WO2014185726A1 - Method for preparing urethane hardener for electrodeposition paint, cationic electrodeposition resin composition for electrodeposition paint containing same, and electrodeposition paint composition - Google Patents

Method for preparing urethane hardener for electrodeposition paint, cationic electrodeposition resin composition for electrodeposition paint containing same, and electrodeposition paint composition Download PDF

Info

Publication number
WO2014185726A1
WO2014185726A1 PCT/KR2014/004362 KR2014004362W WO2014185726A1 WO 2014185726 A1 WO2014185726 A1 WO 2014185726A1 KR 2014004362 W KR2014004362 W KR 2014004362W WO 2014185726 A1 WO2014185726 A1 WO 2014185726A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodeposition
electrodeposition paint
curing agent
amine
resin composition
Prior art date
Application number
PCT/KR2014/004362
Other languages
French (fr)
Korean (ko)
Inventor
정하택
정만용
고봉성
김홍렬
김태호
황영준
Original Assignee
주식회사 케이씨씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이씨씨 filed Critical 주식회사 케이씨씨
Priority to RU2015153429A priority Critical patent/RU2637029C2/en
Priority to CN201480040559.5A priority patent/CN105378009B/en
Publication of WO2014185726A1 publication Critical patent/WO2014185726A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4419Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds
    • C09D5/443Polyepoxides
    • C09D5/4434Polyepoxides characterised by the nature of the epoxy binder
    • C09D5/4438Binder based on epoxy/amine adducts, i.e. reaction products of polyepoxides with compounds containing amino groups only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4419Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds
    • C09D5/443Polyepoxides
    • C09D5/4453Polyepoxides characterised by the nature of the curing agent

Definitions

  • the present invention relates to a method for preparing a urethane curing agent for electrodeposition paint, and a cationic electrodeposition resin composition and electrodeposition paint composition for electrodeposition paint comprising the same, wherein an aromatic dihydric alcohol, an aliphatic dihydric alcohol or a mixture thereof is a polyisocyanate group.
  • the present invention relates to a urethane curing agent free of free isocyanate, and a cationic electrodeposition resin composition and electrodeposition coating composition for electrodeposition paint comprising the same.
  • Electrodeposition coating refers to a technique in which a polymer having an electric charge moves to an electrode of opposite charge under a direct current, and a change in pH caused by decomposition of water at the electrode causes polymer precipitation to form a non-conductive coating film.
  • the importance of these electrodeposition methods is increasing because they provide higher adhesion efficiency, significant corrosion resistance, and lower environmental pollution than non-electrophoretic means.
  • a general curing agent for electrodeposition resins is prepared by blocking polyisocyanates using monohydric alcohols and polyhydric alcohols as blocking agents. At this time, the equivalent ratio of the hydroxyl group of the alcohol and the NCO of the polyisocyanate is 1: 1 or 1.01: 1.
  • the blocked curing agent has a smaller molecular structure compared to the main binder of the electrodeposition resin, and thus affects the appearance, baking temperature, and coating riseability of the electrodeposition coating film depending on the content of the curing agent in the electrodeposition resin composition and the molecular weight of the blocking agent. Gives.
  • Electrodeposited coatings generally form a finished coating after baking for 20 to 40 minutes at 140 ° C to 180 ° C. Alcohols blocked by the curing agent during the baking process dissociate from the polyisocyanate and evaporate to prevent loss of the coating during baking. Generate. In addition, when the content of the curing agent is increased in order to lower the baking temperature, there is a problem in that the internal coating property decreases due to the increase in coating film riseability.
  • Korean Patent Application No. 10-2009-0027370 discloses a method of preparing a tertiary amine containing a hydroxyl group as a blocking agent by reacting a secondary amine having a hydroxyl group with a mono epoxy compound and a curing agent blocked therefrom.
  • An object of the present invention is to block the isocyanate using an aromatic dihydric alcohol, an aliphatic dihydric alcohol, or a mixture thereof, and to improve the internal coating property by increasing the molecular weight and to reduce the loss of the coating in the baking process by blocking the isocyanate. It is to provide a urethane curing agent for electrodeposition paint that can be reduced, and a cationic electrodeposition resin composition and electrodeposition paint composition for electrodeposition paint comprising the same.
  • the present invention uses an aromatic dihydric alcohol and an aliphatic dihydric alcohol or a mixture thereof as a blocking agent, the production of a polyurethane curing agent for electrodeposition paint comprising the step of reacting a polyisocyanate thereto Provide a method.
  • a urethane curing agent prepared according to the present invention; And it provides a cationic electrodeposition resin composition for electrodeposition paint comprising an amine-modified polyepoxy resin prepared by reacting a polyepoxy resin and an amine.
  • an electrodeposition coating composition comprising a cationic electrodeposition resin composition, a pigment paste and deionized water according to the present invention.
  • the method for preparing a urethane curing agent included in a cationic electrodeposition resin composition for electrodeposition paint includes reacting a polyisocyanate with a blocking agent including any one or a mixture of aromatic dihydric alcohols and aliphatic dihydric alcohols.
  • the blocker is a blocker for isocyanates in the curing agent and aliphatic, aromatic dihydric alcohols and mono-polyhydric alcohols may be included in the blocker.
  • a blocking agent comprising one selected from aromatic dihydric alcohols, aliphatic dihydric alcohols and mixtures thereof is used.
  • the polyisocyanate by using a dihydric alcohol of the blocking agent used in the urethane curing agent can be expected to improve the internal paintability according to the molecular weight increase, aromatics that do not evaporate even when dissociated during the baking process
  • a dihydric alcohol and an aliphatic dihydric alcohol having a dissociation time point it is possible to reduce the loss of the coating film generated during the baking process.
  • aliphatic dihydric alcohols having a molecular weight of 60 to 300 and having different reactivity of hydroxy groups can be used, and aromatic 2 is characterized by not evaporating at an appropriate baking temperature of 140-180 ° C. Alcohol can be used.
  • the aliphatic dihydric alcohol is selected from the group consisting of ethylene glycol, 1,2-propylene glycol, 1,4-propylene glycol, 1,5-pentanediol, 1,2-butanediol and 1,2-hexanediol
  • Aromatic dihydric alcohol may be used, one selected from the group consisting of bisphenol A, bisphenol F, ethoxylate bisphenol A and benzene diol, and selected from aliphatic dihydric alcohol and aromatic dihydric alcohol You may use combining two or more of them.
  • the polyisocyanate may use aliphatic or aromatic isocyanate, preferably an aliphatic poly selected from the group consisting of tetramethylene diisocyanate, hexamethylene diisocyanate, dicyclohexylmethane-4,4'-diisocyanate and isophorone diisocyanate Isocyanates; 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, p-phenylene isocyanate, diphenylmethane-4,4'-diisocyanate, polymethylene polyphenyl isocyanate, triphenylmethane-4,4 ', 4 Aromatic polyisocyanates selected from the group consisting of '' -triisocyanates; And one selected from the group consisting of a mixture thereof.
  • Aromatic polyisocyanates selected from the group consisting of '' -triisocyanates; And one selected from the group consisting of
  • the aromatic dihydric alcohol and the polyisocyanate can be reacted with an equivalent ratio of isocyanate: hydroxy group of 1: 0.85 to 1.15 at a temperature of 50 to 100 ° C.
  • an equivalent ratio of isocyanate: hydroxy group of 1: 0.85 to 1.15 at a temperature of 50 to 100 ° C.
  • the aromatic dihydric alcohol is preferably used at 30% by weight or less based on the total weight of the blocking agent.
  • 30% by weight When used in excess of 30% by weight has a disadvantage that the viscosity of the curing agent is increased and not easy to handle.
  • the aliphatic dihydric alcohol and the polyisocyanate can be reacted with an equivalent ratio of isocyanate: hydroxy group of 1: 2 to 1.15 at a temperature of 50 to 100 ° C. Within the above temperature and equivalent ratio range, gelation of the composition can be prevented.
  • the aliphatic dihydric alcohol is preferably used at 70% by weight or less based on the total weight of the blocking agent. Use in excess of 70% by weight exposes you to the risk of becoming a composition gel.
  • the reaction of the polyisocyanate with the aromatic dihydric alcohol, aliphatic dihydric alcohol or a mixture thereof and the polyisocyanate according to the present invention may be terminated at the time point confirmed by the infrared analysis that no unreacted isocyanate remains in the reaction.
  • the urethane curing agent according to the present invention can be used in a completely blocked form, i.e., in a form in which free isocyanate remains, in which case it is present as a two-component resin system through a blend with an epoxy main chain.
  • the curing agent component may usually include a curing catalyst such as tin catalyst.
  • the curing catalyst may be included in the resin or pigment part (Pigment paste) depending on the usage.
  • Such a curing catalyst is essential to electrodeposition and is one component constituting the electrodeposition coating composition.
  • Examples include dibutyl tin dilauryl acid and dibutyl tin oxide, and they are preferably present in a tin component in an amount of about 0.05 to 1% by weight based on the weight of the total resin solids.
  • the weight of all the resin solids means the solid content of the whole cationic electrodeposition resin containing the urethane hardening
  • the cationic electrodeposition resin composition according to the present invention is a urethane curing agent prepared by the method according to the present invention; And amine modified polyepoxy resins prepared by reacting a polyepoxy resin with an amine.
  • the main resin contained in the cationic electrodeposition resin composition of the present invention is an amine-modified polyepoxy resin prepared by reacting a polyepoxy resin with an amine.
  • the polyepoxy resins usually have an epoxy equivalent of 180 to 2000, and preferably have two or more 1,2-epoxy groups.
  • preferred polyepoxy resins include polyglycidyl ethers of polyphenols or polyglycidyl ethers of aromatic polyols such as bisphenol-A.
  • Such polyepoxy resins can be prepared by ether reaction of epihalohydrin or diepihalohydrin such as epichlorohydrin or dichlorohydrin with an aromatic polyol in the presence of alkali.
  • Another example of the polyepoxy resin is a modified polyepoxy resin derived from, for example, a noblock resin or a polyphenol resin.
  • the molecular weight of the polyglycidyl ether of the polyhydric material can be increased.
  • the applicable polyol include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,4-butylene glycol, 1,5-pentanediol, bisphenol-A, and the like.
  • polyepoxys obtained by chain extension with aliphatic polyols and bisphenol A type polyphenols are used for the preparation of the main resin, wherein the equivalent ratio of polyphenol: polyols of bisphenol A type is preferably 1 : 0.2 to 10, more preferably 1: 0.65 to 0.85.
  • the amines used in the production of the main resin of the present invention are primary amines or secondary amines, and may be ketimine or diketimine derived from the reaction of primary or secondary amines and ketones, respectively.
  • the amines may be used alone or in combination.
  • monoisopropanolamine, 2-amino-1-phenyl-1,3-propanediol, butanolamine, diethylenetriamine, tetraethylenepentaamine, diaminotoluene ethylenediamine, N-methyl ethanol amine and their What is chosen from the group which consists of a mixture can be used.
  • the equivalent ratio of polyepoxy resin: amine is 1: 0.6 to 1: 1.2, more preferably 1: 0.7 to 1: 1.15. Stability of the cationic electrodeposition resin within the equivalent ratio range can be ensured.
  • the cationic electrodeposition resin composition for electrodeposition paint of the present invention is preferably 900 to 1300 parts by weight of the urethane curing agent, and 1000 to 1500 parts by weight of the amine-modified polyepoxy resin. If the content of the hardener for the main resin is relatively less than the above amount, there is a problem of deterioration in appearance and pinhole resistance, and if there is a relatively large amount, there is a problem vulnerable to internal permeability.
  • Deionized water and neutralized acid are added to the cationic electrodeposition resin composition for electrodeposition paint to prepare a cationic water-dispersible electrodeposition resin for electrodeposition paint.
  • the neutralized acid organic acids such as acetic acid, lactic acid, formic acid, and inorganic acids such as methane sulfonic acid and sulfonic acid may be used.
  • organic acids such as acetic acid, lactic acid, formic acid
  • inorganic acids such as methane sulfonic acid and sulfonic acid
  • the present invention is not limited thereto, and in general, all kinds of organic acids and inorganic acids that may be used in the cationic electrodeposition resin may be used.
  • the acid content is 20 to 30 molar equivalents (mole equivalent, MEQ) is appropriate based on the resin solid content.
  • MEQ molar equivalent
  • the acid molar equivalent when dispersing is designed to improve the electrophoresis.
  • the acid molar equivalent exceeds the above range, the internal coating property does not tend to be significantly improved. Rather, since the pinholes are easily generated when the galvanized steel sheet is coated, the acid content is 20 to 30 moles based on the resin solids. It is desirable to maintain the equivalent. The lower the acid molar equivalent, the better the lower the stability of the water-disperse resin.
  • the present invention also provides an electrodeposition coating composition comprising a cationic electrodeposition resin composition, a pigment paste and deionized water according to the present invention.
  • the pigment paste used in the present invention is not particularly limited as long as it is commonly used in cationic electrodeposition paints.
  • the electrodeposition coating composition to which the urethane curing agent according to the present invention is applied can reduce bake off loss, and have excellent roughness and exhibit high internal paintability, which is environmentally friendly, and requires excellent quality and reduced paint consumption. It can be used especially suitably where it is.
  • a urethane curing agent was prepared from the mixture of ingredients shown in Table 1 below.
  • PAPI2940 Polymeric methylene diphenyl polyisocyanate commercially available from Dow Chemical Co.
  • PAPI2940, methyl isobutyl ketone and dibutyltin dilaurate were fed to the reaction flask and heated to 30 ° C. under a nitrogen atmosphere.
  • 2- (2-butoxyethoxy) ethanol was added slowly while maintaining the temperature at 60-65 ° C. When the addition was complete the reaction mixture was left at 65 ° C. for 90 minutes.
  • Trimethylol propane was then added and the mixture heated to 110 ° C. and left at this temperature for 3 hours and bisphenol A was added. Infrared analysis was continued at 110 ° C. until no unreacted NCO remained.
  • a urethane curing agent was prepared from the mixture of ingredients shown in Table 2 below.
  • PAPI2940 polymeric methylene diphenyl polyisocyanate commercially available from Dow Chemical Co.
  • PAPI2940, methyl isobutyl ketone and dibutyltin dilaurate were fed to the reaction flask and heated to 30 ° C. under a nitrogen atmosphere.
  • 2- (2-butoxyethoxy) ethanol was added slowly while maintaining the temperature at 60-65 ° C. After the addition was complete, the reaction mixture was left at 65 ° C. for 90 minutes.
  • Trimethylol propane was then added and the mixture heated to 110 ° C. and left at this temperature for 3 hours and bisphenol A was added. Infrared analysis was continued at 110 ° C. until no unreacted NCO remained.
  • a urethane curing agent was prepared from the mixture of ingredients shown in Table 3 below.
  • PAPI2940 polymeric methylene diphenyl polyisocyanate commercially available from Dow Chemical Co.
  • PAPI2940, methyl isobutyl ketone and dibutyltin dilaurate were fed to the reaction flask and heated to 30 ° C. under a nitrogen atmosphere.
  • 2- (2-butoxyethoxy) ethanol was added slowly while maintaining the temperature at 60-65 ° C.
  • Trimethylol propane was then added and the mixture heated to 110 ° C. and left at this temperature for 3 hours and 1,2-hexanediol was added.
  • the NCO equivalent weight: 1,2-hexanediol equivalent 1: 1.6.
  • Infrared analysis was continued at 110 ° C. until no unreacted NCO remained.
  • a urethane curing agent was prepared from the mixture of ingredients shown in Table 4 below.
  • PAPI2940 polymeric methylene diphenyl polyisocyanate commercially available from Dow Chemical Co.
  • PAPI2940, methyl isobutyl ketone and dibutyltin dilaurate were fed to the reaction flask and heated to 30 ° C. under a nitrogen atmosphere.
  • 2- (2-butoxyethoxy) ethanol was added slowly while maintaining the temperature at 60-65 ° C. After the addition was complete, the reaction mixture was left at 65 ° C. for 90 minutes.
  • Trimethylol propane was then added and the mixture heated to 110 ° C. and left at this temperature for 3 hours and 1,2-hexanediol was added. At this time, the NCO equivalent weight: 1,2-hexanediol equivalent weight was 1: 1.8. Infrared analysis was continued at 110 ° C. until no unreacted NCO remained.
  • a urethane curing agent was prepared from the mixture of ingredients shown in Table 5 below.
  • PAPI2940 polymeric methylene diphenyl polyisocyanate commercially available from Dow Chemical Co.
  • PAPI2940, methyl isobutyl ketone and dibutyltin dilaurate were fed to the reaction flask and heated to 30 ° C. under a nitrogen atmosphere.
  • 2- (2-butoxyethoxy) ethanol was added slowly while maintaining the temperature at 60-65 ° C. After the addition was complete, the reaction mixture was left at 65 ° C. for 90 minutes.
  • Trimethylol propane was then added and the mixture heated to 110 ° C. and left at this temperature for 3 hours and bisphenol A was added. The mixture was heated to 110 ° C. and then left at this temperature for 2 hours and 1,2-hexanediol was added.
  • NCO equivalent: 1,2-hexanediol equivalent 1: 1.8 (The second -OH reaction rate in Aliphatic diol was 11%.) Continued until no unreacted NCO remained by infrared analysis. It was kept at 110 ° C.
  • Cationic electrodeposition resins were prepared from mixtures of the components shown in Table 6 below.
  • EPON 828 Diglycidyl ether of bisphenol A with epoxy equivalent 188, commercially available from Shell Chemicla co.
  • KT-22 A 73% solution in which diethylenetriamine is diketimine capped by methyl isobutyl ketone as a product of Air Product, dissolved in methyl isobutyl ketone.
  • EPON 828 bisphenol A-ethylene oxide adduct, bisphenol A and methyl isobutyl ketone were fed to a reaction vessel and heated to 140 ° C. under a nitrogen atmosphere.
  • the first portion of benzyldimethylamine was added and the reaction mixture was exothermic to about 185 ° C. and refluxed to remove azeotropic water.
  • the reaction mixture was then cooled to 160 ° C. and left for 30 minutes, then further cooled to 145 ° C. and a second portion of benzyldimethylamine was added.
  • the temperature was maintained at 145 ° C. until the epoxy equivalent reached 1100-1140. When the said epoxy equivalent was reached, the urethane hardening
  • the mixture was exothermic and then cooled to 125 ° C.
  • the cationic water-dispersion resin for electrodeposition paint was prepared from the mixture of the components shown in Table 7 below.
  • the cationic electrodeposition resin synthesized above was slowly added to the mixture of stirring formic acid and the first deionized water with sufficient stirring to disperse. Subsequently, second, third and fourth portions of deionized water were gradually added to the dispersion to further dilute, and the organic solvent was removed by vacuum stripping to prepare a cationic water dispersion resin for electrodeposition paint having a solid content of 36%.
  • the cationic water-dispersion resin for electrodeposition paint was prepared in the same manner as in Example 1 using the curing agent of Preparation Example 2.
  • Cationic water-dispersion resin for electrodeposition paint was prepared in the same manner as in Example 1 using the curing agent of Preparation Example 3.
  • Cationic water-dispersion resin for electrodeposition paint was prepared in the same manner as in Example 1 using the curing agent of Preparation Example 4.
  • Cationic water-dispersion resin for electrodeposition paint was prepared in the same manner as in Example 1 using the curing agent of Preparation Example 5.
  • a urethane curing agent was prepared using monohydric alcohol and trihydric alcohol, and a cationic water dispersion resin for electrodeposition paint was prepared using the same.
  • a urethane curing agent was prepared from the mixture of ingredients shown in Table 8 below.
  • PAPI2940 polymeric methylene diphenyl polyisocyanate commercially available from Dow Chemical Co.
  • PAPI2940, methyl isobutyl ketone and dibutyltin dilaurate were fed to the reaction flask and heated to 30 ° C. under a nitrogen atmosphere.
  • 2- (2-butoxyethoxy) ethanol was added slowly while maintaining the temperature at 60-65 ° C. After the addition was complete, the reaction mixture was left at 65 ° C. for 90 minutes.
  • Trimethylol propane was then added and the mixture heated to 110 ° C. and left at this temperature for 3 hours. Infrared analysis was continued at 110 ° C. until no unreacted NCO remained.
  • Each of the coating compositions prepared above was subjected to electrodeposition coating at a direct current voltage of 150V to 350V for 3 minutes at a bath temperature of 28 ° C.
  • the coated specimen was cured for 30 minutes at 170 ° C. in an oven oven. In this case, a phosphate treated steel sheet was used.
  • Example 9 Example 10 Coating voltage 1) 20 ⁇ m 240 V 280 V 260 V 280 V 270 V 310 V 15 ⁇ m 170 V 200 V 170 V 200 V 210 V 230 V Roughness (Ra) 2) 20 ⁇ m 0.15 0.22 0.18 0.26 0.19 0.13 15 ⁇ m 0.18 0.25 0.19 0.29 0.2 0.15 Gloss (60 o ) 3) 82 82 83 46 57 88 Bake off loss 4) 9.8 7.2 7.5 6.8 7.3 5.5 Solvent resistance 5) ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ T / P (4BOX) 6) 20 ⁇ m 61% 68% 64% 66% 63% 73% 15 ⁇ m 45% 61% 58% 62% 55% 71%
  • Coating voltage DC voltage required to deposit 20 ⁇ m, 15 ⁇ m coating film on steel sheet
  • Bake off loss (Weight of specimen after pre-baking-Weight of specimen after hardening) / (Weight of specimen after pre-baking-Weight of specimen before electrodeposition coating) ( ⁇ pre bake condition: 120 °C, 1hr)
  • test plate Using four test plates, prepare box-shaped test pieces with a test plate spacing of 20 mm.
  • the test plate shall be 150 ⁇ 70 mm and the HOLE shall be 8 mm in diameter at a height of 45 mm of the test plate.
  • test plates shall be fixed with adhesive tape such as GUM TAPE and the side and bottom of the box formed of 4 sheets of steel shall be completely sealed with tape.
  • Electrodeposition coating After confirming that paint is completely entered into 3 spaces divided by steel sheet. Standard conditions for electrodeposition coating were CV 20 ⁇ m, 3 minutes, 28 °C and electrode ratio 1: 8.
  • the coating composition prepared according to the present invention is excellent in roughness, low bake off loss, and exhibits high internal coating (T / P).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention relates to a method for preparing a urethane hardener for electrodeposition paint, the method comprising a step of reacting one selected from aromatic dihydric alcohol, aliphatic dihydric alcohol, and a mixture thereof, and polyisocyanate; to a cationic resin composition containing the hardener for electrodeposition paint, and to an electrodeposition paint composition. The electrodeposition paint composition containing the hardener according to the present invention can reduce the bake off loss at the time of baking and have excellent surface roughness and interior paintability.

Description

전착 도료용 우레탄 경화제의 제조방법, 이를 포함하는 전착 도료용 양이온 전착 수지 조성물 및 전착 도료 조성물Method for producing urethane curing agent for electrodeposition paint, cationic electrodeposition resin composition and electrodeposition paint composition for electrodeposition paint comprising the same
본 발명은 전착 도료용 우레탄 경화제의 제조방법, 및 이를 포함하는 전착 도료용 양이온 전착 수지 조성물 및 전착 도료 조성물에 관한 것으로서, 다가 알코올인 방향족 2가 알코올, 지방족 2가 알코올 또는 이들의 혼합물이 이소시아네이트기에 대한 차단제로 적용되어 유리 이소시아네이트가 없는 우레탄 경화제, 및 이를 포함하는 전착 도료용 양이온 전착 수지 조성물 및 전착 도료 조성물에 관한 것이다.The present invention relates to a method for preparing a urethane curing agent for electrodeposition paint, and a cationic electrodeposition resin composition and electrodeposition paint composition for electrodeposition paint comprising the same, wherein an aromatic dihydric alcohol, an aliphatic dihydric alcohol or a mixture thereof is a polyisocyanate group. The present invention relates to a urethane curing agent free of free isocyanate, and a cationic electrodeposition resin composition and electrodeposition coating composition for electrodeposition paint comprising the same.
전착도장은 직류전류 작용하에서 전하를 갖는 고분자가 반대전하의 전극으로 이동하여, 전극에서의 물의 분해에 의한 pH의 변화가 고분자 석출을 유발시켜 비전도성 도막의 형성이 이루어지는 기술을 말한다. 이러한 전착법은 비-전기 영동수단에 비해 보다 높은 부착효율, 현저한 내부식성, 그리고 낮은 환경 오염도를 제공하기 때문에 그 중요성은 증가되고 있다.Electrodeposition coating refers to a technique in which a polymer having an electric charge moves to an electrode of opposite charge under a direct current, and a change in pH caused by decomposition of water at the electrode causes polymer precipitation to form a non-conductive coating film. The importance of these electrodeposition methods is increasing because they provide higher adhesion efficiency, significant corrosion resistance, and lower environmental pollution than non-electrophoretic means.
일반적인 전착수지용 경화제는 1가 알코올 및 다가 알코올을 차단제로 사용하여 폴리이소시아네이트를 차단시켜 제조한다. 이때 알코올의 하이드록시기와 폴리 이소시아네이트의 NCO의 당량비는 1:1 혹은 1.01:1로 반응한다. 이렇게 제조된 차단된 경화제는 상대적으로 전착수지의 메인 바인더인 주제에 비해 작은 분자의 구조를 가지므로 전착수지 조성물 내 경화제의 함량 및 차단제의 분자량에 따라 전착 도막의 외관, 소부온도 및 도막오름성에 영향을 준다. A general curing agent for electrodeposition resins is prepared by blocking polyisocyanates using monohydric alcohols and polyhydric alcohols as blocking agents. At this time, the equivalent ratio of the hydroxyl group of the alcohol and the NCO of the polyisocyanate is 1: 1 or 1.01: 1. Thus, the blocked curing agent has a smaller molecular structure compared to the main binder of the electrodeposition resin, and thus affects the appearance, baking temperature, and coating riseability of the electrodeposition coating film depending on the content of the curing agent in the electrodeposition resin composition and the molecular weight of the blocking agent. Gives.
전착 도막은 일반적으로 140℃∼180℃에서 20분∼40분 동안 소부를 거쳐 완성된 도막을 형성하는데, 소부 공정 중 경화제에 차단된 알코올은 폴리이소시아네이트로부터 해리되어 증발하면서 소부 기간 중 도막의 손실을 발생시킨다. 또한 소부온도 저하를 위해 경화제 함량을 높였을 시는 도막오름성 상승에 따른 내부도장성이 저하되는 문제점이 발생한다.Electrodeposited coatings generally form a finished coating after baking for 20 to 40 minutes at 140 ° C to 180 ° C. Alcohols blocked by the curing agent during the baking process dissociate from the polyisocyanate and evaporate to prevent loss of the coating during baking. Generate. In addition, when the content of the curing agent is increased in order to lower the baking temperature, there is a problem in that the internal coating property decreases due to the increase in coating film riseability.
이를 보완하기 위해 대한민국 출원특허 제10-2009-0027370호에서는 하이드록시기를 가지는 2급 아민을 모노 에폭시 화합물과 반응시켜 하이드록시기를 포함하는 3급 아민을 차단제로 제조하는 방법 및 그로 차단된 경화제를 사용하여 소부 공정에서 도막의 손실을 줄이고 아민의 영향으로 내부 도장성을 향상시키는 양이온 전착 도료용 경화제에 대해 기술하고 있으나, 소부 온도가 상승하는 단점이 있다.In order to compensate for this, Korean Patent Application No. 10-2009-0027370 discloses a method of preparing a tertiary amine containing a hydroxyl group as a blocking agent by reacting a secondary amine having a hydroxyl group with a mono epoxy compound and a curing agent blocked therefrom. By reducing the loss of the coating film in the baking process, and describes the curing agent for the cationic electrodeposition paint to improve the internal coating property under the influence of the amine, there is a disadvantage that the baking temperature rises.
[선행기술문헌] 대한민국 출원특허 제10-2009-0027370호[Technical Document] Korean Patent Application No. 10-2009-0027370
본 발명의 목적은 다가 알코올인 방향족 2가 알코올, 지방족 2가 알코올 또는 이들의 혼합물을 사용하여 이소시아네이트를 차단시키고 반응물을 쇄연장시켜 분자량 증대에 따른 내부도장성 개선과 소부 공정에서의 도막의 손실을 줄일 수 있는 전착 도료용 우레탄 경화제, 및 이를 포함하는 전착 도료용 양이온 전착 수지 조성물 및 전착 도료 조성물을 제공하는 것이다. An object of the present invention is to block the isocyanate using an aromatic dihydric alcohol, an aliphatic dihydric alcohol, or a mixture thereof, and to improve the internal coating property by increasing the molecular weight and to reduce the loss of the coating in the baking process by blocking the isocyanate. It is to provide a urethane curing agent for electrodeposition paint that can be reduced, and a cationic electrodeposition resin composition and electrodeposition paint composition for electrodeposition paint comprising the same.
상기 목적을 달성하기 위해, 본 발명은 방향족 2가 알코올과 지방족 2가 알코올 중 어느 하나 또는 이들의 혼합물을 차단제로 사용하고, 여기에 폴리이소시아네이트를 반응시키는 단계를 포함하는 전착 도료용 우레탄 경화제의 제조방법을 제공한다. In order to achieve the above object, the present invention uses an aromatic dihydric alcohol and an aliphatic dihydric alcohol or a mixture thereof as a blocking agent, the production of a polyurethane curing agent for electrodeposition paint comprising the step of reacting a polyisocyanate thereto Provide a method.
본 발명의 다른 측면에 따르면, 본 발명에 따라 제조된 우레탄 경화제; 및 폴리에폭시 수지와 아민을 반응시켜 제조한 아민 변성 폴리에폭시 수지를 포함하는 전착 도료용 양이온 전착수지 조성물이 제공된다.According to another aspect of the present invention, a urethane curing agent prepared according to the present invention; And it provides a cationic electrodeposition resin composition for electrodeposition paint comprising an amine-modified polyepoxy resin prepared by reacting a polyepoxy resin and an amine.
본 발명의 또 다른 측면에 따르면, 본 발명에 따른 양이온 전착수지 조성물, 안료 페이스트 및 탈이온수를 포함하는 전착 도료 조성물이 제공된다. According to another aspect of the present invention, there is provided an electrodeposition coating composition comprising a cationic electrodeposition resin composition, a pigment paste and deionized water according to the present invention.
이하, 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
전착 도료용 양이온 전착수지 조성물에 포함되는 우레탄 경화제의 제조방법은 방향족 2가 알코올과 지방족 2가 알코올 중 어느 하나 또는 이들의 혼합물을 포함하여 이루어진 차단제, 폴리이소시아네이트를 반응시키는 단계를 포함한다. The method for preparing a urethane curing agent included in a cationic electrodeposition resin composition for electrodeposition paint includes reacting a polyisocyanate with a blocking agent including any one or a mixture of aromatic dihydric alcohols and aliphatic dihydric alcohols.
상기 차단제는 경화제 내 이소시아네이트에 대한 차단제이고 지방족, 방향족 2가 알코올 및 1가~다가 알코올 전부가 차단제에 포함될 수 있다. 본 발명에서는 방향족 2가 알코올, 지방족 2가 알코올 및 이들의 혼합물로부터 선택되는 하나를 포함하는 차단제를 사용한다. 본 발명의 일 실시예에 따르면, 우레탄 경화제에 사용되는 차단제 중 2가 알코올을 이용하여 폴리이소시아네이트를 쇄연장시켜 분자량 증대에 따른 내부 도장성 향상을 기대할 수 있고, 소부 공정 중 해리되어도 증발하지 않는 방향족 2가 알코올 및 해리시점 차이가 발생하는 지방족 2가 알코올을 사용하여 소부 공정 중 발생되는 도막의 손실을 절감할 수 있다.The blocker is a blocker for isocyanates in the curing agent and aliphatic, aromatic dihydric alcohols and mono-polyhydric alcohols may be included in the blocker. In the present invention, a blocking agent comprising one selected from aromatic dihydric alcohols, aliphatic dihydric alcohols and mixtures thereof is used. According to one embodiment of the present invention, by extending the polyisocyanate by using a dihydric alcohol of the blocking agent used in the urethane curing agent can be expected to improve the internal paintability according to the molecular weight increase, aromatics that do not evaporate even when dissociated during the baking process By using a dihydric alcohol and an aliphatic dihydric alcohol having a dissociation time point, it is possible to reduce the loss of the coating film generated during the baking process.
대표적인 이소시아네이트에 대한 차단제로서는 분자량이 60 내지 300 사이이며 하이드록시기의 반응성 차이가 있는 지방족 2가 알코올을 사용할 수 있으며, 전착 도막의 적정 소부 온도인 140∼180℃에서 증발하지 않는 특징이 있는 방향족 2가 알코올을 사용할 수 있다. 바람직하게는, 지방족 2가 알코올은 에틸렌 글리콜, 1,2-프로필렌글리콜, 1,4-프로필렌글리콜, 1,5-펜탄디올, 1,2-부탄디올 및 1,2-헥산디올로 이루어지는 군으로부터 선택되는 하나를 사용할 수 있으며, 방향족 2가 알코올은 비스페놀 A, 비스페놀 F, 에톡실레이트 비스페놀 A 및 벤젠 다이올로 이루어지는 군으로부터 선택되는 하나를 사용할 수 있으며, 지방족 2가 알코올 및 방향족 2가 알코올로부터 선택되는 2 이상을 조합하여 사용할 수도 있다. As a typical blocking agent for isocyanates, aliphatic dihydric alcohols having a molecular weight of 60 to 300 and having different reactivity of hydroxy groups can be used, and aromatic 2 is characterized by not evaporating at an appropriate baking temperature of 140-180 ° C. Alcohol can be used. Preferably, the aliphatic dihydric alcohol is selected from the group consisting of ethylene glycol, 1,2-propylene glycol, 1,4-propylene glycol, 1,5-pentanediol, 1,2-butanediol and 1,2-hexanediol Aromatic dihydric alcohol may be used, one selected from the group consisting of bisphenol A, bisphenol F, ethoxylate bisphenol A and benzene diol, and selected from aliphatic dihydric alcohol and aromatic dihydric alcohol You may use combining two or more of them.
폴리이소시아네이트는 지방족 또는 방향족 이소시아네이트를 사용할 수 있으며, 바람직하게는 테트라메틸렌 디이소시아네이트, 헥사메틸렌 디이소시아네이트, 디시클로헥실메탄-4,4'-디이소시아네이트 및 이소포론 디이소시아네이트로 이루어지는 군으로부터 선택되는 지방족 폴리이소시아네이트; 2,4-톨루엔 디이소시아네이트, 2,6-톨루엔 디이소시아네이트, p-페닐렌 이소시아네이트, 디페닐메탄-4,4'-디이소시아네이트, 폴리메틸렌 폴리페닐 이소시아네이트, 트리페닐메탄-4,4',4''-트리이소시아네이트로 이루어지는 군으로부터 선택되는 방향족 폴리이소시아네이트; 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 하나를 사용할 수 있다. The polyisocyanate may use aliphatic or aromatic isocyanate, preferably an aliphatic poly selected from the group consisting of tetramethylene diisocyanate, hexamethylene diisocyanate, dicyclohexylmethane-4,4'-diisocyanate and isophorone diisocyanate Isocyanates; 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, p-phenylene isocyanate, diphenylmethane-4,4'-diisocyanate, polymethylene polyphenyl isocyanate, triphenylmethane-4,4 ', 4 Aromatic polyisocyanates selected from the group consisting of '' -triisocyanates; And one selected from the group consisting of a mixture thereof.
본 발명의 하나의 구체예에 따르면, 방향족 2가 알코올과 폴리이소시아네이트는 50∼100℃의 온도하에서 이소시아네이트:하이드록시기의 당량비를 1:0.85∼1.15로 하여 반응시킬 수 있다. 상기 온도 및 당량비 범위 내에서 균일한 분자량을 가진 조성물을 제조할 수 있는 효과가 있다. According to one embodiment of the present invention, the aromatic dihydric alcohol and the polyisocyanate can be reacted with an equivalent ratio of isocyanate: hydroxy group of 1: 0.85 to 1.15 at a temperature of 50 to 100 ° C. There is an effect that can produce a composition having a uniform molecular weight within the above temperature and equivalent ratio range.
또한, 방향족 2가 알코올은 상기 차단제의 총 중량 기준으로 30 중량% 이하로 사용하는 것이 바람직하다. 30 중량%를 초과하여 사용하게 되면 경화제의 점도가 상승하여 취급에 용이하지 않는 단점이 있다. In addition, the aromatic dihydric alcohol is preferably used at 30% by weight or less based on the total weight of the blocking agent. When used in excess of 30% by weight has a disadvantage that the viscosity of the curing agent is increased and not easy to handle.
본 발명의 다른 구체예에 따르면, 지방족 2가 알코올과 폴리이소시아네이트는 50∼100℃의 온도하에서 이소시아네이트:하이드록시기의 당량비를 1:2∼1.15로 하여 반응시킬 수 있다. 상기 온도 및 당량비 범위 내에서는 조성물의 겔화를 방지할 수 있다. According to another embodiment of the present invention, the aliphatic dihydric alcohol and the polyisocyanate can be reacted with an equivalent ratio of isocyanate: hydroxy group of 1: 2 to 1.15 at a temperature of 50 to 100 ° C. Within the above temperature and equivalent ratio range, gelation of the composition can be prevented.
또한, 지방족 2가 알코올은 차단제의 총 중량 기준으로 70 중량% 이하로 사용하는 것이 바람직하다. 70 중량%를 초과하여 사용하게 되면 조성물 겔이 될 수 있는 위험에 노출된다. 본 발명에 따른 방향족 2가 알코올, 지방족 2가 알코올 또는 이들의 혼합물과 폴리이소시아네이트의 반응은 적외선 분석에 의해 반응물 중에 미반응 이소시아네이트가 전혀 남아있지 않았음을 확인한 시점에서 종료할 수 있다. In addition, the aliphatic dihydric alcohol is preferably used at 70% by weight or less based on the total weight of the blocking agent. Use in excess of 70% by weight exposes you to the risk of becoming a composition gel. The reaction of the polyisocyanate with the aromatic dihydric alcohol, aliphatic dihydric alcohol or a mixture thereof and the polyisocyanate according to the present invention may be terminated at the time point confirmed by the infrared analysis that no unreacted isocyanate remains in the reaction.
한편, 본 발명에 따른 우레탄 경화제는 완전히 차단된 형태, 즉 유리 이소시아네이트가 남아 있지 않은 형태로 사용될 수 있으며, 이 경우 에폭시 주쇄와의 블렌드를 통해 2 성분 수지 시스템으로 존재한다. 경화제 성분 내에는 보통 주석 촉매와 같은 경화 촉매가 포함될 수 있다. 또한 경화 촉매는 사용법에 따라 수지에 포함될 수도 있고, 안료부분(Pigment paste)에 포함될 수도 있다. 이러한 경화 촉매는 전착에 필수로 사용되는 것으로서 전착 도료 조성물을 구성하는 하나의 성분이다. 예로서, 디라우릴산 디부틸 주석과 산화디부틸 주석을 들 수 있으며, 이들은 전체 수지 고체의 중량을 기준으로 주석 성분이 약 0.05∼1중량%의 양으로 존재하는 것이 바람직하다. 여기서 전체 수지 고체의 중량이란 우레탄 경화제를 포함하고 있는 양이온 전착수지 전체의 고형분을 의미한다. On the other hand, the urethane curing agent according to the present invention can be used in a completely blocked form, i.e., in a form in which free isocyanate remains, in which case it is present as a two-component resin system through a blend with an epoxy main chain. The curing agent component may usually include a curing catalyst such as tin catalyst. In addition, the curing catalyst may be included in the resin or pigment part (Pigment paste) depending on the usage. Such a curing catalyst is essential to electrodeposition and is one component constituting the electrodeposition coating composition. Examples include dibutyl tin dilauryl acid and dibutyl tin oxide, and they are preferably present in a tin component in an amount of about 0.05 to 1% by weight based on the weight of the total resin solids. Here, the weight of all the resin solids means the solid content of the whole cationic electrodeposition resin containing the urethane hardening | curing agent.
또한, 본 발명에 따른 양이온 전착수지 조성물은 본 발명에 따른 방법에 의해 제조된 우레탄 경화제; 및 폴리에폭시 수지와 아민을 반응시켜 제조한 아민 변성 폴리에폭시 수지를 포함한다. In addition, the cationic electrodeposition resin composition according to the present invention is a urethane curing agent prepared by the method according to the present invention; And amine modified polyepoxy resins prepared by reacting a polyepoxy resin with an amine.
본 발명의 양이온 전착수지 조성물에 포함되는 주수지는 폴리에폭시 수지와 아민을 반응시켜 제조한 아민 변성 폴리에폭시 수지이다. The main resin contained in the cationic electrodeposition resin composition of the present invention is an amine-modified polyepoxy resin prepared by reacting a polyepoxy resin with an amine.
폴리에폭시 수지는 통상 180∼2000의 에폭시 당량을 가지며, 바람직하게는 2개 이상의 1,2-에폭시 그룹을 갖는다. 바람직한 폴리에폭시 수지의 예로는 폴리페놀의 폴리글리시딜 에테르 또는 비스페놀-A와 같은 방향족 폴리올의 폴리글리시딜 에테르 등을 들 수 있다. 이러한 폴리에폭시 수지는, 알칼리 존재하에 에피클로로히드린또는 디클로로히드린과 같은 에피할로히드린 또는 디에피할로히드린과 아로마틱 폴리올과의 에테르 반응에 의해 제조될 수 있다. 상기 폴리에폭시 수지의 또 다른 예로는 예컨대 노블락 수지 또는 폴리페놀 수지 등으로부터유도된 변성 폴리에폭시 수지를 들 수 있다. 한편, 아로마틱 디올의 폴리글리시딜 에테르와 에폭시 그룹과 반응할 수 있는 폴리올의 반응에 의하여, 폴리히드릭 물질의 폴리글리시딜 에테르의 분자량이 증가될 수 있다. 이때 적용 가능한 폴리올의 예로는 에틸렌 글리콜, 디에틸렌 글리콜, 트리에틸렌 글리콜, 1,2-프로필렌 글리콜, 1,4-부틸렌 글리콜, 1,5-펜탄디올 및 비스페놀-A 등을 들 수 있다.The polyepoxy resins usually have an epoxy equivalent of 180 to 2000, and preferably have two or more 1,2-epoxy groups. Examples of preferred polyepoxy resins include polyglycidyl ethers of polyphenols or polyglycidyl ethers of aromatic polyols such as bisphenol-A. Such polyepoxy resins can be prepared by ether reaction of epihalohydrin or diepihalohydrin such as epichlorohydrin or dichlorohydrin with an aromatic polyol in the presence of alkali. Another example of the polyepoxy resin is a modified polyepoxy resin derived from, for example, a noblock resin or a polyphenol resin. On the other hand, by the reaction of the polyglycidyl ether of the aromatic diol with the polyol capable of reacting with the epoxy group, the molecular weight of the polyglycidyl ether of the polyhydric material can be increased. Examples of the applicable polyol include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,4-butylene glycol, 1,5-pentanediol, bisphenol-A, and the like.
본 발명의 구체예에 따르면, 지방족 폴리올 및 비스페놀 A 타입의 폴리페놀로 쇄 연장시켜 얻어진 폴리에폭시가 주수지의 제조에 사용되는데, 이때, 비스페놀 A타입의 폴리페놀:폴리올의 당량비는 바람직하게는 1:0.2∼10이고, 더욱 바람직하게는 1:0.65∼0.85이다.According to an embodiment of the invention, polyepoxys obtained by chain extension with aliphatic polyols and bisphenol A type polyphenols are used for the preparation of the main resin, wherein the equivalent ratio of polyphenol: polyols of bisphenol A type is preferably 1 : 0.2 to 10, more preferably 1: 0.65 to 0.85.
본 발명의 주수지 제조에 사용되는 아민은 일급 아민 또는 이급 아민이며, 일급 또는 이급 아민과 케톤류의 반응으로부터 각각 유도되는 케티민(Ketimine) 또는 디케티민(Diketimine)일 수 있다. 아민은 단독으로 또는 혼합되어 사용가능하다. 바람직하게는 모노아이소프로판올아민, 2-아미노-1-페닐-1,3-프로판디올, 부탄올아민, 디에틸렌트리아민, 테트라에틸렌펜타아민, 디아미노톨루엔 에틸렌디아민, N-메틸 에탄올 아민 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 것을 사용할 수 있다. The amines used in the production of the main resin of the present invention are primary amines or secondary amines, and may be ketimine or diketimine derived from the reaction of primary or secondary amines and ketones, respectively. The amines may be used alone or in combination. Preferably monoisopropanolamine, 2-amino-1-phenyl-1,3-propanediol, butanolamine, diethylenetriamine, tetraethylenepentaamine, diaminotoluene ethylenediamine, N-methyl ethanol amine and their What is chosen from the group which consists of a mixture can be used.
이때 폴리에폭시 수지:아민의 당량비는 1:0.6∼1:1.2이고, 더욱 바람직하게는 1:0.7∼1:1.15이다. 상기 당량비 범위 내에서 양이온 전착 수지의 안정성이 확보될 수 있다. In this case, the equivalent ratio of polyepoxy resin: amine is 1: 0.6 to 1: 1.2, more preferably 1: 0.7 to 1: 1.15. Stability of the cationic electrodeposition resin within the equivalent ratio range can be ensured.
본 발명의 전착 도료용 양이온 전착수지 조성물은, 바람직하게는 우레탄 경화제의 함량이 900 내지 1300 중량부이고, 아민 변성 폴리에폭시 수지의 함량이 1000 내지 1500 중량부이다. 주수지에 대한 경화제의 함량이 상기한 양보다 상대적으로 적으면 외관저하 및 내핀홀성이 떨어지는 문제가 있고, 상대적으로 많으면 내부침투성에 취약한 문제가 있다. The cationic electrodeposition resin composition for electrodeposition paint of the present invention is preferably 900 to 1300 parts by weight of the urethane curing agent, and 1000 to 1500 parts by weight of the amine-modified polyepoxy resin. If the content of the hardener for the main resin is relatively less than the above amount, there is a problem of deterioration in appearance and pinhole resistance, and if there is a relatively large amount, there is a problem vulnerable to internal permeability.
상기 전착 도료용 양이온 전착수지 조성물에 탈이온수와 중화산을 첨가하여 전착 도료용 양이온 수분산 전착수지를 제조할 수 있다.Deionized water and neutralized acid are added to the cationic electrodeposition resin composition for electrodeposition paint to prepare a cationic water-dispersible electrodeposition resin for electrodeposition paint.
상기 중화산으로는 아세트산(acetic acid), 젖산(lactic acid), 개미산(formic acid) 등의 유기산과 MSA(Methane sulfonic Acid), 술폰산(sulfonic acid) 등과 같은 무기산이 사용될 수 있다. 다만 이에 한정되는 것은 아니고 일반적으로 양이온 전착수지에 사용될 수 있는 모든 종류의 유기산, 무기산이 사용될 수 있다. 이때 산의 함량은 수지 고형분 기준으로 20~30 몰당량(mole equivalent, MEQ) 정도가 적당하다. 산 몰당량이 30 초과시에는 전착도료의 전도도가 상승하여 아연도금강판에 도장시 핀홀이 쉽게 발생할 수 있는 단점이 있다. 일반적으로 내부도장성 향상을 위해서는 전기영동성 개선을 위해 수분산시 산 몰당량을 높게 설계한다. 그러나 본 발명에서 산 몰당량이 상기 범위를 초과하는 경우 내부도장성이 더 크게 개선되는 경향은 없고 오히려 아연도 금강판 도장시 핀홀이 쉽게 발생하게 되므로 산의 함량은 수지 고형분 기준으로 20~30 몰당량을 유지하는 것이 바람직하다. 수분산 수지의 안정성을 저하시키지 않는 수준에서 산 몰당량은 낮으면 낮을수록 좋다 As the neutralized acid, organic acids such as acetic acid, lactic acid, formic acid, and inorganic acids such as methane sulfonic acid and sulfonic acid may be used. However, the present invention is not limited thereto, and in general, all kinds of organic acids and inorganic acids that may be used in the cationic electrodeposition resin may be used. At this time, the acid content is 20 to 30 molar equivalents (mole equivalent, MEQ) is appropriate based on the resin solid content. When the acid molar equivalent is more than 30, the conductivity of electrodeposition paint is increased, so that pinholes may easily occur when coating galvanized steel sheet. In general, in order to improve the internal coating property, the acid molar equivalent when dispersing is designed to improve the electrophoresis. However, in the present invention, when the acid molar equivalent exceeds the above range, the internal coating property does not tend to be significantly improved. Rather, since the pinholes are easily generated when the galvanized steel sheet is coated, the acid content is 20 to 30 moles based on the resin solids. It is desirable to maintain the equivalent. The lower the acid molar equivalent, the better the lower the stability of the water-disperse resin.
본 발명은 또한, 본 발명에 따른 양이온 전착수지 조성물, 안료 페이스트 및 탈이온수를 포함하는 전착 도료 조성물을 제공한다. 본 발명에서 사용되는 안료 페이스트는 양이온 전착 도료에 통상적으로 사용되는 것이라면 특별한 제한이 없다.  The present invention also provides an electrodeposition coating composition comprising a cationic electrodeposition resin composition, a pigment paste and deionized water according to the present invention. The pigment paste used in the present invention is not particularly limited as long as it is commonly used in cationic electrodeposition paints.
본 발명에 따른 우레탄 경화제가 적용된 전착 도료 조성물은 소부시 도막의 손실(bake off loss)을 줄일 수 있고, 조도가 우수하며, 높은 내부 도장성을 나타내어 환경친화적이며, 우수한 품질 및 도료소모량 절감이 요구되는 곳에 특히 적합하게 사용할 수 있다. The electrodeposition coating composition to which the urethane curing agent according to the present invention is applied can reduce bake off loss, and have excellent roughness and exhibit high internal paintability, which is environmentally friendly, and requires excellent quality and reduced paint consumption. It can be used especially suitably where it is.
이하 본 발명을 하기 실시예에 의해 보다 구체적으로 설명한다. 그러나 이들 실시예는 본 발명의 이해를 돕기 위한 것일 뿐 이들에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, these examples are only to aid the understanding of the present invention, and the present invention is not limited thereto.
우레탄 경화제의 제조Preparation of Urethane Curing Agent
제조예 1: 방향족 2가 알코올을 사용한 우레탄 경화제의 제조Preparation Example 1 Preparation of Urethane Curing Agent Using Aromatic Dihydric Alcohol
하기 표 1에 나타낸 성분의 혼합물로부터 우레탄 경화제를 제조하였다. A urethane curing agent was prepared from the mixture of ingredients shown in Table 1 below.
표 1
성분 중량부
PAPI29401) 380.8
메틸 이소부틸 케톤2) 199.4
디부틸주석 라우레이트3) 1
2-(2-부톡시에톡시)에탄올4) 298.2
트리메틸올 프로판 56
비스페놀 A5) 65.6
Table 1
ingredient Parts by weight
PAPI2940 1) 380.8
Methyl isobutyl ketone 2) 199.4
Dibutyltin laurate 3) One
2- (2-butoxyethoxy) ethanol 4) 298.2
Trimethylol propane 56
Bisphenol A 5) 65.6
1) PAPI2940: 다우 케이컬 컴퍼니(Dow chemical co.)에서 상업적으로 시판하는 폴리머릭 메틸렌 디페닐 폴리이소시아네이트1) PAPI2940: Polymeric methylene diphenyl polyisocyanate commercially available from Dow Chemical Co.
2) 메틸 이소부틸 케톤: 희석용제2) methyl isobutyl ketone: diluent
3) 디부틸주석 라우레이트: 반응촉매3) dibutyltin laurate: reaction catalyst
4) 2-(2-부톡시에톡시)에탄올: 차단제4) 2- (2-butoxyethoxy) ethanol: blocker
5) 비스페놀 A: 방향족 2가 알코올5) bisphenol A: aromatic dihydric alcohol
PAPI2940, 메틸 이소부틸 케톤 및 디부틸주석 디라우레이트를 반응 플라스크에 공급하고 질소 대기 하에서 30℃로 가열하였다. 온도를 60 내지 65℃로 유지하면서 2-(2-부톡시에톡시)에탄올을 서서히 가하였다. 첨가가 완료되면 반응 혼합물을 65℃에서 90분간 방치하였다. 이어서, 트리메틸올 프로판을 가하고 혼합물을 110℃로 가열한 후 상기 온도에서 3시간 동안 방치하고, 비스페놀 A를 가하였다. 적외선 분석에 의해 미반응 NCO가 전혀 남아있지 않을 때까지 계속하여 110℃로 유지하였다.PAPI2940, methyl isobutyl ketone and dibutyltin dilaurate were fed to the reaction flask and heated to 30 ° C. under a nitrogen atmosphere. 2- (2-butoxyethoxy) ethanol was added slowly while maintaining the temperature at 60-65 ° C. When the addition was complete the reaction mixture was left at 65 ° C. for 90 minutes. Trimethylol propane was then added and the mixture heated to 110 ° C. and left at this temperature for 3 hours and bisphenol A was added. Infrared analysis was continued at 110 ° C. until no unreacted NCO remained.
제조예 2: 방향족 2가 알코올을 사용한 우레탄 경화제의 제조Preparation Example 2 Preparation of Urethane Curing Agent Using Aromatic Dihydric Alcohol
하기 표 2에 나타낸 성분의 혼합물로부터 우레탄 경화제를 제조하였다.A urethane curing agent was prepared from the mixture of ingredients shown in Table 2 below.
표 2
성분 중량부
PAPI29401) 375.4
메틸 이소부틸 케톤 199.4
디부틸주석 라우레이트 1
2-(2-부톡시에톡시)에탄올 330.8
트리메틸올 프로판 62.1
비스페놀 A 32.3
TABLE 2
ingredient Parts by weight
PAPI2940 1) 375.4
Methyl isobutyl ketone 199.4
Dibutyltin laurate One
2- (2-butoxyethoxy) ethanol 330.8
Trimethylol propane 62.1
Bisphenol A 32.3
1) PAPI2940: 다우 케미컬 컴퍼니(Dow chemical co.)에서 상업적으로 시판하는 폴리머릭 메틸렌 디페닐 폴리이소시아네이트1) PAPI2940: polymeric methylene diphenyl polyisocyanate commercially available from Dow Chemical Co.
PAPI2940, 메틸 이소부틸 케톤 및 디부틸주석 디라우레이트를 반응 플라스크에 공급하고 질소 대기하에서 30℃로 가열하였다. 온도를 60 내지 65℃로 유지하면서 2-(2-부톡시에톡시)에탄올을 서서히 가하였다. 첨가가 완료되면 반응 혼합물을 65℃에서 90분간 방치하였다. 이어서, 트리메틸올 프로판을 가하고 혼합물을 110℃로 가열한 후 상기 온도에서 3시간 동안 방치하고, 비스페놀 A를 가하였다. 적외선 분석에 의해 미반응 NCO가 전혀 남아있지 않을 때까지 계속하여 110℃로 유지하였다.PAPI2940, methyl isobutyl ketone and dibutyltin dilaurate were fed to the reaction flask and heated to 30 ° C. under a nitrogen atmosphere. 2- (2-butoxyethoxy) ethanol was added slowly while maintaining the temperature at 60-65 ° C. After the addition was complete, the reaction mixture was left at 65 ° C. for 90 minutes. Trimethylol propane was then added and the mixture heated to 110 ° C. and left at this temperature for 3 hours and bisphenol A was added. Infrared analysis was continued at 110 ° C. until no unreacted NCO remained.
제조예 3: 지방족 2가 알코올을 사용한 우레탄 경화제의 제조Preparation Example 3 Preparation of Urethane Curing Agent Using Aliphatic Dihydric Alcohol
하기 표 3에 나타낸 성분의 혼합물로부터 우레탄 경화제를 제조하였다.A urethane curing agent was prepared from the mixture of ingredients shown in Table 3 below.
표 3
성분 중량부
PAPI29401) 413
메틸 이소부틸 케톤 199.6
디부틸주석 라우레이트 1
2-(2-부톡시에톡시)에탄올 202.2
트리메틸올 프로판 38
1,2-헥산디올 147.3
TABLE 3
ingredient Parts by weight
PAPI2940 1) 413
Methyl isobutyl ketone 199.6
Dibutyltin laurate One
2- (2-butoxyethoxy) ethanol 202.2
Trimethylol propane 38
1,2-hexanediol 147.3
1) PAPI2940: 다우 케미컬 컴퍼니(Dow chemical co.)에서 상업적으로 시판하는 폴리머릭 메틸렌 디페닐 폴리이소시아네이트1) PAPI2940: polymeric methylene diphenyl polyisocyanate commercially available from Dow Chemical Co.
PAPI2940, 메틸 이소부틸 케톤 및 디부틸주석 디라우레이트를 반응 플라스크에 공급하고 질소 대기하에서 30℃로 가열하였다. 온도를 60 내지 65℃로 유지하면서 2-(2-부톡시에톡시)에탄올을 서서히 가하였다. 첨가가 완료되면 반응 혼합물을 65℃에서 90분간 방치하였다. 이어서, 트리메틸올 프로판을 가하고 혼합물을 110℃로 가열한 후 상기 온도에서 3시간 동안 방치하고, 1,2-헥산디올을 가하였다. 이때, NCO 당량:1,2-헥산디올 당량=1:1.6이었다. 적외선 분석에 의해 미반응 NCO가 전혀 남아있지 않을 때까지 계속하여 110℃로 유지하였다.PAPI2940, methyl isobutyl ketone and dibutyltin dilaurate were fed to the reaction flask and heated to 30 ° C. under a nitrogen atmosphere. 2- (2-butoxyethoxy) ethanol was added slowly while maintaining the temperature at 60-65 ° C. When the addition was complete the reaction mixture was left at 65 ° C. for 90 minutes. Trimethylol propane was then added and the mixture heated to 110 ° C. and left at this temperature for 3 hours and 1,2-hexanediol was added. At this time, the NCO equivalent weight: 1,2-hexanediol equivalent = 1: 1.6. Infrared analysis was continued at 110 ° C. until no unreacted NCO remained.
제조예 4: 지방족 2가 알코올을 사용한 우레탄 경화제의 제조Preparation Example 4 Preparation of Urethane Curing Agent Using Aliphatic Dihydric Alcohol
하기 표 4에 나타낸 성분의 혼합물로부터 우레탄 경화제를 제조하였다.A urethane curing agent was prepared from the mixture of ingredients shown in Table 4 below.
표 4
성분 중량부
PAPI29401) 403.7
메틸 이소부틸 케톤 199.6
디부틸주석 라우레이트 1
2-(2-부톡시에톡시)에탄올 197.6
트리메틸올 프로판 37.1
1,2-헥산디올 161.9
Table 4
ingredient Parts by weight
PAPI2940 1) 403.7
Methyl isobutyl ketone 199.6
Dibutyltin laurate One
2- (2-butoxyethoxy) ethanol 197.6
Trimethylol propane 37.1
1,2-hexanediol 161.9
1) PAPI2940: 다우 케미컬 컴퍼니(Dow chemical co.)에서 상업적으로 시판하는 폴리머릭 메틸렌 디페닐 폴리이소시아네이트1) PAPI2940: polymeric methylene diphenyl polyisocyanate commercially available from Dow Chemical Co.
PAPI2940, 메틸 이소부틸 케톤 및 디부틸주석 디라우레이트를 반응 플라스크에 공급하고 질소 대기 하에서 30℃로 가열하였다. 온도를 60 내지 65℃로 유지하면서 2-(2-부톡시에톡시)에탄올을 서서히 가하였다. 첨가가 완료되면 반응 혼합물을 65℃에서 90분간 방치하였다. 이어서, 트리메틸올 프로판을 가하고 혼합물을 110℃로 가열한 후 상기 온도에서 3시간 동안 방치하고, 1,2-헥산디올을 가하였다. 이때, NCO 당량 : 1,2-헥산디올 당량 = 1 : 1.8이었다. 적외선 분석에 의해 미반응 NCO가 전혀 남아있지 않을 때까지 계속하여 110℃로 유지하였다.PAPI2940, methyl isobutyl ketone and dibutyltin dilaurate were fed to the reaction flask and heated to 30 ° C. under a nitrogen atmosphere. 2- (2-butoxyethoxy) ethanol was added slowly while maintaining the temperature at 60-65 ° C. After the addition was complete, the reaction mixture was left at 65 ° C. for 90 minutes. Trimethylol propane was then added and the mixture heated to 110 ° C. and left at this temperature for 3 hours and 1,2-hexanediol was added. At this time, the NCO equivalent weight: 1,2-hexanediol equivalent weight was 1: 1.8. Infrared analysis was continued at 110 ° C. until no unreacted NCO remained.
제조예 5: 방향족 2가 알코올과 지방족 2가 알코올을 사용한 우레탄 경화제의 제조Preparation Example 5 Preparation of Urethane Curing Agent Using Aromatic Dihydric Alcohol and Aliphatic Dihydric Alcohol
하기 표 5에 나타낸 성분의 혼합물로부터 우레탄 경화제를 제조하였다.A urethane curing agent was prepared from the mixture of ingredients shown in Table 5 below.
표 5
성분 중량부
PAPI29401) 409.9
메틸 이소부틸 케톤 199.7
디부틸주석 라우레이트 1
2-(2-부톡시에톡시)에탄올 160.5
트리메틸올 프로판 30.1
비스페놀 A 35.3
1,2-헥산디올 164.4
Table 5
ingredient Parts by weight
PAPI2940 1) 409.9
Methyl isobutyl ketone 199.7
Dibutyltin laurate One
2- (2-butoxyethoxy) ethanol 160.5
Trimethylol propane 30.1
Bisphenol A 35.3
1,2-hexanediol 164.4
1) PAPI2940: 다우 케미컬 컴퍼니(Dow chemical co.)에서 상업적으로 시판하는 폴리머릭 메틸렌 디페닐 폴리이소시아네이트1) PAPI2940: polymeric methylene diphenyl polyisocyanate commercially available from Dow Chemical Co.
PAPI2940, 메틸 이소부틸 케톤 및 디부틸주석 디라우레이트를 반응 플라스크에 공급하고 질소 대기하에서 30℃로 가열하였다. 온도를 60 내지 65℃로 유지하면서 2-(2-부톡시에톡시)에탄올을 서서히 가하였다. 첨가가 완료되면 반응 혼합물을 65℃에서 90분간 방치하였다. 이어서, 트리메틸올 프로판을 가하고 혼합물을 110℃로 가열한 후 상기 온도에서 3시간 동안 방치하고 비스페놀 A를 가하였다. 혼합물을 110℃로 가열한 후 상기 온도에서 2시간 동안 방치하고 1,2-헥산디올을 가하였다. 이때 NCO 당량 : 1,2-헥산디올 당량 = 1 : 1.8이었다.(이때 Aliphatic diol중 2차 -OH 반응 비율은 11%이다.) 적외선 분석에 의해 미반응 NCO가 전혀 남아있지 않을 때까지 계속하여 110℃로 유지하였다.PAPI2940, methyl isobutyl ketone and dibutyltin dilaurate were fed to the reaction flask and heated to 30 ° C. under a nitrogen atmosphere. 2- (2-butoxyethoxy) ethanol was added slowly while maintaining the temperature at 60-65 ° C. After the addition was complete, the reaction mixture was left at 65 ° C. for 90 minutes. Trimethylol propane was then added and the mixture heated to 110 ° C. and left at this temperature for 3 hours and bisphenol A was added. The mixture was heated to 110 ° C. and then left at this temperature for 2 hours and 1,2-hexanediol was added. At this time, NCO equivalent: 1,2-hexanediol equivalent = 1: 1.8 (The second -OH reaction rate in Aliphatic diol was 11%.) Continued until no unreacted NCO remained by infrared analysis. It was kept at 110 ° C.
전착 도료용 양이온 수분산 수지의 제조Preparation of Cationic Water Dispersion Resin for Electrodeposit Coating
실시예 1Example 1
하기 표 6에 나타낸 성분의 혼합물로부터 양이온 전착 수지를 제조하였다.Cationic electrodeposition resins were prepared from mixtures of the components shown in Table 6 below.
표 6
성분 중량부
에폰 8281) 680.9
비스페놀 A-산화에틸렌 부가물(1:6 몰비) 249.9
비스페놀 A2) 199.2
메틸 이소부틸 케톤3) 59.1
벤질디메틸아민 (1st) 1
벤질디메틸아민 (2nd) 2.7
제조예1의 우레탄 경화제 164.4
KT-224) 1194.8
N-메틸 에탄올 아민 65.7
Table 6
ingredient Parts by weight
EPON 828 1) 680.9
Bisphenol A-ethylene oxide adduct (1: 6 molar ratio) 249.9
Bisphenol A 2) 199.2
Methyl isobutyl ketone 3 ) 59.1
Benzyldimethylamine (1 st ) One
Benzyldimethylamine (2 nd ) 2.7
Urethane Curing Agent of Preparation Example 1 164.4
KT-22 4) 1194.8
N-methyl ethanol amine 65.7
1) 에폰 828: 쉘 케미칼 컴파니(Shell Chemicla co.)에서 상업적으로 시판하는, 에폭시 당량 188을 갖는 비스페놀 A의 디글리시딜 에테르1) EPON 828: Diglycidyl ether of bisphenol A with epoxy equivalent 188, commercially available from Shell Chemicla co.
2) 비스페놀 A: 방향족 2가 알코올(쇄연장제)2) bisphenol A: aromatic dihydric alcohol (chain extender)
3) 메틸 이소부틸 케톤: 희석용제 3) methyl isobutyl ketone: diluent
4) KT-22: 에어 프로덕트(Air Product)사의 제품으로서 디에틸렌트리아민이 메틸이소부틸케톤에 의해서 캐핑된 디케티민으로서 메틸이소부틸케톤에 녹아 있는 73% 용액 4) KT-22: A 73% solution in which diethylenetriamine is diketimine capped by methyl isobutyl ketone as a product of Air Product, dissolved in methyl isobutyl ketone.
에폰 828, 비스페놀 A-산화 에틸렌 부가물, 비스페놀 A 및 메틸 이소부틸 케톤을 반응 용기에 공급하고 질소 대기 하에서 140℃로 가열하였다. 첫번째 분량의 벤질디메틸아민을 가하고, 반응 혼합물을 약 185℃로 발열시킨 후 환류시켜 존재하는 물을 공비 제거하였다. 그 후, 반응 혼합물을 160℃로 냉각시키고 30분간 방치한 후, 145℃로 더 냉각시키고 2번째 분량의 벤질디메틸아민을 가하였다. 에폭시 당량이 1100∼1140에 도달할 때까지 145℃를 유지하였다. 상기 에폭시 당량에 도달시 제조예 1의 우레탄 경화제, KT22, N-메틸 에탄올 아민을 연속하여 가하였다. 혼합물을 발열시킨 후 온도를 125℃로 냉각시켰다.EPON 828, bisphenol A-ethylene oxide adduct, bisphenol A and methyl isobutyl ketone were fed to a reaction vessel and heated to 140 ° C. under a nitrogen atmosphere. The first portion of benzyldimethylamine was added and the reaction mixture was exothermic to about 185 ° C. and refluxed to remove azeotropic water. The reaction mixture was then cooled to 160 ° C. and left for 30 minutes, then further cooled to 145 ° C. and a second portion of benzyldimethylamine was added. The temperature was maintained at 145 ° C. until the epoxy equivalent reached 1100-1140. When the said epoxy equivalent was reached, the urethane hardening | curing agent of manufacture example 1, KT22, and N-methyl ethanolamine were added continuously. The mixture was exothermic and then cooled to 125 ° C.
하기 표 7에 나타낸 성분의 혼합물로부터 전착 도료용 양이온 수분산 수지를 제조하였다The cationic water-dispersion resin for electrodeposition paint was prepared from the mixture of the components shown in Table 7 below.
표 7
성분 중량부
양이온 전착 수지 2528.8
탈이온수 (1st) 11.37
85% 개미산 68.33
탈이온수 (2nd) 1407.3
탈이온수 (3rd) 1866.7
탈이온수 (4th) 244.5
TABLE 7
ingredient Parts by weight
Cationic electrodeposition resin 2528.8
Deionized Water (1 st ) 11.37
85% formic acid 68.33
Deionized Water (2 nd ) 1407.3
Deionized Water (3 rd ) 1866.7
Deionized Water (4 th ) 244.5
위에서 합성한 양이온 전착수지를 교반 중인 개미산 및 첫번째 탈이온수로 이루어진 혼합물에 충분한 교반을 가하면서 서서히 가하여 분산시켰다. 이어서, 분산액에 두번째, 세번째, 네번째 분량의 탈이온수를 순차적으로 서서히 가하여 더 희석시키고, 진공 스트리핑으로 유기용매를 제거하여 36%의 고형분 함량의 전착 도료용 양이온 수분산 수지를 제조하였다.The cationic electrodeposition resin synthesized above was slowly added to the mixture of stirring formic acid and the first deionized water with sufficient stirring to disperse. Subsequently, second, third and fourth portions of deionized water were gradually added to the dispersion to further dilute, and the organic solvent was removed by vacuum stripping to prepare a cationic water dispersion resin for electrodeposition paint having a solid content of 36%.
실시예 2 Example 2
제조예 2의 경화제를 사용하여 실시예 1과 동일한 방법으로 전착 도료용 양이온 수분산 수지를 제조하였다.The cationic water-dispersion resin for electrodeposition paint was prepared in the same manner as in Example 1 using the curing agent of Preparation Example 2.
실시예 3 Example 3
제조예 3의 경화제를 사용하여 실시예 1과 동일한 방법으로 전착 도료용 양이온 수분산 수지를 제조하였다.Cationic water-dispersion resin for electrodeposition paint was prepared in the same manner as in Example 1 using the curing agent of Preparation Example 3.
실시예 4 Example 4
제조예 4의 경화제를 사용하여 실시예 1과 동일한 방법으로 전착 도료용 양이온 수분산 수지를 제조하였다.Cationic water-dispersion resin for electrodeposition paint was prepared in the same manner as in Example 1 using the curing agent of Preparation Example 4.
실시예 5 Example 5
제조예 5의 경화제를 사용하여 실시예 1과 동일한 방법으로 전착 도료용 양이온 수분산 수지를 제조하였다.Cationic water-dispersion resin for electrodeposition paint was prepared in the same manner as in Example 1 using the curing agent of Preparation Example 5.
비교예 1 Comparative Example 1
1가 알코올과 3가 알코올을 사용하여 우레탄 경화제를 제조하였고, 이를 사용한 전착 도료용 양이온 수분산 수지를 제조하였다.A urethane curing agent was prepared using monohydric alcohol and trihydric alcohol, and a cationic water dispersion resin for electrodeposition paint was prepared using the same.
하기 표 8에 나타낸 성분의 혼합물로부터 우레탄 경화제를 제조하였다.A urethane curing agent was prepared from the mixture of ingredients shown in Table 8 below.
표 8
성분 중량부
PAPI29401) 370.2
메틸 이소부틸 케톤 199.3
디부틸주석 디라우레이트 1
2-(2-부톡시에톡시)에탄올 362.4
트리메틸올 프로판 68.1
Table 8
ingredient Parts by weight
PAPI2940 1) 370.2
Methyl isobutyl ketone 199.3
Dibutyltin dilaurate One
2- (2-butoxyethoxy) ethanol 362.4
Trimethylol propane 68.1
1) PAPI2940: 다우 케미컬 컴퍼니(Dow chemical co.)에서 상업적으로 시판하는 폴리머릭 메틸렌 디페닐 폴리이소시아네이트1) PAPI2940: polymeric methylene diphenyl polyisocyanate commercially available from Dow Chemical Co.
PAPI2940, 메틸 이소부틸 케톤 및 디부틸주석 디라우레이트를 반응 플라스크에 공급하고 질소 대기하에서 30℃로 가열하였다. 온도를 60 내지 65℃로 유지하면서 2-(2-부톡시에톡시)에탄올을 서서히 가하였다. 첨가가 완료되면 반응 혼합물을 65℃에서 90분간 방치하였다. 이어서, 트리메틸올 프로판을 가하고 혼합물을 110℃로 가열한 후 상기 온도에서 3시간 동안 방치하였다. 적외선 분석에 의해 미반응 NCO가 전혀 남아있지 않을 때까지 계속하여 110℃로 유지하였다.PAPI2940, methyl isobutyl ketone and dibutyltin dilaurate were fed to the reaction flask and heated to 30 ° C. under a nitrogen atmosphere. 2- (2-butoxyethoxy) ethanol was added slowly while maintaining the temperature at 60-65 ° C. After the addition was complete, the reaction mixture was left at 65 ° C. for 90 minutes. Trimethylol propane was then added and the mixture heated to 110 ° C. and left at this temperature for 3 hours. Infrared analysis was continued at 110 ° C. until no unreacted NCO remained.
이후, 비교예 1의 우레탄 경화제 사용하여 실시예 1과 동일한 방법으로 전착 도료용 양이온 수분산 수지를 제조하였다. Thereafter, a cationic water-dispersible resin for electrodeposition paint was prepared in the same manner as in Example 1 using the urethane curing agent of Comparative Example 1.
실시예 6∼10 및 비교예 2: 전착 도료 조성물의 제조Examples 6 to 10 and Comparative Example 2: Preparation of Electrodeposit Coating Composition
실시예 1∼5 및 비교예 1에서 각각 제조된 수분산 수지 1292 중량부, ㈜케이씨씨에서 상업적으로 시판하는 안료 페이스트(ED3000-A) 244 중량부 및 탈이온수 1460 중량부를 혼합하여, 실시예 6∼10 및 비교예 2의 양이온성 전착 도료 조성물을 각각 제조하였다.1292 parts by weight of the aqueous dispersion resin prepared in Examples 1 to 5 and Comparative Example 1, 244 parts by weight of the pigment paste (ED3000-A) commercially available from KC Co., and 1460 parts by weight of deionized water were mixed. Cationic electrodeposition coating compositions of 10 and Comparative Example 2 were prepared, respectively.
상기에서 제조된 도료 조성물 각각을 사용하여, 28℃의 욕조온도에서 3분 동안 150V∼350V의 직류 전압으로 전착도장을 실시하였다. 도장된 시편은 오븐오도 170℃에서 30분간 경화시켰다. 이때 시편으로는 인산 처리된 강철판을 사용하였다. Each of the coating compositions prepared above was subjected to electrodeposition coating at a direct current voltage of 150V to 350V for 3 minutes at a bath temperature of 28 ° C. The coated specimen was cured for 30 minutes at 170 ° C. in an oven oven. In this case, a phosphate treated steel sheet was used.
표 9
비교예 2 실시예 6 실시예 7 실시예 8 실시예 9 실시예 10
도장전압1) 20㎛ 240V 280V 260V 280V 270V 310V
15㎛ 170V 200V 170V 200V 210V 230V
조도(Ra)2) 20㎛ 0.15 0.22 0.18 0.26 0.19 0.13
15㎛ 0.18 0.25 0.19 0.29 0.2 0.15
Gloss(60o)3) 82 82 83 46 57 88
Bake off loss4) 9.8 7.2 7.5 6.8 7.3 5.5
용매 내성5)
T/P(4BOX)6) 20㎛ 61% 68% 64% 66% 63% 73%
15㎛ 45% 61% 58% 62% 55% 71%
Table 9
Comparative Example 2 Example 6 Example 7 Example 8 Example 9 Example 10
Coating voltage 1) 20 ㎛ 240 V 280 V 260 V 280 V 270 V 310 V
15 μm 170 V 200 V 170 V 200 V 210 V 230 V
Roughness (Ra) 2) 20 ㎛ 0.15 0.22 0.18 0.26 0.19 0.13
15 μm 0.18 0.25 0.19 0.29 0.2 0.15
Gloss (60 o ) 3) 82 82 83 46 57 88
Bake off loss 4) 9.8 7.2 7.5 6.8 7.3 5.5
Solvent resistance 5)
T / P (4BOX) 6) 20 ㎛ 61% 68% 64% 66% 63% 73%
15 μm 45% 61% 58% 62% 55% 71%
1)도장전압: 강철판에 20㎛, 15㎛ 도막을 석출시키기 위해 필요한 직류전압1) Coating voltage: DC voltage required to deposit 20㎛, 15㎛ coating film on steel sheet
2) 조도(Ra): 6회 측정 평균, Taylor-Hobson사 Surtronic 3P(Cut off 0.8mm)2) Roughness (Ra): 6 measurement averages, Taylor-Hobson Surtronic 3P (Cut off 0.8mm)
3) Gloss(60ㅀ): 5회 측정 평균, Sheen사 TRI-MICRO GLOSS METER (60ㅀ)3) Gloss (60 ㅀ): 5 measurement averages, Sheen TRI-MICRO GLOSS METER (60 ㅀ)
4) Bake off loss: 석출된 전착 도막의 경화 후 무게 감소량,4) Bake off loss: The amount of weight loss after curing the deposited electrodeposited film,
Bake off loss = (pre bake 후 시편무게-경화 후 시편 무게 시편)/(pre bake 후 시편무게-전착도장 전 시편무게) (※ pre bake 조건 : 120℃, 1hr) Bake off loss = (Weight of specimen after pre-baking-Weight of specimen after hardening) / (Weight of specimen after pre-baking-Weight of specimen before electrodeposition coating) (※ pre bake condition: 120 ℃, 1hr)
5) 용매내성: MIBK를 침지시킨 천으로 1Kg의 하중으로 10회 왕복하여 건조도막 변화를 확인하였다.5) Solvent resistance: The dry film change was confirmed by reciprocating 10 times under a load of 1 kg with a cloth immersed in MIBK.
6) T/P(Throwing power): 4-BOX법 시험장치 (나고야 방식, 20×10×25㎝)6) T / P (Throwing power): 4-BOX method test device (Nagoya method, 20 × 10 × 25㎝)
G면과 A면의 비율(%)을 산출한다. (극판과 가까운 순서로 A∼H까지 시험편을 구분한다. Calculate the ratio (%) between the G side and the A side. (Sort specimens from A to H in the order nearest to the plate.
※ 측정방법※ How to measure
① 시험판 4매를 이용하여 시험판 간격 20㎜로 되는 박스형상의 시험편을 제작한다. 시험판 크기는 150×70㎜, HOLE은 시험판의 45㎜ 높이에서 직경 8㎜ 크기로 한다.① Using four test plates, prepare box-shaped test pieces with a test plate spacing of 20 mm. The test plate shall be 150 × 70 mm and the HOLE shall be 8 mm in diameter at a height of 45 mm of the test plate.
② 4매의 시험판은 검테이프(GUM TAPE)등의 점착 테이프로 고정하고 4매 강판으로 형성한 박스 측면 및 밑면은 완전히 테이프로 봉합되어야 한다.② 4 test plates shall be fixed with adhesive tape such as GUM TAPE and the side and bottom of the box formed of 4 sheets of steel shall be completely sealed with tape.
③ 박스형의 시험판을 90㎜만큼 전착용액에 침적하고 강판으로 나눠진 3개의 공간에 완전히 도료가 들어가는 것을 확인 후 전착 도장을 한다. 전착도장의 기준조건은 CV 20㎛, 3분, 28℃로 하며 전극비는 1:8로 한다.③ Dip a box-shaped test plate into electrodeposition solution by 90mm and apply electrodeposition coating after confirming that paint is completely entered into 3 spaces divided by steel sheet. Standard conditions for electrodeposition coating were CV 20㎛, 3 minutes, 28 ℃ and electrode ratio 1: 8.
④ 물 세척 후 표준조건으로 BAKING하고 4매 강판의 내외 각면의 도막두께를 측정한다. ④ After washing with water, make BAKING under standard condition and measure the thickness of coating on each side of 4 sheet steel.
상기 표 9에서 알 수 있는 바와 같이, 본 발명에 따라 제조된 도료 조성물은 조도가 우수하며, Bake off loss가 적고, 높은 내부도장성(T/P)를 나타낸다.As can be seen in Table 9, the coating composition prepared according to the present invention is excellent in roughness, low bake off loss, and exhibits high internal coating (T / P).
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and variations without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (14)

  1. 방향족 2가 알코올과 지방족 2가 알코올 중 어느 하나 또는 이들의 혼합물을 포함하여 이루어진 차단제와 폴리이소시아네이트를 반응시키는 단계를 포함하는 전착 도료용 우레탄 경화제의 제조방법.A method for producing a urethane curing agent for electrodeposition paint, comprising reacting a polyisocyanate with a blocking agent comprising any one or a mixture of aromatic dihydric alcohols and aliphatic dihydric alcohols.
  2. 제1항에 있어서, The method of claim 1,
    상기 방향족 2가 알코올은 비스페놀 A, 비스페놀 F, 에톡실레이트 비스페놀 A 및 벤젠 다이올로 이루어지는 군으로부터 선택되는 하나인 것을 특징으로 하는 전착 도료용 우레탄 경화제의 제조방법.The aromatic dihydric alcohol is a method selected from the group consisting of bisphenol A, bisphenol F, ethoxylate bisphenol A, and benzene diol.
  3. 제1항에 있어서, The method of claim 1,
    상기 지방족 2가 알코올은 에틸렌 글리콜, 1,2-프로필렌글리콜, 1,4-프로필렌글리콜, 1,5-펜탄디올, 1,2-부탄디올 및 1,2-헥산디올로 이루어지는 군으로부터 선택되는 하나인 것을 전착 도료용 우레탄 경화제의 제조방법.The aliphatic dihydric alcohol is one selected from the group consisting of ethylene glycol, 1,2-propylene glycol, 1,4-propylene glycol, 1,5-pentanediol, 1,2-butanediol and 1,2-hexanediol The manufacturing method of the urethane hardening | curing agent for electrodeposition paint.
  4. 제1항에 있어서, The method of claim 1,
    상기 폴리이소시아네이트는,The polyisocyanate is,
    테트라메틸렌 디이소시아네이트, 헥사메틸렌 디이소시아네이트, 디시클로헥실메탄-4,4'-디이소시아네이트 및 이소포론 디이소시아네이트로 이루어지는 군으로부터 선택되는 지방족 폴리이소시아네이트; 2,4-톨루엔 디이소시아네이트, 2,6-톨루엔 디이소시아네이트, p-페닐렌 이소시아네이트, 디페닐메탄-4,4'-디이소시아네이트, 폴리메틸렌 폴리페닐 이소시아네이트, 트리페닐메탄-4,4',4''-트리이소시아네이트로 이루어지는 군으로부터 선택되는 방향족 폴리이소시아네이트; 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 하나인 것을 특징으로 하는 전착 도료용 우레탄 경화제의 제조방법.Aliphatic polyisocyanates selected from the group consisting of tetramethylene diisocyanate, hexamethylene diisocyanate, dicyclohexylmethane-4,4'-diisocyanate and isophorone diisocyanate; 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, p-phenylene isocyanate, diphenylmethane-4,4'-diisocyanate, polymethylene polyphenyl isocyanate, triphenylmethane-4,4 ', 4 Aromatic polyisocyanates selected from the group consisting of '' -triisocyanates; And it is one selected from the group which consists of a mixture of these, The manufacturing method of the urethane hardening | curing agent for electrodeposition paint characterized by the above-mentioned.
  5. 제1항에 있어서, The method of claim 1,
    상기 방향족 2가 알코올과 상기 폴리이소시아네이트는 50∼100℃의 온도 하에서 이소시아네이트:하이드록시기의 당량비를 1:0.85∼1.15로 하여 반응시키는 것을 특징으로 하는 전착 도료용 우레탄 경화제의 제조방법.The aromatic dihydric alcohol and the polyisocyanate are reacted with an equivalent ratio of isocyanate: hydroxy group of 1: 0.85 to 1.15 at a temperature of 50 to 100 ° C. The urethane curing agent for electrodeposition paint.
  6. 제1항에 있어서, The method of claim 1,
    상기 방향족 2가 알코올은 상기 차단제의 총 중량 기준으로 30 중량% 이하로 사용하는 것을 특징으로 하는 전착 도료용 우레탄 경화제의 제조방법. The aromatic dihydric alcohol is a method for producing a polyurethane curing agent for electrodeposition paint, characterized in that used in less than 30% by weight based on the total weight of the blocking agent.
  7. 제1항에 있어서, The method of claim 1,
    상기 지방족 2가 알코올과 상기 폴리이소시아네이트는 50∼100℃의 온도하에서 이소시아네이트:하이드록시기의 당량비를 1:2∼1.15로 하여 반응시키는 것을 특징으로 하는 전착 도료용 우레탄 경화제의 제조방법.The aliphatic dihydric alcohol and the polyisocyanate are reacted with an equivalent ratio of isocyanate: hydroxy group of 1: 2 to 1.15 at a temperature of 50 to 100 ° C.
  8. 제1항에 있어서, The method of claim 1,
    상기 지방족 2가 알코올은 상기 차단제의 총 중량 기준으로 70 중량% 이하로 사용하는 것을 특징으로 하는 전착 도료용 우레탄 경화제의 제조방법. The aliphatic dihydric alcohol is a method for producing a polyurethane curing agent for electrodeposition paint, characterized in that used in less than 70% by weight based on the total weight of the blocking agent.
  9. 제1항 내지 제8항 중 어느 한 항의 방법에 의해 제조된 우레탄 경화제; 및A urethane curing agent prepared by the method of any one of claims 1 to 8; And
    폴리에폭시 수지와 아민을 반응시켜 제조한 아민 변성 폴리에폭시 수지를 포함하는 전착 도료용 양이온 전착수지 조성물. A cationic electrodeposition resin composition for electrodeposition paint comprising an amine-modified polyepoxy resin prepared by reacting a polyepoxy resin with an amine.
  10. 제9항에 있어서, The method of claim 9,
    상기 아민 변성 폴리에폭시 수지는 폴리에폭시 수지:아민의 당량비를 1:0.6∼1:1.2로 하여 반응시켜 제조되는 것을 특징으로 하는 전착 도료용 양이온 전착수지 조성물.The amine-modified polyepoxy resin is prepared by reacting a polyepoxy resin: amine equivalent ratio of 1: 0.6 to 1: 1.2, the cationic electrodeposition resin composition for electrodeposition paint.
  11. 제10항에 있어서, The method of claim 10,
    상기 아민 변성 폴리에폭시 수지는 폴리에폭시 수지:아민의 당량비를 1:0.7∼1:1.15로 하여 반응시켜 제조하는 것을 특징으로 하는 전착 도료용 양이온 전착수지 조성물.The amine-modified polyepoxy resin is prepared by reacting an equivalent ratio of polyepoxy resin: amine at 1: 0.7 to 1: 1.15, wherein the cationic electrodeposition resin composition for electrodeposition paint is prepared.
  12. 제9항에 있어서, The method of claim 9,
    아민은 모노아이소프로판올아민, 2-아미노-1-페닐-1,3-프로판디올, 부탄올아민, 디에틸렌트리아민, 테트라에틸렌펜타아민, 디아미노톨루엔 에틸렌디아민, N-메틸 에탄올 아민 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 전착 도료용 양이온 전착수지 조성물.The amines are monoisopropanolamine, 2-amino-1-phenyl-1,3-propanediol, butanolamine, diethylenetriamine, tetraethylenepentaamine, diaminotoluene ethylenediamine, N-methyl ethanol amine and mixtures thereof Cationic electrodeposition resin composition for electrodeposition paint, characterized in that selected from the group consisting of.
  13. 제9항에 있어서, The method of claim 9,
    전착 도료용 양이온 전착수지 조성물 내 우레탄 경화제의 함량은 900 내지 1300 중량부이고, 아민 변성 폴리에폭시 수지의 함량은 1000 내지 1500 중량부인 것을 특징으로 하는 전착 도료용 양이온 전착수지 조성물.The amount of the urethane hardener in the cationic electrodeposition resin composition for electrodeposition paint is 900 to 1300 parts by weight, the content of the amine-modified polyepoxy resin is 1000 to 1500 parts by weight of the cationic electrodeposition resin composition for electrodeposition paint.
  14. 제9항에 따른 양이온 전착수지 조성물, 안료 페이스트 및 탈이온수를 포함하는 전착 도료 조성물.An electrodeposition coating composition comprising the cationic electrodeposition resin composition according to claim 9, a pigment paste and deionized water.
PCT/KR2014/004362 2013-05-16 2014-05-15 Method for preparing urethane hardener for electrodeposition paint, cationic electrodeposition resin composition for electrodeposition paint containing same, and electrodeposition paint composition WO2014185726A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2015153429A RU2637029C2 (en) 2013-05-16 2014-05-15 Method of producing urethane curing agents for electro-deposited paint, cationic electro-deposited polymer composition containing it for electro-deposited paint and electro-deposited paint composition
CN201480040559.5A CN105378009B (en) 2013-05-16 2014-05-15 The preparation method of urethanes curing agent and cationic electrodeposition resin composition and electrodeposition coating composition comprising it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0055771 2013-05-16
KR1020130055771A KR101858272B1 (en) 2013-05-16 2013-05-16 Method for preparing urethane curing agent for electrodeposition paint, a cationic resin composition for electrodeposition paint and an electrodeposition paint composition comprising the same

Publications (1)

Publication Number Publication Date
WO2014185726A1 true WO2014185726A1 (en) 2014-11-20

Family

ID=51898629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004362 WO2014185726A1 (en) 2013-05-16 2014-05-15 Method for preparing urethane hardener for electrodeposition paint, cationic electrodeposition resin composition for electrodeposition paint containing same, and electrodeposition paint composition

Country Status (4)

Country Link
KR (1) KR101858272B1 (en)
CN (1) CN105378009B (en)
RU (1) RU2637029C2 (en)
WO (1) WO2014185726A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709432C1 (en) * 2016-06-30 2019-12-17 Ппг Индастриз Огайо, Инк. Electrodeposited coating composition, characterized by improved counteraction to formation of craters

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102042239B1 (en) * 2017-08-08 2019-11-08 주식회사 케이씨씨 Cationic urethane curing agent and electro-deposition paint composition comprising the same
KR102229059B1 (en) * 2019-02-01 2021-03-18 주식회사 케이씨씨 Electrodeposition Resin Composition and Electrodeposition Paint Comprising The Same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960008018B1 (en) * 1991-07-19 1996-06-19 피피지 인더스트리즈, 인코포레이티드 High throw power electrodeposition system
KR20030059845A (en) * 2001-12-29 2003-07-12 주식회사 금강고려화학 Low-Temperature Curable Cationic Resin Composition for Use in Electrodeposition and Paints containing the Same
KR20080074389A (en) * 2007-02-08 2008-08-13 주식회사 케이씨씨 Polyepoxide-polyoxyalkylene amine resin and electrodeposition paint composition comprising the same
KR20080104809A (en) * 2007-05-29 2008-12-03 주식회사 케이씨씨 A cationic resin composition for electrodepositable coating and an electrodepositable coating composition comprising the same
KR20090027370A (en) * 2007-09-12 2009-03-17 주식회사 케이씨씨 Method for preparing capped polyisocyanate curing agent, and cationic resin composition for electrodepositable coating and an electrodepositable coating composition comprising the curing agent

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047398C (en) * 1994-11-02 1999-12-15 化学工业部常州涂料化工研究院 Resin used for cathode electrodeposition paint and its production and application
JP2002060680A (en) * 2000-08-14 2002-02-26 Nippon Paint Co Ltd Cationic electrodeposition coating composition
JP2002265878A (en) * 2001-03-15 2002-09-18 Nippon Paint Co Ltd Cationic electrodeposition coating composition comprising phosphonium group-containing compound
US20060228556A1 (en) * 2005-04-08 2006-10-12 Fenn David R Electrodepositable coating compositions and methods for their production
KR100831205B1 (en) * 2006-12-31 2008-05-21 주식회사 케이씨씨 A cathodic electrodeposition coating compositions having improved appearance, anti-corrosion resistance and flexibility
JP5610785B2 (en) * 2009-04-06 2014-10-22 関西ペイント株式会社 Cationic electrodeposition coating composition
CN103342943B (en) * 2013-06-24 2015-04-29 浩力森涂料(上海)有限公司 Method for preparing high-charge-density cathode electrophoretic paint

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960008018B1 (en) * 1991-07-19 1996-06-19 피피지 인더스트리즈, 인코포레이티드 High throw power electrodeposition system
KR20030059845A (en) * 2001-12-29 2003-07-12 주식회사 금강고려화학 Low-Temperature Curable Cationic Resin Composition for Use in Electrodeposition and Paints containing the Same
KR20080074389A (en) * 2007-02-08 2008-08-13 주식회사 케이씨씨 Polyepoxide-polyoxyalkylene amine resin and electrodeposition paint composition comprising the same
KR20080104809A (en) * 2007-05-29 2008-12-03 주식회사 케이씨씨 A cationic resin composition for electrodepositable coating and an electrodepositable coating composition comprising the same
KR20090027370A (en) * 2007-09-12 2009-03-17 주식회사 케이씨씨 Method for preparing capped polyisocyanate curing agent, and cationic resin composition for electrodepositable coating and an electrodepositable coating composition comprising the curing agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709432C1 (en) * 2016-06-30 2019-12-17 Ппг Индастриз Огайо, Инк. Electrodeposited coating composition, characterized by improved counteraction to formation of craters
US10717883B2 (en) 2016-06-30 2020-07-21 Ppg Industries Ohio, Inc. Electrodepositable coating composition having improved crater control

Also Published As

Publication number Publication date
CN105378009B (en) 2019-10-18
CN105378009A (en) 2016-03-02
KR20140135471A (en) 2014-11-26
KR101858272B1 (en) 2018-05-15
RU2637029C2 (en) 2017-11-29
RU2015153429A (en) 2017-06-21

Similar Documents

Publication Publication Date Title
EP0789732B1 (en) Cationic resin and capped polyisocyanate curing agent suitable for use in electrodeposition
EP0505445B1 (en) Process for coating electrically conductive substrates, aqueous enamel, epoxide amine adduct and use of the epoxide amine adduct as a friction resin for preparing pigment pastes
DE60017441T2 (en) CATHODIC ELECTRODEAL PAINTING COMPOSITIONS WITH IMPROVED APPEARANCE, IMPROVED EDGE COVERING AND REDUCED CRATES
US4285789A (en) Cationic electrodeposition process
WO2014193174A1 (en) Urethane curing agent for electrodeposition paint with improved appearance and corrosion resistance, and cationic resin composition for electrodeposition paint and electrodeposition paint composition, containing same
US4976833A (en) Electrodeposition coatings containing blocked tetramethylxylene diisocyanate crosslinker
EP0475966B1 (en) Process for coating electrically conductive substrates
US4239878A (en) Process for preparing cationic electrodeposition-coating resin using monofunctional blocking agents and tertiary amines having at least two hydroxy groups
WO2014185726A1 (en) Method for preparing urethane hardener for electrodeposition paint, cationic electrodeposition resin composition for electrodeposition paint containing same, and electrodeposition paint composition
US6410146B2 (en) Cationic electrodeposition coating composition
KR20090027370A (en) Method for preparing capped polyisocyanate curing agent, and cationic resin composition for electrodepositable coating and an electrodepositable coating composition comprising the curing agent
DE3924694A1 (en) METHOD FOR COATING ELECTRICALLY CONDUCTIVE SUBSTRATES, AQUEOUS VARNISH, METHOD FOR PRODUCING AN ADDUCT CONTAINING URETHANE GROUPS AND ADDUCT CONTAINING URETHANE GROUPS
JP2002294141A (en) Cationic electrodeposition coating material composition
WO2019182233A1 (en) Electrodeposition resin composition and electrodeposition paint comprising same
WO2019031844A1 (en) Cationic urethane curing agent and electrodeposition paint composition comprising same
JPS5920359A (en) Water-base coating composition
KR20200095961A (en) Electrodeposition Resin Composition and Electrodeposition Paint Comprising The Same
WO2018034487A1 (en) Electro-deposition paint composition
WO1989006673A1 (en) Process for coating electrically conductive substrates, substrates so obtained, and aqueous electrophoretic enamel baths
KR100540815B1 (en) Cationic electrodeposition coating composition with alkyl glycidyl ether or ester-amine coating film forming additive
KR20080104809A (en) A cationic resin composition for electrodepositable coating and an electrodepositable coating composition comprising the same
KR20220141982A (en) Composition for electro-deposition coating
WO2015137536A1 (en) Method for manufacturing vehicle using pre-coated steel sheet
DE4137420A1 (en) METHOD FOR PREVENTING OR REDUCING AFTER BURNING BURNING ON LACQUER FILMS
DE29200985A1 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015/15444

Country of ref document: TR

ENP Entry into the national phase

Ref document number: 2015153429

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14797203

Country of ref document: EP

Kind code of ref document: A1