WO2014186920A1 - 一种高锌车用铝合金锭及其生产方法 - Google Patents

一种高锌车用铝合金锭及其生产方法 Download PDF

Info

Publication number
WO2014186920A1
WO2014186920A1 PCT/CN2013/000894 CN2013000894W WO2014186920A1 WO 2014186920 A1 WO2014186920 A1 WO 2014186920A1 CN 2013000894 W CN2013000894 W CN 2013000894W WO 2014186920 A1 WO2014186920 A1 WO 2014186920A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
refining
smelting
slag
component
Prior art date
Application number
PCT/CN2013/000894
Other languages
English (en)
French (fr)
Inventor
黄崇胜
Original Assignee
怡球金属资源再生(中国)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 怡球金属资源再生(中国)股份有限公司 filed Critical 怡球金属资源再生(中国)股份有限公司
Publication of WO2014186920A1 publication Critical patent/WO2014186920A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the present invention relates to an aluminum alloy ingot and a method for producing an aluminum alloy ingot, and more particularly to an aluminum alloy ingot for a high-zinc vehicle and a method for producing the same.
  • BACKGROUND OF THE INVENTION At present, there are generally two production methods for aluminum alloy ingots for high-zinc vehicles on the market: First, a pure aluminum ingot is used as a matrix, and according to the distribution ratio requirement, the required alloying elements are added to melt the desired aluminum alloy. Ingots, but the preparation method is costly; Second, the main raw materials used are waste aluminum materials, including recycled aluminum parts, scraps in the process of producing aluminum products, and scrap aluminum wires, etc.
  • the reclaimed aluminum ingots required by the standard have the following problems:
  • the waste aluminum materials of aluminum alloy ingots for high-zinc vehicles prepared in the industry are mainly divided into waste aluminum chips, mixed waste aluminum materials, aluminum-containing aluminum scraps after incineration, waste aluminum, waste aluminum and waste alloy aluminum. .
  • the waste aluminum material mainly comes from industrial waste, recycled materials, and casting and pouring system, and its composition is relatively complicated. In most cases, it contains a lot of foreign impurities, including various organic substances such as plastics, moisture, etc. If such materials are not cleaned before the smelting process, it will cause serious inhalation of the alloy melt and slag inclusion. It is unable to meet the requirements of low slag content and low gas content of automotive aluminum alloy ingots. Therefore, the waste aluminum material should be pretreated before smelting.
  • the pretreatment of the waste aluminum material in the industry is classified according to the material composition.
  • the classification is based on the composition of the aluminum alloy of a certain grade.
  • the waste is dismantled as necessary to remove large pieces of non-aluminum metal or organic impurities. Perform necessary cleaning, sand blasting, etc. on raw materials.
  • the pretreatment of waste aluminum in the industry has not yet achieved mechanization and automation, mainly relying on labor.
  • the tools used are magnets and steel shovel. Based on experience, this sorting method is inefficient, poor in quality and high in cost. Pick out a clean, High quality raw materials, including the most important zinc raw materials.
  • the basic task of smelting and melting of aluminum alloy ingots for high-zinc vehicles is to put the metal charge according to a certain ratio into the furnace, heat and melt to obtain the melt, then adjust the composition of the melt and take it during the smelting process. Corresponding measures control the content of gas and oxidized inclusions to meet the specified composition and obtain the desired alloy liquid.
  • the process of melting aluminum alloy is as follows: Prepare one ingredient, one furnace, one furnace, one melting (add silicon, copper, etc.) ⁇ slag one plus (except) magnesium, strontium, etc. One stirring, one sampling, one adjusting component, one stirring, one refining, one slag, one static Set a casting.
  • the high-temperature melting method is generally used in the industry.
  • the temperature in the smelting process is controlled at about 800 °C. This smelting has a large burning loss on the raw materials and consumes a large amount of energy.
  • the stirring in the smelting process generally uses iron crucible stirring to increase the melting.
  • the gas content of the body contains the slag content, which also increases the iron content of the melt. It is difficult to homogenize the alloy composition of the whole furnace melt by manual agitation, and the stability and precision of the aluminum ingot composition cannot be guaranteed.
  • the refining process is not mature. Generally, the refining agent is directly sprinkled into the furnace, and the degassing and decontamination effects are not good. At the same time, the pollution control in the production process is not good, which seriously affects the environmental quality.
  • an object of the present invention is to provide an aluminum alloy ingot for a high-zinc vehicle, and at the same time, to provide a method for producing the aluminum alloy ingot for the high-zinc vehicle.
  • the technical solution provided by the present invention is as follows:
  • An aluminum alloy ingot for a high-zinc vehicle which is composed of the following components in terms of weight percentage: Cu: 1.5% to 4.0%; Si: 10.5% to 12.0%; Mg: 0.05 to 0.35%; Zn: 0.5 to 2.5% Fe: 0 to 1.1%; Mn: 0 to 0.5%; Ni: 0 to 0.5%; Sn: 0 to 0.2%; balance: Al.
  • the above method for producing an aluminum alloy ingot for a high-zinc vehicle includes the following steps:
  • Sorting and sorting of waste aluminum materials crushing waste aluminum materials to 80-100mm, and storing them for use;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • (9) Converter moving the smelting liquid from the smelting furnace to the refining furnace, performing a second sampling and detecting operation, taking the smelting liquid, analyzing the content of each component, and comparing with the components of claim 1, the refining
  • a permanent magnet stirrer is arranged at the bottom of the furnace, and a permanent magnet stirrer is turned on during the refining process for stirring;
  • step (10) Silicon supplementation: According to the comparison result of step (9), it is judged that the silicon content is enough to reach the content of the silicon component in claim 1, and if not, the silicon is supplemented according to the test result, and the silicon is supplemented. Melting at 740 ⁇ 10 ° C;
  • step (9) Copper supplementation: According to the comparison result of step (9), it is judged that the copper content is enough to reach the content of the copper component in claim 1, and if not, the copper is supplemented according to the test result, and will be supplemented. Copper melts above 730 ° C;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Refining and degassing Adjust the temperature of the aluminum liquid to 700 ⁇ 73 (TC for refining and degassing, refining degassing time is 50 ⁇ 60 minutes;
  • Sampling test Sampling and testing of the molten liquid, confirming that the content of each component is consistent with the content of the components in claim 1;
  • On-line degassing a nitrogen gas having a purity of not less than 99.99% is again introduced into the molten liquid for on-line degassing;
  • (21) Casting Casting the product into an aluminum alloy ingot that meets the storage and transportation requirements. Further, the refining and degassing is specifically: placing the powder refining agent in the powder spray tank with the permanent magnet agitator open, and passing the powder refining agent through the pipeline with nitrogen having a purity of not less than 99.99% It is blown into the inside of the molten liquid, degassed at the same time as the impurity refining, and refined and degassed until the gas content of the aluminum liquid reaches 0.26 cc/100 gAl or less, and the slag content is controlled within the range of K 0.1 .
  • the on-line degassing is carried out by introducing a nitrogen gas into the deuterium ceramic degassing tube.
  • the waste aluminum material is crushed to 80-100 mm by a combination of a high efficiency impurity removing crusher and an intelligent screening and removing machine.
  • the step (8) and the step (9) further comprise a step (8') sampling detection: taking the molten liquid, analyzing the content of each component by using a spectrum analyzer, and in claim 1 of The components are aligned.
  • the sampling detection uses a spectrum analyzer to analyze the content of each component.
  • the feeding is carried out using an aluminum smelting automatic feeding system.
  • the soup is specifically prepared by using a ceramic filter plate combined with a glass fiber filter to filter.
  • the high-zinc aluminum alloy ingot provided by the invention has the following advantages compared with the prior art: low production cost, high efficiency, gas-containing slag content is far lower than the industry level, uniform alloy composition, precise control, and zinc content High, high alloy strength.
  • the method for producing the aluminum alloy ingot for high-zinc vehicle according to the present invention has the following advantages compared with the prior art: The combination of the high-efficiency impurity-crushing crusher and the intelligent screening and removing machine can crush the waste aluminum material.
  • Example 1 An aluminum alloy ingot for a high-zinc vehicle consisting of the following components in terms of weight percent: Cu: 1.681%; Si: 10.995%; Mg: 0.289%; Zn: 2.127%; Fe: 0.784%; Mn : 0.219%; Ni: 0.06%; Sn: 0.022%; balance is Al.
  • the above method for producing an aluminum alloy ingot for a high-zinc vehicle includes the following steps:
  • the measuring step (1) sorts the crushed waste aluminum material to obtain the starting material;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Step (8') Sampling test: The molten liquid is taken, and the content of each component is analyzed by an optical spectrum analyzer and compared with the components of claim 1.
  • (9) Converter moving the smelting liquid from the smelting furnace to the refining furnace, performing a second sampling and detecting operation, taking the smelting liquid, analyzing the content of each component, and comparing with the components of claim 1, the refining
  • a permanent magnet stirrer is arranged at the bottom of the furnace, and a permanent magnet stirrer is turned on during the refining process for stirring;
  • step (10) Silicon supplementation: According to the comparison result of step (9), it is judged that the silicon content is enough to reach the component content of silicon in claim 1, and if not, the silicon is supplemented according to the test result, and will be supplemented.
  • the silicon melts at 740 ⁇ 10 ° C;
  • step 9 Copper supplementation: According to the comparison result of step (9), it is judged that the copper content is enough to reach the content of the copper component in claim 1, and if not, the copper is added according to the test result, and the copper is supplemented. Melting above 730 ° C;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Refining and degassing Adjust the temperature of the aluminum liquid to 700 ⁇ 73 (TC for refining and degassing, and the degassing time for refining is 50 ⁇ 60 minutes, specifically: in the case of opening the permanent magnet stirrer, refining the powder
  • the agent is placed in a dusting can, and the powdered refining agent is blown into the molten liquid through a pipe with nitrogen gas having a purity of not less than 99.99%, degassed while removing the refining, and refined and degassed until the gas content of the aluminum liquid reaches 0.26.
  • the slag content is controlled within the range of K 0.1;
  • Sampling test Sampling and testing of the molten liquid, confirming that the content of each component is consistent with the content of the components in claim 1;
  • On-line degassing Online degassing is carried out by introducing a nitrogen gas having a purity of not less than 99.99% into the molten liquid by using a ⁇ -type ceramic degassing tube;
  • Example 2 An aluminum alloy ingot for a high-zinc vehicle consisting of the following components in terms of weight percent: Cu: 1.67%; Si: 11.107%; Mg: 0.271%; Zn: 0.5%; Fe: 0.825%; Mn : 0.217%; Ni: 0.066%; Sn: 0.02%; balance is Al.
  • the above method for producing an aluminum alloy ingot for a high-zinc vehicle includes the following steps:
  • the measuring step (1) sorts the crushed waste aluminum material to obtain the starting material;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Step (8') Sampling test: The molten liquid is taken, and the content of each component is analyzed by an optical spectrum analyzer and compared with the components of claim 1.
  • (9) Converter moving the smelting liquid from the smelting furnace to the refining furnace, performing a second sampling and detecting operation, taking the smelting liquid, analyzing the content of each component, and comparing with the components of claim 1, the refining
  • a permanent magnet stirrer is arranged at the bottom of the furnace, and a permanent magnet stirrer is turned on during the refining process for stirring;
  • step (10) Silicon supplementation: According to the comparison result of step (9), it is judged that the silicon content is enough to reach the component content of silicon in claim 1, and if not, the silicon is supplemented according to the test result, and will be supplemented.
  • the silicon melts at 740 ⁇ 10 ° C;
  • step 9 Copper supplementation: According to the comparison result of step (9), it is judged that the copper content is enough to reach the content of the copper component in claim 1, and if not, the copper is added according to the test result, and the copper is supplemented. Melting above 730 ° C;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Refining and degassing Adjust the temperature of the aluminum liquid to 700 ⁇ 73 (TC for refining and degassing, and the degassing time for refining is 50 ⁇ 60 minutes, specifically: in the case of opening the permanent magnet stirrer, refining the powder
  • the agent is placed in a dusting can, and the powdered refining agent is blown into the molten liquid through a pipe with nitrogen gas having a purity of not less than 99.99%, degassed while removing the refining, and refined and degassed until the gas content of the aluminum liquid reaches 0.26.
  • the slag content is controlled within the range of K 0.1;
  • Sampling test Sampling and testing of the molten liquid, confirming that the content of each component is consistent with the content of the components in claim 1;
  • On-line degassing Online degassing is carried out by introducing a nitrogen gas having a purity of not less than 99.99% into the molten liquid by using a ⁇ -type ceramic degassing tube;
  • Example 3 An aluminum alloy ingot for a high-zinc vehicle consisting of the following components in terms of weight percent: Cu: 1.685%; Si: 11.138%; Mg: 0.277%; Zn: 2.488%; Fe: 0.762%; Mn : 0.203%; Ni: 0.058%; Sn: 0.02%; balance is Al.
  • the above method for producing an aluminum alloy ingot for a high-zinc vehicle includes the following steps:
  • the measuring step (1) sorts the crushed waste aluminum material to obtain the starting material;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Step (8') Sampling test: The molten liquid is taken, and the content of each component is analyzed by an optical spectrum analyzer and compared with the components of claim 1.
  • (9) Converter moving the smelting liquid from the smelting furnace to the refining furnace, performing a second sampling and detecting operation, taking the smelting liquid, analyzing the content of each component, and comparing with the components of claim 1, the refining
  • a permanent magnet stirrer is arranged at the bottom of the furnace, and a permanent magnet stirrer is turned on during the refining process for stirring;
  • step (10) Silicon supplementation: According to the comparison result of step (9), it is judged that the silicon content is enough to reach the component content of silicon in claim 1, and if not, the silicon is supplemented according to the test result, and will be supplemented.
  • the silicon melts at 740 ⁇ 10 ° C;
  • step 9 Copper supplementation: According to the comparison result of step (9), it is judged that the copper content is enough to reach the content of the copper component in claim 1, and if not, the copper is added according to the test result, and the copper is supplemented. Melting above 730 ° C;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Refining and degassing Adjust the temperature of the aluminum liquid to 700 ⁇ 73 (TC for refining and degassing, and the degassing time for refining is 50 ⁇ 60 minutes, specifically: in the case of opening the permanent magnet stirrer, refining the powder
  • the agent is placed in a dusting can, and the powdered refining agent is blown into the molten liquid through a pipe with nitrogen gas having a purity of not less than 99.99%, degassed while removing the refining, and refined and degassed until the gas content of the aluminum liquid reaches 0.26.
  • the slag content is controlled within the range of K 0.1;
  • Sampling test Sampling and testing of the molten liquid, confirming that the content of each component is consistent with the content of the components in claim 1;
  • On-line degassing Online degassing is carried out by introducing a nitrogen gas having a purity of not less than 99.99% into the molten liquid by using a ⁇ -type ceramic degassing tube;
  • Example 4 An aluminum alloy ingot for a high-zinc vehicle consisting of the following components in terms of weight percent: Cu: 2.153%; Si: 10.901%; Mg: 0.211%; Zn: 2.0%; Fe: 0.766%; Mn : 0.213%; Ni: 0.074%; Sn: 0.028%; balance is Al.
  • the above method for producing an aluminum alloy ingot for a high-zinc vehicle includes the following steps:
  • the measuring step (1) sorts the crushed waste aluminum material to obtain the starting material;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Step (8') Sampling test: The smelting liquid is taken, and the content of each component is analyzed by an optical spectrum analyzer and compared with the components of claim 1.
  • (9) Converter moving the smelting liquid from the smelting furnace to the refining furnace, performing a second sampling and detecting operation, taking the smelting liquid, analyzing the content of each component, and comparing with the components of claim 1, the refining
  • a permanent magnet stirrer is arranged at the bottom of the furnace, and a permanent magnet stirrer is turned on during the refining process for stirring;
  • step (10) Silicon supplementation: According to the comparison result of step (9), it is judged that the silicon content is enough to reach the component content of silicon in claim 1, and if not, the silicon is supplemented according to the test result, and will be supplemented.
  • the silicon melts at 740 ⁇ 10 ° C;
  • step 9 Copper supplementation: According to the comparison result of step (9), it is judged that the copper content is enough to reach the content of the copper component in claim 1, and if not, the copper is added according to the test result, and the copper is supplemented. Melting above 730 ° C;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Refining and degassing Adjust the temperature of the aluminum liquid to 700 ⁇ 73 (TC for refining and degassing, and the degassing time for refining is 50 ⁇ 60 minutes, specifically: in the case of opening the permanent magnet stirrer, refining the powder
  • the agent is placed in a dusting can, and the powdered refining agent is blown into the molten liquid through a pipe with nitrogen gas having a purity of not less than 99.99%, degassed while removing the refining, and refined and degassed until the gas content of the aluminum liquid reaches 0.26.
  • the slag content is controlled within the range of K 0.1;
  • Sampling test Sampling and testing of the molten liquid, confirming that the content of each component is consistent with the content of the components in claim 1;
  • On-line degassing Online degassing is carried out by introducing a nitrogen gas having a purity of not less than 99.99% into the molten liquid by using a ⁇ -type ceramic degassing tube;
  • Example 5 An aluminum alloy ingot for a high-zinc vehicle was composed of the following components in terms of percentage by weight: Cu: 1.742%; Si: 11.377%; Mg: 0.297%; Zn: 0.9%; Fe: 0.793%; Mn : 0.226%; Ni: 0.067%; Sn: 0.024%; balance is Al.
  • the above method for producing an aluminum alloy ingot for a high-zinc vehicle includes the following steps:
  • the measuring step (1) sorts the crushed waste aluminum material to obtain the starting material;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Step (8') Sampling test: The molten liquid is taken, and the content of each component is analyzed by an optical spectrum analyzer and compared with the components of claim 1.
  • (9) Converter moving the smelting liquid from the smelting furnace to the refining furnace, performing a second sampling and detecting operation, taking the smelting liquid, analyzing the content of each component, and comparing with the components of claim 1, the refining
  • a permanent magnet stirrer is arranged at the bottom of the furnace, and a permanent magnet stirrer is turned on during the refining process for stirring;
  • step (10) Silicon supplementation: According to the comparison result of step (9), it is judged that the silicon content is enough to reach the component content of silicon in claim 1, and if not, the silicon is supplemented according to the test result, and will be supplemented.
  • the silicon melts at 740 ⁇ 10 ° C;
  • step 9 Copper supplementation: According to the comparison result of step (9), it is judged that the copper content is enough to reach the content of the copper component in claim 1, and if not, the copper is added according to the test result, and the copper is supplemented. Melting above 730 ° C;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Refining and degassing Adjust the temperature of the aluminum liquid to 700 ⁇ 73 (TC for refining and degassing, and the degassing time for refining is 50 ⁇ 60 minutes, specifically: in the case of opening the permanent magnet stirrer, refining the powder
  • the agent is placed in a dusting can, and the powdered refining agent is blown into the molten liquid through a pipe with nitrogen gas having a purity of not less than 99.99%, degassed while removing the refining, and refined and degassed until the gas content of the aluminum liquid reaches 0.26.
  • the slag content is controlled within the range of K 0.1;
  • Sampling test Sampling and testing of the molten liquid, confirming that the content of each component is consistent with the content of the components in claim 1;
  • On-line degassing Online degassing is carried out by introducing a nitrogen gas having a purity of not less than 99.99% into the molten liquid by using a ⁇ -type ceramic degassing tube;
  • Example 6 An aluminum alloy ingot for a high-zinc vehicle consisting of the following components in terms of weight percentage: Cu: 1.681%; Si: 10.995%; Mg: 0.289%; Zn: 2.5%; Fe: 0.784%; Mn : 0.219%; Ni: 0.06%; Sn: 0.022%; balance is Al.
  • the above method for producing an aluminum alloy ingot for a high-zinc vehicle includes the following steps:
  • the measuring step (1) sorts the crushed waste aluminum material to obtain the starting material;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Step (8') Sampling test: The molten liquid is taken, and the content of each component is analyzed by an optical spectrum analyzer and compared with the components of claim 1.
  • (9) Converter moving the smelting liquid from the smelting furnace to the refining furnace, performing a second sampling and detecting operation, taking the smelting liquid, analyzing the content of each component, and comparing with the components of claim 1, the refining
  • a permanent magnet stirrer is arranged at the bottom of the furnace, and a permanent magnet stirrer is turned on during the refining process for stirring;
  • step (10) Silicon supplementation: According to the comparison result of step (9), it is judged that the silicon content is enough to reach the component content of silicon in claim 1, and if not, the silicon is supplemented according to the test result, and will be supplemented.
  • the silicon melts at 740 ⁇ 10 ° C;
  • step 9 Copper supplementation: According to the comparison result of step (9), it is judged that the copper content is enough to reach the content of the copper component in claim 1, and if not, the copper is added according to the test result, and the copper is supplemented. Melting above 730 ° C;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Refining and degassing Adjust the temperature of the aluminum liquid to 700 ⁇ 73 (TC for refining and degassing, and the degassing time for refining is 50 ⁇ 60 minutes, specifically: in the case of opening the permanent magnet stirrer, refining the powder
  • the agent is placed in a dusting can, and the powdered refining agent is blown into the molten liquid through a pipe with nitrogen gas having a purity of not less than 99.99%, degassed while removing the refining, and refined and degassed until the gas content of the aluminum liquid reaches 0.26.
  • the slag content is controlled within the range of K 0.1;
  • Sampling test Sampling and testing of the molten liquid, confirming that the content of each component is consistent with the content of the components in claim 1;
  • On-line degassing Online degassing is carried out by introducing a nitrogen gas having a purity of not less than 99.99% into the molten liquid by using a ⁇ -type ceramic degassing tube;
  • Example 7 An aluminum alloy ingot for a high-zinc vehicle consisting of the following components in terms of weight percent: Cu: 1.5%; Si: 12.0%; Mg: 0.05%; Zn: 1.20%; Fe: 0.034%; Mn : 0.350%; Ni: 0.120%; Sn: 0.153%; balance is Al.
  • the above method for producing an aluminum alloy ingot for a high-zinc vehicle includes the following steps:
  • the measuring step (1) sorts the crushed waste aluminum material to obtain the starting material;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Step (8') Sampling test: The molten liquid is taken, and the content of each component is analyzed by an optical spectrum analyzer and compared with the components of claim 1.
  • (9) Converter moving the smelting liquid from the smelting furnace to the refining furnace, performing a second sampling and detecting operation, taking the smelting liquid, analyzing the content of each component, and comparing with the components of claim 1, the refining
  • a permanent magnet stirrer is arranged at the bottom of the furnace, and a permanent magnet stirrer is turned on during the refining process for stirring;
  • step (10) Silicon supplementation: According to the comparison result of step (9), it is judged that the silicon content is enough to reach the component content of silicon in claim 1, and if not, the silicon is supplemented according to the test result, and will be supplemented.
  • the silicon melts at 740 ⁇ 10 ° C;
  • step 9 Copper supplementation: According to the comparison result of step (9), it is judged that the copper content is enough to reach the content of the copper component in claim 1, and if not, the copper is added according to the test result, and the copper is supplemented. Melting above 730 ° C;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Refining and degassing Adjust the temperature of the aluminum liquid to 700 ⁇ 73 (TC for refining and degassing, and the degassing time for refining is 50 ⁇ 60 minutes, specifically: in the case of opening the permanent magnet stirrer, refining the powder
  • the agent is placed in a dusting can, and the powdered refining agent is blown into the molten liquid through a pipe with nitrogen gas having a purity of not less than 99.99%, degassed while removing the refining, and refined and degassed until the gas content of the aluminum liquid reaches 0.26.
  • the slag content is controlled within the range of K 0.1;
  • Sampling test Sampling and testing of the molten liquid, confirming that the content of each component is consistent with the content of the components in claim 1;
  • On-line degassing Online degassing is carried out by introducing a nitrogen gas having a purity of not less than 99.99% into the molten liquid by using a ⁇ -type ceramic degassing tube;
  • Example 8 An aluminum alloy ingot for a high-zinc vehicle consisting of the following components in terms of weight percent: Cu: 2.534%; Si: 10.532%; Mg: 0.320%; Zn: 1.8%; Fe: 0.605%; Mn : 0.109%; Ni: 0.253%; Sn: 0.155%; balance is Al.
  • the above method for producing an aluminum alloy ingot for a high-zinc vehicle includes the following steps:
  • the measuring step (1) sorts the crushed waste aluminum material to obtain the starting material;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Step (8') Sampling test: The molten liquid is taken, and the content of each component is analyzed by an optical spectrum analyzer and compared with the components of claim 1.
  • (9) Converter moving the smelting liquid from the smelting furnace to the refining furnace, performing a second sampling and detecting operation, taking the smelting liquid, analyzing the content of each component, and comparing with the components of claim 1, the refining
  • a permanent magnet stirrer is arranged at the bottom of the furnace, and a permanent magnet stirrer is turned on during the refining process for stirring;
  • step (10) Silicon supplementation: According to the comparison result of step (9), it is judged that the silicon content is enough to reach the component content of silicon in claim 1, and if not, the silicon is supplemented according to the test result, and will be supplemented.
  • the silicon melts at 740 ⁇ 10 ° C;
  • step 9 Copper supplementation: According to the comparison result of step (9), it is judged that the copper content is enough to reach the content of the copper component in claim 1, and if not, the copper is added according to the test result, and the copper is supplemented. Melting above 730 ° C;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Refining and degassing Adjust the temperature of the aluminum liquid to 700 ⁇ 73 (TC for refining and degassing, and the degassing time for refining is 50 ⁇ 60 minutes, specifically: in the case of opening the permanent magnet stirrer, refining the powder
  • the agent is placed in a dusting can, and the powdered refining agent is blown into the molten liquid through a pipe with nitrogen gas having a purity of not less than 99.99%, degassed while removing the refining, and refined and degassed until the gas content of the aluminum liquid reaches 0.26.
  • the slag content is controlled within the range of K 0.1;
  • Sampling test Sampling and testing of the molten liquid, confirming that the content of each component is consistent with the content of the components in claim 1;
  • On-line degassing Online degassing is carried out by introducing a nitrogen gas having a purity of not less than 99.99% into the molten liquid by using a ⁇ -type ceramic degassing tube;
  • Example 9 An aluminum alloy ingot for a high-zinc vehicle consisting of the following components in terms of weight percent: Cu: 3.535%; Si: 11.586%; Mg: 0.345%; Zn: 1.05%; Fe: 1.005%; Mn : 0.405%; Ni: 0.456%; Sn: 0.18%; balance is Al.
  • the above method for producing an aluminum alloy ingot for a high-zinc vehicle includes the following steps:
  • the measuring step (1) sorts the crushed waste aluminum material to obtain the starting material;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Step (8') Sampling test: The molten liquid is taken, and the content of each component is analyzed by an optical spectrum analyzer and compared with the components of claim 1.
  • (9) Converter moving the smelting liquid from the smelting furnace to the refining furnace, performing a second sampling and detecting operation, taking the smelting liquid, analyzing the content of each component, and comparing with the components of claim 1, the refining
  • a permanent magnet stirrer is arranged at the bottom of the furnace, and a permanent magnet stirrer is turned on during the refining process for stirring;
  • step (10) Silicon supplementation: According to the comparison result of step (9), it is judged that the silicon content is enough to reach the component content of silicon in claim 1, and if not, the silicon is supplemented according to the test result, and will be supplemented.
  • the silicon melts at 740 ⁇ 10 ° C;
  • step 9 Copper supplementation: According to the comparison result of step (9), it is judged that the copper content is enough to reach the content of the copper component in claim 1, and if not, the copper is added according to the test result, and the copper is supplemented. Melting above 730 ° C;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Refining and degassing Adjust the temperature of the aluminum liquid to 700 ⁇ 73 (TC for refining and degassing, and the degassing time for refining is 50 ⁇ 60 minutes, specifically: in the case of opening the permanent magnet stirrer, refining the powder
  • the agent is placed in a dusting can, and the powdered refining agent is blown into the molten liquid through a pipe with nitrogen gas having a purity of not less than 99.99%, degassed while removing the refining, and refined and degassed until the gas content of the aluminum liquid reaches 0.26.
  • the slag content is controlled within the range of K 0.1;
  • Sampling test Sampling and testing of the molten liquid, confirming that the content of each component is consistent with the content of the components in claim 1;
  • On-line degassing Online degassing is carried out by introducing a nitrogen gas having a purity of not less than 99.99% into the molten liquid by using a ⁇ -type ceramic degassing tube;
  • Example 10 Casting the product into an aluminum alloy ingot that meets the storage and transportation requirements.
  • An aluminum alloy ingot for a high-zinc vehicle was composed of the following components in terms of percentage by weight: Cu: 3.023%; Si: 11.805%; Mg: 0.341%; Zn: 2.015%; Fe: 0.905%; Mn : 0.495%; Ni: 0.485%; Sn: 0.195%; balance is Al.
  • the above method for producing an aluminum alloy ingot for a high-zinc vehicle includes the following steps:
  • the measuring step (1) sorts the crushed waste aluminum material to obtain the starting material;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Step (8') Sampling test: The smelting liquid is taken, and the content of each component is analyzed by an optical spectrum analyzer and compared with the components of claim 1.
  • (9) Converter moving the smelting liquid from the smelting furnace to the refining furnace, performing a second sampling and detecting operation, taking the smelting liquid, analyzing the content of each component, and comparing with the components of claim 1, the refining
  • a permanent magnet stirrer is arranged at the bottom of the furnace, and a permanent magnet stirrer is turned on during the refining process for stirring;
  • step (10) Silicon supplementation: According to the comparison result of step (9), it is judged that the silicon content is enough to reach the component content of silicon in claim 1, and if not, the silicon is supplemented according to the test result, and will be supplemented.
  • the silicon melts at 740 ⁇ 10 ° C;
  • step 9 Copper supplementation: According to the comparison result of step (9), it is judged that the copper content is enough to reach the content of the copper component in claim 1, and if not, the copper is added according to the test result, and the copper is supplemented. Melting above 730 ° C;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Refining and degassing Adjust the temperature of the aluminum liquid to 700 ⁇ 73 (TC for refining and degassing, and the degassing time for refining is 50 ⁇ 60 minutes, specifically: in the case of opening the permanent magnet stirrer, refining the powder
  • the agent is placed in a dusting can, and the powdered refining agent is blown into the molten liquid through a pipe with nitrogen gas having a purity of not less than 99.99%, degassed while removing the refining, and refined and degassed until the gas content of the aluminum liquid reaches 0.26.
  • the slag content is controlled within the range of K 0.1;
  • Sampling test Sampling and testing of the molten liquid, confirming that the content of each component is consistent with the content of the components in claim 1;
  • On-line degassing Online degassing is carried out by introducing a nitrogen gas having a purity of not less than 99.99% into the molten liquid by using a ⁇ -type ceramic degassing tube;
  • An aluminum alloy ingot for a high-zinc vehicle which comprises, by weight percent, consists of the following components: Cu: 3.520%; Si: 11.809%; Mg: 0.32%; Zn: 2.342%; Fe: 0.854%; Mn: 0.405% ; Ni: 0.402%; Sn: 0.021%; balance is Al.
  • the above method for producing an aluminum alloy ingot for a high-zinc vehicle includes the following steps:
  • the measuring step (1) sorts the crushed waste aluminum material to obtain the starting material;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Step (8') Sampling test: The molten liquid is taken, and the content of each component is analyzed by an optical spectrum analyzer and compared with the components of claim 1.
  • (9) Converter moving the smelting liquid from the smelting furnace to the refining furnace, performing a second sampling and detecting operation, taking the smelting liquid, analyzing the content of each component, and comparing with the components of claim 1, the refining
  • a permanent magnet stirrer is arranged at the bottom of the furnace, and a permanent magnet stirrer is turned on during the refining process for stirring;
  • step (10) Silicon supplementation: According to the comparison result of step (9), it is judged that the silicon content is enough to reach the component content of silicon in claim 1, and if not, the silicon is supplemented according to the test result, and will be supplemented.
  • the silicon melts at 740 ⁇ 10 ° C;
  • step 9 Copper supplementation: According to the comparison result of step (9), it is judged that the copper content is enough to reach the content of the copper component in claim 1, and if not, the copper is added according to the test result, and the copper is supplemented. Melting above 730 ° C;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Refining and degassing Adjust the temperature of the aluminum liquid to 700 ⁇ 73 (TC for refining and degassing, and the degassing time for refining is 50 ⁇ 60 minutes, specifically: in the case of opening the permanent magnet stirrer, refining the powder
  • the agent is placed in a dusting can, and the powdered refining agent is blown into the molten liquid through a pipe with nitrogen gas having a purity of not less than 99.99%, degassed while removing the refining, and refined and degassed until the gas content of the aluminum liquid reaches 0.26.
  • the slag content is controlled within the range of K 0.1;
  • Sampling test Sampling and testing of the molten liquid, confirming that the content of each component is consistent with the content of the components in claim 1;
  • On-line degassing Online degassing is carried out by introducing a nitrogen gas having a purity of not less than 99.99% into the molten liquid by using a ⁇ -type ceramic degassing tube;
  • Example 12 An aluminum alloy ingot for a high-zinc vehicle consisting of the following components in terms of weight percent: Cu: 3.685%; Si: 11.502%; Mg: 0.325%; Zn: 1.955%; Fe: 0.902%; Mn : 0.413%; Ni: 0.075%; Sn: 0.190%; balance is Al.
  • the above method for producing an aluminum alloy ingot for a high-zinc vehicle includes the following steps:
  • the measuring step (1) sorts the crushed waste aluminum material to obtain the starting material;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Step (8') Sampling test: The smelting liquid is taken, and the content of each component is analyzed by an optical spectrum analyzer and compared with the components of claim 1.
  • (9) Converter moving the smelting liquid from the smelting furnace to the refining furnace, performing a second sampling and detecting operation, taking the smelting liquid, analyzing the content of each component, and comparing with the components of claim 1, the refining
  • a permanent magnet stirrer is arranged at the bottom of the furnace, and a permanent magnet stirrer is turned on during the refining process for stirring;
  • step (10) Silicon supplementation: According to the comparison result of step (9), it is judged that the silicon content is enough to reach the component content of silicon in claim 1, and if not, the silicon is supplemented according to the test result, and will be supplemented.
  • the silicon melts at 740 ⁇ 10 ° C;
  • step 9 Copper supplementation: According to the comparison result of step (9), it is judged that the copper content is enough to reach the content of the copper component in claim 1, and if not, the copper is added according to the test result, and the copper is supplemented. Melting above 730 ° C;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Refining and degassing Adjust the temperature of the aluminum liquid to 700 ⁇ 73 (TC for refining and degassing, and the degassing time for refining is 50 ⁇ 60 minutes, specifically: in the case of opening the permanent magnet stirrer, refining the powder
  • the agent is placed in a dusting can, and the powdered refining agent is blown into the molten liquid through a pipe with nitrogen gas having a purity of not less than 99.99%, degassed while removing the refining, and refined and degassed until the gas content of the aluminum liquid reaches 0.26.
  • the slag content is controlled within the range of K 0.1;
  • Sampling test Sampling and testing of the molten liquid, confirming that the content of each component is consistent with the content of the components in claim 1;
  • On-line degassing Online degassing is carried out by introducing a nitrogen gas having a purity of not less than 99.99% into the molten liquid by using a ⁇ -type ceramic degassing tube;
  • An aluminum alloy ingot for a high-zinc vehicle consisting of the following components in terms of weight percentage: Cu: 1.5%; Si: 10.5%; Mg: 0.35%; Zn: 2.5%; Fe: 1.1%; Ni: 0.35% ; Sn: 0.1%; The balance is Al.
  • the above method for producing an aluminum alloy ingot for a high-zinc vehicle includes the following steps:
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Step (8') Sampling test: The molten liquid is taken, and the content of each component is analyzed by an optical spectrum analyzer and compared with the components of claim 1.
  • (9) Converter moving the smelting liquid from the smelting furnace to the refining furnace, performing a second sampling and detecting operation, taking the smelting liquid, analyzing the content of each component, and comparing with the components of claim 1, the refining
  • a permanent magnet stirrer is arranged at the bottom of the furnace, and a permanent magnet stirrer is turned on during the refining process for stirring;
  • step (10) Silicon supplementation: According to the comparison result of step (9), it is judged that the silicon content is enough to reach the component content of silicon in claim 1, and if not, the silicon is supplemented according to the test result, and will be supplemented.
  • the silicon melts at 740 ⁇ 10 ° C;
  • step 9 Copper supplementation: According to the comparison result of step (9), it is judged that the copper content is enough to reach the content of the copper component in claim 1, and if not, the copper is added according to the test result, and the copper is supplemented. Melting above 730 ° C;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Refining and degassing Adjust the temperature of the aluminum liquid to 700 ⁇ 73 (TC for refining and degassing, and the degassing time for refining is 50 ⁇ 60 minutes, specifically: in the case of opening the permanent magnet stirrer, refining the powder
  • the agent is placed in a dusting can, and the powdered refining agent is blown into the molten liquid through a pipe with nitrogen gas having a purity of not less than 99.99%, degassed while removing the refining, and refined and degassed until the gas content of the aluminum liquid reaches 0.26.
  • the slag content is controlled within the range of K 0.1;
  • Sampling test Sampling and testing of the molten liquid, confirming that the content of each component is consistent with the content of the components in claim 1;
  • On-line degassing Online degassing is carried out by introducing a nitrogen gas having a purity of not less than 99.99% into the molten liquid by using a ⁇ -type ceramic degassing tube;
  • An aluminum alloy ingot for a high-zinc vehicle consisting of the following components in terms of weight percentage: Cu: 4.0%; Si: 12%; Mg: 0.05%; Zn: 2.3%; Mn: 0.5%; Ni: 0.5% ; Sn: 0.2%; The balance is Al.
  • the above method for producing an aluminum alloy ingot for a high-zinc vehicle includes the following steps:
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Step (8') Sampling test: The molten liquid is taken, and the content of each component is analyzed by an optical spectrum analyzer and compared with the components of claim 1.
  • (9) Converter moving the smelting liquid from the smelting furnace to the refining furnace, performing a second sampling and detecting operation, taking the smelting liquid, analyzing the content of each component, and comparing with the components of claim 1, the refining
  • a permanent magnet stirrer is arranged at the bottom of the furnace, and a permanent magnet stirrer is turned on during the refining process for stirring;
  • step (10) Silicon supplementation: According to the comparison result of step (9), it is judged that the silicon content is enough to reach the component content of silicon in claim 1, and if not, the silicon is supplemented according to the test result, and will be supplemented.
  • the silicon melts at 740 ⁇ 10 ° C;
  • step 9 Copper supplementation: According to the comparison result of step (9), it is judged that the copper content is enough to reach the content of the copper component in claim 1, and if not, the copper is added according to the test result, and the copper is supplemented. Melting above 730 ° C;
  • slag slag treatment of oxidized slag floating on the surface of the smelting liquid
  • Refining and degassing Adjust the temperature of the aluminum liquid to 700 ⁇ 73 (TC for refining and degassing, and the degassing time for refining is 50 ⁇ 60 minutes, specifically: in the case of opening the permanent magnet stirrer, refining the powder
  • the agent is placed in a dusting can, and the powdered refining agent is blown into the molten liquid through a pipe with nitrogen gas having a purity of not less than 99.99%, degassed while removing the refining, and refined and degassed until the gas content of the aluminum liquid reaches 0.26.
  • the slag content is controlled within the range of K 0.1;
  • Sampling test Sampling and testing of the molten liquid, confirming that the content of each component is consistent with the content of the components in claim 1;
  • On-line degassing Online degassing is carried out by introducing a nitrogen gas having a purity of not less than 99.99% into the molten liquid by using a ⁇ -type ceramic degassing tube;
  • (21) Casting Casting the product into an aluminum alloy ingot that meets the storage and transportation requirements.
  • the content of each component is analyzed by a spectrum analyzer, and the feeding is performed by an aluminum smelting automatic feeding system.
  • the ⁇ content of the aluminum alloy ingot for high-zinc vehicles can reach 2.5%, and the ⁇ element can combine with other elements in the aluminum alloy to form a strengthening phase, such as Zn 2 Mg, HgZn 2 and the like. The high strength requirement of the aluminum alloy for the vehicle is guaranteed.
  • the invention adopts a combination of an efficient impurity removing crusher and an intelligent screening and removing machine, and can crush the waste aluminum material into a small size (80-100 mm) to accelerate the melting speed, reduce the melting energy consumption, and effectively remove Raw material impurities, and raw materials screened by this method are more conducive to the production of high-zinc aluminum alloy ingots, and the smelting production follows the principle of "rapid melting".
  • the invention adopts the permanent magnet stirring technology for stirring, so that the components of the molten aluminum liquid are uniform; the permanent magnet stirring relies on the magnetic field generated by the permanent magnet to non-contact stirring the aluminum liquid, and does not pollute the alloy melt, due to the magnetic induction
  • the furnace is placed at the bottom of the furnace, and the alloy melt at the bottom of the furnace obtains a large stirring force, and the top stirring force is small, that is, the surface oxide film is not easily broken, effectively reducing the surface oxidation of the alloy melt, and at the same time reducing the burning.
  • slag is specially set to ensure the low slag requirements of automotive aluminum alloy ingots, in order to minimize the amount The slag content of the aluminum liquid before refining; the slag is continuously adjusted after the components are adjusted to ensure the cleanliness of the aluminum liquid; to ensure the high efficiency of refining, the temperature of the molten liquid is adjusted to about 700-73 CTC when refining and degassing.
  • the refining and degassing of the present invention is to place the powder refining agent in the dusting can, using a nitrogen gas pass method, and the purity of the nitrogen gas is 99.99%, and the powdered refining agent is blown into the aluminum liquid through the pipeline, and is simultaneously performed in the decontamination refining process.
  • Degassing However, the rotation speed of the refining powder tank is different from that of the ordinary grade aluminum alloy.
  • the method is to reduce the rotation speed of the refining powder tank by 20-30 minutes on the basis of the original degassing of the powder tank.
  • the gas content and slag content are controlled to the lowest level; the refining temperature is maintained at 700-730 ° C ; the permanent magnet is opened during refining and degassing to ensure that the refining degassing is sufficient and thorough, thus Improve the effect of refining and degassing; refining degassing can remove impurities and gases in the aluminum liquid.
  • the gas content of the aluminum liquid can reach below 0.26cc/100gAl, and the slag content is controlled within the range of K 0.1.
  • the method for producing an aluminum alloy ingot for a high-zinc vehicle provided by the present invention, in order to strictly control the alloy composition, each of the sputum samples in the whole production process is subjected to a direct reading spectrometer, and each batch of production is performed at least. 10 times of spectroscopic detection to ensure the accuracy and stability of the alloy composition.
  • the high-zinc aluminum alloy ingot provided by the invention has the following advantages compared with the prior art: low production cost, high efficiency, gas-containing slag content is far lower than the industry level, uniform alloy composition, precise control, and zinc content High, high alloy strength; the method for producing aluminum alloy ingot for high-zinc vehicle according to the present invention has the following advantages compared with the prior art: a combination of an efficient impurity removing crusher and an intelligent screening and removing machine, It can crush the waste aluminum material to a small size, and can ensure the cleanliness of the raw materials, accelerate the melting speed, reduce the energy consumption of smelting, and ensure the effective sorting of zinc raw materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

一种高锌车用铝合金锭,其按重量百分比计由以下组分组成:Cu:1.5%-4.0%;Si:10.5%〜12.0%;Mg:0.05—0.35%;Zn:0.5—2.5%;Fe:0—1.1%;Mn:0—0.5%;Ni:0〜0.5%;Sn:0〜0.2%,余量为Al。该铝合金锭由废铝熔炼而成,成分均匀精确。

Description

一种高锌车用铝合金锭及其生产方法 技术领域 本发明涉及一种铝合金锭以及铝合金锭的生产方法,具体涉及一种高 锌车用铝合金锭及其生产方法。 背景技术 目前, 市场上的高锌车用铝合金锭的生产方法一般有两种: 一是以纯 铝锭为基体, 按照成分配比要求, 添加所需合金元素, 熔炼出所需牌号的 铝合金锭, 但此种制备方法成本很高; 二是使用的主要原材料为废铝料, 包括回收来的废铝零件、 生产铝制品过程中的边角料和废铝线等, 再经熔 炼配制生产出符合标准要求的再生铝锭, 此种生产方法存在以下几点问 题:
1 ) 废铝料的来源及其预处理
行业上制备的高锌车用铝合金锭的废铝料主要分为废杂铝切片、混杂 的废铝料、 焚烧后的含铝碎铝料、 废熟铝, 废生铝和废合金铝等。 废铝料 的主要来源于工业废料、 回收料、 以及铸造浇冒系统, 其组成相对比较复 杂。 多数情况下, 其中含有较多的外来杂质, 包括各种有机质如塑料类物 质、 水分等, 这类物质在熔炼过程进行之前如果不清理干净, 会造成合金 熔体严重吸气以及夹渣产生, 无法满足车用铝合金锭低渣含量、 低气含量 的要求。 因此熔炼前要对废铝料进行预处理, 行业内对废铝料的预处理是 按照材料成分进行大的分类, 分类依据是使其接近某种牌号铝合金的成 分, 对已经分类的铝合金废料进行必要的拆解, 去除大块的非铝金属或有 机杂质。 对原材料进行必要的清洗、 喷砂等。 目前行业内废铝的预处理基 本上还没有实现机械化和自动化,主要靠人工,使用的工具是磁铁、钢锉, 凭的是经验, 这种分选方法效率低、质量差、成本高, 无法挑选出干净的、 优质的原料, 包括最重要的锌原料。
2) 高锌车用铝合金锭的熔炼 熔炼的基本任务就是把按照一定配比的金属炉料投入熔炉中,经过加 热和熔化得到熔体, 再对熔体进行成分调整, 并在熔炼过程中采取相应的 措施控制气体及氧化夹杂物的含量, 使符合规定成分, 得到合乎要求的合 金液。
铝合金熔炼工艺流程如下: 备料一 配料一 装炉一 熔化 (加硅、 铜 等) → 扒渣一 加 (除)镁、 铍等一 搅拌一 取样一 调整成分一 搅拌一 精炼一 扒渣一 静置一 铸造。
目前行业内一般采用高温熔炼法,熔炼过程中温度控制在 800°C左右, 此种熔炼对原材料的烧损很大, 能耗也大; 熔炼过程中的搅拌一般采用铁 耙搅拌, 增加了熔体的含气含渣量, 同时也会增加熔体的铁含量, 通过人 工搅拌也难以使整炉熔体的合金成分均匀化,无法保证铝锭成分的稳定性 与精准性; 精炼工艺不成熟, 一般都是把精炼剂直接撒入炉内, 除气、 除 杂效果不好。 同时生产过程中的污染控制不好, 严重影响环境质量。
综上所述, 对使用废铝料制备高锌车用铝合金锭时, 所面临的技术难 题有: 废铝料的预处理质量、 废铝料的准确划分、 熔炼过程的能耗及烧损 的控制、 产品成分的均匀性保证、 铝熔体的净化质量等, 由于以上技术难 题, 在生产中存在成本高, 成分超出标准或偏析大, 含气、 含渣量高, 性 能不稳定、 环境污染严重等问题。。 发明内容
为解决上述技术问题, 本发明的目的是提供一种高锌车用铝合金锭, 同时进一歩提供了该高锌车用铝合金锭的生产方法。 为实现上述发明目的, 本发明所提供的技术方案如下:
一种高锌车用铝合金锭, 按重量百分比计, 由以下组分组成: Cu : 1.5%〜4.0%; Si: 10.5%〜12.0%; Mg: 0.05〜0.35%; Zn: 0.5〜2.5%; Fe: 0〜1.1%; Mn: 0〜0.5%; Ni: 0〜0.5%; Sn: 0〜0.2%; 余量为 Al。 上述的高锌车用铝合金锭的生产方法, 包括如下歩骤:
(1) 废铝料的分类分选: 将废铝料破碎至 80- 100mm, 并储存备用;
(2)配料: 按重量百分比取 Cu : 1.5%〜4.0%; Si: 10.5%〜12.0%; Mg: 0.05—0.35%; Zn: 0.5〜2.5%; Fe: 0〜1.1%; Mn: 0〜0.5%; Ni: 0〜 0.5%; Sn: 0-0.2%, 余量取歩骤(1)分选破碎出的废铝料, 得到初始原 料;
(3) 一次加料: 取初始原料中每种原料质量的 60%-80%, 置于预热 窑预加热至 150°C-300°C后, 送入熔炼炉中;
(4)将熔炼炉继续加热升温至 650°C-750°C, 熔炼 2h_3h, 所述熔炼 炉底部设置有永磁搅拌器, 且熔炼过程中开启永磁搅拌器进行搅拌;
(5) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(6) 初次取样检测: 取熔炼液, 分析各组分含量, 并与权利要求 1 中的组分进行比对;
(7) 二次加料: 根据歩骤(6) 的比对结果, 将剩余的初始原料各组 分含量进行调整后, 置于预热窑预加热至 170°C-30(TC后, 补充进熔炼炉 中, 再次加热熔炼炉, 使熔炼炉升温至 650°C-75(TC, 熔炼 2h-3h, 使二 次加料的原料成熔融状态;
(8) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(9) 转炉: 把熔炼液由熔炼炉移至精炼炉, 进行第二次取样检测操 作, 取熔炼液, 分析各组分含量, 并与权利要求 1中的组分进行比对, 所 述精炼炉底部设置有永磁搅拌器, 且精炼过程中开启永磁搅拌器进行搅 拌;
(10) 补硅: 根据歩骤 (9) 的比对结果, 判断硅的含量是够达到权 利要求 1中硅的组分含量, 若未达到, 则根据检测结果补充硅, 并将补充 的硅在 740±10°C熔化;
(11) 补铜: 根据歩骤 (9) 的比对结果, 判断铜的含量是够达到权 利要求 1中铜的组分含量, 若未达到, 则根据检测结果补充铜, 并将补充 的铜在 730°C以上熔化;
(12) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(13)三次取样检测: 对熔化液进行第三次取样检测, 取熔炼液, 分 析各组分含量, 并与权利要求 1中的组分进行比对;
(14)调整成分: 若比对结果与权利要求 1中的组分含量不一致, 进 行补料或稀释, 直至各组分含量与权利要求 1中的组分含量一致, 并继续 扒渣;
(15)精炼除气: 把铝液温度调整至 700〜73(TC进行精炼除气, 精炼 除气时间为 50〜60分钟;
(16) 扒渣: 扒除精炼除气后浮在铝液表面的浮渣;
(17) 静置: 静置 30〜40分钟;
(18) 取样检测: 对熔炼液取样检测, 确认各组分含量与权利要求 1 中的组分含量一致;
(19)在线除气:再次向熔化液中通入纯度不低于 99.99%的氮气进行 在线除气;
(20) 放汤;
(21) 铸造: 将产品铸造成符合存储运输要求的铝合金锭。 进一歩地, 所述精炼除气具体为: 在打开永磁搅拌器的情况下, 把粉 状精炼剂放置在喷粉罐内,用纯度不低于 99.99%的氮气把粉状精炼剂经过 管道吹入熔化液内部, 在除杂精炼的同时进行除气, 精炼除气至铝液含气 量达到 0.26cc/100gAl以下, 含渣量控制在 K 0.1的范围。
优选地, 所述在线除气采用 Τ型陶瓷脱气管通入氮气。 优选地,采用高效除杂质破碎机与智能型筛选除杂机相结合的方式将 废铝料破碎至 80-100mm。
进一歩地, 所述歩骤 (8) 和歩骤 (9) 之间还包括歩骤 (8' ) 取样 检测: 取熔炼液, 采用光谱分析仪分析各组分含量, 并与权利要求 1中的 组分进行比对。 优选地, 所述取样检测采用光谱分析仪分析各组分含量。 优选地, 所述加料采用铝熔炼自动加料系统进行。
优选地, 所述放汤具体为: 采用陶瓷过滤板与玻璃纤维过滤网相结 合的过滤方式进行放汤。 本发明提供的高锌车用铝合金锭, 与现有技术相比具有以下优点: 生 产成本低, 效率高, 含气含渣量远低于行业水平, 合金成分均匀, 控制精 准, 锌含量比重高, 合金强度高。 本发明所述的高锌车用铝合金锭的生产方法, 与现有技术相比具有以 下优点: 采用高效除杂质破碎机与智能型筛选除杂机相结合的方式, 能将 废铝料破碎至小尺寸, 并能保证原料的洁净度, 加快了熔化速度、 减少了 熔炼能耗, 更能保证锌原料的有效分选; 采用机械分选代替人工分选, 大 大加快了原料的分选效率; 采用了废铝料作为原料, 生产成本大大降低; 每一批次的生产均会进行至少 10次的分光检测,合金成分得到精准控制, 同时采用先进的永磁搅拌技术,保证合金成分均匀、无二次污染、偏析小; 熔 Cu后增加一道扒渣工序, 并通过降低精炼喷粉罐的转速, 延长喷粉时 间, 达到二次精炼的效果。 其超低含渣量 (K值 0.1 )、 超低含气量 ( 0.26cc/100gAl) 的性能大大超过市场上车用铝合金锭的要求; 放汤过程采 用陶瓷过滤板与玻璃纤维过滤网相结合的过滤技术,铝液的渣含量得到最 大程度的控制。 具体实施方式 为了使本发明的目的、 技术方案及优点更加清楚明白, 下面结合实施 例, 对本发明进行进一歩详细说明。 应当理解, 此处所描述的具体实施例 仅用以解释本发明, 并不用于限定本发明。 实施例 1 一种高锌车用铝合金锭, 按重量百分比计, 由以下组分组成: Cu : 1.681%; Si: 10.995%; Mg: 0.289%; Zn: 2.127%; Fe: 0.784%; Mn: 0.219%; Ni: 0.06%; Sn: 0.022%; 余量为 Al。
上述的高锌车用铝合金锭的生产方法, 包括如下歩骤:
(1) 废铝料的分类分选: 采用高效除杂质破碎机与智能型筛选除杂 机相结合的方式将废铝料破碎至 80-100mm, 并储存备用;
(2)配料:按重量百分比取 Cu : 1.681%; Si: 10.995%; Mg: 0.289%; Zn: 2.027%; Fe: 0.784%; Mn: 0.219%; Ni: 0.06%; Sn: 0.022%, 余 量取歩骤 (1) 分选破碎出的废铝料, 得到初始原料;
(3) 一次加料: 取初始原料中每种原料质量的 60%-80%, 置于预热 窑预加热至 150°C-300°C后, 送入熔炼炉中;
(4)将熔炼炉继续加热升温至 650°C-750°C, 熔炼 2h_3h, 所述熔炼 炉底部设置有永磁搅拌器, 且熔炼过程中开启永磁搅拌器进行搅拌;
(5) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(6) 初次取样检测: 取熔炼液, 分析各组分含量, 并与权利要求 1 中的组分进行比对;
(7) 二次加料: 根据歩骤(6) 的比对结果, 将剩余的初始原料各组 分含量进行调整后, 置于预热窑预加热至 170°C-30(TC后, 补充进熔炼炉 中, 再次加热熔炼炉, 使熔炼炉升温至 650°C-75(TC, 熔炼 2h-3h, 使二 次加料的原料成熔融状态;
(8) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
歩骤 (8' ) 取样检测: 取熔炼液, 采用光谱分析仪分析各组分含量, 并与权利要求 1中的组分进行比对。
(9) 转炉: 把熔炼液由熔炼炉移至精炼炉, 进行第二次取样检测操 作, 取熔炼液, 分析各组分含量, 并与权利要求 1中的组分进行比对, 所 述精炼炉底部设置有永磁搅拌器, 且精炼过程中开启永磁搅拌器进行搅 拌;
(10) 补硅: 根据歩骤 (9) 的比对结果, 判断硅的含量是够达到权 利要求 1中硅的组分含量, 若未达到, 则根据检测结果补充硅, 并将补充 的硅在 740±10°C熔化;
(11) 补铜: 根据歩骤 (9) 的比对结果, 判断铜的含量是够达到权 利要求 1中铜的组分含量, 若未达到, 则根据检测结果补充铜, 并将补充 的铜在 730°C以上熔化;
(12) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(13)三次取样检测: 对熔化液进行第三次取样检测, 取熔炼液, 分 析各组分含量, 并与权利要求 1中的组分进行比对;
(14)调整成分: 若比对结果与权利要求 1中的组分含量不一致, 进 行补料或稀释, 直至各组分含量与权利要求 1中的组分含量一致, 并继续 扒渣;
(15)精炼除气: 把铝液温度调整至 700〜73(TC进行精炼除气, 精炼 除气时间为 50〜60分钟, 具体为: 在打开永磁搅拌器的情况下, 把粉状 精炼剂放置在喷粉罐内,用纯度不低于 99.99%的氮气把粉状精炼剂经过管 道吹入熔化液内部, 在除杂精炼的同时进行除气, 精炼除气至铝液含气量 达到 0.26cc/100gAl以下, 含渣量控制在 K 0.1的范围。;
(16) 扒渣: 扒除精炼除气后浮在铝液表面的浮渣;
(17) 静置: 静置 30〜40分钟;
(18) 取样检测: 对熔炼液取样检测, 确认各组分含量与权利要求 1 中的组分含量一致;
(19)在线除气: 采用 Τ型陶瓷脱气管再次向熔化液中通入纯度不低 于 99.99%的氮气进行在线除气;
(20)放汤, 具体为: 具体为: 采用陶瓷过滤板与玻璃纤维过滤网相 结合的过滤方式进行放汤;
(21) 铸造: 将产品铸造成符合存储运输要求的铝合金锭。
实施例 2 一种高锌车用铝合金锭, 按重量百分比计, 由以下组分组成: Cu : 1.67%; Si: 11.107%; Mg: 0.271%; Zn: 0.5%; Fe: 0.825%; Mn: 0.217%; Ni: 0.066%; Sn: 0.02%; 余量为 Al。
上述的高锌车用铝合金锭的生产方法, 包括如下歩骤:
(1) 废铝料的分类分选: 采用高效除杂质破碎机与智能型筛选除杂 机相结合的方式将废铝料破碎至 80-100mm, 并储存备用;
(2)配料:按重量百分比取 Cu : 1.67%; Si: 11.107%; Mg: 0.271%; Zn: 2.213%; Fe: 0.825%; Mn: 0.217%; Ni: 0.066%; Sn: 0.02%, 余 量取歩骤 (1) 分选破碎出的废铝料, 得到初始原料;
(3) 一次加料: 取初始原料中每种原料质量的 60%-80%, 置于预热 窑预加热至 150°C-300°C后, 送入熔炼炉中;
(4)将熔炼炉继续加热升温至 650°C-750°C, 熔炼 2h_3h, 所述熔炼 炉底部设置有永磁搅拌器, 且熔炼过程中开启永磁搅拌器进行搅拌;
(5) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(6) 初次取样检测: 取熔炼液, 分析各组分含量, 并与权利要求 1 中的组分进行比对;
(7) 二次加料: 根据歩骤(6) 的比对结果, 将剩余的初始原料各组 分含量进行调整后, 置于预热窑预加热至 170°C-30(TC后, 补充进熔炼炉 中, 再次加热熔炼炉, 使熔炼炉升温至 650°C-75(TC, 熔炼 2h-3h, 使二 次加料的原料成熔融状态;
(8) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
歩骤 (8' ) 取样检测: 取熔炼液, 采用光谱分析仪分析各组分含量, 并与权利要求 1中的组分进行比对。
(9) 转炉: 把熔炼液由熔炼炉移至精炼炉, 进行第二次取样检测操 作, 取熔炼液, 分析各组分含量, 并与权利要求 1中的组分进行比对, 所 述精炼炉底部设置有永磁搅拌器, 且精炼过程中开启永磁搅拌器进行搅 拌;
(10) 补硅: 根据歩骤 (9) 的比对结果, 判断硅的含量是够达到权 利要求 1中硅的组分含量, 若未达到, 则根据检测结果补充硅, 并将补充 的硅在 740±10°C熔化;
(11) 补铜: 根据歩骤 (9) 的比对结果, 判断铜的含量是够达到权 利要求 1中铜的组分含量, 若未达到, 则根据检测结果补充铜, 并将补充 的铜在 730°C以上熔化;
(12) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(13)三次取样检测: 对熔化液进行第三次取样检测, 取熔炼液, 分 析各组分含量, 并与权利要求 1中的组分进行比对;
(14)调整成分: 若比对结果与权利要求 1中的组分含量不一致, 进 行补料或稀释, 直至各组分含量与权利要求 1中的组分含量一致, 并继续 扒渣;
(15)精炼除气: 把铝液温度调整至 700〜73(TC进行精炼除气, 精炼 除气时间为 50〜60分钟, 具体为: 在打开永磁搅拌器的情况下, 把粉状 精炼剂放置在喷粉罐内,用纯度不低于 99.99%的氮气把粉状精炼剂经过管 道吹入熔化液内部, 在除杂精炼的同时进行除气, 精炼除气至铝液含气量 达到 0.26cc/100gAl以下, 含渣量控制在 K 0.1的范围。;
(16) 扒渣: 扒除精炼除气后浮在铝液表面的浮渣;
(17) 静置: 静置 30〜40分钟;
(18) 取样检测: 对熔炼液取样检测, 确认各组分含量与权利要求 1 中的组分含量一致;
(19)在线除气: 采用 Τ型陶瓷脱气管再次向熔化液中通入纯度不低 于 99.99%的氮气进行在线除气;
(20)放汤, 具体为: 具体为: 采用陶瓷过滤板与玻璃纤维过滤网相 结合的过滤方式进行放汤;
(21) 铸造: 将产品铸造成符合存储运输要求的铝合金锭。 实施例 3 一种高锌车用铝合金锭, 按重量百分比计, 由以下组分组成: Cu : 1.685%; Si: 11.138%; Mg: 0.277%; Zn: 2.488%; Fe: 0.762%; Mn: 0.203%; Ni: 0.058%; Sn: 0.02%; 余量为 Al。
上述的高锌车用铝合金锭的生产方法, 包括如下歩骤:
(1) 废铝料的分类分选: 采用高效除杂质破碎机与智能型筛选除杂 机相结合的方式将废铝料破碎至 80-100mm, 并储存备用;
(2)配料:按重量百分比取 Cu : 1.685%; Si: 11.138%; Mg: 0.277%; Zn: 2.488%; Fe: 0.762%; Mn: 0.203%; Ni: 0.058%; Sn: 0.02%, 余 量取歩骤 (1) 分选破碎出的废铝料, 得到初始原料;
(3) 一次加料: 取初始原料中每种原料质量的 60%-80%, 置于预热 窑预加热至 150°C-300°C后, 送入熔炼炉中;
(4)将熔炼炉继续加热升温至 650°C-750°C, 熔炼 2h_3h, 所述熔炼 炉底部设置有永磁搅拌器, 且熔炼过程中开启永磁搅拌器进行搅拌;
(5) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(6) 初次取样检测: 取熔炼液, 分析各组分含量, 并与权利要求 1 中的组分进行比对;
(7) 二次加料: 根据歩骤(6) 的比对结果, 将剩余的初始原料各组 分含量进行调整后, 置于预热窑预加热至 170°C-30(TC后, 补充进熔炼炉 中, 再次加热熔炼炉, 使熔炼炉升温至 650°C-75(TC, 熔炼 2h-3h, 使二 次加料的原料成熔融状态;
(8) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
歩骤 (8' ) 取样检测: 取熔炼液, 采用光谱分析仪分析各组分含量, 并与权利要求 1中的组分进行比对。
(9) 转炉: 把熔炼液由熔炼炉移至精炼炉, 进行第二次取样检测操 作, 取熔炼液, 分析各组分含量, 并与权利要求 1中的组分进行比对, 所 述精炼炉底部设置有永磁搅拌器, 且精炼过程中开启永磁搅拌器进行搅 拌;
(10) 补硅: 根据歩骤 (9) 的比对结果, 判断硅的含量是够达到权 利要求 1中硅的组分含量, 若未达到, 则根据检测结果补充硅, 并将补充 的硅在 740±10°C熔化;
(11) 补铜: 根据歩骤 (9) 的比对结果, 判断铜的含量是够达到权 利要求 1中铜的组分含量, 若未达到, 则根据检测结果补充铜, 并将补充 的铜在 730°C以上熔化;
(12) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(13)三次取样检测: 对熔化液进行第三次取样检测, 取熔炼液, 分 析各组分含量, 并与权利要求 1中的组分进行比对;
(14)调整成分: 若比对结果与权利要求 1中的组分含量不一致, 进 行补料或稀释, 直至各组分含量与权利要求 1中的组分含量一致, 并继续 扒渣;
(15)精炼除气: 把铝液温度调整至 700〜73(TC进行精炼除气, 精炼 除气时间为 50〜60分钟, 具体为: 在打开永磁搅拌器的情况下, 把粉状 精炼剂放置在喷粉罐内,用纯度不低于 99.99%的氮气把粉状精炼剂经过管 道吹入熔化液内部, 在除杂精炼的同时进行除气, 精炼除气至铝液含气量 达到 0.26cc/100gAl以下, 含渣量控制在 K 0.1的范围。;
(16) 扒渣: 扒除精炼除气后浮在铝液表面的浮渣;
(17) 静置: 静置 30〜40分钟;
(18) 取样检测: 对熔炼液取样检测, 确认各组分含量与权利要求 1 中的组分含量一致;
(19)在线除气: 采用 Τ型陶瓷脱气管再次向熔化液中通入纯度不低 于 99.99%的氮气进行在线除气;
(20)放汤, 具体为: 具体为: 采用陶瓷过滤板与玻璃纤维过滤网相 结合的过滤方式进行放汤;
(21) 铸造: 将产品铸造成符合存储运输要求的铝合金锭。
实施例 4 一种高锌车用铝合金锭, 按重量百分比计, 由以下组分组成: Cu: 2.153%; Si: 10.901%; Mg: 0.211%; Zn: 2.0%; Fe: 0.766%; Mn: 0.213%; Ni: 0.074%; Sn: 0.028%; 余量为 Al。
上述的高锌车用铝合金锭的生产方法, 包括如下歩骤:
(1) 废铝料的分类分选: 采用高效除杂质破碎机与智能型筛选除杂 机相结合的方式将废铝料破碎至 80-100mm, 并储存备用;
(2)配料:按重量百分比取 Cu: 2.153%; Si: 10.901%; Mg: 0.211%; Zn: 2.0%; Fe: 0.766%; Mn: 0.213%; Ni: 0.074%; Sn: 0.028%, 余量 取歩骤 (1) 分选破碎出的废铝料, 得到初始原料;
(3) 一次加料: 取初始原料中每种原料质量的 60%-80%, 置于预热 窑预加热至 150°C-300°C后, 送入熔炼炉中;
(4)将熔炼炉继续加热升温至 650°C-750°C, 熔炼 2h_3h, 所述熔炼 炉底部设置有永磁搅拌器, 且熔炼过程中开启永磁搅拌器进行搅拌;
(5) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(6) 初次取样检测: 取熔炼液, 分析各组分含量, 并与权利要求 1 中的组分进行比对;
(7) 二次加料: 根据歩骤(6) 的比对结果, 将剩余的初始原料各组 分含量进行调整后, 置于预热窑预加热至 170°C-30(TC后, 补充进熔炼炉 中, 再次加热熔炼炉, 使熔炼炉升温至 650°C-75(TC, 熔炼 2h-3h, 使二 次加料的原料成熔融状态;
(8) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
歩骤 (8' )取样检测: 取熔炼液, 采用光谱分析仪分析各组分含量, 并与权利要求 1中的组分进行比对。
(9) 转炉: 把熔炼液由熔炼炉移至精炼炉, 进行第二次取样检测操 作, 取熔炼液, 分析各组分含量, 并与权利要求 1中的组分进行比对, 所 述精炼炉底部设置有永磁搅拌器, 且精炼过程中开启永磁搅拌器进行搅 拌;
(10) 补硅: 根据歩骤 (9) 的比对结果, 判断硅的含量是够达到权 利要求 1中硅的组分含量, 若未达到, 则根据检测结果补充硅, 并将补充 的硅在 740±10°C熔化;
(11) 补铜: 根据歩骤 (9) 的比对结果, 判断铜的含量是够达到权 利要求 1中铜的组分含量, 若未达到, 则根据检测结果补充铜, 并将补充 的铜在 730°C以上熔化;
(12) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(13)三次取样检测: 对熔化液进行第三次取样检测, 取熔炼液, 分 析各组分含量, 并与权利要求 1中的组分进行比对;
(14)调整成分: 若比对结果与权利要求 1中的组分含量不一致, 进 行补料或稀释, 直至各组分含量与权利要求 1中的组分含量一致, 并继续 扒渣;
(15)精炼除气: 把铝液温度调整至 700〜73(TC进行精炼除气, 精炼 除气时间为 50〜60分钟, 具体为: 在打开永磁搅拌器的情况下, 把粉状 精炼剂放置在喷粉罐内,用纯度不低于 99.99%的氮气把粉状精炼剂经过管 道吹入熔化液内部, 在除杂精炼的同时进行除气, 精炼除气至铝液含气量 达到 0.26cc/100gAl以下, 含渣量控制在 K 0.1的范围。;
(16) 扒渣: 扒除精炼除气后浮在铝液表面的浮渣;
(17) 静置: 静置 30〜40分钟;
(18) 取样检测: 对熔炼液取样检测, 确认各组分含量与权利要求 1 中的组分含量一致;
(19)在线除气: 采用 Τ型陶瓷脱气管再次向熔化液中通入纯度不低 于 99.99%的氮气进行在线除气;
(20)放汤, 具体为: 具体为: 采用陶瓷过滤板与玻璃纤维过滤网相 结合的过滤方式进行放汤;
(21) 铸造: 将产品铸造成符合存储运输要求的铝合金锭。 实施例 5 一种高锌车用铝合金锭, 按重量百分比计, 由以下组分组成: Cu : 1.742%; Si: 11.377%; Mg: 0.297%; Zn: 0.9%; Fe: 0.793%; Mn: 0.226%; Ni: 0.067%; Sn: 0.024%; 余量为 Al。
上述的高锌车用铝合金锭的生产方法, 包括如下歩骤:
(1) 废铝料的分类分选: 采用高效除杂质破碎机与智能型筛选除杂 机相结合的方式将废铝料破碎至 80-100mm, 并储存备用;
(2)配料:按重量百分比取 Cu : 1.742%; Si: 11.377%; Mg: 0.297%; Zn: 1.701%; Fe: 0.793%; Mn: 0.226%; Ni: 0.067%; Sn: 0.024%, 余 量取歩骤 (1) 分选破碎出的废铝料, 得到初始原料;
(3) 一次加料: 取初始原料中每种原料质量的 60%-80%, 置于预热 窑预加热至 150°C-300°C后, 送入熔炼炉中;
(4)将熔炼炉继续加热升温至 650°C-750°C, 熔炼 2h_3h, 所述熔炼 炉底部设置有永磁搅拌器, 且熔炼过程中开启永磁搅拌器进行搅拌;
(5) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(6) 初次取样检测: 取熔炼液, 分析各组分含量, 并与权利要求 1 中的组分进行比对;
(7) 二次加料: 根据歩骤(6) 的比对结果, 将剩余的初始原料各组 分含量进行调整后, 置于预热窑预加热至 170°C-30(TC后, 补充进熔炼炉 中, 再次加热熔炼炉, 使熔炼炉升温至 650°C-75(TC, 熔炼 2h-3h, 使二 次加料的原料成熔融状态;
(8) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
歩骤 (8' ) 取样检测: 取熔炼液, 采用光谱分析仪分析各组分含量, 并与权利要求 1中的组分进行比对。
(9) 转炉: 把熔炼液由熔炼炉移至精炼炉, 进行第二次取样检测操 作, 取熔炼液, 分析各组分含量, 并与权利要求 1中的组分进行比对, 所 述精炼炉底部设置有永磁搅拌器, 且精炼过程中开启永磁搅拌器进行搅 拌;
(10) 补硅: 根据歩骤 (9) 的比对结果, 判断硅的含量是够达到权 利要求 1中硅的组分含量, 若未达到, 则根据检测结果补充硅, 并将补充 的硅在 740±10°C熔化;
(11) 补铜: 根据歩骤 (9) 的比对结果, 判断铜的含量是够达到权 利要求 1中铜的组分含量, 若未达到, 则根据检测结果补充铜, 并将补充 的铜在 730°C以上熔化;
(12) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(13)三次取样检测: 对熔化液进行第三次取样检测, 取熔炼液, 分 析各组分含量, 并与权利要求 1中的组分进行比对;
(14)调整成分: 若比对结果与权利要求 1中的组分含量不一致, 进 行补料或稀释, 直至各组分含量与权利要求 1中的组分含量一致, 并继续 扒渣;
(15)精炼除气: 把铝液温度调整至 700〜73(TC进行精炼除气, 精炼 除气时间为 50〜60分钟, 具体为: 在打开永磁搅拌器的情况下, 把粉状 精炼剂放置在喷粉罐内,用纯度不低于 99.99%的氮气把粉状精炼剂经过管 道吹入熔化液内部, 在除杂精炼的同时进行除气, 精炼除气至铝液含气量 达到 0.26cc/100gAl以下, 含渣量控制在 K 0.1的范围。;
(16) 扒渣: 扒除精炼除气后浮在铝液表面的浮渣;
(17) 静置: 静置 30〜40分钟;
(18) 取样检测: 对熔炼液取样检测, 确认各组分含量与权利要求 1 中的组分含量一致;
(19)在线除气: 采用 Τ型陶瓷脱气管再次向熔化液中通入纯度不低 于 99.99%的氮气进行在线除气;
(20)放汤, 具体为: 具体为: 采用陶瓷过滤板与玻璃纤维过滤网相 结合的过滤方式进行放汤;
(21) 铸造: 将产品铸造成符合存储运输要求的铝合金锭。 实施例 6 一种高锌车用铝合金锭, 按重量百分比计, 由以下组分组成: Cu: 1.681%; Si: 10.995%; Mg: 0.289%; Zn: 2.5%; Fe: 0.784%; Mn: 0.219%; Ni: 0.06%; Sn: 0.022%; 余量为 Al。
上述的高锌车用铝合金锭的生产方法, 包括如下歩骤:
(1) 废铝料的分类分选: 采用高效除杂质破碎机与智能型筛选除杂 机相结合的方式将废铝料破碎至 80-100mm, 并储存备用;
(2)配料:按重量百分比取 Cu: 1.681%; Si: 10.995%; Mg: 0.289%; Zn: 1.727%; Fe: 0.784%; Mn: 0.219%; Ni: 0.06%; Sn: 0.022%, 余 量取歩骤 (1) 分选破碎出的废铝料, 得到初始原料;
(3) 一次加料: 取初始原料中每种原料质量的 60%-80%, 置于预热 窑预加热至 150°C-300°C后, 送入熔炼炉中;
(4)将熔炼炉继续加热升温至 650°C-750°C, 熔炼 2h_3h, 所述熔炼 炉底部设置有永磁搅拌器, 且熔炼过程中开启永磁搅拌器进行搅拌;
(5) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(6) 初次取样检测: 取熔炼液, 分析各组分含量, 并与权利要求 1 中的组分进行比对;
(7) 二次加料: 根据歩骤(6) 的比对结果, 将剩余的初始原料各组 分含量进行调整后, 置于预热窑预加热至 170°C-30(TC后, 补充进熔炼炉 中, 再次加热熔炼炉, 使熔炼炉升温至 650°C-75(TC, 熔炼 2h-3h, 使二 次加料的原料成熔融状态;
(8) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
歩骤 (8' ) 取样检测: 取熔炼液, 采用光谱分析仪分析各组分含量, 并与权利要求 1中的组分进行比对。
(9) 转炉: 把熔炼液由熔炼炉移至精炼炉, 进行第二次取样检测操 作, 取熔炼液, 分析各组分含量, 并与权利要求 1中的组分进行比对, 所 述精炼炉底部设置有永磁搅拌器, 且精炼过程中开启永磁搅拌器进行搅 拌;
(10) 补硅: 根据歩骤 (9) 的比对结果, 判断硅的含量是够达到权 利要求 1中硅的组分含量, 若未达到, 则根据检测结果补充硅, 并将补充 的硅在 740±10°C熔化;
(11) 补铜: 根据歩骤 (9) 的比对结果, 判断铜的含量是够达到权 利要求 1中铜的组分含量, 若未达到, 则根据检测结果补充铜, 并将补充 的铜在 730°C以上熔化;
(12) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(13)三次取样检测: 对熔化液进行第三次取样检测, 取熔炼液, 分 析各组分含量, 并与权利要求 1中的组分进行比对;
(14)调整成分: 若比对结果与权利要求 1中的组分含量不一致, 进 行补料或稀释, 直至各组分含量与权利要求 1中的组分含量一致, 并继续 扒渣;
(15)精炼除气: 把铝液温度调整至 700〜73(TC进行精炼除气, 精炼 除气时间为 50〜60分钟, 具体为: 在打开永磁搅拌器的情况下, 把粉状 精炼剂放置在喷粉罐内,用纯度不低于 99.99%的氮气把粉状精炼剂经过管 道吹入熔化液内部, 在除杂精炼的同时进行除气, 精炼除气至铝液含气量 达到 0.26cc/100gAl以下, 含渣量控制在 K 0.1的范围。;
(16) 扒渣: 扒除精炼除气后浮在铝液表面的浮渣;
(17) 静置: 静置 30〜40分钟;
(18) 取样检测: 对熔炼液取样检测, 确认各组分含量与权利要求 1 中的组分含量一致;
(19)在线除气: 采用 Τ型陶瓷脱气管再次向熔化液中通入纯度不低 于 99.99%的氮气进行在线除气;
(20)放汤, 具体为: 具体为: 采用陶瓷过滤板与玻璃纤维过滤网相 结合的过滤方式进行放汤;
(21) 铸造: 将产品铸造成符合存储运输要求的铝合金锭。
实施例 7 一种高锌车用铝合金锭, 按重量百分比计, 由以下组分组成: Cu : 1.5%; Si: 12.0%; Mg: 0.05%; Zn: 1.20%; Fe: 0.034%; Mn: 0.350%; Ni: 0.120%; Sn: 0.153%; 余量为 Al。
上述的高锌车用铝合金锭的生产方法, 包括如下歩骤:
(1) 废铝料的分类分选: 采用高效除杂质破碎机与智能型筛选除杂 机相结合的方式将废铝料破碎至 80-100mm, 并储存备用;
(2) 配料: 按重量百分比取 Cu : 1.5%; Si: 12.0%; Mg: 0.05%; Zn: 0.350%; Fe: 0.034%; Mn: 2.350%; Ni: 0.120%; Sn: 0.153%, 余 量取歩骤 (1) 分选破碎出的废铝料, 得到初始原料;
(3) 一次加料: 取初始原料中每种原料质量的 60%-80%, 置于预热 窑预加热至 150°C-300°C后, 送入熔炼炉中;
(4)将熔炼炉继续加热升温至 650°C-750°C, 熔炼 2h_3h, 所述熔炼 炉底部设置有永磁搅拌器, 且熔炼过程中开启永磁搅拌器进行搅拌;
(5) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(6) 初次取样检测: 取熔炼液, 分析各组分含量, 并与权利要求 1 中的组分进行比对;
(7) 二次加料: 根据歩骤(6) 的比对结果, 将剩余的初始原料各组 分含量进行调整后, 置于预热窑预加热至 170°C-30(TC后, 补充进熔炼炉 中, 再次加热熔炼炉, 使熔炼炉升温至 650°C-75(TC, 熔炼 2h-3h, 使二 次加料的原料成熔融状态;
(8) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
歩骤 (8' ) 取样检测: 取熔炼液, 采用光谱分析仪分析各组分含量, 并与权利要求 1中的组分进行比对。
(9) 转炉: 把熔炼液由熔炼炉移至精炼炉, 进行第二次取样检测操 作, 取熔炼液, 分析各组分含量, 并与权利要求 1中的组分进行比对, 所 述精炼炉底部设置有永磁搅拌器, 且精炼过程中开启永磁搅拌器进行搅 拌;
(10) 补硅: 根据歩骤 (9) 的比对结果, 判断硅的含量是够达到权 利要求 1中硅的组分含量, 若未达到, 则根据检测结果补充硅, 并将补充 的硅在 740±10°C熔化;
(11) 补铜: 根据歩骤 (9) 的比对结果, 判断铜的含量是够达到权 利要求 1中铜的组分含量, 若未达到, 则根据检测结果补充铜, 并将补充 的铜在 730°C以上熔化;
(12) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(13)三次取样检测: 对熔化液进行第三次取样检测, 取熔炼液, 分 析各组分含量, 并与权利要求 1中的组分进行比对;
(14)调整成分: 若比对结果与权利要求 1中的组分含量不一致, 进 行补料或稀释, 直至各组分含量与权利要求 1中的组分含量一致, 并继续 扒渣;
(15)精炼除气: 把铝液温度调整至 700〜73(TC进行精炼除气, 精炼 除气时间为 50〜60分钟, 具体为: 在打开永磁搅拌器的情况下, 把粉状 精炼剂放置在喷粉罐内,用纯度不低于 99.99%的氮气把粉状精炼剂经过管 道吹入熔化液内部, 在除杂精炼的同时进行除气, 精炼除气至铝液含气量 达到 0.26cc/100gAl以下, 含渣量控制在 K 0.1的范围。;
(16) 扒渣: 扒除精炼除气后浮在铝液表面的浮渣;
(17) 静置: 静置 30〜40分钟;
(18) 取样检测: 对熔炼液取样检测, 确认各组分含量与权利要求 1 中的组分含量一致;
(19)在线除气: 采用 Τ型陶瓷脱气管再次向熔化液中通入纯度不低 于 99.99%的氮气进行在线除气;
(20)放汤, 具体为: 具体为: 采用陶瓷过滤板与玻璃纤维过滤网相 结合的过滤方式进行放汤;
(21) 铸造: 将产品铸造成符合存储运输要求的铝合金锭。 实施例 8 一种高锌车用铝合金锭, 按重量百分比计, 由以下组分组成: Cu: 2.534%; Si: 10.532%; Mg: 0.320%; Zn: 1.8%; Fe: 0.605%; Mn: 0.109%; Ni: 0.253%; Sn: 0.155%; 余量为 Al。
上述的高锌车用铝合金锭的生产方法, 包括如下歩骤:
(1) 废铝料的分类分选: 采用高效除杂质破碎机与智能型筛选除杂 机相结合的方式将废铝料破碎至 80-100mm, 并储存备用;
(2)配料:按重量百分比取 Cu: 2.534%; Si: 10.532%; Mg: 0.320%; Zn: 2.105%; Fe: 0.605%; Mn: 0.109%; Ni: 0.253%; Sn: 0.155%, 余 量取歩骤 (1) 分选破碎出的废铝料, 得到初始原料;
(3) 一次加料: 取初始原料中每种原料质量的 60%-80%, 置于预热 窑预加热至 150°C-300°C后, 送入熔炼炉中;
(4)将熔炼炉继续加热升温至 650°C-750°C, 熔炼 2h_3h, 所述熔炼 炉底部设置有永磁搅拌器, 且熔炼过程中开启永磁搅拌器进行搅拌;
(5) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(6) 初次取样检测: 取熔炼液, 分析各组分含量, 并与权利要求 1 中的组分进行比对;
(7) 二次加料: 根据歩骤(6) 的比对结果, 将剩余的初始原料各组 分含量进行调整后, 置于预热窑预加热至 170°C-30(TC后, 补充进熔炼炉 中, 再次加热熔炼炉, 使熔炼炉升温至 650°C-75(TC, 熔炼 2h-3h, 使二 次加料的原料成熔融状态;
(8) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
歩骤 (8' ) 取样检测: 取熔炼液, 采用光谱分析仪分析各组分含量, 并与权利要求 1中的组分进行比对。
(9) 转炉: 把熔炼液由熔炼炉移至精炼炉, 进行第二次取样检测操 作, 取熔炼液, 分析各组分含量, 并与权利要求 1中的组分进行比对, 所 述精炼炉底部设置有永磁搅拌器, 且精炼过程中开启永磁搅拌器进行搅 拌;
(10) 补硅: 根据歩骤 (9) 的比对结果, 判断硅的含量是够达到权 利要求 1中硅的组分含量, 若未达到, 则根据检测结果补充硅, 并将补充 的硅在 740±10°C熔化;
(11) 补铜: 根据歩骤 (9) 的比对结果, 判断铜的含量是够达到权 利要求 1中铜的组分含量, 若未达到, 则根据检测结果补充铜, 并将补充 的铜在 730°C以上熔化;
(12) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(13)三次取样检测: 对熔化液进行第三次取样检测, 取熔炼液, 分 析各组分含量, 并与权利要求 1中的组分进行比对;
(14)调整成分: 若比对结果与权利要求 1中的组分含量不一致, 进 行补料或稀释, 直至各组分含量与权利要求 1中的组分含量一致, 并继续 扒渣;
(15)精炼除气: 把铝液温度调整至 700〜73(TC进行精炼除气, 精炼 除气时间为 50〜60分钟, 具体为: 在打开永磁搅拌器的情况下, 把粉状 精炼剂放置在喷粉罐内,用纯度不低于 99.99%的氮气把粉状精炼剂经过管 道吹入熔化液内部, 在除杂精炼的同时进行除气, 精炼除气至铝液含气量 达到 0.26cc/100gAl以下, 含渣量控制在 K 0.1的范围。;
(16) 扒渣: 扒除精炼除气后浮在铝液表面的浮渣;
(17) 静置: 静置 30〜40分钟;
(18) 取样检测: 对熔炼液取样检测, 确认各组分含量与权利要求 1 中的组分含量一致;
(19)在线除气: 采用 Τ型陶瓷脱气管再次向熔化液中通入纯度不低 于 99.99%的氮气进行在线除气;
(20)放汤, 具体为: 具体为: 采用陶瓷过滤板与玻璃纤维过滤网相 结合的过滤方式进行放汤;
(21) 铸造: 将产品铸造成符合存储运输要求的铝合金锭。
实施例 9 一种高锌车用铝合金锭, 按重量百分比计, 由以下组分组成: Cu: 3.535%; Si: 11.586%; Mg: 0.345%; Zn: 1.05%; Fe: 1.005%; Mn: 0.405%; Ni: 0.456%; Sn: 0.18%; 余量为 Al。
上述的高锌车用铝合金锭的生产方法, 包括如下歩骤:
(1) 废铝料的分类分选: 采用高效除杂质破碎机与智能型筛选除杂 机相结合的方式将废铝料破碎至 80-100mm, 并储存备用;
(2)配料:按重量百分比取 Cu: 3.535%; Si: 11.586%; Mg: 0.345%; Zn: 2.205%; Fe: 1.005%; Mn: 0.405%; Ni: 0.456%; Sn: 0.18%, 余 量取歩骤 (1) 分选破碎出的废铝料, 得到初始原料;
(3) 一次加料: 取初始原料中每种原料质量的 60%-80%, 置于预热 窑预加热至 150°C-300°C后, 送入熔炼炉中;
(4)将熔炼炉继续加热升温至 650°C-750°C, 熔炼 2h_3h, 所述熔炼 炉底部设置有永磁搅拌器, 且熔炼过程中开启永磁搅拌器进行搅拌;
(5) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(6) 初次取样检测: 取熔炼液, 分析各组分含量, 并与权利要求 1 中的组分进行比对;
(7) 二次加料: 根据歩骤(6) 的比对结果, 将剩余的初始原料各组 分含量进行调整后, 置于预热窑预加热至 170°C-30(TC后, 补充进熔炼炉 中, 再次加热熔炼炉, 使熔炼炉升温至 650°C-75(TC, 熔炼 2h-3h, 使二 次加料的原料成熔融状态;
(8) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
歩骤 (8' ) 取样检测: 取熔炼液, 采用光谱分析仪分析各组分含量, 并与权利要求 1中的组分进行比对。
(9) 转炉: 把熔炼液由熔炼炉移至精炼炉, 进行第二次取样检测操 作, 取熔炼液, 分析各组分含量, 并与权利要求 1中的组分进行比对, 所 述精炼炉底部设置有永磁搅拌器, 且精炼过程中开启永磁搅拌器进行搅 拌;
(10) 补硅: 根据歩骤 (9) 的比对结果, 判断硅的含量是够达到权 利要求 1中硅的组分含量, 若未达到, 则根据检测结果补充硅, 并将补充 的硅在 740±10°C熔化;
(11) 补铜: 根据歩骤 (9) 的比对结果, 判断铜的含量是够达到权 利要求 1中铜的组分含量, 若未达到, 则根据检测结果补充铜, 并将补充 的铜在 730°C以上熔化;
(12) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(13)三次取样检测: 对熔化液进行第三次取样检测, 取熔炼液, 分 析各组分含量, 并与权利要求 1中的组分进行比对;
(14)调整成分: 若比对结果与权利要求 1中的组分含量不一致, 进 行补料或稀释, 直至各组分含量与权利要求 1中的组分含量一致, 并继续 扒渣;
(15)精炼除气: 把铝液温度调整至 700〜73(TC进行精炼除气, 精炼 除气时间为 50〜60分钟, 具体为: 在打开永磁搅拌器的情况下, 把粉状 精炼剂放置在喷粉罐内,用纯度不低于 99.99%的氮气把粉状精炼剂经过管 道吹入熔化液内部, 在除杂精炼的同时进行除气, 精炼除气至铝液含气量 达到 0.26cc/100gAl以下, 含渣量控制在 K 0.1的范围。;
(16) 扒渣: 扒除精炼除气后浮在铝液表面的浮渣;
(17) 静置: 静置 30〜40分钟;
(18) 取样检测: 对熔炼液取样检测, 确认各组分含量与权利要求 1 中的组分含量一致;
(19)在线除气: 采用 Τ型陶瓷脱气管再次向熔化液中通入纯度不低 于 99.99%的氮气进行在线除气;
(20)放汤, 具体为: 具体为: 采用陶瓷过滤板与玻璃纤维过滤网相 结合的过滤方式进行放汤;
(21) 铸造: 将产品铸造成符合存储运输要求的铝合金锭。 实施例 10 一种高锌车用铝合金锭, 按重量百分比计, 由以下组分组成: Cu: 3.023%; Si: 11.805%; Mg: 0.341%; Zn: 2.015%; Fe: 0.905%; Mn: 0.495%; Ni: 0.485%; Sn: 0.195%; 余量为 Al。
上述的高锌车用铝合金锭的生产方法, 包括如下歩骤:
(1) 废铝料的分类分选: 采用高效除杂质破碎机与智能型筛选除杂 机相结合的方式将废铝料破碎至 80-100mm, 并储存备用;
(2)配料:按重量百分比取 Cu: 3.023%; Si: 11.805%; Mg: 0.341%; Zn: 2.015%; Fe: 0.905%; Mn: 0.495%; Ni: 0.485%; Sn: 0.195%, 余 量取歩骤 (1) 分选破碎出的废铝料, 得到初始原料;
(3) 一次加料: 取初始原料中每种原料质量的 60%-80%, 置于预热 窑预加热至 150°C-300°C后, 送入熔炼炉中;
(4)将熔炼炉继续加热升温至 650°C-750°C, 熔炼 2h_3h, 所述熔炼 炉底部设置有永磁搅拌器, 且熔炼过程中开启永磁搅拌器进行搅拌;
(5) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(6) 初次取样检测: 取熔炼液, 分析各组分含量, 并与权利要求 1 中的组分进行比对;
(7) 二次加料: 根据歩骤(6) 的比对结果, 将剩余的初始原料各组 分含量进行调整后, 置于预热窑预加热至 170°C-30(TC后, 补充进熔炼炉 中, 再次加热熔炼炉, 使熔炼炉升温至 650°C-75(TC, 熔炼 2h-3h, 使二 次加料的原料成熔融状态;
(8) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
歩骤 (8' )取样检测: 取熔炼液, 采用光谱分析仪分析各组分含量, 并与权利要求 1中的组分进行比对。
(9) 转炉: 把熔炼液由熔炼炉移至精炼炉, 进行第二次取样检测操 作, 取熔炼液, 分析各组分含量, 并与权利要求 1中的组分进行比对, 所 述精炼炉底部设置有永磁搅拌器, 且精炼过程中开启永磁搅拌器进行搅 拌;
(10) 补硅: 根据歩骤 (9) 的比对结果, 判断硅的含量是够达到权 利要求 1中硅的组分含量, 若未达到, 则根据检测结果补充硅, 并将补充 的硅在 740±10°C熔化;
(11) 补铜: 根据歩骤 (9) 的比对结果, 判断铜的含量是够达到权 利要求 1中铜的组分含量, 若未达到, 则根据检测结果补充铜, 并将补充 的铜在 730°C以上熔化;
(12) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(13)三次取样检测: 对熔化液进行第三次取样检测, 取熔炼液, 分 析各组分含量, 并与权利要求 1中的组分进行比对;
(14)调整成分: 若比对结果与权利要求 1中的组分含量不一致, 进 行补料或稀释, 直至各组分含量与权利要求 1中的组分含量一致, 并继续 扒渣;
(15)精炼除气: 把铝液温度调整至 700〜73(TC进行精炼除气, 精炼 除气时间为 50〜60分钟, 具体为: 在打开永磁搅拌器的情况下, 把粉状 精炼剂放置在喷粉罐内,用纯度不低于 99.99%的氮气把粉状精炼剂经过管 道吹入熔化液内部, 在除杂精炼的同时进行除气, 精炼除气至铝液含气量 达到 0.26cc/100gAl以下, 含渣量控制在 K 0.1的范围。;
(16) 扒渣: 扒除精炼除气后浮在铝液表面的浮渣;
(17) 静置: 静置 30〜40分钟;
(18) 取样检测: 对熔炼液取样检测, 确认各组分含量与权利要求 1 中的组分含量一致;
(19)在线除气: 采用 Τ型陶瓷脱气管再次向熔化液中通入纯度不低 于 99.99%的氮气进行在线除气;
(20)放汤, 具体为: 具体为: 采用陶瓷过滤板与玻璃纤维过滤网相 结合的过滤方式进行放汤;
(21) 铸造: 将产品铸造成符合存储运输要求的铝合金锭。 实施例 11
一种高锌车用铝合金锭, 按重量百分比计, 由以下组分组成: Cu: 3.520%; Si: 11.809%; Mg: 0.32%; Zn: 2.342%; Fe: 0.854%; Mn: 0.405%; Ni: 0.402%; Sn: 0.021%; 余量为 Al。
上述的高锌车用铝合金锭的生产方法, 包括如下歩骤:
(1) 废铝料的分类分选: 采用高效除杂质破碎机与智能型筛选除杂 机相结合的方式将废铝料破碎至 80-100mm, 并储存备用;
(2)配料: 按重量百分比取 Cu: 3.520%; Si: 11.809%; Mg: 0.32%; Zn: 2.342%; Fe: 0.854%; Mn: 0.405%; Ni: 0.402%; Sn: 0.021%, 余 量取歩骤 (1) 分选破碎出的废铝料, 得到初始原料;
(3) 一次加料: 取初始原料中每种原料质量的 60%-80%, 置于预热 窑预加热至 150°C-300°C后, 送入熔炼炉中;
(4)将熔炼炉继续加热升温至 650°C-750°C, 熔炼 2h_3h, 所述熔炼 炉底部设置有永磁搅拌器, 且熔炼过程中开启永磁搅拌器进行搅拌;
(5) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(6) 初次取样检测: 取熔炼液, 分析各组分含量, 并与权利要求 1 中的组分进行比对;
(7) 二次加料: 根据歩骤(6) 的比对结果, 将剩余的初始原料各组 分含量进行调整后, 置于预热窑预加热至 170°C-30(TC后, 补充进熔炼炉 中, 再次加热熔炼炉, 使熔炼炉升温至 650°C-75(TC, 熔炼 2h-3h, 使二 次加料的原料成熔融状态;
(8) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
歩骤 (8' ) 取样检测: 取熔炼液, 采用光谱分析仪分析各组分含量, 并与权利要求 1中的组分进行比对。
(9) 转炉: 把熔炼液由熔炼炉移至精炼炉, 进行第二次取样检测操 作, 取熔炼液, 分析各组分含量, 并与权利要求 1中的组分进行比对, 所 述精炼炉底部设置有永磁搅拌器, 且精炼过程中开启永磁搅拌器进行搅 拌;
(10) 补硅: 根据歩骤 (9) 的比对结果, 判断硅的含量是够达到权 利要求 1中硅的组分含量, 若未达到, 则根据检测结果补充硅, 并将补充 的硅在 740±10°C熔化;
(11) 补铜: 根据歩骤 (9) 的比对结果, 判断铜的含量是够达到权 利要求 1中铜的组分含量, 若未达到, 则根据检测结果补充铜, 并将补充 的铜在 730°C以上熔化;
(12) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(13)三次取样检测: 对熔化液进行第三次取样检测, 取熔炼液, 分 析各组分含量, 并与权利要求 1中的组分进行比对;
(14)调整成分: 若比对结果与权利要求 1中的组分含量不一致, 进 行补料或稀释, 直至各组分含量与权利要求 1中的组分含量一致, 并继续 扒渣;
(15)精炼除气: 把铝液温度调整至 700〜73(TC进行精炼除气, 精炼 除气时间为 50〜60分钟, 具体为: 在打开永磁搅拌器的情况下, 把粉状 精炼剂放置在喷粉罐内,用纯度不低于 99.99%的氮气把粉状精炼剂经过管 道吹入熔化液内部, 在除杂精炼的同时进行除气, 精炼除气至铝液含气量 达到 0.26cc/100gAl以下, 含渣量控制在 K 0.1的范围。;
(16) 扒渣: 扒除精炼除气后浮在铝液表面的浮渣;
(17) 静置: 静置 30〜40分钟;
(18) 取样检测: 对熔炼液取样检测, 确认各组分含量与权利要求 1 中的组分含量一致;
(19)在线除气: 采用 Τ型陶瓷脱气管再次向熔化液中通入纯度不低 于 99.99%的氮气进行在线除气;
(20)放汤, 具体为: 具体为: 采用陶瓷过滤板与玻璃纤维过滤网相 结合的过滤方式进行放汤;
(21) 铸造: 将产品铸造成符合存储运输要求的铝合金锭。 实施例 12 一种高锌车用铝合金锭, 按重量百分比计, 由以下组分组成: Cu: 3.685%; Si: 11.502%; Mg: 0.325%; Zn: 1.955%; Fe: 0.902%; Mn: 0.413%; Ni: 0.075%; Sn: 0.190%; 余量为 Al。
上述的高锌车用铝合金锭的生产方法, 包括如下歩骤:
(1) 废铝料的分类分选: 采用高效除杂质破碎机与智能型筛选除杂 机相结合的方式将废铝料破碎至 80-100mm, 并储存备用;
(2)配料:按重量百分比取 Cu: 3.685%; Si: 11.502%; Mg: 0.325%; Zn: 2.235%; Fe: 0.902%; Mn: 0.413%; Ni: 0.075%; Sn: 0.190%, 余 量取歩骤 (1) 分选破碎出的废铝料, 得到初始原料;
(3) 一次加料: 取初始原料中每种原料质量的 60%-80%, 置于预热 窑预加热至 150°C-300°C后, 送入熔炼炉中;
(4)将熔炼炉继续加热升温至 650°C-750°C, 熔炼 2h_3h, 所述熔炼 炉底部设置有永磁搅拌器, 且熔炼过程中开启永磁搅拌器进行搅拌;
(5) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(6) 初次取样检测: 取熔炼液, 分析各组分含量, 并与权利要求 1 中的组分进行比对;
(7) 二次加料: 根据歩骤(6) 的比对结果, 将剩余的初始原料各组 分含量进行调整后, 置于预热窑预加热至 170°C-30(TC后, 补充进熔炼炉 中, 再次加热熔炼炉, 使熔炼炉升温至 650°C-75(TC, 熔炼 2h-3h, 使二 次加料的原料成熔融状态;
(8) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
歩骤 (8' )取样检测: 取熔炼液, 采用光谱分析仪分析各组分含量, 并与权利要求 1中的组分进行比对。
(9) 转炉: 把熔炼液由熔炼炉移至精炼炉, 进行第二次取样检测操 作, 取熔炼液, 分析各组分含量, 并与权利要求 1中的组分进行比对, 所 述精炼炉底部设置有永磁搅拌器, 且精炼过程中开启永磁搅拌器进行搅 拌;
(10) 补硅: 根据歩骤 (9) 的比对结果, 判断硅的含量是够达到权 利要求 1中硅的组分含量, 若未达到, 则根据检测结果补充硅, 并将补充 的硅在 740±10°C熔化;
(11) 补铜: 根据歩骤 (9) 的比对结果, 判断铜的含量是够达到权 利要求 1中铜的组分含量, 若未达到, 则根据检测结果补充铜, 并将补充 的铜在 730°C以上熔化;
(12) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(13)三次取样检测: 对熔化液进行第三次取样检测, 取熔炼液, 分 析各组分含量, 并与权利要求 1中的组分进行比对;
(14)调整成分: 若比对结果与权利要求 1中的组分含量不一致, 进 行补料或稀释, 直至各组分含量与权利要求 1中的组分含量一致, 并继续 扒渣;
(15)精炼除气: 把铝液温度调整至 700〜73(TC进行精炼除气, 精炼 除气时间为 50〜60分钟, 具体为: 在打开永磁搅拌器的情况下, 把粉状 精炼剂放置在喷粉罐内,用纯度不低于 99.99%的氮气把粉状精炼剂经过管 道吹入熔化液内部, 在除杂精炼的同时进行除气, 精炼除气至铝液含气量 达到 0.26cc/100gAl以下, 含渣量控制在 K 0.1的范围。;
(16) 扒渣: 扒除精炼除气后浮在铝液表面的浮渣;
(17) 静置: 静置 30〜40分钟;
(18) 取样检测: 对熔炼液取样检测, 确认各组分含量与权利要求 1 中的组分含量一致;
(19)在线除气: 采用 Τ型陶瓷脱气管再次向熔化液中通入纯度不低 于 99.99%的氮气进行在线除气;
(20)放汤, 具体为: 具体为: 采用陶瓷过滤板与玻璃纤维过滤网相 结合的过滤方式进行放汤;
(21) 铸造: 将产品铸造成符合存储运输要求的铝合金锭。 实施例 13
一种高锌车用铝合金锭,按重量百分比计,由以下组分组成: Cu: 1.5%; Si: 10.5%; Mg: 0.35%; Zn: 2.5%; Fe: 1.1%; Ni: 0.35%; Sn: 0.1%; 余量为 Al。
上述的高锌车用铝合金锭的生产方法, 包括如下歩骤:
(1) 废铝料的分类分选: 采用高效除杂质破碎机与智能型筛选除杂 机相结合的方式将废铝料破碎至 80-100mm, 并储存备用;
(2) 配料: 按重量百分比取 Cu: 1.5%; Si: 10.5%; Mg: 0.35%; Zn: 2.5%; Fe: 1.1%; Ni: 0.35%; Sn: 0.1%, 余量取歩骤 (1) 分选破 碎出的废铝料, 得到初始原料;
(3) 一次加料: 取初始原料中每种原料质量的 60%-80%, 置于预热 窑预加热至 150°C-300°C后, 送入熔炼炉中;
(4)将熔炼炉继续加热升温至 650°C-750°C, 熔炼 2h_3h, 所述熔炼 炉底部设置有永磁搅拌器, 且熔炼过程中开启永磁搅拌器进行搅拌;
(5) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(6) 初次取样检测: 取熔炼液, 分析各组分含量, 并与权利要求 1 中的组分进行比对;
(7) 二次加料: 根据歩骤(6) 的比对结果, 将剩余的初始原料各组 分含量进行调整后, 置于预热窑预加热至 170°C-30(TC后, 补充进熔炼炉 中, 再次加热熔炼炉, 使熔炼炉升温至 650°C-75(TC, 熔炼 2h-3h, 使二 次加料的原料成熔融状态;
(8) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
歩骤 (8' ) 取样检测: 取熔炼液, 采用光谱分析仪分析各组分含量, 并与权利要求 1中的组分进行比对。
(9) 转炉: 把熔炼液由熔炼炉移至精炼炉, 进行第二次取样检测操 作, 取熔炼液, 分析各组分含量, 并与权利要求 1中的组分进行比对, 所 述精炼炉底部设置有永磁搅拌器, 且精炼过程中开启永磁搅拌器进行搅 拌;
(10) 补硅: 根据歩骤 (9) 的比对结果, 判断硅的含量是够达到权 利要求 1中硅的组分含量, 若未达到, 则根据检测结果补充硅, 并将补充 的硅在 740±10°C熔化;
(11) 补铜: 根据歩骤 (9) 的比对结果, 判断铜的含量是够达到权 利要求 1中铜的组分含量, 若未达到, 则根据检测结果补充铜, 并将补充 的铜在 730°C以上熔化;
(12) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(13)三次取样检测: 对熔化液进行第三次取样检测, 取熔炼液, 分 析各组分含量, 并与权利要求 1中的组分进行比对;
(14)调整成分: 若比对结果与权利要求 1中的组分含量不一致, 进 行补料或稀释, 直至各组分含量与权利要求 1中的组分含量一致, 并继续 扒渣;
(15)精炼除气: 把铝液温度调整至 700〜73(TC进行精炼除气, 精炼 除气时间为 50〜60分钟, 具体为: 在打开永磁搅拌器的情况下, 把粉状 精炼剂放置在喷粉罐内,用纯度不低于 99.99%的氮气把粉状精炼剂经过管 道吹入熔化液内部, 在除杂精炼的同时进行除气, 精炼除气至铝液含气量 达到 0.26cc/100gAl以下, 含渣量控制在 K 0.1的范围。;
(16) 扒渣: 扒除精炼除气后浮在铝液表面的浮渣;
(17) 静置: 静置 30〜40分钟;
(18) 取样检测: 对熔炼液取样检测, 确认各组分含量与权利要求 1 中的组分含量一致;
(19)在线除气: 采用 Τ型陶瓷脱气管再次向熔化液中通入纯度不低 于 99.99%的氮气进行在线除气;
(20)放汤, 具体为: 具体为: 采用陶瓷过滤板与玻璃纤维过滤网相 结合的过滤方式进行放汤;
(21) 铸造: 将产品铸造成符合存储运输要求的铝合金锭。 实施例 14
一种高锌车用铝合金锭,按重量百分比计,由以下组分组成: Cu: 4.0%; Si: 12%; Mg: 0.05%; Zn: 2.3%; Mn: 0.5%; Ni: 0.5%; Sn: 0.2%; 余量为 Al。
上述的高锌车用铝合金锭的生产方法, 包括如下歩骤:
(1) 废铝料的分类分选: 采用高效除杂质破碎机与智能型筛选除杂 机相结合的方式将废铝料破碎至 80-100mm, 并储存备用;
(2)配料: 按重量百分比取 Cu: 4.0%; Si: 12%; Mg: 0.05%; Zn: 2.3%; Mn: 0.5%; Ni: 0.5%; Sn: 0.2%, 余量取歩骤 (1) 分选破碎出 的废铝料, 得到初始原料;
(3) 一次加料: 取初始原料中每种原料质量的 60%-80%, 置于预热 窑预加热至 150°C-300°C后, 送入熔炼炉中;
(4)将熔炼炉继续加热升温至 650°C-750°C, 熔炼 2h_3h, 所述熔炼 炉底部设置有永磁搅拌器, 且熔炼过程中开启永磁搅拌器进行搅拌;
(5) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(6) 初次取样检测: 取熔炼液, 分析各组分含量, 并与权利要求 1 中的组分进行比对;
(7) 二次加料: 根据歩骤(6) 的比对结果, 将剩余的初始原料各组 分含量进行调整后, 置于预热窑预加热至 170°C-30(TC后, 补充进熔炼炉 中, 再次加热熔炼炉, 使熔炼炉升温至 650°C-75(TC, 熔炼 2h-3h, 使二 次加料的原料成熔融状态;
(8) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
歩骤 (8' ) 取样检测: 取熔炼液, 采用光谱分析仪分析各组分含量, 并与权利要求 1中的组分进行比对。
(9) 转炉: 把熔炼液由熔炼炉移至精炼炉, 进行第二次取样检测操 作, 取熔炼液, 分析各组分含量, 并与权利要求 1中的组分进行比对, 所 述精炼炉底部设置有永磁搅拌器, 且精炼过程中开启永磁搅拌器进行搅 拌;
(10) 补硅: 根据歩骤 (9) 的比对结果, 判断硅的含量是够达到权 利要求 1中硅的组分含量, 若未达到, 则根据检测结果补充硅, 并将补充 的硅在 740±10°C熔化;
(11) 补铜: 根据歩骤 (9) 的比对结果, 判断铜的含量是够达到权 利要求 1中铜的组分含量, 若未达到, 则根据检测结果补充铜, 并将补充 的铜在 730°C以上熔化;
(12) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(13)三次取样检测: 对熔化液进行第三次取样检测, 取熔炼液, 分 析各组分含量, 并与权利要求 1中的组分进行比对;
(14)调整成分: 若比对结果与权利要求 1中的组分含量不一致, 进 行补料或稀释, 直至各组分含量与权利要求 1中的组分含量一致, 并继续 扒渣;
(15)精炼除气: 把铝液温度调整至 700〜73(TC进行精炼除气, 精炼 除气时间为 50〜60分钟, 具体为: 在打开永磁搅拌器的情况下, 把粉状 精炼剂放置在喷粉罐内,用纯度不低于 99.99%的氮气把粉状精炼剂经过管 道吹入熔化液内部, 在除杂精炼的同时进行除气, 精炼除气至铝液含气量 达到 0.26cc/100gAl以下, 含渣量控制在 K 0.1的范围。;
(16) 扒渣: 扒除精炼除气后浮在铝液表面的浮渣;
(17) 静置: 静置 30〜40分钟;
(18) 取样检测: 对熔炼液取样检测, 确认各组分含量与权利要求 1 中的组分含量一致;
(19)在线除气: 采用 Τ型陶瓷脱气管再次向熔化液中通入纯度不低 于 99.99%的氮气进行在线除气;
(20)放汤, 具体为: 具体为: 采用陶瓷过滤板与玻璃纤维过滤网相 结合的过滤方式进行放汤;
(21) 铸造: 将产品铸造成符合存储运输要求的铝合金锭。 本发明上述的实施例中, 取样检测均采用光谱分析仪分析各组分含 量, 所述加料采用铝熔炼自动加料系统进行。 并且, 高锌车用铝合金锭的 Ζη含量可达 2.5%, Ζη元素能与铝合金中其他元素结合形成强化相, 如 Zn2Mg、 HgZn2等。 保证了车用铝合金的高强度要求。 本发明采用采用高 效除杂质破碎机与智能型筛选除杂机相结合的方式, 能将废铝料破碎至小 尺寸 (80-100mm), 以加快熔化速度、 减少熔炼能耗, 并能有效去除原料 杂质, 且利用此方式筛选的原料更有利于生产高锌铝合金锭, 熔炼生产遵 循 "快速熔炼"原则。
本发明采用永磁搅拌技术进行搅拌, 使熔融的铝液各部位成分均匀; 永磁搅拌是靠永磁体所产生的磁力场对铝液进行非接触式搅拌,不会污染 合金熔体, 由于磁感应器置于熔炉的底部, 熔炉底部的合金熔体获得的搅 拌力较大, 顶部搅拌力较小, 即表面的氧化膜不易被破坏, 有效地减少了 合金熔体的表面氧化, 同时可减少烧损, 减少熔体吸气, 提高合金成分均 匀性, 提高熔化速度, 改善合金的内在质量; 扒渣: 是为了保证车用铝合 金锭低含渣量要求而特殊设定, 以求最大量减少精炼前的铝液含渣量; 调 整成分后继续扒渣, 是为了确保铝液的洁净度; 为确保精炼的高效率性, 精炼除气时将熔化液温度调整为 700-73CTC左右。 本发明的精炼除气是把粉状精炼剂放置在喷粉罐内, 采用通氮气法, 氮气纯度为 99.99%, 把粉状精炼剂经过管道吹入铝液内部, 在除杂精炼 的同时进行除气; 但精炼喷粉罐的转速与生产普通牌号的铝合金不同, 采 用的方法为在原有 30min的除气基础上, 通过降低精炼喷粉罐的转速, 延 长喷粉 20-30min的时间, 以达二次精炼的效果, 将含气、 含渣量控制在 最低水平; 精炼温度保持在 700-730°C ; 精炼除气时把永磁打开, 以保证 精炼除气充分、 彻底, 从而来提高精炼除气效果; 精炼除气能去除铝液中 的杂质和气体, 精炼除气后, 铝液含气量可达到 0.26cc/100gAl 以下, 含 渣量控制在 K 0.1的范围。
在 Κ模检测技术中, Κ值 =0时, 为非常纯净的铝液, 结果判定为 ΑΑ 级; Κ值<0.1时, 为纯净的铝液,结果判定为 Α级; K值 0.1-0.5时, 为 比铰纯净的铝液,结果判定为 B级, K值 0.5-1.0时, 为较为纯净的铝液, 结果判定为 C级,属合格但是需要进行进一歩精炼处理; 值>1.0时, 为 受污染的铝液, 结果判定为 D级, 属不合格, 铝液不能使用。 本发明所提供的高锌车用铝合金锭的生产方法, 为了严格控制合金成 分, 在整个生产过程中的每一歩取样分光, 采用直读光谱仪进行, 且每一 批次的生产均会进行至少 10次的分光检测, 确保合金成分的准确性和稳 定性。
本发明提供的高锌车用铝合金锭, 与现有技术相比具有以下优点: 生 产成本低, 效率高, 含气含渣量远低于行业水平, 合金成分均匀, 控制精 准, 锌含量比重高, 合金强度高; 本发明所述的高锌车用铝合金锭的生产 方法, 与现有技术相比具有以下优点: 采用高效除杂质破碎机与智能型筛 选除杂机相结合的方式, 能将废铝料破碎至小尺寸, 并能保证原料的洁净 度, 加快了熔化速度、 减少了熔炼能耗, 更能保证锌原料的有效分选; 采 用机械分选代替人工分选, 大大加快了原料的分选效率; 采用了废铝料作 为原料, 生产成本大大降低; 每一批次的生产均会进行至少 10次的分光 检测, 合金成分得到精准控制, 同时采用先进的永磁搅拌技术, 保证合金 成分均匀、 无二次污染、 偏析小; 熔 Cu后增加一道扒渣工序, 并通过降 低精炼喷粉罐的转速, 延长喷粉时间, 达到二次精炼的效果。 其超低含渣 量 (K值 0.1 )、 超低含气量 ( 0.26cc/100gAl) 的性能大大超过市场上 车用铝合金锭的要求;放汤过程采用陶瓷过滤板与玻璃纤维过滤网相结合 的过滤技术, 铝液的渣含量得到最大程度的控制。 以上所述实施例仅表达了本发明的实施方式, 其描述较为具体和详 细, 但并不能因此而理解为对本发明专利范围的限制。 应当指出的是, 对 于本领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做 出若干变形和改进, 这些都属于本发明的保护范围。 因此, 本发明专利的 保护范围应以所附权利要求为准。

Claims

权 利 要 求 书
1. 一种高锌车用铝合金锭, 其特征在于, 按重量百分比计, 由以下 组分组成: Cu : 1.5%〜4.0%; Si: 10.5%〜12.0%; Mg: 0.05〜0.35%; Zn: 0.5〜2.5%; Fe: 0—1.1%; Mn: 0〜0.5%; Ni: 0〜0.5%; Sn: 0〜0.2%; 余量为 Al。
2. 根据权利要求 1 所述的高锌车用铝合金锭的生产方法, 其特征在 于, 包括如下歩骤:
( 1 ) 废铝料的分类分选: 将废铝料破碎至 80- 100mm, 并储存备用;
(2)配料: 按重量百分比取 Cu : 1.5%〜4.0%; Si: 10.5%〜12.0%; Mg: 0.05—0.35%; Zn: 0.5〜2.5%; Fe: 0〜1.1%; Mn: 0〜0.5%; Ni: 0〜 0.5%; Sn: 0-0.2%, 余量取歩骤(1 )分选破碎出的废铝料, 得到初始原 料;
( 3 ) 一次加料: 取初始原料中每种原料质量的 60%-80%, 置于预热 窑预加热至 150°C-300°C后, 送入熔炼炉中;
(4 )将熔炼炉继续加热升温至 650°C-750°C, 熔炼 2h_3h, 所述熔炼 炉底部设置有永磁搅拌器, 且熔炼过程中开启永磁搅拌器进行搅拌;
( 5 ) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
( 6 ) 初次取样检测: 取熔炼液, 分析各组分含量, 并与权利要求 1 中的组分进行比对;
( 7 ) 二次加料: 根据歩骤(6 ) 的比对结果, 将剩余的初始原料各组 分含量进行调整后, 置于预热窑预加热至 170°C-30(TC后, 补充进熔炼炉 中, 再次加热熔炼炉, 使熔炼炉升温至 650°C-75(TC, 熔炼 2h-3h, 使二 次加料的原料成熔融状态;
( 8 ) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
( 9 ) 转炉: 把熔炼液由熔炼炉移至精炼炉, 进行第二次取样检测操 作, 取熔炼液, 分析各组分含量, 并与权利要求 1中的组分进行比对, 所 述精炼炉底部设置有永磁搅拌器, 且精炼过程中开启永磁搅拌器进行搅 拌;
(10) 补硅: 根据歩骤 (9) 的比对结果, 判断硅的含量是够达到权 利要求 1中硅的组分含量, 若未达到, 则根据检测结果补充硅, 并将补充 的硅在 740±10°C熔化;
(11) 补铜: 根据歩骤 (9) 的比对结果, 判断铜的含量是够达到权 利要求 1中铜的组分含量, 若未达到, 则根据检测结果补充铜, 并将补充 的铜在 730°C以上熔化;
(12) 扒渣: 对熔炼液体表面漂浮的氧化渣进行扒渣处理;
(13)三次取样检测: 对熔化液进行第三次取样检测, 取熔炼液, 分 析各组分含量, 并与权利要求 1中的组分进行比对;
(14)调整成分: 若比对结果与权利要求 1中的组分含量不一致, 进 行补料或稀释, 直至各组分含量与权利要求 1中的组分含量一致, 并继续 扒渣;
(15)精炼除气: 把铝液温度调整至 700〜73(TC进行精炼除气, 精炼 除气时间为 50〜60分钟;
(16) 扒渣: 扒除精炼除气后浮在铝液表面的浮渣;
(17) 静置: 静置 30〜40分钟;
(18) 取样检测: 对熔炼液取样检测, 确认各组分含量与权利要求 1 中的组分含量一致;
(19)在线除气:再次向熔化液中通入纯度不低于 99.99%的氮气进行 在线除气;
(20) 放汤;
(21) 铸造: 将产品铸造成符合存储运输要求的铝合金锭。
3. 根据权利要求 2所述的高锌车用铝合金锭的生产方法, 其特征在 于: 所述精炼除气具体为: 在打开永磁搅拌器的情况下, 把粉状精炼剂放 置在喷粉罐内,用纯度不低于 99.99%的氮气把粉状精炼剂经过管道吹入熔 化液内部, 在除杂精炼的同时进行除气, 精炼除气至铝液含气量达到
0. 26cc/100gAl以下, 含渣量控制在 K 0. 1的范围。
4. 根据权利要求 2所述的高锌车用铝合金锭的生产方法, 其特征在 于: 所述在线除气采用 Τ型陶瓷脱气管通入氮气。
5. 根据权利要求 2所述的高锌车用铝合金锭的生产方法, 其特征在 于:采用高效除杂质破碎机与智能型筛选除杂机相结合的方式将废铝料破 碎至 80-100mm
6. 根据权利要求 2所述的高锌车用铝合金锭的生产方法, 其特征在 于: 所述歩骤 (8 ) 和歩骤 (9 ) 之间还包括歩骤 (8 ' ) 取样检测: 取熔 炼液, 采用光谱分析仪分析各组分含量, 并与权利要求 1中的组分进行比 对。
7. 根据权利要求 2 所述的高锌车用铝合金锭的生产方法, 其特征在 于: 所述取样检测采用光谱分析仪分析各组分含量。
8. 根据权利要求 2所述的高锌车用铝合金锭的生产方法, 其特征在 于: 所述加料采用铝熔炼自动加料系统进行。
9. 根据权利要求 2 所述的高锌车用铝合金锭的生产方法, 其特征在 于: 所述放汤具体为: 采用陶瓷过滤板与玻璃纤维过滤网相结合的过滤 方式进行放汤。
PCT/CN2013/000894 2013-05-24 2013-07-26 一种高锌车用铝合金锭及其生产方法 WO2014186920A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013101974618A CN103276260A (zh) 2013-05-24 2013-05-24 高锌车用铝合金锭及其生产方法
CN201310197461.8 2013-05-24

Publications (1)

Publication Number Publication Date
WO2014186920A1 true WO2014186920A1 (zh) 2014-11-27

Family

ID=49058873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000894 WO2014186920A1 (zh) 2013-05-24 2013-07-26 一种高锌车用铝合金锭及其生产方法

Country Status (2)

Country Link
CN (1) CN103276260A (zh)
WO (1) WO2014186920A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887016A (zh) * 2014-03-04 2014-06-25 安徽海纳电缆集团有限公司 一种电缆导体用铝合金的加工工艺
CN104004932B (zh) * 2014-06-03 2016-08-24 芜湖永达科技有限公司 一种铝屑在铝合金缸盖铸造中的应用方法
CN106967904A (zh) * 2017-02-06 2017-07-21 张建帮 一种高强度汽车铝合金材料及其铸造方法
CN108165839A (zh) * 2017-11-29 2018-06-15 江苏华晟电气科技有限公司 一种汽车发动机用铝合金压铸件的制备方法
CN108165750A (zh) * 2017-12-29 2018-06-15 河南明泰科技发展有限公司 铝及铝合金废料回收处理方法及应用
CN112813315A (zh) * 2020-12-30 2021-05-18 重庆百吉四兴压铸有限公司 高性能变速器箱体铝合金
CN115415498B (zh) * 2022-09-07 2024-05-17 湛江德利车辆部件有限公司 一种铝合金压铸件的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2128205A (en) * 1982-10-16 1984-04-26 Cosworth Res & Dev Ltd Aluminium-silicon casting alloys
CN1809647A (zh) * 2003-06-24 2006-07-26 通用汽车公司 发动机机体用铝合金
US20070246132A1 (en) * 2006-03-27 2007-10-25 Dasgupta Rathindra Squeeze cast rear suspension components using ADC12-T4 aluminum alloy
CN101921935A (zh) * 2010-06-03 2010-12-22 怡球金属资源再生(中国)股份有限公司 环保型低气含量铝合金锭及其生产方法
CN101921933A (zh) * 2010-06-03 2010-12-22 怡球金属资源再生(中国)股份有限公司 高纯度稳定型铝合金锭及其生产方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2128205A (en) * 1982-10-16 1984-04-26 Cosworth Res & Dev Ltd Aluminium-silicon casting alloys
CN1809647A (zh) * 2003-06-24 2006-07-26 通用汽车公司 发动机机体用铝合金
US20070246132A1 (en) * 2006-03-27 2007-10-25 Dasgupta Rathindra Squeeze cast rear suspension components using ADC12-T4 aluminum alloy
CN101921935A (zh) * 2010-06-03 2010-12-22 怡球金属资源再生(中国)股份有限公司 环保型低气含量铝合金锭及其生产方法
CN101921933A (zh) * 2010-06-03 2010-12-22 怡球金属资源再生(中国)股份有限公司 高纯度稳定型铝合金锭及其生产方法

Also Published As

Publication number Publication date
CN103276260A (zh) 2013-09-04

Similar Documents

Publication Publication Date Title
WO2014186920A1 (zh) 一种高锌车用铝合金锭及其生产方法
CN101921934B (zh) 高性能均匀性铝合金锭的生产方法
WO2014186919A1 (zh) 一种高硬度铝合金锭及其生产方法
CN101921933B (zh) 一种高纯度稳定型铝合金锭的生产方法
CN102433438B (zh) 一种废杂铜的处理方法
CN101294875B (zh) 多元素铝合金标准样品的制备方法
CN106967894A (zh) 一种6010铝合金熔铸工艺
CN104614215A (zh) 高锰铝青铜标准物质及其制备方法
CN112553467A (zh) 低Zn低Cu类再生铝合金生产的工艺
CN103725898A (zh) 废铝精炼直接再利用节能环保新工艺
CN109881024A (zh) 一种再生铝合金非气体杂质的去除方法
CN111154989A (zh) 一种铝及铝熔体处理方法
CN103255293B (zh) 铝合金熔化过程中产生的铝渣回收方法、回收铝液及其应用
CN112626339A (zh) 一种提高铝轮毂回收废屑的制备方法
CN108118215B (zh) 一种6系铝合金及其制备方法
CN109402432A (zh) 一种核级锆合金返回料铸锭的制备方法
CN114807650B (zh) 一种铝合金罐料熔炼中添加ubc回收废料的生产工艺
CN109926430A (zh) 一种重金属废渣还原造锍熔炼处置的方法
CN108374109B (zh) 一种用废弃易拉罐制备再生铝合金的方法
CN1614045A (zh) 一种废镁合金的回收方法
CN110684901A (zh) 一种降低废旧黄杂铜中铁含量的方法
CN116399751A (zh) 一种铁屑压饼出水率检测方法
CN108977622A (zh) 一种利用铝废料加工炼钢铝脱氧剂的方法
CN113106282A (zh) 一种低铁低硅铝液及其制备方法和应用
CN118685648A (zh) 一种利用废旧5系铝合金制备3004铝合金锭的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885421

Country of ref document: EP

Kind code of ref document: A1