剂, 分别为 Mg、Ti、碳纤维,且各自加入量占总的质量百分比为: Mg0.25%、Ti0.28%、 碳纤维 0.4%。
实施例八
在实施例八中, 其与实施例七的区别在于, 在陶瓷粉料中添加的改性剂加 入量占总的质量百分比为: Mg0.7%、 TiO.18%, 碳纤维 0.08%。
实施例九
在实施例九中, 其与实施例一的区别在于, 在陶瓷粉料中添加的改性剂为 Mg和碳纤维, 且各自加入量占总的质量百分比为: Mg0.5%、 碳纤维 0.45%。 实施例十
在实施例十中, 其与实施例九的区别在于, 在陶瓷粉料中添加的改性剂加 入量占总的质量百分比为: Mgl.3%、 碳纤维 0.06%。
在上述十个实施例中, 加工后的产品(滚动转子 7和阀片 8 )尺寸公差和形 位公差氐于 0.001mm, 滚动转子表面光洁度 Rz < 0.8 μ m, 阀片 Rz 1.6 m (见 图 3、图 4,图 3为滚动转子产品的结构示意图;图 4为阀片产品的结构示意图) 达到滚动转子和阀片所需要的表面光洁度要求。
实施例十一
在实施例十一中, 滚动转子 7和阀片 8采用碳化硅陶瓷压制成型。 在陶瓷 粉料中所添加的改性剂经过球磨进行混合均匀, 既可以 Mg、 Ti、 Ca、 碳纤维、 四种改性剂均添加, 且各改性剂的加入量占总的质量百分比为: Mg 0.2-0.8%、 Ti 0.08-0.3%、 Ca 0.5-1.5% 、 碳纤维 0.05-0.5%; 也可以选择其中三种, 如 Mg 0.8-2.0%、 Ti 0.08-0.3%、 Ca 0.5-1.5%或者如 Mg 0.2-0.8%、 Ti 0.08-0.3%、 碳纤维 0.05-0.5%,或者添加两种, 如 Mg 0.5-1.3%、 碳纤维 0.05-0.5%。 当然也可以按照 其他选择添加改性剂。 在本实施例十一中, 与实施例一相对应, 在陶瓷粉料中 添加四种改性剂, 各改性剂的加入量占总的质量百分比分别为 Mg: 0.2%, Ti: 0.08%, Ca: 1.0%, 碳纤维: 0.5%。
在压制成型滚动转子和阀片坯体时, 陶瓷阀片和滚动转子坯体经过干压成 型, 再经过不低于 180MPa的压力等静压成型。
成型后的碳化硅陶瓷坯体经高温烧结, 采用气氛烧结或真空烧结, 温度不 低于 1400°C , 晶粒尺寸不超过 8 μ m。
对于烧结后的碳化硅陶瓷, 优选采用超高速磨削加工技术进行机加工, 磨 削速度超过 300m/s,滚动转子的加工磨削速度达到 500m/s。 当然机加工的方式, 也可以是如实施例一的微磨削加工技术。 机加工过程中, 产品采用冰镇的方式 将其固定在机床上, 从而可以防止产品加工发热产生应力, 导致形变影响形位 尺寸精度。
本发明的实施方式在选用碳化硅陶瓷制作滚动转子和阀片时, 还具有其他 多个实施例,其与实施例十一的区别在于:在陶瓷粉料中所添加的 Mg、 Ti、 Ca、 碳纤维具体添加量有所不同, 或者是选择性地添加了 Mg、 Ti、 Ca、 碳纤维四种 改性剂中的其中几种, 具体的选择方式及添加量可分别与实施例二至实施例九 所选择使用的改性剂——对应, 即分别按照如实施例二至九所使用的改性剂及 加入量加入到碳化硅陶瓷粉料中, 当然也可不与实施例二至九的方式——对应, 而采用其他的添加选择及添加量。 至于其他技术特征则与实施例十一无异, 因 此, 为节约篇幅, 不再赘述这多个实施例。
在本实施例十一及如上所述的与其类似的实施例 (只是改性剂使用不同) 中, 加工后的产品 (滚动转子 Ί和阀片 8 )尺寸公差和形位公差低于 0.001mm, 滚动转子表面光洁度 Rz 0.8 m, 阀片 Rz 1.6 m (见图 3、 图 4 ), 达到滚动 转子和阀片所需要的表面光洁度要求。
实施例十二
在实施例十二中, 滚动转子 7和阀片 8采用氮化硅陶瓷压制成型。 在陶瓷 粉料中所添加的改性剂经过球磨进行混合均匀, 既可以 Mg、 Ti、 Ca、 碳纤维、 四种改性剂均添加, 且各改性剂的加入量占总的质量百分比为: Mg 0.2-0.8%、 Ti 0.08-0.3%、 Ca 0.5-1.5% 、 碳纤维 0.05-0.5%; 也可以选择其中三种, 如 Mg 0.8-2.0%、 Ti 0.08-0.3%、 Ca 0.5-1.5%或者如 Mg 0.2-0.8%、 Ti 0.08-0.3%、 碳纤维 0.05-0.5%,或者选择两种, 如 Mg 0.5-1.3%、 碳纤维 0.05-0.5%。 当然也可以按照 其他选择添加改性剂。 在本实施例十二中, 与实施例一相对应, 在陶瓷粉料中 添加四种改性剂, 各改性剂的加入量占总的质量百分比分别为 Mg: 0.2%, Ti: 0.08%, Ca: 1.0%, 碳纤维: 0.5%。
在压制成型滚动转子和阀片坯体时, 陶瓷阀片和滚动转子坯体经过干压成 型, 再经过不低于 180MPa的压力等静压成型。
成型后的氮化硅陶瓷坯体经高温烧结, 采用氮气气氛烧结, 烧结温度不低 于 1600 °C , 晶粒尺寸不超过 8 μ m。
对于烧结后的氮化硅陶瓷, 优选采用超高速磨削加工技术进行机加工, 磨 削速度超过 300m/s,滚动转子的加工磨削速度达到 500m/s, 当然机加工的方式, 也可以是如实施例一中的 磨削加工技术。 机加工过程中, 产品采用冰镇的方 式将其固定在机床上, 从而可以防止产品加工发热产生应力, 导致形变影响形 位尺寸精度。
本发明的实施方式在选用氮化硅陶瓷制作滚动转子和阀片时, 还具有其他 多个实施例,其与实施例十二的区别在于:在陶瓷粉料中所添加的 Mg、 Ti、 Ca、 碳纤维具体添加量有所不同, 或者是选择性地添加了 Mg、 Ti、 Ca、 碳纤维四种 改性剂中的其中几种, 具体的选择方式及添加量可分别与实施例二至实施例九 所选择使用的改性剂——对应, 即分别按照如实施例二至九所使用的改性剂及 加入量加入到氮化硅陶瓷粉料中, 当然也可不与实施例二至九的方式——对应, 而采用其他的添加选择及添加量。 至于其他技术特征则与实施例十二无异, 因 此, 为节约篇幅, 不再赘述这多个实施例。
在本实施例十二及如上所述的与其类似的实施例 (只是改性剂使用不同) 中, 加工后的产品 (滚动转子 Ί和阀片 8 )尺寸公差和形位公差低于 0.001mm, 滚动转子表面光洁度 Rz 0.8 m, 阀片 Rz 1.6 m (见图 3、 图 4 ), 达到滚动 转子和阀片所需要的表面光洁度要求。
本发明滚动转子 (活塞) 式压缩机实施例, 其压缩组件阀片和滚动转子采 用陶瓷材料,并且通过对陶瓷材料本身使用改性剂进行改性、创新机加工工艺, 使得在滚动转子是压缩机上成功运用陶瓷阀片和陶瓷滚动转子, 所述采用的陶 瓷阀片和陶瓷滚动转子, 具有热膨胀系数小, 热变形小、 硬度高、 耐磨损、 密 度小、 自润滑等优异的性能, 而且使得其设计时, 阀片与阀片槽的间隙、 滚动 转子与气缸的间隙较使用金属件的间隙可以大大缩小, 甚至缩小一半, 大大提 高了压缩效率, 而且不容易出现磨损、 碳化、 热变形卡机的问题。 就现有的金 属材料制成的滚动转子(活塞)式压缩机而言, 其滚动转子与气缸之间的间隙, 以及阀片与阀片槽之间的间隙, 如果设计的过小, 则容易出现磨损、 碳化或者 金属阀片由于热变形卡死阀片槽造成卡机故障等问题, 因此其滚动转子与气缸 壁面的间隙一般设计为 0.06 w 0.03mm, 阀片与阀片槽的间隙一般设计为 0.1 ^ 0.05mm; 而在本发明中, 滚动转子 7与与其贴合的气缸 5的壁面的间隙可以设 计为小于 0.02mm, 阀片 8与阀片槽的间隙可以设计为小于 0.03mm, 大大小于 现有的设计, 并且, 在缩小间隙的同时, 并不会产生容易出现磨损、 碳化、 热 变形卡机等问题。
另外, 陶瓷材料的超强硬度使得阀片和滚动转子不容易磨损, 如氧化铝陶 瓷的维氏硬度能够到 1800, 而金属材料的硬度一般就 380-550。 以及陶瓷材料优 异的热温度性, 使转子和阀片在工作中不会因为温度高而出现碳化的问题, 而 金属材料却很容易出现磨损、 碳化的问题, 导致滚子与汽缸卡死, 出现压缩机 失效; 再次,陶瓷材料的密度很小,如氧化铝陶瓷才 3.8g/cm3、氮化硅陶瓷 3.2g/cm3, 而金属铸件的密度一般都在大于 7.8g/cm3, 采用陶瓷制造滚子和阀片,可以大大 降低压缩组件的重量, 降低其自身功耗, 提高效率, 使其节能效率更高。
以上所揭露的仅为本发明一种较佳实施例而已, 当然不能以此来限定本发 明之权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的 范围。

Claims

1、 一种滚动转子(活塞)式压缩机, 包括壳体和设置在壳体内的电机、 曲 轴和压缩组件, 其特征在于: 所述电机包括电机转子和电机定子, 所述曲轴包 括位于两端的主轴和副轴以及位于主轴和副轴之间的偏心轮, 所述压缩组件包 括气缸、 位于气缸内的滚动转子、 位于气缸内的阀片槽内的阀片及阀片弹簧, 所述气缸的两端对应所述曲轴两端的主轴和副轴设有用于支撑曲轴的主轴承和 副轴承, 所述主轴与所述电机转子传动连接, 所述偏心轮位于所述滚动转子内 并与所述滚动转子相接, 所述阀片一端与所述滚动转子相接, 另一端连接于所 述阀片弹簧, 所述阀片弹簧位于阀片槽的里端, 所述滚动转子和阀片采用陶瓷 压制成型, 在陶瓷粉料中添加改性剂 Mg、 Ti、 Ca和碳纤维中的一种以上, 通过 高温烧结并控制陶瓷晶体尺寸, 对烧结后的陶瓷进行机加工形成陶瓷滚动转子 和阀片。
2、 如权利要求 1所述的滚动转子(活塞)式压缩机, 其特征在于: 在陶瓷 粉料中所添加的改性剂经过球磨进行混合均勾, 改性剂的加入量占总的质量百 分比为 Mg 0.2-0.8%、 Ti 0.08-0.3%、 Ca 0.5-1.5% 、 碳纤维 0.05-0.5%或者 Mg 0.8-2.0%、 Ti 0.08-0.3%、 Ca 0.5-1.5%或者 Mg 0.2-0.8%、 Ti 0.08-0.3%、 碳纤维 0.05-0.5%,或者 Mg 0.5-1.3%、 碳纤维 0.05-0.5%。
3、 如权利要求 2所述的滚动转子(活塞)式压缩机, 其特征在于: 在压制 成型滚动转子和阀片坯体时, 陶瓷阀片和滚动转子坯体经过干压成型, 再经过 不低于 180MPa的压力等静压成型。
4、 如权利要求 3所述的滚动转子(活塞)式压缩机, 其特征在于: 滚动转 子和阀片采用氧化铝陶瓷。
5、 如权利要求 4所述的滚动转子(活塞)式压缩机, 其特征在于: 成型后 的陶瓷坯体在空气炉中高温烧结, 烧结温度不低于 1550°C , 晶粒尺寸不超过 10 μ ιη; 对于烧结后的氧化铝陶瓷, 所述机加工方式为微磨削加工技术, 微磨棒直 径 ds < 0.01mm, 微磨棒转速 ws > 30000rpm。
6、 如权利要求 3所述的滚动转子(活塞)式压缩机, 其特征在于: 滚动转 子和阀片采用碳化硅陶瓷。
7、 如权利要求 6所述的滚动转子(活塞)式压缩机, 其特征在于: 成型后 的陶瓷坯体经高温烧结, 采用气氛烧结或真空烧结, 温度不低于 1400°C , 晶粒 尺寸不超过 8 μ ιη; 对于烧结后的碳化硅陶瓷, 所述机加工方式为超高速磨削加 工技术, 磨削速度超过 300m/s,滚动转子的加工磨削速度达到 500m/s。
8、 如权利要求 3所述的滚动转子(活塞)式压缩机, 其特征在于: 滚动转 子和阀片采用氮化硅陶瓷。
9、 如权利要求 8所述的滚动转子(活塞)式压缩机, 其特征在于: 成型后 的陶瓷坯体经高温烧结, 采用氮气气氛烧结, 烧结温度不低于 1600°C , 晶粒尺 寸不超过 8 μ ιη; 对于烧结后的氮化硅陶瓷, 所述机加工方式为超高速磨削加工 技术, 磨削速度超过 300m/s,滚动转子的加工磨削速度达到 500m/s。
10、如权利要求 5、 7或 9所述的滚动转子(活塞)式压缩机,其特征在于: 机加工过程中, 产品采用冰镇的方式将其固定在机床上。
PCT/CN2013/076669 2013-05-23 2013-06-03 一种滚动转子(活塞)式压缩机 WO2014186989A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013101946764A CN103410730A (zh) 2013-05-23 2013-05-23 一种滚动转子式压缩机
CN201310194676.4 2013-05-23

Publications (1)

Publication Number Publication Date
WO2014186989A1 true WO2014186989A1 (zh) 2014-11-27

Family

ID=49603763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076669 WO2014186989A1 (zh) 2013-05-23 2013-06-03 一种滚动转子(活塞)式压缩机

Country Status (2)

Country Link
CN (1) CN103410730A (zh)
WO (1) WO2014186989A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103775311B (zh) * 2014-01-07 2016-03-02 浙江大学 碳纤维复合材料往复式压缩机阀片及其制备方法
CN104942297A (zh) * 2015-06-11 2015-09-30 重庆通赛机电有限公司 一种电动汽车电机转子的加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063338A (zh) * 1991-01-16 1992-08-05 方明 工程陶瓷制成的滚动活塞压缩机
JPH06193575A (ja) * 1992-12-25 1994-07-12 Toshiba Corp 圧縮機
JPH10103276A (ja) * 1996-09-27 1998-04-21 Sanyo Electric Co Ltd 冷凍装置
CN101265909A (zh) * 2008-03-11 2008-09-17 西安庆安制冷设备股份有限公司 一种密封旋转压缩机用陶瓷滑片
CN102817848A (zh) * 2011-06-08 2012-12-12 广东美芝制冷设备有限公司 旋转压缩机的滑片及其制作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136166A (ja) * 1984-07-30 1986-02-20 株式会社東芝 コンプレツサ摺動部材
JPH1113667A (ja) * 1997-06-30 1999-01-19 Matsushita Electric Ind Co Ltd ロータリ圧縮機および冷媒回収機
JP5294719B2 (ja) * 2008-06-17 2013-09-18 三菱電機株式会社 ロータリ圧縮機
JP2010101232A (ja) * 2008-10-23 2010-05-06 Panasonic Corp 冷媒圧縮機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063338A (zh) * 1991-01-16 1992-08-05 方明 工程陶瓷制成的滚动活塞压缩机
JPH06193575A (ja) * 1992-12-25 1994-07-12 Toshiba Corp 圧縮機
JPH10103276A (ja) * 1996-09-27 1998-04-21 Sanyo Electric Co Ltd 冷凍装置
CN101265909A (zh) * 2008-03-11 2008-09-17 西安庆安制冷设备股份有限公司 一种密封旋转压缩机用陶瓷滑片
CN102817848A (zh) * 2011-06-08 2012-12-12 广东美芝制冷设备有限公司 旋转压缩机的滑片及其制作方法

Also Published As

Publication number Publication date
CN103410730A (zh) 2013-11-27

Similar Documents

Publication Publication Date Title
EP3138994B1 (en) Scroll compressor
CN101265909A (zh) 一种密封旋转压缩机用陶瓷滑片
WO2014186989A1 (zh) 一种滚动转子(活塞)式压缩机
CN204200574U (zh) 涡旋压缩机及空调器
CN102321887A (zh) 经复合表面改性的38CrMoAl压缩机叶片及其制备工艺
CN207437351U (zh) 一种动、静涡旋盘、车用电动涡旋压缩机及车用空调系统
JP5543973B2 (ja) 冷媒圧縮機、及び、冷凍サイクル装置
CN203272135U (zh) 一种滚动转子(活塞)式压缩机
CN109869311A (zh) 一种汽车转向叶片泵定子及其制备方法
JP3694543B2 (ja) ベーンポンプ
JP2014001678A (ja) スクロール流体機械
WO2020173474A1 (zh) 活塞加工方法及旋转式压缩机加工方法
CN102767520A (zh) 旋转压缩机及其制作方法
CN103833337B (zh) 一种旋片式压缩机用陶瓷滑片及其制备方法
CN111059136A (zh) 曲轴及滚子配合结构、压缩机、空调器
JPH0544401A (ja) スクロール流体機械
CN211288421U (zh) 曲轴及滚子配合结构、压缩机、空调器
JP2005016335A (ja) スクロール圧縮機
CN113685355B (zh) 压缩结构、压缩机和空调器
CN105604933A (zh) 涡旋压缩机及空调器
CN102560217A (zh) 陶瓷滑片
JPH06159259A (ja) ポンプ
TW419569B (en) Scroll compressor
KR102206103B1 (ko) 결합형 베인-롤러 구조의 로터리 압축기
JP2010101232A (ja) 冷媒圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885285

Country of ref document: EP

Kind code of ref document: A1