WO2014186935A1 - 数据传输方法、装置及系统 - Google Patents

数据传输方法、装置及系统 Download PDF

Info

Publication number
WO2014186935A1
WO2014186935A1 PCT/CN2013/075908 CN2013075908W WO2014186935A1 WO 2014186935 A1 WO2014186935 A1 WO 2014186935A1 CN 2013075908 W CN2013075908 W CN 2013075908W WO 2014186935 A1 WO2014186935 A1 WO 2014186935A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
gateway
predetermined type
gtp
packet
Prior art date
Application number
PCT/CN2013/075908
Other languages
English (en)
French (fr)
Inventor
王春光
弗兰克•马德曼
张艳平
张万强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2016514230A priority Critical patent/JP6245619B2/ja
Priority to EP13885093.8A priority patent/EP2978277B1/en
Priority to CN201380000930.0A priority patent/CN104335675B/zh
Priority to PCT/CN2013/075908 priority patent/WO2014186935A1/zh
Publication of WO2014186935A1 publication Critical patent/WO2014186935A1/zh
Priority to US14/947,027 priority patent/US9992109B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/02Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
    • H04L67/025Protocols based on web technology, e.g. hypertext transfer protocol [HTTP] for remote control or remote monitoring of applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • H04L12/4625Single bridge functionality, e.g. connection of two networks over a single bridge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/52Network services specially adapted for the location of the user terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/02Protocol performance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2212/00Encapsulation of packets

Definitions

  • the present invention relates to the field of communications, and in particular, to a data transmission method, apparatus, and system. Background technique
  • the existing EPS includes a UE (User Equipment), an EUTRAN (Evolved Universal Terrestrial Radio Access Network), and a CN (Core Network).
  • the EUTRAN may be implemented by an eNB (Evolved Node B, an evolved base station).
  • the CN mainly includes an MME (Mobility Management Entity) and a SGSN (Serving General Packet Radio Service Supporting Node). , HSS (Home Subscribe Server, Home Subscriber Server), S-GW (Serving Gateway), P-GW (Packet Data Network Gateway), and PCRF (Policy and Charging Rules Function) Features).
  • the bearer When the user equipment is attached to the network, the bearer is established through signaling interaction between the radio access network element, the mobility management network element, the service gateway, and the packet data gateway, so that the bearer transmits data using the bearer.
  • the radio access network element encapsulates the IP data packet into a GTP-U (GPRS Tunneling Protocol for the User Plane), a user plane general packet radio service tunnel.
  • GTP-U GPRS Tunneling Protocol for the User Plane
  • the GTP-U data packet is sent to the service gateway, and the service gateway sends the GTP-U data packet to the packet data gateway, and the GTP-U data packet is decapsulated into an IP data packet by the packet data gateway. Then forward processing.
  • the packet data gateway when receiving data by using the EPS system, receives the IP data packet, encapsulates the GTP-U data packet into a GTP-U data packet, and sends the GTP-U data packet to the service gateway, and the service gateway forwards the GTP-U data packet to the service gateway.
  • the radio access network element the radio access network element decapsulates the GTP-U data packet into an IP data packet, and sends the GTP-U data packet to the user equipment.
  • the IP header needs to be added.
  • the application When the data is encapsulated into IP data packets, the IP header needs to be added.
  • the application If the UE only needs to transmit small data with a small amount of data, for example, the application generates messages, including status messages, location messages, and heartbeat messages. And real-time messages, etc.; can also be SIP (Session Initiation Protocol) signaling, Push (push) messages and control messages, etc., adding IP headers before small data will reduce the data payload of IP packets, reducing Data transmission efficiency.
  • the small data is 10 bytes, and the IP header is fixed to 20 bytes. The proportion of small data in the IP packet is low, which reduces the data transmission efficiency. Summary of the invention
  • embodiments of the present invention provide a data transmission method, apparatus, and system.
  • the technical solution is as follows:
  • an embodiment of the present invention provides a data transmission method, which is used in a gateway, where the method includes:
  • the GTP-U data packet is decapsulated to obtain the predetermined type of data and a destination address of the predetermined type of data.
  • the detecting, by the received user plane, a general packet radio service tunneling protocol GTP-U data packet, whether the data is of a predetermined type includes: acquiring the GTP- The type of message in the U packet header;
  • the result of the detection is that the message type is a predetermined message type, it is determined that the received GTP-U data packet is transmitted in a predetermined type.
  • the gateway is a packet data gateway
  • the message type is determined by the radio access network element or the location Dedicating a service gateway between the radio access network element and the packet data gateway;
  • the message type is preset by the radio access network element.
  • the detecting, by the user plane, the GTP-U data packet in the GTP-U data packet is a predetermined type of data, including: acquiring the GTP -U bearer identifier of the data packet;
  • Detecting whether the bearer identifier is a predetermined bearer identifier If the detection result is that the bearer identifier is a predetermined bearer identifier, it is determined that the received GTP-U data packet is transmitted in a predetermined type of data.
  • the method before the detecting whether the bearer identifier is a predetermined bearer identifier, the method further includes:
  • the gateway is a packet data gateway, receiving, by the serving gateway, the predetermined bearer identifier that is sent by the mobility management network element, where the serving gateway is located between the mobility management network element and the packet data gateway;
  • the gateway is a serving gateway, receiving the predetermined bearer identifier sent by the mobility management network element.
  • the gateway is a serving gateway, the detecting whether the received user plane general packet radio service tunneling protocol GTP-U data packet is transmitted in a predetermined type Data, including:
  • the GTP-U data packet is transmitted in a predetermined type of data.
  • an embodiment of the present invention provides a data transmission method, which is used in a message gateway, where the method includes:
  • the predetermined type of data and the destination address being detected by the gateway by the user plane general packet radio service tunneling protocol GTP-U data Whether the data transmitted in the packet is a predetermined type of data; if the detection result is that the GTP-U data packet is transmitted in a predetermined type of data, the GTP-U data packet is decapsulated;
  • an embodiment of the present invention provides a data transmission method, which is used in a gateway, where the method includes:
  • GTP-U data packet being of the predetermined type
  • the method further includes: moving to the mobility management network element Sending a downlink data notification carrying a predetermined data indication for the movement And sending, by the downlink management data element, the paging message that carries the predetermined data indication, and after the user equipment that receives the predetermined type of data receives the paging message, the pre-stored service gateway
  • the tunnel endpoint identifier is sent to the radio access network element, so that the radio access network element establishes a bearer with the serving gateway according to the tunnel endpoint identifier of the serving gateway.
  • the predetermined type of data sent by the receiving message gateway and the destination address of the predetermined type of data including :
  • the packet data gateway Receiving, by the packet data gateway, the predetermined type of data originating from the message gateway and the destination address, where the packet data gateway is located between the serving gateway and the message gateway.
  • the gateway is a packet data gateway, forwarding the user plane general packet radio service tunneling protocol GTP-U data packet, including:
  • the serving gateway Forwarding, by the serving gateway, the predetermined type of data, the destination address, and the predetermined data indication, so that the serving gateway sends, to the mobility management network element, a downlink data notification that carries the predetermined data indication, so that the mobility management network Transmitting, according to the downlink data notification, a paging message that carries the indication of the predetermined data, and after receiving the paging message, the user equipment that receives the predetermined type of data, the pre-stored tunnel endpoint identifier of the serving gateway Sending to the radio access network element, so that the radio access network element establishes a bearer with the serving gateway according to the tunnel end identifier of the serving gateway, and the serving gateway encapsulates the predetermined type of data and the destination address
  • the GTP-U data packet is forwarded to the radio access network element, where the serving gateway is located between the mobility management network element and the packet data gateway.
  • an embodiment of the present invention provides a data transmission method, which is used in a message gateway, where the method includes:
  • the gateway sends the predetermined type of data and the destination address to the gateway, so that the gateway receives the predetermined type of data and the destination address sent by the message gateway, and the user plane general packet radio service tunneling protocol GTP-U
  • the data packet is forwarded, and the GTP-U data packet is obtained by encapsulating the predetermined type of data and the destination address.
  • an embodiment of the present invention provides a gateway, where the gateway includes:
  • a detecting module configured to detect whether the received user plane general packet radio service tunneling protocol GTP-U data packet is transmitted in a predetermined type
  • a decapsulation module configured to: if the detection module detects a result, the transmission is in the GTP-U data packet Data of a predetermined type, the GTP-U data packet is decapsulated to obtain the predetermined type of data and a destination address of the predetermined type of data;
  • a sending module configured to send the predetermined type of data and the destination address obtained by decapsulating the decapsulation module to a message gateway, so that the message gateway performs the predetermined type of data according to the destination address. Forward.
  • the detecting module includes:
  • a first acquiring unit configured to acquire a message type in the GTP-U packet header
  • a first detecting unit configured to detect whether the message type acquired by the first acquiring unit is a predetermined message type
  • a first determining unit configured to determine, when the first detection unit detects that the message type is a predetermined message type, to transmit the received data in the GTP-U data packet as a predetermined type.
  • the gateway is a packet data gateway
  • the message type is determined by the radio access network element or the location Dedicating a service gateway between the radio access network element and the packet data gateway;
  • the detecting module includes:
  • a second acquiring unit configured to acquire a bearer identifier that carries the GTP-U data packet
  • a second detecting unit configured to detect whether the bearer identifier acquired by the second acquiring unit is a predetermined identifier
  • a second determining unit configured to determine, if the second detection unit detects that the bearer identifier is a predetermined bearer identifier, to transmit the received data in the GTP-U data packet as a predetermined type.
  • the detecting module further includes:
  • a first receiving unit configured to: before the second detecting unit detects whether the bearer identifier is a predetermined bearer identifier, if the gateway is a packet data gateway, receiving, by the serving gateway, the originating from the mobility management network element Predetermining a bearer identifier, where the service gateway is located between the mobility management network element and the packet data gateway;
  • a second receiving unit configured to: before the second detecting unit detects whether the bearer identifier is a predetermined bearer identifier, if the gateway is a serving gateway, receive the predetermined bearer identifier sent by the mobility management network element.
  • the detecting module includes:
  • a third detecting unit configured to detect whether the GTP-U data packet carries a tunnel endpoint identifier of the radio access network element
  • a third determining unit configured to determine, when the third detection unit detects that the GTP-U data packet carries a tunnel endpoint identifier of the radio access network element, determine the received GTP-U data packet The data transmitted in the predetermined type is transmitted.
  • an embodiment of the present invention provides a message gateway, where the message gateway includes: a receiving module, configured to receive a predetermined type of data sent by a gateway, and a destination address of the predetermined type of data, where the predetermined type Data and the destination address are detected by the gateway whether the received data transmitted in the user plane general packet radio service tunneling protocol GTP-U data packet is a predetermined type of data; if the detection result is transmitted in the GTP-U data packet The data of the predetermined type is obtained by decapsulating the GTP-U data packet;
  • a forwarding module configured to forward the predetermined type of data according to the destination address received by the receiving module.
  • an embodiment of the present invention provides a gateway, where the gateway includes:
  • a first receiving module configured to receive a predetermined type of data sent by the message gateway and a destination address of the predetermined type of data
  • a first forwarding module configured to forward the user plane general packet radio service tunneling protocol GTP-U data packet, where the GTP-U data packet is encapsulated by the predetermined type of data and the destination address.
  • the gateway further includes:
  • a second forwarding module configured to send, by the first forwarding module, a downlink data notification carrying a predetermined data indication to the mobility management network element before forwarding the user plane general packet radio service tunneling protocol GTP-U data packet, so that the And the mobility management network element sends, according to the downlink data notification, a paging message that carries the predetermined data indication, so that the user equipment that receives the predetermined type of data receives the paging message, and then stores the pre-stored service gateway.
  • the tunnel endpoint identifier is sent to the radio access network element, so that the radio access network element establishes a bearer with the serving gateway according to the tunnel endpoint identifier of the serving gateway.
  • the first receiving module configured to receive, by the packet data gateway, originating from the message network The predetermined type of data and the destination address are closed, and the packet data gateway is located between the serving gateway and the message gateway.
  • the first forwarding module is configured to forward the predetermined type of data, the destination address, to the serving gateway. And the predetermined data indication, so that the serving gateway sends the downlink data notification carrying the predetermined data indication to the mobility management network element, so that the mobility management network element sends the indication carrying the predetermined data according to the downlink data notification.
  • a paging message after the user equipment that receives the predetermined type of data receives the paging message, sends the pre-stored tunnel endpoint identifier of the serving gateway to the radio access network element, so that the radio access network And establishing a bearer with the serving gateway according to the tunnel endpoint identifier of the serving gateway, where the serving gateway encapsulates the predetermined type of data and the destination address into the
  • the embodiment of the present invention provides a message gateway, where the message gateway includes: a receiving module, configured to receive a predetermined type of data and a destination address of the predetermined type of data;
  • a sending module configured to send the predetermined type of data and the destination address to the gateway, so that the gateway receives the predetermined type of data and the destination address sent by the message gateway, and the user plane general packet radio service
  • the tunneling protocol GTP-U data packet is forwarded, and the GTP-U data packet is obtained by encapsulating the predetermined type of data and the destination address.
  • a ninth aspect, the embodiment of the present invention provides a gateway, where the gateway includes:
  • a first processor configured to detect whether the received data transmitted in the user plane general packet radio service tunneling protocol GTP-U data packet is a predetermined type; if the detection result is that the GTP-U data packet is transmitted in a predetermined manner Data of a type, the GTP-U data packet is decapsulated to obtain the predetermined type of data and a destination address of the predetermined type of data;
  • a first transmitter configured to send the predetermined type of data and the destination address obtained by decapsulating the first processor to a message gateway, so that the message gateway compares the predetermined type of data according to the destination address Forward.
  • the first processor is configured to acquire a message type in the GTP-U data packet header, and detect whether the message type is a predetermined message type; The result is that the message type is a predetermined message type, and it is determined that the received GTP-U data packet is transmitted in a predetermined type of data.
  • the gateway is a packet data gateway
  • the message type is determined by the radio access network element or the location Dedicating a service gateway between the radio access network element and the packet data gateway;
  • the message type is preset by the radio access network element.
  • the first processor is configured to acquire a bearer identifier that carries the GTP-U data packet, and detect whether the bearer identifier is a predetermined bearer identifier; If the bearer identifier is a predetermined bearer identifier, it is determined that the received GTP-U data packet is transmitted in a predetermined type of data.
  • a first receiver configured to: before the first processor detects whether the bearer identifier is a predetermined bearer identifier, if the gateway is a packet data gateway, receiving, by the serving gateway, the originating from the mobility management network element The service bearer is located between the mobility management network element and the packet data gateway; and if the gateway is a serving gateway, the predetermined bearer identifier sent by the mobility management network element is received.
  • the first processor is further configured to: if the gateway is a serving gateway, detecting whether the GTP-U data packet carries a radio access network element If the detection result is that the GTP-U data packet carries the tunnel endpoint identifier of the radio access network element, it is determined that the received GTP-U data packet is transmitted in a predetermined type.
  • an embodiment of the present invention provides a message gateway, where the message gateway includes: a second receiver, configured to receive a predetermined type of data sent by a gateway and a destination address of the predetermined type of data, where the predetermined Type data and the destination address are detected by the gateway whether the received data transmitted in the user plane general packet radio service tunneling protocol GTP-U data packet is a predetermined type of data; if the detection result is the GTP-U data packet The data transmitted in the predetermined type is obtained by decapsulating the GTP-U data packet;
  • a second processor configured to control, by the second transmitter, to forward the predetermined type of data according to the destination address received by the second receiver;
  • the second transmitter is configured to forward the predetermined type of data according to the destination address received by the second receiver under control of the second processor.
  • an embodiment of the present invention provides a gateway, where the gateway includes:
  • a first receiver configured to receive a predetermined type of data sent by the message gateway and the predetermined type of Destination address of the data
  • a first processor configured to control a first transmitter to a user plane general packet radio service tunneling protocol
  • the GTP-U data packet is forwarded, and the GTP-U data packet is obtained by encapsulating the predetermined type of data and the destination address received by the first receiver;
  • the first transmitter is configured to forward the GTP-U data packet under the control of the first processor.
  • the gateway is a serving gateway
  • the first transmitter is configured to forward the user plane general packet radio service tunneling protocol GTP-U data packet before forwarding Transmitting, to the mobility management network element, a downlink data notification carrying a predetermined data indication, so that the mobility management network element sends a paging message carrying the predetermined data indication according to the downlink data notification, so that receiving the predetermined type of
  • the user equipment of the data sends the pre-stored tunnel endpoint identifier of the serving gateway to the radio access network element, so that the radio access network element is based on the tunnel endpoint identifier of the serving gateway.
  • the serving gateway establishes a bearer.
  • the first receiver is configured to receive, by the packet data gateway, the source of the message gateway The predetermined type of data and the destination address, the packet data gateway is located between the service gateway and the message gateway.
  • the gateway is a packet data gateway
  • the first transmitter is configured to forward, to the serving gateway, the predetermined type of data, the destination address, and Determining, by the service gateway, the service gateway to send a downlink data notification carrying the predetermined data indication to the mobility management network element, so that the mobility management network element sends the indication that carries the predetermined data indication according to the downlink data notification
  • the user equipment that receives the predetermined type of data, after receiving the paging message, sends the pre-stored tunnel endpoint identifier of the serving gateway to the radio access network element, so that the radio access network element Establishing a bearer according to the tunnel endpoint identifier of the serving gateway and the serving gateway, after the serving gateway encapsulates the predetermined type of data and the destination address into the GTP-U data packet, to the wireless access
  • the network element forwards the GTP-U data packet, and the twelfth aspect of the service network, the embodiment of the present invention provides a message gateway, where
  • a second processor configured to control, by the second transmitter, to send, by the second receiver, the second receiver Determining a predetermined type of data and the destination address;
  • the second transmitter configured to send, by the second processor, the predetermined type of data and the destination address received by the second receiver to the gateway, so that the gateway Receiving, by the message gateway, the predetermined type of data and the destination address, and forwarding a user plane general packet radio service tunneling protocol GTP-U data packet, where the GTP-U data packet is used by the predetermined type
  • GTP-U data packet is used by the predetermined type
  • the data and the destination address are encapsulated.
  • the embodiment of the present invention provides a data transmission system, the system comprising: the gateway according to the fifth aspect, and the message gateway according to the sixth aspect; or
  • a gateway as in the seventh aspect and a message gateway as in the eighth aspect are identical to the seventh aspect.
  • the embodiment of the present invention provides a data transmission system, the system comprising: the gateway according to the ninth aspect, and the message gateway according to the tenth aspect; or
  • a gateway as in the eleventh aspect and a message gateway as in the twelfth aspect are identical to the eleventh aspect.
  • the data transmitted in the received GTP-U data packet is a predetermined type of data; if the detection result is that the GTP-U data packet is transmitted in a predetermined type of data, performing the GTP-U data packet Decapsulating, obtaining the predetermined type of data and the destination address of the predetermined type of data; transmitting the predetermined type of data and the destination address to the message gateway, resolving that adding an IP header before the small data reduces the IP
  • the payload of the data packet reduces the problem of data transmission efficiency and achieves an effect of improving data transmission efficiency.
  • FIG. 1 is a schematic structural diagram of an EPS provided by the prior art
  • FIG. 2 is a flowchart of a method for transmitting a data according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of application of a data transmission system according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of a first application of a data transmission system according to Embodiment 2 of the present invention
  • FIG. 6 is a second application schematic diagram of a data transmission system according to Embodiment 2 of the present invention
  • 7 is a flowchart of a method for transmitting a data according to Embodiment 3 of the present invention
  • FIG. 8 is a schematic diagram of application of a data transmission system according to Embodiment 3 of the present invention.
  • FIG. 9 is a flowchart of a method for transmitting a data according to Embodiment 4 of the present invention.
  • FIG. 10 is a schematic diagram of application of a data transmission system according to Embodiment 4 of the present invention.
  • FIG. 11 is a flowchart of a method for transmitting a data according to Embodiment 5 of the present invention.
  • FIG. 12 is a schematic diagram of application of a data transmission system according to Embodiment 5 of the present invention.
  • FIG. 13 is a schematic structural diagram of a data transmission system according to Embodiment 6 of the present invention.
  • FIG. 14 is a schematic structural diagram of a data transmission system according to Embodiment 7 of the present invention.
  • FIG. 15 is a schematic structural diagram of a data transmission system according to Embodiment 8 of the present invention.
  • FIG. 16 is a schematic structural diagram of a data transmission system according to Embodiment 9 of the present invention.
  • FIG. 17 is a schematic structural diagram of a data transmission system according to Embodiment 10 of the present invention.
  • FIG. 18 is a schematic structural diagram of a data transmission system according to Embodiment 11 of the present invention.
  • Embodiment 12 of the present invention is a schematic structural diagram of a data transmission system according to Embodiment 12 of the present invention.
  • FIG. 20 is a schematic structural diagram of a data transmission system according to Embodiment 13 of the present invention.
  • FIG. 21 is a schematic structural diagram of a data transmission system according to Embodiment 15 of the present invention.
  • FIG. 22 is a schematic structural diagram of a data transmission system according to Embodiment 16 of the present invention. detailed description
  • the data transmission method is an uplink data transmission method, and can be applied to an EPS.
  • the data transmission method may include:
  • Step 201 the gateway detects whether the received GTP-U data packet is a predetermined type of data, if the detection result is GTP-U data packet is a predetermined type of data transmitted, then step 202;
  • the GTP-U packet is obtained by encapsulating the data received on the air interface by GTP-U protocol. If an IP packet is received on the air interface, the IP data packet may be encapsulated into a GTP-U data packet for transmission. If the air interface receives the predetermined type of data of the non-IP data packet, the predetermined type of data may be directly encapsulated into a GTP-U data packet for transmission, which avoids the data of the predetermined type. Adding IP headers reduces the problem of data transfer efficiency.
  • the data of the predetermined type may be small data or other types of data, which is not limited in this embodiment. Small data can be messages generated by the application, including status messages, location messages, heartbeat messages, real-time messages, etc.
  • the gateway since the GTP-U data packet may be a predetermined type of data of a non-IP data packet, or may be an IP data packet, after receiving the GTP-U data packet, the gateway needs to detect the transmission in the GTP-U data packet. Whether it is a predetermined type of data, if the detection result is that the GTP-U data packet is transmitted in a predetermined type of data, step 202 is performed; if the detection result is that the GTP-U data packet is not transmitted in the predetermined type of data The GTP-U data packet is processed according to the existing EPS process, which is not described in this embodiment.
  • Step 202 The gateway decapsulates the GTP-U data packet to obtain a predetermined type of data and a destination address of the predetermined type of data.
  • the gateway can decapsulate the GTP-U packet to obtain a predetermined type of data.
  • the destination address of the predetermined type of data may also be encapsulated together with the predetermined type of data, so that after the gateway decapsulates the GTP-U data packet, the predetermined type of data may be sent according to the destination address.
  • Step 203 The gateway sends the predetermined type of data and the destination address to the message gateway.
  • the message gateway may be a new gateway in the EPS, and the message gateway supports a newly defined transmission protocol based on predetermined types of data, and the gateway may send a predetermined type of data and a destination address to the message gateway through the transmission protocol.
  • Step 204 The message gateway receives a predetermined type of data sent by the gateway and a destination address of the predetermined type of data.
  • the message gateway can receive the predetermined type of data and destination address transmitted by the gateway.
  • Step 205 The message gateway forwards the predetermined type of data according to the destination address.
  • the message gateway can be connected to the Push server, P-CSCF (Proxy Call Session Control Function), application server, and trunking communication system. Please refer to the application diagram of the data transmission system shown in Figure 3. Therefore, the message gateway can determine the server or system corresponding to the predetermined type of data according to the received destination address, thereby forwarding the predetermined type of data to the server or system.
  • the Push server is used to transmit Push messages
  • the P-CSCF is used to transmit SIP signaling
  • the application server is used to transmit small data packets
  • the cluster system is used to transmit control messages.
  • the data transmission method detects whether the data transmitted in the received GTP-U data packet is a predetermined type of data; if the detection result is transmitted in the GTP-U data packet, Determining the GTP-U data packet to obtain a destination address of the predetermined type of data and the predetermined type of data; and transmitting the predetermined type of data and the destination address to the predetermined type of data
  • the message gateway solves the problem of adding IP headers before small data, reducing the payload of IP packets, reducing the efficiency of data transmission, and improving the efficiency of data transmission.
  • the data transmission method is an uplink data transmission method, and can be applied to an EPS.
  • the data transmission method may include:
  • Step 401 The gateway acquires a message type in a GTP-U data packet header.
  • the GTP-U packet is obtained by encapsulating the data received on the air interface with the GTP-U protocol. If an IP packet is received on the air interface, the IP data packet can be encapsulated into a GTP-U data packet for transmission. If the air interface receives the predetermined type of data of the non-IP data packet, the predetermined type of data can be directly encapsulated into a GTP-U data packet for transmission, thereby avoiding the reduction of data transmission caused by adding the IP packet header before the predetermined type of data. The problem of efficiency.
  • the data of the predetermined type may be small data or other types of data, which is not limited in this embodiment.
  • the small data may be a message generated by the application, including a status message, a location message, a heartbeat message, and a real-time message; or may be a SIP signaling, an Push message, a control message, or the like.
  • the radio access network element Before the GTP-U data packet is encapsulated, since the GTP-U data packet is encapsulated by the radio access network element, if the GTP-U data packet transmits a predetermined type of data, the radio access network element encapsulates the data packet. Before the GTP-U packet, it first needs to receive the predetermined type of data sent by the user equipment. Specifically, the user equipment may detect the data type of the data.
  • the predetermined type of data is sent to the radio access network element by using the optimized air interface message, where the optimized air interface The message is based on the improvement of the existing message, and is not described in this embodiment; if the detection result is that the data is not a predetermined type of data, the data is transmitted to the radio access network element through the existing IP transmission path.
  • the UE may detect whether the data is a predetermined type of data according to the size of the data, the number of data, or the data type specified by the application. This embodiment does not limit the method of detecting the predetermined type of data.
  • the destination address of the predetermined type of data may also be entered together with the predetermined type of data.
  • the row is encapsulated so that after the gateway decapsulates the GTP-U packet, the predetermined type of data can be sent according to the destination address.
  • the GTP-U data packet may be a predetermined type of data that may be a non-IP data packet, it may also be an IP data packet, and therefore, in order to perform data transmission in the GTP-U data packet.
  • the message type in the GTP-U packet header in advance. For example, the value of the message type (Message Type) in the header of the GTP-U packet can be set to identify that the GTP-U packet is transmitted with a predetermined type of data.
  • any one of the 256 values can be selected, for example, 00000001, if the GTP-U packet is transmitted in a predetermined type of data. Then, the message type in the GTP-U packet header is set to 00000001 to identify that the GTP-U packet is transmitted with a predetermined type of data.
  • the message type may be preset by the radio access network element or a serving gateway located between the radio access network element and the packet data gateway;
  • the gateway is a serving gateway, and the message type is preset by the radio access network element.
  • the serving gateway may detect, according to the tunnel endpoint identifier of the radio access network element, whether the received GTP-U data packet is a predetermined type of data. If the detection result is that the GTP-U data packet is transmitted in a predetermined type of data, the message type in the GTP-U data packet header may be set, so that the packet data gateway can determine the GTP-U data according to the set message type. What is transmitted in the packet is a predetermined type of data. For details on how to set the message type, please refer to the above description, which is not described here.
  • detecting whether the data transmitted in the received GTP-U packet is a predetermined type of data may include:
  • the detection result is that the GTP-U data packet carries the tunnel endpoint identifier of the radio access network element, it is determined that the received GTP-U data packet is transmitted in a predetermined type.
  • the tunnel endpoint identifier of the radio access network element is used to establish a bearer with the serving gateway, and may be carried in the GTP-U data packet and sent to the serving gateway.
  • the radio access network element may send the GTP-U data packet to the serving gateway. If the gateway in this embodiment is a serving gateway, the serving gateway may receive the received The GTP-U data packet is processed; if the gateway in this embodiment is a packet data gateway, after receiving the GTP-U data packet, the serving gateway forwards the GTP-U data packet to the packet data gateway, and the packet data is GTP-U packets are processed.
  • the method for transmitting data on the transmission channel is used to prevent the user equipment from establishing or recovering the signaling overhead caused by the bearer on the air interface side.
  • the tunnel endpoint identifier of the serving gateway may be sent to the user equipment in the attaching process.
  • the tunnel endpoint identifier of the serving gateway is sent to the radio access network element, and the radio access network element establishes a bearer according to the tunnel end identifier and the serving gateway, and sends the tunnel end identifier of the radio access network element. Giving the serving gateway, so that the serving gateway saves the tunnel endpoint identifier of the radio access network element in the context information, thereby transmitting through the established bearer
  • the tunnel endpoint identifier of the serving gateway may be provided by the network side to the user equipment in a session management process such as bearer establishment and modification.
  • the tunnel endpoint identifier of the serving gateway may be specifically a Sl-U F-TEID (Sla-User Fully Qualified Tunnel Endpoint Identifier) of the serving gateway; a tunnel endpoint of the radio access network element
  • the identifier may be specifically an S1-U F-TEID of the radio access network element, which is not limited in this embodiment.
  • the gateway After receiving the GTP-U data packet, the gateway can perform decryption and integrity verification on the GTP-U data packet, and read the value of the message type in the GTP-U data packet header, and then proceeds to step 402.
  • Step 402 the gateway detects whether the message type is a predetermined message type; if the detection result is that the message type is a predetermined message type, it is determined to perform step 403;
  • the gateway may preset a predetermined value of the predetermined message type.
  • the message type in the GTP-U packet header defines 256 values, and may arbitrarily select a value as a predetermined value, and the message type obtained in step 401.
  • the value is compared to a predetermined value. If the comparison result is that the value is the same as the predetermined value, it is determined that the GTP-U packet transmits the predetermined type of data, and step 403 is performed; if the comparison result is that the value is different from the predetermined value, determining the GTP-U packet transmission
  • the data is not a predetermined type, and the GTP-U data packet is processed according to the existing EPS process, which is not described in this embodiment.
  • Step 403 The gateway decapsulates the GTP-U data packet to obtain a predetermined type of data and a destination address of the predetermined type of data.
  • the gateway Since the gateway detects that the GTP-U data packet is transmitted in a predetermined type of data, the gateway can decapsulate the GTP-U data packet to obtain a predetermined type of data and a destination address. among them,
  • the destination address is a device that finally receives the data of the predetermined type, such as a server or a system, and is not limited in this embodiment.
  • Step 404 The gateway sends the predetermined type of data and the destination address to the message gateway.
  • the message gateway may be a new gateway in the EPS, and the message gateway supports a newly defined transmission protocol based on predetermined types of data, and the gateway may send a predetermined type of data and a destination address to the message gateway through the transmission protocol.
  • the transmission protocol of the newly defined predetermined type of data may be
  • the message-access point (Message-Access Point) protocol, etc., is not limited in this embodiment.
  • Step 405 The message gateway receives a predetermined type of data sent by the gateway and a destination address of the predetermined type of data.
  • the message gateway can receive the predetermined type of data and destination address transmitted by the gateway.
  • Step 406 The message gateway forwards the predetermined type of data according to the destination address.
  • the message gateway can be connected to the Push server, the P-CSCF, the application server, the cluster communication system, etc., the message gateway can determine the device corresponding to the predetermined type of data according to the received destination address, thereby the predetermined type of data. Forward to the device.
  • the Push server is used to transmit Push messages
  • the P-CSCF is used to transmit SIP signaling
  • the application server is used to transmit small data packets
  • the cluster system is used to transmit control messages.
  • this embodiment further provides a schematic diagram of a first specific application process of the foregoing method, where the data transmission process is as follows:
  • Step 501 The data sending direction initiates a data sending request to the user equipment.
  • Step 502 The user equipment sends the predetermined type of data, the S1-U F-TEID of the service gateway, to the radio access network element by using the optimized air interface message.
  • Step 503 The radio access network element allocates a new radio access network element S1-U F-TEID for the predetermined type of data, encapsulates the predetermined type of data into a GTP-U data packet, and sets the GTP-U data packet header.
  • Step 504 The radio access network element sends a GTP-U data packet to the serving gateway by using a Sl-U F-TEID of the serving gateway.
  • Step 505 The serving gateway determines, according to the message type in the S1-U F-TEID and/or the GTP-U packet header of the radio access network element carried in the GTP-U data packet, that the GTP-U data packet is transmitted.
  • Type data perform step 506;
  • Step 506 The serving gateway sends a GTP-U data packet to the message gateway through the Message-AP protocol.
  • Step 507 The message gateway returns an acknowledgement message to the service gateway through the Message-AP protocol.
  • the incoming network element returns an acknowledgement message.
  • the incoming network element returns an acknowledgement message.
  • the radio access network element returns an acknowledgement message to the user equipment by using the optimized air interface message.
  • Step 510 The user equipment returns an acknowledgement message to the data sender.
  • FIG. 6 Please refer to FIG. 6.
  • This embodiment further provides a schematic diagram of a second specific application process of the foregoing method, where the data transmission process is as follows:
  • Step 601 The data sending direction initiates a data sending request to the user equipment.
  • Step 602 The user equipment sends, by using the optimized air interface message, a predetermined type of data, an S1-U F-TEID of the service gateway, to the radio access network element.
  • Step 603 The radio access network element allocates a new radio access network element S1-U F-TEID for the predetermined type of data, encapsulates the predetermined type of data into a GTP-U data packet, and sets the GTP-U data packet header.
  • Step 604 The radio access network element sends a GTP-U data packet to the serving gateway by using a Sl-U F-TEID of the serving gateway.
  • Step 605 The serving gateway determines, according to the message type in the S1-U F-TEID and/or the GTP-U packet header of the radio access network element carried in the GTP-U data packet, that the GTP-U data packet is transmitted. Type of data, performing step 606;
  • the serving gateway needs to set the message type, so that the packet data gateway determines the GTP-U packet transmission according to the message type. It is a predetermined type of data.
  • Step 606 The serving gateway sends the GTP-U data packet to the packet data gateway by using the GTP-U protocol.
  • Step 608 The message gateway returns an acknowledgement message to the packet data gateway by using the Message-AP protocol.
  • Step 609 The packet data gateway returns an acknowledgement message to the service gateway by using the GTP-U protocol.
  • the network element returns an acknowledgement message.
  • Step 612 The user equipment returns an acknowledgement message to the data sender.
  • the data transmission method detects whether the data transmitted in the received GTP-U data packet is a predetermined type of data; if the detection result is in the GTP-U data packet. Transmitting a predetermined type of data, decapsulating the GTP-U data packet to obtain the predetermined type of data and a destination address of the predetermined type of data; and the predetermined type of data and the destination The address is sent to the message gateway, which solves the problem that adding the IP header before the small data reduces the payload of the IP data packet, reduces the problem of data transmission efficiency, and achieves the effect of improving data transmission efficiency.
  • the data transmission method is an uplink data sending method, which can be applied to an EPS.
  • the data transmission method may include:
  • Step 701 The gateway acquires a bearer identifier that carries the GTP-U data packet.
  • the GTP-U packet is obtained by encapsulating the data received on the air interface with the GTP-U protocol. If an IP packet is received on the air interface, the IP data packet can be encapsulated into a GTP-U data packet for transmission. If the air interface receives the predetermined type of data of the non-IP data packet, the predetermined type of data can be directly encapsulated into a GTP-U data packet for transmission, thereby avoiding the reduction of data transmission caused by adding the IP packet header before the predetermined type of data. The problem of efficiency.
  • the data of the predetermined type may be small data or other types of data, which is not limited in this embodiment.
  • the small data may be a message generated by the application, including a status message, a location message, a heartbeat message, and a real-time message; or may be a SIP signaling, an Push message, a control message, or the like.
  • the destination address of the predetermined type of data may also be encapsulated with the predetermined type of data, so that after the gateway decapsulates the GTP-U data packet, the predetermined type of data may be transmitted according to the destination address.
  • the GTP-U data packet may be a predetermined type of data that may be a non-IP data packet, or may be an IP data packet, in order to distinguish the data transmitted in the GTP-U data packet, the service gateway may be pre-established. a predetermined bearer for transmitting a predetermined type of data.
  • the user equipment may request the mobility management network element to establish a predetermined bearer dedicated to transmitting the predetermined type of data in the attaching process, and the mobility management network element receives the request sent by the user equipment.
  • the predetermined bearer may be determined according to the request, the subscription information of the user equipment, the capability of the gateway, and the like, and the predetermined bearer is used to transmit the predetermined type of data in the create session request message sent to the gateway, where the gateway may The information such as the bearer identifier of the predetermined bearer is stored, so as to determine that the predetermined type of data is transmitted according to the predetermined bearer identifier.
  • the method further includes: if the gateway is a packet data gateway, receiving a predetermined bearer identifier that is forwarded by the serving gateway and originating from the mobility management network element, where the serving gateway is located in mobility And between the management network element and the packet data gateway; if the gateway is the serving gateway, receiving the predetermined bearer identifier sent by the mobility management network element.
  • the mobility management network element may send the predetermined bearer identifier to the serving gateway. If the gateway in the embodiment is a packet data gateway, the serving gateway forwards the predetermined bearer identifier to the packet data gateway after receiving the predetermined bearer identifier.
  • the packet data gateway may store the predetermined bearer identifier. If the gateway in this embodiment is a serving gateway, the serving gateway may store the predetermined bearer identifier.
  • Step 702 the gateway detects whether the bearer identifier is a predetermined bearer identifier, and if the detection result is that the bearer identifier is a predetermined bearer identifier, determining to perform step 703;
  • the gateway may compare the bearer identifier obtained in step 701 with the pre-stored predetermined bearer identifier. If the comparison result is that the bearer identifier is the same as the predetermined bearer identifier, it is determined that the GTP-U data packet is transmitted by the predetermined type of data, and step 703 is performed; If the comparison result is that the bearer identifier is different from the predetermined bearer identifier, it is determined that the GTP-U data packet is not transmitted by the predetermined type of data, and the GTP-U data packet is processed according to the existing EPS process, which is not described in this embodiment.
  • Step 703 The gateway decapsulates the GTP-U data packet to obtain a predetermined type of data and a destination address of the predetermined type of data.
  • the gateway Since the gateway detects that the GTP-U packet is transmitted in a predetermined type of data, the gateway can decapsulate the GTP-U packet to obtain a predetermined type of data and a destination address.
  • the destination address is a device that finally receives the data of the predetermined type, such as a server or a system, and is not limited in this embodiment.
  • Step 704 The gateway sends the predetermined type of data and the destination address to the message gateway.
  • the message gateway may be a new gateway in the EPS, and the message gateway supports a newly defined transmission protocol based on predetermined types of data, and the gateway may send a predetermined type of data and a destination address to the message gateway through the transmission protocol.
  • the transmission protocol of the newly defined data of the predetermined type may be a message-AP protocol or the like, which is not limited in this embodiment.
  • Step 705 The message gateway receives the predetermined type of data and the predetermined type of data sent by the gateway. Destination address;
  • the message gateway can receive the predetermined type of data and destination address transmitted by the gateway.
  • Step 706 The message gateway forwards the predetermined type of data according to the destination address.
  • the message gateway can be connected to the Push server, the P-CSCF, the application server, the cluster communication system, etc., the message gateway can determine the device corresponding to the predetermined type of data according to the received destination address, thereby the predetermined type of data. Forward to the device.
  • the Push server is used to transmit Push messages
  • the P-CSCF is used to transmit SIP signaling
  • the application server is used to transmit small data packets
  • the cluster system is used to transmit control messages.
  • This embodiment also provides a specific process diagram for establishing a predetermined bearer.
  • the process of establishing a predetermined data bearer is as follows:
  • Step 801 The user equipment sends an attach request to the radio access network element.
  • Step 802 The radio access network element sends an attach request to the mobility management network element.
  • Step 803 The mobility management network element performs security authentication with the home user server.
  • Step 804 The mobility management network element determines, according to the user equipment request, the subscription information of the user equipment, the capability of the service gateway, and the like, to establish a predetermined bearer for transmitting the predetermined type of data.
  • Step 805 The mobility management network element sends a create session request to the service gateway, where the request for the reservation is used to transmit the predetermined type of data.
  • Step 806 The serving gateway stores the context information of the predetermined bearer, and learns that the predetermined bearer is used to transmit a predetermined type of data.
  • Step 807 The serving gateway sends a create session request to the packet data gateway, where the create session request indicates that the predetermined bearer is used to transmit a predetermined type of data.
  • Step 808 The packet data gateway stores the context information of the predetermined bearer, and learns that the predetermined bearer is used to transmit a predetermined type of data.
  • Step 809 the packet data gateway sends a create session response to the serving gateway.
  • Step 810 The service gateway sends a create session response to the mobility management network element.
  • Step 811 The mobility management network element sends a tunnel endpoint identifier of the serving gateway to the radio access network element, where the tunnel endpoint identifier may be an S 1 -U F-TEID of the serving gateway.
  • Step 812 The radio access network element sends a tunnel endpoint identifier of the serving gateway to the user equipment, where the tunnel endpoint identifier may be a Sl-U F-TEID of the serving gateway.
  • the data transmission method detects the received GTP-U by detecting Whether the data transmitted in the data packet is a predetermined type of data; if the detection result is that the GTP-U data packet is transmitted in a predetermined type of data, the GTP-U data packet is decapsulated to obtain the predetermined type. And the destination address of the predetermined type of data; sending the predetermined type of data and the destination address to the message gateway, resolving that adding an IP header before the small data reduces the payload of the IP packet, and reduces
  • the problem of data transmission efficiency has achieved the effect of improving data transmission efficiency.
  • the data transmission method is a downlink data receiving method, which can be applied to an EPS.
  • the data transmission method may include:
  • Step 901 The message gateway receives the data of the predetermined type and the destination address of the data of the predetermined type.
  • the data of the predetermined type may be small data or other types of data, which is not limited in this embodiment.
  • the small data may be messages generated by the application, including status messages, location messages, heartbeat messages, and real-time messages, and may also be SIP signaling, Push messages, and control messages.
  • the message gateway can be connected to the Push server, the P-CSCF, the application server, the cluster communication system, etc.
  • the message gateway can receive the predetermined type of data and the destination address from the connected device, and of course, the predetermined type can be obtained by other means.
  • the data is not limited in this embodiment.
  • Step 902 The message gateway sends a predetermined type of data and a destination address to the gateway.
  • the message gateway may send the predetermined type of data to the network to which the destination node belongs according to the destination address, where the destination node is identified by the destination address, so that the gateway can forward the GTP-U data packet, and the GTP-U data packet is scheduled by the pair.
  • Type data and destination address encapsulation
  • Step 903 The gateway receives a predetermined type of data and a destination address of a predetermined type of data.
  • the gateway may receive a predetermined type of data and a destination address sent by the message gateway based on a newly defined transmission protocol of the predetermined type of data.
  • Step 904 The gateway forwards the GTP-U data packet, and the GTP-U data packet is encapsulated by the predetermined type of data and the destination address. Since the gateway can send the predetermined type of data and the destination address through the GTP-U protocol, the gateway needs to encapsulate the predetermined type of data and the destination address into a GTP-U data packet, and forward the GTP-U data packet.
  • the data transmission method receives the predetermined type of data and the destination address of the predetermined type of data sent by the message gateway; and the general plane packet wireless service tunneling protocol GTP-U data packet to the user plane Forwarding, the GTP-U data packet is obtained by encapsulating the predetermined type of data and the destination address, and solving the problem that adding an IP packet header before the small data reduces the payload of the IP data packet and reduces the data transmission efficiency.
  • the problem is to achieve the effect of improving data transmission efficiency.
  • the data transmission method is a downlink data receiving method, and can be applied to an EPS.
  • the gateway is used as a service gateway as an example.
  • the data transmission method may include:
  • Step 1001 The message gateway receives the predetermined type of data and the destination address of the predetermined type of data. Specifically, the process of the message gateway receiving the predetermined type of data and the destination address is described in step 901.
  • Step 1002 The message gateway sends a predetermined type of data and a destination address to the gateway.
  • the message gateway may send the predetermined type of data to the network to which the destination node belongs according to the destination address, where the destination node is identified by the destination address.
  • the predetermined type of data and the destination address may be sent according to the newly defined predetermined type of data transmission protocol Message AP protocol, so that the gateway may encapsulate the GTP-U data packet according to the predetermined type of data and the destination address. Forward.
  • Step 1003 The gateway receives a predetermined type of data and a destination address of a predetermined type of data.
  • the gateway may receive a predetermined type of data and a destination address sent by the message gateway based on a newly defined predetermined type of data transmission protocol Message-AP protocol.
  • the gateway in this embodiment is a serving gateway in the EPS, and the serving gateway can directly receive the predetermined type of data and the destination address sent by the message gateway, and can also receive the predetermined type of data and the destination address forwarded by the packet data gateway.
  • receiving the predetermined type of data sent by the message gateway and the destination address of the predetermined type of data may include:
  • the packet data gateway is located between the serving gateway and the message gateway.
  • the packet data gateway can receive the predetermined type of data and destination address sent by the message gateway, and forward the predetermined type of data and destination address to the serving gateway.
  • Step 1004 The gateway sends a downlink data notification that carries the predetermined data indication to the mobility management network element, so that the mobility management network element sends the paging message carrying the predetermined data indication according to the downlink data notification, so that the user equipment receiving the predetermined type of data receives the
  • the tunnel endpoint identifier of the pre-stored serving gateway is sent to the radio access network element, so that the radio access network element establishes a bearer with the serving gateway according to the tunnel endpoint identifier of the serving gateway;
  • the service gateway may determine that the data is a predetermined type of data. At this time, the predetermined data indication may be generated by the serving gateway or the message gateway; if the serving gateway receives the packet data The data sent by the gateway, then the predetermined data indication can be generated by the packet data gateway or the message gateway.
  • a flag bit can be set in the paging message to identify the predetermined data indication.
  • the predetermined type of data may be identified by setting the flag bit to 0; or, the predetermined type of data may be identified by setting the flag bit to 1, and there are of course other ways to set a predetermined data indication in the paging message. This embodiment is not limited.
  • the serving gateway may send a downlink data notification carrying the predetermined data indication to the mobility management network element, so that the mobility management network element is all in a certain area.
  • the user equipment sends a paging message carrying the predetermined data indication, so that after the user equipment that needs to receive the data receives the paging message, it can be clear that the data is a predetermined type of data, and the predetermined type of data can be received by using the predetermined bearer.
  • the service gateway may serve the gateway in the attaching process.
  • the tunnel endpoint identifier is sent to the user equipment, and when the user equipment sends the empty IP data packet, the tunnel endpoint identifier of the serving gateway is sent to the radio access network element, and the radio access network element according to the tunnel endpoint identifier of the serving gateway and the serving gateway Establishing a bearer, and sending an empty IP data packet and a tunnel endpoint identifier of the radio access network element to the serving gateway, where the serving gateway saves the tunnel endpoint identifier of the radio access network element in the context information, thereby receiving the service according to the predetermined bearer.
  • the predetermined type of data and destination address forwarded by the gateway.
  • the radio access network element may be newly built according to the tunnel endpoint identifier of the serving gateway and the service gateway. Alternatively, the radio access network element may select a predetermined bearer for transmitting a predetermined type of data among the pre-established at least one bearer according to the tunnel endpoint identifier of the serving gateway.
  • Step 1005 The gateway forwards the GTP-U data packet, and the GTP-U data packet is encapsulated by the predetermined type of data and the destination address.
  • the service gateway can send the predetermined type of data and the destination address through the GTP-U protocol, the service gateway needs to encapsulate the predetermined type of data and the destination address into a GTP-U data packet, and perform the GTP-U data packet. send. Further, the destination address in the GTP-U data packet may be determined according to the destination address, so that the GTP-U data packet is sent.
  • the embodiment further provides a schematic diagram of a specific application process of the foregoing method, where the data transmission process is as follows:
  • Step 1101 The data sending direction sends a data sending request to the message gateway.
  • Step 1102 The message gateway sends a predetermined type of data to the serving gateway.
  • Step 1103 The serving gateway sends a downlink data notification carrying the predetermined data indication to the mobility management network element.
  • Step 1104 The mobility management network element sends a paging message carrying a predetermined data indication to the radio access network element.
  • Step 1105 The radio access network element sends a paging message carrying the predetermined data indication to the user equipment.
  • Step 1107 The radio access network element allocates a new radio access network element S1-U to the data packet.
  • F-TEID encapsulates the data packet into a GTP-U data packet, and sends a GTP-U data packet to the service gateway through the S1-U F-TEID of the serving gateway;
  • Step 1108 The serving gateway sends a predetermined type of data to the radio access network element according to the Sl-U F-TEID of the radio access network element.
  • Step 1109 The radio access network element sends the decapsulated predetermined type of data to the user equipment by using an optimized air interface message.
  • Step 1110 The user equipment sends the predetermined type of data to the data receiver.
  • Step 1111 The user equipment returns an acknowledgement message to the radio access network element by using the optimized air interface message.
  • Step 1112 The radio access network element returns an acknowledgement message to the service gateway by using the GTP-U protocol.
  • the data transmission method receives the predetermined type of data and the destination address of the predetermined type of data sent by the message gateway; and the general plane packet wireless service tunneling protocol GTP-U data packet to the user plane Forwarding, the GTP-U data packet is obtained by encapsulating the predetermined type of data and the destination address, and solving the problem that adding an IP packet header before the small data reduces the payload of the IP data packet and reduces the data transmission efficiency.
  • the problem is to achieve the effect of improving data transmission efficiency.
  • the downlink data notification carrying the predetermined data indication is sent to the mobility management network element, so that the mobility management network element sends the paging message carrying the predetermined data indication according to the downlink data notification, so that the reservation is received.
  • the user equipment of the type of data After receiving the paging message, the user equipment of the type of data sends the pre-stored tunnel endpoint identifier of the serving gateway to the radio access network element, so that the radio access network element is based on the tunnel endpoint of the serving gateway. Identifying a bearer with the service gateway, and solving the need
  • the service request message pre-establishes the transmission channel between the gateway and the radio access network element, and the signaling waste caused by the transmission of the data through the transmission channel achieves the effect of saving signaling.
  • the data transmission method is a downlink data receiving method, which can be applied to an EPS.
  • the gateway is used as a packet data gateway as an example.
  • the data transmission method may include:
  • Step 1201 The message gateway receives the predetermined type of data and the destination address of the predetermined type of data. Specifically, the process of the message gateway receiving the predetermined type of data and the destination address of the predetermined type of data is described in step 901.
  • Step 1202 The message gateway sends a predetermined type of data and a destination address to the gateway.
  • the message gateway may send the predetermined type of data to the network to which the destination node belongs according to the destination address, where the destination node is identified by the destination address.
  • the predetermined type of data may be transmitted according to a newly defined predetermined type of data transmission protocol, the Message AP protocol, so that the gateway can forward the GTP-U data packet encapsulated according to the predetermined type of data and the destination address.
  • Step 1203 The gateway receives a predetermined type of data sent by the message gateway and a destination address of the predetermined type of data.
  • the gateway can receive the predetermined type of data and destination address sent by the message gateway.
  • Step 1204 the gateway forwards the predetermined type of data, the destination address, and the predetermined data index to the serving gateway.
  • the service gateway sends a downlink data notification carrying the predetermined data indication to the mobility management network element, so that the mobility management network element sends the paging message carrying the predetermined data indication according to the downlink data notification, so that the user equipment receiving the predetermined type of data is enabled.
  • the tunnel endpoint identifier of the pre-stored serving gateway is sent to the radio access network element, so that the radio access network element establishes a bearer according to the tunnel endpoint identifier of the serving gateway and the serving gateway, and the serving gateway sets the predetermined type of data.
  • the GTP-U data packet is forwarded to the radio access network element, and the service gateway is located between the mobility management network element and the packet data gateway.
  • the packet data gateway receives the data sent by the message gateway, and the packet data gateway can determine that the data is a predetermined type of data.
  • the predetermined data indication may be generated by a packet data gateway or a message gateway, as described in step 1004.
  • the packet data gateway may send the received predetermined type of data, the destination address, and the predetermined data indication to the serving gateway, so that the serving gateway indicates the explicit data according to the predetermined data. It is a predetermined type of data, and the predetermined type of data and destination address are encapsulated into GTP-U data packets and then forwarded.
  • the service gateway establishes a connection with the radio access network element, and the service gateway encapsulates the predetermined type of data and the destination address into a GTP-U data packet, and the process of forwarding the GTP-U data packet is detailed in step 1004.
  • the content of step 1005 will not be described here.
  • this embodiment also provides a schematic diagram of a specific application process of the foregoing method, where the data transmission process is as follows:
  • Step 1301 The message gateway sends a predetermined type of data to the packet data gateway by using a Message-AP protocol.
  • Step 1302 The packet data gateway sends a predetermined type of data to the serving gateway by using a GTP-U protocol.
  • Step 1303 The serving gateway sends a downlink data notification carrying the predetermined data indication to the mobility management network element.
  • Step 1304 The mobility management network element sends a paging message carrying a predetermined data indication to the radio access network element.
  • Step 1305 The radio access network element sends a paging message carrying the predetermined data indication to the user equipment.
  • Step 1307 The radio access network element allocates a new radio access network element S1-U to the data packet.
  • F-TEID encapsulates the data packet into a GTP-U data packet, and sends a GTP-U data packet to the serving gateway through the S-U F-TEID of the serving gateway;
  • Step 1308 The serving gateway sends a predetermined type of data to the radio access network element according to the Sl-U F-TEID of the radio access network element.
  • Step 1309 The radio access network element sends the predetermined type of data to the user equipment by using the optimized air interface message.
  • Step 1310 The user equipment sends the predetermined type of data to the data receiver.
  • Step 1311 The user equipment sends an acknowledgement message to the radio access network element by using the air interface message.
  • Step 1312 The radio access network element sends an acknowledgement message to the serving gateway by using the GTP-U protocol.
  • Step 1313 The serving gateway sends the message to the message gateway through the Message AP protocol. Sending a confirmation message; Step 1314, the message gateway sends an acknowledgement message to the data sender.
  • the data transmission method receives the predetermined type of data and the destination address of the predetermined type of data sent by the message gateway; and the general plane packet wireless service tunneling protocol GTP-U data packet to the user plane Forwarding, the GTP-U data packet is obtained by encapsulating the predetermined type of data and the destination address, and solving the problem that adding an IP packet header before the small data reduces the payload of the IP data packet and reduces the data transmission efficiency.
  • the problem is to achieve the effect of improving data transmission efficiency.
  • the serving gateway forwarding, to the serving gateway, the predetermined type of data, the destination address, and the predetermined data indication, so that the serving gateway sends a downlink data notification carrying the predetermined data indication to the mobility management network element, so that the mobile And sending, by the downlink management data element, the paging message that carries the predetermined data indication, and after the user equipment that receives the predetermined type of data receives the paging message, the pre-stored service gateway Transmitting the tunnel endpoint identifier to the radio access network element, so that the radio access network element establishes a bearer with the serving gateway according to the tunnel endpoint identifier of the serving gateway, where the serving gateway compares the predetermined type of data with the After the destination address is encapsulated into the GTP-U data packet, the GTP-U data packet is forwarded to the radio access network element, where the serving gateway is located between the mobility management network element and the packet data gateway. Solving the need to pre-establish a transmission channel between the gateway and the radio access network element according to
  • FIG. 14 shows a structural framework diagram of a data transmission system according to Embodiment 7 of the present invention, which can be applied to an EPS.
  • the data transmission system may include:
  • the detecting module 1401 is configured to detect whether the data transmitted in the received GTP-U data packet is a predetermined type of data;
  • the decapsulation module 1402 is configured to: if the detection result of the detection module 1401 is that the GTP-U data packet is transmitted in a predetermined type of data, decapsulate the GTP-U data packet to obtain a predetermined type of data and a predetermined type of data. Destination address
  • the sending module 1403 is configured to send the predetermined type of data and the destination address obtained by decapsulating the decapsulation module 1403 to the message gateway, so that the message gateway forwards the predetermined type of data according to the destination address;
  • the receiving module 1501 is configured to receive a predetermined type of data sent by the gateway and a destination address of the predetermined type of data, where the predetermined type of data and the destination address are detected by the gateway whether the received GTP-U data packet is a predetermined type of data. If the detection result is that the GTP-U data packet is transmitted in a predetermined type of data, the GTP-U data packet is decapsulated;
  • the forwarding module 1502 is configured to forward the predetermined type of data according to the destination address received by the receiving module 1501.
  • the data transmission system detects whether the data transmitted in the received GTP-U data packet is a predetermined type of data; if the detection result is transmitted in the GTP-U data packet, Determining the GTP-U data packet to obtain a destination address of the predetermined type of data and the predetermined type of data; and transmitting the predetermined type of data and the destination address to the predetermined type of data
  • the message gateway solves the problem of adding IP headers before small data, reducing the payload of IP packets, reducing the efficiency of data transmission, and improving the efficiency of data transmission.
  • FIG. 15 shows a structural framework diagram of a data transmission system according to Embodiment 8 of the present invention, which can be applied to an EPS.
  • the data transmission system may include: a gateway and a message gateway; the gateway may include a detection module 1401, a decapsulation module 1402, and a sending module 1403; the message gateway may include: a receiving module 1501 and a forwarding module 1502;
  • the detecting module 1401 is configured to detect whether the data transmitted in the received GTP-U data packet is a predetermined type of data
  • the decapsulation module 1402 is configured to: if the detection result of the detection module 1401 is that the GTP-U data packet is transmitted in a predetermined type of data, decapsulate the GTP-U data packet to obtain a predetermined type of data and a predetermined type of data. Destination address
  • the sending module 1403 is configured to send the predetermined type of data and the destination address obtained by decapsulating the decapsulation module 1402 to the message gateway, so that the message gateway forwards the predetermined type of data according to the destination address;
  • the receiving module 1501 is configured to receive a predetermined type of data sent by the gateway and a destination address of the predetermined type of data, where the predetermined type of data and the destination address are detected by the gateway whether the received GTP-U data packet is a predetermined type of data. If the detection result is that the GTP-U data packet is transmitted in a predetermined type of data, the GTP-U data packet is decapsulated;
  • the forwarding module 1502 is configured to forward the predetermined type of data according to the destination address received by the receiving module 1501.
  • the detecting module 1401 may include:
  • the first obtaining unit 1401 is configured to acquire a message type in the GTP-U packet header; the first detecting unit 1401B is configured to detect whether the message type acquired by the first acquiring unit 1401A is a predetermined message type;
  • the first determining unit 1401C is configured to determine, if the message type is a predetermined message type, if the result detected by the first detecting unit 1401B is that the received GTP-U data packet is transmitted in a predetermined type.
  • the gateway is a packet data gateway
  • the message type is set by the radio access network element or the non-original gateway is the serving gateway, and the message type is preset by the radio access network element.
  • the detecting module 1401 may include:
  • the second obtaining unit 1401D is configured to acquire a bearer identifier that carries the GTP-U data packet
  • the second detecting unit 1401E is configured to detect whether the bearer identifier acquired by the second acquiring unit 1401D is a predetermined bearer identifier.
  • the second determining unit 1401F is configured to determine, if the second detection unit 1401E detects that the bearer identifier is a predetermined bearer identifier, to determine that the received GTP-U data packet is transmitted in a predetermined type.
  • the detecting module 1401 may further include:
  • the first receiving unit 1401G is configured to: before the second detecting unit 1401E detects whether the bearer identifier is a predetermined bearer identifier, if the gateway is a packet data gateway, receive a predetermined bearer identifier from the mobility management network element forwarded by the serving gateway, and the serving gateway Located between the mobility management network element and the packet data gateway;
  • the second receiving unit 1401H is configured to: before the second detecting unit 1401E detects whether the bearer identifier is a predetermined bearer identifier, if the gateway is a serving gateway, receive the predetermined bearer label sent by the mobility management network element. Knowledge.
  • the detecting module 1401 further includes:
  • the third detecting unit 14011 is configured to detect whether a GTP-U data packet carries a tunnel endpoint identifier of the radio access network element;
  • the third determining unit 1401J is configured to determine, if the result of the third detecting unit 14011 detecting that the GTP-U data packet carries the tunnel endpoint identifier of the radio access network element, determine that the received GTP-U data packet is transmitted. Scheduled type of data.
  • the data transmission system detects whether the data transmitted in the received GTP-U data packet is a predetermined type of data; if the detection result is transmitted in the GTP-U data packet, Determining the GTP-U data packet to obtain a destination address of the predetermined type of data and the predetermined type of data; and transmitting the predetermined type of data and the destination address to the predetermined type of data
  • the message gateway solves the problem of adding IP headers before small data, reducing the payload of IP packets, reducing the efficiency of data transmission, and improving the efficiency of data transmission.
  • FIG. 16 shows a structural framework diagram of a data transmission system according to Embodiment 9 of the present invention, which can be applied to an EPS.
  • the data transmission system may include:
  • a second receiving module 1601 configured to receive a predetermined type of data and a destination address of a predetermined type of data
  • the sending module 1602 is configured to send, to the gateway, a predetermined type of data and a destination address received by the second receiving module 1601, so that the gateway receives the predetermined type of data and the destination address sent by the message gateway, and forwards the GTP-U data packet, GTP.
  • -U packets are encapsulated by a predetermined type of data and destination address;
  • the first receiving module 1701 is configured to receive a predetermined type of data sent by the message gateway and a destination address of the predetermined type of data;
  • the first forwarding module 1702 is configured to forward the GTP-U data packet, and the GTP-U data packet is used by The predetermined type of data and destination address are encapsulated.
  • the data transmission system receives a predetermined type of data and a destination address of the predetermined type of data sent by a message gateway; a general packet radio service tunneling protocol GTP-U data packet for a user plane Forwarding, the GTP-U data packet is obtained by encapsulating the predetermined type of data and the destination address, and solving the problem that adding an IP packet header before the small data reduces the payload of the IP data packet and reduces the data transmission efficiency.
  • the problem is to achieve the effect of improving data transmission efficiency.
  • FIG. 17 shows a structural framework diagram of a data transmission system according to Embodiment 10 of the present invention, which can be applied to an EPS.
  • the data transmission system may include: a gateway and a message gateway; the gateway may include: a first receiving module 1701 and a first forwarding module 1702; the message gateway may include: a second receiving module 1601 and a sending module 1602;
  • a second receiving module 1601 configured to receive a predetermined type of data and a destination address of a predetermined type of data
  • the sending module 1602 is configured to send, to the gateway, a predetermined type of data and a destination address received by the second receiving module 1601, so that the gateway receives the predetermined type of data and the destination address sent by the message gateway, and forwards the GTP-U data packet, GTP.
  • -U packets are encapsulated by a predetermined type of data and destination address;
  • the first receiving module 1701 is configured to receive a predetermined type of data sent by the message gateway and a destination address of the predetermined type of data;
  • the first forwarding module 1702 is configured to forward the GTP-U data packet, and the GTP-U data packet is encapsulated by a predetermined type of data and a destination address received by the first receiving module 1701.
  • the gateway may further include:
  • the second forwarding module 1703 is configured to: before the first forwarding module 1702 forwards the GTP-U data packet, send a downlink data notification that carries the predetermined data indication to the mobility management network element, so that the mobility management network element sends the downlink data notification according to the downlink data notification.
  • Carrying the paging message indicated by the predetermined data so that after receiving the paging message, the user equipment receiving the predetermined type of data sends the tunnel endpoint identifier of the pre-stored serving gateway to the radio access network element, so that the radio access network element is served according to the service.
  • the tunnel endpoint ID of the gateway establishes a bearer with the serving gateway.
  • the first receiving module 1701 is configured to receive a predetermined type of data and a destination address that is forwarded by the packet data gateway and originated from the message gateway, where the packet data gateway is located at the serving gateway and the message gateway. Between.
  • the first forwarding module 1702 is configured to forward, by the serving gateway, a predetermined type of data, a destination address, and a predetermined data indication, so that the serving gateway sends the mobility management network element to carry the predetermined data indication.
  • the downlink data notification causes the mobility management network element to send a paging message carrying the predetermined data indication according to the downlink data notification, so that after receiving the paging message, the user equipment receiving the predetermined type of data sends the tunnel endpoint identifier of the pre-stored serving gateway Giving the radio access network element, so that the radio access network element establishes a bearer with the serving gateway according to the tunnel endpoint identifier of the serving gateway, and the serving gateway encapsulates the predetermined type of data and the destination address into a GTP-U data packet, and then sends the data to the radio access network.
  • the metadata forwards the GTP-U data packet, and the service gateway is located between the mobility management network element and the packet data gateway.
  • the data transmission system receives a predetermined type of data and a destination address of the predetermined type of data sent by a message gateway; a general packet radio service tunneling protocol GTP-U data packet for a user plane Forwarding, the GTP-U data packet is obtained by encapsulating the predetermined type of data and the destination address, and solving the problem that adding an IP packet header before the small data reduces the payload of the IP data packet and reduces the data transmission efficiency.
  • the problem is to achieve the effect of improving data transmission efficiency.
  • the downlink data notification carrying the predetermined data indication is sent to the mobility management network element, so that the mobility management network element sends the paging message carrying the predetermined data indication according to the downlink data notification, so that the reservation is received.
  • the user equipment of the type of data sends the pre-stored tunnel endpoint identifier of the serving gateway to the radio access network element, so that the radio access network element is based on the tunnel endpoint of the serving gateway.
  • the identifier establishes a bearer with the service gateway, and solves the problem that the signaling channel between the gateway and the radio access network element needs to be pre-established according to the Service Request message, and the signaling waste caused by transmitting the data through the transmission channel reaches a saving letter. The effect of the order.
  • FIG. 18 shows a structural framework diagram of a data transmission system according to Embodiment 11 of the present invention, which can be applied to an EPS.
  • the data transmission system may include:
  • the first processor 1801 is configured to detect whether the data transmitted in the received GTP-U data packet is a predetermined type of data; if the detection result is that the GTP-U data packet is transmitted in a predetermined type, the GTP-U The data packet is decapsulated to obtain a predetermined type of data and a destination address of the predetermined type of data.
  • the first transmitter 1802 is configured to send the predetermined type of data and the destination address obtained by decapsulating the first processor 1801 to the message gateway.
  • the second receiver 1901 is configured to receive a predetermined type of data sent by the gateway and a destination address of the predetermined type of data, where the predetermined type of data and the destination address are detected by the gateway whether the received GTP-U data packet is a predetermined type. Data; if the detection result is that the GTP-U data packet is transmitted in a predetermined type of data, the GTP-U data packet is decapsulated;
  • the second processor 1902 is configured to control the second transmitter 1903 to forward the predetermined type of data according to the destination address received by the second receiver 1901;
  • the second transmitter 1903 is configured to forward the predetermined type of data according to the destination address received by the second receiver 1901 under the control of the second processor 1902.
  • the data transmission system detects whether the data transmitted in the received GTP-U data packet is a predetermined type of data; if the detection result is transmitted in the GTP-U data packet, Determining the GTP-U data packet to obtain a destination address of the predetermined type of data and the predetermined type of data; and transmitting the predetermined type of data and the destination address to the predetermined type of data
  • the message gateway solves the problem of adding IP headers before small data, reducing the payload of IP packets, reducing the efficiency of data transmission, and improving the efficiency of data transmission.
  • FIG. 19 shows a structural framework diagram of a data transmission system according to Embodiment 12 of the present invention, which can be applied to an EPS.
  • the data transmission system may include: a gateway and a message gateway; the gateway may include: a first processor 1801 and a first transmitter 1802; the message gateway may include: a second receiver 1901, a second processor 1902, and a second transmitter 1903;
  • the first processor 1801 is configured to detect whether the data transmitted in the received GTP-U data packet is a predetermined type of data; if the detection result is that the GTP-U data packet is transmitted in a predetermined type, the GTP-U The data packet is decapsulated to obtain a predetermined type of data and a destination address of the predetermined type of data.
  • the first transmitter 1802 is configured to send the predetermined type of data and the destination address obtained by decapsulating the first processor 1801 to the message gateway. , so that the message gateway forwards the predetermined type of data according to the destination address;
  • the second receiver 1901 is configured to receive a predetermined type of data sent by the gateway and a destination address of the predetermined type of data, where the predetermined type of data and the destination address are detected by the gateway whether the received GTP-U data packet is a predetermined type. Data; if the detection result is that the GTP-U data packet is transmitted in a predetermined type of data, the GTP-U data packet is decapsulated;
  • the second processor 1902 is configured to control the second transmitter 1903 to receive according to the second receiver 1901.
  • the destination address forwards the predetermined type of data
  • the second transmitter 1903 is configured to forward the predetermined type of data according to the destination address received by the second receiver 1901 under the control of the second processor 1902.
  • the first processor 1801 is configured to acquire a message type in a GTP-U data packet header; detect whether the message type is a predetermined message type; if the detection result is that the message type is a predetermined message type, determine the received GTP- The U type of data transmitted in the U packet is a predetermined type of data.
  • the gateway is a packet data gateway
  • the message type is set by the radio access network element or the non-original gateway is the serving gateway, and the message type is preset by the radio access network element.
  • the first processor 1801 is configured to acquire a bearer identifier that carries the GTP-U data packet, and detect whether the bearer identifier is a predetermined bearer identifier. If the detection result is that the bearer identifier is a predetermined bearer identifier, determine the received GTP-U.
  • the data transmitted in the data packet is a predetermined type of data.
  • the gateway may further include:
  • the first receiver 1803 is further configured to: before the first processor 1801 detects whether the bearer identifier is a predetermined bearer identifier, if the gateway is a packet data gateway, receive a predetermined bearer identifier that is forwarded by the serving gateway from the mobility management network element, and the service The gateway is located between the mobility management network element and the packet data gateway. If the gateway is the serving gateway, it receives the predetermined bearer identifier sent by the mobility management network element.
  • the first processor 1801 is further configured to: if the gateway is a serving gateway, detect whether the GTP-U data packet carries the tunnel endpoint identifier of the radio access network element; if the detection result is carried in the GTP-U data packet, The tunnel endpoint identifier of the radio access network element determines that the received GTP-U data packet is transmitted in a predetermined type.
  • the data transmission system detects whether the data transmitted in the received GTP-U data packet is a predetermined type of data; if the detection result is transmitted in the GTP-U data packet, Determining the GTP-U data packet to obtain a destination address of the predetermined type of data and the predetermined type of data; and transmitting the predetermined type of data and the destination address to the predetermined type of data
  • the message gateway solves the problem of adding IP headers before small data, reducing the payload of IP packets, reducing the efficiency of data transmission, and improving the efficiency of data transmission.
  • FIG. 20 shows a structural framework diagram of a data transmission system according to Embodiment 13 of the present invention, which can be applied to an EPS.
  • the data transmission system may include:
  • a second receiver 2001 configured to receive a predetermined type of data and a destination address of a predetermined type of data
  • the second processor 2002 is configured to control the second transmitter 2003 to send, to the gateway, a predetermined type of data and a destination address received by the second receiver 2001;
  • the second transmitter 2003 is configured to send, by the second processor 2002, a predetermined type of data and a destination address received by the second receiver 2001 to the gateway, so that the gateway receives the predetermined type of data and destination sent by the message gateway. Address, forward the GTP-U data packet, and the GTP-U data packet is encapsulated by the predetermined type of data and the destination address;
  • a first receiver 2101 configured to receive a predetermined type of data sent by a message gateway and a destination address of a predetermined type of data
  • the first processor 2102 is configured to control the first transmitter 2103 to forward the GTP-U data packet, and the GTP-U data packet is encapsulated by the predetermined type of data and the destination address received by the first receiver 2101;
  • the first transmitter 2103 is configured to forward the GTP-U data packet under the control of the first processor 2102.
  • the data transmission system receives a predetermined type of data and a destination address of the predetermined type of data sent by a message gateway; a general packet radio service tunneling protocol GTP-U data packet for a user plane Forwarding, the GTP-U data packet is obtained by encapsulating the predetermined type of data and the destination address, and solving the problem that adding an IP packet header before the small data reduces the payload of the IP data packet and reduces the data transmission efficiency.
  • the problem is to achieve the effect of improving data transmission efficiency.
  • the embodiment of the invention provides a data transmission system, which can be applied to an EPS.
  • the data transmission system may include: a gateway and a message gateway; the gateway may include: a first receiver 2101, a first processor 2102, and a first transmitter 2103; the message gateway may include: a second receiver 2001, a second processor 2002 and second transmitter 2003; a second receiver 2001, configured to receive a predetermined type of data and a destination address of a predetermined type of data;
  • the second processor 2002 is configured to control the second transmitter 2003 to send, to the gateway, a predetermined type of data and a destination address received by the second receiver 2001;
  • the second transmitter 2003 is configured to send, by the second processor 2002, a predetermined type of data and a destination address received by the second receiver 2001 to the gateway, so that the gateway receives the predetermined type of data and destination sent by the message gateway. Address, forward the GTP-U data packet, and the GTP-U data packet is encapsulated by the predetermined type of data and the destination address;
  • a first receiver 2101 configured to receive a predetermined type of data sent by a message gateway and a destination address of a predetermined type of data
  • the first processor 2102 is configured to control the first transmitter 2103 to forward the GTP-U data packet, and the GTP-U data packet is encapsulated by the predetermined type of data and the destination address received by the first receiver 2101;
  • the first transmitter 2103 is configured to forward the GTP-U data packet under the control of the first processor 2102.
  • the first transmitter 2103 is configured to send, to the mobility management network element, a downlink data notification carrying the predetermined data indication, before the GTP-U data packet is forwarded, so that the mobility management network element Sending a paging message carrying the predetermined data indication according to the downlink data notification, so that after receiving the paging message, the user equipment receiving the predetermined type of data sends the tunnel endpoint identifier of the pre-stored serving gateway to the radio access network element, so as to be wirelessly connected.
  • the incoming network element establishes a bearer with the serving gateway according to the tunnel endpoint identifier of the serving gateway.
  • the first receiver 2101 is configured to receive a predetermined type of data and a destination address from the message gateway forwarded by the packet data gateway, where the packet data gateway is located between the serving gateway and the message gateway.
  • the first transmitter 2103 is configured to forward, to the serving gateway, a predetermined type of data, a destination address, and a predetermined data indication, so that the serving gateway sends the mobility management network element to carry the predetermined data indication.
  • the downlink data notification causes the mobility management network element to send a paging message carrying the predetermined data indication according to the downlink data notification, so that after receiving the paging message, the user equipment receiving the predetermined type of data sends the tunnel endpoint identifier of the pre-stored serving gateway Giving the radio access network element, so that the radio access network element establishes a bearer with the serving gateway according to the tunnel endpoint identifier of the serving gateway, and the serving gateway encapsulates the predetermined type of data and the destination address into a GTP-U data packet, and then sends the data to the radio access network.
  • Meta forwarding GTP-U data packet the service gateway is located between the mobility management network element and the packet data gateway.
  • the data transmission system receives a predetermined type of data and a destination address of the predetermined type of data sent by a message gateway; a general packet radio service tunneling protocol GTP-U data packet for a user plane Forwarding, the GTP-U data packet is obtained by encapsulating the predetermined type of data and the destination address, and solving the problem that adding an IP packet header before the small data reduces the payload of the IP data packet and reduces the data transmission efficiency.
  • the problem is to achieve the effect of improving data transmission efficiency.
  • the downlink data notification carrying the predetermined data indication is sent to the mobility management network element, so that the mobility management network element sends the paging message carrying the predetermined data indication according to the downlink data notification, so that the reservation is received.
  • the user equipment of the type of data sends the pre-stored tunnel endpoint identifier of the serving gateway to the radio access network element, so that the radio access network element is based on the tunnel endpoint of the serving gateway.
  • the identifier establishes a bearer with the service gateway, and solves the problem that the signaling channel between the gateway and the radio access network element needs to be pre-established according to the Service Request message, and the signaling waste caused by transmitting the data through the transmission channel reaches a saving letter. The effect of the order. Example fifteen
  • FIG. 21 shows a structural framework diagram of a data transmission system according to Embodiment 15 of the present invention, which can be applied to an EPS.
  • the data transmission system may include: a gateway 2101 and a message gateway 2102;
  • the gateway 2101 may be the gateway provided in the seventh embodiment or the eighth embodiment, and the message gateway 2102 may be the message gateway provided in the seventh embodiment or the eighth embodiment; or
  • the gateway 2101 may be the gateway provided in the eleventh embodiment or the twelfth embodiment
  • the message gateway 2102 may be the message gateway provided in the eleventh embodiment or the twelfth embodiment.
  • the data transmission system detects whether the data transmitted in the received GTP-U data packet is a predetermined type of data; if the detection result is transmitted in the GTP-U data packet, Determining the GTP-U data packet to obtain a destination address of the predetermined type of data and the predetermined type of data; and transmitting the predetermined type of data and the destination address to the predetermined type of data
  • the message gateway solves the problem of adding IP headers before small data, reducing the payload of IP packets, reducing the efficiency of data transmission, and improving the efficiency of data transmission.
  • the Service Request message pre-establishes the transmission channel between the serving gateway and the radio access network element, and the signaling waste caused by the transmission of the data through the transmission channel achieves the effect of saving signaling.
  • FIG. 22 shows a structural framework diagram of a data transmission system according to Embodiment 16 of the present invention, which can be applied to an EPS.
  • the data transmission system may include: a gateway 2201 and a message gateway 2202;
  • the gateway 2201 may be the gateway provided by the embodiment IX or the tenth embodiment, and the message gateway 2202 may be the message gateway provided by the embodiment IX or the tenth embodiment; or
  • the gateway 2201 may be the gateway provided by the thirteenth embodiment or the fourteenth embodiment, and the message gateway 2202 may be the message gateway provided in the thirteenth embodiment or the thirteenth embodiment.
  • the data transmission system receives a predetermined type of data and a destination address of the predetermined type of data sent by a message gateway; a general packet radio service tunneling protocol GTP-U data packet for a user plane Forwarding, the GTP-U data packet is obtained by encapsulating the predetermined type of data and the destination address, and solving the problem that adding an IP packet header before the small data reduces the payload of the IP data packet and reduces the data transmission efficiency.
  • the problem is to achieve the effect of improving data transmission efficiency.
  • the downlink data notification carrying the predetermined data indication is sent to the mobility management network element, so that the mobility management network element sends the paging message carrying the predetermined data indication according to the downlink data notification, so that the reservation is received.
  • the user equipment of the type of data sends the pre-stored tunnel endpoint identifier of the serving gateway to the radio access network element, so that the radio access network element is based on the tunnel endpoint of the serving gateway.
  • the identifier establishes a bearer with the service gateway, and solves the problem that the signaling channel between the gateway and the radio access network element needs to be pre-established according to the Service Request message, and the signaling waste caused by transmitting the data through the transmission channel reaches a saving letter.
  • the gateway, the message gateway, and the data transmission system provided in the foregoing embodiments are only illustrated by the division of the foregoing functional modules when performing data transmission. In actual applications, the foregoing functions may be allocated differently according to requirements.
  • the function module is completed, that is, the internal structure of the gateway, the message gateway and the data transmission system are divided into different functional modules to complete all or part of the functions described above.
  • the gateway, the message gateway, and the data transmission system provided by the foregoing embodiments are in the same concept as the data transmission method embodiment, and the specific implementation process is described in the method embodiment, and details are not described herein again.
  • serial numbers of the embodiments of the present invention are merely for the description, and do not represent the advantages and disadvantages of the embodiments.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

本发明实施例提供了一种数据传输方法、装置及系统,涉及通信领域,方法包括:检测接收到的GTP-U数据包中传输的是否是预定类型的数据;若检测结果为GTP-U数据包中传输的是预定类型的数据,则对GTP-U数据包进行解封,得到预定类型的数据和预定类型的数据的目的地址;将预定类型的数据和目的地址发送给消息网关,以便消息网关根据目的地址对预定类型的数据进行转发。网关包括:检测模块、解封模块和发送模块。消息网关包括:接收模块和转发模块。数据传输系统包括:网关和消息网关。本发明解决了在小数据之前添加IP包头会降低IP数据包的净荷,降低了数据传输效率的问题,达到了提高数据传输效率的效果。

Description

数据传输方法、 装置及系统
技术领域
本发明涉及通信领域, 特别涉及一种数据传输方法、 装置及系统。 背景技术
现有的 EPS ( Evolved Packet System , 演进分组系统) 包括 UE ( User Equipment, 用户设备 )、 EUTRAN ( Evolved Universal Terrestrial Radio Access Network, 演进的通用陆地无线接入网 )和 CN ( Core Network, 核心网;), 请 参考图 1所示的 EPS的架构示意图。其中, EUTRAN具体可以由 eNB( Evolved Node B, 演进型基站)实现; CN主要包括 MME ( Mobility Management Entity, 移动管理实体)、 SGSN ( Serving General Packet Radio Service Supporting Node, 服务通用分组无线服务支撑节点)、 HSS ( Home Subscribe Server, 归属用户服 务器)、 S-GW ( Serving Gateway, 服务网关)、 P-GW ( Packet Data Network Gateway, 分组数据网关)和 PCRF ( Policy and Charging Rules Function, 策略 与计费控制功能)。
当用户设备与网络附着时, 会通过无线接入网元、 移动性管理网元、 服 务网关和分组数据网关之间的信令交互建立承载, 以便使用该承载传输数 据。 由于现有的 EPS系统基于 IP机制, 因此, 在使用 EPS系统发送数据时, 无线接入网元将 IP数据包封装成 GTP-U( GPRS Tunnelling Protocol for the User Plane, 用户平面通用分组无线服务隧道协议)数据包后, 将该 GTP-U数据包 发送给服务网关, 服务网关将该 GTP-U数据包发送给分组数据网关, 由分组 数据网关将该 GTP-U数据包解封成 IP数据包后进行转发处理。 相应的, 在使 用 EPS系统接收数据时, 分组数据网关接收 IP数据包, 将该 GTP-U数据包封 装成 GTP-U数据包后发送给服务网关, 服务网关将该 GTP-U数据包转发给无 线接入网元, 由无线接入网元将该 GTP-U数据包解封成 IP数据包后发送给用 户设备。
数据封装成 IP数据包时需要增加 IP包头, 若 UE只需要传输数据量很小 的小数据, 比如, 应用程序产生的消息, 包括状态消息、 位置消息、 心跳消息 和实时消息等; 也可以是 SIP ( Session Initiation Protocol, 会话初始化协议 )信 令、 Push (推送) 消息和控制消息等, 则在小数据之前添加 IP包头会降低 IP 数据包的数据净荷, 降低了数据传输效率。 比如, 小数据为 10字节, 而 IP包 头固定为 20字节, 小数据在 IP包中所占的比例较低, 降低了数据传输效率。 发明内容
为了解决小数据传输效率低的问题, 本发明实施例提供了一种数据传输方 法、 装置及系统。 所述技术方案如下:
第一方面, 本发明实施例提供了一种数据传输方法, 用于网关中, 所述方 法包括:
检测接收到的用户平面通用分组无线服务隧道协议 GTP-U数据包中传输 的是否是预定类型的数据;
若检测结果为所述 GTP-U数据包中传输的是预定类型的数据, 则对所述 GTP-U数据包进行解封,得到所述预定类型的数据和所述预定类型的数据的目 的地址;
将所述预定类型的数据和所述目的地址发送给消息网关, 以便所述消息网 关根据所述目的地址对所述预定类型的数据进行转发。
在第一方面的第一种可能的实现方式中, 所述检测接收到的用户平面通用 分组无线服务隧道协议 GTP-U数据包中传输的是否是预定类型的数据, 包括: 获取所述 GTP-U数据包包头中的消息类型;
检测所述消息类型是否是预定消息类型;
若检测结果为所述消息类型是预定消息类型,则确定接收到的所述 GTP-U 数据包中传输的是预定类型的数据。
结合第一方面的第一种可能的实现方式, 在第一方面的第二种可能的实现 方式中, 若所述网关为分组数据网关, 则所述消息类型由无线接入网元或位于 所述无线接入网元与所述分组数据网关之间的服务网关预先设置;
若所述网关为服务网关, 则所述消息类型由无线接入网元预先设置。
在第一方面的第三种可能的实现方式中, 所述检测接收到的用户平面通用 分组无线服务隧道协议 GTP-U数据包中传输的是否是预定类型的数据, 包括: 获取承载所述 GTP-U数据包的承载标识;
检测所述承载标识是否是预定承载标识; 若检测结果为所述承载标识是预定承载标识,则确定接收到的所述 GTP-U 数据包中传输的是预定类型的数据。
结合第一方面的第三种可能的实现方式, 在第一方面的第四种可能的实现 方式中, 所述检测所述承载标识是否是预定承载标识之前, 还包括:
若所述网关为分组数据网关, 则接收服务网关转发的来源于移动性管理网 元的所述预定承载标识, 所述服务网关位于所述移动性管理网元与所述分组数 据网关之间;
若所述网关为服务网关, 则接收移动性管理网元发送的所述预定承载标 识。
在第一方面的第五种可能的实现方式中, 若所述网关为服务网关, 则所述 检测接收到的用户平面通用分组无线服务隧道协议 GTP-U数据包中传输的是 否是预定类型的数据, 包括:
检测所述 GTP-U数据包中是否携带无线接入网元的隧道端点标识; 若检测结果为所述 GTP-U数据包中携带有无线接入网元的隧道端点标识, 则确定接收到的所述 GTP-U数据包中传输的是预定类型的数据。
第二方面, 本发明实施例提供了一种数据传输方法, 用于消息网关中, 所 述方法包括:
接收网关发送的预定类型的数据和所述预定类型的数据的目的地址, 所述 预定类型的数据和所述目的地址由所述网关检测接收到的用户平面通用分组 无线服务隧道协议 GTP-U数据包中传输的是否是预定类型的数据; 若检测结 果为所述 GTP-U数据包中传输的是预定类型的数据, 则对所述 GTP-U数据包 进行解封后得到;
根据所述目的地址对所述预定类型的数据进行转发。
第三方面, 本发明实施例提供了一种数据传输方法, 用于网关中, 所述方 法包括:
接收消息网关发送的预定类型的数据和所述预定类型的数据的目的地址; 对用户平面通用分组无线服务隧道协议 GTP-U数据包进行转发, 所述 GTP-U数据包由对所述预定类型的数据和所述目的地址封装得到。
在第三方面的第一种可能的实现方式中, 若所述网关为服务网关, 则对用 户平面通用分组无线服务隧道协议 GTP-U数据包进行转发之前, 还包括: 向移动性管理网元发送携带预定数据指示的下行数据通知, 以便所述移动 性管理网元根据所述下行数据通知发送携带所述预定数据指示的寻呼消息,使 接收所述预定类型的数据的用户设备接收到所述寻呼消息后, 将预存的所述服 务网关的隧道端点标识发送给无线接入网元, 以便所述无线接入网元根据所述 服务网关的隧道端点标识与所述服务网关建立承载。
结合第三方面的第一种可能的实现方式, 在第三方面的第二种可能的实现 方式中, 所述接收消息网关发送的预定类型的数据和所述预定类型的数据的目 的地址, 包括:
接收分组数据网关转发的来源于所述消息网关的所述预定类型的数据和 所述目的地址, 所述分组数据网关位于所述服务网关与所述消息网关之间。
在第三方面的第三种可能的实现方式中, 若所述网关为分组数据网关, 则 对用户平面通用分组无线服务隧道协议 GTP-U数据包进行转发, 包括:
向服务网关转发所述预定类型的数据、 所述目的地址和预定数据指示, 以 便所述服务网关向移动性管理网元发送携带所述预定数据指示的下行数据通 知,使所述移动性管理网元根据所述下行数据通知发送携带所述预定数据指示 的寻呼消息, 使接收所述预定类型的数据的用户设备接收到所述寻呼消息后, 将预存的所述服务网关的隧道端点标识发送给无线接入网元,使所述无线接入 网元根据所述服务网关的隧道端点标识与所述服务网关建立承载, 所述服务网 关将所述预定类型的数据和所述目的地址封装成所述 GTP-U数据包后, 向所 述无线接入网元转发所述 GTP-U数据包, 所述服务网关位于所述移动性管理 网元与所述分组数据网关之间。
第四方面, 本发明实施例提供了一种数据传输方法, 用于消息网关中, 所 述方法包括:
接收预定类型的数据和所述预定类型的数据的目的地址;
向网关发送所述预定类型的数据和所述目的地址, 以便所述网关接收所述 消息网关发送的所述预定类型的数据和所述目的地址, 对用户平面通用分组无 线服务隧道协议 GTP-U数据包进行转发, 所述 GTP-U数据包由对所述预定类 型的数据和所述目的地址封装得到。
第五方面, 本发明实施例提供了一种网关, 所述网关包括:
检测模块,用于检测接收到的用户平面通用分组无线服务隧道协议 GTP-U 数据包中传输的是否是预定类型的数据;
解封模块, 用于若所述检测模块检测的结果为所述 GTP-U数据包中传输 的是预定类型的数据, 则对所述 GTP-U数据包进行解封, 得到所述预定类型 的数据和所述预定类型的数据的目的地址;
发送模块, 用于将所述解封模块解封后得到的所述预定类型的数据和所述 目的地址发送给消息网关, 以便所述消息网关根据所述目的地址对所述预定类 型的数据进行转发。
在第五方面的第一种可能的实现方式中, 所述检测模块, 包括:
第一获取单元, 用于获取所述 GTP-U数据包包头中的消息类型; 第一检测单元, 用于检测所述第一获取单元获取到的所述消息类型是否是 预定消息类型;
第一确定单元, 用于若所述第一检测单元检测的结果为所述消息类型是预 定消息类型, 则确定接收到的所述 GTP-U数据包中传输的是预定类型的数据。
结合第五方面的第一种可能的实现方式, 在第五方面的第二种可能的实现 方式中, 若所述网关为分组数据网关, 则所述消息类型由无线接入网元或位于 所述无线接入网元与所述分组数据网关之间的服务网关预先设置;
若所述网关为所述服务网关, 则所述消息类型由无线接入网元预先设置。 在第五方面的第三种可能的实现方式中, 所述检测模块, 包括:
第二获取单元, 用于获取承载所述 GTP-U数据包的承载标识;
第二检测单元, 用于检测所述第二获取单元获取到的所述承载标识是否是 预定 载标识;
第二确定单元, 用于若所述第二检测单元检测的结果为所述承载标识是预 定承载标识, 则确定接收到的所述 GTP-U数据包中传输的是预定类型的数据。
结合第五方面的第三种可能的实现方式, 在第五方面的第四种可能的实现 方式中, 所述检测模块, 还包括:
第一接收单元, 用于所述第二检测单元检测所述承载标识是否是预定承载 标识之前, 若所述网关为分组数据网关, 则接收服务网关转发的来源于移动性 管理网元的所述预定承载标识, 所述服务网关位于所述移动性管理网元与所述 分组数据网关之间;
第二接收单元, 用于所述第二检测单元检测所述承载标识是否是预定承载 标识之前, 若所述网关为服务网关, 则接收移动性管理网元发送的所述预定承 载标识。
在第五方面的第五种可能的实现方式中, 若所述网关为所述服务网关, 则 所述检测模块, 包括:
第三检测单元, 用于检测所述 GTP-U数据包中是否携带无线接入网元的 隧道端点标识;
第三确定单元, 用于若所述第三检测单元检测的结果为所述 GTP-U数据 包中携带有无线接入网元的隧道端点标识, 则确定接收到的所述 GTP-U数据 包中传输的是预定类型的数据。
第六方面, 本发明实施例提供了一种消息网关, 所述消息网关包括: 接收模块, 用于接收网关发送的预定类型的数据和所述预定类型的数据的 目的地址, 所述预定类型的数据和所述目的地址由所述网关检测接收到的用户 平面通用分组无线服务隧道协议 GTP-U数据包中传输的是否是预定类型的数 据; 若检测结果为所述 GTP-U数据包中传输的是预定类型的数据, 则对所述 GTP-U数据包进行解封后得到;
转发模块, 用于根据所述接收模块接收到的所述目的地址对所述预定类型 的数据进行转发。
第七方面, 本发明实施例提供了一种网关, 所述网关包括:
第一接收模块, 用于接收消息网关发送的预定类型的数据和所述预定类型 的数据的目的地址;
第一转发模块, 用于对用户平面通用分组无线服务隧道协议 GTP-U数据 包进行转发, 所述 GTP-U数据包由对所述预定类型的数据和所述目的地址封 装得到。
在第七方面的第一种可能的实现方式中, 若所述网关为服务网关, 则所述 网关, 还包括:
第二转发模块, 用于所述第一转发模块对用户平面通用分组无线服务隧道 协议 GTP-U数据包进行转发之前, 向移动性管理网元发送携带预定数据指示 的下行数据通知, 以便所述移动性管理网元根据所述下行数据通知发送携带所 述预定数据指示的寻呼消息,使接收所述预定类型的数据的用户设备接收到所 述寻呼消息后, 将预存的所述服务网关的隧道端点标识发送给无线接入网元, 以便所述无线接入网元根据所述服务网关的隧道端点标识与所述服务网关建 立承载。
结合第七方面的第一种可能的实现方式, 在第七方面的第二种可能的实现 方式中, 所述第一接收模块, 用于接收分组数据网关转发的来源于所述消息网 关的所述预定类型的数据和所述目的地址, 所述分组数据网关位于所述服务网 关与所述消息网关之间。
在第七方面的第三种可能的实现方式中, 若所述网关为分组数据网关, 则 所述第一转发模块, 用于向所述服务网关转发所述预定类型的数据、 所述目的 地址和预定数据指示, 以便所述服务网关向移动性管理网元发送携带所述预定 数据指示的下行数据通知,使所述移动性管理网元根据所述下行数据通知发送 携带所述预定数据指示的寻呼消息,使接收所述预定类型的数据的用户设备接 收到所述寻呼消息后,将预存的所述服务网关的隧道端点标识发送给无线接入 网元,使所述无线接入网元根据所述服务网关的隧道端点标识与所述服务网关 建立承载, 所述服务网关将所述预定类型的数据和所述目的地址封装成所述
GTP-U数据包后, 向所述无线接入网元转发所述 GTP-U数据包, 所述服务网 第八方面, 本发明实施例提供了一种消息网关, 所述消息网关包括: 第二接收模块, 用于接收预定类型的数据和所述预定类型的数据的目的地 址;
发送模块, 用于向网关发送所述预定类型的数据和所述目的地址, 以便所 述网关接收所述消息网关发送的所述预定类型的数据和所述目的地址, 对用户 平面通用分组无线服务隧道协议 GTP-U数据包进行转发, 所述 GTP-U数据包 由对所述预定类型的数据和所述目的地址封装得到。
第九方面, 本发明实施例提供了一种网关, 所述网关包括:
第一处理器, 用于检测接收到的用户平面通用分组无线服务隧道协议 GTP-U数据包中传输的是否是预定类型的数据; 若检测结果为所述 GTP-U数 据包中传输的是预定类型的数据, 则对所述 GTP-U数据包进行解封, 得到所 述预定类型的数据和所述预定类型的数据的目的地址;
第一发射机, 用于将所述第一处理器解封后得到的预定类型的数据和所述 目的地址发送给消息网关, 以便所述消息网关根据所述目的地址对所述预定类 型的数据进行转发。
在第九方面的第一种可能的实现方式中, 所述第一处理器, 用于获取所述 GTP-U数据包包头中的消息类型;检测所述消息类型是否是预定消息类型; 若 检测结果为所述消息类型是预定消息类型, 则确定接收到的所述 GTP-U数据 包中传输的是预定类型的数据。 结合第九方面的第一种可能的实现方式, 在第九方面的第二种可能的实现 方式中, 若所述网关为分组数据网关, 则所述消息类型由无线接入网元或位于 所述无线接入网元与所述分组数据网关之间的服务网关预先设置;
若所述网关为服务网关, 则所述消息类型由无线接入网元预先设置。 在第九方面的第三种可能的实现方式中, 所述第一处理器, 用于获取承载 所述 GTP-U数据包的承载标识; 检测所述承载标识是否是预定承载标识; 若 检测结果为所述承载标识是预定承载标识, 则确定接收到的所述 GTP-U数据 包中传输的是预定类型的数据。
结合第九方面的第三种可能的实现方式, 在第九方面的第四种可能的实现 方式中, 所述网关, 还包括:
第一接收机, 用于所述第一处理器检测所述承载标识是否是预定承载标识 之前, 若所述网关为分组数据网关, 则接收服务网关转发的来源于移动性管理 网元的所述预定承载标识, 所述服务网关位于所述移动性管理网元与所述分组 数据网关之间; 若所述网关为服务网关, 则接收移动性管理网元发送的所述预 定 载标识。
在第九方面的第五种可能的实现方式中, 所述第一处理器, 还用于若所述 网关为服务网关, 则检测所述 GTP-U数据包中是否携带无线接入网元的隧道 端点标识; 若检测结果为所述 GTP-U数据包中携带有无线接入网元的隧道端 点标识, 则确定接收到的所述 GTP-U数据包中传输的是预定类型的数据。
第十方面, 本发明实施例提供了一种消息网关, 所述消息网关包括: 第二接收机, 用于接收网关发送的预定类型的数据和所述预定类型的数据 的目的地址, 所述预定类型的数据和所述目的地址由所述网关检测接收到的用 户平面通用分组无线服务隧道协议 GTP-U数据包中传输的是否是预定类型的 数据; 若检测结果为所述 GTP-U数据包中传输的是预定类型的数据, 则对所 述 GTP-U数据包进行解封后得到;
第二处理器, 用于控制第二发射机根据所述第二接收机接收到的所述目的 地址对所述预定类型的数据进行转发;
所述第二发射机, 用于在所述第二处理器的控制下, 根据所述第二接收机 接收到的所述目的地址对所述预定类型的数据进行转发。
第十一方面, 本发明实施例提供了一种网关, 所述网关包括:
第一接收机, 用于接收消息网关发送的预定类型的数据和所述预定类型的 数据的目的地址;
第一处理器, 用于控制第一发射机对用户平面通用分组无线服务隧道协议
GTP-U数据包进行转发, 所述 GTP-U数据包由对所述第一接收机接收到的所 述预定类型的数据和所述目的地址封装得到;
所述第一发射机, 用于在所述第一处理器的控制下, 对所述 GTP-U数据 包进行转发。
在第十一方面的第一种可能的实现方式中, 若所述网关为服务网关, 则所 述第一发射机, 用于对用户平面通用分组无线服务隧道协议 GTP-U数据包进 行转发之前, 向移动性管理网元发送携带预定数据指示的下行数据通知, 以便 所述移动性管理网元根据所述下行数据通知发送携带所述预定数据指示的寻 呼消息, 使接收所述预定类型的数据的用户设备接收到所述寻呼消息后, 将预 存的所述服务网关的隧道端点标识发送给无线接入网元, 以便所述无线接入网 元根据所述服务网关的隧道端点标识与所述服务网关建立承载。
结合第十一方面的第一种可能的实现方式, 在第十一方面的第二种可能的 实现方式中, 所述第一接收机, 用于接收分组数据网关转发的来源于所述消息 网关的所述预定类型的数据和所述目的地址, 所述分组数据网关位于所述 务 网关与所述消息网关之间。
在第十一方面的第三种可能的实现方式中, 若所述网关为分组数据网关, 则所述第一发射机, 用于向服务网关转发所述预定类型的数据、 所述目的地址 和预定数据指示, 以便所述服务网关向移动性管理网元发送携带所述预定数据 指示的下行数据通知,使所述移动性管理网元根据所述下行数据通知发送携带 所述预定数据指示的寻呼消息,使接收所述预定类型的数据的用户设备接收到 所述寻呼消息后, 将预存的所述服务网关的隧道端点标识发送给无线接入网 元,使所述无线接入网元根据所述服务网关的隧道端点标识与所述服务网关建 立承载, 所述服务网关将所述预定类型的数据和所述目的地址封装成所述 GTP-U数据包后, 向所述无线接入网元转发所述 GTP-U数据包, 所述服务网 第十二方面, 本发明实施例提供了一种消息网关, 所述消息网关包括: 第二接收机, 用于接收预定类型的数据和所述预定类型的数据的目的地 址;
第二处理器, 用于控制第二发射机向网关发送所述第二接收机接收到的所 述预定类型的数据和所述目的地址;
所述第二发射机, 用于在所述第二处理器的控制下, 向所述网关发送所述 第二接收机接收到的所述预定类型的数据和所述目的地址, 以便所述网关接收 所述消息网关发送的所述预定类型的数据和所述目的地址,对用户平面通用分 组无线服务隧道协议 GTP-U数据包进行转发, 所述 GTP-U数据包由对所述预 定类型的数据和所述目的地址封装得到。
第十三方面, 本发明实施例提供了一种数据传输系统, 所述系统包括: 如第五方面所述的网关和如第六方面所述的消息网关; 或,
如第七方面所述的网关和如第八方面所述的消息网关。
第十四方面, 本发明实施例提供了一种数据传输系统, 所述系统包括: 如第九方面所述的网关和如第十方面所述的消息网关; 或,
如第十一方面所述的网关和如第十二方面所述的消息网关。
本发明实施例提供的技术方案的有益效果是:
通过检测接收到的 GTP-U数据包中传输的是否是预定类型的数据; 若检 测结果为所述 GTP-U数据包中传输的是预定类型的数据, 则对所述 GTP-U数 据包进行解封, 得到所述预定类型的数据和所述预定类型的数据的目的地址; 将所述预定类型的数据和所述目的地址发送给消息网关,解决了在小数据之前 添加 IP包头会降低 IP数据包的净荷, 降低了数据传输效率的问题, 达到了提 高数据传输效率的效果。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所 需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术提供的 EPS的架构示意图;
图 2是本发明实施例一提供的数据传输方法的方法流程图;
图 3是本发明实施例一提供的数据传输系统的应用示意图;
图 4是本发明实施例二提供的数据传输方法的方法流程图;
图 5是本发明实施例二提供的数据传输系统的第一种应用示意图; 图 6是本发明实施例二提供的数据传输系统的第二种应用示意图; 图 7是本发明实施例三提供的数据传输方法的方法流程图;
图 8是本发明实施例三提供的数据传输系统的应用示意图;
图 9是本发明实施例四提供的数据传输方法的方法流程图;
图 10是本发明实施例四提供的数据传输系统的应用示意图;
图 11是本发明实施例五提供的数据传输方法的方法流程图;
图 12是本发明实施例五提供的数据传输系统的应用示意图;
图 13是本发明实施例六提供的数据传输系统的结构示意图;
图 14是本发明实施例七提供的数据传输系统的结构示意图;
图 15是本发明实施例八提供的数据传输系统的结构示意图;
图 16是本发明实施例九提供的数据传输系统的结构示意图;
图 17是本发明实施例十提供的数据传输系统的结构示意图;
图 18是本发明实施例十一提供的数据传输系统的结构示意图;
图 19是本发明实施例十二提供的数据传输系统的结构示意图;
图 20是本发明实施例十三提供的数据传输系统的结构示意图;
图 21是本发明实施例十五提供的数据传输系统的结构示意图;
图 22是本发明实施例十六提供的数据传输系统的结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明 实施方式作进一步地详细描述。 实施例一
请参见图 2,其示出了本发明实施例一提供的数据传输方法的方法流程图, 该数据传输方法为上行数据发送方法, 可以应用于 EPS中。 该数据传输方法, 可以包括:
步骤 201 ,网关检测接收到的 GTP-U数据包中传输的是否是预定类型的数 据,若检测结果为 GTP-U数据包中传输的是预定类型的数据,则执行步骤 202;
GTP-U数据包由对空口上接收到的数据进行 GTP-U协议封装后得到。 若 空口上接收到的是 IP数据包,则可以将该 IP数据包封装成 GTP-U数据包进行 传输。 若空口上接收到的是非 IP数据包的预定类型的数据, 则可以直接将预 定类型的数据封装成 GTP-U数据包进行传输, 避免了在预定类型的数据之前 添加 IP 包头造成的降低数据传输效率的问题。 其中, 预定类型的数据可以是 小数据, 也可以是其他类型的数据, 本实施例不作限定。 小数据可以是应用程 序产生的消息, 包括状态消息、 位置消息、 心跳消息和实时消息等; 也可以是
SIP信令、 Push消息和控制消息等。
由于 GTP-U数据包中传输的可以是非 IP数据包的预定类型的数据, 也可 以是 IP数据包, 因此, 网关在接收到 GTP-U数据包后, 需要检测该 GTP-U数 据包中传输的是否是预定类型的数据, 若检测结果为该 GTP-U数据包中传输 的是预定类型的数据, 则执行步骤 202; 若检测结果为该 GTP-U数据包中传输 的不是预定类型的数据, 则按照现有的 EPS流程处理该 GTP-U数据包, 本实 施例不作赘述。
步骤 202, 网关对 GTP-U数据包进行解封,得到预定类型的数据和预定类 型的数据的目的地址;
由于网关检测到该 GTP-U数据包中传输的是预定类型的数据, 因此, 网 关可以对该 GTP-U数据包进行解封, 得到预定类型的数据。 优选地, 还可以 将预定类型的数据的目的地址与该预定类型的数据一起进行封装, 以便网关解 封 GTP-U数据包后, 可以根据该目的地址发送该预定类型的数据。
步骤 203, 网关将预定类型的数据和目的地址发送给消息网关;
消息网关可以是 EPS中新增的网关,该消息网关支持新定义的基于预定类 型的数据的传输协议, 则网关可以通过该传输协议将预定类型的数据和目的地 址发送给消息网关。
步骤 204, 消息网关接收网关发送的预定类型的数据和预定类型的数据的 目的地址;
基于新定义的预定类型的数据的传输协议, 消息网关可以接收网关发送的 预定类型的数据和目的地址。
步骤 205 , 消息网关根据目的地址对预定类型的数据进行转发。
消息网关可以连接到 Push服务器、 P-CSCF ( Proxy Call Session Control Function, 代理呼叫会话控制)、 应用服务器及集群通信系统等, 请参考图 3所 示的数据传输系统的应用示意图。 因此, 消息网关可以根据接收到的目的地址 确定该预定类型的数据所对应的服务器或系统,从而将该预定类型的数据转发 给该服务器或系统。 其中, Push服务器用来传输 Push消息, P-CSCF用来传输 SIP信令、 应用服务器用来传输小数据包, 集群系统用来传输控制消息等。 综上所述, 本发明实施例提供的数据传输方法,通过检测接收到的 GTP-U 数据包中传输的是否是预定类型的数据; 若检测结果为所述 GTP-U数据包中 传输的是预定类型的数据, 则对所述 GTP-U数据包进行解封, 得到所述预定 类型的数据和所述预定类型的数据的目的地址; 将所述预定类型的数据和所述 目的地址发送给消息网关, 解决了在小数据之前添加 IP包头会降低 IP数据包 的净荷, 降低了数据传输效率的问题, 达到了提高数据传输效率的效果。 实施例二
请参见图 4,其示出了本发明实施例二提供的数据传输方法的方法流程图, 该数据传输方法为上行数据发送方法, 可以应用于 EPS中。 该数据传输方法, 可以包括:
步骤 401 , 网关获取 GTP-U数据包包头中的消息类型;
GTP-U数据包由对空口上接收到的数据进行 GTP-U协议封装后得到。 若 空口上接收到的是 IP数据包,则可以将该 IP数据包封装成 GTP-U数据包进行 传输。 若空口上接收到的是非 IP数据包的预定类型的数据, 则可以直接将预 定类型的数据封装成 GTP-U数据包进行传输, 避免了在预定类型的数据之前 添加 IP 包头造成的降低数据传输效率的问题。 其中, 预定类型的数据可以是 小数据, 也可以是其他类型的数据, 本实施例不作限定。 小数据可以是应用程 序产生的消息, 包括状态消息、 位置消息、 心跳消息和实时消息等; 也可以是 SIP信令、 Push消息和控制消息等。
在封装 GTP-U数据包之前,由于 GTP-U数据包由无线接入网元封装得到, 因此, 若 GTP-U数据包中传输的是预定类型的数据, 则无线接入网元在封装 该 GTP-U数据包之前, 首先需要接收用户设备发送的预定类型的数据。 具体 地, 用户设备可以对数据的数据类型进行检测, 若检测结果为数据是预定类型 的数据, 则通过优化的空口消息将该预定类型的数据发送给无线接入网元, 其 中, 优化的空口消息是基于现有消息的改进, 本实施例不作赘述; 若检测结果 为数据不是预定类型的数据, 则通过现有的 IP传输路径将数据发送给无线接 入网元。 具体地, UE可以根据数据的大小、 数据的数量或应用程序指定的数 据类型等检测数据是否是预定类型的数据, 本实施例不对检测预定类型的数据 的方法作限定。
优选地,还可以将预定类型的数据的目的地址与该预定类型的数据一起进 行封装, 以便网关解封 GTP-U数据包后, 可以根据该目的地址发送该预定类 型的数据。
在封装 GTP-U数据包时,由于 GTP-U数据包中传输的可以是非 IP数据包 的预定类型的数据, 也可以是 IP数据包, 因此, 为了对 GTP-U数据包中传输 的数据进行区分, 还可以预先对 GTP-U数据包包头中的消息类型进行设置。 比如, 可以对该 GTP-U数据包包头中的消息类型( Message Type )的数值进行 设置, 以标识该 GTP-U数据包中传输的是预定类型的数据。 具体地, GTP-U 数据包包头中的消息类型定义了 256个数值, 则可以从该 256个数值中选择任 意一个数值, 比如 00000001 , 则若 GTP-U数据包中传输的是预定类型的数据, 则将该 GTP-U数据包包头中的消息类型设置为 00000001 , 以标识该 GTP-U数 据包的传输的是预定类型的数据。
需要补充说明的是, 若本实施例中的网关为分组数据网关, 则消息类型可 以由无线接入网元或位于无线接入网元与分组数据网关之间的服务网关预先 设置;若本实施例中的网关为服务网关,则消息类型由无线接入网元预先设置。
若消息类型由无线接入网元设置, 则无论网关是服务网关还是分组数据网 关, 均可以根据消息类型确定 GTP-U数据包中传输的是预定类型的数据。 若 网关为分组数据网关且无线接入网元未设置消息类型, 则服务网关可以根据无 线接入网元的隧道端点标识检测接收到的 GTP-U数据包中传输的是否是预定 类型的数据, 若检测结果为 GTP-U数据包中传输的是预定类型的数据, 则可 以对 GTP-U数据包包头中的消息类型进行设置, 以便分组数据网关可以根据 设置后的消息类型确定 GTP-U数据包中传输的是预定类型的数据。 对消息类 型的设置方法详见上述描述, 此处不赘述。
具体地, 若网关为服务网关, 则检测接收到的 GTP-U数据包中传输的是 否是预定类型的数据, 可以包括:
检测 GTP-U数据包中是否携带无线接入网元的隧道端点标识;
若检测结果为 GTP-U数据包中携带有无线接入网元的隧道端点标识, 则 确定接收到的 GTP-U数据包中传输的是预定类型的数据。
其中, 无线接入网元的隧道端点标识用来与服务网关建立承载, 可以携带 在 GTP-U数据包发送给服务网关。
在封装 GTP-U数据包之后, 无线接入网元可以将该 GTP-U数据包发送给 服务网关, 若本实施例中的网关为服务网关, 则服务网关可以对接收到的 GTP-U数据包进行处理; 若本实施例中的网关为分组数据网关, 则服务网关接 收到 GTP-U数据包后, 将该 GTP-U数据包转发给分组数据网关, 由分组数据 对该 GTP-U数据包进行处理。
具体地, 在无线接入网元向服务网关发送 GTP-U数据包时, 为了区别于 现有的通过服务请求 Service Request消息预先建立网关与无线接入网元之间的 传输通道, 再通过该传输通道传输数据的方法, 避免用户设备建立或恢复空口 侧用户平面承载造成的信令开销增加的问题, 可以在附着流程中将服务网关的 隧道端点标识发送给用户设备。用户设备发送数据时将服务网关的隧道端点标 识一并发送给无线接入网元, 无线接入网元根据该隧道端点标识与服务网关建 立承载, 并将无线接入网元的隧道端点标识发送给服务网关, 以便服务网关在 上下文信息中保存该无线接入网元的隧道端点标识,从而通过建立的承载传输
GTP-U数据包。 其中, 服务网关的隧道端点标识可以在承载建立、 修改等会话 管理流程中由网络侧提供给用户设备。 优选地, 服务网关的隧道端点标识可以 具体是服务网关的 Sl-U F-TEID ( Sl-User Fully Qualified Tunnel Endpoint Identifier, 用户平面 SI接口完全合格隧道端点标识); 无线接入网元的隧道端 点标识可以具体是无线接入网元的 S1-U F-TEID, 本实施例不作限定。
网关接收到 GTP-U数据包后, 可以对 GTP-U数据包进行解密和完整性验 证, 并读取该 GTP-U数据包包头中的消息类型的数值, 继续执行步骤 402。
步骤 402, 网关检测消息类型是否是预定消息类型; 若检测结果为消息类 型是预定消息类型, 则确定执行步骤 403;
网关可以预先设置预定消息类型的预定数值, 比如, GTP-U数据包包头中 的消息类型 ( Message Type )定义了 256个值, 可以任意选择一个数值作为预 定数值, 并将步骤 401获取的消息类型的数值与预定数值进行比较。 若比较结 果为该数值与预定数值相同, 则确定 GTP-U数据包传输的是预定类型的数据, 执行步骤 403; 若比较结果为该数值与预定数值不同, 则确定 GTP-U数据包传 输的不是预定类型的数据, 按照现有的 EPS流程处理该 GTP-U数据包, 本实 施例不作赘述。
步骤 403 , 网关对 GTP-U数据包进行解封,得到预定类型的数据和预定类 型的数据的目的地址;
由于网关检测到该 GTP-U数据包中传输的是预定类型的数据, 因此, 网 关可以对该 GTP-U数据包进行解封, 得到预定类型的数据和目的地址。 其中, 该目的地址是最终接收该预定类型的数据的设备, 比如, 服务器或系统等, 本 实施例不作限定。
步骤 404, 网关将预定类型的数据和目的地址发送给消息网关;
消息网关可以是 EPS中新增的网关,该消息网关支持新定义的基于预定类 型的数据的传输协议, 则网关可以通过该传输协议将预定类型的数据和目的地 址发送给消息网关。 其中, 新定义的预定类型的数据的传输协议可以是
Message- AP ( Message- Access Point, 消息-接入点)协议等, 本实施例不作限 定。
步骤 405, 消息网关接收网关发送的预定类型的数据和预定类型的数据的 目的地址;
基于新定义的预定类型的数据的传输协议, 消息网关可以接收网关发送的 预定类型的数据和目的地址。
步骤 406, 消息网关根据目的地址对预定类型的数据进行转发。
由于消息网关可以连接到 Push服务器、 P-CSCF、 应用服务器及集群通信 系统等, 因此, 消息网关可以根据接收到的目的地址确定该预定类型的数据所 对应的设备, 从而将该预定类型的数据转发给该设备。 其中, Push服务器用来 传输 Push消息, P-CSCF用来传输 SIP信令、 应用服务器用来传输小数据包, 集群系统用来传输控制消息等。
请参考图 5 , 本实施例还提供了上述方法的第一种具体应用流程示意图, 则数据传输的过程具体如下:
步骤 501 , 数据发送方向用户设备发起数据发送请求;
步骤 502, 用户设备通过优化的空口消息向无线接入网元发送预定类型的 数据、 服务网关的 S1-U F-TEID;
步骤 503,无线接入网元为预定类型的数据分配新的无线接入网元的 S1-U F-TEID, 将预定类型的数据封装成 GTP-U数据包, 并设置 GTP-U数据包包头 中的消息类型;
步骤 504, 无线接入网元通过服务网关的 Sl-U F-TEID 向服务网关发送 GTP-U数据包;
步骤 505 , 服务网关根据 GTP-U数据包中携带的无线接入网元的 S1-U F-TEID和 /或 GTP-U数据包包头中的消息类型确定该 GTP-U数据包传输的是 预定类型的数据, 执行步骤 506; 步骤 506,服务网关通过 Message- AP协议向消息网关发送 GTP-U数据包; 步骤 507, 消息网关通过 Message-AP协议向服务网关返回确认消息; 步骤 508, 服务网关通过 GTP-U协议向无线接入网元返回确认消息; 步骤 509 , 无线接入网元通过优化的空口消息向用户设备返回确认消息; 步骤 510, 用户设备向数据发送方返回确认消息。
请参考图 6, 本实施例还提供了上述方法的第二种具体应用流程示意图, 则数据传输的过程具体如下:
步骤 601 , 数据发送方向用户设备发起数据发送请求;
步骤 602, 用户设备通过优化的空口消息向无线接入网元发送预定类型的 数据、 服务网关的 S1-U F-TEID;
步骤 603,无线接入网元为预定类型的数据分配新的无线接入网元的 S1-U F-TEID, 将预定类型的数据封装成 GTP-U数据包, 并设置 GTP-U数据包包头 中的消息类型;
步骤 604, 无线接入网元通过服务网关的 Sl-U F-TEID 向服务网关发送 GTP-U数据包;
步骤 605 , 服务网关根据 GTP-U数据包中携带的无线接入网元的 S1-U F-TEID和 /或 GTP-U数据包包头中的消息类型确定该 GTP-U数据包传输的是 预定类型的数据, 执行步骤 606;
进一步地, 若无线接入网元未设置 GTP-U数据包包头中的消息类型, 则 服务网关需要对该消息类型进行设置, 以便分组数据网关根据该消息类型确定 该 GTP-U数据包传输的是预定类型的数据。
步骤 606,服务网关通过 GTP-U协议向分组数据网关发送 GTP-U数据包; 步骤 607 , 分组数据网关通过 Message-AP协议向消息网关发送 GTP-U数 据包;
步骤 608, 消息网关通过 Message-AP协议向分组数据网关返回确认消息; 步骤 609, 分组数据网关通过 GTP-U协议向服务网关返回确认消息; 步骤 610, 服务网关通过 GTP-U协议向无线接入网元返回确认消息; 步骤 611 , 无线接入网元通过优化的空口消息向用户设备返回确认消息; 步骤 612, 用户设备向数据发送方返回确认消息。
综上所述, 本发明实施例提供的数据传输方法,通过检测接收到的 GTP-U 数据包中传输的是否是预定类型的数据; 若检测结果为所述 GTP-U数据包中 传输的是预定类型的数据, 则对所述 GTP-U数据包进行解封, 得到所述预定 类型的数据和所述预定类型的数据的目的地址; 将所述预定类型的数据和所述 目的地址发送给消息网关, 解决了在小数据之前添加 IP包头会降低 IP数据包 的净荷, 降低了数据传输效率的问题,达到了提高数据传输效率的效果。另夕卜, 通过检测所述 GTP-U数据包中是否携带无线接入网元的隧道端点标识; 若检 测结果为所述 GTP-U数据包中携带有无线接入网元的隧道端点标识, 则确定 接收到的所述 GTP-U数据包中传输的是预定类型的数据, 解决了需要根据 Service Request消息预先建立服务网关与无线接入网元之间的传输通道, 再通 过该传输通道传输数据造成的信令浪费的问题, 达到了节省信令的效果。 实施例三
请参见图 7,其示出了本发明实施例三提供的数据传输方法的方法流程图, 该数据传输方法为上行数据发送方法, 可以应用于 EPS中。 该数据传输方法, 可以包括:
步骤 701 , 网关获取承载 GTP-U数据包的承载标识;
GTP-U数据包由对空口上接收到的数据进行 GTP-U协议封装后得到。 若 空口上接收到的是 IP数据包,则可以将该 IP数据包封装成 GTP-U数据包进行 传输。 若空口上接收到的是非 IP数据包的预定类型的数据, 则可以直接将预 定类型的数据封装成 GTP-U数据包进行传输, 避免了在预定类型的数据之前 添加 IP 包头造成的降低数据传输效率的问题。 其中, 预定类型的数据可以是 小数据, 也可以是其他类型的数据, 本实施例不作限定。 小数据可以是应用程 序产生的消息, 包括状态消息、 位置消息、 心跳消息和实时消息等; 也可以是 SIP信令、 Push消息和控制消息等。
优选地,还可以将预定类型的数据的目的地址与该预定类型的数据一起进 行封装, 以便网关解封 GTP-U数据包后, 可以根据该目的地址发送该预定类 型的数据。
由于 GTP-U数据包中传输的可以是非 IP数据包的预定类型的数据, 也可 以是 IP数据包, 因此, 为了对 GTP-U数据包中传输的数据进行区分, 还可以 预先建立与服务网关的预定承载, 该预定承载用来传输预定类型的数据。
具体地, 用户设备可以在附着过程中向移动性管理网元请求建立一条专用 于传输预定类型的数据的预定承载,移动性管理网元接收到用户设备发送的请 求后, 可以根据该请求、 用户设备的签约信息和网关的能力等确定建立该预定 承载, 并在发送给网关的创建会话请求消息中指示该预定承载用于传输预定类 型的数据, 则网关可以对该预定承载的承载标识等信息进行存储, 以便根据该 预定承载标识确定传输的是预定类型的数据。
需要补充说明的是,检测承载标识是否是预定承载标识之前,还可以包括: 若网关为分组数据网关, 则接收服务网关转发的来源于移动性管理网元的预定 承载标识, 服务网关位于移动性管理网元与分组数据网关之间; 若网关为服务 网关, 则接收移动性管理网元发送的预定承载标识。
其中, 移动性管理网元可以将预定承载标识发送给服务网关, 若本实施例 中的网关为分组数据网关, 则服务网关接收到预定承载标识后, 将该预定承载 标识转发给分组数据网关, 分组数据网关可以对该预定承载标识进行存储; 若 本实施例中的网关为服务网关, 则服务网关可以对该预定承载标识进行存储。
步骤 702, 网关检测承载标识是否是预定承载标识, 若检测结果为承载标 识是预定承载标识, 则确定执行步骤 703;
网关可以将步骤 701获取的承载标识与预存的预定承载标识进行比较, 若 比较结果为该承载标识与预定承载标识相同, 则确定 GTP-U数据包传输的是 预定类型的数据, 执行步骤 703; 若比较结果为该承载标识与预定承载标识不 同, 则确定 GTP-U数据包传输的不是预定类型的数据, 则按照现有的 EPS流 程处理该 GTP-U数据包, 本实施例不作赘述。
步骤 703 , 网关对 GTP-U数据包进行解封,得到预定类型的数据和预定类 型的数据的目的地址;
由于网关检测到该 GTP-U数据包中传输的是预定类型的数据, 因此, 网 关可以对该 GTP-U数据包进行解封, 得到预定类型的数据和目的地址。 其中, 该目的地址是最终接收该预定类型的数据的设备, 比如, 服务器或系统等, 本 实施例不作限定。
步骤 704, 网关将预定类型的数据和目的地址发送给消息网关;
消息网关可以是 EPS中新增的网关,该消息网关支持新定义的基于预定类 型的数据的传输协议, 则网关可以通过该传输协议将预定类型的数据和目的地 址发送给消息网关。 其中, 新定义的预定类型的数据的传输协议可以是 Message- AP协议等, 本实施例不作限定。
步骤 705, 消息网关接收网关发送的预定类型的数据和预定类型的数据的 目的地址;
基于新定义的预定类型的数据的传输协议, 消息网关可以接收网关发送的 预定类型的数据和目的地址。
步骤 706, 消息网关根据目的地址对预定类型的数据进行转发。
由于消息网关可以连接到 Push服务器、 P-CSCF、 应用服务器及集群通信 系统等, 因此, 消息网关可以根据接收到的目的地址确定该预定类型的数据所 对应的设备, 从而将该预定类型的数据转发给该设备。 其中, Push服务器用来 传输 Push消息, P-CSCF用来传输 SIP信令、 应用服务器用来传输小数据包, 集群系统用来传输控制消息等。
请参考图 8, 本实施例还提供了建立预定承载的具体流程示意图, 则建立 预定数据承载的过程具体如下:
步骤 801 , 用户设备向无线接入网元发送附着请求;
步骤 802, 无线接入网元向移动性管理网元发送附着请求;
步骤 803, 移动性管理网元与归属用户服务器进行安全认证;
步骤 804, 移动性管理网元根据用户设备请求、 用户设备的签约信息和服 务网关的能力等确定建立用于传输预定类型的数据的预定承载;
步骤 805, 移动性管理网元向服务网关发送创建会话请求, 该创建会话请 求中指示该预定承载用于传输预定类型的数据;
步骤 806, 服务网关存储该预定承载的上下文信息, 获知该预定承载用于 传输预定类型的数据;
步骤 807 , 服务网关向分组数据网关发送创建会话请求, 该创建会话请求 中指示该预定承载用于传输预定类型的数据;
步骤 808, 分组数据网关存储该预定承载的上下文信息, 获知该预定承载 用于传输预定类型的数据;
步骤 809, 分组数据网关向服务网关发送创建会话响应;
步骤 810, 服务网关向移动性管理网元发送创建会话响应;
步骤 811 ,移动性管理网元向无线接入网元发送服务网关的隧道端点标识, 该隧道端点标识可以是服务网关 的 S 1 -U F-TEID;
步骤 812, 无线接入网元向用户设备发送服务网关的隧道端点标识, 该隧 道端点标识可以是服务网关的 Sl-U F-TEID。
综上所述, 本发明实施例提供的数据传输方法,通过检测接收到的 GTP-U 数据包中传输的是否是预定类型的数据; 若检测结果为所述 GTP-U数据包中 传输的是预定类型的数据, 则对所述 GTP-U数据包进行解封, 得到所述预定 类型的数据和所述预定类型的数据的目的地址; 将所述预定类型的数据和所述 目的地址发送给消息网关, 解决了在小数据之前添加 IP包头会降低 IP数据包 的净荷, 降低了数据传输效率的问题,达到了提高数据传输效率的效果。另夕卜, 通过检测所述承载标识是否是预定承载标识; 若检测结果为所述承载标识是预 定承载标识, 则确定接收到的所述 GTP-U数据包中传输的是预定类型的数据, 解决了需要根据 Service Req用户设备 st消息预先建立网关与无线接入网元之 间的传输通道, 再通过该传输通道传输数据造成的信令浪费的问题, 达到了节 省信令的效果。 实施例四
请参见图 9,其示出了本发明实施例四提供的数据传输方法的方法流程图, 该数据传输方法为下行数据接收方法, 可以应用于 EPS中。 该数据传输方法, 可以包括:
步骤 901 , 消息网关接收预定类型的数据和预定类型的数据的目的地址; 预定类型的数据可以是小数据, 也可以是其他类型的数据, 本实施例不作 限定。 小数据可以是应用程序产生的消息, 包括状态消息、 位置消息、 心跳消 息和实时消息等; 也可以是 SIP信令、 Push消息和控制消息等。
由于消息网关可以连接到 Push服务器、 P-CSCF、 应用服务器及集群通信 系统等,因此,消息网关可以从连接的设备中接收预定类型的数据和目的地址, 当然也可以通过其他方式获取预定类型的数据, 本实施例不作限定。
步骤 902, 消息网关向网关发送预定类型的数据和目的地址;
消息网关可以根据目的地址将该预定类型的数据发送到目的节点所属的 网络中, 该目的节点由目的地址所标识, 以便网关可以对 GTP-U数据包进行 转发, GTP-U数据包由对预定类型的数据和目的地址封装得到;
步骤 903 , 网关接收预定类型的数据和预定类型的数据的目的地址; 基于新定义的预定类型的数据的传输协议, 网关可以接收消息网关发送的 预定类型的数据和目的地址。
步骤 904, 网关对 GTP-U数据包进行转发, GTP-U数据包由对预定类型 的数据和目的地址封装得到。 由于网关可以通过 GTP-U协议发送该预定类型的数据和目的地址, 因此, 网关需要将该预定类型的数据和目的地址封装成 GTP-U数据包,并对该 GTP-U 数据包进行转发。
综上所述, 本发明实施例提供的数据传输方法, 通过接收消息网关发送的 预定类型的数据和所述预定类型的数据的目的地址; 对用户平面通用分组无线 服务隧道协议 GTP-U数据包进行转发, 所述 GTP-U数据包由对所述预定类型 的数据和所述目的地址封装得到, 解决了在小数据之前添加 IP包头会降低 IP 数据包的净荷,降低了数据传输效率的问题,达到了提高数据传输效率的效果。 实施例五
请参见图 10, 其示出了本发明实施例五提供的数据传输方法的方法流程 图, 该数据传输方法为下行数据接收方法, 可以应用于 EPS中。 本实施例以网 关为服务网关为例进行说明, 则该数据传输方法, 可以包括:
步骤 1001 , 消息网关接收预定类型的数据和预定类型的数据的目的地址; 具体地, 消息网关接收预定类型的数据和目的地址的流程详见步骤 901中 的描述。
步骤 1002, 消息网关向网关发送预定类型的数据和目的地址;
本实施例中, 消息网关可以根据目的地址将该预定类型的数据发送到目的 节点所属的网络中, 该目的节点由目的地址所标识。 具体地, 可以根据新定义 的预定类型的数据的传输协议 Message AP协议对该预定类型的数据和目的地 址进行发送,以便网关可以对根据预定类型的数据和目的地址封装成的 GTP-U 数据包进行转发。
步骤 1003, 网关接收预定类型的数据和预定类型的数据的目的地址; 基于新定义的预定类型的数据的传输协议 Message-AP协议, 网关可以接 收消息网关发送的预定类型的数据和目的地址。
本实施例中的网关为 EPS中的服务网关,则服务网关可以直接接收消息网 关发送的预定类型的数据和目的地址, 也可以接收分组数据网关转发的预定类 型的数据和目的地址。
具体地,接收消息网关发送的预定类型的数据和预定类型的数据的目的地 址, 可以包括:
接收分组数据网关转发的来源于消息网关的预定类型的数据和目的地址, 分组数据网关位于服务网关与消息网关之间。
由于分组数据网关位于服务网关与消息网关之间, 因此, 分组数据网关可 以接收消息网关发送的预定类型的数据和目的地址, 并将该预定类型的数据和 目的地址转发给服务网关。
步骤 1004, 网关向移动性管理网元发送携带预定数据指示的下行数据通 知, 以便移动性管理网元根据下行数据通知发送携带预定数据指示的寻呼消 息, 使接收预定类型的数据的用户设备接收到寻呼消息后, 将预存的服务网关 的隧道端点标识发送给无线接入网元, 以便无线接入网元根据服务网关的隧道 端点标识与服务网关建立承载;
若服务网关接收到的是消息网关发送的数据, 则服务网关可以确定该数据 为预定类型的数据, 此时, 预定数据指示可以由服务网关或消息网关生成; 若 服务网关接收到的是分组数据网关发送的数据, 则预定数据指示可以由分组数 据网关或消息网关生成。
具体地, 可以在寻呼消息中设置标志位来标识预定数据指示。 比如, 可以 通过将该标志位设置为 0来标识预定类型的数据; 或者, 可以通过将标志位设 置为 1来标识预定类型的数据, 当然还有其他方式设置寻呼消息中的预定数据 指示, 本实施例不作限定。
在发送下行数据通知时, 由于网关并不确定用户设备的位置, 因此, 服务 网关可以向移动性管理网元发送携带预定数据指示的下行数据通知,使移动性 管理网元向一定区域内的所有用户设备发送携带预定数据指示的寻呼消息, 以 便需要接收数据的用户设备接收到该寻呼消息后,可以明确该数据是预定类型 的数据, 则可以通过预定承载接收该预定类型的数据。 区别于现有的通过 Service Request消息预先建立网关与无线接入网元之间的传输通道, 再通过该 传输通道传输数据的方法, 本实施例中, 服务网关可以在附着流程中将服务网 关的隧道端点标识发送给用户设备, 使用户设备发送空的 IP数据包时将服务 网关的隧道端点标识一并发送给无线接入网元, 无线接入网元根据服务网关的 隧道端点标识与服务网关建立承载, 并将空的 IP数据包和无线接入网元的隧 道端点标识发送给服务网关,服务网关在上下文信息中保存该无线接入网元的 隧道端点标识,从而根据该预定承载接收服务网关转发的预定类型的数据和目 的地址。
其中, 无线接入网元可以根据服务网关的隧道端点标识与服务网关新建承 载; 或者, 无线接入网元可以根据服务网关的隧道端点标识在预先建立的至少 一个承载中选择用来传输预定类型的数据的预定承载。
步骤 1005, 网关对 GTP-U数据包进行转发, GTP-U数据包由对预定类型 的数据和目的地址封装得到。
由于服务网关可以通过 GTP-U协议发送该预定类型的数据和目的地址, 因此, 服务网关需要将该预定类型的数据和目的地址封装成 GTP-U数据包, 并对该 GTP-U数据包进行发送。 进一步地, 还可以根据目的地址确定 GTP-U 数据包中的目的地址, 从而对该 GTP-U数据包进行发送。
请参考图 11 , 本实施例还提供了上述方法的具体应用流程示意图, 则数据 传输的过程具体如下:
步骤 1101 , 数据发送方向消息网关发送数据发送请求;
步骤 1102, 消息网关向服务网关发送预定类型的数据;
步骤 1103,服务网关向移动性管理网元发送携带预定数据指示的下行数据 通知;
步骤 1104,移动性管理网元向无线接入网元发送携带预定数据指示的寻呼 消息;
步骤 1105 , 无线接入网元向用户设备发送携带预定数据指示的寻呼消息; 步骤 1106, 用户设备通过优化的空口消息向无线接入网元发送空的数据 包、 服务网关的 S1-U F-TEID;
步骤 1107 , 无线接入网元为数据包分配新的无线接入网元的 S1-U
F-TEID, 将数据包封装成 GTP-U数据包, 通过服务网关的 S1-U F-TEID向服 务网关发送 GTP-U数据包;
步骤 1108, 服务网关根据无线接入网元的 Sl-U F-TEID向无线接入网元 发送预定类型的数据;
步骤 1109,无线接入网元通过优化的空口消息将解封后的预定类型的数据 发送给用户设备;
步骤 1110, 用户设备将预定类型的数据发送给数据接收方;
步骤 1111 , 用户设备通过优化的空口消息向无线接入网元返回确认消息; 步骤 1112, 无线接入网元通过 GTP-U协议向服务网关返回确认消息; 步骤 1113, 服务网关通过 Message AP协议向消息网关返回确认消息; 步骤 1114, 消息网关向数据发送方返回确认消息。 综上所述, 本发明实施例提供的数据传输方法, 通过接收消息网关发送的 预定类型的数据和所述预定类型的数据的目的地址; 对用户平面通用分组无线 服务隧道协议 GTP-U数据包进行转发, 所述 GTP-U数据包由对所述预定类型 的数据和所述目的地址封装得到, 解决了在小数据之前添加 IP包头会降低 IP 数据包的净荷,降低了数据传输效率的问题,达到了提高数据传输效率的效果。 另外, 通过向移动性管理网元发送携带预定数据指示的下行数据通知, 以便所 述移动性管理网元根据所述下行数据通知发送携带所述预定数据指示的寻呼 消息, 使接收所述预定类型的数据的用户设备接收到所述寻呼消息后, 将预存 的所述服务网关的隧道端点标识发送给无线接入网元, 以便所述无线接入网元 根据所述服务网关的隧道端点标识与所述服务网关建立承载, 解决了需要根据
Service Request消息预先建立网关与无线接入网元之间的传输通道, 再通过该 传输通道传输数据造成的信令浪费的问题, 达到了节省信令的效果。 实施例六
请参见图 12, 其示出了本发明实施例五提供的数据传输方法的方法流程 图, 该数据传输方法为下行数据接收方法, 可以应用于 EPS中。 本实施例以网 关为分组数据网关为例进行说明, 则该数据传输方法, 可以包括:
步骤 1201 , 消息网关接收预定类型的数据和预定类型的数据的目的地址; 具体地, 消息网关接收预定类型的数据和预定类型的数据的目的地址的流 程详见步骤 901中的描述。
步骤 1202, 消息网关向网关发送预定类型的数据和目的地址;
本实施例中, 消息网关可以根据目的地址将该预定类型的数据发送到目的 节点所属的网络中, 该目的节点由目的地址所标识。 具体地, 可以根据新定义 的预定类型的数据的传输协议 Message AP协议对该预定类型的数据进行发送, 以便网关可以对根据预定类型的数据和目的地址封装成的 GTP-U数据包进行 转发。
步骤 1203,网关接收消息网关发送的预定类型的数据和预定类型的数据的 目的地址;
基于新定义的基于预定类型的数据的传输协议 Message-AP协议, 网关可 以接收消息网关发送的预定类型的数据和目的地址。
步骤 1204, 网关向服务网关转发预定类型的数据、 目的地址和预定数据指 示, 以便服务网关向移动性管理网元发送携带预定数据指示的下行数据通知, 使移动性管理网元根据下行数据通知发送携带预定数据指示的寻呼消息,使接 收预定类型的数据的用户设备接收到寻呼消息后,将预存的服务网关的隧道端 点标识发送给无线接入网元,使无线接入网元根据服务网关的隧道端点标识与 服务网关建立承载, 服务网关将预定类型的数据和目的地址封装成 GTP-U数 据包后, 向无线接入网元转发 GTP-U数据包, 服务网关位于移动性管理网元 与分组数据网关之间。
本实施例中, 分组数据网关接收到的是消息网关发送的数据, 则分组数据 网关可以确定该数据为预定类型的数据。 其中, 预定数据指示可以由分组数据 网关或消息网关生成, 详见步骤 1004中的描述。
由于本实施例中的网关为 EPS中的分组数据网关, 因此,分组数据网关可 以将接收到的预定类型的数据、 目的地址和预定数据指示发送给服务网关, 以 便服务网关根据预定数据指示明确数据为预定类型的数据,且将该预定类型的 数据和目的地址封装成 GTP-U数据包后进行转发。
具体地,服务网关与无线接入网元建立连接以及服务网关将该预定类型的 数据和目的地址封装成 GTP-U数据包, 并对该 GTP-U数据包进行转发的流程 详见步骤 1004和步骤 1005的内容, 此处不赘述。
请参考图 13,本实施例还提供了上述方法的具体应用流程示意图, 则数据 传输的过程具体如下:
步骤 1301 , 消息网关通过 Message- AP协议向分组数据网关发送预定类型 的数据;
步骤 1302, 分组数据网关通过 GTP-U协议向服务网关发送预定类型的数 据;
步骤 1303,服务网关向移动性管理网元发送携带预定数据指示的下行数据 通知;
步骤 1304,移动性管理网元向无线接入网元发送携带预定数据指示的寻呼 消息;
步骤 1305, 无线接入网元向用户设备发送携带预定数据指示的寻呼消息; 步骤 1306, 用户设备通过优化的空口消息向无线接入网元发送空的数据 包、 服务网关的 S1-U F-TEID;
步骤 1307 , 无线接入网元为数据包分配新的无线接入网元的 S1-U F-TEID, 将数据包封装成 GTP-U数据包, 通过服务网关的 Sl-U F-TEID向服 务网关发送 GTP-U数据包;
步骤 1308, 服务网关根据无线接入网元的 Sl-U F-TEID向无线接入网元 发送预定类型的数据;
步骤 1309,无线接入网元通过优化的空口消息将预定类型的数据发送给用 户设备;
步骤 1310, 用户设备将预定类型的数据发送给数据接收方;
步骤 1311 , 用户设备通过空口消息向无线接入网元发送确认消息; 步骤 1312, 无线接入网元通过 GTP-U协议向服务网关发送确认消息; 步骤 1313, 服务网关通过 Message AP协议向消息网关发送确认消息; 步骤 1314, 消息网关向数据发送方发送确认消息。
综上所述, 本发明实施例提供的数据传输方法, 通过接收消息网关发送的 预定类型的数据和所述预定类型的数据的目的地址; 对用户平面通用分组无线 服务隧道协议 GTP-U数据包进行转发, 所述 GTP-U数据包由对所述预定类型 的数据和所述目的地址封装得到, 解决了在小数据之前添加 IP包头会降低 IP 数据包的净荷,降低了数据传输效率的问题,达到了提高数据传输效率的效果。 另外, 通过向服务网关转发所述预定类型的数据、 所述目的地址和预定数据指 示, 以便所述服务网关向移动性管理网元发送携带所述预定数据指示的下行数 据通知,使所述移动性管理网元根据所述下行数据通知发送携带所述预定数据 指示的寻呼消息,使接收所述预定类型的数据的用户设备接收到所述寻呼消息 后, 将预存的所述服务网关的隧道端点标识发送给无线接入网元, 使所述无线 接入网元根据所述服务网关的隧道端点标识与所述服务网关建立承载, 所述服 务网关将所述预定类型的数据和所述目的地址封装成所述 GTP-U数据包后, 向所述无线接入网元转发所述 GTP-U数据包, 所述服务网关位于所述移动性 管理网元与所述分组数据网关之间, 解决了需要根据 Service Request消息预先 建立网关与无线接入网元之间的传输通道,再通过该传输通道传输数据造成的 信令浪费的问题, 达到了节省信令的效果。 实施例七
请参考图 14, 其示出了本发明实施例七提供的数据传输系统的结构框架 图, 该数据传输系统可以应用于 EPS中。 该数据传输系统, 可以包括: 检测模块 1401 , 用于检测接收到的 GTP-U数据包中传输的是否是预定类 型的数据;
解封模块 1402,用于若检测模块 1401检测的结果为 GTP-U数据包中传输 的是预定类型的数据, 则对 GTP-U数据包进行解封, 得到预定类型的数据和 预定类型的数据的目的地址;
发送模块 1403 , 用于将解封模块 1403解封后得到的预定类型的数据和目 的地址发送给消息网关, 以便消息网关根据目的地址对预定类型的数据进行转 发;
接收模块 1501 ,用于接收网关发送的预定类型的数据和预定类型的数据的 目的地址, 预定类型的数据和目的地址由网关检测接收到的 GTP-U数据包中 传输的是否是预定类型的数据; 若检测结果为 GTP-U数据包中传输的是预定 类型的数据, 则对 GTP-U数据包进行解封后得到;
转发模块 1502, 用于根据接收模块 1501接收到的目的地址对预定类型的 数据进行转发。
综上所述, 本发明实施例提供的数据传输系统,通过检测接收到的 GTP-U 数据包中传输的是否是预定类型的数据; 若检测结果为所述 GTP-U数据包中 传输的是预定类型的数据, 则对所述 GTP-U数据包进行解封, 得到所述预定 类型的数据和所述预定类型的数据的目的地址; 将所述预定类型的数据和所述 目的地址发送给消息网关, 解决了在小数据之前添加 IP包头会降低 IP数据包 的净荷, 降低了数据传输效率的问题, 达到了提高数据传输效率的效果。 实施例八
请参考图 15 , 其示出了本发明实施例八提供的数据传输系统的结构框架 图, 该数据传输系统可以应用于 EPS中。 该数据传输系统, 可以包括: 网关和 消息网关; 网关可以包括检测模块 1401、 解封模块 1402和发送模块 1403; 消 息网关可以包括: 接收模块 1501和转发模块 1502;
检测模块 1401 , 用于检测接收到的 GTP-U数据包中传输的是否是预定类 型的数据;
解封模块 1402,用于若检测模块 1401检测的结果为 GTP-U数据包中传输 的是预定类型的数据, 则对 GTP-U数据包进行解封, 得到预定类型的数据和 预定类型的数据的目的地址; 发送模块 1403 , 用于将解封模块 1402解封后得到的预定类型的数据和目 的地址发送给消息网关, 以便消息网关根据目的地址对预定类型的数据进行转 发;
接收模块 1501 ,用于接收网关发送的预定类型的数据和预定类型的数据的 目的地址, 预定类型的数据和目的地址由网关检测接收到的 GTP-U数据包中 传输的是否是预定类型的数据; 若检测结果为 GTP-U数据包中传输的是预定 类型的数据, 则对 GTP-U数据包进行解封后得到;
转发模块 1502, 用于根据接收模块 1501接收到的目的地址对预定类型的 数据进行转发。
进一步地, 检测模块 1401 , 可以包括:
第一获取单元 1401 Α, 用于获取 GTP-U数据包包头中的消息类型; 第一检测单元 1401B,用于检测第一获取单元 1401A获取到的消息类型是 否是预定消息类型;
第一确定单元 1401C,用于若第一检测单元 1401B检测的结果为消息类型 是预定消息类型, 则确定接收到的 GTP-U数据包中传输的是预定类型的数据。
进一步地, 若网关为分组数据网关, 则消息类型由无线接入网元或位于无 若网关为服务网关, 则消息类型由无线接入网元预先设置。
进一步地, 检测模块 1401 , 可以包括:
第二获取单元 1401D, 用于获取承载 GTP-U数据包的承载标识; 第二检测单元 1401E,用于检测第二获取单元 1401D获取到的承载标识是 否是预定承载标识;
第二确定单元 1401F, 用于若第二检测单元 1401E检测的结果为承载标识 是预定承载标识, 则确定接收到的 GTP-U数据包中传输的是预定类型的数据。
进一步地, 检测模块 1401 , 还可以包括:
第一接收单元 1401G,用于第二检测单元 1401E检测承载标识是否是预定 承载标识之前, 若网关为分组数据网关, 则接收服务网关转发的来源于移动性 管理网元的预定承载标识, 服务网关位于移动性管理网元与分组数据网关之 间;
第二接收单元 1401H,用于第二检测单元 1401E检测承载标识是否是预定 承载标识之前, 若网关为服务网关, 则接收移动性管理网元发送的预定承载标 识。
进一步地, 若网关为服务网关, 则检测模块 1401 , 还包括:
第三检测单元 14011,用于检测 GTP-U数据包中是否携带无线接入网元的 隧道端点标识;
第三确定单元 1401J, 用于若第三检测单元 14011检测的结果为 GTP-U数 据包中携带有无线接入网元的隧道端点标识, 则确定接收到的 GTP-U数据包 中传输的是预定类型的数据。
综上所述, 本发明实施例提供的数据传输系统,通过检测接收到的 GTP-U 数据包中传输的是否是预定类型的数据; 若检测结果为所述 GTP-U数据包中 传输的是预定类型的数据, 则对所述 GTP-U数据包进行解封, 得到所述预定 类型的数据和所述预定类型的数据的目的地址; 将所述预定类型的数据和所述 目的地址发送给消息网关, 解决了在小数据之前添加 IP包头会降低 IP数据包 的净荷, 降低了数据传输效率的问题,达到了提高数据传输效率的效果。另夕卜, 通过检测所述 GTP-U数据包中是否携带无线接入网元的隧道端点标识; 若检 测结果为所述 GTP-U数据包中携带有无线接入网元的隧道端点标识, 则确定 接收到的所述 GTP-U数据包中传输的是预定类型的数据, 解决了需要根据 Service Request消息预先建立服务网关与无线接入网元之间的传输通道, 再通 过该传输通道传输数据造成的信令浪费的问题, 达到了节省信令的效果。 实施例九
请参考图 16, 其示出了本发明实施例九提供的数据传输系统的结构框架 图, 该数据传输系统可以应用于 EPS中。 该数据传输系统, 可以包括:
第二接收模块 1601 ,用于接收预定类型的数据和预定类型的数据的目的地 址;
发送模块 1602, 用于向网关发送第二接收模块 1601接收到的预定类型的 数据和目的地址, 以便网关接收消息网关发送的预定类型的数据和目的地址, 对 GTP-U数据包进行转发, GTP-U数据包由对预定类型的数据和目的地址封 装得到;
第一接收模块 1701 ,用于接收消息网关发送的预定类型的数据和预定类型 的数据的目的地址;
第一转发模块 1702, 用于对 GTP-U数据包进行转发, GTP-U数据包由对 预定类型的数据和目的地址封装得到。
综上所述, 本发明实施例提供的数据传输系统, 通过接收消息网关发送的 预定类型的数据和所述预定类型的数据的目的地址; 对用户平面通用分组无线 服务隧道协议 GTP-U数据包进行转发, 所述 GTP-U数据包由对所述预定类型 的数据和所述目的地址封装得到, 解决了在小数据之前添加 IP包头会降低 IP 数据包的净荷,降低了数据传输效率的问题,达到了提高数据传输效率的效果。 实施例十
请参考图 17, 其示出了本发明实施例十提供的数据传输系统的结构框架 图, 该数据传输系统可以应用于 EPS中。 该数据传输系统, 可以包括: 网关和 消息网关; 网关可以包括: 第一接收模块 1701和第一转发模块 1702; 消息网 关可以包括: 第二接收模块 1601和发送模块 1602;
第二接收模块 1601 ,用于接收预定类型的数据和预定类型的数据的目的地 址;
发送模块 1602, 用于向网关发送第二接收模块 1601接收到的预定类型的 数据和目的地址, 以便网关接收消息网关发送的预定类型的数据和目的地址, 对 GTP-U数据包进行转发, GTP-U数据包由对预定类型的数据和目的地址封 装得到;
第一接收模块 1701 ,用于接收消息网关发送的预定类型的数据和预定类型 的数据的目的地址;
第一转发模块 1702, 用于对 GTP-U数据包进行转发, GTP-U数据包由对 第一接收模块 1701接收到的预定类型的数据和目的地址封装得到。
进一步地, 若网关为服务网关, 则网关, 还可以包括:
第二转发模块 1703,用于第一转发模块 1702对 GTP-U数据包进行转发之 前, 向移动性管理网元发送携带预定数据指示的下行数据通知, 以便移动性管 理网元根据下行数据通知发送携带预定数据指示的寻呼消息,使接收预定类型 的数据的用户设备接收到寻呼消息后,将预存的服务网关的隧道端点标识发送 给无线接入网元, 以便无线接入网元根据服务网关的隧道端点标识与服务网关 建立承载。
进一步地, 第一接收模块 1701 ,用于接收分组数据网关转发的来源于消息 网关的预定类型的数据和目的地址, 分组数据网关位于服务网关与消息网关之 间。
进一步地, 若网关为分组数据网关, 则第一转发模块 1702, 用于向服务网 关转发预定类型的数据、 目的地址和预定数据指示, 以便服务网关向移动性管 理网元发送携带预定数据指示的下行数据通知,使移动性管理网元根据下行数 据通知发送携带预定数据指示的寻呼消息,使接收预定类型的数据的用户设备 接收到寻呼消息后, 将预存的服务网关的隧道端点标识发送给无线接入网元, 使无线接入网元根据服务网关的隧道端点标识与服务网关建立承载,服务网关 将预定类型的数据和目的地址封装成 GTP-U数据包后, 向无线接入网元转发 GTP-U数据包, 服务网关位于移动性管理网元与分组数据网关之间。
综上所述, 本发明实施例提供的数据传输系统, 通过接收消息网关发送的 预定类型的数据和所述预定类型的数据的目的地址; 对用户平面通用分组无线 服务隧道协议 GTP-U数据包进行转发, 所述 GTP-U数据包由对所述预定类型 的数据和所述目的地址封装得到, 解决了在小数据之前添加 IP包头会降低 IP 数据包的净荷,降低了数据传输效率的问题,达到了提高数据传输效率的效果。 另外, 通过向移动性管理网元发送携带预定数据指示的下行数据通知, 以便所 述移动性管理网元根据所述下行数据通知发送携带所述预定数据指示的寻呼 消息, 使接收所述预定类型的数据的用户设备接收到所述寻呼消息后, 将预存 的所述服务网关的隧道端点标识发送给无线接入网元, 以便所述无线接入网元 根据所述服务网关的隧道端点标识与所述服务网关建立承载, 解决了需要根据 Service Request消息预先建立网关与无线接入网元之间的传输通道, 再通过该 传输通道传输数据造成的信令浪费的问题, 达到了节省信令的效果。 实施例十一
请参考图 18,其示出了本发明实施例十一提供的数据传输系统的结构框架 图, 该数据传输系统可以应用于 EPS中。 该数据传输系统, 可以包括:
第一处理器 1801 , 用于检测接收到的 GTP-U数据包中传输的是否是预定 类型的数据; 若检测结果为 GTP-U数据包中传输的是预定类型的数据, 则对 GTP-U数据包进行解封, 得到预定类型的数据和预定类型的数据的目的地址; 第一发射机 1802, 用于将第一处理器 1801解封后得到的预定类型的数据 和目的地址发送给消息网关, 以便消息网关根据目的地址对预定类型的数据进 行转发; 第二接收机 1901 ,用于接收网关发送的预定类型的数据和预定类型的数据 的目的地址, 预定类型的数据和目的地址由网关检测接收到的 GTP-U数据包 中传输的是否是预定类型的数据; 若检测结果为 GTP-U数据包中传输的是预 定类型的数据, 则对 GTP-U数据包进行解封后得到;
第二处理器 1902,用于控制第二发射机 1903根据第二接收机 1901接收到 的目的地址对预定类型的数据进行转发;
第二发射机 1903,用于在第二处理器 1902的控制下,根据第二接收机 1901 接收到的目的地址对预定类型的数据进行转发。
综上所述, 本发明实施例提供的数据传输系统,通过检测接收到的 GTP-U 数据包中传输的是否是预定类型的数据; 若检测结果为所述 GTP-U数据包中 传输的是预定类型的数据, 则对所述 GTP-U数据包进行解封, 得到所述预定 类型的数据和所述预定类型的数据的目的地址; 将所述预定类型的数据和所述 目的地址发送给消息网关, 解决了在小数据之前添加 IP包头会降低 IP数据包 的净荷, 降低了数据传输效率的问题, 达到了提高数据传输效率的效果。 实施例十二
请参考图 19,其示出了本发明实施例十二提供的数据传输系统的结构框架 图, 该数据传输系统可以应用于 EPS中。 该数据传输系统, 可以包括: 网关和 消息网关; 网关可以包括: 第一处理器 1801和第一发射机 1802; 消息网关可 以包括: 第二接收机 1901、 第二处理器 1902和第二发射机 1903;
第一处理器 1801 , 用于检测接收到的 GTP-U数据包中传输的是否是预定 类型的数据; 若检测结果为 GTP-U数据包中传输的是预定类型的数据, 则对 GTP-U数据包进行解封, 得到预定类型的数据和预定类型的数据的目的地址; 第一发射机 1802, 用于将第一处理器 1801解封后得到的预定类型的数据 和目的地址发送给消息网关, 以便消息网关根据目的地址对预定类型的数据进 行转发;
第二接收机 1901 ,用于接收网关发送的预定类型的数据和预定类型的数据 的目的地址, 预定类型的数据和目的地址由网关检测接收到的 GTP-U数据包 中传输的是否是预定类型的数据; 若检测结果为 GTP-U数据包中传输的是预 定类型的数据, 则对 GTP-U数据包进行解封后得到;
第二处理器 1902,用于控制第二发射机 1903根据第二接收机 1901接收到 的目的地址对预定类型的数据进行转发;
第二发射机 1903,用于在第二处理器 1902的控制下,根据第二接收机 1901 接收到的目的地址对预定类型的数据进行转发。
进一步地, 第一处理器 1801 , 用于获取 GTP-U数据包包头中的消息类型; 检测消息类型是否是预定消息类型; 若检测结果为消息类型是预定消息类型, 则确定接收到的 GTP-U数据包中传输的是预定类型的数据。
进一步地, 若网关为分组数据网关, 则消息类型由无线接入网元或位于无 若网关为服务网关, 则消息类型由无线接入网元预先设置。
进一步地, 第一处理器 1801 , 用于获取承载 GTP-U数据包的承载标识; 检测承载标识是否是预定承载标识; 若检测结果为承载标识是预定承载标识, 则确定接收到的 GTP-U数据包中传输的是预定类型的数据。
进一步地, 网关还可以包括:
第一接收机 1803, 还用于第一处理器 1801检测承载标识是否是预定承载 标识之前, 若网关为分组数据网关, 则接收服务网关转发的来源于移动性管理 网元的预定承载标识, 服务网关位于移动性管理网元与分组数据网关之间; 若 网关为服务网关, 则接收移动性管理网元发送的预定承载标识。
进一步地, 第一处理器 1801 , 还用于若网关为服务网关, 则检测 GTP-U 数据包中是否携带无线接入网元的隧道端点标识; 若检测结果为 GTP-U数据 包中携带有无线接入网元的隧道端点标识, 则确定接收到的 GTP-U数据包中 传输的是预定类型的数据。
综上所述, 本发明实施例提供的数据传输系统,通过检测接收到的 GTP-U 数据包中传输的是否是预定类型的数据; 若检测结果为所述 GTP-U数据包中 传输的是预定类型的数据, 则对所述 GTP-U数据包进行解封, 得到所述预定 类型的数据和所述预定类型的数据的目的地址; 将所述预定类型的数据和所述 目的地址发送给消息网关, 解决了在小数据之前添加 IP包头会降低 IP数据包 的净荷, 降低了数据传输效率的问题,达到了提高数据传输效率的效果。另夕卜, 通过检测所述 GTP-U数据包中是否携带无线接入网元的隧道端点标识; 若检 测结果为所述 GTP-U数据包中携带有无线接入网元的隧道端点标识, 则确定 接收到的所述 GTP-U数据包中传输的是预定类型的数据, 解决了需要根据 Service Request消息预先建立服务网关与无线接入网元之间的传输通道, 再通 过该传输通道传输数据造成的信令浪费的问题, 达到了节省信令的效果。 实施例十三
请参考图 20,其示出了本发明实施例十三提供的数据传输系统的结构框架 图, 该数据传输系统可以应用于 EPS中。 该数据传输系统, 可以包括:
第二接收机 2001 , 用于接收预定类型的数据和预定类型的数据的目的地 址;
第二处理器 2002, 用于控制第二发射机 2003向网关发送第二接收机 2001 接收到的预定类型的数据和目的地址;
第二发射机 2003, 用于在第二处理器 2002的控制下, 向网关发送第二接 收机 2001接收到的预定类型的数据和目的地址, 以便网关接收消息网关发送 的预定类型的数据和目的地址, 对 GTP-U数据包进行转发, GTP-U数据包由 对预定类型的数据和目的地址封装得到;
第一接收机 2101 ,用于接收消息网关发送的预定类型的数据和预定类型的 数据的目的地址;
第一处理器 2102, 用于控制第一发射机 2103对 GTP-U数据包进行转发, GTP-U数据包由对第一接收机 2101接收到的预定类型的数据和目的地址封装 得到;
第一发射机 2103 , 用于在第一处理器 2102的控制下,对 GTP-U数据包进 行转发。
综上所述, 本发明实施例提供的数据传输系统, 通过接收消息网关发送的 预定类型的数据和所述预定类型的数据的目的地址; 对用户平面通用分组无线 服务隧道协议 GTP-U数据包进行转发, 所述 GTP-U数据包由对所述预定类型 的数据和所述目的地址封装得到, 解决了在小数据之前添加 IP包头会降低 IP 数据包的净荷,降低了数据传输效率的问题,达到了提高数据传输效率的效果。 实施例十四
本发明实施例提供了一种数据传输系统, 该数据传输系统可以应用于 EPS 中。 该数据传输系统, 可以包括: 网关和消息网关; 网关可以包括: 第一接收 机 2101、 第一处理器 2102和第一发射机 2103; 消息网关可以包括: 第二接收 机 2001、 第二处理器 2002和第二发射机 2003; 第二接收机 2001 , 用于接收预定类型的数据和预定类型的数据的目的地 址;
第二处理器 2002, 用于控制第二发射机 2003向网关发送第二接收机 2001 接收到的预定类型的数据和目的地址;
第二发射机 2003, 用于在第二处理器 2002的控制下, 向网关发送第二接 收机 2001接收到的预定类型的数据和目的地址, 以便网关接收消息网关发送 的预定类型的数据和目的地址, 对 GTP-U数据包进行转发, GTP-U数据包由 对预定类型的数据和目的地址封装得到;
第一接收机 2101 ,用于接收消息网关发送的预定类型的数据和预定类型的 数据的目的地址;
第一处理器 2102, 用于控制第一发射机 2103对 GTP-U数据包进行转发, GTP-U数据包由对第一接收机 2101接收到的预定类型的数据和目的地址封装 得到;
第一发射机 2103 , 用于在第一处理器 2102的控制下,对 GTP-U数据包进 行转发。
进一步地, 若网关为服务网关, 则第一发射机 2103, 用于对 GTP-U数据 包进行转发之前, 向移动性管理网元发送携带预定数据指示的下行数据通知, 以便移动性管理网元根据下行数据通知发送携带预定数据指示的寻呼消息,使 接收预定类型的数据的用户设备接收到寻呼消息后, 将预存的服务网关的隧道 端点标识发送给无线接入网元, 以便无线接入网元根据服务网关的隧道端点标 识与服务网关建立承载。
进一步地, 第一接收机 2101 ,用于接收分组数据网关转发的来源于消息网 关的预定类型的数据和目的地址, 分组数据网关位于服务网关与消息网关之 间。
进一步地, 若网关为分组数据网关, 则第一发射机 2103, 用于向服务网关 转发预定类型的数据、 目的地址和预定数据指示, 以便服务网关向移动性管理 网元发送携带预定数据指示的下行数据通知,使移动性管理网元根据下行数据 通知发送携带预定数据指示的寻呼消息,使接收预定类型的数据的用户设备接 收到寻呼消息后, 将预存的服务网关的隧道端点标识发送给无线接入网元, 使 无线接入网元根据服务网关的隧道端点标识与服务网关建立承载,服务网关将 预定类型的数据和目的地址封装成 GTP-U数据包后, 向无线接入网元转发 GTP-U数据包, 服务网关位于移动性管理网元与分组数据网关之间。
综上所述, 本发明实施例提供的数据传输系统, 通过接收消息网关发送的 预定类型的数据和所述预定类型的数据的目的地址; 对用户平面通用分组无线 服务隧道协议 GTP-U数据包进行转发, 所述 GTP-U数据包由对所述预定类型 的数据和所述目的地址封装得到, 解决了在小数据之前添加 IP包头会降低 IP 数据包的净荷,降低了数据传输效率的问题,达到了提高数据传输效率的效果。 另外, 通过向移动性管理网元发送携带预定数据指示的下行数据通知, 以便所 述移动性管理网元根据所述下行数据通知发送携带所述预定数据指示的寻呼 消息, 使接收所述预定类型的数据的用户设备接收到所述寻呼消息后, 将预存 的所述服务网关的隧道端点标识发送给无线接入网元, 以便所述无线接入网元 根据所述服务网关的隧道端点标识与所述服务网关建立承载, 解决了需要根据 Service Request消息预先建立网关与无线接入网元之间的传输通道, 再通过该 传输通道传输数据造成的信令浪费的问题, 达到了节省信令的效果。 实施例十五
请参考图 21 ,其示出了本发明实施例十五提供的数据传输系统的结构框架 图, 该数据传输系统可以应用于 EPS 中。 该数据传输系统, 可以包括: 网关 2101和消息网关 2102;
其中,网关 2101可以是实施例七或实施例八的提供的网关,消息网关 2102 可以是实施例七或实施例八提供的消息网关; 或者,
网关 2101可以是实施例十一或实施例十二的提供的网关, 消息网关 2102 可以是实施例十一或实施例十二提供的消息网关。
综上所述, 本发明实施例提供的数据传输系统,通过检测接收到的 GTP-U 数据包中传输的是否是预定类型的数据; 若检测结果为所述 GTP-U数据包中 传输的是预定类型的数据, 则对所述 GTP-U数据包进行解封, 得到所述预定 类型的数据和所述预定类型的数据的目的地址; 将所述预定类型的数据和所述 目的地址发送给消息网关, 解决了在小数据之前添加 IP包头会降低 IP数据包 的净荷, 降低了数据传输效率的问题,达到了提高数据传输效率的效果。另夕卜, 通过检测所述 GTP-U数据包中是否携带无线接入网元的隧道端点标识; 若检 测结果为所述 GTP-U数据包中携带有无线接入网元的隧道端点标识, 则确定 接收到的所述 GTP-U数据包中传输的是预定类型的数据, 解决了需要根据 Service Request消息预先建立服务网关与无线接入网元之间的传输通道, 再通 过该传输通道传输数据造成的信令浪费的问题, 达到了节省信令的效果。 实施例十六
请参考图 22,其示出了本发明实施例十六提供的数据传输系统的结构框架 图, 该数据传输系统可以应用于 EPS 中。 该数据传输系统, 可以包括: 网关 2201和消息网关 2202;
网关 2201可以是实施例九或实施例十的提供的网关, 消息网关 2202可以 是实施例九或实施例十提供的消息网关; 或者,
网关 2201可以是实施例十三或实施例十四的提供的网关, 消息网关 2202 可以是实施例十三或实施例十四提供的消息网关。
综上所述, 本发明实施例提供的数据传输系统, 通过接收消息网关发送的 预定类型的数据和所述预定类型的数据的目的地址; 对用户平面通用分组无线 服务隧道协议 GTP-U数据包进行转发, 所述 GTP-U数据包由对所述预定类型 的数据和所述目的地址封装得到, 解决了在小数据之前添加 IP包头会降低 IP 数据包的净荷,降低了数据传输效率的问题,达到了提高数据传输效率的效果。 另外, 通过向移动性管理网元发送携带预定数据指示的下行数据通知, 以便所 述移动性管理网元根据所述下行数据通知发送携带所述预定数据指示的寻呼 消息, 使接收所述预定类型的数据的用户设备接收到所述寻呼消息后, 将预存 的所述服务网关的隧道端点标识发送给无线接入网元, 以便所述无线接入网元 根据所述服务网关的隧道端点标识与所述服务网关建立承载, 解决了需要根据 Service Request消息预先建立网关与无线接入网元之间的传输通道, 再通过该 传输通道传输数据造成的信令浪费的问题, 达到了节省信令的效果。 需要说明的是: 上述实施例提供的网关、 消息网关和数据传输系统在进行 数据传输时, 仅以上述各功能模块的划分进行举例说明, 实际应用中, 可以根 据需要而将上述功能分配由不同的功能模块完成, 即将网关、 消息网关和数据 传输系统的内部结构划分成不同的功能模块, 以完成以上描述的全部或者部分 功能。 另外, 上述实施例提供的网关、 消息网关和数据传输系统与数据传输方 法实施例属于同一构思, 其具体实现过程详见方法实施例, 这里不再赘述。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。 本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通 过硬件来完成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储 于一种计算机可读存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘 或光盘等。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的 保护范围之内。

Claims

权 利 要 求 书
1、 一种数据传输方法, 用于网关中, 其特征在于, 所述方法包括: 检测接收到的用户平面通用分组无线服务隧道协议 GTP-U数据包中传输的 是否是预定类型的数据;
若检测结果为所述 GTP-U数据包中传输的是预定类型的数据, 则对所述 GTP-U数据包进行解封, 得到所述预定类型的数据和所述预定类型的数据的目 的地址;
将所述预定类型的数据和所述目的地址发送给消息网关, 以便所述消息网 关根据所述目的地址对所述预定类型的数据进行转发。
2、 根据权利要求 1所述的数据传输方法, 其特征在于, 所述检测接收到的 用户平面通用分组无线服务隧道协议 GTP-U数据包中传输的是否是预定类型的 数据, 包括:
获取所述 GTP-U数据包包头中的消息类型;
检测所述消息类型是否是预定消息类型;
若检测结果为所述消息类型是预定消息类型, 则确定接收到的所述 GTP-U 数据包中传输的是预定类型的数据。
3、 根据权利要求 2所述的数据传输方法, 其特征在于,
若所述网关为分组数据网关, 则所述消息类型由无线接入网元或位于所述 无线接入网元与所述分组数据网关之间的服务网关预先设置;
若所述网关为服务网关, 则所述消息类型由无线接入网元预先设置。
4、 根据权利要求 1所述的数据传输方法, 其特征在于, 所述检测接收到的 用户平面通用分组无线服务隧道协议 GTP-U数据包中传输的是否是预定类型的 数据, 包括:
获取承载所述 GTP-U数据包的承载标识;
检测所述承载标识是否是预定承载标识;
若检测结果为所述承载标识是预定承载标识, 则确定接收到的所述 GTP-U 数据包中传输的是预定类型的数据。
5、 根据权利要求 4所述的数据传输方法, 其特征在于, 所述检测所述承载 标识是否是预定 7 载标识之前, 还包括:
若所述网关为分组数据网关, 则接收服务网关转发的来源于移动性管理网 元的所述预定承载标识, 所述服务网关位于所述移动性管理网元与所述分组数 据网关之间;
若所述网关为服务网关, 则接收移动性管理网元发送的所述预定承载标识。
6、 根据权利要求 1所述的数据传输方法, 其特征在于, 若所述网关为服务 网关, 则所述检测接收到的用户平面通用分组无线服务隧道协议 GTP-U数据包 中传输的是否是预定类型的数据, 包括:
检测所述 GTP-U数据包中是否携带无线接入网元的隧道端点标识; 若检测结果为所述 GTP-U数据包中携带有无线接入网元的隧道端点标识, 则确定接收到的所述 GTP-U数据包中传输的是预定类型的数据。
7、 一种数据传输方法, 用于消息网关中, 其特征在于, 所述方法包括: 接收网关发送的预定类型的数据和所述预定类型的数据的目的地址, 所述 预定类型的数据和所述目的地址由所述网关检测接收到的用户平面通用分组无 线服务隧道协议 GTP-U数据包中传输的是否是预定类型的数据; 若检测结果为 所述 GTP-U数据包中传输的是预定类型的数据,则对所述 GTP-U数据包进行解 封后得到;
根据所述目的地址对所述预定类型的数据进行转发。
8、 一种数据传输方法, 用于网关中, 其特征在于, 所述方法包括: 接收消息网关发送的预定类型的数据和所述预定类型的数据的目的地址; 对用户平面通用分组无线服务隧道协议 GTP-U 数据包进行转发, 所述
GTP-U数据包由对所述预定类型的数据和所述目的地址封装得到。
9、 根据权利要求 8所述的数据传输方法, 其特征在于, 若所述网关为服务 网关, 则对用户平面通用分组无线服务隧道协议 GTP-U数据包进行转发之前, 还包括: 向移动性管理网元发送携带预定数据指示的下行数据通知, 以便所述移动 性管理网元根据所述下行数据通知发送携带所述预定数据指示的寻呼消息, 使 接收所述预定类型的数据的用户设备接收到所述寻呼消息后, 将预存的所述服 务网关的隧道端点标识发送给无线接入网元, 以便所述无线接入网元根据所述 服务网关的隧道端点标识与所述服务网关建立承载。
10、 根据权利要求 9所述的数据传输方法, 其特征在于, 所述接收消息网 关发送的预定类型的数据和所述预定类型的数据的目的地址, 包括:
接收分组数据网关转发的来源于所述消息网关的所述预定类型的数据和所 述目的地址, 所述分组数据网关位于所述服务网关与所述消息网关之间。
11、 根据权利要求 8 所述的数据传输方法, 其特征在于, 若所述网关为分 组数据网关,则对用户平面通用分组无线服务隧道协议 GTP-U数据包进行转发, 包括:
向服务网关转发所述预定类型的数据、 所述目的地址和预定数据指示, 以 便所述服务网关向移动性管理网元发送携带所述预定数据指示的下行数据通 知, 使所述移动性管理网元根据所述下行数据通知发送携带所述预定数据指示 的寻呼消息, 使接收所述预定类型的数据的用户设备接收到所述寻呼消息后, 将预存的所述服务网关的隧道端点标识发送给无线接入网元, 使所述无线接入 网元根据所述服务网关的隧道端点标识与所述服务网关建立承载, 所述服务网 关将所述预定类型的数据和所述目的地址封装成所述 GTP-U数据包后, 向所述 无线接入网元转发所述 GTP-U数据包, 所述服务网关位于所述移动性管理网元 与所述分组数据网关之间。
12、 一种数据传输方法, 用于消息网关中, 其特征在于, 所述方法包括: 接收预定类型的数据和所述预定类型的数据的目的地址;
向网关发送所述预定类型的数据和所述目的地址, 以便所述网关接收所述 消息网关发送的所述预定类型的数据和所述目的地址, 对用户平面通用分组无 线服务隧道协议 GTP-U数据包进行转发,所述 GTP-U数据包由对所述预定类型 的数据和所述目的地址封装得到。
13、 一种网关, 其特征在于, 所述网关包括:
检测模块, 用于检测接收到的用户平面通用分组无线服务隧道协议 GTP-U 数据包中传输的是否是预定类型的数据;
解封模块, 用于若所述检测模块检测的结果为所述 GTP-U数据包中传输的 是预定类型的数据, 则对所述 GTP-U数据包进行解封, 得到所述预定类型的数 据和所述预定类型的数据的目的地址;
发送模块, 用于将所述解封模块解封后得到的所述预定类型的数据和所述 目的地址发送给消息网关, 以便所述消息网关根据所述目的地址对所述预定类 型的数据进行转发。
14、 根据权利要求 13所述的网关, 其特征在于, 所述检测模块, 包括: 第一获取单元, 用于获取所述 GTP-U数据包包头中的消息类型;
第一检测单元, 用于检测所述第一获取单元获取到的所述消息类型是否是 预定消息类型;
第一确定单元, 用于若所述第一检测单元检测的结果为所述消息类型是预 定消息类型, 则确定接收到的所述 GTP-U数据包中传输的是预定类型的数据。
15、 根据权利要求 14所述的网关, 其特征在于,
若所述网关为分组数据网关, 则所述消息类型由无线接入网元或位于所述 无线接入网元与所述分组数据网关之间的服务网关预先设置;
若所述网关为服务网关, 则所述消息类型由无线接入网元预先设置。
16、 根据权利要求 13所述的网关, 其特征在于, 所述检测模块, 包括: 第二获取单元, 用于获取承载所述 GTP-U数据包的承载标识;
第二检测单元, 用于检测所述第二获取单元获取到的所述承载标识是否是 预定 载标识;
第二确定单元, 用于若所述第二检测单元检测的结果为所述承载标识是预 定承载标识, 则确定接收到的所述 GTP-U数据包中传输的是预定类型的数据。
17、 根据权利要求 16所述的网关, 其特征在于, 所述检测模块, 还包括: 第一接收单元, 用于所述第二检测单元检测所述承载标识是否是预定承载 标识之前, 若所述网关为分组数据网关, 则接收服务网关转发的来源于移动性 管理网元的所述预定承载标识, 所述服务网关位于所述移动性管理网元与所述 分组数据网关之间;
第二接收单元, 用于所述第二检测单元检测所述承载标识是否是预定承载 标识之前, 若所述网关为服务网关, 则接收移动性管理网元发送的所述预定承 载标识。
18、 根据权利要求 13所述的网关, 其特征在于, 若所述网关为所述服务网 关, 则所述检测模块, 包括:
第三检测单元, 用于检测所述 GTP-U数据包中是否携带无线接入网元的隧 道端点标识;
第三确定单元, 用于若所述第三检测单元检测的结果为所述 GTP-U数据包 中携带有无线接入网元的隧道端点标识, 则确定接收到的所述 GTP-U数据包中 传输的是预定类型的数据。
19、 一种消息网关, 其特征在于, 所述消息网关包括:
接收模块, 用于接收网关发送的预定类型的数据和所述预定类型的数据的 目的地址, 所述预定类型的数据和所述目的地址由所述网关检测接收到的用户 平面通用分组无线服务隧道协议 GTP-U数据包中传输的是否是预定类型的数 据; 若检测结果为所述 GTP-U数据包中传输的是预定类型的数据, 则对所述 GTP-U数据包进行解封后得到;
转发模块, 用于根据所述接收模块接收到的所述目的地址对所述预定类型 的数据进行转发。
20、 一种网关, 其特征在于, 所述网关包括:
第一接收模块, 用于接收消息网关发送的预定类型的数据和所述预定类型 的数据的目的地址;
第一转发模块, 用于对用户平面通用分组无线服务隧道协议 GTP-U数据包 进行转发, 所述 GTP-U数据包由对所述第一接收模块接收到的所述预定类型的 数据和所述目的地址封装得到。
21、 根据权利要求 20所述的网关, 其特征在于, 若所述网关为服务网关, 则所述网关, 还包括:
第二转发模块, 用于所述第一转发模块对用户平面通用分组无线服务隧道 协议 GTP-U数据包进行转发之前, 向移动性管理网元发送携带预定数据指示的 下行数据通知, 以便所述移动性管理网元根据所述下行数据通知发送携带所述 预定数据指示的寻呼消息, 使接收所述预定类型的数据的用户设备接收到所述 寻呼消息后, 将预存的所述服务网关的隧道端点标识发送给无线接入网元, 以 便所述无线接入网元根据所述服务网关的隧道端点标识与所述服务网关建立承 载。
22、 根据权利要求 21所述的网关, 其特征在于, 所述第一接收模块, 用于 接收分组数据网关转发的来源于所述消息网关的所述预定类型的数据和所述目 的地址, 所述分组数据网关位于所述服务网关与所述消息网关之间。
23、 根据权利要求 20所述的网关, 其特征在于, 若所述网关为分组数据网 关, 则所述第一转发模块, 用于向服务网关转发所述预定类型的数据、 所述目 的地址和预定数据指示, 以便所述服务网关向移动性管理网元发送携带所述预 定数据指示的下行数据通知, 使所述移动性管理网元根据所述下行数据通知发 送携带所述预定数据指示的寻呼消息, 使接收所述预定类型的数据的用户设备 接收到所述寻呼消息后, 将预存的所述服务网关的隧道端点标识发送给无线接 入网元, 使所述无线接入网元根据所述服务网关的隧道端点标识与所述服务网 关建立承载, 所述服务网关将所述预定类型的数据和所述目的地址封装成所述 GTP-U数据包后, 向所述无线接入网元转发所述 GTP-U数据包, 所述服务网关 位于所述移动性管理网元与所述分组数据网关之间。
24、 一种消息网关, 其特征在于, 所述消息网关包括:
第二接收模块, 用于接收预定类型的数据和所述预定类型的数据的目的地 址;
发送模块, 用于向网关发送所述第二接收模块接收到的所述预定类型的数 据和所述目的地址, 以便所述网关接收所述消息网关发送的所述预定类型的数 据和所述目的地址, 对用户平面通用分组无线服务隧道协议 GTP-U数据包进行 转发, 所述 GTP-U数据包由对所述预定类型的数据和所述目的地址封装得到。
25、 一种网关, 其特征在于, 所述网关包括:
第一处理器, 用于检测接收到的用户平面通用分组无线服务隧道协议 GTP-U数据包中传输的是否是预定类型的数据; 若检测结果为所述 GTP-U数据 包中传输的是预定类型的数据, 则对所述 GTP-U数据包进行解封, 得到所述预 定类型的数据和所述预定类型的数据的目的地址;
第一发射机, 用于将所述第一处理器解封后得到的所述预定类型的数据和 所述目的地址发送给消息网关, 以便所述消息网关根据所述目的地址对所述预 定类型的数据进行转发。
26、 根据权利要求 25所述的网关, 其特征在于, 所述第一处理器, 用于获 取所述 GTP-U数据包包头中的消息类型; 检测所述消息类型是否是预定消息类 型; 若检测结果为所述消息类型是预定消息类型, 则确定接收到的所述 GTP-U 数据包中传输的是预定类型的数据。
27、 根据权利要求 26所述的网关, 其特征在于,
若所述网关为分组数据网关, 则所述消息类型由无线接入网元或位于所述 无线接入网元与所述分组数据网关之间的服务网关预先设置;
若所述网关为服务网关, 则所述消息类型由无线接入网元预先设置。
28、 根据权利要求 25所述的网关, 其特征在于, 所述第一处理器, 用于获 取承载所述 GTP-U数据包的承载标识;检测所述承载标识是否是预定承载标识; 若检测结果为所述承载标识是预定承载标识, 则确定接收到的所述 GTP-U数据 包中传输的是预定类型的数据。
29、 根据权利要求 28所述的网关, 其特征在于, 所述网关, 还包括: 第一接收机, 用于所述第一处理器检测所述承载标识是否是预定承载标识 之前, 若所述网关为分组数据网关, 则接收服务网关转发的来源于移动性管理 网元的所述预定承载标识, 所述服务网关位于所述移动性管理网元与所述分组 数据网关之间; 若所述网关为服务网关, 则接收移动性管理网元发送的所述预 定 7 载标识。
30、 根据权利要求 25所述的网关, 其特征在于, 所述第一处理器, 还用于 若所述网关为服务网关, 则检测所述 GTP-U数据包中是否携带无线接入网元的 隧道端点标识; 若检测结果为所述 GTP-U数据包中携带有无线接入网元的隧道 端点标识, 则确定接收到的所述 GTP-U数据包中传输的是预定类型的数据。
31、 一种消息网关, 其特征在于, 所述消息网关包括:
第二接收机, 用于接收网关发送的预定类型的数据和所述预定类型的数据 的目的地址, 所述预定类型的数据和所述目的地址由所述网关检测接收到的用 户平面通用分组无线服务隧道协议 GTP-U数据包中传输的是否是预定类型的数 据; 若检测结果为所述 GTP-U数据包中传输的是预定类型的数据, 则对所述 GTP-U数据包进行解封后得到;
第二处理器, 用于控制第二发射机根据所述第二接收机接收到的所述目的 地址对所述预定类型的数据进行转发;
所述第二发射机, 用于在所述第二处理器的控制下, 根据所述第二接收机 接收到的所述目的地址对所述预定类型的数据进行转发。
32、 一种网关, 其特征在于, 所述网关包括:
第一接收机, 用于接收消息网关发送的预定类型的数据和所述预定类型的 数据的目的地址;
第一处理器, 用于控制第一发射机对用户平面通用分组无线服务隧道协议 GTP-U数据包进行转发,所述 GTP-U数据包由对所述第一接收机接收到的所述 预定类型的数据和所述目的地址封装得到;
所述第一发射机, 用于在所述第一处理器的控制下, 对所述 GTP-U数据包 进行转发。
33、 根据权利要求 32所述的网关, 其特征在于, 若所述网关为服务网关, 则所述第一发射机, 用于对用户平面通用分组无线服务隧道协议 GTP-U数据包 进行转发之前, 向移动性管理网元发送携带预定数据指示的下行数据通知, 以 便所述移动性管理网元根据所述下行数据通知发送携带所述预定数据指示的寻 呼消息, 使接收所述预定类型的数据的用户设备接收到所述寻呼消息后, 将预 存的所述服务网关的隧道端点标识发送给无线接入网元, 以便所述无线接入网 元根据所述服务网关的隧道端点标识与所述服务网关建立承载。
34、 根据权利要求 33所述的网关, 其特征在于, 所述第一接收机, 用于接 收分组数据网关转发的来源于所述消息网关的所述预定类型的数据和所述目的 地址, 所述分组数据网关位于所述服务网关与所述消息网关之间。
35、 根据权利要求 32所述的网关, 其特征在于, 若所述网关为分组数据网 关, 则所述第一发射机, 用于向服务网关转发所述预定类型的数据、 所述目的 地址和预定数据指示, 以便所述服务网关向移动性管理网元发送携带所述预定 数据指示的下行数据通知, 使所述移动性管理网元根据所述下行数据通知发送 携带所述预定数据指示的寻呼消息, 使接收所述预定类型的数据的用户设备接 收到所述寻呼消息后, 将预存的所述服务网关的隧道端点标识发送给无线接入 网元, 使所述无线接入网元根据所述服务网关的隧道端点标识与所述服务网关 建立承载, 所述服务网关将所述预定类型的数据和所述目的地址封装成所述 GTP-U数据包后, 向所述无线接入网元转发所述 GTP-U数据包, 所述服务网关 位于所述移动性管理网元与所述分组数据网关之间。
36、 一种消息网关, 其特征在于, 所述消息网关包括:
第二接收机, 用于接收预定类型的数据和所述预定类型的数据的目的地址; 第二处理器, 用于控制第二发射机向网关发送所述第二接收机接收到的所 述预定类型的数据和所述目的地址;
所述第二发射机, 用于在所述第二处理器的控制下, 向所述网关发送所述 第二接收机接收到的所述预定类型的数据和所述目的地址, 以便所述网关接收 所述消息网关发送的所述预定类型的数据和所述目的地址, 对用户平面通用分 组无线服务隧道协议 GTP-U数据包进行转发,所述 GTP-U数据包由对所述预定 类型的数据和所述目的地址封装得到。
37、 一种数据传输系统, 其特征在于, 所述系统包括:
如权利要求 13至 18任一所述的网关和如权利要求 19所述的消息网关;或, 如权利要求 20至 23任一所述的网关和如权利要求 24所述的消息网关。
38、 一种数据传输系统, 其特征在于, 所述系统包括:
如权利要求 25至 30任一所述的网关和如权利要求 31所述的消息网关;或, 如权利要求 32至 35任一所述的网关和如权利要求 36所述的消息网关。
PCT/CN2013/075908 2013-05-20 2013-05-20 数据传输方法、装置及系统 WO2014186935A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016514230A JP6245619B2 (ja) 2013-05-20 2013-05-20 データ送信方法、装置、およびシステム
EP13885093.8A EP2978277B1 (en) 2013-05-20 2013-05-20 Data transmission methods and gateways
CN201380000930.0A CN104335675B (zh) 2013-05-20 2013-05-20 数据传输方法、装置及系统
PCT/CN2013/075908 WO2014186935A1 (zh) 2013-05-20 2013-05-20 数据传输方法、装置及系统
US14/947,027 US9992109B2 (en) 2013-05-20 2015-11-20 Data transmission method, apparatus and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/075908 WO2014186935A1 (zh) 2013-05-20 2013-05-20 数据传输方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/947,027 Continuation US9992109B2 (en) 2013-05-20 2015-11-20 Data transmission method, apparatus and system

Publications (1)

Publication Number Publication Date
WO2014186935A1 true WO2014186935A1 (zh) 2014-11-27

Family

ID=51932699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075908 WO2014186935A1 (zh) 2013-05-20 2013-05-20 数据传输方法、装置及系统

Country Status (5)

Country Link
US (1) US9992109B2 (zh)
EP (1) EP2978277B1 (zh)
JP (1) JP6245619B2 (zh)
CN (1) CN104335675B (zh)
WO (1) WO2014186935A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018006933A1 (en) 2016-07-04 2018-01-11 Huawei Technologies Co., Ltd. Session management for massive machine type communication in 5g networks

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3193547A4 (en) * 2014-09-30 2017-11-01 Huawei Technologies Co., Ltd. Paging method, associated device and system
FR3031822B1 (fr) * 2015-01-16 2018-04-13 Airbus Operations Telechargement de donnees sur un equipement distant
US11212877B2 (en) * 2015-07-06 2021-12-28 Icom Incorporated Relaying device, method of relaying communication packet and voice communication system
WO2017176307A1 (en) 2016-04-08 2017-10-12 Intel Corporation User-plane path selection for the edge service
US10148614B2 (en) * 2016-07-27 2018-12-04 Oracle International Corporation Methods, systems, and computer readable media for applying a subscriber based policy to a network service data flow
CN116055437A (zh) * 2023-04-03 2023-05-02 四川汉科计算机信息技术有限公司 一种本地多对象的消息转发方法、装置、计算机和介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369977A (zh) * 2008-09-18 2009-02-18 华为技术有限公司 数据传输的方法、装置和系统
US7865944B1 (en) * 2004-09-10 2011-01-04 Juniper Networks, Inc. Intercepting GPRS data
CN101969654A (zh) * 2010-09-21 2011-02-09 北京网康科技有限公司 一种gprs网络中流量同用户信息关联的方法及系统
CN102158977A (zh) * 2011-04-07 2011-08-17 大唐移动通信设备有限公司 一种指示业务类型的方法、装置及系统
CN103096291A (zh) * 2011-11-04 2013-05-08 华为技术有限公司 一种数据传输方法、移动性管理实体和移动终端

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100595583B1 (ko) * 2001-07-09 2006-07-03 엘지전자 주식회사 이동통신시스템에서 핸드오버에 따른 패킷 데이터 전송 방법
US6950398B2 (en) * 2001-08-22 2005-09-27 Nokia, Inc. IP/MPLS-based transport scheme in 3G radio access networks
US20030081607A1 (en) * 2001-10-30 2003-05-01 Alan Kavanagh General packet radio service tunneling protocol (GTP) packet filter
EP1401168A1 (en) * 2002-09-20 2004-03-24 Alcatel A method to transport an internet packet and related network elements
WO2006123974A1 (en) * 2005-05-16 2006-11-23 Telefonaktiebolaget Lm Ericsson (Publ) Means and method for ciphering and transmitting data in integrated networks
TWM322686U (en) * 2006-04-19 2007-11-21 Interdigital Tech Corp Apparatus for supporting routing area update procedures in a long term evolution general packet radio service tunneling protocol-based system
US20090016334A1 (en) * 2007-07-09 2009-01-15 Nokia Corporation Secured transmission with low overhead
WO2009063434A1 (en) * 2007-11-16 2009-05-22 Nokia Siemens Networks Oy Mapping quality of service for intersystem handover
CN102355686B (zh) * 2008-07-16 2015-08-05 华为技术有限公司 隧道管理方法、装置及通信系统
KR101521886B1 (ko) * 2009-01-23 2015-05-28 삼성전자주식회사 이동통신 시스템에서 지티피 처리를 위한 장치 및 방법
US9439057B2 (en) 2009-09-30 2016-09-06 Alcatel Lucent Registration notification for SMS over LTE
WO2011109938A1 (zh) * 2010-03-10 2011-09-15 华为技术有限公司 无线接入网元信息上报方法、设备和系统
CN103262606B (zh) * 2010-12-21 2018-10-12 瑞典爱立信有限公司 对gtp隧道中的ip分片的改进
GB2489221A (en) * 2011-03-18 2012-09-26 Ip Wireless Inc Establishing preconfigured shared logical communications bearers and preconfigured shared radio bearers to provide a predefined quality of service
EP2509345A1 (en) * 2011-04-05 2012-10-10 Panasonic Corporation Improved small data transmissions for machine-type-communication (MTC) devices
EP2737730B1 (en) * 2011-07-29 2016-05-18 SCA IPLA Holdings Inc. Reduced context or context-less short message transmission for machine-type-communication
US8762501B2 (en) * 2011-08-29 2014-06-24 Telefonaktiebolaget L M Ericsson (Publ) Implementing a 3G packet core in a cloud computer with openflow data and control planes
US8553552B2 (en) * 2012-02-08 2013-10-08 Radisys Corporation Stateless load balancer in a multi-node system for transparent processing with packet preservation
US8902754B2 (en) * 2012-04-17 2014-12-02 Tektronix, Inc. Session-aware GTPv2 load balancing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7865944B1 (en) * 2004-09-10 2011-01-04 Juniper Networks, Inc. Intercepting GPRS data
CN101369977A (zh) * 2008-09-18 2009-02-18 华为技术有限公司 数据传输的方法、装置和系统
CN101969654A (zh) * 2010-09-21 2011-02-09 北京网康科技有限公司 一种gprs网络中流量同用户信息关联的方法及系统
CN102158977A (zh) * 2011-04-07 2011-08-17 大唐移动通信设备有限公司 一种指示业务类型的方法、装置及系统
CN103096291A (zh) * 2011-11-04 2013-05-08 华为技术有限公司 一种数据传输方法、移动性管理实体和移动终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2978277A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018006933A1 (en) 2016-07-04 2018-01-11 Huawei Technologies Co., Ltd. Session management for massive machine type communication in 5g networks

Also Published As

Publication number Publication date
CN104335675A (zh) 2015-02-04
JP6245619B2 (ja) 2017-12-13
US20160080260A1 (en) 2016-03-17
EP2978277B1 (en) 2020-06-03
US9992109B2 (en) 2018-06-05
CN104335675B (zh) 2019-04-12
EP2978277A4 (en) 2016-04-20
EP2978277A1 (en) 2016-01-27
JP2016528751A (ja) 2016-09-15

Similar Documents

Publication Publication Date Title
JP7287431B2 (ja) ユーザ装置、通信装置、及び通信方法
TWI764893B (zh) 用於建立無線資源控制連接的方法和裝置
US9173244B2 (en) Methods for establishing and using public path, M2M communication method, and systems thereof
US9992109B2 (en) Data transmission method, apparatus and system
US8660078B2 (en) Data radio bearer (DRB) enhancements for small data transmissions apparatus, systems, and methods
US20140126489A1 (en) Managing operating parameters for communication bearers in a wireless network
US20170339722A1 (en) Method and device for transmitting downlink data
WO2011018002A1 (zh) 一种传输承载的中继方法、装置和通信系统
WO2013040962A1 (zh) 数据发送和接收方法及设备
US11356294B2 (en) Packet processing method and device
WO2013113186A1 (zh) 一种mtc用户设备触发信息的发送方法、系统和用户设备
WO2013064104A1 (zh) 一种数据传输方法、移动性管理实体和移动终端
CN113645618B (zh) 一种ue的接入、切换和加密控制的方法与设备
WO2017209367A1 (ko) 무선통신 시스템에서 서비스 별로 단말의 인증을 수행하기 위한 방법 및 이를 위한 장치
WO2014209016A1 (en) Method and apparatus for offloading data traffic in a wireless communication system
WO2018137152A1 (zh) 短消息传输方法、设备和系统
WO2015018194A1 (zh) 一种隧道建立的方法及装置
WO2013182049A1 (zh) 一种集群业务实现方法及其装置
JP4911222B2 (ja) 通信システム、通信システムにおける通信方法、及び中継装置
CN108617000B (zh) 信息传输方法及装置
WO2012110004A1 (zh) 基于lte-lan的报文转发方法及装置
BR112020000814A2 (pt) método e aparelho de comunicação, dispositivo terminal, dispositivo de rede, meio de armazenamento legível por computador e produto de programa de computador
WO2024067194A1 (zh) 通信方法、通信装置、以及通信系统
WO2024012299A1 (zh) 一种通信方法、通信装置及通信系统
WO2018032520A1 (zh) 上行、下行数据传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885093

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013885093

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016514230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE