WO2024067194A1 - 通信方法、通信装置、以及通信系统 - Google Patents

通信方法、通信装置、以及通信系统 Download PDF

Info

Publication number
WO2024067194A1
WO2024067194A1 PCT/CN2023/119350 CN2023119350W WO2024067194A1 WO 2024067194 A1 WO2024067194 A1 WO 2024067194A1 CN 2023119350 W CN2023119350 W CN 2023119350W WO 2024067194 A1 WO2024067194 A1 WO 2024067194A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealdd
server
information
tunnel
network element
Prior art date
Application number
PCT/CN2023/119350
Other languages
English (en)
French (fr)
Inventor
王亚鑫
潘奇
许胜锋
杨艳梅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067194A1 publication Critical patent/WO2024067194A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources

Definitions

  • the present application relates to the field of communications, and more specifically, to a communication method, a communication device, and a communication system.
  • the application server can provide services to the client through the core network.
  • SEAL service enabler architecture layer
  • SEAL can provide services to the application client and application server through the service enabler architecture layer data delivery (SEALDD) service architecture.
  • SEALDD service architecture can include a SEALDD server (SEALDD server) and a SEALDD client (SEALDD client).
  • SEALDD server SEALDD server
  • SEALDD client SEALDD client
  • the present application provides a communication method, a communication device, and a communication system, which establish an association between an application server and a core network so that the application server can provide services to a client through the core network.
  • a communication method is provided.
  • the method can be executed by a service enabler architecture layer data delivery (SEALDD) server, or can also be executed by a component of the SEALDD server (such as a chip or circuit).
  • SEALDD service enabler architecture layer data delivery
  • a component of the SEALDD server such as a chip or circuit
  • the method may include: a service enabling architecture layer data transmission SEALDD server receives service request information from a terminal device, wherein the service request information is used to request the SEALDD server to provide services related to data transmission; in response to the service request information, the SEALDD server transmits the data of the terminal device to a user plane network element through an N6 tunnel, wherein the N6 tunnel is established based on first information and second information, wherein the first information includes information provided by the SEALDD server for establishing the N6 tunnel, and the second information includes information provided by the user plane network element for establishing the N6 tunnel.
  • the SEALDD server can provide services to the terminal device through the user plane network element. Specifically, after receiving the service request information of the terminal device, the SEALDD server transmits the data of the terminal device to the user plane network element through the N6 tunnel between the SEALDD server and the user plane network element.
  • the N6 tunnel can be determined by the SEALDD server based on the information provided by the SEALDD server for establishing the N6 tunnel and the information provided by the user plane network element for establishing the N6 tunnel.
  • the method also includes: the SEALDD server sends the first information to the user plane network element, and the first information is used to trigger the user plane network element to establish the N6 tunnel; in response to the first information, the user plane network element transmits the data of the terminal device with the SEALDD server through the N6 tunnel.
  • the user-plane network element can establish or configure the N6 tunnel based on the first information provided by the SEALDD server and the information provided by itself to establish the N6 tunnel, and then transmit the data of the terminal device to the SEALDD server through the N6 tunnel.
  • the SEALDD server sends the first information to the user plane network element, including: when the SEALDD server determines, based on the service request information, that the data of the terminal device is to be transmitted on the N6 tunnel, the SEALDD server sends the first information to the user plane network element.
  • the SEALDD server can determine that when an N6 tunnel needs to be established, or when When the data of the terminal device is transmitted on the channel, the first information is provided to the user plane network element to avoid the signaling waste caused by not having to establish the N6 tunnel.
  • the method further includes: the SEALDD server sending address information of the SEALDD server and/or port information of the SEALDD server to the terminal device.
  • the SEALDD server provides the terminal device with the address information of the SEALDD server and/or the port information of the SEALDD server, so that the terminal device can transmit data to the SEALDD server based on the address information and/or the port information.
  • the SEALDD server transmits the data of the terminal device to the user plane network element through the N6 tunnel, including: the SEALDD server receives a first data packet from the application server; the SEALDD server sends the first data packet to the user plane network element through the N6 tunnel according to the address information and/or port information of the first data packet, and a mapping relationship; wherein the mapping relationship is used to indicate the relationship between the SEALDD server, the application server, the terminal device, and the N6 tunnel.
  • the first data packet includes characteristic information of the first data packet.
  • the SEALDD server transmits the data of the terminal device with the user plane network element through the N6 tunnel, including: the SEALDD server receives a second data packet from the user plane network element through the N6 tunnel; the SEALDD server sends the second data packet to the application server based on the address information and/or port information of the second data packet, as well as the N6 tunnel and the mapping relationship; wherein the mapping relationship is used to indicate the relationship between the SEALDD server, the application server, the terminal device, and the N6 tunnel.
  • the second data packet includes characteristic information of the second data packet.
  • a communication method is provided.
  • the method can be executed by a user plane network element, or can also be executed by a component of the user plane network element (such as a chip or circuit).
  • a component of the user plane network element such as a chip or circuit.
  • the method may include: a user plane network element receives first information from a service enabling architecture layer data transmission SEALDD server, the first information is used to trigger the user plane network element to establish an N6 tunnel, the N6 tunnel is established based on the first information and second information, the first information includes information provided by the SEALDD server for establishing the N6 tunnel, and the second information includes information provided by the user plane network element for establishing the N6 tunnel; in response to the first information, the user plane network element transmits the data of the terminal device with the SEALDD server through the N6 tunnel.
  • the SEALDD server can provide services to the terminal device through the user plane network element.
  • the user plane network element can establish an N6 tunnel between the SEALDD server and the user plane network element based on the information provided by the SEALDD server for establishing the N6 tunnel and the information provided by itself for establishing the N6 tunnel, and then the data of the terminal device can be transmitted to the SEALDD server through the N6 tunnel.
  • the user plane network element transmits the data of the terminal device with the SEALDD server through the N6 tunnel, including: the user plane network element receives a first data packet from the application server from the SEALDD server through the N6 tunnel; the user plane network element sends the first data packet to the terminal device according to the address information and/or port information of the first data packet, and a mapping relationship; wherein the mapping relationship is used to indicate the relationship between the SEALDD server, the application server, the terminal device, and the N6 tunnel.
  • the first data packet includes characteristic information of the first data packet.
  • the user plane network element transmits the data of the terminal device with the SEALDD server through the N6 tunnel, including: the user plane network element receives a second data packet from the terminal device; the user plane network element sends the second data packet to the application server through the SEALDD server according to the address information and/or port information of the second data packet, as well as the N6 tunnel and the mapping relationship; wherein the mapping relationship is used to indicate the relationship between the SEALDD server, the application server, the terminal device, and the N6 tunnel.
  • the second data packet includes characteristic information of the second data packet.
  • the first information includes at least one of the following: information of the terminal device, routing information of the N6 tunnel, address information of the SEALDD server, port information of the SEALDD server, and a tunnel endpoint identifier of the N6 tunnel on the SEALDD server side.
  • the second information includes at least one of the following: address information of the user plane network element, port information of the user plane network element, and a tunnel endpoint identifier of the N6 tunnel on the user plane network element side.
  • the first information includes information provided by the SEALDD server for establishing at least two N6 tunnels, and the at least two N6 tunnels are N6 tunnels between the SEALDD server and the user plane network element, and the at least two N6 tunnels are used to transmit different types of data of the terminal device.
  • the first information includes importance information corresponding to each N6 tunnel.
  • a communication method is provided.
  • the method can be executed by a session management network element, or can also be executed by a component of the session management network element (such as a chip or circuit).
  • a component of the session management network element such as a chip or circuit.
  • the method may include: the session management network element determines the second information, the second information includes information provided by the user plane network element for establishing an N6 tunnel, the N6 tunnel is the N6 tunnel between the service enabling architecture layer data transmission SEALDD server and the user plane network element, the N6 tunnel is used to transmit data of the terminal device; the session management network element sends the second information to the SEALDD server, and the second information is used to trigger the SEALDD server to establish the N6 tunnel.
  • the SEALDD server can provide services to the terminal device through the user plane network element.
  • the user plane network element can provide the SEALDD server with information provided by the user plane network element for establishing the N6 tunnel, so that the SEALDD server can determine the N6 tunnel based on the second information and the information provided by itself for establishing the N6 tunnel, and then the SEALDD server can transmit the data of the terminal device with the user plane network element through the N6 tunnel.
  • the method also includes: the session management network element receives first information from the SEALDD server, the first information includes information provided by the SEALDD server for establishing the N6 tunnel, and the first information is used to trigger the user plane network element to establish the N6 tunnel.
  • the method further includes: the session management network element sending first information to the user plane network element.
  • the session management network element can send the information for establishing the N6 tunnel provided by the SEALDD server to the user plane network element, so that the user plane network element can determine the N6 tunnel.
  • the first information includes at least one of the following: information of the terminal device, routing information of the N6 tunnel, address information of the SEALDD server, port information of the SEALDD server, and a tunnel endpoint identifier of the N6 tunnel on the SEALDD server side.
  • the session management network element determines the second information, including: the session management network element allocates the second information to the user plane network element; or the session management network element receives the second information from the user plane network element.
  • the second information includes at least one of the following: address information of the user plane network element, port information of the user plane network element, and a tunnel endpoint identifier of the N6 tunnel on the user plane network element side.
  • a communication method is provided.
  • the method may be executed by a SEALDD server, or may be executed by a component of the SEALDD server (such as a chip or circuit). There is no limitation on this. For ease of description, the method is described below using the execution by the SEALDD server as an example.
  • the method may include: a service enabling architecture layer data transmission SEALDD server receives service request information from a terminal device, wherein the service request information is used to request the SEALDD server to provide services related to data transmission; when the SEALDD server determines that an N6 tunnel has not been established between the SEALDD server and a user plane network element, the SEALDD server sends first information to the user plane network element, wherein the first information is information provided by the SEALDD server for establishing the N6 tunnel, the user plane network element is a user plane network element that provides services for the terminal device, and the first information is used to trigger the user plane network element to establish the N6 tunnel.
  • the SEALDD server can provide services to the terminal device through the user plane network element.
  • the server can first determine whether the SEALDD server has established an N6 tunnel with the user plane network element providing services for the terminal device. If the SEALDD server determines that the SEALDD server has not established an N6 tunnel with the user plane network element providing services for the terminal device, the first information is sent to the user plane network element so that the user plane network element and the SEALDD server establish an N6 tunnel.
  • the method also includes: the SEALDD server receives second information from the user plane network element, the second information is information provided by the user plane network element for establishing the N6 tunnel; the SEALDD server transmits the data of the terminal device with the user plane network element through the N6 tunnel, and the N6 tunnel is determined by the first information and the second information.
  • the SEALDD server can receive information provided by the user plane network element for establishing the N6 tunnel, so as to determine the N6 tunnel based on the information provided by the user plane network element for establishing the N6 tunnel and the information provided by itself for establishing the N6 tunnel.
  • the method further includes: the SEALDD server sending address information of the SEALDD server and/or port information of the SEALDD server to the terminal device.
  • the SEALDD server transmits the data of the terminal device to the user plane network element through the N6 tunnel, including: the SEALDD server receives a first data packet from the application server; the SEALDD server sends the first data packet to the user plane network element through the N6 tunnel based on the address information and/or port information of the first data packet, and a mapping relationship; wherein the mapping relationship is used to indicate the relationship between the SEALDD server, the application server, the terminal device, and the N6 tunnel.
  • the first data packet includes characteristic information of the first data packet.
  • the SEALDD server transmits the data of the terminal device with the user plane network element through the N6 tunnel, including: the SEALDD server receives a second data packet from the user plane network element through the N6 tunnel; the SEALDD server sends the second data packet to the application server based on the address information and/or port information of the second data packet, as well as the N6 tunnel and the mapping relationship; wherein the mapping relationship is used to indicate the relationship between the SEALDD server, the application server, the terminal device, and the N6 tunnel.
  • the second data packet includes characteristic information of the second data packet.
  • the first information includes at least one of the following: information of the terminal device, routing information of the N6 tunnel, address information of the SEALDD server, port information of the SEALDD server, and a tunnel endpoint identifier of the N6 tunnel on the SEALDD server side.
  • the second information includes at least one of the following: address information of the user plane network element, port information of the user plane network element, and a tunnel endpoint identifier of the N6 tunnel on the user plane network element side.
  • the first information includes information provided by the SEALDD server for establishing at least two N6 tunnels, and the at least two N6 tunnels are N6 tunnels between the SEALDD server and the user plane network element, and the at least two N6 tunnels are used to transmit different types of data of the terminal device.
  • the first information includes importance information corresponding to each N6 tunnel.
  • a communication method is provided.
  • the method can be executed by a terminal device, or can also be executed by a component of the terminal device (such as a chip or circuit).
  • a component of the terminal device such as a chip or circuit.
  • the method may include: a terminal device receiving information from a user plane network element of a SEALDD server, wherein the user plane network element is a user plane network element that has established an N6 tunnel with the SEALDD server; and the terminal device establishing a session with the user plane network element.
  • the SEALDD server can provide services to the terminal device through the user plane network element.
  • the terminal device can receive information about the user plane network element provided by the SEALDD server, and the user plane network element can be a user plane network element that has established an N6 tunnel with the SEALDD server, so that the terminal device can establish a session with the specific user plane network element, and then the user plane network element provides services.
  • the information of the user plane network element includes at least one of the following: Port information of the user plane network element, address information of the user plane network element, data network name of the user plane network element, and network slice of the user plane network element.
  • the method before the terminal device receives information from the user plane network element of the SEALDD server, the method also includes: the terminal device sends service request information to the SEALDD server, and the service request information is used to request the SEALDD server to provide services related to data transmission.
  • the method further includes: the terminal device sending the information of the terminal device to the SEALDD server.
  • a communication method is provided.
  • the method can be executed by a SEALDD server, or can also be executed by a component of the SEALDD server (such as a chip or circuit).
  • a component of the SEALDD server such as a chip or circuit.
  • the method may include: establishing an N6 tunnel between a service enabling architecture layer data transmission SEALDD server and a user plane network element; and the SEALDD server sending information of the user plane network element to a terminal device and/or an application server.
  • the SEALDD server can provide services to the terminal device through the user plane network element.
  • the SEALDD server establishes an N6 tunnel with the user plane network element in advance, and sends information about the user plane network element to the terminal device and/or the application server, so that the user plane network element provides services to the terminal device.
  • the information of the user plane network element includes at least one of the following: port information of the user plane network element, address information of the user plane network element, data network name of the user plane network element, and network slice of the user plane network element.
  • the method before the SEALDD server sends the information of the user plane network element to the terminal device, the method also includes: the SEALDD server receives service request information from the terminal device, and the service request information is used to request the SEALDD server to provide services related to data transmission.
  • the method also includes: the SEALDD server receives information from the terminal device; the SEALDD server determines a mapping relationship based on the information of the terminal device, and the mapping relationship is used to indicate the relationship between the SEALDD server, the terminal device, the application server, and the N6 tunnel.
  • the method further includes: the SEALDD server transmits the data of the terminal device to the user plane network element through the N6 tunnel according to the mapping relationship.
  • a communication method is provided.
  • the method can be executed by a session management network element, or can also be executed by a component of the session management network element (such as a chip or circuit).
  • a component of the session management network element such as a chip or circuit.
  • the method may include: a session management network element determines that a terminal device sends data to a SEALDD server; the session management network element obtains information about an N6 tunnel, wherein the information about the N6 tunnel includes information about an N6 tunnel established between the SEALDD server and a user plane network element; the session management network element determines a diversion point based on the information about the N6 tunnel, wherein the diversion point is used to divert data from the terminal device to the user plane network element.
  • the SEALDD server can provide services to the terminal device through the user plane network element.
  • the SEALDD server establishes an N6 tunnel with the user plane network element in advance, and the session management network element obtains the information of the N6 tunnel.
  • the session management network element detects that the terminal device sends data to the SEALDD server, the diversion point is determined according to the information of the N6 tunnel, so as to divert the data of the terminal device to the user plane network element.
  • the method also includes: the session management network element sends information and indication information of the terminal device to the SEALDD server, and the indication information indicates information of the N6 tunnel established between the SEALDD server and the user plane network element.
  • the information of the N6 tunnel includes at least one of the following: the N6 tunnel information on the SEALDD server side, the port information of the data packet corresponding to the N6 tunnel, and the address information of the data packet corresponding to the N6 tunnel.
  • a communication method is provided.
  • the method may be executed by a SEALDD server, or may be executed by a component of the SEALDD server (such as a chip or a circuit), without limitation.
  • a component of the SEALDD server such as a chip or a circuit
  • Server execution is used as an example to illustrate.
  • the method may include: establishing an N6 tunnel between a service enabling architecture layer data transmission SEALDD server and a user plane network element; and the SEALDD server sending information of the N6 tunnel to a session management network element.
  • the SEALDD server can provide services to the terminal device through the user plane network element.
  • the SEALDD server establishes an N6 tunnel with the user plane network element in advance, and sends the information of the N6 tunnel to the session management network element, so that the session management network element can determine the diversion point so as to divert the data of the terminal device to the user plane network element.
  • the method also includes: the SEALDD server receives information and indication information of the terminal device from the session management network element, and the indication information indicates information of the N6 tunnel established between the SEALDD server and the user plane network element; the SEALDD server determines a mapping relationship based on the information of the terminal device and the indication information, and the mapping relationship is used to indicate the relationship between the SEALDD server, the terminal device, the application server, and the N6 tunnel.
  • the method further includes: the SEALDD server transmits the data of the terminal device to the user plane network element through the N6 tunnel according to the mapping relationship.
  • the method also includes: the SEALDD server receives service request information from a terminal device, the service request information is used to request the SEALDD server to provide services related to data transmission; the SEALDD server sends the address information of the SEALDD server and/or the port information of the SEALDD server to the terminal device.
  • the SEALDD server sends the address information of the SEALDD server and/or the port information of the SEALDD server to the terminal device, including: when the SEALDD server determines, based on the service request information, that the data of the terminal device is to be transmitted on the N6 tunnel, the SEALDD server sends the address information of the SEALDD server and/or the port information of the SEALDD server to the terminal device.
  • the information of the N6 tunnel includes at least one of the following: the N6 tunnel information on the SEALDD server side, the port information of the data packet corresponding to the N6 tunnel, and the address information of the data packet corresponding to the N6 tunnel.
  • a communication method is provided.
  • the method can be executed by a session management network element, or can also be executed by a component of the session management network element (such as a chip or circuit).
  • a component of the session management network element such as a chip or circuit.
  • the method may include: a session management network element determines that a terminal device sends data to a SEALDD server; the session management network element sends request information to a first user plane network element, the request information is used to request information of an N6 tunnel, the N6 tunnel is an N6 tunnel between the SEALDD server and the first user plane network element, and the first user plane network element is a user plane network element that provides services for the terminal device; the session management network element receives second information from the first user plane network element, the second information is information provided by the first user plane network element for establishing the N6 tunnel; the session management network element sends the second information to the SEALDD server, and the second information is used to trigger the SEALDD server to establish the N6 tunnel.
  • the SEALDD server can provide services for the terminal device through the user plane network element.
  • the session management network element determines that the terminal device sends data to the SEALDD server, it can request the user plane network element that provides services for the terminal device for the second information and send it to the SEALDD server, so that the SEALDD server can determine the N6 tunnel based on the second information and the information provided by itself for establishing the N6 tunnel.
  • the method also includes: the session management network element obtains information about at least one N6 tunnel, the information about at least one N6 tunnel includes information about the N6 tunnel established between the SEALDD server and at least one user plane network element; the session management network element sends request information to the first user plane network element, including: when the session management network element determines that the at least one user plane network element does not include the first user plane network element, the session management network element sends request information to the first user plane network element.
  • SMF determines that the first user plane network element has not established an N6 tunnel with the SEALDD server, it sends a request message to the SEALDD server.
  • the session management network element obtains information of at least one N6 tunnel, It includes: the session management network element receives the information of the at least one N6 tunnel from the SEALDD server.
  • the information of the at least one N6 tunnel includes at least one of the following: the N6 tunnel information of the SEALDD server side, the port information of the data packet corresponding to the at least one N6 tunnel, and the address information of the data packet corresponding to the at least one N6 tunnel.
  • the method further includes: when the session management network element determines that the at least one user plane network element does not include the first user plane network element, the session management network element also sends the information of the terminal device to the SEALDD server.
  • the method also includes: when the session management network element determines that the at least one user plane network element includes the first user plane network element, the session management network element sends information and indication information of the terminal device to the SEALDD server, and the indication information indicates information of the N6 tunnel established between the SEALDD server and the first user plane network element.
  • the second information includes at least one of the following: address information of the first user plane network element, port information of the first user plane network element, and a tunnel endpoint identifier of the N6 tunnel on the first user plane network element side.
  • a communication method is provided.
  • the method can be executed by a SEALDD server, or can also be executed by a component of the SEALDD server (such as a chip or circuit).
  • a component of the SEALDD server such as a chip or circuit.
  • the method may include: a service enabling architecture layer data transmission SEALDD server determines information of at least one N6 tunnel, the information of at least one N6 tunnel includes information of an N6 tunnel established between the SEALDD server and at least one user plane network element; the SEALDD server sends the information of at least one N6 tunnel to a session management network element.
  • the SEALDD server can provide services to the terminal device through the user plane network element.
  • the SEALDD server establishes an N6 tunnel with the user plane network element in advance, and sends information about the N6 tunnel to the session management network element, so that the session management network element can determine whether the SEALDD server has established an N6 tunnel with a certain user plane network element.
  • the information of the at least one N6 tunnel includes at least one of the following: the N6 tunnel information on the SEALDD server side, the port information of the data packet corresponding to the at least one N6 tunnel, and the address information of the data packet corresponding to the at least one N6 tunnel.
  • a communication method is provided, which can be executed by a SEALDD server, or can also be executed by a component of the SEALDD server (such as a chip or circuit), without limitation.
  • a component of the SEALDD server such as a chip or circuit
  • the method may include: a service enabling architecture layer data transmission SEALDD server receives service request information from a terminal device, wherein the service request information is used to request the SEALDD server to provide services related to data transmission; the SEALDD server sends third information to the terminal device, wherein the third information is used to indicate information about at least one SEALDD connection between the SEALDD server and the terminal device.
  • the method further includes: the SEALDD server transmitting the data of the terminal device based on the information of the at least one SEALDD connection.
  • the SEALDD server can provide services to the terminal device through the core network. Specifically, after receiving the service request information of the terminal device, the SEALDD server provides the terminal device with information of at least one SEALDD connection between the SEALDD server and the terminal device, so that the terminal device can transmit data based on the at least one SEALDD connection.
  • the information of the at least one SEALDD connection includes at least one of the following: address information of each SEALDD connection, port information of each SEALDD connection, importance information of each SEALDD connection, and identification information of each SEALDD connection.
  • the method further includes: the SEALDD server receives demand information from the application server, and the demand information is used to request the SEALDD server to provide services for the application server; the SEALDD server establishes the at least one SEALDD connection based on the demand information, and the at least one SEALDD connection is used to transmit data of the application server.
  • the method further includes: the SEALDD server is based on A mapping relationship is provided between the terminal device and the data of the application server transmitted on the at least one SEALDD connection, wherein the mapping relationship is used to indicate the relationship between the SEALDD server, the application server, the terminal device, and the at least one SEALDD connection.
  • a communication method is provided.
  • the method can be executed by a terminal device, or can also be executed by a component of the terminal device (such as a chip or circuit). There is no limitation on this. For the sake of ease of description, the following is explained by taking the execution by the terminal device as an example.
  • the method may include: a terminal device sends service request information to a server, wherein the service request information is used to request the SEALDD server to provide services related to data transmission; and the terminal device receives third information from the SEALDD server, wherein the third information is used to indicate information about at least one SEALDD connection between the SEALDD server and the terminal device.
  • the terminal device sends data to the SEALDD server based on the information of the at least one SEALDD connection.
  • the SEALDD server can provide services to the terminal device through the core network.
  • the terminal device receives information about at least one SEALDD connection from the SEALDD server, so that when data needs to be transmitted, the terminal device can transmit data based on the information of the at least one SEALDD connection.
  • the information of the at least one SEALDD connection includes at least one of the following: address information of each SEALDD connection, port information of each SEALDD connection, importance information of each SEALDD connection, and identification information of each SEALDD connection.
  • the method also includes: the SEALDD server receives demand information from the application server, and the demand information is used to request the SEALDD server to provide services for the application server; the SEALDD server establishes the at least one SEALDD connection based on the demand information, and the at least one SEALDD connection is used to transmit data of the application server.
  • the method also includes: the SEALDD server transmits the data of the application server on the at least one SEALDD connection with the terminal device based on a mapping relationship, and the mapping relationship is used to indicate the relationship between the SEALDD server, the application server, the terminal device, and the at least one SEALDD connection.
  • a communication method is provided, which can be executed by a communication system, or can also be executed by a component (such as a chip or circuit) of the communication system, without limitation.
  • a component such as a chip or circuit
  • the following is an example of execution by a communication system.
  • the communication system may include a user plane network element and a SEALDD server.
  • the method may include: a SEALDD server receives a first data packet from an application server; the SEALDD server sends the first data packet to a user plane network element through an N6 tunnel; and the user plane network element sends the first data packet to a terminal device.
  • the SEALDD server sends the first data packet to the user plane network element through the N6 tunnel according to the address information and/or port information of the first data packet, and a mapping relationship; wherein the mapping relationship is used to indicate the relationship between the SEALDD server, the application server, the terminal device, and the N6 tunnel.
  • a communication method is provided, which can be executed by a communication system, or can also be executed by a component (such as a chip or circuit) of the communication system, without limitation.
  • a component such as a chip or circuit
  • the following is an example of execution by a communication system.
  • the communication system may include a user plane network element and a SEALDD server.
  • the method may include: a SEALDD server receives a second data packet from a terminal device from a user plane network element through an N6 tunnel; and the SEALDD server sends the second data packet to an application server.
  • the SEALDD server sends the second data packet to the application server through the N6 tunnel based on the address information and/or port information of the second data packet, and a mapping relationship; wherein the mapping relationship is used to indicate the relationship between the SEALDD server, the application server, the terminal device, and the N6 tunnel.
  • the SEALDD server is the SEALDD server described in any one of the first to tenth aspects above.
  • the user plane network element is the user plane network element described in any one of the first to tenth aspects above.
  • a communication device is provided, the device being used to execute the method provided in any one of the first to fourteenth aspects.
  • the device may include a method for executing any one of the above implementations of any one of the first to fourteenth aspects.
  • Units and/or modules of the provided method such as a processing unit and/or a communication unit.
  • the apparatus is a communication device (such as a SEALDD server, a management network element, a user plane network element, or a terminal device).
  • the communication unit may be a transceiver, or an input/output interface; the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip, a chip system or a circuit used in a communication device.
  • the communication unit may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip, the chip system or the circuit;
  • the processing unit may be at least one processor, a processing circuit or a logic circuit.
  • a communication device which includes: a memory for storing programs; and at least one processor for executing computer programs or instructions stored in the memory to execute the method provided by any of the above-mentioned implementation methods of any of the above-mentioned first to fourteenth aspects.
  • the apparatus is a communication device (such as a SEALDD server, a management network element, a user plane network element, or a terminal device).
  • a communication device such as a SEALDD server, a management network element, a user plane network element, or a terminal device.
  • the apparatus is a chip, a chip system or a circuit used in a communication device.
  • the present application provides a processor for executing the methods provided in the above aspects.
  • a computer-readable storage medium which stores a program code for execution by a device, and the program code includes a method provided by any one of the above-mentioned implementation methods for executing any one of the above-mentioned first to fourteenth aspects.
  • a computer program product comprising instructions is provided.
  • the computer program product When the computer program product is run on a computer, the computer executes the method provided by any one of the above-mentioned implementation modes of any one of the above-mentioned first to fourteenth aspects.
  • a chip including a processor and a communication interface, the processor reads instructions stored in a memory through the communication interface, and executes a method provided by any one of the above-mentioned implementation methods of any one of the above-mentioned first to fourteenth aspects.
  • the chip also includes a memory, in which a computer program or instructions are stored, and the processor is used to execute the computer program or instructions stored in the memory.
  • the processor is used to execute the method provided in any one of the above-mentioned implementation methods of any one of the first to fourteenth aspects.
  • a communication system comprising one or more of the aforementioned SEALDD server, user plane network element, session management network element, and terminal device.
  • FIG. 1 is a schematic diagram of a network architecture applicable to an embodiment of the present application.
  • FIG. 2 is another schematic diagram of a network architecture applicable to an embodiment of the present application.
  • FIG. 3 is another schematic diagram of a network architecture applicable to an embodiment of the present application.
  • FIG. 4 is an architectural diagram applicable to Solution A provided according to an embodiment of the present application.
  • FIG5 is a schematic diagram of a data packet transmitted based on scheme A according to an embodiment of the present application.
  • FIG6 is an architecture diagram applicable to solution B provided according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a data packet transmitted based on scheme B according to an embodiment of the present application.
  • FIG8 is a schematic diagram of a communication method 800 provided in accordance with an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a communication method 900 provided in accordance with an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a communication method 1000 provided in another embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a communication method 1100 provided in another embodiment of the present application.
  • FIG. 12 is a schematic diagram of a communication method 1200 provided in another embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a communication method 1300 provided in another embodiment of the present application.
  • FIG. 14 is a schematic diagram of a communication method 1400 provided in another embodiment of the present application.
  • FIG. 15 is a schematic flowchart of a communication method 1500 provided in another embodiment of the present application.
  • FIG. 16 is a schematic diagram of a communication method 1600 provided in another embodiment of the present application.
  • FIG. 17 is a schematic flowchart of a communication method 1700 provided in another embodiment of the present application.
  • FIG. 18 is a schematic diagram of a communication method 1800 provided in another embodiment of the present application.
  • FIG. 19 is a schematic flowchart of a communication method 1900 provided in another embodiment of the present application.
  • FIG. 20 is a schematic block diagram of a communication device 2000 provided in an embodiment of the present application.
  • FIG. 21 is a schematic block diagram of a communication device 2100 provided in an embodiment of the present application.
  • FIG. 22 is a schematic block diagram of a chip system 2200 provided in an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: the fifth generation (5th generation, 5G) system or new radio (new radio, NR), long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), etc.
  • the technical solutions provided in the present application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the technical solutions of the embodiments of the present application can also be applied to device to device (device to device, D2D) communication, vehicle-to-everything (vehicle-to-everything, V2X) communication, machine to machine (machine to machine, M2M) communication, machine type communication (machine type communication, MTC), and Internet of things (internet of things, IoT) communication system or other communication systems.
  • D2D device to device
  • V2X vehicle-to-everything
  • machine to machine machine to machine
  • M2M machine type communication
  • MTC machine type communication
  • IoT Internet of things
  • FIGS. 1 to 3 To facilitate understanding of the embodiments of the present application, a communication system applicable to the embodiments of the present application is first described in detail with reference to FIGS. 1 to 3 .
  • Fig. 1 is a schematic diagram of a network architecture applicable to an embodiment of the present application.
  • the network architecture may include, for example, but is not limited to, the following: user equipment (UE), access network (AN), access and mobility management function (AMF) network element, session management function (SMF) network element, user plane function (UPF) network element, policy control function (PCF) network element, unified data management (UDM) network element, application function (AF), data network (DN), network slice selection function (NSSF) network element, authentication server function (AUSF) network element, etc.
  • UE user equipment
  • AN access network
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • PCF policy control function
  • UDM unified data management
  • AF application function
  • DN data network
  • NSSF network slice selection function
  • AUSF authentication server function
  • UE may be referred to as terminal equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device.
  • a terminal device can be a device that provides voice/data to users, for example, a handheld device with wireless connection function, a vehicle-mounted device, etc.
  • terminals are: mobile phones, tablet computers, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (AR) devices, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart Wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, wearable devices, terminal devices in 5G networks or terminal devices in future evolved public land mobile networks (PLMN), etc., the embodiments of the present application are not limited to this.
  • MID mobile internet devices
  • VR virtual reality
  • AR augmented reality
  • the terminal device may be a wearable device.
  • Wearable devices may also be referred to as wearable smart devices, which are a general term for wearable devices that apply wearable technology to intelligently design and develop wearable devices for daily wear, such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothes or accessories. Wearable devices are not only hardware devices, but also powerful functions achieved through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, and independent of smartphones to achieve complete or partial functions, such as smart watches or smart glasses, as well as those that only focus on a certain type of application function and need to be used in conjunction with other devices such as smartphones, such as various types of smart bracelets and smart jewelry for vital sign monitoring.
  • the terminal device may also be a terminal device in an IoT system.
  • IoT is an important part of the future development of information technology. Its main technical feature is to connect objects to the network through communication technology, thereby realizing human-machine interconnection and object-to-object interconnection. Intelligent network.
  • terminal devices can also include sensors such as smart printers, train detectors, and gas stations. Their main functions include collecting data (part of the terminal equipment), receiving control information and downlink data from network devices, and sending electromagnetic waves to transmit uplink data to network devices.
  • sensors such as smart printers, train detectors, and gas stations.
  • Their main functions include collecting data (part of the terminal equipment), receiving control information and downlink data from network devices, and sending electromagnetic waves to transmit uplink data to network devices.
  • the terminal device can be any device that can access the network.
  • the terminal device and the access network device can communicate with each other using some air interface technology (such as NR or LTE technology, etc.).
  • the terminal devices can also communicate with each other using some air interface technology (such as NR or LTE technology, etc.).
  • the UE can be used to act as a base station.
  • the UE can act as a scheduling entity that provides sidelink signals between UEs in V2X or D2D, etc.
  • a cell phone and a car communicate with each other using sidelink signals.
  • a cell phone and a smart home device communicate with each other without relaying the communication signal through a base station.
  • the device for realizing the function of the terminal device can be the terminal device, or it can be a device that can support the terminal device to realize the function, such as a chip system or a chip, which can be installed in the terminal device.
  • the chip system can be composed of a chip, or it can include a chip and other discrete devices.
  • (Radio) access network ((R)AN) equipment It can provide the function of accessing the communication network for authorized users in a specific area. It can include wireless network equipment in the 3rd generation partnership project (3GPP) network and access points in non-3GPP networks. For the convenience of description, AN equipment is used below.
  • 3GPP 3rd generation partnership project
  • AN equipment can be used for different wireless access technologies.
  • 3GPP access technology for example, the wireless access technology used in the third generation (3rd generation, 3G), fourth generation (4th generation, 4G) or 5G system
  • non-3GPP access technology refers to access technology that complies with 3GPP standard specifications.
  • the access network equipment in the 5G system is called the next generation Node Base station (gNB) or RAN equipment.
  • Non-3GPP access technology can include air interface technology represented by access point (AP) in wireless fidelity (WiFi), worldwide interoperability for microwave access (WiMAX), code division multiple access (CDMA), etc.
  • AN equipment can allow terminal devices and 3GPP core networks to interconnect and communicate using non-3GPP technologies.
  • AN equipment is responsible for wireless resource management, quality of service (QoS) management, data compression and encryption, etc. on the air interface side.
  • AN equipment provides access services for terminal devices, and then completes the forwarding of control signals and user data between terminal devices and the core network.
  • QoS quality of service
  • AN equipment may include, for example, but is not limited to: macro base stations, micro base stations (also called small stations), radio network controllers (RNC), node Bs (NBs), base station controllers (BSCs), base transceiver stations (BTSs), home base stations (e.g., home evolved NodeBs, or home NodeBs, HNBs), baseband units (BBUs), APs in WiFi systems, wireless relay nodes, wireless backhaul nodes, transmission points (TPs) or transmission and reception points (TRPs), etc., and may also be gNBs or transmission points (TRPs or TPs) in 5G (e.g., NR) systems, one or a group of antenna panels (including multiple antenna panels) of a base station in a 5G system, or network nodes constituting gNBs or transmission points, such as distributed units (DUs), or base stations in next-generation communication 6G systems, etc.
  • RNC radio network controllers
  • NBs node Bs
  • the access network can provide services for the cell.
  • the terminal device can communicate with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the access network device.
  • AMF network element mainly used for access control, mobility management, attachment and detachment functions.
  • SMF network element Mainly used for user-plane network element selection, user-plane network element redirection, Internet Protocol (IP) address allocation for terminal devices, and session management in mobile networks, such as session establishment, modification and release, and QoS control.
  • IP Internet Protocol
  • UPF network element mainly used for receiving and forwarding user plane data.
  • UPF can receive user plane data from DN and send the user plane data to the terminal device through the AN device.
  • UPF can also receive user plane data from the terminal device through the AN device and forward it to the DN.
  • the UPF directly connected to the DN through the N6 interface in the session can be called a protocol data unit (PDU) session anchor (PSA).
  • PDU protocol data unit
  • PSA session anchor
  • PCF network element mainly used to provide services to the 3GPP network, such as interacting with PCF for policy control.
  • AF network element mainly supports interaction with the 3GPP core network to provide services, such as influencing data routing decisions, interacting with the policy control function (PCF), or providing third parties to the network side.
  • PCF policy control function
  • UDM network element mainly used for UE contract data management, including storage and management of UE identification, UE access authorization, etc.
  • Data network An operator network that is mainly used to provide data services to UEs, such as the Internet, third-party service networks, and IP multimedia service (IMS) networks.
  • DN Data network
  • IMS IP multimedia service
  • AUSF network element mainly used for user authentication, etc.
  • FIG2 is another schematic diagram of a network architecture applicable to an embodiment of the present application.
  • a service enabler architecture layer SEAL
  • SEAL can provide services to application clients and application servers through a service enabler architecture layer data delivery (SEALDD) service architecture.
  • SEALDD service architecture may include a SEALDD server (SEALDD server) and a SEALDD client (SEALDD client).
  • SEALDD client and the application client can be part of a terminal device and run on the terminal device in the form of software or system components.
  • the SEALDD server can be deployed between the UPF and the application server in the form of an independent or integrated server. In actual deployment, multiple SEALDD servers can also be deployed in a distributed manner according to the deployment of the UPF and the application server.
  • the application client may be, for example, a vertical application layer (VAL) client (VAL client), and the application server may be, for example, a VAL server (VAL server).
  • VAL client vertical application layer
  • VAL server VAL server
  • the following description is given by taking the client as a VAL client and the application server as a VAL server as an example.
  • FIG3 is another schematic diagram of a network architecture applicable to an embodiment of the present application.
  • the network architecture shows the interface structure of the service enabling architecture layer and the vertical industry application layer.
  • at least one SEALDD client may be deployed in a terminal device, and at least one VAL client may also be deployed in the terminal device.
  • the SEALDD client may communicate with the VAL client via the SEALDD-C interface, and the SEALDD server may communicate with the VAL server via the SEALDD-S interface.
  • User-plane data transmission may be performed between the SEALDD client and the SEALDD server via the SEALDD-UU interface, wherein the SEALDD-UU interface is carried on a user-plane session constructed by the 3GPP network system.
  • SEALDD servers may communicate with each other via the SEALDD-E interface, for example, for control-plane context transmission and user-plane data forwarding.
  • the SEALDD server can also communicate with the 3GPP network system through the N33/N5 interface.
  • the SEALDD server can communicate control plane messages with the PCF through the N33/N5 interface, thereby sending an AF request to the 5GC or subscribing to notifications.
  • the N5 interface is the interface between the AF and the PCF
  • the N33 interface is the interface between the AF and the NEF
  • the AF can communicate with the PCF through the NEF.
  • the SEALDD server can also transmit user plane data with the UPF through the N6 interface.
  • SEALDD servers can also communicate with each other through the SEALDD-E interface, such as for control plane context transmission and user plane data forwarding.
  • the VAL client when user plane data is transmitted, for uplink transmission, the VAL client first sends the data packet to the SEALDD client, and the SEALDD client can encapsulate the received data packet and send it to the SEALDD server, which is then parsed by the SEALDD server and sent to the VAL server.
  • the data sent by the VAL server can be finally sent to the VAL client via the SEALDD server and the SEALDD client.
  • each network element can communicate with each other through an interface.
  • the UE is connected to the AN device through the radio resource control (RRC) protocol, and the UE and the AN device communicate using the Uu interface.
  • RRC radio resource control
  • the interface name between each network element in Figures 1 to 3 is only an example.
  • the name of the interface in the specific implementation may be other names, and this application does not make specific restrictions on this.
  • the network architecture applied to the embodiment of the present application is only an exemplary description, and the network architecture applicable to the embodiment of the present application is not limited thereto, and any network architecture that can realize the functions of the above-mentioned network elements is applicable to the embodiment of the present application.
  • the network architecture shown above may also include other more network elements, which are not limited to this.
  • network elements shown in Figures 1 to 3 can be understood as network elements for implementing different functions, for example, they can be combined into network slices as needed.
  • These network elements can be independent devices, or they can be integrated into the same device to implement different functions, or they can be network elements in hardware devices, or they can be software functions running on dedicated hardware, or they can be virtualized functions instantiated on a platform (for example, a cloud platform). This application does not limit the specific form of the above network elements.
  • network elements shown in Figures 1 to 3 can be understood as network elements used to implement different functions, for example, they can be combined into network slices as needed.
  • These network elements can be independent devices, or they can be integrated into the same device to implement different functions, or they can be network elements in hardware devices, or they can be software functions running on dedicated hardware, or they can be virtualized functions instantiated on a platform (for example, a cloud platform). This application does not limit the specific form of the above network elements.
  • SEALDD server can provide QoS guaranteed service for VAL.
  • media stream is generally transmitted in the form of video frames, where each video frame can be split into multiple RTP data packets, and each video frame can be divided into I frame, B frame, P frame and other types.
  • Media stream is, for example, the data stream of real-time transport protocol (RTP).
  • RTP real-time transport protocol
  • I frame is intra coded frame.
  • I frame uses the spatial correlation within a single frame image, but does not use the temporal correlation between frames. Since I frame contains a complete frame of image information, it can be used as a random access point and is the reference frame for decoding. In addition, the compression rate of I frame is relatively low.
  • the P frame is a predictive-coded frame.
  • the P frame records the difference between the current frame and the previous frame.
  • decoding it is necessary to refer to the information of the previous I frame or P frame to generate a complete picture.
  • B frame is a bidirectionally predicted frame.
  • B frame records the difference between the current frame and the previous and next frames. When decoding, it needs to refer to the previous I frame or P frame and the next P frame to generate a complete picture. Using B frame can improve the compression rate.
  • the requirements for video services are mainly as follows: 1) UPF needs to identify which data packets belong to the same PDU set and the end point of the PDU set; 2) UPF needs to distinguish the importance of data packets in different PDU sets; 3) UPF labels the data packets in N3 based on the above information and sends the above information to RAN, which performs targeted optimization scheduling; 4) Data packets of different importance are sent on different QoS flows, and RAN can schedule the data packets in a targeted manner without the need to detect and classify each packet.
  • UPF needs to be able to obtain some information about the current data packet, and record this information as the characteristic information of the data packet for distinction.
  • UPF obtains the characteristic information of the above data packet, it notifies RAN by marking the data packet header of the user plane part of GTP (GTP-U) of the general packet radio service (GPRS) (that is, the characteristic information of the above data packet is carried in the GTP-U data packet header), and then RAN analyzes it and performs targeted scheduling optimization.
  • GTP-U user plane part of GTP
  • GPRS general packet radio service
  • the characteristic information of a data packet may represent information that can indicate the correlation of a data packet or a data frame.
  • multiple data packets may constitute a data frame.
  • the characteristic information of a data packet may be used to indicate the association of multiple data packets or the association of data frames (such as the association relationship or dependency relationship between multiple data frames).
  • the characteristic information of a data packet includes, for example, information such as: what type of frame the current data packet is, which data packets belong to the same data frame, etc.
  • the characteristic information of a data packet may also be used to indicate the importance of a data packet or a data frame.
  • the characteristic information of a data packet may be, for example, the media stream information of the data packet, or other information, without limitation.
  • the characteristic information of the data packet may also include other information related to the data packet, such as a timestamp, a data packet number, etc., without limitation. It can be understood that the characteristic information of the data packet mentioned in the embodiment of the present application, such as the characteristic information of the first data packet and the characteristic information of the second data packet, are similar and will not be repeated later.
  • Solution A proposes two solutions: Solution A and Solution B.
  • Solution A An N6 tunnel is established between the SEALDD server and the UPF. Based on Solution A, an N6 tunnel is established between the SEALDD server and the UPF. The SEALDD server transmits data packets with the UPF through the N6 tunnel, and the characteristic information of the data packets can be carried in the N6 tunnel header.
  • FIG4 is an architecture diagram applicable to solution A provided according to an embodiment of the present application.
  • the SEALDD server establishes an N6 tunnel for the VAL server.
  • the SEALDD server receives the data packet from the VAL server through the application programming interface (application program interface, API) and parses the characteristic information of the data packet, it labels the characteristic information of the data packet on the N6 tunnel and notifies the UPF; after receiving it, the UPF can directly parse the label, attach it to the N3 tunnel and notify the RAN.
  • multiple N6 tunnels can be established between the SEALDD server and the UPF.
  • the multiple N6 tunnels can be used to transmit different data streams, such as data streams of different importance, so that the UPF can distinguish different data streams, and then map them to different QoS streams for transmission.
  • FIG5 is a schematic diagram of a data packet transmitted based on scheme A according to an embodiment of the present application.
  • the data packet sent by the SEALDD server to the UPF through the N6 tunnel adds an N6 IP header (N6 IP header) and an N6 tunnel header (N6 tunnel header), so that the SEALDD server can send the data packet to the UPF through the N6 tunnel.
  • the N6 tunnel header may include characteristic information of the data packet.
  • the original N6 IP header in the data packet sent by the UPF to the RAN is replaced with an N3 IP header, and the N6 tunnel header is replaced with an N3 tunnel header, so that the UPF can send the data packet to the RAN through the N3 tunnel.
  • the SEALDD server triggers the establishment of a UE-granular N6 tunnel.
  • Implementation method 2 The SEALDD server and UPF dynamically configure the N6 tunnel at the UPF granularity.
  • Implementation method 3 SEALDD server and UPF pre-configure N6 tunnel.
  • Solution B A SEALDD connection (or SEALDD tunnel) is established between the SEALDD server and the SEALDD client. Based on Solution B, a SEALDD connection is established between the SEALDD server and the SEALDD client. The SEALDD server transmits data with the SEALDD client through the SEALDD connection, and characteristic information of the data packet can be carried in the data header.
  • SEALDD connection or SEALDD tunnel
  • FIG6 is an architecture diagram applicable to solution B provided according to an embodiment of the present application.
  • a UE-granular (per UE) encapsulation protocol e.g., GTP-U protocol
  • GTP-U protocol e.g., GTP-U protocol
  • both the SEALDD server and the SEALDD client can put labels on the data stream header on the SEALDD connection for UPF to parse.
  • multiple SEALDD connections can be established between the SEALDD server and the SEALDD client, and the multiple SEALDD connections can be used to transmit different data streams, such as data streams of different importance, so that the UPF can distinguish different data streams and then map them to different QoS streams for transmission.
  • FIG7 is a schematic diagram of a data packet transmitted based on scheme B according to an embodiment of the present application.
  • the data packet sent by the SEALDD server to the UPF through the SEALDD connection adds the SEALDD IP header and the SEALDD header, so that the SEALDD server can send the data packet to the UPF through the SEALDD connection.
  • the SEALDD header may include characteristic information of the data packet.
  • the data packet sent by the UPF to the RAN includes the SEALDD IP header and the SEALDD header, and also adds the N3 IP header and the N3 tunnel header, so that the UPF can send the data packet to the RAN through the N3 tunnel.
  • the N3 tunnel header may include the characteristic information of the data packet parsed by the UPF from the SEALDD header.
  • implementation method 1 in the above solution A is introduced in conjunction with Figures 8 and 9, that is, the implementation method of the SEALDD server triggering the establishment of a UE-granular N6 tunnel.
  • the embodiments shown in Figures 8 and 9 can be applied to the network architectures shown in Figures 1 to 3 above, and the embodiments shown in Figures 8 and 9 can also be applied to the network architecture shown in Figure 4 above, without limitation.
  • Fig. 8 is a schematic diagram of a communication method 800 provided in an embodiment of the present application.
  • the method 800 may include the following steps.
  • the SEALDD server receives service request information from the terminal device, where the service request information is used to request the SEALDD server to provide services related to data transmission.
  • the SEALDD service request information includes at least one of the following: the identity (ID) of the SEALDD client on the terminal device, the IP address of the terminal device, and VAL service information (VAL service information).
  • the VAL service information can be used by the SEALDD server to determine whether to use the N6 tunnel for service data flow transmission, or whether to use the N6 tunnel to provide data transmission related services for the terminal device.
  • the VAL service information includes a service type, which can implicitly indicate whether the N6 tunnel needs to be used, such as whether the N6 tunnel needs to be used for certain specific service types, or whether the N6 tunnel does not need to be used for certain specific service types.
  • the VAL service information includes information directly indicating whether the N6 tunnel needs to be used.
  • the VAL service request information itself can be used by the SEALDD server to determine whether to use the N6 tunnel for business data flow transmission, or whether to use the N6 tunnel to provide data transmission related services for the terminal device.
  • the VAL service request information itself includes an indication of using the N6 tunnel. For example, if the name of the VAL service request information is N6 transmission service (N6 transmitting service) or media transfer service (media transfer service), the VAL service request information enables the N6 tunnel for transmission by default.
  • the SEALDD server transmits the data of the terminal device to the user plane network element through the N6 tunnel.
  • the N6 tunnel is established based on the first information and the second information.
  • the first information includes the information provided by the SEALDD server for establishing the N6 tunnel
  • the second information includes the information provided by the user plane network element for establishing the N6 tunnel.
  • method 800 further includes: the SEALDD server establishes an N6 tunnel based on the first information and the second information, and the N6 tunnel is a tunnel between the SEALDD server and the user plane network element.
  • the SEALDD server establishes the N6 tunnel, which can be understood as the SEALDD server configuring the N6 tunnel based on the first information and the second information, or in other words, after the SEALDD server obtains the first information and the second information, the SEALDD server can use the N6 tunnel to transmit data. It can be understood that if the SEALDD server has established or configured the N6 tunnel, the N6 tunnel can be used to transmit data.
  • the first information includes information provided by the SEALDD server for establishing an N6 tunnel between the SEALDD server and the user plane network element.
  • Information of N6 tunnel for another example, the first information includes information provided by the SEALDD server for establishing the N6 tunnel between the SEALDD server and the user plane network element, as well as other information.
  • the other information may be, for example, the importance information of each N6 tunnel.
  • at least one N6 tunnel can be established between the SEALDD server and the user plane network element. If at least two N6 tunnels are established between the SEALDD server and the user plane network element, the SEALDD server may also send the importance information of each N6 tunnel to the PCF, that is, the first information also includes the importance information of each N6 tunnel.
  • the importance information of each N6 tunnel may also be referred to as the priority information of each N6 tunnel.
  • the first information includes at least one of the following: an ID of a terminal device (UE ID), N6 routing information, an application traffic descriptor (APP traffic descriptor) corresponding to the N6 routing, and a tunnel endpoint identifier (TEID) of the N6 tunnel on the SEALDD server side.
  • the APP traffic descriptor corresponding to the N6 routing includes, for example, address information of a SEALDD server for the N6 tunnel and/or port information of a SEALDD server for the N6 tunnel.
  • the first information may also include other information, such as importance information of each N6 tunnel.
  • the second information includes information provided by the user plane network element for establishing an N6 tunnel between the SEALDD server and the user plane network element.
  • the second information is information provided by the user plane network element for establishing an N6 tunnel between the SEALDD server and the user plane network element;
  • the first information includes information provided by the user plane network element for establishing an N6 tunnel between the SEALDD server and the user plane network element and other information.
  • the other information may include, for example, a session ID, a QoS flow identifier (QFI), and the like.
  • the second information includes at least one of the following: downlink port information allocated by the user plane network element to the N6 tunnel, address information of the user plane network element, and TEID on the user plane network element side.
  • the second information may also include other information, such as session ID, QFI, etc.
  • the user plane network element sends the second information to the SEALDD server, and accordingly, the SEALDD server receives the second information from the user plane network element.
  • the user plane network element may send the second information to the SEALDD server via the session management network element.
  • the user plane network element sends the second information to the session management network element; after receiving the second information, the session management network element sends the second information to the SEALDD server.
  • the session management element sends the second information to the SEALDD server, and accordingly, the SEALDD server receives the second information from the session management element.
  • the session management element determines or configures the second information itself, and sends the second information to the SEALDD server.
  • the SEALDD server can provide services to the terminal device through the user plane network element. Specifically, after receiving the service request information of the terminal device, the SEALDD server transmits the data of the terminal device to the user plane network element through the N6 tunnel between the SEALDD server and the user plane network element.
  • the N6 tunnel can be determined by the SEALDD server based on the information provided by the SEALDD server for establishing the N6 tunnel and the information provided by the user plane network element for establishing the N6 tunnel.
  • the SEALDD server transmits the data of the terminal device to the user plane network element through the N6 tunnel, including at least the following implementation methods.
  • the SEALDD server receives a first data packet from an application server; the SEALDD server sends the first data packet to a user plane network element through an N6 tunnel according to address information and/or port information of the first data packet and mapping relationship #1; wherein mapping relationship #1 is used to indicate a relationship between the SEALDD server, the application server, the terminal device, and the N6 tunnel.
  • the first data packet includes feature information of the first data packet.
  • mapping relationship #1 is used to associate the N6 tunnel with the terminal device, the SEALDD server, and the application server.
  • mapping relationship #1 is used to associate the N6 tunnel with the following two connections: the connection between the SEALDD server and the SEALDD client on the terminal device, and the connection between the VAL server and the VAL client on the terminal device.
  • mapping relationship #1 is the relationship between a SEALDD server, a VAL server, a SEALDD client, a VAL client, and an N6 tunnel.
  • mapping relationship #1#1 also includes UE ID information.
  • the UE ID information may be UE address information or generic public subscription identifier (GPSI) information, etc.
  • the SEALDD server may query the core network for GPSI information corresponding to the user address through an existing mechanism.
  • the SEALDD server receives a second data packet from a user plane network element through an N6 tunnel; the SEALDD server sends the second data packet to the application server according to the address information and/or port information of the second data packet, the N6 tunnel, and the mapping relationship #1; wherein the mapping relationship #1 is used to indicate the mapping relationship between the SEALDD server, the application server, the terminal device, and the N6 tunnel.
  • the second data packet includes media stream information, and the media stream information is used to characterize the type of the second data packet.
  • mapping relationship #1 please refer to the description in the first possible implementation method, which will not be repeated here.
  • method 800 further includes: the SEALDD server sends first information to the user plane network element, the first information is used to trigger the user plane network element to establish an N6 tunnel; in response to the first information, the user plane network element transmits the data of the terminal device with the SEALDD server through the N6 tunnel.
  • the SEALDD server sends the first information to the user plane network element, including: when the SEALDD server determines that the data of the terminal device is to be transmitted on the N6 tunnel according to the service request information, the SEALDD server sends the first information to the user plane network element.
  • the SEALDD server sends a first message to the user plane network element.
  • the user plane network element can establish an N6 tunnel by default, and then transmit the data of the terminal device with the SEALDD server through the N6 tunnel.
  • the user plane network element learns that the N6 tunnel is to be established based on the first message, and determines the N6 tunnel in combination with the first message (that is, the information provided by the SEALDD server for establishing the N6 tunnel) and the information provided by the user plane network element itself for establishing the N6 tunnel.
  • the SEALDD server sends the first information and the indication information (for distinction, recorded as indication information #1) to the first information, wherein indication information #1 is used to indicate the establishment of the N6 tunnel; after the user plane network element receives the first information and indication information #1, it can determine to establish the N6 tunnel based on the indication information #1, and then transmit the data of the terminal device with the SEALDD server through the N6 tunnel. Based on this implementation, in response to the first information, it can be understood that the user plane network element determines the N6 tunnel by combining the first information (that is, the information provided by the SEALDD server for establishing the N6 tunnel) and the information provided by the user plane network element itself for establishing the N6 tunnel.
  • the first information that is, the information provided by the SEALDD server for establishing the N6 tunnel
  • the information provided by the user plane network element itself for establishing the N6 tunnel.
  • the indication information #1 is implemented by at least one bit. For example, assuming that 1 bit is used to indicate whether to establish the N6 tunnel, if the bit is set to "0", it means that the N6 tunnel is not established; if the bit is set to "1", it means that the N6 tunnel is established. It should be understood that the above is only an exemplary description and is not limiting.
  • the SEALDD server may send the first information to the user plane network element through other network elements, such as a session management network element.
  • the user plane network element establishes an N6 tunnel based on the first information and the second information
  • the N6 tunnel is a tunnel between the SEALDD server and the user plane network element.
  • the user plane network element establishes the N6 tunnel, which can be understood as the user plane network element configuring the N6 tunnel based on the first information and the second information, or in other words, after the user plane network element obtains the first information and the second information, the user plane network element can use the N6 tunnel to transmit data. It can be understood that if the user plane network element has established or configured the N6 tunnel, the N6 tunnel can be used to transmit data.
  • method 800 further includes: the SEALDD server sends the address information of the SEALDD server and/or the port information of the SEALDD server to the terminal device.
  • the terminal device can use the address information and/or the port information of the SEALDD server to send data to the SEALDD server.
  • the address information of the SEALDD server is the address information of the SEALDD server used for the N6 tunnel, that is, the address information of the SEALDD server when data is transmitted through the N6 tunnel.
  • the port information of the SEALDD server is the port information of the SEALDD server used for the N6 tunnel, that is, the port information of the SEALDD server when data is transmitted through the N6 tunnel.
  • method 800 is exemplarily described below in conjunction with FIG. 9.
  • the user plane network element is UPF
  • the session management network element is SMF
  • the terminal device is UE
  • the SEALDD client and VAL client in the UE are used for illustration respectively.
  • the steps involved and the explanation of related terms can refer to the related description in method 800, which will not be repeated here.
  • Fig. 9 is a schematic flow chart of a communication method 900 provided in an embodiment of the present application.
  • the method 900 is applicable to the above method 800, that is, the scenario where the SEALDD server triggers the establishment of a UE-granular N6 tunnel.
  • the method 900 may include the following steps.
  • the VAL server discovers the SEALDD server.
  • the VAL server can discover the SEALDD server through the common application programming interface (API) framework (CAPIF).
  • API application programming interface
  • the VAL server can sense whether the SEALDD server supports the N6 tunnel, so in the process of the VAL server discovering the SEALDD server, the SEALDD server that supports the N6 tunnel can be selected.
  • the VAL server sends service subscription information to the SEALDD server.
  • the service subscription information may be used to request subscription to the SEALDD service.
  • the service subscription information includes a media transmission service enhancement indicator.
  • the media transmission service enhancement indicator can be used to indicate that feature information of a data packet should be added to the data packet header when transmitting data from the VAL server. That is, if the service subscription information includes the media transmission service enhancement indicator, the SEALDD server should add the feature information of the data packet to the data packet header when transmitting data from the VAL server.
  • the media transmission service enhancement indicator may be used to indicate the use of the N6 tunnel to transmit the data of the VAL server, that is, if the service subscription information includes the media transmission service enhancement indicator, it indicates that the SEALDD server uses the N6 tunnel when transmitting the data of the VAL server.
  • the characteristic information of the data packet please refer to the previous description and will not be repeated here.
  • the service subscription information includes VAL service information.
  • the SEALDD server sends a subscription response message to the VAL server.
  • the subscription response information may be used to notify the VAL server whether the subscription is successful. In the embodiment of the present application, it is assumed that the subscription response information is used to notify the VAL server whether the subscription is successful.
  • step 903 is an exemplary description and is not intended to limit this.
  • the SEALDD server does not send a subscription failure message to the VAL server
  • the VAL server may assume that the subscription is successful.
  • the VAL client and the SEALDD client determine the SEALDD server.
  • the VAL client and SEALDD client can discover and select the SEALDD server and obtain the control plane API interface of the SEALDD server.
  • SEALDD client sends a SEALDD service request (SEALDD service request) message to the SEALDD server.
  • SEALDD service request SEALDD service request
  • the SEALDD client sends a SEALDD service request message to the SEALDD server through the control plane API interface of the SEALDD server.
  • SEALDD service request information (or simply referred to as service request information) can be used to request the SEALDD server to provide services, such as providing services related to data transmission.
  • SEALDD service request for example, can also be called SEALDD service trigger request (SEALDD service trigger request), and its naming does not limit the protection scope of the embodiments of the present application.
  • the SEALDD service request information includes at least one of the following: an ID of the SEALDD client, an IP address of a UE corresponding to the SEALDD client, and VAL service information.
  • VAL service information For the VAL service information, reference may be made to the description in method 800, which will not be repeated here.
  • the SEALDD server sends the first information to the PCF.
  • the SEALDD server sends the first information to the PCF via an AF request.
  • the SEALDD server sends the first information to the PCF via an AF request.
  • the relevant description in method 800 which will not be repeated here.
  • PCF sends the first information to SMF.
  • PCF can send a session management policy association update request (SM Policy Association_Modification Request) message to SMF, which includes the first information.
  • SM Policy Association_Modification Request session management policy association update request
  • PCF sends a response message of the first message to the SEALDD server.
  • the PCF may send a response message of the first information to the SEALDD server.
  • the PCF may send a response message of the first information to the SEALDD server.
  • a possible implementation method is that if in step 906, the SEALDD server sends the first information to the PCF through an AF request, then in step 908, the PCF sends an AF response (AF response) to the SEALDD server.
  • the SEALDD server sends the address information and/or port information of the SEALDD server to the SEALDD client.
  • the address information of the SEALDD server is the address information of the SEALDD server used for the N6 tunnel, that is, the address information of the SEALDD server when data is transmitted through the N6 tunnel.
  • the port information of the SEALDD server is the port information of the SEALDD server used for the N6 tunnel, that is, the port information of the SEALDD server when data is transmitted through the N6 tunnel.
  • the SEALDD server sends a SEALDD service response (SEALDD service response) message to the SEALDD client, and the SEALDD service response message includes the address information and/or port information of the SEALDD server.
  • SEALDD service response may also be referred to as a SEALDD service trigger response (SEALDD service trigger response), and its naming does not limit the protection scope of the embodiments of the present application.
  • the SEALDD client After the SEALDD client receives the address information and/or port information of the SEALDD server, it can use the address information and/or port information of the SEALDD server to send data (such as media data) to the SEALDD server. If the SMF or UPF detects that the SEALDD client sends data to the SEALDD server, the SMF can provide the first information to the UPF so that the UPF provides the second information, such as steps 910 and 920.
  • SMF sends the first information to UPF.
  • SMF when SMF detects that the SEALDD client sends media data to the SEALDD server, SMF sends a Or, for another example, when UPF detects that the SEALDD client sends media data to the SEALDD server, UPF sends a request to SMF, and SMF sends the first information to UPF based on the request of UPF.
  • the SMF sends an N4 session update request (N4 session modification request) message to the UPF, and the N4 session modification request message includes the first information.
  • N4 session modification request N4 session modification request
  • SMF also sends at least one of the following to UPF: session ID, packet filtering rules, and QFI.
  • UPF sends the second information to SMF.
  • the UPF may determine the second information and send the second information to the SEALDD server via the SMF so as to establish an N6 tunnel between the SEALDD server and the UPF.
  • UPF sends an N4 session update response (N4 session modification response) message to SMF, and the N4 session modification response message includes the second information.
  • N4 session modification response N4 session modification response
  • SMF sends the second information to the SEALDD server.
  • SMF sends an AF notification message to the SEALDD server, where the AF notification message includes the second information.
  • SEALDD server establishes N6 tunnel with UPF.
  • the N6 tunnel between the SEALDD server and the UPF is established, and data can be transmitted based on the N6 tunnel.
  • the SEALDD server may further configure a connection with the VAL server and maintain a mapping relationship #1 between the VAL server, the VAL client, and the N6 tunnel, as shown in step 914 .
  • the SEALDD server determines mapping relationship #1.
  • mapping relationship #1 please refer to the relevant description in method 800, which will not be repeated here.
  • the SEALDD server transmits data based on mapping relationship #1.
  • the SEALDD server transmits the data of the terminal device with the UPF through the N6 tunnel based on mapping relationship #1.
  • the VAL server sends data to the VAL client through the SEALDD server and the SEALDD client.
  • the VAL server sends a data packet to the SEALDD server
  • the SEALDD server determines the VAL client corresponding to the data packet according to the address and/or port corresponding to the data packet.
  • the address corresponding to the data packet can be, for example, the source address and/or destination address of the data packet
  • the port corresponding to the data packet can be, for example, the source port and/or destination port of the data packet.
  • the SEALDD server determines the VAL client corresponding to the data packet, it determines the corresponding N6 tunnel according to the VAL client and mapping relationship #1.
  • the SEALDD server adds the characteristic information of the data packet to the header of the data packet and sends it to the UPF through the N6 tunnel.
  • the UPF matches the QFI and GTP-U header. For example, the UPF determines the UE and QFI corresponding to the data packet, removes the N6 GTP-U tunnel header, and copies the characteristic information of the data packet on the N6 GTP-U tunnel header and adds it to the corresponding N3 GTP-U tunnel header and sends it to the RAN.
  • RAN After receiving the data packet from UPF, RAN can optimize the transmission according to the characteristic information of the data packet in the N3 GTP-U tunnel header and send it to the SEALDD client, and then the SEALDD client sends the data packet to the VAL client.
  • the form of the data packet during the transmission process can be referred to as shown in Figure 5.
  • the SEALDD server may also transmit different data through different N6 tunnels during data transmission.
  • the SEALDD server can dynamically trigger the establishment of a UE-granular N6 tunnel. For example, after receiving the request from the SEALDD client, the SEALDD server sends an AF request to the core network to establish an N6 tunnel for the UE corresponding to the SEALDD client; when the UPF or SMF detects that the SEALDD client sends data to the SEALDD server, the UPF can provide the SEALDD server with the port information allocated for the N6 tunnel and the address information of the UPF to complete the N6 tunnel establishment process between the SEALDD server and the UPF.
  • the SEALDD server can maintain the mapping relationship between the SEALDD server, the VAL server, the SEALDD client, the VAL client, and the N6 tunnel, so that data can be transmitted based on the mapping relationship later.
  • Fig. 10 is a schematic diagram of a communication method 1000 provided in another embodiment of the present application.
  • the method 1000 may include the following steps.
  • the SEALDD server receives service request information from the terminal device, where the service request information is used to request the SEALDD server to provide services related to data transmission.
  • Step 1010 may refer to step 810 in method 800 and will not be described in detail here.
  • the SEALDD server determines that no N6 tunnel has been established between the SEALDD server and the user plane network element
  • the SEALDD server sends first information to the user plane network element.
  • the first information is information provided by the SEALDD server for establishing the N6 tunnel.
  • the user plane network element is a user plane network element that provides services for the terminal device. The first information is used to trigger the user plane network element to establish the N6 tunnel.
  • method 1000 further includes: the SEALDD server determines whether to establish an N6 tunnel with the user plane network element. For example, the SEALDD server detects whether the SEALDD server has established an N6 tunnel with the user plane network element. If the SEALDD server has established an N6 tunnel with the user plane network element, the SEALDD server determines that it is not necessary to establish an N6 tunnel with the user plane network element; if the SEALDD server has not established an N6 tunnel with the user plane network element, the SEALDD server determines that it is necessary to establish an N6 tunnel with the user plane network element.
  • the SELADD server may determine whether to establish an N6 tunnel with the user plane network element based on the terminal device and the range of terminal devices that can be served by the established N6 tunnel. For example, if the terminal device that can be served by the established N6 tunnel does not include the terminal device in step X1010, it is determined to establish an N6 tunnel with the user plane network element.
  • the SEALDD server sends the address information of the SEALDD server and/or the port information of the SEALDD server to the terminal device.
  • the SEALDD server sends the address information of the SEALDD server and/or the port information of the SEALDD server to the terminal device.
  • the relevant description in method 800 please refer to the relevant description in method 800, which will not be repeated here.
  • method 1000 also includes: the SEALDD server receives second information from the user plane network element, the second information is information provided by the user plane network element for establishing an N6 tunnel; the SEALDD server transmits data of the terminal device to the user plane network element through the N6 tunnel, and the N6 tunnel is determined by the first information and the second information.
  • the second information can refer to the relevant description in method 800, which will not be repeated here.
  • the specific implementation method of the SEALDD server transmitting data of the terminal device to the user plane network element through the N6 tunnel can also refer to the relevant description in method 800, which will not be repeated here.
  • the embodiment shown in method 1000 is exemplarily described below in conjunction with FIG. 11.
  • the user plane network element is UPF
  • the session management network element is SMF
  • the terminal device is UE
  • the SEALDD client and VAL client in the UE are used for illustration respectively.
  • the steps involved and the explanation of related terms can refer to the related description in method 1000, which will not be repeated here.
  • FIG11 is a schematic flow chart of a communication method 1100 provided in another embodiment of the present application.
  • the method 1100 is applicable to the above method 1000, that is, the SEALDD server and the UPF dynamically configure the N6 tunnel of the UPF granularity, and the SEALDD server can be responsible for detecting whether the N6 tunnel has been established.
  • the method 1100 may include the following steps.
  • VAL server finds SEALDD server.
  • the VAL server sends service subscription information to the SEALDD server.
  • the SEALDD server sends a subscription response message to the VAL server.
  • the VAL client and the SEALDD client determine the SEALDD server.
  • the SEALDD client sends a SEALDD service request message to the SEALDD server.
  • Steps 1101-1105 are similar to steps 901-905 and are not repeated here.
  • the SEALDD server determines whether to establish an N6 tunnel.
  • the SELADD server may determine whether to initiate the N6 tunnel establishment process based on the UE corresponding to the SEALDD client and the UE range that the established N6 tunnel can serve. As an example, the SELADD server may determine whether to initiate the N6 tunnel establishment process based on the UE ID corresponding to the SEALDD client and the UE ID that the established N6 tunnel can serve. For example, if the UE ID range that the established N6 tunnel can serve includes the UE corresponding to the SEALDD client, the N6 tunnel establishment process is not initiated; if the UE ID range that the established N6 tunnel can serve does not include the UE corresponding to the SEALDD client, the N6 tunnel establishment process is initiated. Among them, the UE ID may include the UE IP address.
  • the SEALDD server determines to send the N6 tunnel establishment process, it executes subsequent steps 1107-1112, otherwise it directly executes step 1113.
  • the SEALDD server sends the first information to the UDR.
  • the SEALDD server sends the first information to the UDR via an AF request.
  • the AF request may be sent to the UDR via NEF.
  • the AF request may be identified by the UE ID.
  • UDR sends the first information to SMF.
  • the UDR can actively send the first information to the SMF, that is, after receiving the first information, the UDR directly sends the first information to the SMF.
  • the SMF can obtain the first information from the UDR by subscribing to notifications.
  • the SMF can subscribe to the first information through the NEF, the NEF can query the UDR for the first information, the UDR sends the first information to the NEF, and then the NEF sends the first information to the SMF.
  • UDR sends an N6 tunnel notification request message to SMF, which includes the first information.
  • SMF sends the first information to UPF.
  • UPF sends the second information to SMF.
  • SMF sends the second information to the SEALDD server.
  • SMF also sends information about UEs served by UPF to the SEALDD server, such as the UE address range and UE ID.
  • the SMF sends an AF notification message to the SEALDD server, where the AF notification message includes the second information, or the AF notification message includes the second information and information of the UE served by the UPF.
  • SEALDD server establishes N6 tunnel with UPF.
  • Steps 1109-1112 are similar to steps 910-913 and will not be repeated here.
  • the SEALDD server sends the address information and/or port information of the SEALDD server to the SEALDD client.
  • Step 1113 is similar to step 909 and will not be repeated here.
  • the SEALDD server determines mapping relationship #1.
  • the SEALDD server transmits data based on mapping relationship #1.
  • Steps 1114-1115 are similar to steps 914-915 and will not be repeated here.
  • the SEALDD server can dynamically trigger the establishment of an N6 tunnel at the UPF granularity. For example, after receiving the SEALDD service request information from the SEALDD client, the SEALDD server can first determine whether to establish an N6 tunnel; if the SEALDD server determines that an N6 tunnel is to be established, the SEALDD server and the UPF establish an N6 tunnel. In addition, the SMF can also notify the SEALDD server of the information of the UE that can be served by the N6 tunnel.
  • the SEALDD server can maintain the mapping relationship between the SEALDD server, the VAL server, the SEALDD client, the VAL client, and the N6 tunnel, so that data can be transmitted based on the mapping relationship later.
  • Fig. 12 is a schematic diagram of a communication method 1200 provided in another embodiment of the present application.
  • the method 1200 may include the following steps.
  • the session management network element determines that the terminal device sends data to the SEALDD server.
  • the session management network element detects that the terminal device sends data to the SEALDD server.
  • Another possible implementation is that other core network elements, such as user plane network elements, detect that the terminal device sends data to the SEALDD server, and the other core network elements notify the session management network element that the terminal device sends data to the SEALDD server.
  • other core network elements such as user plane network elements
  • the session management network element sends a request message to the first user plane network element.
  • the request message is used to request information of the N6 tunnel.
  • the N6 tunnel is the N6 tunnel between the SEALDD server and the first user plane network element.
  • the first user plane network element is a user plane network element that provides services for the terminal device.
  • the method 1200 further includes: the session management network element obtains information of at least one N6 tunnel, the information of at least one N6 tunnel includes information of an N6 tunnel established between a SEALDD server and at least one user plane network element; the session management network element sends a request message to the first user plane network element, including: when the session management network element determines that at least one user plane network element does not include the first In case of a user plane network element, the session management network element sends request information to the first user plane network element.
  • the session management network element may determine whether the SEALDD server has established an N6 tunnel with the first user plane network element. If the session management network element determines that the SEALDD server has not established an N6 tunnel with the first user plane network element, it may request information about the N6 tunnel from the first user plane network element.
  • the information of at least one N6 tunnel includes at least one of the following: N6 tunnel information on the SEALDD server side, port information of a data packet corresponding to at least one N6 tunnel, and address information of a data packet corresponding to at least one N6 tunnel.
  • the session management network element when the session management network element determines that at least one user plane network element includes a first user plane network element, the session management network element sends information of the terminal device and indication information to the SEALDD server, where the indication information indicates information of the N6 tunnel established between the SEALDD server and the first user plane network element.
  • the SEALDD server can establish mapping relationship #1 based on the indication information and the information of the terminal device, and then can transmit the data of the terminal device through the N6 tunnel with the user plane network element based on the mapping relationship #1.
  • mapping relationship #1 please refer to the relevant description in method 800, which will not be repeated here.
  • the SEALDD server provides information of at least one N6 tunnel to the user plane network element.
  • the SEALDD server provides the storage management network element with information about at least one N6 tunnel; and the session management network element may query the storage management network element for information about the at least one N6 tunnel.
  • the session management network element receives second information from the first user plane network element, where the second information is information provided by the first user plane network element for establishing an N6 tunnel.
  • the first user plane network element sends second information to the session management network element.
  • second information For the second information, reference may be made to the relevant description in method 800, which will not be repeated here.
  • the session management network element sends second information to the SEALDD server, where the second information is used to trigger the SEALDD server to establish an N6 tunnel.
  • the SEALDD server may determine the N6 tunnel based on the second information and the information for establishing the N6 tunnel (ie, the first information) provided by the SEALDD server itself.
  • method 1200 is exemplarily described below in conjunction with FIG. 13.
  • the user plane network element is UPF
  • the session management network element is SMF
  • the terminal device is UE
  • the SEALDD client and VAL client in the UE are used for illustration respectively.
  • the steps involved and the explanation of related terms can refer to the related description in method 1200, which will not be repeated here.
  • FIG13 is a schematic flow chart of a communication method 1300 provided in another embodiment of the present application.
  • the method 1300 is applicable to the above method 1200, that is, the scenario where the SEALDD server and the UPF dynamically configure the N6 tunnel of the UPF granularity, and the SMF can be responsible for detecting whether the N6 tunnel has been established.
  • the method 1300 may include the following steps.
  • VAL server discovers SEALDD server.
  • the VAL server sends service subscription information to the SEALDD server.
  • the SEALDD server sends a subscription response message to the VAL server.
  • Steps 1301-1303 are similar to steps 901-903 and are not repeated here.
  • the SEALDD server sends the first information to the UDR.
  • the SEALDD server sends the first information to the UDR via an AF request.
  • the AF request can be sent to the UDR via the NEF.
  • the AF request is at a DNAI granularity or a slice granularity, that is, when the UE uses the slice or the UE is in the DNAI, the UDR will notify the SMF of the first information.
  • the AF request is at a DNAI granularity or a slice granularity, so if the UE initiates a session establishment process, the UDR sends the first information to the SMF during the session establishment process, as shown in step 1305.
  • UDR sends the first information to SMF.
  • SMF can obtain the first information from UDR by subscription notification. For example, SMF can subscribe to the first information through NEF, NEF can query UDR for the first information, UDR sends the first information to NEF, and then NEF sends the first information to SMF.
  • NEF can query UDR for the first information
  • UDR sends the first information to NEF
  • NEF sends the first information to SMF.
  • the VAL client and the SEALDD client determine the SEALDD server.
  • the SEALDD client sends a SEALDD service request message to the SEALDD server.
  • Steps 1306-1307 are similar to steps 904-905 and are not repeated here.
  • the SEALDD server sends the address information and/or port information of the SEALDD server to the SEALDD client.
  • Step 1308 is similar to step 909 and will not be repeated here.
  • the SEALDD client After the SEALDD client receives the address information and/or port information of the SEALDD server, it can use the address information and/or port information of the SEALDD server to send data (such as media data) to the SEALDD server.
  • the SMF can first detect whether the SEALDD server has established an N6 tunnel with the UPF, as shown in step 1309.
  • SMF detects whether the SEALDD server has established an N6 tunnel with the UPF.
  • the UPF is the UPF that provides services for the UE.
  • SMF detects whether the SEALDD server has established an N6 tunnel with the UPF.
  • UPF detects that the SEALDD client sends media data to the SEALDD server
  • UPF sends a request to SMF
  • SMF detects whether the SEALDD server has established an N6 tunnel with the UPF based on the request of UPF.
  • the method 1300 also includes steps 1310-1314.
  • SMF sends the first information to UPF.
  • UPF sends the second information to SMF.
  • SMF sends the second information to the SEALDD server.
  • the SEALDD server establishes an N6 tunnel with the UPF.
  • the SEALDD server determines mapping relationship #1.
  • the SEALDD server transmits data based on mapping relationship #1.
  • Steps 1310-1315 are similar to steps 910-915 and will not be repeated here.
  • the SEALDD server can dynamically trigger the establishment of an N6 tunnel at the UPF granularity.
  • the solution shown in method 1100 is more flexible.
  • the SEALDD server After receiving the service subscription from the VAL server, the SEALDD server provides the UDR with first information, and the first information is used to establish the N6 tunnel; when the SEALDD client sends data to the SEALDD server, the SMF can first detect whether the SEALDD server has established an N6 tunnel with the UPF; if the SEALDD server has not established an N6 tunnel with the UPF, the SMF can obtain the port information and the address information of the UPF assigned by the UPF for the N6 tunnel from the UPF, and send it to the SEALDD server.
  • the SEALDD server can maintain the mapping relationship between the SEALDD server, the VAL server, the SEALDD client, the VAL client, and the N6 tunnel, so that data can be transmitted based on the mapping relationship later.
  • Fig. 14 is a schematic diagram of a communication method 1400 provided in another embodiment of the present application.
  • the method 1400 may include the following steps.
  • the terminal device receives information from a user plane network element of a SEALDD server.
  • the user plane network element is a user plane network element that has established an N6 tunnel with the SEALDD server.
  • the SEALDD server sends information about the user plane network element that has established the N6 tunnel with the SEALDD server to the terminal device.
  • the information of the user plane network element includes at least one of the following: port information of the user plane network element, address information of the user plane network element, data network name (DNN) of the user plane network element, and network slice of the user plane network element.
  • DNN data network name
  • the SEALDD server may have established an N6 tunnel with at least two user plane network elements.
  • the SEALDD server can send information of the at least two user plane network elements to the terminal device, or can also send information of some of the at least two user plane network elements to the terminal device, without restriction.
  • method 1400 further includes: the terminal device sends a service request message to the SEALDD server, the service request message is used to request the SEALDD server to provide services related to data transmission.
  • the SEALDD server sends information about a user plane network element that has established an N6 tunnel with the SEALDD server to the terminal device.
  • the terminal device establishes a session with the user plane network element.
  • the terminal device can establish a session with the user plane network element that has established an N6 tunnel with the SEALDD server, so that the user plane network element that has established the N6 tunnel with the SEALDD server can provide services for the terminal device.
  • the specific method of establishing a session is not limited in the embodiments of the present application.
  • method 1400 is exemplarily described below in conjunction with FIG. 15.
  • the user plane network element is UPF
  • the session management network element is SMF
  • the terminal device is UE
  • the SEALDD client and VAL client in the UE are used for illustration respectively.
  • the steps involved and the explanation of related terms can refer to the related description in method 1400, which will not be repeated here.
  • FIG15 is a schematic flow chart of a communication method 1500 provided in another embodiment of the present application.
  • the method 1500 is applicable to the above method 1400, that is, the SEALDD server and the UPF pre-configure the N6 tunnel, and when the UE session is established, the UPF with the established N6 tunnel is selected for the UE.
  • the method 1500 may include the following steps.
  • the SEALDD server can configure the N6 tunnel with the UPF in advance.
  • the SEALDD server can sense the address and port information used by the UPF when establishing the N6 tunnel with the UPF.
  • the UPF preconfigured with the SEALDD server for the N6 tunnel may be any UPF, or may be a specific UPF, such as a UPF closer to the SEALDD server, without limitation.
  • the number of UPFs preconfigured with the SEALDD server for the N6 tunnel may be at least one, without limitation.
  • the VAL server discovers the SEALDD server.
  • Step 1502 is similar to step 901 and will not be described again here.
  • the VAL server sends service subscription information to the SEALDD server.
  • Step 1503 is similar to step 902 and will not be described again here.
  • the SEALDD server sends a subscription response message to the VAL server.
  • Step 1504 is similar to step 903, except that in step 1504, the subscription response information sent by the SEALDD server to the VAL server may include information of the N6 tunnel.
  • the information of the N6 tunnel represents the information of the N6 tunnel established between the SEALDD server and the UPF, that is, the information of the N6 tunnel preconfigured in step 1501. For example, if the SEALDD server and at least one UPF preconfigure the N6 tunnel in step 1501, then in step 1504, the information of the N6 tunnel represents the information of the N6 tunnel preconfigured between the SEALDD server and the at least one UPF. For another example, if the SEALDD server and the UPF preconfigure at least one N6 tunnel in step 1501, then in step 1504, the information of the N6 tunnel represents the information of the at least one N6 tunnel preconfigured between the SEALDD server and the UPF.
  • the information of the N6 tunnel includes at least one of the following: N6 tunnel information on the SEALDD server side, port information of the data packet corresponding to the N6 tunnel, address information of the data packet corresponding to the N6 tunnel, single network slice selection assistance information (single network slice selection assistance information, S-NSSAI), and DNN.
  • the VAL client and the SEALDD client determine the SEALDD server.
  • Step 1505 is similar to step 904 and will not be described again here.
  • the VAL client and/or the SEALDD client may obtain information of the N6 tunnel to select a UPF that has established an N6 tunnel for the UE.
  • method 1500 includes any of the following solutions.
  • Solution 1 The VAL server notifies the VAL client of the information of the N6 tunnel.
  • Solution 2 The SEALDD server notifies the SEALDD client of the information about the N6 tunnel.
  • Solution 3 The VAL server preconfigures the N6 tunnel information.
  • Solution 1 The VAL server notifies the VAL client of the information of the N6 tunnel, as shown in step 1506.
  • the VAL server sends the N6 tunnel information to the VAL client.
  • the VAL server may notify the VAL client of the information of the N6 tunnel through an application layer control message.
  • the information of the N6 tunnel is the information of the N6 tunnel received by the VAL server in step 1504.
  • the VAL server sends the information of the N6 tunnel to the VAL client, so that the VAL client can use a specific address, a specific port, a specific DNN, or a specific S-NSSAI to transmit data.
  • the information of the N6 tunnel includes the port information of the N6 tunnel.
  • the VAL client can use the port information of the N6 tunnel to transmit data. In this way, the preconfigured N6 tunnel can be used.
  • the information of the N6 tunnel includes the address information of the N6 tunnel.
  • the VAL client can use the address information of the N6 tunnel to transmit data. In this way, the preconfigured N6 tunnel can be used.
  • the information of the N6 tunnel includes a DNN. After the VAL client receives the DNN, it can use the DNN to transmit data. In this way, the UPF that has been configured with the N6 tunnel can provide services and use the N6 tunnel.
  • the information of the N6 tunnel includes S-NSSAI.
  • the VAL client After receiving the S-NSSAI, the VAL client can use the S-NSSAI to transmit data. In this way, the UPF that has been configured with the N6 tunnel can provide services and use the N6 tunnel.
  • Solution 2 The SEALDD server notifies the SEALDD client of the information of the N6 tunnel, as in steps 1507 and 1508 .
  • the SEALDD client sends a SEALDD service request message to the SEALDD server.
  • Step 1507 is similar to step 905 and will not be repeated here.
  • the SEALDD server sends the N6 tunnel information to the SEALDD client.
  • the SEALDD server sends SEALDD service response information to the SEALDD client, where the SEALDD service response information includes information about the N6 tunnel, i.e., information about the N6 tunnel preconfigured in step 1501 .
  • Solution 3 The VAL server preconfigures the information of the N6 tunnel, as shown in step 1509 .
  • VAL client pre-configures N6 tunnel information.
  • the information of the N6 tunnel is preconfigured in the VAL client, that is, the information of the N6 tunnel preconfigured in step 1501 .
  • the VAL client or the SEALDD client can obtain the information of the N6 tunnel.
  • the VAL client sends a SEALDD service request message to the SEALDD client.
  • step 1510 the VAL client triggers the SEALDD client to perform service transmission.
  • SEALDD client triggers session establishment.
  • SEALDD client sends a SEALDD service notification (SEALDD service notification) message to the SEALDD server.
  • SEALDD service notification SEALDD service notification
  • the SEALDD client sends the SEALDD client ID and a new IP address corresponding to the SEALDD client to the SEALDD server.
  • this scenario may be applicable to client/server (CS) services.
  • the SEALDD client sends a data packet with the destination being the address and port used by the N6 tunnel.
  • the UPF identifies the data packet, encapsulates the data packet, and then sends the encapsulated data packet to the SEALDD server through the N6 tunnel.
  • the SEALDD server can obtain the ID and IP information of the SEALDD client based on the N6 tunnel.
  • the establishment of a new session may also be triggered, and there is no restriction on this. As an example, this scenario may be applicable to the browser/server (BS) service.
  • BS browser/server
  • SEALDD server determines mapping relationship #1.
  • mapping relationship #1 For the description of mapping relationship #1, please refer to step 914, which will not be repeated here.
  • the SEALDD server determines mapping relationship #1 based on the received ID of the SEALDD client and the new IP address corresponding to the SEALDD client.
  • the SEALDD server detects the N6 tunnel that sends the data packet and determines mapping relationship #1.
  • the SEALDD server transmits data based on mapping relationship #1.
  • the SEALDD server and the UPF are pre-configured with at least two N6 tunnels, during data transmission, the SEALDD server may also transmit different data through different N6 tunnels.
  • Step 1514 is similar to step 915 and will not be repeated here.
  • method 1500 may also include other steps, such as when the SMF configures the packet detection rule (PDR) and the associated forwarding action rule (FAR) of the UPF, it sets a processing rule for encapsulating and decapsulating a specific data packet and sending it through the N6 tunnel, so that the UPF processes the data based on the processing rule.
  • PDR packet detection rule
  • FAR forwarding action rule
  • the SEALDD server and UPF can pre-configure the N6 tunnel.
  • the UE needs to use the N6 tunnel.
  • the UE selects the session anchor point on the UPF that has established the N6 tunnel.
  • the SEALDD server and the UPF preconfigure the N6 tunnel.
  • the DNN or S-NSSAI used by the UE selects the session to the UPF that has established the N6 tunnel.
  • the SEALDD server can maintain the mapping relationship between the SEALDD server, the VAL server, the SEALDD client, the VAL client, and the N6 tunnel, so that data can be transmitted based on the mapping relationship later.
  • Fig. 16 is a schematic diagram of a communication method 1600 provided in another embodiment of the present application.
  • the method 1600 may include the following steps.
  • the session management network element determines that the terminal device sends data to the SEALDD server.
  • Step 1610 may refer to step 1210 and will not be described in detail here.
  • the session management network element obtains information about the N6 tunnel, where the information about the N6 tunnel includes information about the N6 tunnel established between the SEALDD server and the user plane network element.
  • the information of the N6 tunnel includes at least one of the following: the N6 tunnel information on the SEALDD server side, the port information of the data packet corresponding to the N6 tunnel, and the address information of the data packet corresponding to the N6 tunnel. It can be understood that the above is an exemplary description and is not limited to this.
  • the information of the N6 tunnel may also include: the address information of the user plane network element used for the N6 tunnel, and the port information of the user plane network element used for the N6 tunnel.
  • the SEALDD server provides the information of the N6 tunnel to the user plane network element.
  • SEALDD server provides the storage management network element with the information of the N6 tunnel; the session management network element may query the storage management network element for the information of the N6 tunnel.
  • the session management network element determines a diversion point according to the information of the N6 tunnel.
  • the diversion point is used to divert the data of the terminal device to the user plane network element.
  • the diversion point is an uplink classifier (UL CL) or a branching point (BP).
  • UL CL uplink classifier
  • BP branching point
  • method 1600 further includes: the session management network element determines the user plane network element according to the information of the N6 tunnel.
  • the diversion point is used to establish a transmission path from the terminal device to the user plane network element, that is, the transmission path from the terminal device to the user plane network element is established through the diversion point inserted by the session management network element.
  • the session management network element obtains the N6 tunnel information corresponding to at least two user plane network elements, that is, in step SEALDD server pre-configures the N6 tunnel with at least two user plane network elements, then a user plane network element can be determined according to the location of the terminal device, such as selecting the user plane network element closest to the terminal device.
  • method 1600 is exemplarily described below in conjunction with FIG. 17.
  • the user plane network element is UPF
  • the session management network element is SMF
  • the terminal device is UE
  • the SEALDD client and VAL client in the UE are used for illustration respectively.
  • the steps involved and the explanation of related terms can refer to the related description in method 1600, which will not be repeated here.
  • FIG17 is a schematic flow chart of a communication method 1700 provided in another embodiment of the present application.
  • Method 1700 is applicable to the above method 1600, that is, the SEALDD server and the UPF pre-configure the N6 tunnel, and the SMF inserts the UE into the branch point of the UPF that has established the N6 tunnel.
  • Method 1700 may include the following steps.
  • SEALDD server preconfigures N6 tunnel with UPF1.
  • Step 1701 is similar to step 1501, except that in method 1700, the configuration of the N6 tunnel between the SEALDD server and UPF1 is used as an example for explanation.
  • the VAL server discovers the SEALDD server.
  • the VAL server sends service subscription information to the SEALDD server.
  • the SEALDD server sends a subscription response message to the VAL server.
  • Steps 1702-1704 are similar to steps 901-903 and will not be repeated here.
  • the SEALDD server sends the N6 tunnel information to the UDR.
  • the information of the N6 tunnel represents the information of the N6 tunnel established between the SEALDD server and UPF1, that is, the information of the N6 tunnel preconfigured in step 1701.
  • the information of the N6 tunnel can be used to establish a transmission path from the UE to the UPF1, for example, by inserting a diversion point to forward the UE data to the UPF1 through the diversion point, which will be described in detail later in conjunction with step 1711.
  • the SEALDD server may also send importance information of each N6 tunnel to the UDR.
  • the information of the N6 tunnel includes at least one of the following: address information of UPF1 used for the N6 tunnel, port information of UPF1 used for the N6 tunnel, port information of the SEALDD server used for the N6 tunnel, address information of the SEALDD server used for the N6 tunnel, port information of the data packet corresponding to the N6 tunnel, and address information of the data packet corresponding to the N6 tunnel.
  • the SEALDD server can also send a data network access identification (DNAI) to the UDR.
  • DNAI data network access identification
  • the VAL client and the SEALDD client determine the SEALDD server.
  • the SEALDD client sends a SEALDD service request message to the SEALDD server.
  • Steps 1706-1707 are similar to steps 904-905 and will not be repeated here.
  • the SEALDD server sends the address information and/or port information of the SEALDD server to the SEALDD client.
  • Step 1708 is similar to step 909 and will not be repeated here.
  • the SEALDD client After the SEALDD client receives the address information and/or port information of the SEALDD server, it can use the address information and/or port information of the SEALDD server to send data (such as media data) to the SEALDD server. If the SMF or UPF detects that the SEALDD client sends data to the SEALDD server, the SMF can obtain the information of the N6 tunnel from the UDR, as shown in step 1709.
  • SMF obtains the information of N6 tunnel from UDR.
  • SMF when SMF detects that the SEALDD client sends media data to the SEALDD server, SMF obtains the information of the N6 tunnel from the UDR. Or, for another example, when UPF detects that the SEALDD client sends media data to the SEALDD server, UPF sends a request to SMF, and SMF obtains the information of the N6 tunnel from the UDR based on the request of UPF.
  • SMF obtains the information of N6 tunnel from UDR, for example, including: SMF sends a request to PCF, PCF requests the information of N6 tunnel from UDR based on the request of SMF; UDR sends AF request notification information to PCF, and the AF request notification information includes the information of N6 tunnel; PCF sends the information of N6 tunnel to SMF.
  • PCF sends the information of N6 tunnel to SMF, for example, including: PCF sends a session management policy association update request (SM Policy association modification request) message to SMF, and the SM Policy association modification request message includes the information of N6 tunnel.
  • SM Policy association modification request session management policy association update request
  • SMF determines UPF1 based on the information of N6 tunnel.
  • a UPF can be determined according to the UE location, such as selecting the UPF closest to the UE.
  • SMF determines the diversion point.
  • the diversion point is used to establish a transmission path from UE to UPF1, that is, the transmission path from UE to UPF1 is established through the diversion point inserted by SMF.
  • the diversion point is UL CL or BP.
  • SMF also configures forwarding rules.
  • SMF can configure forwarding rules and send them to the diversion point, which can then forward the UE data to UPF1 based on the forwarding rules.
  • SMF sends the UE information and indication information #2 corresponding to the SEALDD client to the SEALDD server.
  • indication information #2 can be used to indicate the N6 tunnel corresponding to UPF1.
  • the SEALDD server can know that it is the N6 tunnel between the SEALDD server and UPF1.
  • the SMF sends the ID of the SEALDD client and indication information #2 to the SEALDD server so that the SEALDD server associates the SEALDD client with the N6 tunnel corresponding to UPF1.
  • indication information #2 can be implemented by at least one bit.
  • the SEALDD server establishes an N6 tunnel with a UPF (i.e., UPF1), and indication information #2 is implemented by one bit, and the bit is set to "0", it indicates that the SEALDD client is not associated with the N6 tunnel corresponding to UPF1; if the bit is set to "1", it indicates that the SEALDD client is associated with the N6 tunnel corresponding to UPF1.
  • indication information #2 is information about the N6 tunnel between the SEALDD server and UPF1.
  • indication information #2 is port information and/or address information of UPF1 used for the N6 tunnel.
  • the SEALDD server can learn the N6 tunnel corresponding to the UPF1, and then associate the SEALDD client with the N6 tunnel corresponding to the UPF1.
  • the SEALDD server determines mapping relationship #1.
  • mapping relationship #1 is used to associate the N6 tunnel with the following two connections: the connection between the SEALDD client and the SEALDD server, and the connection between the VAL client and the VAL server.
  • mapping relationship #1 is used to indicate the relationship among the SEALDD server, the VAL server, the SEALDD client, the VAL client, and the N6 tunnel.
  • the SEALDD server transmits data based on mapping relationship #1.
  • Step 1714 is similar to step 915 and will not be repeated here.
  • the SEALDD server and UPF can pre-configure the N6 tunnel and notify the core network of the information of the N6 tunnel.
  • the SMF is inserted into the diversion point of the UPF that has established the N6 tunnel based on the information of the N6 tunnel.
  • the SEALDD server and UPF configure the N6 tunnel, they notify the UDR of the information of the N6 tunnel; when the SEALDD client sends data to the SEALDD server, the SMF can obtain the information of the N6 tunnel from the UDR, and insert it into the diversion point of the UPF that has established the N6 tunnel based on the information of the N6 tunnel, thereby establishing a transmission path between the UE and the UPF that has established the N6 tunnel.
  • the SEALDD server can maintain the mapping relationship between the SEALDD server, the VAL server, the SEALDD client, the VAL client, and the N6 tunnel, so that data can be transmitted based on the mapping relationship later.
  • Fig. 18 is a schematic diagram of a communication method 1800 provided in another embodiment of the present application.
  • the method 1800 may include the following steps.
  • the SEALDD server receives service request information from the terminal device, where the service request information is used to request the SEALDD server to provide services related to data transmission.
  • the SEALDD server sends third information to the terminal device, where the third information is used to indicate information of at least one SEALDD connection between the SEALDD server and the terminal device.
  • the SEALDD server may establish at least one SEALDD connection with the SEALDD client.
  • the SEALDD server may also determine importance information or priority information of each SEALDD connection.
  • the SEALDD server may determine how many SEALDD connections to establish according to the transmission requirements of the terminal device.
  • the information of at least one SEALDD connection includes at least one of the following: address information of each SEALDD connection, port information of each SEALDD connection, importance information of each SEALDD connection, and identification information of each SEALDD connection.
  • the importance information of the SEALDD connection can identify the importance of each SEALDD connection.
  • SEALDD connections of different importance can be used to transmit different types of data, such as data of different importance.
  • the SEALDD server transmits the data of the application server with the terminal device on at least one SEALDD connection based on mapping relationship #2.
  • mapping relationship #2 is used to indicate the relationship between the SEALDD server, the application server, the terminal device, and at least one SEALDD connection.
  • Mapping relationship #2 is used to associate the SEALDD connection with the terminal device, the SEALDD server, and the application server, or in other words, mapping relationship #2 is used to associate the SEALDD connection with the following two connections: the connection between the SEALDD server and the SEALDD client on the terminal device, and the connection between the VAL server and the VAL client on the terminal device.
  • mapping relationship #2 is a relationship between a SEALDD server, a VAL server, a SEALDD client on a terminal device, a VAL client on a terminal device, and a SEALDD connection.
  • mapping relationship # also includes UE ID information.
  • the UE ID information may be UE address information, or GPSI information, etc.
  • method 1800 is exemplarily described below in conjunction with FIG. 19.
  • the terminal device is a UE
  • SEALDD client and the VAL client in the UE are used for explanation.
  • the explanations of the steps involved and related terms can refer to the relevant descriptions in method 1800, which will not be repeated here.
  • Fig. 19 is a schematic flow chart of a communication method 1900 provided in another embodiment of the present application.
  • the method 1900 is applicable to the above method 1800, that is, the scenario of establishing a SEALDD connection between a SEALDD server and a SEALDD client.
  • the method 1900 may include the following steps.
  • the VAL server can discover the SEALDD server through CAPIF.
  • the VAL server can sense whether the SEALDD server supports tunnels, so in the process of the VAL server discovering the SEALDD server, a SEALDD server that supports tunnels can be selected.
  • the tunnel represents a tunnel between the SEALDD server and the SEALDD client, that is, a SEALDD connection.
  • the VAL server sends service subscription information to the SEALDD server.
  • the service subscription information may be used to request subscription to the tunnel transmission service.
  • the SEALDD server sends a subscription response message to the VAL server.
  • VAL client and SEALDD client determine SEALDD server.
  • the VAL client and SEALDD client can discover and select the SEALDD server and obtain the control plane API interface of the SEALDD server.
  • the SEALDD client sends a SEALDD service request message to the SEALDD server.
  • the SEALDD service request information may be used to request the SEALDD server to provide services, such as services related to data transmission.
  • the SEALDD service request may also be referred to as a SEALDD service trigger request (SEALDD service trigger request), and its naming does not limit the protection scope of the embodiments of the present application.
  • the SEALDD client sends a SEALDD service request message to the SEALDD server through the control plane API interface of the SEALDD server.
  • the SEALDD service request information includes VAL service information.
  • the VAL service information can be used by the SEALDD server to determine whether to use a tunnel to transmit the service data stream. For example, if the SEALDD server determines, based on the VAL service information, that the VAL server has subscribed to the SEALDD service, the SEALDD server determines to use a tunnel to transmit the data of the service provided by the VAL server. If the SEALDD server determines to use a tunnel to transmit the data of the service provided by the VAL server, the SEALDD server determines to establish a connection with the SEALDD client, as shown in step 1906. For distinction, the connection between the SEALDD server and the SEALDD client is recorded as a SEALDD connection.
  • the SEALDD server determines to establish a SEALDD connection with the SEALDD client.
  • the SEALDD server may determine how many SEALDD connections to establish with the SEALDD client according to the transmission requirements of the VAL server.
  • the SEALDD server may also determine importance information or priority information of each SEALDD connection.
  • the SEALDD server sends the address information and/or port information of the SEALDD server to the SEALDD client.
  • the address information of the SEALDD server is the address information of the SEALDD server used for the SEALDD connection, that is, the address information of the SEALDD server corresponding to the SEALDD connection.
  • the port information of the SEALDD server is the port information of the SEALDD server used for the SEALDD connection, that is, the port information of the SEALDD server corresponding to the SEALDD connection.
  • the SEALDD server sends SEALDD service response information to the SEALDD client, where the SEALDD service response information includes address information and/or port information of the SEALDD server.
  • the SEALDD server may further send importance information of each SEALDD connection to the SEALDD client.
  • the SEALDD server may also send an uplink TEID to the SEALDD client.
  • the SEALDD client sends a downlink TEID to the SEALDD server, as shown in step 1908 .
  • the SEALDD client sends a downlink TEID to the SEALDD server.
  • the SEALDD client sends a SEALDD service tunnel establishment message to the SEALDD server, the message including the downlink TEID. Further optionally, the SEALDD server may send a SEALDD service tunnel establishment response message to the SEALDD client.
  • the SEALDD server After the SEALDD server receives the downlink TEID sent by the SEALDD client, the SEALDD connection between the SEALDD server and the SEALDD client is established.
  • the SEALDD server can also send a notification message to the core network, which is used to notify the UPF to read the SEALDD.
  • the header of the data packet transmitted on the connection is used to notify the UPF to read the SEALDD.
  • step 1908 may not be performed.
  • the SEALDD server determines mapping relationship #2.
  • mapping relationship #2 please refer to the relevant description in method 1800, which will not be repeated here.
  • the SEALDD server transmits data based on mapping relationship #2.
  • the VAL server sends data to the VAL client through the SEALDD server and the SEALDD client.
  • the VAL server sends a data packet to the SEALDD server
  • the SEALDD server determines the VAL client corresponding to the data packet according to the address and/or port corresponding to the data packet.
  • the address corresponding to the data packet can be, for example, the source address and/or destination address of the data packet
  • the port corresponding to the data packet can be, for example, the source port and/or destination port of the data packet.
  • the SEALDD server determines the VAL client corresponding to the data packet, it determines the corresponding SEALDD connection according to the VAL client and mapping relationship #2.
  • the SEALDD server adds the characteristic information of the data packet to the header of the data packet and sends it to the UPF through the SEALDD connection.
  • the UPF reads the characteristic information of the data packet in the header of the data packet, and copies the characteristic information of the data packet to the N3 GTP-U tunnel header and sends it to the RAN.
  • the RAN can optimize the transmission according to the characteristic information of the data packet in the N3 GTP-U tunnel header, and send it to the SEALDD client, and then the SEALDD client sends the data to the VAL client.
  • the form of the data packet during transmission may refer to the form shown in FIG. 7 .
  • an end-to-end tunnel i.e., a SEALDD connection
  • the SEALDD server can maintain the mapping relationship between the SEALDD server, the VAL server, the SEALDD client, the VAL client, and the SEALDD connection, so that data can be transmitted based on the mapping relationship later.
  • the SEALDD server provides the N6 tunnel information on the SEALDD server side (such as the TEID on the SEALDD server side), and the UPF or SMF provides the N6 tunnel information on the UPF side (such as the TEID on the UPF side), and then the N6 tunnel is established between the SEALDD server and the UPF.
  • the SEALDD server can also be replaced by other application servers.
  • AF sends the N6 tunnel information on the application server side (such as TEID on the application server side) to SMF through the core network element (such as NEF/PCF), and SMF can send the N6 tunnel information on the application server side to UPF; SMF feeds back the N6 tunnel information on the UPF side (such as TEID on the UPF side), and then the N6 tunnel is established between the application server and UPF.
  • SMF can obtain the N6 tunnel information on the UPF side from UPF, or it can allocate the N6 tunnel information on the UPF side by itself, without limitation.
  • the above-mentioned application server can be a SEALDD server, and AF can also be a SEALDD server.
  • the application server sends an AF request through a network element (such as network element #A), such as network resource management (NRM).
  • the network element #A sends the N6 tunnel information on the application server side (such as TEID on the application server side) to SMF through the core network element (such as NEF/PCF).
  • SMF can send the N6 tunnel information on the application server side to UPF; SMF feeds back the N6 tunnel information on the UPF side (such as TEID on the UPF side), and then the N6 tunnel is established between the application server and UPF.
  • SMF may also feed back the N6 tunnel information on the UPF side to the outside of the core network through NEF.
  • the interaction between the SELADD server and the core network can be implemented through network element #A.
  • the network element #A can be an NRM.
  • the SEALDD server is mainly used as an example for illustrative description, and this is not limited to this.
  • the SEALDD server can also be replaced by other application servers.
  • the methods and operations implemented by the device or network element can also be implemented by components (such as chips or circuits) that can be implemented by the device or network element, without limitation.
  • the embodiments of the present application also provide corresponding devices, which include modules for executing the corresponding methods in the above-mentioned method embodiments.
  • the module can be software, hardware, or a combination of software and hardware. It can be understood that the technical features described in the above-mentioned method embodiments are also applicable to the following device embodiments.
  • FIG20 is a schematic block diagram of a communication device 2000 provided in an embodiment of the present application.
  • the device 2000 includes one or more virtual units, such as a transceiver unit 2010 and a processing unit 2020.
  • the transceiver unit 2010 can be used to implement corresponding communication functions.
  • the transceiver unit 2010 can also be called a communication interface or a communication unit.
  • the processing unit 2020 can be used to implement corresponding processing functions, such as establishing an N6 tunnel.
  • the device 2000 also includes a storage unit, which can be used to store instructions and/or data, and the processing unit 2020 can read the instructions and/or data in the storage unit so that the device implements the actions of the device or network element in the aforementioned method embodiments.
  • a storage unit which can be used to store instructions and/or data
  • the processing unit 2020 can read the instructions and/or data in the storage unit so that the device implements the actions of the device or network element in the aforementioned method embodiments.
  • the device 2000 can be the SEALDD server in the aforementioned embodiment, or a component (such as a chip) of the SEALDD server.
  • the device 2000 can implement the steps or processes executed by the SEALDD server in the above method embodiment.
  • the transceiver unit 2010 can be used to perform the operations related to the transceiver of the SEALDD server in the above method embodiment, such as the operations related to the transceiver of the SEALDD server in the embodiments shown in Figures 8 to 19
  • the processing unit 2020 can be used to perform the operations related to the processing of the SEALDD server in the above method embodiment, such as the operations related to the processing of the SEALDD server in the embodiments shown in Figures 8 to 19.
  • the device 2000 can be a user plane network element in the aforementioned embodiment, or a component (such as a chip) of the user plane network element.
  • the device 2000 can implement the steps or processes executed by the user plane network element in the above method embodiment.
  • the transceiver unit 2010 can be used to perform the operations related to the transceiving of the user plane network element in the above method embodiment, such as the operations related to the transceiving of the user plane network element in the embodiments shown in Figures 8, 10, 12, 14, 16, and 18, and the operations related to the transceiving of the UPF in the embodiments shown in Figures 9, 11, 13, 15, 17, and 19;
  • the processing unit 2020 can be used to perform the operations related to the processing of the user plane network element in the above method embodiment, such as the operations related to the processing of the user plane network element in the embodiments shown in Figures 8, 10, 12, 14, 16, and 18, and the operations related to the processing of the UPF in the embodiments shown in Figures 9, 11, 13, 15, 17, and 19.
  • the device 2000 can be the session management network element in the aforementioned embodiment, or it can be a component (such as a chip) of the session management network element.
  • the device 2000 can implement the steps or processes corresponding to the session management network element in the above method embodiment.
  • the transceiver unit 2010 can be used to perform the operations related to the transceiver of the session management network element in the above method embodiment, such as the operations related to the transceiver of the session management network element in the embodiments shown in Figures 8, 10, 12, 14, 16, and 18, and the operations related to the transceiver of the SMF in the embodiments shown in Figures 9, 11, 13, 15, 17, and 19;
  • the processing unit 2020 can be used to perform the operations related to the processing of the session management network element in the above method embodiment, such as the operations related to the processing of the session management network element in the embodiments shown in Figures 8, 10, 12, 14, 16, and 18, and the operations related to the processing of the SMF in the embodiments shown in Figures 9, 11, 13, 15, 17, and 19.
  • the device 2000 can be the terminal device in the aforementioned embodiment, or it can be a component of the terminal device (such as a chip).
  • the device 2000 can implement the steps or processes executed by the terminal device in the above method embodiment.
  • the transceiver unit 2010 can be used to perform the transceiver-related operations of the terminal device in the above method embodiment, such as the transceiver-related operations of the terminal device in the embodiments shown in Figures 8, 10, 12, 14, 16, and 18, and also as shown in Figures 9, 11, 13, 15, 17, and 19.
  • the processing unit 2020 can be used to execute the processing related operations of the terminal device in the above method embodiments, such as the processing related operations of the terminal device in the embodiments shown in Figures 8, 10, 12, 14, 16, and 18, and the processing related operations of the VAL client and the SEALDD client in the embodiments shown in Figures 9, 11, 13, 15, 17, and 19.
  • the apparatus 2000 herein is embodied in the form of a functional unit.
  • the term "unit” herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (e.g., a shared processor, a dedicated processor, or a group processor, etc.) and a memory for executing one or more software or firmware programs, a combined logic circuit, and/or other suitable components that support the described functionality.
  • ASIC application specific integrated circuit
  • processor e.g., a shared processor, a dedicated processor, or a group processor, etc.
  • memory for executing one or more software or firmware programs, a combined logic circuit, and/or other suitable components that support the described functionality.
  • the product implementation form of the device 2000 provided in the embodiment of the present application is a program code that can be executed on a computer.
  • the device 2000 provided in the embodiment of the present application may be a communication device, or a chip, a chip system (for example, a system on chip (SoC)) or a circuit applied to a communication device.
  • the transceiver unit 2010 may be a transceiver, or an input/output interface
  • the processing unit 2020 may be a processor.
  • the transceiver unit 2010 may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip, the chip system or the circuit
  • the processing unit 2020 may be a processor, a processing circuit or a logic circuit, etc.
  • transceiver unit 2010 can also be a transceiver circuit (for example, can include a receiving circuit and a sending circuit), and the processing unit can be a processing circuit.
  • FIG21 is a schematic block diagram of a communication device 2100 provided in an embodiment of the present application.
  • the device 2100 includes a processor 2110, and the processor 2110 is coupled to a memory 2220.
  • the memory 2220 is further included, which is used to store computer programs or instructions and/or data, and the processor 2110 is used to execute the computer programs or instructions stored in the memory 2220, or read the data stored in the memory 2220, so as to execute the methods in the above method embodiments.
  • processors 2110 there are one or more processors 2110 .
  • the memory 2220 is one or more.
  • the memory 2220 is integrated with the processor 2110 or provided separately.
  • the device 2100 further includes a transceiver 2130, and the transceiver 2130 is used for receiving and/or sending signals.
  • the processor 2110 is used to control the transceiver 2130 to receive and/or send signals.
  • the device 2100 is used to implement the operations performed by the SEALDD server in the above method embodiments.
  • the processor 2110 is used to execute the computer program or instructions stored in the memory 2220 to implement the relevant operations of the SEALDD server in the above various method embodiments.
  • the device 2100 is used to implement the operations performed by the user plane network element in the above method embodiments.
  • the processor 2110 is used to execute the computer program or instructions stored in the memory 2220 to implement the relevant operations of the user plane network element in each method embodiment above.
  • the device 2100 is used to implement the operations performed by the session management network element in the above method embodiments.
  • the processor 2110 is used to execute the computer program or instructions stored in the memory 2220 to implement the relevant operations of the session management network element in the above various method embodiments.
  • the device 2100 is used to implement the operations performed by the terminal device in the above method embodiments.
  • the processor 2110 is used to execute the computer program or instructions stored in the memory 2220 to implement the relevant operations of the terminal device in the above various method embodiments.
  • each step of the above method can be completed by the hardware integrated logic circuit in the processor 2110 or the software instruction.
  • the method disclosed in the embodiment of the present application can be directly embodied as a hardware processor to execute, or a combination of hardware and software modules in the processor to execute.
  • the software module can be located in a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or a programmable read-only memory.
  • the processor 2110 reads the information in the memory 2220 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor may be one or more integrated circuits for executing related programs to execute the embodiments of the methods of the present application.
  • a processor may include one or more processors and be implemented as a combination of computing devices.
  • the processor may include one or more of the following: a microprocessor, a microcontroller, a digital signal processor (DSP), a digital signal processing device (DSPD), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a programmable logic device (PLD), a gating logic, a transistor logic, a discrete hardware circuit, a processing circuit or other suitable hardware, firmware and/or a combination of hardware and software for performing the various functions described in the present disclosure.
  • the processor may be a general-purpose processor or a dedicated processor.
  • processor 2110 may be a baseband processor or a central processing unit.
  • the baseband processor may be used to process communication protocols and communication data.
  • the central processing unit may be used to enable the device to execute a software program and process data in the software program.
  • a portion of the processor may also include a non-volatile random access memory.
  • the processor may also store information about the type of device.
  • Program in this application is used to refer to software in a broad sense.
  • Non-limiting examples of software include: program code, program, subroutine, instruction, instruction set, code, code segment, software module, application, or software application, etc.
  • the program can be run in a processor and/or computer. So that the device performs various functions and/or processes described in this application.
  • the memory can store data required by the processor (e.g., processor 2110) when executing software.
  • the memory can be implemented using any suitable storage technology.
  • the memory can be any available storage medium that can be accessed by the processor and/or computer.
  • Non-limiting examples of storage media include random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate synchronous dynamic random access memory (DDR SDRAM), enhanced synchronous dynamic random access memory (ESDRAM), synchronous link dynamic random access memory (SLDRAM), and direct rambus RAM (DR RAM), removable media, optical disk storage, magnetic disk storage media, magnetic storage devices, flash memory, registers, state memory, remote mounted storage, local or remote storage components, or any other medium capable of carrying or storing software, data or information and accessible by a processor/computer. It should be noted that the memory described herein is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory e.g., memory 2220
  • the processor e.g., processor 2110
  • the memory may be used to connect to the processor so that the processor can read information from the memory and store and/or write information in the memory.
  • the memory may be integrated in the processor.
  • the memory and the processor may be provided in an integrated circuit (e.g., the integrated circuit may be provided in a UE or other network node).
  • FIG22 is a schematic block diagram of a chip system 2200 provided in an embodiment of the present application.
  • the chip system 2200 (or also referred to as a processing system) includes a logic circuit 2210 and an input/output interface 2220.
  • the logic circuit 2210 can be a processing circuit in the chip system 2200.
  • the logic circuit 2210 can be coupled to the storage unit and call the instructions in the storage unit so that the chip system 2200 can implement the methods and functions of each embodiment of the present application.
  • the input/output interface 2220 can be an input/output circuit in the chip system 2200, outputting information processed by the chip system 2200, or inputting data or signaling information to be processed into the chip system 2200 for processing.
  • the chip system 2200 is used to implement the operations performed by the control plane network element in the above method embodiments.
  • the logic circuit 2210 is used to implement the processing-related operations performed by the SEALDD server in the above method embodiments, such as the processing-related operations performed by the SEALDD server in the embodiments shown in Figures 8 to 19;
  • the input/output interface 2220 is used to implement the sending and/or receiving-related operations performed by the SEALDD server in the above method embodiments, such as the sending and/or receiving-related operations performed by the SEALDD server in the embodiments shown in Figures 8 to 19.
  • the chip system 2200 is used to implement the operations performed by the user plane network element in the above method embodiments.
  • the logic circuit 2210 is used to implement the processing-related operations performed by the user plane network element in the above method embodiment, such as the processing-related operations performed by the user plane network element in the embodiments shown in Figures 8, 10, 12, 14, 16, and 18, and also as shown in Figures 9, 11, The processing-related operations performed by the UPF in the embodiments shown in Figures 13, 15, 17, and 19;
  • the input/output interface 2220 is used to implement the sending and/or receiving-related operations performed by the user plane network element in the above method embodiments, such as the sending and/or receiving-related operations performed by the user plane network element in the embodiments shown in Figures 8, 10, 12, 14, 16, and 18, and the sending and/or receiving-related operations performed by the UPF in the embodiments shown in Figures 9, 11, 13, 15, 17, and 19.
  • the chip system 2200 is used to implement the operations performed by the session management network element in the above method embodiments.
  • the logic circuit 2210 is used to implement the processing-related operations performed by the session management network element in the above method embodiments, such as the processing-related operations performed by the session management network element in the embodiments shown in Figures 8, 10, 12, 14, 16, and 18, and the processing-related operations performed by the SMF in the embodiments shown in Figures 9, 11, 13, 15, 17, and 19;
  • the input/output interface 2220 is used to implement the sending and/or receiving-related operations performed by the user plane network element in the above method embodiments, such as the sending and/or receiving-related operations performed by the session management network element in the embodiments shown in Figures 8, 10, 12, 14, 16, and 18, and the sending and/or receiving-related operations performed by the SMF in the embodiments shown in Figures 9, 11, 13, 15, 17, and 19.
  • An embodiment of the present application also provides a computer-readable storage medium on which computer instructions are stored for implementing the methods executed by a communication device (such as a SEALDD server, a user plane network element, a session management network element, or a terminal device) in the above-mentioned method embodiments.
  • a communication device such as a SEALDD server, a user plane network element, a session management network element, or a terminal device
  • An embodiment of the present application also provides a computer program product, comprising instructions, which, when executed by a computer, implement the methods performed by a communication device (such as a SEALDD server, a user plane network element, a session management network element, or a terminal device) in the above-mentioned method embodiments.
  • a communication device such as a SEALDD server, a user plane network element, a session management network element, or a terminal device
  • An embodiment of the present application also provides a communication system, which includes one or more of the SEALDD server, user plane network element, session management network element, and terminal device in the above embodiments.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the above units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to implement the solution provided by the present application.
  • each functional unit in each embodiment of the present application may be integrated into one unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network or other programmable devices.
  • the computer can be a personal computer, a server, or a network device, etc.
  • the computer instruction can be stored in a computer-readable storage medium, or transmitted from a computer-readable storage medium to another computer-readable storage medium, for example, the computer instruction can be transmitted from a website site, a computer, a server or a data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例提供了一种通信方法、通信装置、以及通信系统。该方法可以包括:服务使能架构层数据传输SEALDD服务器接收来自终端设备的服务请求信息,服务请求信息用于请求SEALDD服务器提供与数据传输相关的服务;响应于服务请求信息,SEALDD服务器通过N6隧道与用户面网元传输终端设备的数据,N6隧道是基于第一信息和第二信息建立的,第一信息包括SEALDD服务器提供的用于建立N6隧道的信息,第二信息包括用户面网元提供的用于建立N6隧道的信息。这样,通过建立SEALDD服务器与用户面网元之间的N6隧道,可以实现SEALDD服务器通过用户面网元为终端设备提供服务。

Description

通信方法、通信装置、以及通信系统
本申请要求于2022年09年29日提交中国专利局、申请号为202211212806.8、申请名称为“通信方法、通信装置、以及通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法、通信装置、以及通信系统。
背景技术
应用服务器可通过核心网为客户端提供服务。以服务使能架构层(service enabler architecture layer,SEAL)为例,SEAL可通过服务使能架构层数据传输(service enabler architecture layer data delivery,SEALDD)服务架构为应用客户端和应用服务器提供服务。SEALDD服务架构如可以包括SEALDD服务器(SEALDD server)和SEALDD客户端(SEALDD client)。举例来说,当用户面数据进行传输时,应用客户端可以先将数据包发送至SEALDD客户端,SEALDD客户端可将接收到的数据包通过用户面网元发送至SEALDD服务器,之后,再由SEALDD服务器发送至应用服务器。那么,应用服务器通过核心网为客户端提供服务时,如何传输数据,是一个待解决的问题。
发明内容
本申请提供一种通信方法、通信装置、以及通信系统,通过建立应用服务器与核心网之间的关联,使得应用服务器可以通过核心网为客户端提供服务。
第一方面,提供了一种通信方法,该方法可以由服务使能架构层数据传输(service enabler architecture layer data delivery,SEALDD)服务器执行,或者,也可以由SEALDD服务器的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由SEALDD服务器执行为例进行说明。
该方法可以包括:服务使能架构层数据传输SEALDD服务器接收来自终端设备的服务请求信息,所述服务请求信息用于请求所述SEALDD服务器提供与数据传输相关的服务;响应于所述服务请求信息,所述SEALDD服务器通过N6隧道与用户面网元传输所述终端设备的数据,所述N6隧道是基于第一信息和第二信息建立的,所述第一信息包括所述SEALDD服务器提供的用于建立所述N6隧道的信息,所述第二信息包括所述用户面网元提供的用于建立所述N6隧道的信息。
基于上述技术方案,通过建立SEALDD服务器与用户面网元之间的N6隧道,如终端粒度或终端的特定数据传输业务粒度的N6隧道,可以实现SEALDD服务器通过用户面网元为终端设备提供服务。具体来说,SEALDD服务器在收到终端设备的服务请求信息后,通过SEALDD服务器与用户面网元之间的N6隧道,与用户面网元传输该终端设备的数据。其中,该N6隧道可以是SEALDD服务器根据SEALDD服务器提供的用于建立N6隧道的信息以及用户面网元提供的用于建立N6隧道的信息确定的。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述SEALDD服务器向所述用户面网元发送所述第一信息,所述第一信息用于触发所述用户面网元建立所述N6隧道;响应于所述第一信息,所述用户面网元通过所述N6隧道与所述SEALDD服务器传输所述终端设备的数据。
基于上述技术方案,用户面网元可以基于SEALDD服务器提供的第一信息以及自身提供的建立所述N6隧道的信息,建立或者说配置N6隧道,进而可以通过该N6隧道与SEALDD服务器传输终端设备的数据。
结合第一方面,在第一方面的某些实现方式中,所述SEALDD服务器向所述用户面网元发送所述第一信息,包括:所述SEALDD服务器根据所述服务请求信息确定要在所述N6隧道上传输所述终端设备的数据时,所述SEALDD服务器向所述用户面网元发送所述第一信息。
基于上述技术方案,SEALDD服务器可以确定在需要建立N6隧道的情况下,或者说需要在N6隧 道上传输终端设备的数据的情况下,再向用户面网元提供第一信息,避免不需要建立N6隧道带来的信令浪费。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述SEALDD服务器向所述终端设备发送所述SEALDD服务器的地址信息和/或所述SEALDD服务器的端口信息。
基于上述技术方案,SEALDD服务器向终端设备提供SEALDD服务器的地址信息和/或SEALDD服务器的端口信息,这样终端设备可以基于该地址信息和/或端口信息,向SEALDD服务器传输数据。
结合第一方面,在第一方面的某些实现方式中,所述SEALDD服务器通过N6隧道与用户面网元传输所述终端设备的数据,包括:所述SEALDD服务器接收来自应用服务器的第一数据包;所述SEALDD服务器根据所述第一数据包的地址信息和/或端口信息,以及映射关系,通过所述N6隧道向所述用户面网元发送所述第一数据包;其中,所述映射关系用于指示所述SEALDD服务器、所述应用服务器、所述终端设备、以及所述N6隧道之间的关系。
结合第一方面,在第一方面的某些实现方式中,所述第一数据包中包括所述第一数据包的特征信息。
结合第一方面,在第一方面的某些实现方式中,所述SEALDD服务器通过N6隧道与用户面网元传输所述终端设备的数据,包括:所述SEALDD服务器通过所述N6隧道从所述用户面网元接收第二数据包;所述SEALDD服务器根据所述第二数据包的地址信息和/或端口信息,以及所述N6隧道和映射关系,向应用服务器发送所述第二数据包;其中,所述映射关系用于指示所述SEALDD服务器、所述应用服务器、所述终端设备、以及所述N6隧道之间的关系。
结合第一方面,在第一方面的某些实现方式中,所述第二数据包中包括所述第二数据包的特征信息。
第二方面,提供了一种通信方法,该方法可以由用户面网元执行,或者,也可以由用户面网元的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由用户面网元执行为例进行说明。
该方法可以包括:用户面网元接收来自服务使能架构层数据传输SEALDD服务器的第一信息,所述第一信息用于触发所述用户面网元建立N6隧道,所述N6隧道是基于所述第一信息和第二信息建立的,所述第一信息包括所述SEALDD服务器提供的用于建立所述N6隧道的信息,所述第二信息包括所述用户面网元提供的用于建立所述N6隧道的信息;响应于所述第一信息,所述用户面网元通过所述N6隧道与所述SEALDD服务器传输所述终端设备的数据。
基于上述技术方案,通过建立SEALDD服务器与用户面网元之间的N6隧道,如终端粒度或终端的特定数据传输业务粒度的N6隧道,可以实现SEALDD服务器通过用户面网元为终端设备提供服务。具体来说,用户面网元可以基于SEALDD服务器提供的用于建立N6隧道的信息以及自身提供的用于建立N6隧道的信息,建立SEALDD服务器与用户面网元之间的N6隧道,进而可以通过该N6隧道,与SEALDD服务器传输终端设备的数据。
结合第二方面,在第二方面的某些实现方式中,所述用户面网元通过所述N6隧道与所述SEALDD服务器传输所述终端设备的数据,包括:所述用户面网元通过所述N6隧道从所述SEALDD服务器接收来自应用服务器的第一数据包;所述用户面网元根据所述第一数据包的地址信息和/或端口信息,以及映射关系,向所述终端设备发送所述第一数据包;其中,所述映射关系用于指示所述SEALDD服务器、所述应用服务器、所述终端设备、以及所述N6隧道之间的关系。
结合第二方面,在第二方面的某些实现方式中,所述第一数据包中包括所述第一数据包的特征信息。
结合第二方面,在第二方面的某些实现方式中,所述用户面网元通过所述N6隧道与所述SEALDD服务器传输所述终端设备的数据,包括:所述用户面网元接收来自所述终端设备的第二数据包;所述用户面网元根据所述第二数据包的地址信息和/或端口信息,以及所述N6隧道和映射关系,通过所述SEALDD服务器向应用服务器发送所述第二数据包;其中,所述映射关系用于指示所述SEALDD服务器、所述应用服务器、所述终端设备、以及所述N6隧道之间的关系。
结合第二方面,在第二方面的某些实现方式中,所述第二数据包中包括所述第二数据包的特征信息。
结合第一方面或第二方面,在某些实现方式中,所述第一信息包括以下至少一项:所述终端设备的信息、所述N6隧道的路由信息、所述SEALDD服务器的地址信息、所述SEALDD服务器的端口信息、所述N6隧道在所述SEALDD服务器侧的隧道端点标识符。
结合第一方面或第二方面,在某些实现方式中,所述第二信息包括以下至少一项:所述用户面网元的地址信息、所述用户面网元的端口信息、所述N6隧道在所述用户面网元侧的隧道端点标识符。
结合第一方面或第二方面,在某些实现方式中,所述第一信息包括所述SEALDD服务器提供的用于建立至少两个N6隧道的信息,所述至少两个N6隧道是所述SEALDD服务器与所述用户面网元之间的N6隧道,所述至少两个N6隧道用于传输所述终端设备的不同类型的数据。
结合第一方面或第二方面,在某些实现方式中,所述第一信息包括每个N6隧道对应的重要性信息。
第三方面,提供了一种通信方法,该方法可以由会话管理网元执行,或者,也可以由会话管理网元的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由会话管理网元执行为例进行说明。
该方法可以包括:会话管理网元确定第二信息,所述第二信息包括用户面网元提供的用于建立N6隧道的信息,所述N6隧道是服务使能架构层数据传输SEALDD服务器与所述用户面网元之间的N6隧道,所述N6隧道用于传输终端设备的数据;所述会话管理网元向所述SEALDD服务器发送所述第二信息,所述第二信息用于触发所述SEALDD服务器建立所述N6隧道。
基于上述技术方案,通过建立SEALDD服务器与用户面网元之间的N6隧道,如终端粒度或终端的特定数据传输业务粒度的N6隧道,可以实现SEALDD服务器通过用户面网元为终端设备提供服务。具体来说,用户面网元可以向SEALDD服务器提供用户面网元提供的用于建立N6隧道的信息,这样SEALDD服务器可以基于该第二信息以及自身提供的用于建立N6隧道的信息确定N6隧道,进而SEALDD服务器可以通过该N6隧道,与用户面网元传输终端设备的数据。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:会话管理网元接收来自所述SEALDD服务器的第一信息,所述第一信息包括所述SEALDD服务器提供的用于建立所述N6隧道的信息,所述第一信息用于触发所述用户面网元建立所述N6隧道。
结合第三方面,在第三方面的某些实现方式中,方法还包括:所述会话管理网元向所述用户面网元发送第一信息。
基于上述技术方案,会话管理网元可以向用户面网元发送SEALDD服务器提供的用于建立N6隧道的信息,这样用户面网元可以确定N6隧道。
结合第三方面,在第三方面的某些实现方式中,所述第一信息包括以下至少一项:所述终端设备的信息、所述N6隧道的路由信息、所述SEALDD服务器的地址信息、所述SEALDD服务器的端口信息、所述N6隧道在所述SEALDD服务器侧的隧道端点标识符。
结合第三方面,在第三方面的某些实现方式中,所述会话管理网元确定第二信息,包括:所述会话管理网元为所述用户面网元分配所述第二信息;或者,所述会话管理网元接收来自所述用户面网元的所述第二信息。
结合第三方面,在第三方面的某些实现方式中,所述第二信息包括以下至少一项:所述用户面网元的地址信息、所述用户面网元的端口信息、所述N6隧道在所述用户面网元侧的隧道端点标识符。
第四方面,提供了一种通信方法,该方法可以由SEALDD服务器执行,或者,也可以由SEALDD服务器的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由SEALDD服务器执行为例进行说明。
该方法可以包括:服务使能架构层数据传输SEALDD服务器接收来自终端设备的服务请求信息,所述服务请求信息用于请求所述SEALDD服务器提供与数据传输相关的服务;在所述SEALDD服务器确定SEALDD服务器与用户面网元未建立N6隧道的情况下,所述SEALDD服务器向所述用户面网元发送第一信息,所述第一信息是所述SEALDD服务器提供的用于建立所述N6隧道的信息,所述用户面网元是为所述终端设备提供服务的用户面网元,所述第一信息用于触发所述用户面网元建立所述N6隧道。
基于上述技术方案,通过建立SEALDD服务器与用户面网元之间的N6隧道,如用户面网元粒度的N6隧道,可以实现SEALDD服务器通过用户面网元为终端设备提供服务。具体来说,SEALDD服 务器在收到终端设备的服务请求信息后,可以先判断SEALDD服务器是否与为终端设备提供服务的用户面网元建立N6隧道。若SEALDD服务器确定SEALDD服务器未与为终端设备提供服务的用户面网元建立N6隧道,则向该用户面网元发送第一信息,以便该用户面网元与SEALDD服务器建立N6隧道。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:所述SEALDD服务器接收来自所述用户面网元的第二信息,所述第二信息是所述用户面网元提供的用于建立所述N6隧道的信息;所述SEALDD服务器通过N6隧道与用户面网元传输所述终端设备的数据,所述N6隧道是通过所述第一信息和所述第二信息确定的。
基于上述技术方案,SEALDD服务器可以接收用户面网元提供的用于建立所述N6隧道的信息,以便基于用户面网元提供的用于建立所述N6隧道的信息以及自身提供的用于建立所述N6隧道的信息,确定N6隧道。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:所述SEALDD服务器向所述终端设备发送所述SEALDD服务器的地址信息和/或所述SEALDD服务器的端口信息。
结合第四方面,在第四方面的某些实现方式中,所述SEALDD服务器通过N6隧道与用户面网元传输所述终端设备的数据,包括:所述SEALDD服务器接收来自应用服务器的第一数据包;所述SEALDD服务器根据所述第一数据包的地址信息和/或端口信息,以及映射关系,通过所述N6隧道向所述用户面网元发送所述第一数据包;其中,所述映射关系用于指示所述SEALDD服务器、所述应用服务器、所述终端设备、以及所述N6隧道之间的关系。
结合第四方面,在第四方面的某些实现方式中,所述第一数据包中包括所述第一数据包的特征信息。
结合第四方面,在第四方面的某些实现方式中,所述SEALDD服务器通过N6隧道与用户面网元传输所述终端设备的数据,包括:所述SEALDD服务器通过所述N6隧道从所述用户面网元接收第二数据包;所述SEALDD服务器根据所述第二数据包的地址信息和/或端口信息,以及所述N6隧道和映射关系,向应用服务器发送所述第二数据包;其中,所述映射关系用于指示所述SEALDD服务器、所述应用服务器、所述终端设备、以及所述N6隧道之间的关系。
结合第四方面,在第四方面的某些实现方式中,所述第二数据包中包括所述第二数据包的特征信息。
结合第四方面,在第四方面的某些实现方式中,所述第一信息包括以下至少一项:所述终端设备的信息、所述N6隧道的路由信息、所述SEALDD服务器的地址信息、所述SEALDD服务器的端口信息、所述N6隧道在所述SEALDD服务器侧的隧道端点标识符。
结合第四方面,在第四方面的某些实现方式中,所述第二信息包括以下至少一项:所述用户面网元的地址信息、所述用户面网元的端口信息、所述N6隧道在所述用户面网元侧的隧道端点标识符。
结合第四方面,在第四方面的某些实现方式中,所述第一信息包括所述SEALDD服务器提供的用于建立至少两个N6隧道的信息,所述至少两个N6隧道是所述SEALDD服务器与所述用户面网元之间的N6隧道,所述至少两个N6隧道用于传输所述终端设备的不同类型的数据。
结合第四方面,在第四方面的某些实现方式中,所述第一信息包括每个N6隧道对应的重要性信息。
第五方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由策略控制网元执行为例进行说明。
该方法可以包括:终端设备接收来自SEALDD服务器的用户面网元的信息,所述用户面网元是与所述SEALDD服务器建立了N6隧道的用户面网元;所述终端设备与所述用户面网元建立会话。
基于上述技术方案,通过建立SEALDD服务器与用户面网元之间的N6隧道,如用户面网元粒度的N6隧道,可以实现SEALDD服务器通过用户面网元为终端设备提供服务。具体来说,终端设备可以接收SEALDD服务器提供的用户面网元的信息,该用户面网元可以是已经与SEALDD服务器建立了N6隧道的用户面网元,这样终端设备可以与该特定的用户面网元建立会话,进而由该用户面网元提供服务。
结合第五方面,在第五方面的某些实现方式中,所述用户面网元的信息包括以下至少一项:所述 用户面网元的端口信息、所述用户面网元的地址信息、用户面网元的数据网络名称、所述用户面网元的网络切片。
结合第五方面,在第五方面的某些实现方式中,在所述终端设备接收来自SEALDD服务器的用户面网元的信息之前,所述方法还包括:所述终端设备向所述SEALDD服务器发送服务请求信息,所述服务请求信息用于请求所述SEALDD服务器提供与数据传输相关的服务。
结合第五方面,在第五方面的某些实现方式中,所述方法还包括:所述终端设备向所述SEALDD服务器发送所述终端设备的信息。
第六方面,提供了一种通信方法,该方法可以由SEALDD服务器执行,或者,也可以由SEALDD服务器的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由SEALDD服务器执行为例进行说明。
该方法可以包括:服务使能架构层数据传输SEALDD服务器与用户面网元之间建立N6隧道;所述SEALDD服务器向终端设备和/或应用服务器发送所述用户面网元的信息。
基于上述技术方案,通过建立SEALDD服务器与用户面网元之间的N6隧道,如用户面网元粒度的N6隧道,可以实现SEALDD服务器通过用户面网元为终端设备提供服务。具体来说,SEALDD服务器预先与用户面网元建立N6隧道,并且向终端设备和/或应用服务器发送该用户面网元的信息,以便使得由该用户面网元为终端设备提供服务。
结合第六方面,在第六方面的某些实现方式中,所述用户面网元的信息包括以下至少一项:所述用户面网元的端口信息、所述用户面网元的地址信息、用户面网元的数据网络名称、所述用户面网元的网络切片。
结合第六方面,在第六方面的某些实现方式中,在所述SEALDD服务器向终端设备发送所述用户面网元的信息之前,所述方法还包括:所述SEALDD服务器接收到来自所述终端设备的服务请求信息,所述服务请求信息用于请求所述SEALDD服务器提供与数据传输相关的服务。
结合第六方面,在第六方面的某些实现方式中,所述方法还包括:所述SEALDD服务器接收到来自所述终端设备的信息;所述SEALDD服务器根据所述终端设备的信息,确定映射关系,所述映射关系用于指示所述SEALDD服务器、所述终端设备、所述应用服务器、以及所述N6隧道之间的关系。
结合第六方面,在第六方面的某些实现方式中,所述方法还包括:所述SEALDD服务器根据所述映射关系,通过所述N6隧道与所述用户面网元传输所述终端设备的数据。
第七方面,提供了一种通信方法,该方法可以由会话管理网元执行,或者,也可以由会话管理网元的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由会话管理网元执行为例进行说明。
该方法可以包括:会话管理网元确定终端设备向SEALDD服务器发送数据;所述会话管理网元获取N6隧道的信息,所述N6隧道的信息包括所述SEALDD服务器与用户面网元之间建立的N6隧道的信息;所述会话管理网元根据所述N6隧道的信息,确定分流点,所述分流点用于将所述终端设备的数据分流至所述用户面网元。
基于上述技术方案,通过建立SEALDD服务器与用户面网元之间的N6隧道,如用户面网元粒度的N6隧道,可以实现SEALDD服务器通过用户面网元为终端设备提供服务。具体来说,SEALDD服务器预先与用户面网元建立N6隧道,并且会话管理网元获取该N6隧道的信息,在会话管理网元检测到终端设备向SEALDD服务器发送数据时,根据该N6隧道的信息,确定分流点,以便将终端设备的数据分流至该用户面网元。
结合第七方面,在第七方面的某些实现方式中,所述方法还包括:所述会话管理网元向所述SEALDD服务器发送所述终端设备的信息和指示信息,所述指示信息指示所述SEALDD服务器与所述用户面网元之间建立的N6隧道的信息。
结合第七方面,在第七方面的某些实现方式中,所述N6隧道的信息包括以下至少一项:所述SEALDD服务器侧的N6隧道信息、所述N6隧道对应的数据包的端口信息、所述N6隧道对应的数据包的地址信息。
第八方面,提供了一种通信方法,该方法可以由SEALDD服务器执行,或者,也可以由SEALDD服务器的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由SEALDD服 务器执行为例进行说明。
该方法可以包括:服务使能架构层数据传输SEALDD服务器与用户面网元之间建立N6隧道;所述SEALDD服务器向会话管理网元发送所述N6隧道的信息。
基于上述技术方案,通过建立SEALDD服务器与用户面网元之间的N6隧道,如用户面网元粒度的N6隧道,可以实现SEALDD服务器通过用户面网元为终端设备提供服务。具体来说,SEALDD服务器预先与用户面网元建立N6隧道,并且向会话管理网元发送该N6隧道的信息,这样可以实现由会话管理网元确定分流点,以便将终端设备的数据分流至该用户面网元。
结合第八方面,在第八方面的某些实现方式中,所述方法还包括:所述SEALDD服务器接收来自会话管理网元的终端设备的信息和指示信息,所述指示信息指示所述SEALDD服务器与所述用户面网元之间建立的所述N6隧道的信息;所述SEALDD服务器根据所述终端设备的信息和所述指示信息,确定映射关系,所述映射关系用于指示所述SEALDD服务器、所述终端设备、应用服务器、以及所述N6隧道之间的关系。
结合第八方面,在第八方面的某些实现方式中,所述方法还包括:所述SEALDD服务器根据所述映射关系,通过所述N6隧道与所述用户面网元传输所述终端设备的数据。
结合第八方面,在第八方面的某些实现方式中,所述方法还包括:所述SEALDD服务器接收到来自终端设备的服务请求信息,所述服务请求信息用于请求所述SEALDD服务器提供与数据传输相关的服务;所述SEALDD服务器向所述终端设备发送所述SEALDD服务器的地址信息和/或所述SEALDD服务器的端口信息。
结合第八方面,在第八方面的某些实现方式中,所述SEALDD服务器向所述终端设备发送所述SEALDD服务器的地址信息和/或所述SEALDD服务器的端口信息,包括:所述SEALDD服务器根据所述服务请求信息确定要在N6隧道上传输所述终端设备的数据时,所述SEALDD服务器向所述终端设备发送所述SEALDD服务器的地址信息和/或所述SEALDD服务器的端口信息。
结合第八方面,在第八方面的某些实现方式中,所述N6隧道的信息包括以下至少一项:所述SEALDD服务器侧的N6隧道信息、所述N6隧道对应的数据包的端口信息、所述N6隧道对应的数据包的地址信息。
第九方面,提供了一种通信方法,该方法可以由会话管理网元执行,或者,也可以由会话管理网元的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由会话管理网元执行为例进行说明。
该方法可以包括:会话管理网元确定终端设备向SEALDD服务器发送数据;所述会话管理网元向第一用户面网元发送请求信息,所述请求信息用于请求N6隧道的信息,所述N6隧道是所述SEALDD服务器与所述第一用户面网元之间的N6隧道,所述第一用户面网元是为所述终端设备提供服务的用户面网元;所述会话管理网元接收来自所述第一用户面网元的第二信息,所述第二信息是所述第一用户面网元提供的用于建立所述N6隧道的信息;所述会话管理网元向所述SEALDD服务器发送所述第二信息,所述第二信息用于触发所述SEALDD服务器建立所述N6隧道。
基于上述技术方案,通过建立SEALDD服务器与用户面网元之间的N6隧道,如用户面网元粒度的N6隧道,可以实现SEALDD服务器通过用户面网元为终端设备提供服务。具体来说,会话管理网元确定终端设备向SEALDD服务器发送数据时,可以向为终端设备提供服务的用户面网元请求第二信息,并发给SEALDD服务器,以便SEALDD服务器可以基于该第二信息以及自身提供的用于建立N6隧道的信息确定N6隧道。
结合第九方面,在第九方面的某些实现方式中,所述方法还包括:所述会话管理网元获取至少一个N6隧道的信息,所述至少一个N6隧道的信息包括所述SEALDD服务器与至少一个用户面网元之间建立的N6隧道的信息;所述会话管理网元向第一用户面网元发送请求信息,包括:在所述会话管理网元确定所述至少一个用户面网元不包括所述第一用户面网元的情况下,所述会话管理网元向第一用户面网元发送请求信息。
基于上述技术方案,SMF在确定第一用户面网元还未与SEALDD服务器建立N6隧道的情况下,再向SEALDD服务器发送请求消息。
结合第九方面,在第九方面的某些实现方式中,所述会话管理网元获取至少一个N6隧道的信息, 包括:所述会话管理网元接收来自所述SEALDD服务器的所述至少一个N6隧道的信息。
结合第九方面,在第九方面的某些实现方式中,所述至少一个N6隧道的信息包括以下至少一项:所述SEALDD服务器侧的N6隧道信息、所述至少一个N6隧道对应的数据包的端口信息、所述至少一个N6隧道对应的数据包的地址信息。
结合第九方面,在第九方面的某些实现方式中,所述方法还包括:在所述会话管理网元确定所述至少一个用户面网元不包括所述第一用户面网元的情况下,所述会话管理网元还向所述SEALDD服务器发送终端设备的信息。
结合第九方面,在第九方面的某些实现方式中,所述方法还包括:在所述会话管理网元确定所述至少一个用户面网元包括所述第一用户面网元的情况下,所述会话管理网元向所述SEALDD服务器发送所述终端设备的信息和指示信息,所述指示信息指示所述SEALDD服务器与所述第一用户面网元之间建立的N6隧道的信息。
结合第九方面,在第九方面的某些实现方式中,所述第二信息包括以下至少一项:所述第一用户面网元的地址信息,所述第一用户面网元的端口信息、所述N6隧道在所述第一用户面网元侧的隧道端点标识符。
第十方面,提供了一种通信方法,该方法可以由SEALDD服务器执行,或者,也可以由SEALDD服务器的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由SEALDD服务器执行为例进行说明。
该方法可以包括:服务使能架构层数据传输SEALDD服务器确定至少一个N6隧道的信息,所述至少一个N6隧道的信息包括所述SEALDD服务器与至少一个用户面网元之间建立的N6隧道的信息;所述SEALDD服务器向会话管理网元发送所述至少一个N6隧道的信息。
基于上述技术方案,通过建立SEALDD服务器与用户面网元之间的N6隧道,如用户面网元粒度的N6隧道,可以实现SEALDD服务器通过用户面网元为终端设备提供服务。具体来说,SEALDD服务器预先与用户面网元建立N6隧道,并且向会话管理网元发送该N6隧道的信息,以便会话管理网元可以判断SEALDD服务器是否与某个用户面网元建立N6隧道。
结合第十方面,在第十方面的某些实现方式中,所述至少一个N6隧道的信息包括以下至少一项:所述SEALDD服务器侧的N6隧道信息所述至少一个N6隧道对应的数据包的端口信息、所述至少一个N6隧道对应的数据包的地址信息。
第十一方面,提供了一种通信方法,该方法可以由SEALDD服务器执行,或者,也可以由SEALDD服务器的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由SEALDD服务器执行为例进行说明。
该方法可以包括:服务使能架构层数据传输SEALDD服务器接收来自终端设备的服务请求信息,所述服务请求信息用于请求所述SEALDD服务器提供与数据传输相关的服务;所述SEALDD服务器向所述终端设备发送第三信息,所述第三信息用于指示所述SEALDD服务器与所述终端设备之间的至少一个SEALDD连接的信息。
可选地,方法还包括:SEALDD服务器基于该至少一个SEALDD连接的信息传输终端设备的数据。
基于上述技术方案,通过建立SEALDD服务器与终端设备之间的隧道或者说SEALDD连接,可以实现SEALDD服务器通过核心网为终端设备提供服务。具体来说,SEALDD服务器在收到终端设备的服务请求信息后,向终端设备提供SEALDD服务器与终端设备之间的至少一个SEALDD连接的信息,以使得终端设备可以基于该至少一个SEALDD连接传输数据。
结合第十一方面,在第十一方面的某些实现方式中,所述至少一个SEALDD连接的信息包括以下至少一项:每个SEALDD连接的地址信息、每个SEALDD连接的端口信息、每个SEALDD连接的重要性信息、每个SEALDD连接的标识信息。
结合第十一方面,在第十一方面的某些实现方式中,所述方法还包括:所述SEALDD服务器接收来自应用服务器的需求信息,所述需求信息用于请求所述SEALDD服务器为所述应用服务器提供服务;所述SEALDD服务器根据所述需求信息,建立所述至少一个SEALDD连接,所述至少一个SEALDD连接用于传输所述应用服务器的数据。
结合第十一方面,在第十一方面的某些实现方式中,所述方法还包括:所述SEALDD服务器基于 映射关系,与所述终端设备在所述至少一个SEALDD连接上传输所述应用服务器的数据,所述映射关系用于指示所述SEALDD服务器、所述应用服务器、所述终端设备、以及所述至少一个SEALDD连接之间的关系。
第十二方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由终端设备执行为例进行说明。
该方法可以包括:终端设备向服务器发送服务请求信息,所述服务请求信息用于请求所述SEALDD服务器提供与数据传输相关的服务;终端设备接收来自所述SEALDD服务器的第三信息,所述第三信息用于指示所述SEALDD服务器与所述终端设备之间的至少一个SEALDD连接的信息。
可选地,终端设备基于该至少一个SEALDD连接的信息向SEALDD服务器发送数据。
基于上述技术方案,通过建立SEALDD服务器与终端设备之间的SEALDD连接或者说隧道,可以实现SEALDD服务器通过核心网为终端设备提供服务。具体来说,终端设备接收来自SEALDD服务器的至少一个SEALDD连接的信息,这样,在需要传输数据时,终端设备可以基于该至少一个SEALDD连接的信息传输数据。
结合第十二方面,在第十二方面的某些实现方式中,所述至少一个SEALDD连接的信息包括以下至少一项:每个SEALDD连接的地址信息、每个SEALDD连接的端口信息、每个SEALDD连接的重要性信息、每个SEALDD连接的标识信息。
结合第十二方面,在第十二方面的某些实现方式中,所述方法还包括:所述SEALDD服务器接收来自应用服务器的需求信息,所述需求信息用于请求所述SEALDD服务器为所述应用服务器提供服务;所述SEALDD服务器根据所述需求信息,建立所述至少一个SEALDD连接,所述至少一个SEALDD连接用于传输所述应用服务器的数据。
结合第十二方面,在第十二方面的某些实现方式中,所述方法还包括:所述SEALDD服务器基于映射关系,与所述终端设备在所述至少一个SEALDD连接上传输所述应用服务器的数据,所述映射关系用于指示所述SEALDD服务器、所述应用服务器、所述终端设备、以及所述至少一个SEALDD连接之间的关系。
第十三方面,提供了一种通信方法,该方法可以由通信系统执行,或者,也可以由通信系统的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由通信系统执行为例进行说明。作为示例,该通信系统可以包括用户面网元和SEALDD服务器。
该方法可以包括:SEALDD服务器接收来自应用服务器的第一数据包;所述SEALDD服务器通过N6隧道向用户面网元发送所述第一数据包;所述用户面网元向终端设备发送所述第一数据包。
可选地,SEALDD服务器根据所述第一数据包的地址信息和/或端口信息,以及映射关系,通过所述N6隧道向所述用户面网元发送所述第一数据包;其中,所述映射关系用于指示所述SEALDD服务器、所述应用服务器、所述终端设备、以及所述N6隧道之间的关系。
第十四方面,提供了一种通信方法,该方法可以由通信系统执行,或者,也可以由通信系统的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由通信系统执行为例进行说明。作为示例,该通信系统可以包括用户面网元和SEALDD服务器。
该方法可以包括:SEALDD服务器通过N6隧道从用户面网元接收来自终端设备的第二数据包;所述SEALDD服务器向应用服务器发送所述第二数据包。
可选地,SEALDD服务器根据所述第二数据包的地址信息和/或端口信息,以及映射关系,通过所述N6隧道向所述应用服务器发送所述第二数据包;其中,所述映射关系用于指示所述SEALDD服务器、所述应用服务器、所述终端设备、以及所述N6隧道之间的关系。
结合第十三方面或第十四方面,在某些实现方式中,SEALDD服务器为上述第一方面至第十方面中任一方面所述的SEALDD服务器。
结合第十三方面或第十四方面,在某些实现方式中,用户面网元为上述第一方面至第十方面中任一方面所述的用户面网元。
第十五方面,提供一种通信装置,该装置用于执行上述第一方面至第十四方面中任一方面提供的方法。具体地,该装置可以包括用于执行第一方面至第十四方面中任一方面的上述任一种实现方式提 供的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该装置为通信设备(如SEALDD服务器,又如会管理网元,又如用户面网元,又如终端设备)。当该装置为通信设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于通信设备中的芯片、芯片系统或电路。当该装置为用于终端设备中的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第十六方面,提供一种通信装置,该装置包括:存储器,用于存储程序;至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第一方面至第十四方面中任一方面的上述任一种实现方式提供的方法。
在一种实现方式中,该装置为通信设备(如SEALDD服务器,又如会管理网元,又如用户面网元,又如终端设备)。
在另一种实现方式中,该装置为用于通信设备中的芯片、芯片系统或电路。
第十七方面,本申请提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第十八方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面至第十四方面中任一方面的上述任一种实现方式提供的方法。
第十九方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第十四方面中任一方面的上述任一种实现方式提供的方法。
第二十方面,提供一种芯片,芯片包括处理器与通信接口,处理器通过通信接口读取存储器上存储的指令,执行上述第一方面至第十四方面中任一方面的上述任一种实现方式提供的方法。
可选地,作为一种实现方式,芯片还包括存储器,存储器中存储有计算机程序或指令,处理器用于执行存储器上存储的计算机程序或指令,当计算机程序或指令被执行时,处理器用于执行上述第一方面至第十四方面中任一方面的上述任意一种实现方式提供的方法。
第二十一方面,提供一种通信系统,包括前述的SEALDD服务器、用户面网元、会话管理网元、终端设备中的一个或多个。
附图说明
图1是适用于本申请实施例的网络架构的一示意图。
图2是适用于本申请实施例的网络架构的另一示意图。
图3是适用于本申请实施例的网络架构的另一示意图。
图4是根据本申请实施例提供的适用于方案A的架构图。
图5是根据本申请实施例提供的基于方案A传输的数据包的示意图。
图6是根据本申请实施例提供的适用于方案B的架构图。
图7是根据本申请实施例提供的基于方案B传输的数据包的示意图。
图8是本申请一实施例提供的一种通信方法800的示意图。
图9是本申请一实施例提供的一种通信方法900的示意性流程图。
图10是本申请另一实施例提供的一种通信方法1000的示意图。
图11是本申请另一实施例提供的一种通信方法1100的示意性流程图。
图12是本申请另一实施例提供的一种通信方法1200的示意图。
图13是本申请另一实施例提供的一种通信方法1300的示意性流程图。
图14是本申请另一实施例提供的一种通信方法1400的示意图。
图15是本申请另一实施例提供的一种通信方法1500的示意性流程图。
图16是本申请另一实施例提供的一种通信方法1600的示意图。
图17是本申请另一实施例提供的一种通信方法1700的示意性流程图。
图18是本申请另一实施例提供的一种通信方法1800的示意图。
图19是本申请另一实施例提供的一种通信方法1900的示意性流程图。
图20是本申请实施例提供的一种通信装置2000的示意性框图。
图21是本申请实施例提供的一种通信装置2100的示意性框图。
图22是本申请实施例提供的一种芯片系统2200的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。本申请实施例的技术方案还可以应用于设备到设备(device to device,D2D)通信,车辆外联(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。
为便于理解本申请实施例,首先结合图1至图3详细说明适用于本申请实施例的通信系统。
图1是适用于本申请实施例的网络架构的一示意图。如图1所示,该网络架构例如可以包括但不限于以下:用户设备(user equipment,UE)、接入网(access network,AN)、接入和移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、用户面功能(user plane function,UPF)网元、策略控制功能(policy control function,PCF)网元、统一数据管理(unified data management,UDM)网元、应用功能(application function,AF)、数据网络(data network,DN)、网络切片选择功能(network slice selection function,NSSF)网元、鉴权服务功能(authentication server function,AUSF)网元等。
下面对图1中示出的各网元做简单介绍:
1、UE:可以称终端设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是IoT系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的 智能化网络。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
应理解,终端设备可以是任何可以接入网络的设备。终端设备与接入网设备之间可以采用某种空口技术(如NR或LTE技术等)相互通信。终端设备与终端设备之间也可以采用某种空口技术(如NR或LTE技术等)相互通信。
可选地,UE可以用于充当基站。例如,UE可以充当调度实体,其在V2X或D2D等中的UE之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统或芯片,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
2、(无线)接入网((radio)access network,(R)AN)设备:可以为特定区域的授权用户提供接入通信网络的功能,具体可以包括第三代合作伙伴计划(3rd generation partnership project,3GPP)网络中无线网络设备也可以包括非3GPP(non-3GPP)网络中的接入点。下文为方便描述采用AN设备表示。
AN设备可以为采用不同的无线接入技术。目前的无线接入技术有两种类型:3GPP接入技术(例如,第三代(3rd generation,3G)、第四代(4th generation,4G)或5G系统中采用的无线接入技术)和非3GPP(non-3GPP)接入技术。3GPP接入技术是指符合3GPP标准规范的接入技术,例如,5G系统中的接入网设备称为下一代基站节点(next generation Node Base station,gNB)或者RAN设备。非3GPP接入技术可以包括以无线保真(wireless fidelity,WiFi)中的接入点(access point,AP)为代表的空口技术、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)、码分多址(code division multiple access,CDMA)等。AN设备可以允许终端设备和3GPP核心网之间采用非3GPP技术互连互通。
AN设备能够负责空口侧的无线资源管理、服务质量(quality of service,QoS)管理、数据压缩和加密等功能。AN设备为终端设备提供接入服务,进而完成控制信号和用户数据在终端设备和核心网之间的转发。
AN设备例如可以包括但不限于:宏基站、微基站(也称为小站)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),WiFi系统中的AP、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G(如,NR)系统中的gNB或传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如分布式单元(distributed unit,DU),或者下一代通信6G系统中的基站等。本申请实施例对AN设备所采用的具体技术和具体设备形态不做限定。
接入网可以为小区提供服务。终端设备可以通过接入网设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区通信。
3、AMF网元:主要用于接入控制、移动性管理、附着与去附着等功能。
4、SMF网元:主要用于用户面网元选择,用户面网元重定向,终端设备的因特网协议(internet protocol,IP)地址分配,以及移动网络中的会话管理,如会话的建立、修改和释放及QoS控制。
5、UPF网元:主要用于用户面数据的接收和转发。例如,UPF可以从DN接收用户面数据,并通过AN设备将用户面数据发送给终端设备。UPF还可以通过AN设备从终端设备接收用户面数据,并转发到DN。会话中通过N6接口与DN直接相连的UPF可称为协议数据单元(protocol data unit,PDU)会话锚点(PDU session anchor,PSA)。
6、PCF网元:主要用于向3GPP网络提供业务,如与PCF之间交互以进行策略控制等。
7、AF网元:主要支持与3GPP核心网交互来提供服务,例如影响数据路由决策、与策略控制功能(PCF)交互、或者向网络侧提供第三方等。
8、UDM网元:主要用于UE的签约数据管理,包括UE标识的存储和管理,UE的接入授权等。
9、数据网络(DN):主要用于为UE提供数据服务的运营商网络。例如,因特网(Internet)、第三方的业务网络、IP多媒体服务业务(IP multi-media service,IMS)网络等。
10、AUSF网元:主要用于用户鉴权等。
图2是适用于本申请实施例的网络架构的另一示意图。在该网络架构中,服务使能架构层(service enabler architecture layer,SEAL)可为应用客户端和应用服务器提供服务。作为示例,SEAL可通过服务使能架构层数据传输(service enabler architecture layer data delivery,SEALDD)服务架构为应用客户端和应用服务器提供服务。SEALDD服务架构如可以包括SEALDD服务器(SEALDD server)和SEALDD客户端(SEALDD client)。其中,SEALDD客户端和应用客户端可作为终端设备的一部分,以软件或系统组件的形式运行在终端设备上。SEALDD服务器可以以独立或集成服务器的形式部署在UPF与应用服务器之间。在实际部署中,还可以根据UPF以及应用服务器的部署情况,分布式地部署多个SEALDD服务器。
在本申请实施例中,应用客户端例如可以为垂直行业应用层(vertical application layer,VAL)客户端(VAL client),应用服务器例如可以为VAL服务器(VAL server)。为便于理解,下文以客户端为VAL客户端,应用服务器为VAL服务器为例进行示例性说明。
图3是适用于本申请实施例的网络架构的另一示意图。该网络架构示出了服务使能架构层与垂直行业应用层的接口结构的情况。如图3所示,终端设备中可部署至少一个SEALDD客户端,终端设备中还可部署至少一个VAL客户端。SEALDD客户端可通过SEALDD-C接口与VAL客户端进行通信,SEALDD服务器可通过SEALDD-S接口与VAL服务器进行通信。SEALDD客户端与SEALDD服务器之间可通过SEALDD-UU接口进行用户面的数据传输,其中,SEALDD-UU接口承载在3GPP网络系统构建的用户面会话上。SEALDD服务器之间可通过SEALDD-E接口进行通信,例如进行控制面上下文传输和用户面数据转发。
如图3所示,SEALDD服务器还可以通过N33/N5接口与3GPP网络系统进行通信。具体地,SEALDD服务器可以通过N33/N5接口与PCF进行控制面消息的通信,从而向5GC发送AF请求或进行通知订阅。其中,N5接口为AF与PCF的接口,N33接口为AF与NEF的接口,AF可以通过NEF与PCF进行通信。SEALDD服务器还可以通过N6接口与UPF进行用户面的数据传输。SEALDD服务器之间还可以通过SEALDD-E接口进行通信,如进行控制面上下文传输和用户面数据转发。
以图3所示的架构为例,当用户面数据进行传输时,对于上行传输,VAL客户端先将数据包发送至SEALDD客户端,SEALDD客户端可将接收到的数据包进行封装后发送至SEALDD服务器,之后,再由SEALDD服务器解析后发送至VAL服务器。相应地,对于下行传输,VAL服务器发送的数据可经由SEALDD服务器和SEALDD客户端最终发送至VAL客户端。
在图1至图3所示的网络架构中,各网元之间可以接口通信,例如,UE通过无线资源控制(radio resource control,RRC)协议与AN设备连接,UE和AN设备之间采用Uu接口进行通信。或者也可以参考图1至图3所示的接口,此处不再赘述。此外,图1至图3中的各个网元之间的接口名称只是一个示例,具体实现中接口的名称可能为其他的名称,本申请对此不作具体限定。
应理解,上述应用于本申请实施例的网络架构仅是示例性说明,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。此外,上述所示的网络架构中还可以包括其他更多的网元,对此不予限制。
还应理解,图1至图3中所示的网元,如AMF、SMF、UPF、PCF、UDM等可以理解为用于实现不同功能的网元,例如可以按需组合成网络切片。这些网元可以各自独立的设备,也可以集成于同一设备中实现不同的功能,或者可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能,本申请对于上述网元的具体形态不作限定。
还应理解,图1至图3中所示的网元,如AMF、SMF、UPF、PCF、UDM、NSSF、AUSF等功能或者网元,可以理解为用于实现不同功能的网元,例如可以按需组合成网络切片。这些网元可以各自独立的设备,也可以集成于同一设备中实现不同的功能,或者可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能,本申请对于上述网元的具体形态不作限定。
还应理解,上述命名仅为便于区分不同的功能而定义,不应对本申请构成任何限定。本申请并不排除在6G网络以及未来其它的网络中采用其他命名的可能。例如,在6G网络中,上述各个网元中的部分或全部可以沿用5G中的术语,也可能采用其他名称等。
SEALDD服务器可以为VAL提供QoS保障的服务。以媒体流为例,媒体流一般以视频帧的形式进行传输,其中,每个视频帧可以被拆分为多个RTP数据包,每个视频帧又可以分为I帧,B帧,P帧等类型。媒体流例如为实时传输协议(real-time transport protocol,RTP)的数据流。
其中,I帧为帧内编码帧(intra coded frame)。I帧利用单帧图像内的空间相关性,没有利用帧间的时间相关性。由于I帧包含了一帧完整的图像信息,所以可以作为随机访问点,是解码的基准帧。此外,I帧的压缩率相对较低。
其中,P帧为前向预测编码帧(predictive-coded frame)。P帧记录的是本帧与前一帧的差别,解码时需参考前一个I帧或P帧的信息来生成完整画面。
其中,B帧为双向预测编码帧(bidirectionally predicted frame)。B帧记录的是本帧与前后帧的差别,解码时需参考前一个I帧或P帧,以及后一个P帧来生成完整画面。使用B帧可以提高压缩率。
目前,对于视频业务的需求主要如下:1)UPF要识别哪些数据包属于相同的PDU集合(PDU set)、以及PDU set的结束点;2)UPF要区分不同PDU set的数据包的重要性;3)UPF根据上述信息在N3的数据包上打标签,将上述信息发送给RAN,由RAN进行针对性的优化调度;4)不同重要性的数据包在不同的QoS流(Qos flow)上发送,RAN可以针对性地对数据包进行调度,不需要再逐包进行检测和分类。
为实现上述需求,UPF要能够获知当前数据包的一些信息,为区分,将该信息记为数据包的特征信息。UPF获取到上述数据包的特征信息后,通过在通用无线分组业务(general packet radio service,GPRS)用户平面部分(user plane part of GTP,GTP-U)数据包头上打标签(也即将上述数据包的特征信息携带于GTP-U数据包头),通知给RAN,由RAN进行解析,针对性地进行调度优化。
其中,数据包的特征信息,可表示能够指示数据包相关性或数据帧相关性的信息。作为示例,多个数据包可构成一个数据帧。举例来说,数据包的特征信息可用于指示多个数据包的关联、或者数据帧的关联(如多个数据帧之间的关联关系或依赖关系)。如数据包的特征信息例如包括:当前数据包是哪种帧类型,哪些数据包属于相同的数据帧等信息。数据包的特征信息还可用于指示数据包或数据帧的重要性。作为示例,数据包的特征信息例如可以是数据包的媒体流信息,或者也可以是其他信息,不予限制。此外,数据包的特征信息中还可以包括与数据包相关的其他信息,如时间戳、数据包编号等信息,对此不予限制。可以理解,本申请实施例提及的数据包的特征信息,如第一数据包的特征信息和第二数据包的特征信息类似,后面不再赘述。
本申请提出两种方案:方案A和方案B。
方案A:SEALDD服务器与UPF之间建立N6隧道(N6 tunnel)。基于该方案A,SEALDD服务器与UPF之间建立N6隧道,SEALDD服务器通过N6隧道与UPF传输数据包,并且可以在N6隧道头中携带数据包的特征信息。
图4是根据本申请实施例提供的适用于方案A的架构图。如图4所示,SEALDD服务器为VAL服务器建立N6隧道,SEALDD服务器通过应用程序编程接口(application program interface,API)接收VAL服务器的数据包和解析数据包的特征信息后,将数据包的特征信息在N6隧道上打上标签并通知给UPF;UPF收到后,可直接解析该标签,并附加到N3隧道上通知给RAN。如图4所示,SEALDD服务器与UPF之间可以建立多个N6隧道,该多个N6隧道可用于传输不同的数据流,如传输不同重要性的数据流,从而UPF可以区分不同的数据流,进而可以映射到不同的QoS流中传输。
图5是根据本申请实施例提供的基于方案A传输的数据包的示意图。如图5所示,SEALDD服务器通过N6隧道向UPF发送的数据包添加了N6 IP头(N6 IP header)和N6隧道头(N6 tunnel header),这样,SEALDD服务器可通过N6隧道将数据包发给UPF。其中,N6 tunnel header中可包括数据包的特征信息。UPF向RAN发送的数据包中原先的N6 IP header更换为N3 IP header,N6 tunnel header更换为N3 tunnel header,这样,UPF可通过N3隧道将数据包发给RAN。
可选地,对于方案A,包括以下几种实现方式。
实现方式1:SEALDD服务器触发建立UE粒度的N6隧道。
实现方式2:SEALDD服务器与UPF动态配置UPF粒度的N6隧道。
实现方式3:SEALDD服务器与UPF预配置N6隧道。
关于上述三种实现方式,后面详细说明。
方案B:SEALDD服务器与SEALDD客户端之间建立SEALDD连接(或者称为SEALDD隧道)。基于该方案B,SEALDD服务器与SEALDD客户端之间建立SEALDD连接,SEALDD服务器通过SEALDD连接与SEALDD客户端传输数据,并且可以在数据头中携带数据包的特征信息。
图6是根据本申请实施例提供的适用于方案B的架构图。如图6所示,SEALDD服务器与SEALDD客户端之间可以使用UE粒度(per UE)的封装协议(例如GTP-U协议),SEALDD服务器与SEALDD客户端都可以在SEALDD连接上的数据流包头上打标签,供UPF做解析。如图6所示,SEALDD服务器与SEALDD客户端之间可以建立多个SEALDD连接,该多个SEALDD连接可用于传输不同的数据流,如传输不同重要性的数据流,从而UPF可以区分不同的数据流,进而可以映射到不同的QoS流中传输。
图7是根据本申请实施例提供的基于方案B传输的数据包的示意图。如图7所示,SEALDD服务器通过SEALDD连接向UPF发送的数据包添加了SEALDD IP header和SEALDD header,这样,SEALDD服务器可通过SEALDD连接将数据包发给UPF。其中,SEALDD header中可包括数据包的特征信息。UPF向RAN发送的数据包中包括SEALDD IP header和SEALDD header,而且还添加了N3 IP header和N3 tunnel header,这样,UPF可通过N3隧道将数据包发给RAN。其中,N3 tunnel header中可包括UPF从SEALDD header中解析的数据包的特征信息。
下文将结合附图详细说明本申请实施例提供的通信方法。
首先,结合图8和图9介绍适用于上述方案A中实现方式1,也即SEALDD服务器触发建立UE粒度的N6隧道的实现方式。图8和图9所示的实施例可以应用于上述图1至图3所示的网络架构中,图8和图9所示的实施例还可以应用于上述图4所示的网络架构中,对此不予限制。
图8是本申请一实施例提供的一种通信方法800的示意图。方法800可以包括如下步骤。
810,SEALDD服务器接收来自终端设备的服务请求信息,服务请求信息用于请求SEALDD服务器提供与数据传输相关的服务。
可选地,SEALDD服务请求信息中包括以下至少一项:终端设备上的SEALDD客户端的标识(identity,ID)、终端设备的IP地址、VAL服务信息(VAL service information)。
作为一示例,VAL服务信息可用于SEALDD服务器确定是否要使用N6隧道进行业务数据流传输,或者说,是否要使用N6隧道为终端设备提供数据传输相关的服务。一种可能的实现方式,VAL服务信息中包括业务类型,该业务类型可隐式指示是否需要使用N6隧道,如对于某些特定的业务类型需要使用N6隧道,又如对于某些特定的业务类型不用使用N6隧道。另一种可能的实现方式,VAL服务信息中包括直接指示是否需要使用N6隧道的信息。
作为另一示例,VAL服务请求信息本身可用于SEALDD服务器确定是否要使用N6隧道进行业务数据流传输,或者说,是否要使用N6隧道为终端设备提供数据传输相关的服务。举例来说,VAL服务请求信息本身就包含使用N6隧道的指示,如VAL服务请求信息的名称为N6传输服务(N6 transmitting service)或者媒体传输服务(media transfer service),该VAL服务请求信息默认启用N6隧道进行传输。
820,响应于服务请求信息,SEALDD服务器通过N6隧道与用户面网元传输终端设备的数据,N6隧道是基于第一信息和第二信息建立的,第一信息包括SEALDD服务器提供的用于建立N6隧道的信息,第二信息包括用户面网元提供的用于建立N6隧道的信息。
可选地,在步骤820之前,方法800还包括:SEALDD服务器基于第一信息和第二信息建立N6隧道,该N6隧道为SEALDD服务器与用户面网元之间的隧道。其中,SEALDD服务器建立N6隧道,可以理解为,SEALDD服务器基于第一信息和第二信息配置N6隧道,或者说,SEALDD服务器获得第一信息和第二信息后,SEALDD服务器可以使用N6隧道传输数据。可以理解,若SEALDD服务器已建立或已配置N6隧道,则可使用该N6隧道传输数据。
其中,第一信息包括SEALDD服务器提供的用于建立SEALDD服务器与用户面网元之间的N6隧道的信息。例如,第一信息是SEALDD服务器提供的用于建立SEALDD服务器与用户面网元之间的 N6隧道的信息;再例如,第一信息包括SEALDD服务器提供的用于建立SEALDD服务器与用户面网元之间的N6隧道的信息以及其他信息。其中,其他信息例如可以是每个N6隧道的重要性信息。如前所述,SEALDD服务器与用户面网元之间可建立至少一个N6隧道。若SEALDD服务器与用户面网元之间建立至少两个N6隧道,则SEALDD服务器还可向PCF发送每个N6隧道的重要性信息,也即第一信息中还包括每个N6隧道的重要性信息。每个N6隧道的重要性信息也可以称为每个N6隧道的优先权信息(priority information)。
可选地,第一信息包括以下至少一项:终端设备的ID(UE ID)、N6路由信息(N6routing information)、N6路由对应的应用流量描述符(APP traffic descriptor)、N6隧道在SEALDD服务器侧的隧道端点标识符(tunnel endpoint identifier,TEID)。其中,N6路由对应的APP traffic descriptor例如包括:用于N6隧道的SEALDD服务器的地址信息和/或用于N6隧道的SEALDD服务器的端口信息。如前所述,第一信息还可以包括其他信息,如每个N6隧道的重要性信息。
其中,第二信息包括用户面网元提供的用于建立SEALDD服务器与用户面网元之间的N6隧道的信息。例如,第二信息是用户面网元提供的用于建立SEALDD服务器与用户面网元之间的N6隧道的信息;再例如,第一信息包括用户面网元提供的用于建立SEALDD服务器与用户面网元之间的N6隧道的信息以及其他信息。其中,其他信息例如可以包括会话ID(session ID)、QoS flow标识(QoS flow identifier,QFI)等。
可选地,第二信息包括以下至少一项:用户面网元为N6隧道分配的下行端口信息、用户面网元的地址信息、用户面网元侧的TEID。如前所述,第二信息还可以包括其他信息,如session ID、QFI等。
关于SEALDD服务器获取第二信息的方式不予限制。
一种可能的实现方式,用户面网元向SEALDD服务器发送第二信息,相应地,SEALDD服务器接收来自用户面网元的第二信息。作为示例,用户面网元可通过会话管理网元向SEALDD服务器发送第二信息。举例来说,用户面网元将第二信息发给会话管理网元;会话管理网元收到第二信息后,将第二信息发给SEALDD服务器。
另一种可能的实现方式,会话管理网元向SEALDD服务器发送第二信息,相应地,SEALDD服务器接收来自会话管理网元的第二信息。举例来说,会话管理网元自身确定或配置第二信息,并且将第二信息发给SEALDD服务器。
基于上述技术方案,通过建立SEALDD服务器与用户面网元之间的N6隧道,如终端粒度或终端的特定数据传输业务粒度的N6隧道,可以实现SEALDD服务器通过用户面网元为终端设备提供服务。具体来说,SEALDD服务器在收到终端设备的服务请求信息后,通过SEALDD服务器与用户面网元之间的N6隧道,与用户面网元传输该终端设备的数据。其中,该N6隧道可以是SEALDD服务器根据SEALDD服务器提供的用于建立N6隧道的信息以及用户面网元提供的用于建立N6隧道的信息确定的。
可选地,SEALDD服务器通过N6隧道与用户面网元传输终端设备的数据,至少包括以下几种实现方式。
第一种可能的实现方式,SEALDD服务器接收来自应用服务器的第一数据包;SEALDD服务器根据第一数据包的地址信息和/或端口信息,以及映射关系#1,通过N6隧道向用户面网元发送第一数据包;其中,映射关系#1用于指示SEALDD服务器、应用服务器、终端设备、以及N6隧道之间的关系。可选地,第一数据包中包括第一数据包的特征信息。
其中,映射关系#1用于将N6隧道与终端设备、SEALDD服务器、应用服务器关联起来,或者说,映射关系#1用于将N6隧道与下面两段连接关联起来:SEALDD服务器和终端设备上的SEALDD客户端之间的连接、以及VAL服务器和终端设备上的VAL客户端之间的连接。
作为示例,映射关系#1为SEALDD服务器、VAL服务器、SEALDD客户端、VAL客户端、以及N6隧道之间的关系。可选地,映射关系#1#1还包括UE的ID信息。其中,UE的ID信息可以是UE的地址信息,也可以是通用公共用户标识(generic public subscription identifier,GPSI)信息等,举例来说,SEALDD服务器可以通过现有的机制向核心网查询用户地址对应的GPSI信息等。
第二种可能的实现方式,SEALDD服务器通过N6隧道从用户面网元接收第二数据包;SEALDD服务器根据第二数据包的地址信息和/或端口信息,以及N6隧道和映射关系#1,向应用服务器发送第二数据包;其中,映射关系#1用于指示SEALDD服务器、应用服务器、终端设备、以及N6隧道之间 的关系。可选地,第二数据包中包括媒体流信息,媒体流信息用于表征第二数据包的类型。
关于映射关系#1,可以参考第一种可能的实现方式中的描述,此处不再赘述。
可选地,方法800还包括:SEALDD服务器向用户面网元发送第一信息,第一信息用于触发用户面网元建立N6隧道;响应于第一信息,用户面网元通过N6隧道与SEALDD服务器传输终端设备的数据。进一步可选地,SEALDD服务器向用户面网元发送第一信息,包括:SEALDD服务器根据服务请求信息确定要在N6隧道上传输终端设备的数据时,SEALDD服务器向用户面网元发送第一信息。
第一种可能的实现方式,SEALDD服务器向用户面网元发送第一信息,用户面网元收到该第一信息后,可以默认建立N6隧道,进而可以通过N6隧道与SEALDD服务器传输终端设备的数据。基于该实现方式,响应于第一信息,可以理解为,用户面网元基于该第一信息获知要建立N6隧道,并且结合该第一信息(也即SEALDD服务器提供的用于建立N6隧道的信息),以及用户面网元自身提供的用于建立N6隧道的信息,确定N6隧道。
第二种可能的实现方式,SEALDD服务器向第一信息发送第一信息和指示信息(为区分,记为指示信息#1),其中,指示信息#1用于指示建立N6隧道;用户面网元收到该第一信息和指示信息#1后,可以基于该指示信息#1确定要建立N6隧道,进而可以通过N6隧道与SEALDD服务器传输终端设备的数据。基于该实现方式,响应于第一信息,可以理解为,用户面网元结合该第一信息(也即SEALDD服务器提供的用于建立N6隧道的信息),以及用户面网元自身提供的用于建立N6隧道的信息,确定N6隧道。
作为示例,指示信息#1通过至少一个比特来实现。例如,假设通过1比特来指示是否建立N6隧道,若该比特设置为“0”,则表示不建立N6隧道;若该比特设置为“1”,则表示建立N6隧道。应理解,上述仅是一种示例性说明,不予限制。
其中,SEALDD服务器可以通过其他网元,如会话管理网元,向用户面网元发送第一信息。
可选地,用户面网元基于第一信息和第二信息建立N6隧道,该N6隧道为SEALDD服务器与用户面网元之间的隧道。其中,用户面网元建立N6隧道,可以理解为,用户面网元基于第一信息和第二信息配置N6隧道,或者说,用户面网元获得第一信息和第二信息后,用户面网元可以使用N6隧道传输数据。可以理解,若用户面网元已建立或已配置N6隧道,则可使用该N6隧道传输数据。
可选地,在步骤810之后,方法800还包括:SEALDD服务器向终端设备发送SEALDD服务器的地址信息和/或SEALDD服务器的端口信息。终端设备收到SEALDD服务器的地址信息和/或端口信息后,可以使用该SEALDD服务器的地址信息和/或端口信息,向SEALDD服务器发送数据。
其中,SEALDD服务器的地址信息是用于N6隧道的SEALDD服务器的地址信息,也即通过N6隧道传输数据时的SEALDD服务器的地址信息。SEALDD服务器的端口信息是用于N6隧道的SEALDD服务器的端口信息,也即通过N6隧道传输数据时的SEALDD服务器的端口信息。
为了便于理解,下面结合图9对方法800所示的实施例进行示例性说明,以下示例中假设用户面网元为UPF,会话管理网元为SMF,终端设备为UE、且分别以UE中的SEALDD客户端和VAL客户端进行说明。其中涉及到的步骤和相关术语的解释可以可参考方法800中的相关描述,此处不再赘述。
图9是本申请实施例提供的一种通信方法900的示意性流程图。方法900适用于上述方法800,也即SEALDD服务器触发UE粒度的N6隧道建立的场景。方法900可以包括如下步骤。
901,VAL服务器发现SEALDD服务器。
作为示例,VAL服务器可通过通用应用程序编程接口(application programming interface,API)框架(common API framework,CAPIF)发现SEALDD服务器。VAL服务器可以感知SEALDD服务器是否支持N6隧道,因此在VAL服务器发现SEALDD服务器的过程中,可以选择支持N6隧道的SEALDD服务器。
902,VAL服务器向SEALDD服务器发送服务订阅(service subscription)信息。
其中,服务订阅信息可用于请求订阅SEALDD服务。
可选地,服务订阅信息包括媒体传输服务增强指示(media transmission service enhancement indicator)。其中,该media transmission service enhancement indicator可用于指示在传输VAL服务器的数据时要在数据包包头添加数据包的特征信息,也即若服务订阅信息中包括media transmission service enhancement indicator,则SEALDD服务器在传输该VAL服务器的数据时要在数据包包头添加数据包 的特征信息。或者,该media transmission service enhancement indicator可用于指示使用N6隧道传输VAL服务器的数据,也即若服务订阅信息中包括media transmission service enhancement indicator,则表示SEALDD服务器在传输VAL服务器的数据时要使用N6隧道。关于数据包的特征信息参考前面的描述,此处不再赘述。
可选地,服务订阅信息包括VAL服务信息。
903,SEALDD服务器向VAL服务器发送订阅响应(subscription response)信息。
其中,订阅响应信息可用于通知VAL服务器是否订阅成功。在本申请实施例中,假设订阅响应信息用于通知VAL服务器订阅成功。
可以理解,步骤903为示例性说明,对此不予限制。例如,若SEALDD服务器未向VAL服务器发送订阅失败的信息,则VAL服务器可默认订阅成功。
904,VAL客户端和SEALDD客户端,确定SEALDD服务器。
VAL客户端和SEALDD客户端可进行SEALDD服务器的发现选择,并获取SEALDD服务器的控制面API接口。
905,SEALDD客户端向SEALDD服务器发送SEALDD服务请求(SEALDD service request)信息。
作为示例,SEALDD客户端通过SEALDD服务器的控制面API接口向SEALDD服务器发送SEALDD服务请求信息。
其中,SEALDD服务请求信息(或者简称为服务请求信息)可用于请求SEALDD服务器提供服务,如提供与数据传输相关的服务。SEALDD服务请求例如也可称为SEALDD服务触发请求(SEALDD service trigger request),其命名不对本申请实施例的保护范围造成限定。
可选地,SEALDD服务请求信息中包括以下至少一项:SEALDD客户端的标识(identity,ID)、SEALDD客户端对应的UE的IP地址、VAL服务信息。关于VAL服务信息可以参考方法800中的描述,此处不再赘述。
906,SEALDD服务器向PCF发送第一信息。
一种可能的实现方式,SEALDD服务器通过AF请求(AF request)向PCF发送第一信息。关于第一信息可以参考方法800中的相关描述,此处不再赘述。
907,PCF向SMF发送第一信息。
作为示例,PCF可以向SMF发送会话管理策略关联更新请求(SM Policy Association_Modification Request)信息,该信息中包含第一信息。
908,PCF向SEALDD服务器发送第一信息的响应信息。
举例来说,PCF向SMF发送第一信息之后,可向SEALDD服务器发送第一信息的响应信息。或者,再举例来说,若PCF成功接收第一信息,则向SEALDD服务器发送第一信息的响应信息。
一种可能的实现方式,若步骤906中,SEALDD服务器通过AF请求向PCF发送第一信息,则在步骤908中,PCF向SEALDD服务器发送AF响应(AF response)。
909,SEALDD服务器向SEALDD客户端发送SEALDD服务器的地址信息和/或端口信息。
其中,SEALDD服务器的地址信息是用于N6隧道的SEALDD服务器的地址信息,也即通过N6隧道传输数据时的SEALDD服务器的地址信息。SEALDD服务器的端口信息是用于N6隧道的SEALDD服务器的端口信息,也即通过N6隧道传输数据时的SEALDD服务器的端口信息。
作为示例,SEALDD服务器向SEALDD客户端发送SEALDD服务响应(SEALDD service response)信息,该SEALDD服务响应信息包括SEALDD服务器的地址信息和/或端口信息。SEALDD服务响应例如也可称为SEALDD服务触发响应(SEALDD service trigger response),其命名不对本申请实施例的保护范围造成限定。
SEALDD客户端收到SEALDD服务器的地址信息和/或端口信息后,可以使用该SEALDD服务器的地址信息和/或端口信息,向SEALDD服务器发送数据(如媒体数据)。若SMF或UPF检测到SEALDD客户端向SEALDD服务器发送数据,则SMF可以向UPF提供第一信息,以便UPF提供第二信息,如步骤910和920。
910,SMF向UPF发送第一信息。
举例来说,当SMF检测到SEALDD客户端向SEALDD服务器发送媒体数据时,SMF向UPF发 送第一信息。或者,再举例来说,当UPF检测到SEALDD客户端向SEALDD服务器发送媒体数据时,UPF向SMF发送请求,SMF基于UPF的请求,向UPF发送第一信息。
一种可能的实现方式,SMF向UPF发送N4会话更新请求(N4 session modification request)消息,该N4 session modification request消息中包括第一信息。
可选地,SMF还向UPF发送以下至少一项:会话ID(session ID)、数据包过滤规则、QFI。
911,UPF向SMF发送第二信息。
响应于第一信息,UPF可确定第二信息,并将第二信息通过SMF发送给SEALDD服务器,以便建立SEALDD服务器与UPF之间的N6隧道。
关于第二信息可以参考方法800中的相关描述,此处不再赘述。
一种可能的实现方式,UPF向SMF发送N4会话更新响应(N4 session modification response)消息,该N4 session modification response消息中包括第二信息。
912,SMF向SEALDD服务器发送第二信息。
一种可能的实现方式,SMF向SEALDD服务器发送AF通知(AF notification)信息,该AF notification信息包括第二信息。
913,SEALDD服务器与UPF建立N6隧道。
基于第一信息和第二信息,SEALDD服务器与UPF之间的N6隧道完成建立,进而可以基于该N6隧道传输数据。
N6隧道建立完成后,SEALDD服务器还可配置与VAL服务器的连接,维护VAL服务器与VAL客户端以及N6隧道的映射关系#1,如步骤914。
914,SEALDD服务器确定映射关系#1。
关于映射关系#1可以参考方法800中的相关描述,此处不再赘述。
915,SEALDD服务器基于映射关系#1传输数据。
也就是说,SEALDD服务器基于映射关系#1,通过N6隧道与UPF传输终端设备的数据。
以下行传输为例,也即VAL服务器通过SEALDD服务器和SEALDD客户端向VAL客户端发送数据。举例来说:VAL服务器将数据包发给SEALDD服务器,SEALDD服务器根据该数据包对应的地址和/或端口,判断该数据包对应的VAL客户端。其中,该数据包对应的地址例如可以是该数据包的源地址和/或目的地址,该数据包对应的端口例如可以是该数据包的源端口和/或目的端口。SEALDD服务器确定该数据包对应的VAL客户端后,根据VAL客户端以及映射关系#1确定对应的N6隧道。SEALDD服务器在该数据包包头中添加数据包的特征信息,并通过N6隧道发给UPF。UPF从N6隧道上收到该数据包后,匹配QFI和GTP-U header。例如,UPF确定该数据包对应的UE和QFI,并且去除N6 GTP-U tunnel包头,并将该N6 GTP-U tunnel包头上的数据包的特征信息复制添加到对应的N3 GTP-U tunnel包头上发给RAN。RAN从UPF收到数据包后,可根据N3 GTP-U tunnel包头中的数据包的特征信息,进行优化传输,发给SEALDD客户端,进而SEALDD客户端将该数据包发给VAL客户端。其中,关于数据包在传输过程中的形式可参考图5所示的形式。
可选地,若SEALDD服务器与UPF之间建立了至少两个N6隧道,则在数据传输时,SEALDD服务器还可以将不同的数据通过不同的N6隧道传输。
上文结合图9所示的步骤901-915示例地介绍了一种可能的流程。应理解,上述各个步骤仅是示例性说明,对此不作严格限定。此外,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
基于上述技术方案,SEALDD服务器在收到SEALDD客户端的请求后,可以动态触发建立UE粒度的N6隧道。举例来说,SEALDD服务器在收到SEALDD客户端的请求后,SEALDD服务器向核心网发送AF请求,用于为该SEALDD客户端对应的UE建立N6隧道;当UPF或SMF检测到SEALDD客户端向SEALDD服务器发送数据时,UPF可以向SEALDD服务器提供为N6隧道分配的端口信息和UPF的地址信息,用于完成SEALDD服务器与UPF之间的N6隧道建立流程。此外,在N6隧道建立完成后,SEALDD服务器可以维护SEALDD服务器、VAL服务器、SEALDD客户端、VAL客户端、以及N6隧道之间的映射关系,这样后续可以基于该映射关系传输数据。
下面结合图10至图13介绍适用于上述方案A中实现方式2,也即SEALDD服务器与UPF动态配 置UPF粒度的N6隧道。图10至图13所示的实施例可以应用于上述图1至图3所示的网络架构中,图10至图13所示的实施例还可以应用于上述图4所示的网络架构中,对此不予限制。
图10是本申请另一实施例提供的一种通信方法1000的示意图。方法1000可以包括如下步骤。
1010,SEALDD服务器接收来自终端设备的服务请求信息,服务请求信息用于请求SEALDD服务器提供与数据传输相关的服务。
步骤1010可参考方法800中的步骤810,此处不再赘述。
1020,在SEALDD服务器确定SEALDD服务器与用户面网元未建立N6隧道的情况下,SEALDD服务器向用户面网元发送第一信息,第一信息是SEALDD服务器提供的用于建立N6隧道的信息,用户面网元是为终端设备提供服务的用户面网元,第一信息用于触发用户面网元建立N6隧道。
其中,关于第一信息可以参考方法800中的相关描述,此处不再赘述。
可选地,在步骤1020之前,方法1000还包括:SEALDD服务器确定是否要建立与用户面网元之间的N6隧道。举例来说,SEALDD服务器检测SEALDD服务器是否与用户面网元建立N6隧道,若SEALDD服务器已与用户面网元建立N6隧道,则SEALDD服务器确定不需要再建立与用户面网元之间的N6隧道;若SEALDD服务器还未与用户面网元建立N6隧道,则SEALDD服务器确定要建立与用户面网元之间的N6隧道。
一种可能的实现方式,SELADD服务器可以根据终端设备和已建立的N6隧道可以服务的终端设备范围,确定是否要建立与用户面网元之间的N6隧道。举例来说,若已建立的N6隧道可以服务的终端设备不包括步骤X1010中的终端设备,则确定要建立与用户面网元之间的N6隧道。
可选地,SEALDD服务器向终端设备发送SEALDD服务器的地址信息和/或SEALDD服务器的端口信息。具体的可以参考方法800中的相关描述,此处不再赘述。
可选地,方法1000还包括:SEALDD服务器接收来自用户面网元的第二信息,第二信息是用户面网元提供的用于建立N6隧道的信息;SEALDD服务器通过N6隧道与用户面网元传输终端设备的数据,N6隧道是通过第一信息和第二信息确定的。其中,关于第二信息可以参考方法800中的相关描述,此处不再赘述。此外,关于SEALDD服务器通过N6隧道与用户面网元传输终端设备的数据的具体实现方式也可参考方法800中的相关描述,此处不再赘述。
为了便于理解,下面结合图11对方法1000所示的实施例进行示例性说明,以下示例中假设用户面网元为UPF,会话管理网元为SMF,终端设备为UE、且分别以UE中的SEALDD客户端和VAL客户端进行说明。其中涉及到的步骤和相关术语的解释可以可参考方法1000中的相关描述,此处不再赘述。
图11是本申请另一实施例提供的一种通信方法1100的示意性流程图。方法1100适用于上述方法1000,也即SEALDD服务器与UPF动态配置UPF粒度的N6隧道,并且可以由SEALDD服务器负责检测N6隧道是否已经建立的场景。方法1100可以包括如下步骤。
1101,VAL服务器发现SEALDD服务器。
1102,VAL服务器向SEALDD服务器发送服务订阅信息。
1103,SEALDD服务器向VAL服务器发送订阅响应信息。
1104,VAL客户端和SEALDD客户端,确定SEALDD服务器。
1105,SEALDD客户端向SEALDD服务器发送SEALDD服务请求信息。
步骤1101-1105与步骤901-905类似,此处不再赘述。
1106,SEALDD服务器确定是否要建立N6隧道。
一种可能的实现方式,SELADD服务器可以根据SEALDD客户端对应的UE和已建立的N6隧道可以服务的UE范围,确定是否要发起N6隧道建立流程。作为示例,SELADD服务器可以根据SEALDD客户端对应的UE ID和已建立的N6隧道可以服务的UE ID,确定是否要发起N6隧道建立流程。举例来说,若已建立的N6隧道可以服务的UE ID范围包括SEALDD客户端对应的UE,则不发起N6隧道建立流程;若已建立的N6隧道可以服务的UE ID范围不包括SEALDD客户端对应的UE,则发起N6隧道建立流程。其中,UE ID可以包括UE IP地址。
若SEALDD服务器确定要发送N6隧道建立流程,则执行后续步骤1107-1112,否则直接执行步骤1113。
1107,SEALDD服务器向UDR发送第一信息。
关于第一信息的描述可以参考前面步骤906中的相关描述,此处不再赘述。
一种可能的实现方式,SEALDD服务器通过AF请求向UDR发送第一信息。该AF request可以通过NEF发送到UDR中。作为示例,AF request可用UE ID进行标识。
1108,UDR向SMF发送第一信息。
例如,UDR可主动向SMF发送第一信息,也即UDR收到第一信息后,直接向SMF发送第一信息。再例如,SMF可以通过订阅通知的方式从UDR获取第一信息。举例来说,SMF可以通过NEF订阅第一信息,NEF可以向UDR查询第一信息,UDR将该第一信息发给NEF,进而NEF将该第一信息发给SMF。
一种可能的实现方式,UDR向SMF发送N6 tunnel notification request消息,该消息中包含第一信息。
1109,SMF向UPF发送第一信息。
1110,UPF向SMF发送第二信息。
1111,SMF向SEALDD服务器发送第二信息。
可选地,SMF还向SEALDD服务器发送UPF服务的UE的信息,如UE的地址范围又如UE ID。
一种可能的实现方式,SMF向SEALDD服务器发送AF notification信息,该AF notification信息包括第二信息,或者,该AF notification信息包括第二信息和UPF服务的UE的信息。
1112,SEALDD服务器与UPF建立N6隧道。
步骤1109-1112与步骤910-913类似,此处不再赘述。
1113,SEALDD服务器向SEALDD客户端发送SEALDD服务器的地址信息和/或端口信息。
步骤1113与步骤909类似,此处不再赘述。
1114,SEALDD服务器确定映射关系#1。
1115,SEALDD服务器基于映射关系#1传输数据。
步骤1114-1115与步骤914-915类似,此处不再赘述。
上文结合图11所示的步骤1101-1115示例地介绍了一种可能的流程。应理解,上述各个步骤仅是示例性说明,对此不作严格限定。此外,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
基于上述技术方案,SEALDD服务器可以动态触发建立UPF粒度的N6隧道。举例来说,SEALDD服务器在收到SEALDD客户端的SEALDD服务请求信息后,SEALDD服务器可先判断是否要建立N6隧道;若SEALDD服务器判断要建立N6隧道,则SEALDD服务器与UPF建立N6隧道。此外,SMF还可以向SEALDD服务器通知该N6隧道可以服务的UE的信息。此外,在N6隧道建立完成后,SEALDD服务器可以维护SEALDD服务器、VAL服务器、SEALDD客户端、VAL客户端、以及N6隧道之间的映射关系,这样后续可以基于该映射关系传输数据。
图12是本申请另一实施例提供的一种通信方法1200的示意图。方法1200可以包括如下步骤。
1210,会话管理网元确定终端设备向SEALDD服务器发送数据。
一种可能的实现方式,会话管理网元检测到终端设备向SEALDD服务器发送数据。
另一种可能的实现方式,其他核心网网元,如用户面网元,检测到终端设备向SEALDD服务器发送数据,并且其他核心网网元向会话管理网元通知终端设备向SEALDD服务器发送数据。
1220,会话管理网元向第一用户面网元发送请求信息,请求信息用于请求N6隧道的信息,N6隧道是SEALDD服务器与第一用户面网元之间的N6隧道,第一用户面网元是为终端设备提供服务的用户面网元。
具体来说,会话管理网元确定终端设备向SEALDD服务器发送数据时,可以向为终端设备提供服务的用户面网元(如记为第一用户面网元)请求N6隧道的信息,也即第一用户面提供的N6隧道的信息。
可选地,在步骤1220之前,方法1200还包括:会话管理网元获取至少一个N6隧道的信息,至少一个N6隧道的信息包括SEALDD服务器与至少一个用户面网元之间建立的N6隧道的信息;会话管理网元向第一用户面网元发送请求信息,包括:在会话管理网元确定至少一个用户面网元不包括第一 用户面网元的情况下,会话管理网元向第一用户面网元发送请求信息。
举例来说,会话管理网元可确定SEALDD服务器是否已经与第一用户面网元建立N6隧道,在会话管理网元确定SEALDD服务器还未与第一用户面网元建立N6隧道的情况下,再向第一用户面网元请求N6隧道的信息。
作为示例,至少一个N6隧道的信息包括以下至少一项:SEALDD服务器侧的N6隧道信息、至少一个N6隧道对应的数据包的端口信息、至少一个N6隧道对应的数据包的地址信息。
可选地,在会话管理网元确定至少一个用户面网元包括第一用户面网元的情况下,会话管理网元向SEALDD服务器发送终端设备的信息和指示信息,指示信息指示SEALDD服务器与第一用户面网元之间建立的N6隧道的信息。SEALDD服务器基于该指示信息以及终端设备的信息可建立映射关系#1,进而可以基于该映射关系#1通过N6隧道与用户面网元传输终端设备的数据。关于映射关系#1可参考方法800中的相关描述,此处不再赘述。
关于会话管理网元获取至少一个N6隧道的信息的方式不予限制。
一种可能的实现方式,SEALDD服务器向用户面网元提供至少一个N6隧道的信息。
另一种可能的实现方式,SEALDD服务器与向存储管理网元提供至少一个N6隧道的信息;会话管理网元可以向存储管理网元查询该至少一个N6隧道的信息。
1230,会话管理网元接收来自第一用户面网元的第二信息,第二信息是第一用户面网元提供的用于建立N6隧道的信息。
响应于请求信息,第一用户面网元向会话管理网元发送第二信息。关于第二信息可以参考方法800中的相关描述,此处不再赘述。
1240,会话管理网元向SEALDD服务器发送第二信息,第二信息用于触发SEALDD服务器建立N6隧道。
SEALDD服务器收到该第二信息后,可以基于第二信息,以及SEALDD服务器自身提供的用于建立N6隧道的信息(即第一信息)确定N6隧道。
为了便于理解,下面结合图13对方法1200所示的实施例进行示例性说明,以下示例中假设用户面网元为UPF,会话管理网元为SMF,终端设备为UE、且分别以UE中的SEALDD客户端和VAL客户端进行说明。其中涉及到的步骤和相关术语的解释可以可参考方法1200中的相关描述,此处不再赘述。
图13是本申请另一实施例提供的一种通信方法1300的示意性流程图。方法1300适用于上述方法1200,也即SEALDD服务器与UPF动态配置UPF粒度的N6隧道,并且可以由SMF负责检测N6隧道是否已经建立的场景。方法1300可以包括如下步骤。
1301,VAL服务器发现SEALDD服务器。
1302,VAL服务器向SEALDD服务器发送服务订阅信息。
1303,SEALDD服务器向VAL服务器发送订阅响应信息。
步骤1301-1303与步骤901-903类似,此处不再赘述。
1304,SEALDD服务器向UDR发送第一信息。
关于第一信息的描述可以参考前面步骤906中的相关描述,此处不再赘述。
一种可能的实现方式,SEALDD服务器通过AF request向UDR发送第一信息。该AF request可以通过NEF发送到UDR中。作为示例,该AF request为DNAI粒度或切片粒度,也就是说,当UE使用该切片或UE处于在该DNAI中时,UDR会通知SMF第一信息。AF request为DNAI粒度或切片粒度的,因此若UE发起会话建立流程,则在会话建立过程中,UDR向SMF发送第一信息,如步骤1305。
1305,UDR向SMF发送第一信息。
SMF可以通过订阅通知的方式从UDR获取第一信息。举例来说,SMF可以通过NEF订阅第一信息,NEF可以向UDR查询第一信息,UDR将该第一信息发给NEF,进而NEF将该第一信息发给SMF。
一种可能的实现方式,UDR向SMF发送N6隧道信息通知请求(N6 tunnel information notification request)消息,该N6 tunnel information notification request消息包括第一信息。
1306,VAL客户端和SEALDD客户端,确定SEALDD服务器。
1307,SEALDD客户端向SEALDD服务器发送SEALDD服务请求信息。
步骤1306-1307与步骤904-905类似,此处不再赘述。
1308,SEALDD服务器向SEALDD客户端发送SEALDD服务器的地址信息和/或端口信息。
步骤1308与步骤909类似,此处不再赘述。
SEALDD客户端收到SEALDD服务器的地址信息和/或端口信息后,可以使用该SEALDD服务器的地址信息和/或端口信息,向SEALDD服务器发送数据(如媒体数据)。当SEALDD客户端向SEALDD服务器发送数据时,SMF可先检测SEALDD服务器是否与UPF建立了N6隧道,如步骤1309。
1309,SMF检测SEALDD服务器是否与UPF建立了N6隧道。
其中,该UPF是为UE提供服务的UPF。
举例来说,当SMF检测到SEALDD客户端向SEALDD服务器发送媒体数据时,SMF检测SEALDD服务器是否与UPF建立了N6隧道。或者,再举例来说,当UPF检测到SEALDD客户端向SEALDD服务器发送媒体数据时,UPF向SMF发送请求,SMF基于UPF的请求,检测SEALDD服务器是否与UPF建立了N6隧道。
若SEALDD服务器与UPF尚未建立N6隧道,则方法1300还包括步骤1310-1314。
1310,SMF向UPF发送第一信息。
1311,UPF向SMF发送第二信息。
1312,SMF向SEALDD服务器发送第二信息。
1313,SEALDD服务器与UPF建立N6隧道。
1314,SEALDD服务器确定映射关系#1。
1315,SEALDD服务器基于映射关系#1传输数据。
步骤1310-1315与步骤910-915类似,此处不再赘述。
上文结合图13所示的步骤1301-1315示例地介绍了一种可能的流程。应理解,上述各个步骤仅是示例性说明,对此不作严格限定。此外,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
基于上述技术方案,SEALDD服务器可以动态触发建立UPF粒度的N6隧道,相比于方法1500或1700,方法1100所示的方案更加灵活。举例来说,SEALDD服务器在收到VAL服务器的服务订阅后,SEALDD服务器向UDR提供第一信息,该第一信息用于建立N6隧道;当SEALDD客户端向SEALDD服务器发送数据时,SMF可先检测SEALDD服务器是否与UPF建立了N6隧道;若SEALDD服务器未与UPF建立N6隧道,则SMF可从UPF处获取UPF为N6隧道分配的端口信息和UPF的地址信息,并发送给SEALDD服务器。此外,在N6隧道建立完成后,SEALDD服务器可以维护SEALDD服务器、VAL服务器、SEALDD客户端、VAL客户端、以及N6隧道之间的映射关系,这样后续可以基于该映射关系传输数据。
下面结合图14至图17介绍适用于上述方案A中实现方式3也即SEALDD服务器与UPF预配置N6隧道的实现方式。图14至图17所示的实施例可以应用于上述图1至图3所示的网络架构中,图14至图17所示的实施例还可以应用于上述图4所示的网络架构中,对此不予限制。
图14是本申请另一实施例提供的一种通信方法1400的示意图。方法1400可以包括如下步骤。
1410,终端设备接收来自SEALDD服务器的用户面网元的信息,用户面网元是与SEALDD服务器建立了N6隧道的用户面网元。
相应地,SEALDD服务器向终端设备发送与SEALDD服务器建立了N6隧道的用户面网元的信息。
作为示例,用户面网元的信息包括以下至少一项:用户面网元的端口信息、用户面网元的地址信息、用户面网元的数据网络名称(data network name,DNN)、用户面网元的网络切片。
可以理解,SEALDD服务器可能与至少两个用户面网元建立了N6隧道,在该情况下,SEALDD服务器可以向终端设备发送该至少两个用户面网元的信息,或者也可以向终端设备发送该至少两个用户面网元中部分用户面网元的信息,不予限制。
可选地,在步骤1410之前,方法1400还包括:终端设备向SEALDD服务器发送服务请求信息,服务请求信息用于请求SEALDD服务器提供与数据传输相关的服务。SEALDD服务器响应于服务请求信息,向终端设备发送与SEALDD服务器建立了N6隧道的用户面网元的信息。
1420,终端设备与用户面网元建立会话。
终端设备基于SEALDD服务器提供的用户面网元的信息,可以与已经与SEALDD服务器建立了N6隧道的用户面网元,建立会话,这样可以实现由SEALDD服务器建立了N6隧道的用户面网元为终端设备提供服务。关于会话建立的具体方式,本申请实施例不予限制。
为了便于理解,下面结合图15对方法1400所示的实施例进行示例性说明,以下示例中假设用户面网元为UPF,会话管理网元为SMF,终端设备为UE、且分别以UE中的SEALDD客户端和VAL客户端进行说明。其中涉及到的步骤和相关术语的解释可以可参考方法1400中的相关描述,此处不再赘述。
图15是本申请另一实施例提供的一种通信方法1500的示意性流程图。方法1500适用于上述方法1400,也即SEALDD服务器与UPF预配置N6隧道,UE会话建立时,为UE选取已建立N6隧道的UPF的场景。方法1500可以包括如下步骤。
1501,SEALDD服务器与UPF预配置N6隧道。
SEALDD服务器可以提前与UPF配置N6隧道。其中,SEALDD服务器可以感知与UPF建立N6隧道时,UPF使用的地址以及端口信息。
作为示例,与SEALDD服务器预配置N6隧道的UPF可以是任意的UPF,或者也可以是特定的UPF,如距离SEALDD服务器较近的UPF,对此不予限制。此外,与SEALDD服务器预配置N6隧道的UPF的数量可以是至少一个,对此不予限制。
1502,VAL服务器发现SEALDD服务器。
步骤1502与步骤901类似,此处不再赘述。
1503,VAL服务器向SEALDD服务器发送服务订阅信息。
步骤1503与步骤902类似,此处不再赘述。
1504,SEALDD服务器向VAL服务器发送订阅响应信息。
步骤1504与步骤903类似,不同之处在于,在步骤1504中,SEALDD服务器向VAL服务器发送的订阅响应信息中可以包括N6隧道的信息。
其中,N6隧道的信息表示SEALDD服务器与UPF建立的N6隧道的信息,也即步骤1501中预配置的N6隧道的信息。举例来说,若步骤1501中SEALDD服务器与至少一个UPF预配置N6隧道,则步骤1504中,N6隧道的信息表示SEALDD服务器与该至少一个UPF预配置的N6隧道的信息。再举例来说,若步骤1501中SEALDD服务器与UPF预配置了至少一个N6隧道,则步骤1504中,N6隧道的信息表示SEALDD服务器与UPF预配置的该至少一个N6隧道的信息。
可选地,N6隧道的信息包括以下至少一项:SEALDD服务器侧的N6隧道信息、N6隧道对应的数据包的端口信息、N6隧道对应的数据包的地址信息、单一网络切片选择辅助信息(single network slice selection assistance information,S-NSSAI)、DNN。
1505,VAL客户端和SEALDD客户端,确定SEALDD服务器。
步骤1505与步骤904类似,此处不再赘述。
在方法1500中,VAL客户端和/或SEALDD客户端可获取N6隧道的信息,以实现为UE选取已建立了N6隧道的UPF。作为示例,方法1500中包括以下任一方案。
方案1:VAL服务器通知VAL客户端N6隧道的信息。
方案2:SEALDD服务器通知SEALDD客户端N6隧道的信息。
方案3:VAL服务器预配置N6隧道的信息。
其中,关于N6隧道的信息参考步骤1504中的描述。下面详细介绍上述三种方案。
方案1:VAL服务器通知VAL客户端N6隧道的信息,如步骤1506。
1506,VAL服务器向VAL客户端发送N6隧道的信息。
举例来说,VAL服务器可通过应用层控制消息,通知VAL客户端N6隧道的信息。其中,N6隧道的信息,也即VAL服务器在步骤1504中收到的N6隧道的信息。VAL服务器向VAL客户端发送N6隧道的信息,这样VAL客户端可以使用特定的地址,或者特定的端口,或者特定的DNN,或者特定的S-NSSAI传输数据。
例如,N6隧道的信息包括N6隧道的端口信息,VAL客户端收到该N6隧道的端口信息后,可以使用该N6隧道的端口信息传输数据,这样,可以使用预配置的N6隧道。
再例如,N6隧道的信息包括N6隧道的地址信息,VAL客户端收到该N6隧道的地址信息后,可以使用该N6隧道的地址信息传输数据,这样,可以使用预配置的N6隧道。
再例如,N6隧道的信息包括DNN,VAL客户端收到该DNN后,可以使用该DNN传输数据,这样,可以由已配置了N6隧道的UPF提供服务,进而使用该N6隧道。
再例如,N6隧道的信息包括S-NSSAI,VAL客户端收到该S-NSSAI后,可以使用该S-NSSAI传输数据,这样,可以由已配置了N6隧道的UPF提供服务,进而使用该N6隧道。
方案2:SEALDD服务器通知SEALDD客户端N6隧道的信息,如步骤1507和步骤1508。
1507,SEALDD客户端向SEALDD服务器发送SEALDD服务请求信息。
步骤1507与步骤905类似,此处不再赘述。
1508,SEALDD服务器向SEALDD客户端发送N6隧道的信息。
一种可能的实现方式,SEALDD服务器向SEALDD客户端发送SEALDD服务响应信息,该SEALDD服务响应信息包括N6隧道的信息。其中,N6隧道的信息,也即步骤1501中预配置的N6隧道的信息。
方案3:VAL服务器预配置N6隧道的信息,如步骤1509。
1509,VAL客户端预配置N6隧道的信息。
举例来说,在客户端APP开发阶段,在VAL客户端预配置N6隧道的信息,也即步骤1501中预配置的N6隧道的信息。
基于上述任一方案,VAL客户端或SEALDD客户端可获知N6隧道的信息。
1510,VAL客户端向SEALDD客户端发送SEALDD服务请求信息。
步骤1510中VAL客户端触发SEALDD客户端进行业务传输。
1511,SEALDD客户端触发会话建立。
1512,SEALDD客户端向SEALDD服务器发送SEALDD服务通知(SEALDD service notification)信息。
第一种可能的情形,若使用N6隧道的数据包触发了新的会话建立,则SEALDD客户端向SEALDD服务器发送SEALDD客户端的ID和SEALDD客户端对应的新的IP地址。作为示例,对于客户端/服务器(client/server,CS)业务可能适用于该情形。
第二种可能的情形,SEALDD客户端发送目标为N6隧道使用的地址和端口的数据包,UPF识别该数据包,并且对数据包封装处理后,将封装处理后的数据包通过N6隧道发送给SEALDD服务器。在该情形下,SEALDD服务器基于N6隧道可获知SEALDD客户端的ID和SEALDD客户端的IP信息。在该情形下,也可能会触发建立新会话,对此不予限制。作为示例,对于浏览器/服务器(browser/server,BS)业务可能适用于该情形。
1513,SEALDD服务器确定映射关系#1。
关于映射关系#1的描述,可以参考步骤914,此处不再赘述。
以步骤1512中第一种可能的情形为例,SEALDD服务器根据收到的SEALDD客户端的ID和SEALDD客户端对应的新的IP地址确定映射关系#1。以步骤1512中第二种可能的情形为例,SEALDD服务器检测发送数据包的N6隧道,确定映射关系#1。
1514,SEALDD服务器基于映射关系#1传输数据。
可选地,SEALDD服务器与UPF预配置了至少两个N6隧道时,在数据传输时,SEALDD服务器还可以将不同的数据通过不同的N6隧道传输。
步骤1514与步骤915类似,此处不再赘述。
上文结合图15所示的步骤1501-1514示例地介绍了一种可能的流程。应理解,上述各个步骤仅是示例性说明,对此不作严格限定。此外,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,除上述步骤外,方法1500还可能包括其他的步骤,如SMF在配置UPF的分组检测规则(packet detection rule,PDR)和关联的转发动作规则(forwarding action rule,FAR)时,设置对特定的数据包进行加封装和去封装并通过N6隧道发送的处理规则,以便UPF基于该处理规则处理数据。
基于上述技术方案,SEALDD服务器与UPF可预先配置N6隧道,当UE需要使用N6隧道时, 通过SEALDD服务器与SEALDD客户端以及核心网的交互,使得UE将会话锚点选定在已建立了N6隧道的UPF上。举例来说,SEALDD服务器与UPF预配置N6隧道,UE会话建立时,通过UE使用的DNN或S-NSSAI,将该会话选定到已建立了N6隧道的UPF上。此外,SEALDD服务器可以维护SEALDD服务器、VAL服务器、SEALDD客户端、VAL客户端、以及N6隧道之间的映射关系,这样后续可以基于该映射关系传输数据。
图16是本申请另一实施例提供的一种通信方法1600的示意图。方法1600可以包括如下步骤。
1610,会话管理网元确定终端设备向SEALDD服务器发送数据。
步骤1610可参考步骤1210,此处不再赘述。
1620,会话管理网元获取N6隧道的信息,N6隧道的信息包括SEALDD服务器与用户面网元之间建立的N6隧道的信息。
可选地,N6隧道的信息包括以下至少一项:SEALDD服务器侧的N6隧道信息、N6隧道对应的数据包的端口信息、N6隧道对应的数据包的地址信息。可以理解,上述为示例性说明,对此不予限制。例如,N6隧道的信息还可以包括:用于N6隧道的用户面网元的地址信息、用于N6隧道的用户面网元的端口信息。
关于会话管理网元获取N6隧道的信息的方式不予限制。
一种可能的实现方式,SEALDD服务器向用户面网元提供N6隧道的信息。
另一种可能的实现方式,SEALDD服务器与向存储管理网元提供N6隧道的信息;会话管理网元可以向存储管理网元查询该N6隧道的信息。
1630,会话管理网元根据N6隧道的信息,确定分流点,分流点用于将终端设备的数据分流至用户面网元。
可选地,分流点为上行分类器(uplink classifier,UL CL)或分支点(branching point,BP)。
可选地,在步骤1630之前,方法1600还包括:会话管理网元根据N6隧道的信息确定用户面网元。分流点用于建立终端设备到该用户面网元的传输路径,也即通过会话管理网元插入的分流点,建立了终端设备到该用户面网元的传输路径。
作为示例,若步骤X1620中,会话管理网元获取到至少两个用户面网元对应的N6隧道信息,也即在步骤SEALDD服务器与至少两个用户面网元预配置N6隧道,则可以根据终端设备位置确定一个用户面网元,如选择离终端设备最近的用户面网元。
为了便于理解,下面结合图17对方法1600所示的实施例进行示例性说明,以下示例中假设用户面网元为UPF,会话管理网元为SMF,终端设备为UE、且分别以UE中的SEALDD客户端和VAL客户端进行说明。其中涉及到的步骤和相关术语的解释可以可参考方法1600中的相关描述,此处不再赘述。
图17是本申请另一实施例提供的一种通信方法1700的示意性流程图。方法1700适用于上述方法1600,也即SEALDD服务器与UPF预配置N6隧道,SMF为UE插入到已建立了N6隧道的UPF的分流点的场景。方法1700可以包括如下步骤。
1701,SEALDD服务器与UPF1预配置N6隧道。
步骤1701与步骤1501类似,不同之处在于,在方法1700中以SEALDD服务器与UPF1配置了N6隧道为例进行说明。
1702,VAL服务器发现SEALDD服务器。
1703,VAL服务器向SEALDD服务器发送服务订阅信息。
1704,SEALDD服务器向VAL服务器发送订阅响应信息。
步骤1702-1704与步骤901-903类似,此处不再赘述。
1705,SEALDD服务器向UDR发送N6隧道的信息。
其中,N6隧道的信息表示SEALDD服务器与UPF1建立的N6隧道的信息,也即步骤1701中预配置的N6隧道的信息。N6隧道的信息可用于建立UE到UPF1的传输路径,例如可以通过插入分流点,以将UE的数据通过该分流点转发到UPF1,具体的后面结合步骤1711说明。
SEALDD服务器与UPF1之间可能有多个N6隧道,在该情况下,SEALDD服务器还可以向UDR发送每个N6隧道的重要性信息。
可选地,N6隧道的信息包括以下至少一项:用于N6隧道的UPF1的地址信息、用于N6隧道的UPF1的端口信息、用于N6隧道的SEALDD服务器的端口信息、用于N6隧道的SEALDD服务器的地址信息、N6隧道对应的数据包的端口信息、N6隧道对应的数据包的地址信息。
可选地,SEALDD服务器还可以向UDR发送数据网络接入标识(data network access identification,DNAI)。
1706,VAL客户端和SEALDD客户端,确定SEALDD服务器。
1707,SEALDD客户端向SEALDD服务器发送SEALDD服务请求信息。
步骤1706-1707与步骤904-905类似,此处不再赘述。
1708,SEALDD服务器向SEALDD客户端发送SEALDD服务器的地址信息和/或端口信息。
步骤1708与步骤909类似,此处不再赘述。
SEALDD客户端收到SEALDD服务器的地址信息和/或端口信息后,可以使用该SEALDD服务器的地址信息和/或端口信息,向SEALDD服务器发送数据(如媒体数据)。若SMF或UPF检测到SEALDD客户端向SEALDD服务器发送数据,则SMF可以从UDR处获取N6隧道的信息,如步骤1709。
1709,SMF从UDR处获取N6隧道的信息。
举例来说,当SMF检测到SEALDD客户端向SEALDD服务器发送媒体数据时,SMF从UDR处获取N6隧道的信息。或者,再举例来说,当UPF检测到SEALDD客户端向SEALDD服务器发送媒体数据时,UPF向SMF发送请求,SMF基于UPF的请求,从UDR处获取N6隧道的信息。
作为示例,SMF从UDR处获取N6隧道的信息,例如可以包括:SMF向PCF发送请求,PCF基于SMF的请求,向UDR请求N6隧道的信息;UDR向PCF发送AF请求通知(AF request notification)信息,该AF请求通知信息包括N6隧道的信息;PCF向SMF发送N6隧道的信息。其中,PCF向SMF发送N6隧道的信息,例如可以包括:PCF向SMF发送会话管理策略关联更新请求(SM Policy association modification request)消息,该SM Policy association modification request消息包括N6隧道的信息。
1710,SMF根据N6隧道的信息确定UPF1。
作为示例,若SMF获取到至少两个UPF对应的N6隧道信息,也即在步骤1701中SEALDD服务器与至少两个UPF预配置N6隧道,则可以根据UE位置确定一个UPF,如选择离UE最近的UPF。
1711,SMF确定分流点。
其中,分流点用于建立UE到UPF1的传输路径,也即通过SMF插入的分流点,建立了UE到UPF1的传输路径。
可选地,分流点为UL CL或BP。
可选地,SMF还配置转发规则(forwarding rule)。SMF可配置转发规则,并将转发规则发送给分流点,进而分流点可以基于该转发规则将UE的数据转发到UPF1。
1712,SMF向SEALDD服务器发送SEALDD客户端对应的UE的信息和指示信息#2。
其中,指示信息#2可用于指示UPF1对应的N6隧道。SEALDD服务器基于该指示信息#2可获知是SEALDD服务器与UPF1之间的N6隧道。SMF向SEALDD服务器发送SEALDD客户端的ID和指示信息#2,以便SEALDD服务器将SEALDD客户端与UPF1对应的N6隧道进行关联。
一种可能的实现方式,指示信息#2可以通过至少一个比特来实现。举例来说,假设在步骤1701中,SEALDD服务器与一个UPF(即UPF1)建立了N6隧道,且指示信息#2通过一个比特来实现,该比特设置为“0”,则表示SEALDD客户端不与UPF1对应的N6隧道进行关联;若该比特设置为“1”,则表示SEALDD客户端与UPF1对应的N6隧道进行关联。应理解,上述仅是一种示例性说明,不予限制。
另一种可能的实现方式,指示信息#2为SEALDD服务器与UPF1之间的N6隧道的信息。例如,指示信息#2为用于N6隧道的UPF1的端口信息和/或地址信息,基于该指示信息,SEALDD服务器可获知该UPF1对应的N6隧道,进而将SEALDD客户端与UPF1对应的N6隧道进行关联。
1713,SEALDD服务器确定映射关系#1。
SEALDD服务器根据步骤1712中收到的信息,确定映射关系#1。映射关系#1用于将N6隧道与以下两段连接关联起来:SEALDD客户端和SEALDD服务器之间的连接、以及VAL客户端和VAL服务器之间的连接。
一种可能的形式,映射关系#1用于指示SEALDD服务器、VAL服务器、SEALDD客户端、VAL客户端、以及N6隧道之间的关系。
1714,SEALDD服务器基于映射关系#1传输数据。
步骤1714与步骤915类似,此处不再赘述。
上文结合图17所示的步骤1701-1714示例地介绍了一种可能的流程。应理解,上述各个步骤仅是示例性说明,对此不作严格限定。此外,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
基于上述技术方案,SEALDD服务器与UPF可预先配置N6隧道,并将该N6隧道的的信息通知给核心网,当UE需要使用N6隧道时,SMF基于该N6隧道的信息插入到已建立了N6隧道的UPF的分流点。举例来说,SEALDD服务器与UPF配置N6隧道后,向UDR通知N6隧道的信息;当SEALDD客户端向SEALDD服务器发送数据时,SMF可以从UDR处获取N6隧道的信息,并基于该N6隧道的信息插入到已建立了N6隧道的UPF的分流点,从而建立了UE到已建立了N6隧道的UPF之间的传输路径。此外,SEALDD服务器可以维护SEALDD服务器、VAL服务器、SEALDD客户端、VAL客户端、以及N6隧道之间的映射关系,这样后续可以基于该映射关系传输数据。
下面结合图18和图19介绍适用于上述方案B中,也即SEALDD服务器与SEALDD客户端之间建立SEALDD连接的方案。图18和图19所示的实施例可以应用于上述图1至图3所示的网络架构中,图13所示的实施例还可以应用于上述图6所示的网络架构中,对此不予限制。
图18是本申请另一实施例提供的一种通信方法1800的示意图。方法1800可以包括如下步骤。
1810,SEALDD服务器接收来自终端设备的服务请求信息,服务请求信息用于请求SEALDD服务器提供与数据传输相关的服务。
关于服务请求信息可参考方法800中的相关描述,此处不再赘述。
1820,SEALDD服务器向终端设备发送第三信息,第三信息用于指示SEALDD服务器与终端设备之间的至少一个SEALDD连接的信息。
作为示例,SEALDD服务器可以与SEALDD客户端建立至少一个SEALDD连接。可选地,若SEALDD服务器与SEALDD客户端之间的SEALDD连接为至少两个,则SEALDD服务器还可确定每个SEALDD连接的重要性信息或者称为优先权信息。
一种可能的实现方式,SEALDD服务器可根据终端设备的传输需求,确定建立多少个SEALDD连接。
可选地,至少一个SEALDD连接的信息包括以下至少一项:每个SEALDD连接的地址信息、每个SEALDD连接的端口信息、每个SEALDD连接的重要性信息、每个SEALDD连接的标识信息。
其中,SEALDD连接的重要性信息,可以识别各个SEALDD连接的重要性。举例来说,重要性不同的SEALDD连接可用于传输不同类型的数据,如重要性不同的数据。
可选地,SEALDD服务器基于映射关系#2,与终端设备在至少一个SEALDD连接上传输应用服务器的数据。
其中,映射关系#2用于指示SEALDD服务器、应用服务器、终端设备、以及至少一个SEALDD连接之间的关系。映射关系#2用于将SEALDD连接与终端设备、SEALDD服务器、应用服务器关联起来,或者说,映射关系#2用于将SEALDD连接与下面两段连接关联起来:SEALDD服务器和终端设备上的SEALDD客户端之间的连接、以及VAL服务器和终端设备上的VAL客户端之间的连接。
一种可能的实现方式,映射关系#2为SEALDD服务器、VAL服务器、终端设备上的SEALDD客户端、终端设备上的VAL客户端、以及SEALDD连接之间的关系。可选地,映射关系#还包括UE的ID信息。其中,UE的ID信息可以是UE的地址信息,也可以是GPSI信息等。
为了便于理解,下面结合图19对方法1800所示的实施例进行示例性说明,以下示例中假设终端设备为UE、且分别以UE中的SEALDD客户端和VAL客户端进行说明。其中涉及到的步骤和相关术语的解释可以可参考方法1800中的相关描述,此处不再赘述。
图19是本申请另一实施例提供的一种通信方法1900的示意性流程图。方法1900适用于上述方法1800,也即SEALDD服务器与SEALDD客户端之间建立SEALDD连接的场景。方法1900可以包括如下步骤。
1901,VAL服务器发现SEALDD服务器。
作为示例,VAL服务器可通过CAPIF发现SEALDD服务器。VAL服务器可以感知SEALDD服务器是否支持隧道,因此在VAL服务器发现SEALDD服务器的过程中,可以选择支持隧道的SEALDD服务器。在本申请实施例中,隧道表示SEALDD服务器与SEALDD客户端之间的隧道,也即SEALDD连接。
1902,VAL服务器向SEALDD服务器发送服务订阅信息。
其中,服务订阅信息可用于请求订阅隧道传输业务。
1903,SEALDD服务器向VAL服务器发送订阅响应信息。
1904,VAL客户端和SEALDD客户端,确定SEALDD服务器。
VAL客户端和SEALDD客户端可进行SEALDD服务器的发现选择,并获取SEALDD服务器的控制面API接口。
1905,SEALDD客户端向SEALDD服务器发送SEALDD服务请求信息。
其中,SEALDD服务请求信息可用于请求SEALDD服务器提供服务,如提供与数据传输相关的服务。SEALDD服务请求例如也可称为SEALDD服务触发请求(SEALDD service trigger request),其命名不对本申请实施例的保护范围造成限定。
作为示例,SEALDD客户端通过SEALDD服务器的控制面API接口向SEALDD服务器发送SEALDD服务请求信息。
可选地,SEALDD服务请求信息中包括VAL服务信息。VAL服务信息可用于SEALDD服务器确定是否要使用隧道进行业务数据流传输。举例来说,若SEALDD服务器根据VAL服务信息,确定VAL服务器订阅了SEALDD服务,则SEALDD服务器确定要使用隧道传输VAL服务器提供的业务的数据。若SEALDD服务器确定要使用隧道传输VAL服务器提供的业务的数据,则SEALDD服务器确定与SEALDD客户端建立连接,如步骤1906。为区分,将SEALDD服务器与SEALDD客户端之间的连接记为SEALDD连接。
1906,SEALDD服务器确定与SEALDD客户端建立SEALDD连接。
作为示例,SEALDD服务器可以根据VAL服务器的传输需求确定与SEALDD客户端建立几个SEALDD连接。可选地,若SEALDD服务器与SEALDD客户端之间的SEALDD连接为至少两个,则SEALDD服务器还可确定每个SEALDD连接的重要性信息或者称为优先权信息。
1907,SEALDD服务器向SEALDD客户端发送SEALDD服务器的地址信息和/或端口信息。
其中,SEALDD服务器的地址信息是用于SEALDD连接的SEALDD服务器的地址信息,也即SEALDD连接对应的SEALDD服务器的地址信息。SEALDD服务器的端口信息是用于SEALDD连接的SEALDD服务器的端口信息,也即SEALDD连接对应的SEALDD服务器的端口信息。
一种可能的实现方式,SEALDD服务器向SEALDD客户端发送SEALDD服务响应信息,该SEALDD服务响应信息包括SEALDD服务器的地址信息和/或端口信息。
可选地,若SEALDD服务器与SEALDD客户端之间的SEALDD连接为至少两个,则SEALDD服务器还可向SEALDD客户端发送每个SEALDD连接的重要性信息。
可选地,若SEALDD连接使用GTP-U等隧道协议,则SEALDD服务器还可向SEALDD客户端发送上行(uplink)TEID。
可选地,若SEALDD连接使用GTP-U等隧道协议,则SEALDD客户端向SEALDD服务器发送下行(downlink)TEID,如步骤1908。
1908,SEALDD客户端向SEALDD服务器发送下行TEID。
一种可能的实现方式,SEALDD客户端向SEALDD服务器发送SEALDD服务隧道建立(SEALDD service tunnel establishment)消息,该消息包括下行TEID。进一步可选地,SEALDD服务器可以向SEALDD客户端发送SEALDD服务隧道建立响应(SEALDD service tunnel establishment response)消息。
SEALDD服务器收到SEALDD客户端发送的下行TEID后,SEALDD服务器与SEALDD客户端之间的SEALDD连接完成建立。可选地,SEALDD服务器与SEALDD客户端之间的SEALDD连接完成建立后,SEALDD服务器还可向核心网发送通知信息,该通知信息用于通知UPF要读取SEALDD 连接上传输的数据包的包头。
可以理解,若SEALDD连接使用其他可通过用户面交互建立连接的协议,则可以不执行步骤1908。
1909,SEALDD服务器确定映射关系#2。
关于映射关系#2可参考方法1800中的相关描述,此处不再赘述。
1910,SEALDD服务器基于映射关系#2传输数据。
以下行传输为例,也即VAL服务器通过SEALDD服务器和SEALDD客户端向VAL客户端发送数据。举例来说:VAL服务器将数据包发给SEALDD服务器,SEALDD服务器根据该数据包对应的地址和/或端口,判断该数据包对应的VAL客户端。其中,该数据包对应的地址例如可以是该数据包的源地址和/或目的地址,该数据包对应的端口例如可以是该数据包的源端口和/或目的端口。SEALDD服务器确定该数据包对应的VAL客户端后,根据VAL客户端以及映射关系#2确定对应的SEALDD连接。SEALDD服务器在该数据包包头中添加数据包的特征信息,并通过SEALDD连接发给UPF。UPF收到该数据包后,读取数据包包头的数据包的特征信息,并且见该数据包的特征信息复制添加到N3 GTP-U tunnel包头上发给RAN。RAN从UPF收到数据后,可根据N3 GTP-U tunnel包头中的数据包的特征信息,进行优化传输,发给SEALDD客户端,进而SEALDD客户端将该数据发给VAL客户端。其中,关于数据包在传输过程中的形式可参考图7所示的形式。
上文结合图19所示的步骤1901-1910示例地介绍了一种可能的流程。应理解,上述各个步骤仅是示例性说明,对此不作严格限定。此外,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
基于上述技术方案,SEALDD服务器与SEALDD客户端之间可以建立端到端的隧道,即SEALDD连接。此外,在SEALDD连接建立完成后,SEALDD服务器可以维护SEALDD服务器、VAL服务器、SEALDD客户端、VAL客户端、以及SEALDD连接之间的映射关系,这样后续可以基于该映射关系传输数据。
可以理解,本申请实施例中的图8至图19中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据图8至图19的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
还可以理解,在上述一些实施例中,提到了UPF和SEALDD服务器之间建立N6隧道的方案。举例来说,SEALDD服务器提供SEALDD服务器侧的N6隧道信息(如SEALDD服务器侧的TEID),UPF或者SMF提供UPF侧的N6隧道信息(如UPF侧的TEID),进而SEALDD服务器与UPF之间完成N6隧道的建立。可以理解,SEALDD服务器也可替换为其他应用服务器。
举例来说,AF通过核心网网元(如NEF/PCF)向SMF发送应用服务器侧的N6隧道信息(如应用服务器侧的TEID),SMF可向UPF发送应用服务器侧的N6隧道信息;SMF反馈UPF侧的N6隧道信息(如UPF侧的TEID),进而应用服务器与UPF之间完成N6隧道的建立。其中,SMF可从UPF处获取UPF侧的N6隧道信息,或者也可自己分配UPF侧的N6隧道信息,不予限制。上述应用服务器可以是SEALDD服务器,AF也可以是SEALDD服务器。
再举例来说,应用服务器通过某一网元(如记为网元#A),如网络资源管理(network resource management,NRM),发送AF request,该网元#A通过核心网网元(如NEF/PCF)向SMF发送应用服务器侧的N6隧道信息(如应用服务器侧的TEID),SMF可向UPF发送应用服务器侧的N6隧道信息;SMF反馈UPF侧的N6隧道信息(如UPF侧的TEID),进而应用服务器与UPF之间完成N6隧道的建立。其中,SMF也可能通过NEF向核心网外部反馈UPF侧的N6隧道信息。SMF反馈的UPF侧N6隧道信息可以通过网元#A发送给SEALDD服务器。SMF可从UPF处获取UPF侧的N6隧道信息,或者也可自己分配UPF侧的N6隧道信息,不予限制。上述应用服务器可以是SEALDD服务器,AF也可以是SEALDD服务器。
还可以理解,在本申请实施例中,SELADD服务器与核心网的交互可以通过网元#A实现。作为示例,该网元#A可以为NRM。
还可以理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还可以理解,附图中仅为便于理解,将UPF、SMF、UDR等核心网网元单独示出,但这不应对本申请构成任何限定。本申请对于核心网网元的具体形态不作限定。
还可以理解,上文结合图8至图19分别描述了各个实施例,可以理解,各个实施例中未详细描述的部分可互相参考。
还可以理解,在上述一些实施例中,主要以SEALDD服务器为例进行示例性说明,对此不予限制。例如SEALDD服务器也可替换为其他应用服务器。
还可以理解,在上述一些实施例中,涉及到一些消息名称,其命名不对本申请实施例的保护范围造成限定。
还可以理解,本申请的各实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,也可以在某些场景下,与其他特征进行结合,不作限定。
还可以理解,本申请的各实施例中的方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还可以理解,上述各个方法实施例中,由设备或网元实现的方法和操作,也可以由可由设备或网元的组成部件(例如芯片或者电路)来实现,不作限定。
相应于上述各方法实施例给出的方法,本申请实施例还提供了相应的装置,所述装置包括用于执行上述各个方法实施例相应的模块。该模块可以是软件,也可以是硬件,或者是软件和硬件结合。可以理解的是,上述各方法实施例所描述的技术特征同样适用于以下装置实施例。
图20是本申请实施例提供的一种通信装置2000的示意性框图。该装置2000包括一个或多个虚拟单元,如收发单元2010和处理单元2020。收发单元2010可以用于实现相应的通信功能。收发单元2010还可以称为通信接口或通信单元。处理单元2020可以用于实现相应的处理功能,如建立N6隧道。
可选地,该装置2000还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元2020可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中设备或网元的动作。
在第一种设计中,该装置2000可以是前述实施例中的SEALDD服务器,也可以是SEALDD服务器的组成部件(如芯片)。该装置2000可实现对应于上文方法实施例中的SEALDD服务器执行的步骤或者流程。其中,收发单元2010可用于执行上文方法实施例中SEALDD服务器的收发相关的操作,如图8至图19所示实施例中SEALDD服务器的收发相关的操作;处理单元2020可用于执行上文方法实施例中SEALDD服务器的处理相关的操作,如图8至图19所示实施例中SEALDD服务器的处理相关的操作。
在第二种设计中,该装置2000可以是前述实施例中的用户面网元,也可以是用户面网元的组成部件(如芯片)。该装置2000可实现对应于上文方法实施例中的用户面网元执行的步骤或者流程。其中,收发单元2010可用于执行上文方法实施例中用户面网元的收发相关的操作,如图8、图10、图12、图14、图16、图18所示实施例中用户面网元的收发相关的操作,又如图9、图11、图13、图15、图17、图19所示实施例中UPF的收发相关的操作;处理单元2020可用于执行上文方法实施例中用户面网元的处理相关的操作,如图8、图10、图12、图14、图16、图18所示实施例中用户面网元的处理相关的操作,又如图9、图11、图13、图15、图17、图19所示实施例中UPF的处理相关的操作。
在第三种设计中,该装置2000可以是前述实施例中的会话管理网元,也可以是会话管理网元的组成部件(如芯片)。该装置2000可实现对应于上文方法实施例中的会话管理网元执行的步骤或者流程。其中,收发单元2010可用于执行上文方法实施例中会话管理网元的收发相关的操作,如图8、图10、图12、图14、图16、图18所示实施例中会话管理网元的收发相关的操作,又如图9、图11、图13、图15、图17、图19所示实施例中SMF的收发相关的操作;处理单元2020可用于执行上文方法实施例中会话管理网元的处理相关的操作,如图8、图10、图12、图14、图16、图18所示实施例中会话管理网元的处理相关的操作,又如图9、图11、图13、图15、图17、图19所示实施例中SMF的处理相关的操作。
在第四种设计中,该装置2000可以是前述实施例中的终端设备,也可以是终端设备的组成部件(如芯片)。该装置2000可实现对应于上文方法实施例中的终端设备执行的步骤或者流程。其中,收发单元2010可用于执行上文方法实施例中终端设备的收发相关的操作,如图8、图10、图12、图14、图16、图18所示实施例中终端设备的收发相关的操作,又如图9、图11、图13、图15、图17、图19 所示实施例中VAL客户端和SEALDD客户端的收发相关的操作;处理单元2020可用于执行上文方法实施例中终端设备的处理相关的操作,如图8、图10、图12、图14、图16、图18所示实施例中终端设备的处理相关的操作,又如图9、图11、图13、图15、图17、图19所示实施例中VAL客户端和SEALDD客户端的处理相关的操作。
应理解,各单元执行上述相应步骤的具体过程在上述各方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,这里的装置2000以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。
示例地,本申请实施例提供的装置2000的产品实现形态是可以在计算机上运行的程序代码。
示例地,本申请实施例提供的装置2000可以是通信设备,也可以是应用于通信设备上的芯片、芯片系统(例如:片上系统(system on chip,SoC))或电路。当该装置2000为通信设备时,收发单元2010可以是收发器,或,输入/输出接口;处理单元2020可以是处理器。当该装置2000为用于通信设备中的芯片、芯片系统或电路时,收发单元2010可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元2020可以是处理器、处理电路或逻辑电路等。
此外,上述收发单元2010还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
图21是本申请实施例提供的一种通信装置2100的示意性框图。该装置2100包括处理器2110,处理器2110与存储器2220耦合。可选地,还包括存储器2220,用于存储计算机程序或指令和/或数据,处理器2110用于执行存储器2220存储的计算机程序或指令,或读取存储器2220存储的数据,以执行上文各方法实施例中的方法。
可选地,处理器2110为一个或多个。
可选地,存储器2220为一个或多个。
可选地,该存储器2220与该处理器2110集成在一起,或者分离设置。
可选地,如图21所示,该装置2100还包括收发器2130,收发器2130用于信号的接收和/或发送。例如,处理器2110用于控制收发器2130进行信号的接收和/或发送。
作为一种方案,该装置2100用于实现上文各个方法实施例中由SEALDD服务器执行的操作。
例如,处理器2110用于执行存储器2220存储的计算机程序或指令,以实现上文各个方法实施例中SEALDD服务器的相关操作。例如,图8至图19所示实施例中SEALDD服务器执行的方法。
作为另一种方案,该装置2100用于实现上文各个方法实施例中由用户面网元执行的操作。
例如,处理器2110用于执行存储器2220存储的计算机程序或指令,以实现上文各个方法实施例中用户面网元的相关操作。例如,图8、图10、图12、图14、图16、图18所示实施例中用户面网元执行的方法;再例如,图9、图11、图13、图15、图17、图19所示实施例中UPF执行的方法。
作为另一种方案,该装置2100用于实现上文各个方法实施例中由会话管理网元执行的操作。
例如,处理器2110用于执行存储器2220存储的计算机程序或指令,以实现上文各个方法实施例中会话管理网元的相关操作。例如,图8、图10、图12、图14、图16、图18所示实施例中会话管理网元执行的方法;再例如,图9、图11、图13、图15、图17、图19所示实施例中SMF执行的方法。
作为另一种方案,该装置2100用于实现上文各个方法实施例中由终端设备执行的操作。
例如,处理器2110用于执行存储器2220存储的计算机程序或指令,以实现上文各个方法实施例中终端设备的相关操作。例如,图8、图10、图12、图14、图16、图18所示实施例中终端设备执行的方法;再例如,图9、图11、图13、图15、图17、图19所示实施例中VAL客户端和SEALDD客户端执行的方法。
在实现过程中,上述方法的各步骤可以通过处理器2110中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储 器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器2220,处理器2110读取存储器2220中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本申请实施例中,处理器可以为一个或多个集成电路,用于执行相关程序,以执行本申请方法实施例。
处理器(例如,处理器2110)可包括一个或多个处理器并实现为计算设备的组合。处理器可分别包括以下一种或多种:微处理器、微控制器、数字信号处理器(digital signal processor,DSP)、数字信号处理设备(digital signal processing device,DSPD)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、选通逻辑、晶体管逻辑、分立硬件电路、处理电路或其它合适的硬件、固件和/或硬件和软件的组合,用于执行本公开中所描述的各种功能。处理器可以是通用处理器或专用处理器。例如,处理器2110可以是基带处理器或中央处理器。基带处理器可用于处理通信协议和通信数据。中央处理器可用于使装置执行软件程序,并处理软件程序中的数据。此外,处理器的一部分还可以包括非易失性随机存取存储器。例如,处理器还可以存储设备类型的信息。
本申请中的程序在广义上用于表示软件。软件的非限制性示例包括:程序代码、程序、子程序、指令、指令集、代码、代码段、软件模块、应用程序、或软件应用程序等。程序可以在处理器和/或计算机中运行。以使得装置执行本申请中描述的各种功能和/或过程。
存储器(例如,存储器2220)可存储供处理器(例如,处理器2110)在执行软件时所需的数据。存储器可以使用任何合适的存储技术实现。例如,存储器可以是处理器和/或计算机能够访问的任何可用存储介质。存储介质的非限制性示例包括:随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、光盘只读存储器(Compact Disc-ROM,CD-ROM)、静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)、可移动介质、光盘存储器、磁盘存储介质、磁存储设备、闪存、寄存器、状态存储器、远程挂载存储器、本地或远程存储器组件,或能够携带或存储软件、数据或信息并可由处理器/计算机访问的任何其它介质。需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
存储器(例如,存储器2220)和处理器(例如,处理器2110)可以分开设置或集成在一起。存储器可以用于与处理器连接,使得处理器能够从存储器中读取信息,在存储器中存储和/或写入信息。存储器可以集成在处理器中。存储器和处理器可以设置在集成电路中(例如,该集成电路可以设置在UE或其他网络节点中)。
图22是本申请实施例提供的一种芯片系统2200的示意性框图。该芯片系统2200(或者也可以称为处理系统)包括逻辑电路2210以及输入/输出接口(input/output interface)2220。
其中,逻辑电路2210可以为芯片系统2200中的处理电路。逻辑电路2210可以耦合连接存储单元,调用存储单元中的指令,使得芯片系统2200可以实现本申请各实施例的方法和功能。输入/输出接口2220,可以为芯片系统2200中的输入输出电路,将芯片系统2200处理好的信息输出,或将待处理的数据或信令信息输入芯片系统2200进行处理。
作为一种方案,该芯片系统2200用于实现上文各个方法实施例中由控制面网元执行的操作。
例如,逻辑电路2210用于实现上文方法实施例中由SEALDD服务器执行的处理相关的操作,如,图8至图19所示实施例中SEALDD服务器执行的处理相关的操作;输入/输出接口2220用于实现上文方法实施例中由SEALDD服务器执行的发送和/或接收相关的操作,如,图8至图19所示实施例中SEALDD服务器执行的发送和/或接收相关的操作。
作为另一种方案,该芯片系统2200用于实现上文各个方法实施例中由用户面网元执行的操作。
例如,逻辑电路2210用于实现上文方法实施例中由用户面网元执行的处理相关的操作,如,图8、图10、图12、图14、图16、图18所示实施例中用户面网元执行的处理相关的操作,又如图9、图11、 图13、图15、图17、图19所示实施例中UPF执行的处理相关的操作;输入/输出接口2220用于实现上文方法实施例中由用户面网元执行的发送和/或接收相关的操作,如,图8、图10、图12、图14、图16、图18所示实施例中用户面网元执行的发送和/或接收相关的操作,又如图9、图11、图13、图15、图17、图19所示实施例中UPF执行的发送和/或接收相关的操作。
作为另一种方案,该芯片系统2200用于实现上文各个方法实施例中由会话管理网元执行的操作。
例如,逻辑电路2210用于实现上文方法实施例中由会话管理网元执行的处理相关的操作,如,图8、图10、图12、图14、图16、图18所示实施例中会话管理网元执行的处理相关的操作,又如图9、图11、图13、图15、图17、图19所示实施例中SMF执行的处理相关的操作;输入/输出接口2220用于实现上文方法实施例中由用户面网元执行的发送和/或接收相关的操作,如,图8、图10、图12、图14、图16、图18所示实施例中会话管理网元执行的发送和/或接收相关的操作,又如图9、图11、图13、图15、图17、图19所示实施例中SMF执行的发送和/或接收相关的操作。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由通信装置(如SEALDD服务器,又如用户面网元,又如会话管理网元,又如终端设备)执行的方法的计算机指令。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由通信装置(如SEALDD服务器,又如用户面网元,又如会话管理网元,又如终端设备)执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文各实施例中的SEALDD服务器、用户面网元、会话管理网元、终端设备中的一个或多个。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元实现本申请提供的方案。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,计算机可以是个人计算机,服务器,或者网络设备等。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。关于计算机可读存储介质,可以参考上文描述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种通信方法,其特征在于,包括:
    服务使能架构层数据传输SEALDD服务器接收来自终端设备的服务请求信息,所述服务请求信息用于请求所述SEALDD服务器提供与数据传输相关的服务;
    响应于所述服务请求信息,所述SEALDD服务器通过N6隧道与用户面网元传输所述终端设备的数据,所述N6隧道是基于第一信息和第二信息建立的,所述第一信息包括所述SEALDD服务器提供的用于建立所述N6隧道的信息,所述第二信息包括所述用户面网元提供的用于建立所述N6隧道的信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述SEALDD服务器向所述用户面网元发送所述第一信息,所述第一信息用于触发所述用户面网元建立所述N6隧道;
    响应于所述第一信息,所述用户面网元通过所述N6隧道与所述SEALDD服务器传输所述终端设备的数据。
  3. 根据权利要求2所述的方法,其特征在于,所述SEALDD服务器向所述用户面网元发送所述第一信息,包括:
    所述SEALDD服务器根据所述服务请求信息确定要在所述N6隧道上传输所述终端设备的数据时,所述SEALDD服务器向所述用户面网元发送所述第一信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述SEALDD服务器向所述终端设备发送所述SEALDD服务器的地址信息和/或所述SEALDD服务器的端口信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述SEALDD服务器通过N6隧道与用户面网元传输所述终端设备的数据,包括:
    所述SEALDD服务器接收来自应用服务器的第一数据包;
    所述SEALDD服务器根据所述第一数据包的地址信息和/或端口信息,以及映射关系,通过所述N6隧道向所述用户面网元发送所述第一数据包;
    其中,所述映射关系用于指示所述SEALDD服务器、所述应用服务器、所述终端设备、以及所述N6隧道之间的关系。
  6. 根据权利要求5所述的方法,其特征在于,所述第一数据包中包括所述第一数据包的特征信息。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,所述SEALDD服务器通过N6隧道与用户面网元传输所述终端设备的数据,包括:
    所述SEALDD服务器通过所述N6隧道从所述用户面网元接收第二数据包;
    所述SEALDD服务器根据所述第二数据包的地址信息和/或端口信息,以及所述N6隧道和映射关系,向应用服务器发送所述第二数据包;
    其中,所述映射关系用于指示所述SEALDD服务器、所述应用服务器、所述终端设备、以及所述N6隧道之间的关系。
  8. 根据权利要求7所述的方法,其特征在于,所述第二数据包中包括所述第二数据包的特征信息。
  9. 一种通信方法,其特征在于,包括:
    用户面网元接收来自服务使能架构层数据传输SEALDD服务器的第一信息,所述第一信息用于触发所述用户面网元建立N6隧道,所述N6隧道是基于所述第一信息和第二信息建立的,所述第一信息包括所述SEALDD服务器提供的用于建立所述N6隧道的信息,所述第二信息包括所述用户面网元提供的用于建立所述N6隧道的信息;
    响应于所述第一信息,所述用户面网元通过所述N6隧道与所述SEALDD服务器传输所述终端设备的数据。
  10. 根据权利要求9所述的方法,其特征在于,所述用户面网元通过所述N6隧道与所述SEALDD服务器传输所述终端设备的数据,包括:
    所述用户面网元通过所述N6隧道从所述SEALDD服务器接收来自应用服务器的第一数据包;
    所述用户面网元根据所述第一数据包的地址信息和/或端口信息,以及映射关系,向所述终端设备发送所述第一数据包;
    其中,所述映射关系用于指示所述SEALDD服务器、所述应用服务器、所述终端设备、以及所述N6隧道之间的关系。
  11. 根据权利要求10所述的方法,其特征在于,所述第一数据包中包括所述第一数据包的特征信息。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述用户面网元通过所述N6隧道与所述SEALDD服务器传输所述终端设备的数据,包括:
    所述用户面网元接收来自所述终端设备的第二数据包;
    所述用户面网元根据所述第二数据包的地址信息和/或端口信息,以及所述N6隧道和映射关系,通过所述SEALDD服务器向应用服务器发送所述第二数据包;
    其中,所述映射关系用于指示所述SEALDD服务器、所述应用服务器、所述终端设备、以及所述N6隧道之间的关系。
  13. 根据权利要求12所述的方法,其特征在于,所述第二数据包中包括所述第二数据包的特征信息。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述第一信息包括以下至少一项:所述终端设备的信息、所述N6隧道的路由信息、所述SEALDD服务器的地址信息、所述SEALDD服务器的端口信息、所述N6隧道在所述SEALDD服务器侧的隧道端点标识符。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述第二信息包括以下至少一项:所述用户面网元的地址信息、所述用户面网元的端口信息、所述N6隧道在所述用户面网元侧的隧道端点标识符。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述第一信息包括所述SEALDD服务器提供的用于建立至少两个N6隧道的信息,所述至少两个N6隧道是所述SEALDD服务器与所述用户面网元之间的N6隧道,所述至少两个N6隧道用于传输所述终端设备的不同类型的数据。
  17. 根据权利要求16所述的方法,其特征在于,所述第一信息包括每个N6隧道对应的重要性信息。
  18. 一种通信方法,其特征在于,包括:
    会话管理网元确定第二信息,所述第二信息包括用户面网元提供的用于建立N6隧道的信息,所述N6隧道是服务使能架构层数据传输SEALDD服务器与所述用户面网元之间的N6隧道,所述N6隧道用于传输终端设备的数据;
    所述会话管理网元向所述SEALDD服务器发送所述第二信息,所述第二信息用于触发所述SEALDD服务器建立所述N6隧道。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    会话管理网元接收来自所述SEALDD服务器的第一信息,所述第一信息包括所述SEALDD服务器提供的用于建立所述N6隧道的信息,所述第一信息用于触发所述用户面网元建立所述N6隧道。
  20. 根据权利要求19所述的方法,其特征在于,所述第一信息包括以下至少一项:所述终端设备的信息、所述N6隧道的路由信息、所述SEALDD服务器的地址信息、所述SEALDD服务器的端口信息、所述N6隧道在所述SEALDD服务器侧的隧道端点标识符。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,所述会话管理网元确定第二信息,包括:
    所述会话管理网元为所述用户面网元分配所述第二信息;或者,
    所述会话管理网元接收来自所述用户面网元的所述第二信息。
  22. 根据权利要求18至21中任一项所述的方法,其特征在于,所述第二信息包括以下至少一项:所述用户面网元的地址信息、所述用户面网元的端口信息、所述N6隧道在所述用户面网元侧的隧道端点标识符。
  23. 一种通信方法,其特征在于,包括:
    服务使能架构层数据传输SEALDD服务器接收来自终端设备的服务请求信息,所述服务请求信息用于请求所述SEALDD服务器提供与数据传输相关的服务;
    在所述SEALDD服务器确定SEALDD服务器与用户面网元未建立N6隧道的情况下,所述SEALDD服务器向所述用户面网元发送第一信息,所述第一信息是所述SEALDD服务器提供的用于建立所述N6隧道的信息,所述用户面网元是为所述终端设备提供服务的用户面网元,所述第一信息用于触发所述用户面网元建立所述N6隧道。
  24. 一种通信方法,其特征在于,包括:
    服务使能架构层数据传输SEALDD服务器接收来自应用服务器的第一数据包;
    所述SEALDD服务器通过N6隧道向用户面网元发送所述第一数据包;
    所述用户面网元向终端设备发送所述第一数据包。
  25. 根据权利要求24所述的方法,其特征在于,所述SEALDD服务器通过N6隧道向用户面网元发送所述第一数据包,包括:
    所述SEALDD服务器根据所述第一数据包的地址信息和/或端口信息,以及映射关系,通过所述N6隧道向所述用户面网元发送所述第一数据包;其中,所述映射关系用于指示所述SEALDD服务器、所述应用服务器、终端设备、以及所述N6隧道之间的关系。
  26. 一种通信装置,其特征在于,所述装置包括:用于执行如权利要求1至8中任一项所述的方法的单元,或者用于执行如权利要求9至14中任一项所述的方法的单元,或者用于执行如权利要求18至22中任一项所述的方法的单元,或者用于执行如权利要求23所述的方法的单元,或者用于执行如权利要求24或25所述的方法的单元。
  27. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述装置执行如权利要求1至8中任一项所述的方法,或者以使得所述装置执行如权利要求9至17中任一项所述的方法,或者以使得所述装置执行如权利要求18至22中任一项所述的方法,或者以使得所述装置执行如权利要求23所述的方法,或者以使得所述装置执行如权利要求24或25所述的方法。
  28. 根据权利要求27所述的装置,其特征在于,所述装置还包括所述存储器和/或通信接口,所述通信接口与所述处理器耦合,
    所述通信接口,用于输入和/或输出信息。
  29. 根据权利要求27或28所述的装置,其特征在于,所述装置为以下任一项:芯片、芯片系统、或电路。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至8中任意一项所述的方法,或者以使得所述计算机执行如权利要求9至17中任一项所述的方法,或者以使得所述计算机执行如权利要求18至22中任一项所述的方法,或者以使得所述计算机执行如权利要求23所述的方法,或者以使得所述计算机执行如权利要求24或25所述的方法。
  31. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至8中任一项所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求9至17中任一项所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求18至22中任一项所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求23所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求24或25所述的方法的指令。
  32. 一种通信系统,其特征在于,包括服务使能架构层数据传输SEALDD服务器和用户面网元;
    所述SEALDD服务器用于执行如权利要求1至8中任一项所述的方法;
    所述用户面网元用于执行如权利要求9至17中任一项所述的方法。
  33. 根据权利要求32所述的通信系统,其特征在于,所述通信系统还包括会话管理网元,所述会话管理网元用于执行如权利要求18至22中任一项所述的方法。
  34. 一种通信系统,其特征在于,包括服务使能架构层数据传输SEALDD服务器和用户面网元;
    所述SEALDD服务器和所述用户面网元用于执行如权利要求24或25所述的方法。
PCT/CN2023/119350 2022-09-29 2023-09-18 通信方法、通信装置、以及通信系统 WO2024067194A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211212806.8 2022-09-29
CN202211212806.8A CN117793199A (zh) 2022-09-29 2022-09-29 通信方法、通信装置、以及通信系统

Publications (1)

Publication Number Publication Date
WO2024067194A1 true WO2024067194A1 (zh) 2024-04-04

Family

ID=90385717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119350 WO2024067194A1 (zh) 2022-09-29 2023-09-18 通信方法、通信装置、以及通信系统

Country Status (2)

Country Link
CN (1) CN117793199A (zh)
WO (1) WO2024067194A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190357301A1 (en) * 2018-05-16 2019-11-21 Huawei Technologies Co., Ltd. Message and system for application function influence on traffic routing
CN114586326A (zh) * 2019-10-18 2022-06-03 索尼集团公司 用于对媒体服务进行网络辅助的方法、核心网络节点、无线装置和无线电接入网络节点
US20220225448A1 (en) * 2019-05-01 2022-07-14 Convida Wireless, Llc Methods for a multi-hop relay in 5g network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190357301A1 (en) * 2018-05-16 2019-11-21 Huawei Technologies Co., Ltd. Message and system for application function influence on traffic routing
US20220225448A1 (en) * 2019-05-01 2022-07-14 Convida Wireless, Llc Methods for a multi-hop relay in 5g network
CN114586326A (zh) * 2019-10-18 2022-06-03 索尼集团公司 用于对媒体服务进行网络辅助的方法、核心网络节点、无线装置和无线电接入网络节点

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Vertical_LAN 5GLAN related CR for non-FASMO corrections", 3GPP DRAFT; S2-2002557, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Elbonia; 20200224 - 20200227, 29 February 2020 (2020-02-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051857404 *

Also Published As

Publication number Publication date
CN117793199A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
WO2022257549A1 (zh) 网络切片方法、设备及存储介质
WO2020224472A1 (zh) 分配、获取ip地址的方法及设备
WO2021057794A1 (zh) 配置业务的方法、通信装置和通信系统
US11968565B2 (en) User plane information reporting method and apparatus
WO2022089164A1 (zh) 多路径传输方法和通信装置
WO2022012506A1 (zh) 通信方法和通信装置
EP4088434A1 (en) Tsc-5g qos mapping with consideration of assistance traffic information and pcc rules for tsc traffic mapping and 5g qos flows binding
WO2021097858A1 (zh) 一种通信方法及装置
US20220408317A1 (en) Handover method and communication apparatus
WO2021218563A1 (zh) 用于传输数据的方法与装置
WO2023284551A1 (zh) 通信方法、装置和系统
WO2022170798A1 (zh) 确定策略的方法和通信装置
WO2024067194A1 (zh) 通信方法、通信装置、以及通信系统
WO2022170543A1 (zh) 一种组播/广播业务的通信方法和装置
WO2021142767A1 (zh) 通信方法和通信装置
WO2024027320A1 (zh) 无线通信的方法、装置和系统
WO2023103575A1 (zh) 组播/广播通信的方法与相关装置
WO2023116560A1 (zh) 通信的方法与装置
WO2023185608A1 (zh) 一种数据传输的方法及通信装置
WO2023088165A1 (zh) 一种数据传输的方法和装置
WO2024001897A1 (zh) 通信方法和装置
WO2023020481A1 (zh) 用于传输数据的方法和装置
WO2023284577A1 (zh) 检测数据流的方法及装置
WO2024037210A1 (zh) 广播安全通信的方法和装置
WO2022205453A1 (zh) 网络选择的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870428

Country of ref document: EP

Kind code of ref document: A1