WO2014185659A1 - 셀 커버리지 확장 영역 위치한 mtc 기기의 시스템 정보 수신 방법 - Google Patents

셀 커버리지 확장 영역 위치한 mtc 기기의 시스템 정보 수신 방법 Download PDF

Info

Publication number
WO2014185659A1
WO2014185659A1 PCT/KR2014/004129 KR2014004129W WO2014185659A1 WO 2014185659 A1 WO2014185659 A1 WO 2014185659A1 KR 2014004129 W KR2014004129 W KR 2014004129W WO 2014185659 A1 WO2014185659 A1 WO 2014185659A1
Authority
WO
WIPO (PCT)
Prior art keywords
sib
type
subframes
mtc device
received
Prior art date
Application number
PCT/KR2014/004129
Other languages
English (en)
French (fr)
Inventor
유향선
서동연
이윤정
안준기
양석철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP14798590.7A priority Critical patent/EP2999142B1/en
Priority to US14/888,901 priority patent/US10009882B2/en
Priority to CN201480026723.7A priority patent/CN105210311B/zh
Publication of WO2014185659A1 publication Critical patent/WO2014185659A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0033Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation each allocating device acting autonomously, i.e. without negotiation with other allocating devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0069Allocation based on distance or geographical location

Definitions

  • the present invention relates to mobile communications.
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • MIMO multiple input multiple output
  • LTE-A 3GPP LTE-Advanced
  • the physical channel in LTE is a downlink channel PDSCH (Physical Downlink) It may be divided into a shared channel (PDCCH), a physical downlink control channel (PDCCH), a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) which are uplink channels.
  • PDSCH Physical Downlink
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • MTC Machine Type Communication
  • MTC communication Since the characteristics of the MTC is different from the general terminal, the service optimized for MTC communication may be different from the service optimized for human to human communication. Compared with current mobile network communication services, MTC communication has different market scenarios, data communication, low cost and effort, potentially a very large number of MTC devices, a large service area and low traffic per MTC device. It may be characterized as.
  • the present disclosure aims to solve the above-mentioned problem.
  • the MTC device when a machine type communication (MTC) device is located in a coverage extension area of a base station, the MTC device may include system information (eg, a first information).
  • SIB System Information Block
  • a method of receiving system information of a machine type communication (MTC) device may include decoding control information repeatedly received through physical downlink control channels (PDCCHs) on several subframes.
  • the control information may include scheduling information for a first type system information block (SIB) for an MTC device.
  • SIB system information block
  • the method may include decoding a first type of SIB for the MTC device repeatedly received via Physical Downlink Shared CHannel (PDSCH) on several subframes based on the scheduling information.
  • PDSCH Physical Downlink Shared CHannel
  • the first type of SIB for the MTC device may include: additional information other than the information included in the first type of SIB for the general terminal.
  • the method may further include repeatedly receiving and decoding a master information block (MIB) through physical broadcast channels (PBCHs) on several subframes.
  • MIB master information block
  • PBCHs physical broadcast channels
  • the scheduling information and the SIB of the first type may be simultaneously received on several discontinuous subframes.
  • the MIB is received from the scheduling information virtually on several subframes after the first interval from the last subframe among the various subframes received, and the second interval from the last subframe among the various subframes from which the scheduling information is received.
  • the first type of SIB may be received on several subsequent subframes.
  • the scheduling information and the SIB of the first type may be simultaneously received on several consecutive subframes.
  • the method may further include receiving a SIB of a first type for a general terminal that is not an MTC device.
  • the first type of SIB for the general terminal and the first type of SIB for the MTC device may be combined and decoded.
  • the method may further include receiving a SIB of a first type for a general terminal that is not an MTC device.
  • the SIB of the first type for the MTC device and the SIB of the first type for the general terminal may be received on different RBs on the same subframes.
  • a Machine Type Communication (MTC) device may include: a transceiver configured to repeatedly receive scheduling information on a first type system information block (SIB) for the MTC device through physical downlink control channels (PDCCHs) on various subframes; Decode the scheduling information, and determine the various subframes in which a PDSCH (Physical Downlink Shared CHannel) including a first type of SIB for the MTC device is repeatedly received based on the decoded scheduling information; And a processor for receiving and decoding a first type of SIB for the MTC device on subframes.
  • SIB system information block
  • PDCHs physical downlink control channels
  • the MTC device may receive system information (eg, a system information block of a first type) in several sub-fields.
  • system information eg, a system information block of a first type
  • 1 is a wireless communication system.
  • FIG. 2 shows a structure of a radio frame according to FDD in 3GPP LTE.
  • 3 shows a structure of a downlink radio frame according to TDD in 3GPP LTE.
  • FIG. 4 is an exemplary diagram illustrating a resource grid for one uplink or downlink slot in 3GPP LTE.
  • 5 shows a structure of a downlink subframe.
  • FIG. 6 shows a structure of an uplink subframe in 3GPP LTE.
  • FIG. 7 is a comparative example of a single carrier system and a carrier aggregation system.
  • FIG. 8 illustrates cross-carrier scheduling in a carrier aggregation system.
  • 9A illustrates an example of transmission of system information.
  • FIG. 9B shows a frame structure for a physical broadcast channel (PBCH) through which a MIB is transmitted.
  • PBCH physical broadcast channel
  • 9C shows an example of transmission of a system information block of a first type on a radio frame.
  • MTC 10A illustrates an example of machine type communication (MTC) communication.
  • MTC machine type communication
  • 10B is an illustration of cell coverage extension for an MTC device.
  • FIG. 11A illustrates a scheme for allowing an MTC device in a cell coverage extension area to receive a first type of system information block.
  • FIG. 11B illustrates another method for enabling an MTC device in a cell coverage extension area to receive a first type of system information block.
  • 12A to 12C illustrate examples of a method of additionally providing a first type of system information block for an MTC device in addition to the existing first type of system information block.
  • FIG. 13 is an exemplary view illustrating a radio resource in which an additional first type system information block for an MTC device is transmitted in addition to the existing first type system information block in terms of frequency.
  • 14A to 14B illustrate an example of a method of providing a newly generated first type of system information block for an MTC device.
  • 15A to 15C illustrate a relationship between a PDCCH and a system information block of a first type for an MTC device.
  • 16 illustrates an example of avoiding collision between a first type of system information block and an existing first type of system information block for an MTC device.
  • 17 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • LTE includes LTE and / or LTE-A.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • base station which is used hereinafter, generally refers to a fixed station for communicating with a wireless device, and includes an evolved-nodeb (eNodeB), an evolved-nodeb (eNB), a base transceiver system (BTS), and an access point (e. Access Point) may be called.
  • eNodeB evolved-nodeb
  • eNB evolved-nodeb
  • BTS base transceiver system
  • access point e. Access Point
  • UE User Equipment
  • MS mobile station
  • UT user terminal
  • SS subscriber station
  • MT mobile terminal
  • 1 is a wireless communication system.
  • a wireless communication system includes at least one base station (BS) 20.
  • Each base station 20 provides a communication service for a particular geographic area (generally called a cell) 20a, 20b, 20c.
  • the cell can in turn be divided into a number of regions (called sectors).
  • the UE typically belongs to one cell, and the cell to which the UE belongs is called a serving cell.
  • a base station that provides a communication service for a serving cell is called a serving BS. Since the wireless communication system is a cellular system, there are other cells adjacent to the serving cell. Another cell adjacent to the serving cell is called a neighbor cell.
  • a base station that provides communication service for a neighbor cell is called a neighbor BS. The serving cell and the neighbor cell are determined relatively based on the UE.
  • downlink means communication from the base station 20 to the UE 10
  • uplink means communication from the UE 10 to the base station 20.
  • the transmitter may be part of the base station 20 and the receiver may be part of the UE 10.
  • the transmitter may be part of the UE 10 and the receiver may be part of the base station 20.
  • the wireless communication system includes a multiple-input multiple-output (MIMO) system, a multiple-input single-output (MIS) system, a single-input single-output (SISO) system, and a single-input multiple-output (SIMO) system.
  • MIMO multiple-input multiple-output
  • MIS multiple-input single-output
  • SISO single-input single-output
  • SIMO single-input multiple-output
  • the MIMO system uses a plurality of transmit antennas and a plurality of receive antennas.
  • the MISO system uses multiple transmit antennas and one receive antenna.
  • the SISO system uses one transmit antenna and one receive antenna.
  • the SIMO system uses one transmit antenna and multiple receive antennas.
  • the transmit antenna means a physical or logical antenna used to transmit one signal or stream
  • the receive antenna means a physical or logical antenna used to receive one signal or stream.
  • a wireless communication system can be largely divided into a frequency division duplex (FDD) method and a time division duplex (TDD) method.
  • FDD frequency division duplex
  • TDD time division duplex
  • uplink transmission and downlink transmission are performed while occupying different frequency bands.
  • uplink transmission and downlink transmission are performed at different times while occupying the same frequency band.
  • the channel response of the TDD scheme is substantially reciprocal. This means that the downlink channel response and the uplink channel response are almost the same in a given frequency domain. Therefore, in a TDD based wireless communication system, the downlink channel response can be obtained from the uplink channel response.
  • the downlink transmission by the base station and the uplink transmission by the UE cannot be simultaneously performed.
  • uplink transmission and downlink transmission are performed in different subframes.
  • FIG. 2 shows a structure of a radio frame according to FDD in 3GPP LTE.
  • the radio frame illustrated in FIG. 2 may refer to section 5 of 3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)".
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • Physical Channels and Modulation Release 10
  • a radio frame includes 10 subframes, and one subframe includes two slots. Slots in a radio frame are numbered from 0 to 19 slots.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI may be referred to as a scheduling unit for data transmission.
  • one radio frame may have a length of 10 ms
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • the structure of the radio frame is merely an example, and the number of subframes included in the radio frame or the number of slots included in the subframe may be variously changed.
  • one slot may include a plurality of OFDM symbols. How many OFDM symbols are included in one slot may vary depending on a cyclic prefix (CP).
  • CP cyclic prefix
  • 3 shows a structure of a downlink radio frame according to TDD in 3GPP LTE.
  • the radio frame includes 10 subframes indexed from 0 to 9.
  • One subframe includes two consecutive slots.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • OFDM symbol is only for representing one symbol period in the time domain, since 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink (DL), multiple access scheme or name There is no limit on.
  • OFDM symbol may be called another name such as a single carrier-frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
  • SC-FDMA single carrier-frequency division multiple access
  • One slot includes 7 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of the CP.
  • One slot in a normal CP includes 7 OFDM symbols, and one slot in an extended CP includes 6 OFDM symbols.
  • a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block includes 7 ⁇ 12 resource elements (REs). It may include.
  • a subframe having indexes # 1 and # 6 is called a special subframe and includes a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization or channel estimation at the UE.
  • UpPTS is used to synchronize channel estimation at the base station with uplink transmission synchronization of the UE.
  • GP is a section for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • DL subframe In TDD, a downlink (DL) subframe and an uplink (UL) subframe coexist in one radio frame.
  • Table 1 shows an example of configuration of a radio frame.
  • 'D' represents a DL subframe
  • 'U' represents a UL subframe
  • 'S' represents a special subframe.
  • the UE may know which subframe is the DL subframe or the UL subframe according to the configuration of the radio frame.
  • the DL (downlink) subframe is divided into a control region and a data region in the time domain.
  • the control region includes up to three OFDM symbols preceding the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
  • PDCCH and other control channels are allocated to the control region, and PDSCH is allocated to the data region.
  • FIG. 4 is an exemplary diagram illustrating a resource grid for one uplink or downlink slot in 3GPP LTE.
  • an uplink slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in a time domain, and includes N RB resource blocks ( RBs ) in a frequency domain. Include.
  • the number of resource blocks (RBs), that is, N RBs may be any one of 6 to 110.
  • an example of one resource block includes 7 ⁇ 12 resource elements including 7 OFDM symbols in the time domain and 12 subcarriers in the frequency domain, but the number of subcarriers and OFDM symbols in the resource block is equal to this. It is not limited.
  • the number of OFDM symbols or the number of subcarriers included in the resource block may be variously changed. That is, the number of OFDM symbols may change according to the length of the above-described CP.
  • 3GPP LTE defines that 7 OFDM symbols are included in one slot in the case of a normal CP, and 6 OFDM symbols are included in one slot in the case of an extended CP.
  • the OFDM symbol is for representing one symbol period, and may be referred to as an SC-FDMA symbol, an OFDMA symbol, or a symbol period according to a system.
  • the RB includes a plurality of subcarriers in the frequency domain in resource allocation units.
  • the number N UL of resource blocks included in an uplink slot depends on an uplink transmission bandwidth set in a cell.
  • Each element on the resource grid is called a resource element.
  • the number of subcarriers in one OFDM symbol can be used to select one of 128, 256, 512, 1024, 1536 and 2048.
  • a resource grid for one uplink slot may be applied to a resource grid for a downlink slot.
  • 5 shows a structure of a downlink subframe.
  • 7 OFDM symbols are included in one slot by assuming a normal CP.
  • the number of OFDM symbols included in one slot may change according to the length of a cyclic prefix (CP). That is, as described above, according to 3GPP TS 36.211 V10.4.0, one slot includes 7 OFDM symbols in a normal CP, and one slot includes 6 OFDM symbols in an extended CP.
  • CP cyclic prefix
  • a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block includes 7 ⁇ 12 resource elements (REs). It may include.
  • the DL (downlink) subframe is divided into a control region and a data region in the time domain.
  • the control region includes up to three OFDM symbols preceding the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
  • a physical downlink control channel (PDCCH) and another control channel are allocated to the control region, and a PDSCH is allocated to the data region.
  • PDCH physical downlink control channel
  • physical channels include a physical downlink shared channel (PDSCH), a physical uplink shared channel (PUSCH), a physical downlink control channel (PDCCH), a physical control format indicator channel (PCFICH), and a physical hybrid (PHICH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • PDCCH physical downlink control channel
  • PCFICH physical control format indicator channel
  • PHICH physical hybrid
  • ARQ Indicator Channel Physical Uplink Control Channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the wireless device first receives the CFI on the PCFICH and then monitors the PDCCH.
  • the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for a UL hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • NACK negative-acknowledgement
  • HARQ UL hybrid automatic repeat request
  • the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
  • the PBCH carries system information necessary for the wireless device to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • SIB system information block
  • the PDCCH includes resource allocation and transmission format of downlink-shared channel (DL-SCH), resource allocation information of uplink shared channel (UL-SCH), paging information on PCH, system information on DL-SCH, and random access transmitted on PDSCH. Resource allocation of higher layer control messages such as responses, sets of transmit power control commands for individual UEs in any UE group, activation of voice over internet protocol (VoIP), and the like.
  • a plurality of PDCCHs may be transmitted in the control region, and the UE may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • the base station determines the PDCCH format according to the DCI to be sent to the UE, and attaches a cyclic redundancy check (CRC) to the control information.
  • CRC cyclic redundancy check
  • RNTI a unique radio network temporary identifier
  • the PDCCH is for a specific UE, a unique identifier of the UE, for example, a cell-RNTI (C-RNTI) may be masked to the CRC.
  • C-RNTI cell-RNTI
  • a paging indication identifier for example, p-RNTI (P-RNTI) may be masked to the CRC.
  • SI-RNTI system information-RNTI
  • RA-RNTI random access-RNTI
  • blind decoding is used to detect the PDCCH.
  • Blind decoding is a method of demasking a desired identifier in a cyclic redundancy check (CRC) of a received PDCCH (referred to as a candidate PDCCH) and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
  • the base station determines the PDCCH format according to the DCI to be sent to the wireless device, attaches the CRC to the DCI, and masks a unique identifier (referred to as Radio Network Temporary Identifier (RNTI)) to the CRC according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the uplink channel includes a PUSCH, a PUCCH, a sounding reference signal (SRS), and a physical random access channel (PRACH).
  • PUSCH PUSCH
  • PUCCH Physical Uplink Control Channel
  • SRS sounding reference signal
  • PRACH physical random access channel
  • FIG. 6 shows a structure of an uplink subframe in 3GPP LTE.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) for transmitting uplink control information is allocated to the control region.
  • the data area is allocated a PUSCH (Physical Uplink Shared Channel) for transmitting data (in some cases, control information may also be transmitted).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH for one UE is allocated to an RB pair in a subframe.
  • Resource blocks belonging to a resource block pair occupy different subcarriers in each of a first slot and a second slot.
  • the frequency occupied by RBs belonging to the RB pair allocated to the PUCCH is changed based on a slot boundary. This is called that the RB pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • the UE may obtain frequency diversity gain by transmitting uplink control information through different subcarriers over time.
  • m is a location index indicating a logical frequency domain location of a resource block pair allocated to a PUCCH in a subframe.
  • the uplink control information transmitted on the PUCCH includes a hybrid automatic repeat request (HARQ) acknowledgment (ACK) / non-acknowledgement (NACK), a channel quality indicator (CQI) indicating a downlink channel state, and an uplink radio resource allocation request. (scheduling request).
  • HARQ hybrid automatic repeat request
  • ACK acknowledgment
  • NACK non-acknowledgement
  • CQI channel quality indicator
  • the PUSCH is mapped to the UL-SCH, which is a transport channel.
  • the uplink data transmitted on the PUSCH may be a transport block which is a data block for the UL-SCH transmitted during the TTI.
  • the transport block may be user information.
  • the uplink data may be multiplexed data.
  • the multiplexed data may be a multiplexed transport block and control information for the UL-SCH.
  • control information multiplexed with data may include a CQI, a precoding matrix indicator (PMI), a HARQ, a rank indicator (RI), and the like.
  • the uplink data may consist of control information only.
  • FIG. 7 is a comparative example of a single carrier system and a carrier aggregation system.
  • a single carrier in uplink and downlink.
  • the bandwidth of the carrier may vary, but only one carrier is allocated to the UE.
  • a carrier aggregation (CA) system a plurality of component carriers (DL CC A to C, UL CC A to C) may be allocated to the UE.
  • a component carrier (CC) means a carrier used in a carrier aggregation system and may be abbreviated as a carrier. For example, three 20 MHz component carriers may be allocated to allocate a 60 MHz bandwidth to the UE.
  • the carrier aggregation system may be classified into a contiguous carrier aggregation system in which aggregated carriers are continuous and a non-contiguous carrier aggregation system in which aggregated carriers are separated from each other.
  • a carrier aggregation system simply referred to as a carrier aggregation system, it should be understood to include both the case where the component carrier is continuous and the case where it is discontinuous.
  • the number of component carriers aggregated between the downlink and the uplink may be set differently. The case where the number of downlink CCs and the number of uplink CCs are the same is called symmetric aggregation, and when the number is different, it is called asymmetric aggregation.
  • the target carrier may use the bandwidth used by the existing system as it is for backward compatibility with the existing system.
  • the 3GPP LTE system supports bandwidths of 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz, and the 3GPP LTE-A system may configure a bandwidth of 20 MHz or more using only the bandwidth of the 3GPP LTE system.
  • broadband can be configured by defining new bandwidth without using the bandwidth of the existing system.
  • the system frequency band of a wireless communication system is divided into a plurality of carrier frequencies.
  • the carrier frequency means a center frequency of a cell.
  • a cell may mean a downlink frequency resource and an uplink frequency resource.
  • the cell may mean a combination of a downlink frequency resource and an optional uplink frequency resource.
  • CA carrier aggregation
  • the UE In order to transmit and receive packet data through a specific cell, the UE must first complete configuration for a specific cell.
  • the configuration refers to a state in which reception of system information necessary for data transmission and reception for a corresponding cell is completed.
  • the configuration may include a general process of receiving common physical layer parameters required for data transmission and reception, media access control (MAC) layer parameters, or parameters required for a specific operation in the RRC layer.
  • MAC media access control
  • the cell in the configuration complete state may exist in an activation or deactivation state.
  • activation means that data is transmitted or received or is in a ready state.
  • the UE may monitor or receive the control channel (PDCCH) and the data channel (PDSCH) of the activated cell in order to identify resources allocated to the UE (which may be frequency, time, etc.).
  • PDCCH control channel
  • PDSCH data channel
  • Deactivation means that transmission or reception of traffic data is impossible, and measurement or transmission of minimum information is possible.
  • the UE may receive system information (SI) necessary for packet reception from the deactivated cell.
  • SI system information
  • the UE does not monitor or receive the control channel (PDCCH) and the data channel (PDSCH) of the deactivated cell in order to check resources allocated to it (may be frequency, time, etc.).
  • the cell may be divided into a primary cell, a secondary cell, and a serving cell.
  • a primary cell means a cell operating at a primary frequency, and is a cell in which a UE performs an initial connection establishment procedure or a connection reestablishment procedure with a base station, or is indicated as a primary cell in a handover process. It means a cell.
  • the secondary cell refers to a cell operating at the secondary frequency, and is established and used to provide additional radio resources once the RRC connection is established.
  • the serving cell is configured as a primary cell when the carrier aggregation is not set or the UE cannot provide carrier aggregation.
  • the term serving cell indicates a cell configured for the UE and may be configured in plural.
  • One serving cell may be configured with one downlink component carrier or a pair of ⁇ downlink component carrier, uplink component carrier ⁇ .
  • the plurality of serving cells may be configured as a set consisting of one or a plurality of primary cells and all secondary cells.
  • a plurality of component carriers (CCs), that is, a plurality of serving cells may be supported.
  • Such a carrier aggregation system may support cross-carrier scheduling.
  • Cross-carrier scheduling is a resource allocation of a PDSCH transmitted on another component carrier through a PDCCH transmitted on a specific component carrier and / or other components other than the component carrier basically linked with the specific component carrier.
  • a scheduling method for resource allocation of a PUSCH transmitted through a carrier That is, the PDCCH and the PDSCH may be transmitted through different downlink CCs, and the PUSCH may be transmitted through another uplink CC other than the uplink CC linked with the downlink CC through which the PDCCH including the UL grant is transmitted. .
  • a carrier indicator indicating a DL CC / UL CC through which a PDSCH / PUSCH for which PDCCH provides control information is transmitted is required.
  • a field including such a carrier indicator is hereinafter called a carrier indication field (CIF).
  • a carrier aggregation system supporting cross carrier scheduling may include a carrier indication field (CIF) in a conventional downlink control information (DCI) format.
  • CIF carrier indication field
  • DCI downlink control information
  • 3 bits may be extended, and the PDCCH structure may include an existing coding method, Resource allocation methods (ie, CCE-based resource mapping) can be reused.
  • FIG. 8 illustrates cross-carrier scheduling in a carrier aggregation system.
  • the base station may set a PDCCH monitoring DL CC (monitoring CC) set.
  • the PDCCH monitoring DL CC set is composed of some DL CCs among the aggregated DL CCs.
  • the UE performs PDCCH monitoring / decoding only for DL CCs included in the PDCCH monitoring DL CC set.
  • the base station transmits the PDCCH for the PDSCH / PUSCH to be scheduled only through the DL CC included in the PDCCH monitoring DL CC set.
  • the PDCCH monitoring DL CC set may be configured UE specific, UE group specific, or cell specific.
  • three DL CCs (DL CC A, DL CC B, and DL CC C) are aggregated, and DL CC A is set to PDCCH monitoring DL CC.
  • the UE may receive the DL grant for the PDSCH of the DL CC A, the DL CC B, and the DL CC C through the PDCCH of the DL CC A.
  • the DCI transmitted through the PDCCH of the DL CC A may include the CIF to indicate which DCI the DLI is.
  • 9A illustrates an example of transmission of system information.
  • the system information is divided into a master information block (MIB) and a plurality of system information blocks (SIB).
  • the MIB contains the most important physical layer information of the cell.
  • SIB includes information used to evaluate whether the UE is allowed to access the cell, and also includes other types of scheduling information of the SIB.
  • the second type of SIB (SIB Type 2) contains common and shared channel information.
  • SIB Type 3 contains cell reselection information primarily associated with the serving cell.
  • a fourth type of SIB (SIB type 4) includes frequency information of a serving cell and intra frequency information of a neighbor cell associated with cell reselection.
  • the fifth type of SIB includes information on other E-UTRA frequencies and information on inter frequencies of neighboring cells related to cell reselection.
  • a sixth type of SIB includes information on UTRA frequency and information on a UTRA neighbor cell related to cell reselection.
  • a seventh type of SIB includes information on GERAN frequencies related to cell reselection.
  • the MIB is delivered to the UE 10 on the PBCH.
  • the first type of SIB is mapped to the DL-SCH and delivered to the UE 10 on the PDSCH.
  • Other types of SIBs are delivered to the UE on the PDSCH via a System Information message.
  • FIG. 9B shows a frame structure for a physical broadcast channel (PBCH) through which a MIB is transmitted.
  • PBCH physical broadcast channel
  • radio frames, subframes, and symbol numbers start at zero.
  • the PBCH is transmitted every radio frame, i.e. every 10 ms.
  • the PBCH is transmitted on subframe 0 of each radio frame. More specifically, the PBCH is transmitted on 0, 1, 2, 3 symbols of the second slot.
  • the PBCH is used by each base station to transmit the most important MIB for the operation of the system.
  • the MIB information is transmitted every 40 ms, but every 10 ms with a very low coding rate so that all terminals connected to the cell can be reliably received. Four retransmissions are provided, allowing MIB information to be received even in a very poor channel environment.
  • MIB information of 24 bits in total is defined as follows in TS36.331 of the current LTE standard.
  • the MIB information is transmitted in each cell except for the systemFrameNumber field in every transmission. If the SIB including the MIB needs to be changed for other reasons, the MIB information is transmitted in a cell through a separate paging RRC signaling. Notify all terminals.
  • 9C shows an example of transmission of a system information block of a first type on a radio frame.
  • the SIB (SIB type 1) of the first type is transmitted in eight radio frame periods (i.e., 80 ms period), SFN within the period of eight radio frames (80 ms) (System Frame Number) is repeatedly retransmitted on subframe 5 of the radio frame satisfying mod 2.
  • the first type of SIB is defined in TS36.331 of the current LTE standard as follows.
  • SystemInformationBlockType1 SEQUENCE ⁇ cellAccessRelatedInfo SEQUENCE ⁇ plmn-IdentityList PLMN-IdentityList, trackingAreaCode TrackingAreaCode, cellIdentity CellIdentity, cellBarred ENUMERATED ⁇ barred, notBarred ⁇ , intraFreqReselection ENUMERATED ⁇ allowed, notAllowed ⁇ gOOL Identity ⁇ , cellSelectionInfo SEQUENCE ⁇ q-RxLevMin Q-RxLevMin, q-RxLevMinOffset INTEGER (1..8) ⁇ , p-Max P-Max freqBandIndicator FreqBandIndicator, schedulingInfoList SchedulingInfoList, tdd-Config TDD-Config si-WindowLength ENUMERATED ⁇ ms1, ms2, ms5, ms10, ms15, ms20, ms40 ⁇ , systemInfoValueTag
  • MTC 10A illustrates an example of machine type communication (MTC) communication.
  • MTC machine type communication
  • Machine Type Communication is an exchange of information through the base station 200 between MTC devices 100 without human interaction or information through a base station between the MTC device 100 and the MTC server 700. Say exchange.
  • the MTC server 700 is an entity that communicates with the MTC device 100.
  • the MTC server 700 executes an MTC application and provides an MTC specific service to the MTC device.
  • the MTC device 100 is a wireless device that provides MTC communication and may be fixed or mobile.
  • the services offered through MTC are different from those in existing human-involved communications, and there are various categories of services such as tracking, metering, payment, medical services, and remote control. exist. More specifically, services provided through the MTC may include meter reading, level measurement, utilization of surveillance cameras, inventory reporting of vending machines, and the like.
  • the uniqueness of the MTC device is that the amount of data transmitted is small and the up / down link data transmission and reception occur occasionally. Therefore, it is effective to lower the cost of the MTC device and reduce battery consumption in accordance with such a low data rate.
  • the MTC device is characterized by low mobility, and thus has a characteristic that the channel environment hardly changes.
  • 10B is an illustration of cell coverage extension for an MTC device.
  • the MTC device located in the cell coverage extension region has difficulty in receiving it.
  • the first type of SIB may be changed after an update window of 80 ms in length. If the MTC device located in the cell coverage extension region may not correctly decode the SIB of the first type until the update window ends. .
  • the disclosures herein aim to present a solution to this problem.
  • the disclosures will be described based on the SIB.
  • the present specification will be described mainly with respect to the first type of SIB, but is not limited thereto.
  • the core of the present specification may be applied to other types of SIB.
  • FIG. 11A illustrates a scheme for allowing an MTC device in a cell coverage extension area to receive a first type of SIB.
  • the base station uses an extended update window, and the extended update window During the interval, information of the first type of SIB (SIB type 1) may not be updated.
  • the MTC device When extending an update window in which only four first type SIBs (SIB type 1) can be received, the MTC device receives a greater number of first type SIBs (SIB type 1) than four. By combining them, the decoding may be performed, thereby increasing the probability of success of the decoding. By the way. In this case, if the length of the update window is made too long, the overhead is inversely increased. For example, if the extended update window is 25 times longer than the existing update window, the MTC device can decode the SIB only after receiving the SIB through about 100 subframes, so the overhead becomes too large. .
  • the base station has a disadvantage in that it takes too long to update information of the first type of SIB (SIB type 1).
  • the extended SIB update window may be varied by a base station, and the MTC device combines the first type of SIBs (SIB type 1) received up to that time, even before the extended SIB update window ends. Can be decoded.
  • FIG. 11B illustrates another method for enabling an MTC device in a cell coverage extension area to receive a first type of SIB.
  • the base station (eNodeB) 200 uses the SIB (SIB Type 1) of the first type for the MTC device 100 within the existing 80ms length update window 5 times and 25 times. Rather than transmitting on subframes 45 and 65, the first type of SIB (SIB type 1) may be repeatedly transmitted on several consecutive subframes (ie, a bundling subframe).
  • SIB Type 1 the first type of SIB (SIB type 1) may be repeatedly transmitted on several consecutive subframes (ie, a bundling subframe).
  • the transmission start sub-type of the first type of SIB (SIB Type 1) may be predefined or may be specified in the MTC device 100 through the MIB or RRC signal. Can be delivered. Specifically, in order for the MTC device 100 to receive the first type of SIB (SIB Type 1) with a low complexity, the MTC device 100 may use the first type of SIB (SIB Type 1).
  • the location information of the SFN may be predefined or transmitted to the MTC device through a MIB or RRC signal. In this case, when the information is previously designated, the transmission of the information may be omitted. Alternatively, the information may be represented via bits that are not currently used and reserved in the MIB.
  • the PBCH may be a PBCH that can be received by a general UE as well, but may be a dedicated PBCH for an MTC device 100 requiring Cell Extension (CE).
  • CE PBCH Cell Extension
  • the dedicated PBCH (or CE PBCH) is received on multiple consecutive subframes (ie, bundle subframe) from the base station, when the last subframe of the consecutive multiple subframes is called 'subframe n'
  • the position of the subframe in which reception of the first type of SIB (SIB Type 1) for the MTC device 100 starts is 'sub' which is after k subframes from the subframe in which the dedicated PBCH (or CE PBCH) is received. It may be determined that the frame n + k '.
  • the MTC device 100 receives k subframes from a subframe in which a dedicated PBCH (or CE PBCH) is received. It can be assumed that the reception of the PDCCH masked with the SI-RNTI starts from the 'subframe n + k' after the frame.
  • the value of k may be a preset value. For example, the value of k may be 0 for example. Alternatively, the value of k may be known to the MTC device through a MIB.
  • SIB type 1 a first type of SIB
  • SIB type 1 a first type of SIB
  • SIB type 2 a second type of SIB
  • SIB type 1 a first type of SIB
  • SIB type 1 a first type of SIB for an MTC device in addition to the existing first type of SIB (SIB type 1).
  • SIB type 1 in addition to the existing first type of SIB (SIB type 1) transmitted from the base station to the terminal through subframes 5, 25, 45 and 65 MTC device
  • SIB type 1 A first type of SIB (SIB type 1) may be additionally transmitted.
  • the first type of SIB (SIB type 1) for the MTC device may be transmitted on a plurality of consecutive subframes (ie, a bundling subframe).
  • an additional first type of SIB (SIB type 1) for the MTC device is added, so that the first type of SIB (SIB type 1) of all subframes is added. Since the occupied subframes may be increased, the overhead may be increased. According to an embodiment, the period in which the additional first type of SIB (SIB Type 1) is transmitted for the MTC device may be determined to be greater than 80 msec. . Alternatively, an additional first type of SIB (SIB Type 1) for the MTC device is not transmitted under normal circumstances, but when a specific event occurs (eg, when the MTC device wakes up from sleep and receives an SIB). Is reached), the additional first type of SIB (SIB type 1) can be transmitted.
  • the additional first type of SIB may be transmitted on all or some subframes of 80 consecutive subframes of subframes # 0 to # 79. In this case, the additional first type of SIB (SIB type 1) is transmitted through the remaining subframes except for the position of the existing first type of SIB (SIB type 1).
  • the additional first type of SIB (SIB) is numbered.
  • Type 1) may be transmitted on all or some subframes of 61 consecutive subframes from subframe # 25 to subframe # 5.
  • the additional first type of SIB (SIB Type 1) is transmitted on 59 consecutive subframes from subframe # 26 to subframe # 5.
  • subframe # 5 to subframe # 25 Up to 101 consecutive subframes may be transmitted over all or some subframes.
  • the additional first type of SIB (SIB type 1) is transmitted through the remaining subframes except for the subframe in which the existing first type of SIB (SIB type 1) is transmitted.
  • SIB type 1 may be performed through successive subframes at other positions.
  • SIB Type 1 first type of SIB
  • SIB Type 1 is transmitted in a plurality of consecutive subframes (ie, bundling subframes), it is described in the examples illustrated in FIGS. 12A to 12C. Since the existing first type of SIB (SIB Type 1) exists between several subframes in which one type of SIB (SIB Type 1) is transmitted, the additional first type of SIB (SIB Type 1) is continuous. It is transmitted on subframes and some discrete subframes.
  • FIG. 13 is an exemplary view illustrating a radio resource in which an additional first type of SIB (SIB type 1) is transmitted for an MTC device in addition to the existing first type of SIB (SIB type 1).
  • SIB type 1 an additional first type of SIB
  • SIB type 1 an additional first type of SIB
  • the location of the RB area in which the existing first type of SIB (SIB Type 1) is transmitted and the RB area in which the additional first type of SIB (SIB Type 1) is transmitted. May be different from each other.
  • the reason is that the base station can be fragmented by independently scheduling the RB area for transmitting the existing first type of SIB (SIB Type 1) and the RB area for transmitting the additional first type SIB (SIB Type 1).
  • the MTC device may know the location information of the RB through which the additional first type of SIB (SIB Type 1) is transmitted, but the information about the RB location through which the existing first type of SIB (SIB Type 1) is transmitted. There is a possibility that you do not know correctly because you do not know.
  • an embodiment of the present disclosure provides an additional first type of SIB (SIB type) for the MTC device in a section in which an existing first type of SIB (SIB type 1) is transmitted.
  • SIB type 1 an existing first type of SIB
  • the PDSCH including the existing first type SIB (SIB type 1) is transmitted through six RBs among system bandwidths.
  • the existing first type of SIB (SIB Type 1) is the additional first type of SIB (SIB Type 1). This may be transmitted through the RB region having the same frequency position as the frequency position of the transmitted RB region.
  • 14A-14B show an example of a scheme for providing a newly generated first type of SIB for an MTC device.
  • SIB type 1 only the newly generated first type SIB (SIB type 1) for the MTC device may be provided to the MTC device. That is, apart from the existing first type SIB (SIB type 1) transmitted through subframes 5, 25, 45, and 65 every 80 msec, a new first type SIB (SIB) only for MTC devices is used. Type 1), and the MTC device may receive only a new first type of SIB (SIB type 1), not an existing first type of SIB (SIB type 1).
  • the new first type of SIB (SIB Type 1) may be transmitted through several consecutive / non-contiguous subframes.
  • a new first type SIB (SIB type 1) is generated for the MTC device in addition to the existing first type SIB (SIB type 1), so that the sub type occupied by the first type SIB (SIB type 1) among all subframes Since the frames may be increased to increase the overhead, according to an embodiment, the period in which the transmission of the new first type SIB (SIB Type 1) for the MTC device is performed may be determined to be greater than 80 msec.
  • a new first type of SIB (SIB Type 1) for the MTC device is not transmitted in a general situation, but when a specific event occurs (for example, when the MTC device wakes up from sleep and receives an SIB). Arrives).
  • SIB Type 1 SIB Type 1
  • SIB Type 1 SIB Type 1
  • SIB Type 1 a new first type of SIB (SIB Type 1) may be transmitted through all or some subframes of 59 consecutive subframes of subframes # 26 to # 4.
  • SIB type 1 transmission of the additional first type of SIB (SIB type 1) may be performed through successive subframes at other positions.
  • SIB type 1 SIB type 1
  • CE coverage extension
  • a PDCCH including scheduling information must first be transmitted to the MTC device.
  • the CRC of the PDCCH containing the scheduling information for the PDSCH including the SIB (SIB type 1) of the first type for the MTC device may be masked by SI-RNTI. Therefore, hereinafter, the relationship between the first type of SIB (SIB type 1) and the PDCCH for the MTC device will be described.
  • 15A to 15C illustrate a relationship between a SIB and a PDCCH of a first type for an MTC device.
  • a PDSCH including a PDCCH and a first type of SIB (SIB Type 1) is transmitted over several consecutive subframes or discontinuously using a specific subframe location. Can be sent.
  • a PDCCH containing scheduling information of a first type of SIB (SIB type 1) for an MTC device and a first type of SIB (SIB type 1) for the MTC device may be provided.
  • the contained PDSCH may be transmitted simultaneously on specific subframes.
  • the specific subframes may be Nos. 5, 25, 45, and 65 in which the existing first type of SIB (SIB Type 1) is transmitted.
  • SIB (SIB type 1) of a first type for the MTC device when a CRC masked with SI-RNTI and a PDSCH through which a SIB (SIB type 1) of a first type for the MTC device is transmitted are transmitted during a specific period, ie, dur_SIB, the base station selects during the dur_SIB.
  • the subframe location e.g., subframes 5, 25, 45, and 65 where SIB (SIB type 1) of the first type is transmitted
  • SIB (SIB Type 1) must be transmitted to the MTC device.
  • the PBCH is also transmitted on several subframes (ie, a bundling subframe) for the MTC device, transmission of the PDCCH and the first type of SIB (SIB type 1) from the last subframe among the various subframes.
  • SIB type 1 the first type of SIB
  • the subframe interval up to this starting subframe position may be equal to G_BC.
  • the value of G_BC may be always fixed to zero.
  • the value of G_BC may be a preset value.
  • the value of G_BC may be 0 for example.
  • the value of G_BC may be known to the MTC device through a MIB.
  • the PDCCH containing the scheduling information of the SIB (SIB type 1) of the first type for the MTC device and the SIB (SIB type 1) of the first type for the MTC device This contained PDSCH may be transmitted on different subframes. Specifically, subframes 5, 25, 45, and 65 in which the PDCCH masked by the CRC with the SI-RNTI transmits specific subframes (eg, the existing first type of SIB (SIB type 1)) during a specific period. After transmitting through), the first type of SIB (SIB Type 1) may be transmitted through several consecutive subframes during a specific period.
  • the base station determines during dur_PDCCH.
  • CRC can always transmit the PDCCH masked by the SI-RNTI on the subframes.
  • the base station may transmit a PDSCH containing a first type of SIB (SIB type 1) for an MTC device through consecutive subframes during the dur_SIB.
  • SIB Type 1 the scheduling information for the first type of SIB (SIB Type 1) is contained in the PDCCH transmitted during the dur_PDCCH.
  • the subframe interval between the subframe where the transmission of the PDCCH is terminated and the subframe location where the transmission of the first type of SIB (SIB Type 1) starts may be equal to G_CS.
  • the value of G_CS may be 0.
  • the base station when the base station transmits the PDCCH on specific subframes during dur_PDCCH, the base station may always transmit the first type of SIB (SIB type 1) corresponding to the corresponding PDCCH to the MTC device in the corresponding subframe. .
  • the MTC device may know that a PDCCH with a CRC masked with SI-RNTI will always be received on specific subframes during dur_PDCCH.
  • the MTC device may receive a PDCCH on a predetermined subframe during a corresponding interval and obtain scheduling information of a first type of SIB (SIB type 1). Thereafter, the MTC device may recognize that a PDSCH including the first type of SIB (SIB Type 1) information is received with a gap of G_CS subframes in every subframe during dur_SIB.
  • the MTC device may receive a PDSCH transmitted during dur_SIB using scheduling information of a first type SIB (SIB type 1) obtained through a PDCCH, and thereby obtain a first type SIB (SIB type 1). have.
  • SIB type 1 scheduling information of a first type SIB obtained through a PDCCH
  • a PBCH is also transmitted on several subframes (ie, a bundling subframe) for an MTC device
  • transmission of the PDCCH and the first type of SIB (SIB type 1) starts from the last subframe among the various subframes.
  • the interval up to the subframe may be equal to G_BC.
  • the value of G_BC may be 0.
  • the PDCCH containing the scheduling information for the SIB (SIB type 1) of the first type and the PDSCH containing the SIB (SIB type 1) of the first type during a specific period can be transmitted on consecutive subframes.
  • a CRC is a dur_SIB in which a PDSCH including a PDCCH masked with an SI-RNTI and a first type of SIB (SIB type 1) is transmitted, dur_SIB, the base station is configured for the first type of SIB (SIB type 1).
  • a PDSCH containing PDCCH and SIB including scheduling information may be transmitted through several consecutive subframes during the dur_SIB.
  • the MTC device may assume that a PDCCH masked with SI-RNTI and a first type of SIB (SIB type 1) are transmitted through several consecutive subframes during the dur_SIB.
  • the MTC device may obtain a first type of SIB (SIB type 1) by receiving a PDCCH and a PDSCH in a subframe transmitted during a corresponding period. If a PBCH is also transmitted on several subframes (ie, a bundling subframe) for an MTC device, transmission of the PDCCH and the first type of SIB (SIB type 1) starts from the last subframe among the various subframes.
  • the interval up to the subframe may be equal to G_BC.
  • the PDCCH including scheduling information for the first type of SIB (SIB Type 1) for MTC is shown to be masked with SI-RNTI, even though it is not masked with SI-RNIT. If the corresponding PDCCH includes scheduling information for SIB (SIB Type 1) of the first type for MTC, the above description may be applied. Meanwhile, in FIGS. 15A, 15B, and 15C, although the existing first type of SIB (SIB type 1) and the new first type of SIB (SIB type 1) are shown separately, the new first type of SIB (SIB) is illustrated. The foregoing description may also be applied to the existing first type SIB (SIB type 1), not to type 1).
  • the first type of SIB for the MTC device is transmitted.
  • a collision may occur.
  • the base station may transmit only the new first type of SIB without transmitting the existing first type of SIB on subframes 5, 25, 45, and 65.
  • the base station may transmit the existing first type of SIB without transmitting the new first type of SIB on subframes 5, 25, 45, and 65.
  • the MTC device receives a new first type of SIB through subframes except for subframes 5, 25, 45, and 65.
  • the new first type of SIBs of the examples of the first type of SIB for the MTC device collide by being configured to be transmitted in the same subframe and the same RB area as the existing first type of SIB
  • the new first By adjusting the position of the RB to which the SIB of the type is transmitted and the position of the RB to which the existing first type of SIB is transmitted, collision may be avoided. This will be described below with reference to FIG. 15.
  • FIG. 16 illustrates an example of avoiding collision between a first type of SIB and an existing first type of SIB for an MTC device.
  • the base station determines an existing first type of SIB other than the middle region. By transmitting on the area of, collision can be avoided.
  • Embodiments of the present invention described so far may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof. Specifically, it will be described with reference to the drawings.
  • 17 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 200 includes a processor 201, a memory 202, and an RF unit 203.
  • the memory 202 is connected to the processor 201 and stores various information for driving the processor 201.
  • the RF unit 203 is connected to the processor 201 to transmit and / or receive a radio signal.
  • the processor 201 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 201.
  • the MTC device 100 includes a processor 101, a memory 102, and an RF unit 103.
  • the memory 102 is connected to the processor 101 and stores various information for driving the processor 101.
  • the RF unit 103 is connected to the processor 101 and transmits and / or receives a radio signal.
  • the processor 101 implements the proposed functions, processes and / or methods.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

기지국의 커버리지 확장 영역에 MTC(Machine Type Communication) 기기가 위치할 때, 본 명세서의 일 개시에 의하면, 상기 MTC 기기는 시스템 정보(예컨대, 제1 타입의 시스템 정보블록(System Information Block: SIB)을 여러 서브프레임들 상에서 반복적으로 수신한 후, 결합하여 디코딩함으로써, 디코딩 성공률을 향상시킬 수 있다.

Description

셀 커버리지 확장 영역 위치한 MTC 기기의 시스템 정보 수신 방법
본 발명은 이동통신에 관한 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리이즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최대 4개의 안테나를 갖는 MIMO(multiple input multiple output)를 채용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)에 대한 논의가 진행 중이다.
3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"에 개시된 바와 같이, LTE에서 물리채널은 하향링크 채널인 PDSCH(Physical Downlink Shared Channel)와 PDCCH(Physical Downlink Control Channel), 상향링크 채널인 PUSCH(Physical Uplink Shared Channel)와 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
한편, 최근에는 사람과의 상호 작용(human interaction) 없이, 즉 사람의 개입 없이 장치간 또는 장치와 서버간에 일어나는 통신, 즉 MTC(Machine Type Communication)에 대한 연구가 활발히 되고 있다. 상기 MTC는 인간이 사용하는 단말이 아닌 기계 장치가 기존 무선 통신 네트워크를 이용하여 통신하는 개념을 일컫는다.
상기 MTC의 특성은 일반적인 단말과 다르므로, MTC 통신에 최적화된 서비스는 사람 대 사람(human to human) 통신에 최적화된 서비스와 다를 수 있다. MTC 통신은 현재의 모바일 네트워크 통신 서비스와 비교하여, 서로 다른 마켓 시나리오(market scenario), 데이터 통신, 적은 비용과 노력, 잠재적으로 매우 많은 수의 MTC 기기들, 넓은 서비스 영역 및 MTC 기기 당 낮은 트래픽 등으로 특징될 수 있다.
최근에는, MTC 기기를 위해서 기지국의 셀 커버리지를 확장하는 것을 고려하고 있으며, 셀 커버리지 확장을 위한 다양한 기법들의 논의되고 있다. 그런데, 셀의 커버리지가 확장될 경우에, 기지국이 일반적인 UE에게 전송하듯이 시스템 정보를 전송하는 경우, 셀 커버리지 확장 영역에 위치한 MTC 기기는 이를 수신하는데 어려움을 겪게 된다.
따라서, 본 명세서의 개시는 전술한 문제점을 해결하는 것을 목적으로 한다.
전술한 목적을 달성하기 위하여, 구체적으로 본 명세서의 일 개시에 의하면, 기지국의 커버리지(coverage) 확장 영역에 MTC(Machine Type Communication) 기기가 위치할 때, 상기 MTC 기기는 시스템 정보(예컨대, 제1제1 타입의 시스템 정보블록(System Information Block: SIB))을 여러 서브프레임들 상에서 반복적으로 수신한 후, 결합하여 디코딩(decoding) 한다.
보다 구체적으로, 본 명세서의 일 개시에 의하면, MTC(Machine Type Communication) 기기의 시스템 정보 수신 방법이 제공된다. 상기 방법은 여러 서브프레임들 상의 PDCCH(Physical Downlink Control CHannel)들을 통해 반복적으로 수신되는 제어 정보를 디코딩하는 단계를 포함할 수 있다. 여기서 상기 제어 정보는 MTC 기기를 위한 제1 타입 시스템 정보 블록(System Information Block; SIB)에 대한 스케줄링 정보를 포함할 수 있다. 상기 방법은 상기 스케줄링 정보에 기초하여 여러 서브프레임들 상의 PDSCH(Physical Downlink Shared CHannel)들을 통해 반복적으로 수신되는 상기 MTC 기기를 위한 제1 타입의 SIB를 디코딩하는 단계를 포함할 수 있다.
상기 MTC 기기를 위한 제1 타입의 SIB는: 일반 단말을 위한 제1 타입의 SIB에 포함되는 정보 외의 추가 정보를 포함할 수 있다.
상기 방법은 MIB(master information block)를 여러 서브프레임들 상의 PBCH(Physical Broadcast CHannel)들을 통해 반복적으로 수신하여 디코딩하는 단계를 더 포함할 수 있다.
상기 MIB가 수신되는 여러 서브프레임들 중 마지막 서브프레임으로부터 일정 구간 이후에, 상기 스케줄링 정보와 상기 제1 타입의 SIB가 비연속적인 여러 서브프레임들 상에서 동시에 수신될 수 있다.
상기 MIB가 수신되는 여러 서브프레임들 중 마지막 서브프레임으로부터 제1 구간 이후의 여러 서브프레임들 상에서 상기 스케줄링 정보가상에서 수신되고, 상기 스케줄링 정보가 수신되는 여러 서브프레임들 중 마지막 서브프레임으로부터 제2 구간 이후의 여러 서브프레임들 상에서 상기 제1 타입의 SIB가 수신될 수 있다.
상기 MIB가 수신되는 여러 서브프레임들 중 마지막 서브프레임으로부터 일정 구간 이후에, 상기 스케줄링 정보와 상기 제1 타입의 SIB가 연속적인 여러 서브프레임들 상에서 동시에 수신될 수 있다.
상기 방법은 MTC 기기가 아닌 일반 단말을 위한 제1 타입의 SIB를 수신하는 단계를 더 포함할 수 있다. 이때, 상기 MTC 기기를 위한 제1 타입의 SIB를 디코딩하는 단계에서는, 상기 일반 단말을 위한 제1 타입의 SIB와 상기 MTC 기기를 위한 제1 타입의 SIB가 결합되어 디코딩될 수 있다.
상기 방법은 MTC 기기가 아닌 일반 단말을 위한 제1 타입의 SIB를 수신하는 단계를 더 포함할 수 있다. 여기서 상기 MTC 기기를 위한 제1 타입의 SIB와 일반 단말을 위한 제1 타입의 SIB는 동일 서브프레임들 상의 서로 다른 RB 상에서 수신될 수 있다.
본 명세서의 일 개시에 의하면, MTC(Machine Type Communication) 기기가 제공된다. 상기 MTC 기기는, 상기 MTC 기기를 위한 제1 타입 시스템 정보 블록(SIB)에 대한 스케줄링 정보를 여러 서브프레임들 상의 PDCCH(Physical Downlink Control CHannel)들을 통해 반복적으로 수신하는 송수신부와; 상기 스케줄링 정보를 디코딩하고, 상기 디코딩된 스케줄링 정보에 기초하여 상기 MTC 기기를 위한 제1 타입의 SIB가 포함된 PDSCH(Physical Downlink Shared CHannel)가 반복적으로 수신되는 여러 서브프레임들을 결정하고, 상기 결정된 여러 서브프레임들 상에서 상기 MTC 기기를 위한 제1 타입의 SIB를 수신하여 디코딩하는 프로세서를 포함할 수 있다.
본 명세서의 개시에 의하면, 전술한 종래 기술의 문제점이 해결되게 된다.
보다 구체적으로, 기지국의 커버리지 확장 영역에 MTC(Machine Type Communication) 기기가 위치할 때, 본 명세서의 일 개시에 의하면, 상기 MTC 기기는 시스템 정보(예컨대, 제1 타입의 시스템 정보블록)을 여러 서브프레임들 상에서 반복적으로 수신한 후, 결합하여 디코딩함으로써, 디코딩 성공률을 향상시킬 수 있다.
도 1은 무선 통신 시스템이다.
도 2는 3GPP LTE에서 FDD에 따른 무선 프레임(radio frame)의 구조를 나타낸다.
도 3은 3GPP LTE에서 TDD에 따른 하향링크 무선 프레임의 구조를 나타낸다.
도 4는 3GPP LTE에서 하나의 상향링크 또는 하향링크슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 5는 하향링크 서브프레임의 구조를 나타낸다.
도 6은 3GPP LTE에서 상향링크 서브프레임의 구조를 나타낸다.
도 7은 단일 반송파 시스템과 반송파 집성 시스템의 비교 예이다.
도 8은 반송파 집성 시스템에서 교차 반송파 스케줄링을 예시한다.
도 9a은 시스템 정보의 전송의 일 예를 나타낸다.
도 9b는 MIB가 전송되는 PBCH(Physical Broadcast Channel)의 위한 프레임 구조를 나타낸다.
도 9c는 무선 프레임 상에서 제1 타입의 시스템 정보블록의 전송 예시를 나타낸다.
도 10a은 MTC(Machine Type communication) 통신의 일 예를 나타낸다.
도 10b은 MTC 기기를 위한 셀 커버리지 확장의 예시이다.
도 11a는 셀 커버리지 확장 영역에 있는 MTC 기기가 제1 타입의 시스템 정보블록을 수신할 수 있도록 하기 위한 일 방안을 나타낸다.
도 11b는 셀 커버리지 확장 영역에 있는 MTC 기기가 제1 타입의 시스템 정보블록을 수신할 수 있도록 하기 위한 다른 방안을 나타낸다.
도 12a 내지 도 12c는 기존 제1 타입의 시스템 정보블록 외에 MTC 기기를 위한 제1 타입의 시스템 정보블록을 추가 제공하는 방안의 예들을 나타낸다.
도 13은 기존 제1 타입의 시스템 정보블록 외에 MTC 기기를 위한 추가적 제1 타입의 시스템 정보블록이 전송되는 무선 자원을 주파수 관점에서 나타낸 예시도이다.
도 14a 내지 도 14b은 MTC 기기를 위해 새로이 생성된 제1 타입의 시스템 정보블록을 제공하는 방안의 예를 나타낸다.
도 15a 내지 도 15c는 MTC 기기를 위한 제1 타입의 시스템 정보블록과 PDCCH의 관계를 나타낸다.
도 16는 MTC 기기를 위한 제1 타입의 시스템 정보블록과 기존 제1 타입의 시스템 정보블록이 충돌을 피하기 위한 일 예를 나타낸다.
도 17는 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
이하에서는 3GPP(3rd Generation Partnership Project) 3GPP LTE(long term evolution) 또는 3GPP LTE-A(LTE-Advanced)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고, 본 발명은 다양한 무선 통신 시스템에 적용될 수 있다. 이하에서, LTE라 함은 LTE 및/또는 LTE-A를 포함한다.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다. 본 발명의 사상은 첨부된 도면외에 모든 변경, 균등물 내지 대체물에 까지도 확장되는 것으로 해석되어야 한다.
이하에서 사용되는 용어인 기지국은, 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNodeB(evolved-NodeB), eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
그리고 이하, 사용되는 용어인 UE(User Equipment)는, 고정되거나 이동성을 가질 수 있으며, 기기(Device), 무선기기(Wireless Device), 단말(Terminal), MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal) 등 다른 용어로 불릴 수 있다.
도 1은 무선 통신 시스템이다.
도 1을 참조하여 알 수 있는 바와 같이, 무선 통신 시스템은 적어도 하나의 기지국(20; base station, BS)을 포함한다. 각 기지국(20)은 특정한 지리적 영역(일반적으로 셀이라고 함)(20a, 20b, 20c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다..
UE은 통상적으로 하나의 셀에 속하는데, UE이 속한 셀을 서빙 셀(serving cell)이라 한다. 서빙 셀에 대해 통신 서비스를 제공하는 기지국을 서빙 기지국(serving BS)이라 한다. 무선 통신 시스템은 셀룰러 시스템(cellular system)이므로, 서빙 셀에 인접하는 다른 셀이 존재한다. 서빙 셀에 인접하는 다른 셀을 인접 셀(neighbor cell)이라 한다. 인접 셀에 대해 통신 서비스를 제공하는 기지국을 인접 기지국(neighbor BS)이라 한다. 서빙 셀 및 인접 셀은 UE을 기준으로 상대적으로 결정된다.
이하에서, 하향링크는 기지국(20)에서 UE(10)로의 통신을 의미하며, 상향링크는 UE(10)에서 기지국(20)으로의 통신을 의미한다. 하향링크에서 송신기는 기지국(20)의 일부분이고, 수신기는 UE(10)의 일부분일 수 있다. 상향링크에서 송신기는 UE(10)의 일부분이고, 수신기는 기지국(20)의 일부분일 수 있다.
한편, 무선 통신 시스템은 MIMO(multiple-input multiple-output) 시스템, MISO(multiple-input single-output) 시스템, SISO(single-input single-output) 시스템 및 SIMO(single-input multiple-output) 시스템 중 어느 하나일 수 있다. MIMO 시스템은 다수의 전송 안테나(transmit antenna)와 다수의 수신 안테나(receive antenna)를 사용한다. MISO 시스템은 다수의 전송 안테나와 하나의 수신 안테나를 사용한다. SISO 시스템은 하나의 전송 안테나와 하나의 수신 안테나를 사용한다. SIMO 시스템은 하나의 전송 안테나와 다수의 수신 안테나를 사용한다. 이하에서, 전송 안테나는 하나의 신호 또는 스트림을 전송하는 데 사용되는 물리적 또는 논리적 안테나를 의미하고, 수신 안테나는 하나의 신호 또는 스트림을 수신하는 데 사용되는 물리적 또는 논리적 안테나를 의미한다.
한편, 무선 통신 시스템은 크게 FDD(frequency division duplex) 방식과 TDD(time division duplex) 방식으로 나눌 수 있다. FDD 방식에 의하면 상향링크 전송과 하향링크 전송이 서로 다른 주파수 대역을 차지하면서 이루어진다. TDD 방식에 의하면 상향링크 전송과 하향링크 전송이 같은 주파수 대역을 차지하면서 서로 다른 시간에 이루어진다. TDD 방식의 채널 응답은 실질적으로 상호적(reciprocal)이다. 이는 주어진 주파수 영역에서 하향링크 채널 응답과 상향링크 채널 응답이 거의 동일하다는 것이다. 따라서, TDD에 기반한 무선통신 시스템에서 하향링크 채널 응답은 상향링크 채널 응답으로부터 얻어질 수 있는 장점이 있다. TDD 방식은 전체 주파수 대역을 상향링크 전송과 하향링크 전송이 시분할되므로 기지국에 의한 하향링크 전송과 UE에 의한 상향링크 전송이 동시에 수행될 수 없다. 상향링크 전송과 하향링크 전송이 서브프레임 단위로 구분되는 TDD 시스템에서, 상향링크 전송과 하향링크 전송은 서로 다른 서브프레임에서 수행된다.
이하에서는, LTE 시스템에 대해서 보다 상세하게 알아보기로 한다.
도 2는 3GPP LTE에서 FDD에 따른 무선 프레임(radio frame)의 구조를 나타낸다.
도 2에 도시된 무선 프레임은 3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"의 5절을 참조할 수 있다.
도 2를 참조하면, 무선 프레임은 10개의 서브프레임(subframe)을 포함하고, 하나의 서브프레임은 2개의 슬롯(slot)을 포함한다. 무선 프레임 내 슬롯은 0부터 19까지 슬롯 번호가 매겨진다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. TTI는 데이터 전송을 위한 스케줄링 단위라 할 수 있다. 예를 들어, 하나의 무선 프레임의 길이는 10ms이고, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수 등은 다양하게 변경될 수 있다.
한편, 하나의 슬롯은 복수의 OFDM 심볼을 포함할 수 있다. 하나의 슬롯에 몇개의 OFDM 심볼이 포함되는지는 순환전치(cyclic prefix: CP)에 따라 달라질 수 있다.
도 3은 3GPP LTE에서 TDD에 따른 하향링크 무선 프레임의 구조를 나타낸다.
이는 3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"의 4절을 참조할 수 있으며, TDD(Time Division Duplex)를 위한 것이다..
무선 프레임(radio frame)은 0~9의 인덱스가 매겨진 10개의 서브프레임을 포함한다. 하나의 서브프레임(subframe)은 2개의 연속적인 슬롯을 포함한다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE가 하향링크(downlink, DL)에서 OFDMA(orthogonal frequency division multiple access)를 사용하므로, 시간 영역에서 하나의 심벌 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심벌은 SC-FDMA(single carrier-frequency division multiple access) 심벌, 심벌 구간 등 다른 명칭으로 불릴 수 있다.
하나의 슬롯은 7 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 노멀(normal) CP에서 1 슬롯은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 슬롯은 6 OFDM 심벌을 포함한다.
자원블록(resource block, RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7×12개의 자원요소(resource element, RE)를 포함할 수 있다.
인덱스 #1과 인덱스 #6을 갖는 서브프레임은 스페셜 서브프레임이라고 하며, DwPTS(Downlink Pilot Time Slot: DwPTS), GP(Guard Period) 및 UpPTS(Uplink Pilot Time Slot)을 포함한다. DwPTS는 UE에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 UE의 상향 전송 동기를 맞추는 데 사용된다. GP은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
TDD에서는 하나의 무선 프레임에 DL(downlink) 서브프레임과 UL(Uplink) 서브프레임이 공존한다. 표 1은 무선 프레임의 설정(configuration)의 일 예를 나타낸다.
표 1
UL-DL 설정 스위치 포인트 주기(Switch-point periodicity) 서브프레임 인덱스
0 1 2 3 4 5 6 7 8 9
0 5 ms D S U U U D S U U U
1 5 ms D S U U D D S U U D
2 5 ms D S U D D D S U D D
3 10 ms D S U U U D D D D D
4 10 ms D S U U D D D D D D
5 10 ms D S U D D D D D D D
6 5 ms D S U U U D S U U D
'D'는 DL 서브프레임, 'U'는 UL 서브프레임, 'S'는 스페셜 서브프레임을 나타낸다. 기지국으로부터 UL-DL 설정을 수신하면, UE은 무선 프레임의 설정에 따라 어느 서브프레임이 DL 서브프레임 또는 UL 서브프레임인지를 알 수 있다.
DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫번째 슬롯의 앞선 최대 3개의 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH가 할당된다.
도 4는 3GPP LTE에서 하나의 상향링크 또는 하향링크슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 4를 참조하면, 상향링크 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역(frequency domain)에서 NRB 개의 자원블록(Resource Block, RB)을 포함한다. 예를 들어, LTE 시스템에서 자원블록(Resource Block, RB)의 개수, 즉 NRB은 6 내지 110 중 어느 하나일 수 있다.
여기서, 하나의 자원블록은 시간 영역에서 7 OFDM 심벌, 주파수 영역에서 12 부반송파를 포함하는 7×12 자원요소를 포함하는 것을 예시적으로 기술하나, 자원블록 내 부반송파의 수와 OFDM 심벌의 수는 이에 제한되는 것은 아니다. 자원블록이 포함하는 OFDM 심벌의 수 또는 부반송파의 수는 다양하게 변경될 수 있다. 즉, OFDM 심벌의 수는 전술한 CP의 길이에 따라 변경될 수 있다. 특히, 3GPP LTE에서는 노멀 CP의 경우 하나의 슬롯 내에 7개의 OFDM 심볼이 포함되는 것으로, 그리고 확장 CP의 경우 하나의 슬롯 내에 6개의 OFDM 심볼이 포함되는 것으로 정의하고 있다.
OFDM 심벌은 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로, 시스템에 따라 SC-FDMA 심벌, OFDMA 심벌 또는 심벌 구간이라고 할 수 있다. 자원블록은 자원 할당 단위로 주파수 영역에서 복수의 부반송파를 포함한다. 상향링크 슬롯에 포함되는 자원블록의 수 NUL 은 셀에서 설정되는 상향링크 전송 대역폭(bandwidth)에 종속한다. 자원 그리드 상의 각 요소(element)를 자원요소(resource element)라 한다.
한편, 하나의 OFDM 심벌에서 부반송파의 수는 128, 256, 512, 1024, 1536 및 2048 중 하나를 선정하여 사용할 수 있다.
도 4의 3GPP LTE에서 하나의 상향링크 슬롯에 대한 자원 그리드는 하향링크 슬롯에 대한 자원 그리드에도 적용될 수 있다.
도 5는 하향링크 서브프레임의 구조를 나타낸다.
도 5에서는 노멀 CP를 가정하여 예시적으로 하나의 슬롯 내에 7 OFDM 심벌이 포함하는 것으로 도시하였다. 그러나, 순환 전치(Cyclic Prefix: CP)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 즉 전술한 바와 같이, 3GPP TS 36.211 V10.4.0에 의하면, 노멀(normal) CP에서 1 슬롯은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 슬롯은 6 OFDM 심벌을 포함한다.
자원블록(resource block, RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7×12개의 자원요소(resource element, RE)를 포함할 수 있다.
DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫번째 슬롯의 앞선 최대 3개의 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH(Physical Downlink Control Channel) 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH가 할당된다.
3GPP LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 무선기기는 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 UL HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 무선기기에 의해 전송되는 PUSCH 상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫번째 서브프레임의 두번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 무선기기가 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
PDCCH는 DL-SCH(downlink-shared channel)의 자원 할당 및 전송 포맷, UL-SCH(uplink shared channel)의 자원 할당 정보, PCH 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 UE 그룹 내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및 VoIP(voice over internet protocol)의 활성화 등을 나를 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있으며, UE은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집합(aggregation) 상으로 전송된다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
기지국은 UE에게 보내려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(cyclic redundancy check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(RNTI; radio network temporary identifier)가 마스킹된다. 특정 UE을 위한 PDCCH라면 UE의 고유 식별자, 예를 들어 C-RNTI(cell-RNTI)가 CRC에 마스킹될 수 있다. 또는, 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보 블록(SIB; system information block)을 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information-RNTI)가 CRC에 마스킹될 수 있다. UE의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위해 RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
3GPP LTE에서는 PDCCH의 검출을 위해 블라인드 디코딩을 사용한다. 블라인드 디코딩은 수신되는 PDCCH(이를 후보(candidate) PDCCH라 함)의 CRC(Cyclic Redundancy Check)에 원하는 식별자를 디마스킹하고, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는 방식이다. 기지국은 무선기기에게 보내려는 DCI에 따라 PDCCH 포맷을 결정한 후 DCI에 CRC를 붙이고, PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다)를 CRC에 마스킹한다.
상향링크 채널은 PUSCH, PUCCH, SRS(Sounding Reference Signal), PRACH(Physical Random Access Channel)을 포함한다.
도 6은 3GPP LTE에서 상향링크 서브프레임의 구조를 나타낸다.
도 6을 참조하면, 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나뉠 수 있다. 제어 영역에는 상향링크 제어 정보가 전송되기 위한 PUCCH(Physical Uplink Control Channel)가 할당된다. 데이터 영역은 데이터(경우에 따라 제어 정보도 함께 전송될 수 있다)가 전송되기 위한 PUSCH(Physical Uplink Shared Channel)가 할당된다.
하나의 UE에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)으로 할당된다. 자원블록 쌍에 속하는 자원블록들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUCCH에 할당되는 자원블록 쌍에 속하는 자원블록이 차지하는 주파수는 슬롯 경계(slot boundary)를 기준으로 변경된다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계에서 주파수가 홉핑(frequency-hopped)되었다고 한다.
UE이 상향링크 제어 정보를 시간에 따라 서로 다른 부반송파를 통해 전송함으로써, 주파수 다이버시티 이득을 얻을 수 있다. m은 서브프레임 내에서 PUCCH에 할당된 자원블록 쌍의 논리적인 주파수 영역 위치를 나타내는 위치 인덱스이다.
PUCCH 상으로 전송되는 상향링크 제어정보에는 HARQ(hybrid automatic repeat request) ACK(acknowledgement)/NACK(non-acknowledgement), 하향링크 채널 상태를 나타내는 CQI(channel quality indicator), 상향링크 무선 자원 할당 요청인 SR(scheduling request) 등이 있다.
PUSCH는 전송 채널(transport channel)인 UL-SCH에 맵핑된다. PUSCH 상으로 전송되는 상향링크 데이터는 TTI 동안 전송되는 UL-SCH를 위한 데이터 블록인 전송 블록(transport block)일 수 있다. 상기 전송 블록은 사용자 정보일 수 있다. 또는, 상향링크 데이터는 다중화된(multiplexed) 데이터일 수 있다. 다중화된 데이터는 UL-SCH를 위한 전송 블록과 제어정보가 다중화된 것일 수 있다. 예를 들어, 데이터에 다중화되는 제어정보에는 CQI, PMI(precoding matrix indicator), HARQ, RI(rank indicator) 등이 있을 수 있다. 또는 상향링크 데이터는 제어정보만으로 구성될 수도 있다.
이제 반송파 집성 시스템에 대해 설명한다.
도 7은 단일 반송파 시스템과 반송파 집성 시스템의 비교 예이다.
도 7의 (a)을 참조하면, 단일 반송파 시스템에서는 상향링크와 하향링크에 하나의 반송파만을 UE에게 지원한다. 반송파의 대역폭은 다양할 수 있으나, UE에게 할당되는 반송파는 하나이다. 반면, 도 7의 (b)을 참조하면, 반송파 집성(carrier aggregation, CA) 시스템에서는 UE에게 복수의 요소 반송파(DL CC A 내지 C, UL CC A 내지 C)가 할당될 수 있다. 요소 반송파(component carrier : CC)는 반송파 집성 시스템에서 사용되는 반송파를 의미하며 반송파로 약칭할 수 있다. 예를 들어, UE에게 60MHz의 대역폭을 할당하기 위해 3개의 20MHz의 요소 반송파가 할당될 수 있다.
반송파 집성 시스템은 집성되는 반송파들이 연속되어 있는 연속(contiguous) 반송파 집성 시스템과 집성되는 반송파들이 서로 떨어져 있는 불연속(non-contiguous) 반송파 집성 시스템으로 구분될 수 있다. 이하에서 단순히 반송파 집성 시스템이라 할 때, 이는 요소 반송파가 연속인 경우와 불연속인 경우를 모두 포함하는 것으로 이해되어야 한다. 하향링크와 상향링크 간에 집성되는 요소 반송파들의 수는 다르게 설정될 수 있다. 하향링크 CC 수와 상향링크 CC 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다.
1개 이상의 요소 반송파를 집성할 때 대상이 되는 요소 반송파는 기존 시스템과의 하위 호환성(backward compatibility)을 위하여 기존 시스템에서 사용하는 대역폭을 그대로 사용할 수 있다. 예를 들어 3GPP LTE 시스템에서는 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz 및 20MHz의 대역폭을 지원하며, 3GPP LTE-A 시스템에서는 상기 3GPP LTE 시스템의 대역폭만을 이용하여 20MHz 이상의 광대역을 구성할 수 있다. 또는 기존 시스템의 대역폭을 그대로 사용하지 않고 새로운 대역폭을 정의하여 광대역을 구성할 수도 있다.
무선 통신 시스템의 시스템 주파수 대역은 복수의 반송파 주파수(Carrier-frequency)로 구분된다. 여기서, 반송파 주파수는 셀의 중심 주파수(Center frequency of a cell)를 의미한다. 이하에서 셀(cell)은 하향링크 주파수 자원과 상향링크 주파수 자원을 의미할 수 있다. 또는 셀은 하향링크 주파수 자원과 선택적인(optional) 상향링크 주파수 자원의 조합(combination)을 의미할 수 있다. 또한, 일반적으로 반송파 집성(CA)을 고려하지 않은 경우, 하나의 셀(cell)은 상향 및 하향링크 주파수 자원이 항상 쌍으로 존재할 수 있다.
특정 셀을 통하여 패킷(packet) 데이터의 송수신이 이루어지기 위해서는, UE은 먼저 특정 셀에 대해 설정(configuration)을 완료해야 한다. 여기서, 설정(configuration)이란 해당 셀에 대한 데이터 송수신에 필요한 시스템 정보 수신을 완료한 상태를 의미한다. 예를 들어, 설정(configuration)은 데이터 송수신에 필요한 공통 물리계층 파라미터들, 또는 MAC(media access control) 계층 파라미터들, 또는 RRC 계층에서 특정 동작에 필요한 파라미터들을 수신하는 전반의 과정을 포함할 수 있다. 설정 완료된 셀은, 패킷 데이터가 전송될 수 있다는 정보만 수신하면, 즉시 패킷의 송수신이 가능해지는 상태이다.
설정완료 상태의 셀은 활성화(Activation) 혹은 비활성화(Deactivation) 상태로 존재할 수 있다. 여기서, 활성화는 데이터의 송신 또는 수신이 행해지거나 준비 상태(ready state)에 있는 것을 말한다. UE은 자신에게 할당된 자원(주파수, 시간 등일 수 있음)을 확인하기 위하여 활성화된 셀의 제어채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신할 수 있다.
비활성화는 트래픽 데이터의 송신 또는 수신이 불가능하고, 측정이나 최소 정보의 송신/수신이 가능한 것을 말한다. UE은 비활성화 셀로부터 패킷 수신을 위해 필요한 시스템 정보(SI)를 수신할 수 있다. 반면, UE은 자신에게 할당된 자원(주파수, 시간 등일 수도 있음)을 확인하기 위하여 비활성화된 셀의 제어채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신하지 않는다.
셀은 프라이머리 셀(primary cell)과 세컨더리 셀(secondary cell), 서빙 셀(serving cell)로 구분될 수 있다.
프라이머리 셀은 프라이머리 주파수에서 동작하는 셀을 의미하며, UE이 기지국과의 최초 연결 확립 과정(initial connection establishment procedure) 또는 연결 재확립 과정을 수행하는 셀, 또는 핸드오버 과정에서 프라이머리 셀로 지시된 셀을 의미한다.
세컨더리 셀은 세컨더리 주파수에서 동작하는 셀을 의미하며, 일단 RRC 연결이 확립되면 설정되고 추가적인 무선 자원을 제공하는데 사용된다.
서빙 셀은 반송파 집성이 설정되지 않거나 반송파 집성을 제공할 수 없는 UE인 경우에는 프라이머리 셀로 구성된다. 반송파 집성이 설정된 경우 서빙 셀이라는 용어는 UE에게 설정된 셀을 나타내며 복수로 구성될 수 있다. 하나의 서빙 셀은 하나의 하향링크 요소 반송파 또는 {하향링크 요소 반송파, 상향링크 요소 반송파}의 쌍으로 구성될 수 있다. 복수의 서빙 셀은 프라이머리 셀 및 모든 세컨더리 셀들 중 하나 또는 복수로 구성된 집합으로 구성될 수 있다.
상술한 바와 같이 반송파 집성 시스템에서는 단일 반송파 시스템과 달리 복수의 요소 반송파(component carrier, CC), 즉, 복수의 서빙 셀을 지원할 수 있다.
이러한 반송파 집성 시스템은 교차 반송파 스케줄링을 지원할 수 있다. 교차 반송파 스케줄링(cross-carrier scheduling)은 특정 요소 반송파를 통해 전송되는 PDCCH를 통해 다른 요소 반송파를 통해 전송되는 PDSCH의 자원 할당 및/또는 상기 특정 요소 반송파와 기본적으로 링크되어 있는 요소 반송파 이외의 다른 요소 반송파를 통해 전송되는 PUSCH의 자원 할당을 할 수 있는 스케줄링 방법이다. 즉, PDCCH와 PDSCH가 서로 다른 하향링크 CC를 통해 전송될 수 있고, UL 그랜트를 포함하는 PDCCH가 전송된 하향링크 CC와 링크된 상향링크 CC가 아닌 다른 상향링크 CC를 통해 PUSCH가 전송될 수 있다. 이처럼 교차 반송파 스케줄링을 지원하는 시스템에서는 PDCCH가 제어정보를 제공하는 PDSCH/PUSCH가 어떤 DL CC/UL CC를 통하여 전송되는지를 알려주는 반송파 지시자가 필요하다. 이러한 반송파 지시자를 포함하는 필드를 이하에서 반송파 지시 필드(carrier indication field, CIF)라 칭한다.
교차 반송파 스케줄링을 지원하는 반송파 집성 시스템은 종래의 DCI(downlink control information) 포맷에 반송파 지시 필드(CIF)를 포함할 수 있다. 교차 반송파 스케줄링을 지원하는 시스템 예를 들어 LTE-A 시스템에서는 기존의 DCI 포맷(즉, LTE에서 사용하는 DCI 포맷)에 CIF가 추가되므로 3 비트가 확장될 수 있고, PDCCH 구조는 기존의 코딩 방법, 자원 할당 방법(즉, CCE 기반의 자원 맵핑)등을 재사용할 수 있다.
도 8은 반송파 집성 시스템에서 교차 반송파 스케줄링을 예시한다.
도 8을 참조하면, 기지국은 PDCCH 모니터링 DL CC(모니터링 CC) 집합을 설정할 수 있다. PDCCH 모니터링 DL CC 집합은 집성된 전체 DL CC들 중 일부 DL CC로 구성되며, 교차 반송파 스케줄링이 설정되면 UE은 PDCCH 모니터링 DL CC 집합에 포함된 DL CC에 대해서만 PDCCH 모니터링/디코딩을 수행한다. 다시 말해, 기지국은 PDCCH 모니터링 DL CC 집합에 포함된 DL CC를 통해서만 스케줄링하려는 PDSCH/PUSCH에 대한 PDCCH를 전송한다. PDCCH 모니터링 DL CC 집합은 UE 특정적, UE 그룹 특정적, 또는 셀 특정적으로 설정될 수 있다.
도 8에서는 3개의 DL CC(DL CC A, DL CC B, DL CC C)가 집성되고, DL CC A가 PDCCH 모니터링 DL CC로 설정된 예를 나타내고 있다. UE은 DL CC A의 PDCCH를 통해 DL CC A, DL CC B, DL CC C의 PDSCH에 대한 DL 그랜트를 수신할 수 있다. DL CC A의 PDCCH를 통해 전송되는 DCI에는 CIF가 포함되어 어느 DL CC에 대한 DCI인지를 나타낼 수 있다.
도 9a은 시스템 정보의 전송의 일 예를 나타낸다.
시스템 정보는 마스터 정보 블록 (Master Information Block: MIB)과 다수의 시스템 정보블록 (system information block: SIB)으로 나뉘어진다. 상기 MIB는 셀의 가장 중요한 물리 계층 정보를 포함한다. 상기 SIB는 여러 타입이 존재한다. 제1 타입의 SIB은 UE가 셀을 액세스하는게 허용되는지를 평가하는데 사용되는 정보를 포함하고, 아울러 SIB 다른 타입의 스케줄링 정보를 포함한다. 제2 타입의 SIB(SIB 타입2)는 공통 및 공유 채널 정보를 포함한다. 제3 타입의 SIB(SIB 타입3)은 서빙 셀과 주로 관련된 셀 재선택 정보를 포함한다. 제4 타입의 SIB(SIB 타입4)는 서빙셀의 주파수 정보와 셀 재선택과 관련된 이웃셀의 인트라 주파수 정보를 포함한다. 제5 타입의 SIB(SIB 타입5)는 다른 E-UTRA 주파수에 대한 정보와, 셀 재선택과 관련된 이웃셀의 인터 주파수에 대한 정보를 포함한다. 제6 타입의 SIB(SIB 타입6)은 UTRA 주파수에 대한 정보와 셀 재선택과 관련된 UTRA 이웃셀에 대한 정보를 포함한다. 제7 타입의 SIB(SIB 타입7)은 셀 재선택과 관련된 GERAN 주파수에 대한 정보를 포함한다.
도 9a를 참조하여 알 수 있는 바와 같이 MIB는 PBCH 상에서 UE(10)로 전달된다. 아울러 제1 타입의 SIB은 DL-SCH에 매핑되어 PDSCH 상에서 UE(10)로 전달된다. 다른 타입들의 SIB은 시스템 정보(System Information) 메시지를 통해 PDSCH 상에서 UE로 전달된다.
도 9b는 MIB가 전송되는 PBCH(Physical Broadcast Channel)의 위한 프레임 구조를 나타낸다.
도시된 바와 같이, 무선 프레임, 서브프레임 및 심볼 번호는 0부터 시작된다. PBCH는 매 무선 프레임 마다, 즉 10ms 마다 전송된다.
또한, 도시된 바와 같이, 상기 PBCH는 각 무선 프레임의 0번 서브프레임 상에서 전송된다. 보다 구체적으로, PBCH는 2번째 슬롯의 0,1,2,3 심볼 상에서 전송된다.
상기 PBCH는 각 기지국이 시스템의 동작을 위하여 가장 중요한 MIB 를 전송하는데 사용되며, 이러한 MIB 정보는 40ms 주기로 전송되되, 해당 셀에 접속된 모든 단말이 신뢰성 있게 받을수 있도록 매우 낮은 부호화율로 매 10 ms 단위로 4번에 걸쳐서 재전송을 하여, 상당히 열악한 채널 환경하에서도 MIB 정보의 수신을 가능하게 한다.
다른 한편, 총 24 비트의 MIB 정보는 현행 LTE 규격의 TS36.331 에 다음과 같이 정의되어 있다.
표 2
-- ASN1STARTMasterInformationBlock ::= SEQUENCE { dl-Bandwidth ENUMERATED { n6, n15, n25, n50, n75, n100}, phich-Config PHICH-Config, systemFrameNumber BIT STRING (SIZE (8)), spare BIT STRING (SIZE (10))}-- ASN1STOP
상기 MIB 정보는 일반적으로 매 전송 시 systemFrameNumber 필드를 제외하고 해당 셀마다 정해진 동일한 데이터가 전송되며, 여타의 이유로 인하여 MIB를 포함한 SIB의 변경이 필요할 경우 별도의 페이징 RRC(Paging RRC) 시그널링을 통하여 셀 내의 모든 단말에 통지한다.
도 9c는 무선 프레임 상에서 제1 타입의 시스템 정보블록의 전송 예시를 나타낸다.
도 9c를 참조하여 알 수 있는 바와 같이, 제1 타입의 SIB(SIB 타입1)은 8개의 무선 프레임 주기(즉, 80 ms 주기)로 전송되고, 8개의 무선 프레임(80ms)의 주기 내에서는 SFN(System Frame Number) mod 2를 만족하는 무선 프레임의 5번 서브프레임 상에서 반복적으로 재전송된다.
다른 한편, 제1 타입의 SIB은 현행 LTE 규격의 TS36.331 에 다음과 같이 정의되어 있다.
표 3
-- ASN1STARTSystemInformationBlockType1 ::= SEQUENCE {cellAccessRelatedInfo SEQUENCE {plmn-IdentityList PLMN-IdentityList, trackingAreaCode TrackingAreaCode, cellIdentity CellIdentity, cellBarred ENUMERATED {barred, notBarred}, intraFreqReselection ENUMERATED {allowed, notAllowed}, csg-Indication BOOLEAN, csg-Identity CSG-Identity }, cellSelectionInfo SEQUENCE { q-RxLevMin Q-RxLevMin, q-RxLevMinOffset INTEGER (1..8) }, p-Max P-Max freqBandIndicator FreqBandIndicator, schedulingInfoList SchedulingInfoList, tdd-Config TDD-Config si-WindowLength ENUMERATED {ms1, ms2, ms5, ms10, ms15, ms20, ms40}, systemInfoValueTag INTEGER (0..31), nonCriticalExtension SystemInformationBlockType1-v890-IEs }
한편, 이하 MTC에 대해서 설명하기로 한다.
도 10a은 MTC(Machine Type communication) 통신의 일 예를 나타낸다.
MTC(Machine Type Communication)는 인간 상호작용(human interaction)을 수반하지 않은 MTC 기기(100)들 간에 기지국(200)을 통한 정보 교환 또는 MTC 기기(100)와 MTC 서버(700) 간에 기지국을 통한 정보 교환을 말한다.
MTC 서버(700)는 MTC 기기(100)와 통신하는 개체(entity)이다. MTC 서버(700)는 MTC 애플리케이션을 실행하고, MTC 기기에게 MTC 특정 서비스를 제공한다.
MTC 기기(100)는 MTC 통신을 제공하는 무선 기기로, 고정되거나 이동성을 가질 수 있다.
MTC를 통해 제공되는 서비스는 기존의 사람이 개입하는 통신에서의 서비스와는 차별성을 가지며, 추적(Tracking), 계량(Metering), 지불(Payment), 의료 분야 서비스, 원격 조정 등 다양한 범주의 서비스가 존재한다. 보다 구체적으로, MTC를 통해 제공되는 서비스는 계량기 검침, 수위측정, 감시 카메라의 활용, 자판기의 재고보고 등이 있을 수 있다.
MTC 기기의 특이성은 전송 데이터량이 적고 상/하향 링크 데이터 송수신이 가끔씩 발생하기 때문에 이러한 낮은 데이터 전송률에 맞춰서 MTC 기기의 단가를 낮추고 배터리 소모를 줄이는 것이 효율적이다. 이러한 MTC 기기는 이동성이 적은 것을 특징으로 하며, 따라서 채널 환경이 거의 변하지 않는 특성을 지니고 있다.
도 10b은 MTC 기기를 위한 셀 커버리지 확장의 예시이다.
최근에는, MTC 기기(100)를 위해서 기지국의 셀 커버리지를 확장하는 것을 고려하고 있으며, 셀 커버리지 확장을 위한 다양한 기법들의 논의되고 있다.
그런데, 셀의 커버리지가 확장될 경우에, 기지국이 일반적인 UE에게 전송하듯이 MIB, SIB 등을 전송하는 경우, 셀 커버리지 확장 영역에 위치한 MTC 기기는 이를 수신하는데 어려움을 겪게 된다. 특히, 제1 타입의 SIB의 경우 80ms 길이의 갱신 윈도우 이후에는 변경될 수 있는데, 만약 셀 커버리지 확장 영역에 위치한 MTC 기기가 상기 갱신 윈도우가 끝나기 전까지 상기 제1 타입의 SIB을 올바르게 디코딩하지 못할 수 있다.
<본 명세서의 개시들 >
따라서, 본 명세서의 개시들은 이러한 문제점을 해결하는 방안을 제시하는 것을 목적으로 한다. 특히, 이하에서는 SIB를 위주로 본 명세서의 개시들을 설명하기로 한다. 또한, 설명의 편의상, 본 명세서는 제1 타입의 SIB을 위주로 설명하기로 하나, 이에 한정되는 것은 아니며, 본 명세서의 핵심은 SIB 다른 타입에도 적용될 수 있다.
도 11a는 셀 커버리지 확장 영역에 있는 MTC 기기가 제1 타입의 SIB을 수신할 수 있도록 하기 위한 일 방안을 나타낸다.
전술한 문제점을 해결하기 위해서, 기존 제1 타입의 SIB(SIB 타입1)에 대한 기존 갱신 윈도우, 즉 80ms (8개의 무선 프레임) 대신에 기지국은 확장된 갱신 윈도우를 사용하고, 상기 확장된 갱신 윈도우 구간 동안에는 제1 타입의 SIB(SIB 타입1)의 정보가 갱신되지 않도록 할 수 있다.
기존 4개의 제1 타입의 SIB(SIB 타입1)만을 수신할 수 있었던 갱신 윈도우를 확장시키게 되면, 상기 MTC 기기는 4개 보다 아주 많은 개수의 제1 타입의 SIB(SIB 타입1)을 수신한 뒤, 이들을 결합(combining)하여 디코딩을 수행함으로써, 디코딩의 성공 확률을 높일 수 있다. 그런데. 이와 같이 갱신 윈도우의 길이를 너무 길게 하게 하면, 반대로 오버헤드가 커지게 되므로 유의해야 한다. 예를 들어, 만약 확장된 갱신 윈도우가 기존 갱신 윈도우 보다 25배가 길다면, 상기 MTC 기기는 약 100개 정도의 서브프레임들을 통해서 SIB를 수신한 뒤에야 비로서 디코딩할 수 있으므로, 오버헤드가 너무 커지게 된다. 즉, 80ms(즉, 8개의 무선 프레임) 동안 제1 타입의 SIB(SIB 타입1)이 4번 수신되므로, 100개의 서브프레임 상에서 제1 타입의 SIB(SIB 타입1)을 모두 수신한 뒤에야 비로소 디코딩할 수 있다고 하면, 총 2000ms (즉, 총 200개의 무선 프레임)이 걸리게 된다. 이는, MTC 기기 입장에서 매우 큰 오버헤드일 수 있다. 마찬가지로 기지국 입장에서도 제1 타입의 SIB(SIB 타입1)의 정보를 갱신하는데 너무 큰 시간이 걸리는 단점이 있다. 이를 해결하기 위해서, 상기 확장된 SIB 갱신 윈도우는 기지국에 의해서 가변될 수 있고, MTC 기기는 상기 확장된 SIB 갱신 윈도우가 끝나기 전이라도, 그때까지 수신된 제1 타입의 SIB(SIB 타입1)들을 결합하여 디코딩을 시도할 수 있다.
도 11b는 셀 커버리지 확장 영역에 있는 MTC 기기가 제1 타입의 SIB을 수신할 수 있도록 하기 위한 다른 방안을 나타낸다.
도 11b를 참조하여 알 수 있는 바와 같이, 기지국(eNodeB)(200)은 MTC 기기(100)를 위한 제1 타입의 SIB(SIB 타입1)을 기존의 80ms 길이의 갱신 윈도우 내에서 5번, 25번, 45번 및 65번 서브프레임들 상에서 전송하는 것이 아니라, 제1 타입의 SIB(SIB 타입1)을 연속적인 여러 서브프레임들(즉, 번들링 서브프레임) 상에서 반복해서 전송할 수 있다.
위와 같이, MTC 기기(100)를 위한 제1 타입의 SIB(SIB 타입1)의 전송 방식이 기존의 UE를 위한 전송 방식과 달라 질 때, 제1 타입의 SIB(SIB 타입1)의 전송 시작 서브프레임의 위치, 전송 서브프레임의 기간에 대한 정보, 및/또는 제1 타입의 SIB(SIB 타입1)의 전송 RB 영역에 대한 정보는 사전에 지정되거나, 혹은 MIB 또는 RRC 시그널을 통해 MTC 기기(100)로 전달될 수 있다. 구체적으로, 상기 MTC 기기(100)가 상기 제1 타입의 SIB(SIB 타입1)을 낮은 복잡도로 수신할 수 있도록 하기 위해서는, 상기 MTC 기기(100)가 상기 제1 타입의 SIB(SIB 타입1)을 수신할 수 있는 SFN(system frame number)의 위치에 대한 정보가 상기 MTC 기기(100)에 알려질 필요가 있다. 상기 SFN의 위치 정보는 사전에 미리 지정될 수도 있고 혹은 MIB 또는 RRC 시그널을 통해 상기 MTC 기기에게 전달될 수도 있다. 이때, 상기 정보가 사전에 미리 지정된 경우는 상기 정보의 전송은 생략될 수 있다. 또는, 상기 정보는 MIB 내에 현재 사용되지 않고 예약되어 있는 비트들을 통해 표현될 수 있다.
한편, 상기 MTC 기기를 위한 제1 타입의 SIB(SIB 타입1)이 연속적인 여러 서브프레임들 (즉, 번들링 서브프레임)상에서 전송될 때, 상기 제1 타입의 SIB(SIB 타입1)의 전송이 시작되는 서브프레임의 위치는 PBCH가 전송되는 위치에 따라서 판단될 수 있다. 이때, 상기 PBCH는 일반적인 UE도 수신 가능한 PBCH일 수도 있지만, 셀 커버리지 확장(CE: Cell Extension)이 필요한 MTC 기기(100)를 위한 전용의 PBCH일 수도 있다. 상기 전용의 PBCH를 CE PBCH라고 부를 수도 있다. 만약, 상기 전용의 PBCH(또는 CE PBCH)가 기지국으로부터 연속적인 여러 서브프레임들 (즉, 번들 서브프레임) 상에서 수신된다면, 상기 연속적인 여러 서브프레임들의 마지막 서브프레임을 ‘서브프레임 n’이라 할 때, 상기 MTC 기기(100)를 위한 제1 타입의 SIB(SIB 타입1)의 수신이 시작되는 서브프레임의 위치는 전용의 PBCH(또는 CE PBCH)가 수신되는 서브프레임부터 k개 서브프레임 후인 ‘서브프레임 n+k’라고 판단할 수 있다. 이 경우, 전용의 PBCH(또는 CE PBCH)가 수신되는 서브프레임을 ‘서브프레임 n’이라 할 때, 상기 MTC 기기(100)는 전용의 PBCH(또는 CE PBCH)가 수신되는 서브프레임부터 k개 서브프레임 이후인 ‘서브프레임 n+k’에서부터 CRC가 SI-RNTI로 마스킹된 PDCCH의 수신이 시작된다고 가정할 수 있다. 이때, 상기 k의 값은 미리 설정된 값일 수 있다. 예시적으로 상기 k의 값은 예시적으로 0일 수 있다. 또는 상기 k의 값은 MIB를 통해 상기 MTC 기기로 알려질 수 있다.
이하에서는, 기존 제1 타입의 SIB(SIB 타입1) 외에 MTC 기기를 위한 제1 타입의 SIB(SIB 타입1)을 추가 제공하는 방안과, MTC 기기를 위해 새로이 생성된 제1 타입의 SIB(SIB 타입1)만을 MTC 기기에 제공하는 방안에 대해서 설명하기로 한다.
도 12a 내지 도 12c는 기존 제1 타입의 SIB(SIB 타입1) 외에 MTC 기기를 위한 제1 타입의 SIB(SIB 타입1)을 추가 제공하는 방안의 예들을 나타낸다.
도 12a 내지 도 12c를 참조하여 알 수 있는 바와 같이, 5번, 25번, 45번 및 65번 서브프레임을 통해 기지국으로부터 단말로 전송되는 기존 제1 타입의 SIB(SIB 타입1) 외에 MTC 기기를 위한 제1 타입의 SIB(SIB 타입1)을 추가적으로 전송할 수 있다. 이때, 상기 MTC 기기를 위한 제1 타입의 SIB(SIB 타입1)은 연속적인 여러 서브프레임들(즉, 번들링 서브프레임) 상에서 전송될 수 있다.
또한, 기존 제1 타입의 SIB(SIB 타입1)외에 상기 MTC 기기를 위한 추가 제1 타입의 SIB(SIB 타입1)이 부가됨으로써, 전체 서브프레임들 중 제1 타입의 SIB(SIB 타입1)이 차지하는 서브프레임들이 증가되어 오버헤드가 커질 수 있으므로, 일 실시예에 따르면, 상기 MTC 기기를 위한 추가 제1 타입의 SIB(SIB 타입1)의 전송이 이루어지는 주기는 80msec보다 큰 값으로 정해질 수 있다. 또는 상기 MTC 기기를 위한 추가 제1 타입의 SIB(SIB 타입1)은 일반적인 상황에서는 전송되지 않다가 특정한 이벤트가 발생하였을 때(예컨대, MTC 기기가 수면(sleep)에서 깨어나 SIB를 수신해야 하는 타이밍에 도달함), 상기 추가 제1 타입의 SIB(SIB 타입1)의 전송이 이루어 질 수 있다.
구체적으로 도 12a를 참조하여 알 수 있는 바와 같이, 기존의 제1 타입의 SIB(SIB 타입1)이 전송되는 80msec을 주기를 기준으로 서브프레임의 번호가 매겨질 때, 추가적 제1 타입의 SIB(SIB 타입1)은 서브프레임 #0 ~ 서브프레임 #79의 연속적인 80개 서브프레임의 전체 또는 일부 서브프레임을 통해 전송될 수 있다. 이때, 기존의 제1 타입의 SIB(SIB 타입1)전송되는 서브프레임 위치를 제외한 나머지 서브프레임들을 통해 상기 추가적 제1 타입의 SIB(SIB 타입1)전송되게 된다.
또는 도 12b를 참조하여 알 수 있는 바와 같이, 기존의 제1 타입의 SIB(SIB 타입1)이 전송되는 80msec을 주기를 기준으로 서브프레임의 번호를 메길 때, 상기 추가 제1 타입의 SIB(SIB 타입1)은 서브프레임 #25 ~ 서브프레임 #5까지의 연속적인 61개 서브프레임의 전체 또는 일부 서브프레임을 통해 전송될 수 있다. 구체적인 예로서, 상기 추가적 제1 타입의 SIB(SIB 타입1)은 서브프레임 #26 ~ 서브프레임 #5까지의 연속적인 59개 서브프레임을 통해 전송된다.
또는 도 12c를 참조하여 알 수 있는 바와 같이, 기존의 제1 타입의 SIB(SIB 타입1)이 전송되는 80msec을 주기를 기준으로 서브프레임의 번호를 메길 때, 서브프레임 #5 ~ 서브프레임 #25까지의 연속적인 101개 서브프레임의 전체 또는 일부 서브프레임을 통해 전송될 수 있다. 이때, 상기 추가적 제1 타입의 SIB(SIB 타입1)은 기존의 제1 타입의 SIB(SIB 타입1)이 전송되는 서브프레임을 제외한 나머지 서브프레임들을 통해 전송된다.
도 12a 내지 도 12c에 도시된 것은 어디까지나 예시일 뿐이며, 다른 위치의 연속적인 서브프레임들을 통해 상기 추가적 제1 타입의 SIB(SIB 타입1)의 전송이 이루어질 수 있다.
한편, 상기 추가적 제1 타입의 SIB(SIB 타입1)이 연속적인 여러 서브프레임들(즉, 번들링 서브프레임들)에서 전송된다고 앞서 설명하였지만, 도 12a 내지 도 12c에 도시된 예시에서는, 상기 추가적 제1 타입의 SIB(SIB 타입1)이 전송되는 여러 서브프레임들 사이에는 기존의 제1 타입의 SIB(SIB 타입1)이 존재하고 있으므로, 상기 추가적인 제1 타입의 SIB(SIB 타입1)은 연속적인 서브프레임들과 일부 불연속적인 서브프레임들을 통해서 전송된다.
도 13은 기존 제1 타입의 SIB(SIB 타입1) 외에 MTC 기기를 위한 추가적 제1 타입의 SIB(SIB 타입1)이 전송되는 무선 자원을 주파수 관점에서 나타낸 예시도이다.
도 13의 (a)에 도시된 바와 같이, 기존의 제1 타입의 SIB(SIB 타입1)이 전송되는 RB 영역의 위치와, 상기 추가적 제1 타입의 SIB(SIB 타입1)이 전송되는 RB영역의 위치가 서로 다를 수 있다. 그 이유는 기지국이 기존의 제1 타입의 SIB(SIB 타입1)을 전송할 RB영역과 상기 추가적 제1 타입의 SIB(SIB 타입1)을 전송할 RB 영역을 독립적으로 스케줄링하여 파편화될 수 있기 때문이다. 이 경우, MTC 기기는 상기 추가적 제1 타입의 SIB(SIB 타입1)이 전송되는 RB의 위치 정보는 알 수 있지만, 기존의 제1 타입의 SIB(SIB 타입1)이 전송되는 RB 위치에 대한 정보를 알지 못해 제대로 수신하지 못할 가능성도 있다.
도 13의 (b)에 도시된 바와 같이, 본 명세서의 일 실시예는 기존의 제1 타입의 SIB(SIB 타입1)이 전송되는 구간에 상기 MTC 기기를 위한 추가적 제1 타입의 SIB(SIB 타입1)이 전송되는 경우, 상기 기존 제1 타입의 SIB(SIB 타입1)이 포함되는 PDSCH는 시스템 대역폭의 가운데 6개의 RB 통해 전송되도록 한다. 혹은, 상기 추가적 제1 타입의 SIB(SIB 타입1)이 전송되는 RB 영역의 위치가 정해진 경우, 상기 기존 제1 타입의 SIB(SIB 타입1)은 상기 추가적인 제1 타입의 SIB(SIB 타입1)이 전송되는 RB 영역의 주파수 위치와 동일한 주파수 위치의 RB영역을 통해 전송되도록 할 수 있다.
도 14a 내지 도 14b은 MTC 기기를 위해 새로이 생성된 제1 타입의 SIB을 제공하는 방안의 예를 나타낸다.
위에서 간략히 소개했던 바와 같이, MTC 기기를 위해 새로이 생성된 제1 타입의 SIB(SIB 타입1)만을 MTC 기기에 제공할 수도 있다. 즉, 80msec을 주기로 5번, 25번, 45번 및 65번 서브프레임을 통해 전송되는 기존의 제1 타입의 SIB(SIB 타입1)과는 별도로, MTC 기기만을 위한 새로운 제1 타입의 SIB(SIB 타입1)을 생성하고, 상기 MTC 기기는 기존의 제1 타입의 SIB(SIB 타입1)이 아닌 새로운 제1 타입의 SIB(SIB 타입1)만을 수신하게 될 수 있다. 이러한 상기 새로운 제1 타입의 SIB(SIB 타입1)은 연속적인/비연속적인 여러 서브프레임들을 통해 전송될 수 있다.
기존 제1 타입의 SIB(SIB 타입1)외에 상기 MTC 기기를 위한 새로운 제1 타입의 SIB(SIB 타입1)이 생성됨으로써, 전체 서브프레임들 중 제1 타입의 SIB(SIB 타입1)이 차지하는 서브프레임들이 증가되어 오버헤드가 커질 수 있으므로, 일 실시예에 따르면, 상기 MTC 기기를 위한 새로운 제1 타입의 SIB(SIB 타입1)의 전송이 이루어지는 주기는 80msec보다 큰 값으로 정해질 수 있다. 또는 상기 MTC 기기를 위한 새로운 제1 타입의 SIB(SIB 타입1)은 일반적인 상황에서는 전송되지 않다가 특정한 이벤트가 발생하였을 때(예컨대, MTC 기기가 수면(sleep)에서 깨어나 SIB를 수신해야 하는 타이밍에 도달함) 전송이 이루어 질 수 있다.
보다 구체적으로, 도 14a에 도시된 바와 같이, 기존의 제1 타입의 SIB(SIB 타입1)이 전송되는 80msec을 주기를 기준으로 서브프레임의 번호를 메길 때, MTC 기기를 위한 새로운 제1 타입의 SIB(SIB 타입1)은 서브프레임 #0 ~ 서브프레임 #79의 연속적인 80개 서브프레임의 전체 또는 일부 서브프레임을 통해 전송될 수 있다.
또는 도 14b에 도시된 바와 같이, 새로운 제1 타입의 SIB(SIB 타입1)은 서브프레임 #26 ~ 서브프레임 #4의 연속적인 59개 서브프레임의 전체 또는 일부 서브프레임을 통해 전송될 수 있다.
도 14a 내지 도 14b에 도시된 것은 어디까지나 예시일 뿐이며, 다른 위치의 연속적인 서브프레임들을 통해 상기 추가적 제1 타입의 SIB(SIB 타입1)의 전송이 이루어질 수 있다.
한편, 기지국이 커버리지 확장(CE)가 필요한 MTC 기기를 위한 제1 타입의 SIB(SIB 타입1)을 PDSCH을 통해 전송하기 위해서는, 먼저 스케줄링 정보를 포함하는 PDCCH를 MTC 기기에게 전달하여야 한다. 이때, MTC 기기를 위한 제1 타입의 SIB(SIB 타입1)을 포함하는 PDSCH에 대한 스케줄링 정보가 담긴 PDCCH의 CRC는 SI-RNTI로 마스킹될 수 있다. 따라서, 이하에서는 MTC 기기를 위한 제1 타입의 SIB(SIB 타입1)과 PDCCH의 관계에 대해서 설명하기로 한다.
도 15a 내지 도 15c는 MTC 기기를 위한 제1 타입의 SIB과 PDCCH의 관계를 나타낸다.
도 15a 내지 도 15c를 참조하여 알 수 있는 바와 같이, PDCCH 및 제1 타입의 SIB(SIB 타입1)이 포함된 PDSCH는 연속적인 여러 서브프레임들을 통해 전송되거나 특정한 서브프레임 위치를 이용하여 비연속적으로 전송될 수 있다.
구체적으로 도 15a를 참고하여 알 수 있는 바와 같이, MTC 기기를 위한 제1 타입의 SIB(SIB 타입1)의 스케줄링 정보가 담긴 PDCCH와 상기 MTC 기기를 위한 제1 타입의 SIB(SIB 타입1)이 담겨있는 PDSCH가 특정 서브프레임들 상에서 동시에 전송될 수 있다. 여기서 상기 특정 서브프레임들은 기존 제1 타입의 SIB(SIB 타입1)이 전송되는 5번, 25번, 45번 및 65번일 수 있다. 구체적으로, CRC가 SI-RNTI로 마스킹된 PDCCH와 상기 MTC 기기를 위한 제1 타입의 SIB(SIB 타입1)이 전송되는 PDSCH가 특정 구간, 즉 dur_SIB 동안 전송된다고 할 때, 기지국은 상기 dur_SIB 동안 특정 서브프레임 위치(예컨대. 기존 제1 타입의 SIB(SIB 타입1)이 전송되는 5번, 25번, 45번 및 65번 서브프레임)에는 항상 CRC가 SI-RNTI로 마스킹 된 PDCCH와 제1 타입의 SIB(SIB 타입1)을 MTC 기기로 전송해야 한다.
이때, 만약 MTC 기기를 위해서 PBCH도 여러 서브프레임(즉, 번들링 서브프레임) 상에서 전송된다고 할 때, 상기 여러 서브프레임들 중 마지막 서브프레임으로부터 상기 PDCCH와 제1 타입의 SIB(SIB 타입1)의 전송이 시작되는 서브프레임 위치 까지의 서브프레임 간격은 G_BC와 같을 수 있다. 예시적으로, 상기 G_BC 의 값은 항상 0으로 고정될 수 있다. 이때, 상기 G_BC의 값은 미리 설정된 값일 수 있다. 예시적으로 상기 G_BC의 값은 예시적으로 0일 수 있다. 또는 상기 G_BC의 값은 MIB를 통해 상기 MTC 기기로 알려질 수 있다.
위와 달리, 도 15b를 참고하여 알 수 있는 바와 같이, MTC 기기를 위한 제1 타입의 SIB(SIB 타입1)의 스케줄링 정보가 담긴 PDCCH와 상기 MTC 기기를 위한 제1 타입의 SIB(SIB 타입1)이 담겨있는 PDSCH는 서로 다른 서브프레임들 상에서 전송될 수 있다. 구체적으로, CRC가 SI-RNTI로 마스킹된 PDCCH가 특정 구간 동안 특정 서브프레임들(예컨대, 기존 제1 타입의 SIB(SIB 타입1)이 전송되는 5번, 25번, 45번 및 65번 서브프레임)을 통해 전송된 후, 제1 타입의 SIB(SIB 타입1)이 특정 구간 동안 연속적인 여러 서브프레임을 통해 전송 될 수 있다.
만약 CRC가 SI-RNTI로 마스킹된 PDCCH가 전송되는 특정 구간을 dur_PDCCH라 하고, 제1 타입의 SIB(SIB 타입1)이 들어있는 PDSCH가 전송되는 특정 구간을 dur_SIB라 할 때, 기지국은 dur_PDCCH 동안 특정 서브프레임들 상에서는 항상 CRC가 SI-RNTI로 마스킹된 PDCCH를 전송할 수 있다. 이후 기지국은 상기 dur_SIB 동안 연속적인 서브프레임들을 통해 MTC 기기를 위한 제1 타입의 SIB(SIB 타입1)을 담고 있는 PDSCH를 전송할 수 있다. 이때, 해당 제1 타입의 SIB(SIB 타입1)에 대한 스케줄링 정보는, 이전에 dur_PDCCH 동안 전송한 PDCCH에서 담겨 있다. 여기서, PDCCH의 전송이 종료되는 서브프레임과 제1 타입의 SIB(SIB 타입1)의 전송이 시작되는 서브프레임 위치 간의 서브프레임 간격은 G_CS 와 같을 수 있다. 예시적으로, 상기 G_CS의 값은 0일 수 있다. 이때, 기지국이 dur_PDCCH 동안 특정 서브프레임들 상에서 PDCCH를 전송할 때, 해당 서브프레임에서 상기 기지국은 항상 해당 PDCCH에 대응되는 제1 타입의 SIB(SIB 타입1)을 함께 상기 MTC 기기로 전송해야 할 수 있다.
따라서, 상기 MTC 기기는 dur_PDCCH 동안 특정 서브프레임들 상에서 항상 CRC가 SI-RNTI로 마스킹된 PDCCH가 수신될 것이라는 것을 알 수 있다. 또한, 상기 MTC 기기는 해당 구간 동안 정해진 서브프레임 상에서 PDCCH를 수신하고, 제1 타입의 SIB(SIB 타입1)의 스케줄링정보를 얻을 수 있다. 이후 상기 MTC 기기는 dur_SIB 동안 매 서브프레임 사에서 제1 타입의 SIB(SIB 타입1) 정보를 포함하는 PDSCH가 G_CS개 서브프레임의 갭(gap)을 가지고 수신될 것이라고 알 수 있다. 이어서, 상기 MTC 기기는 PDCCH를 통해 얻은 제1 타입의 SIB(SIB 타입1)의 스케줄링 정보를 이용하여 dur_SIB 동안 전송되는 PDSCH를 수신하고, 이를 통해 제1 타입의 SIB(SIB 타입1)을 얻을 수 있다.
만약 MTC 기기를 위해서 PBCH도 여러 서브프레임(즉, 번들링 서브프레임) 상에서 전송된다고 할 때, 상기 여러 서브프레임들 중 마지막 서브프레임으로부터 상기 PDCCH 및 제1 타입의 SIB(SIB 타입1)의 전송이 시작되는 서브프레임까지의 간격은 G_BC와 같을 수 있다. 이때 상기 G_BC의 값은 0일 수 있다.
위와 달리, 도 15c를 참고하여 알 수 있는 바와 같이, 제1 타입의 SIB(SIB 타입1)에 대한 스케줄링 정보가 담긴 PDCCH와 제1 타입의 SIB(SIB 타입1)이 담겨있는 PDSCH는 특정 구간 동안 연속적인 서브프레임들 상에서 전송될 수 있다. 여기서 CRC가 SI-RNTI로 마스킹된 PDCCH와 제1 타입의 SIB(SIB 타입1)이 들어있는 PDSCH가 전송되는 특정 구간을 dur_SIB라 할 때, 기지국은 제1 타입의 SIB(SIB 타입1)에 대한 스케줄링 정보가 담긴 PDCCH와 SIB을 담고 있는 PDSCH를 상기 dur_SIB 동안 연속적인 여러 서브프레임을 통해 전송할 수 있다.
따라서, 상기 MTC 기기는 상기 dur_SIB 동안 연속적인 여러 서브프레임을 통해 CRC가 SI-RNTI로 마스킹된 PDCCH와 제1 타입의 SIB(SIB 타입1)이 전송된 다고 가정할 수 있다. 상기 MTC 기기는 해당 구간 동안 전송되는 서브프레임에서 PDCCH와 PDSCH를 수신하여 제1 타입의 SIB(SIB 타입1)을 얻을 수 있다. 만약 MTC 기기를 위해서 PBCH도 여러 서브프레임(즉, 번들링 서브프레임) 상에서 전송된다고 할 때, 상기 여러 서브프레임들 중 마지막 서브프레임으로부터 상기 PDCCH 및 제1 타입의 SIB(SIB 타입1)의 전송이 시작되는 서브프레임까지의 간격은 G_BC와 같을 수 있다 .
한편, 도 15a 내지 도 15c에서는 MTC를 위한 제1 타입의 SIB(SIB 타입1)에 대한 스케줄링 정보를 포함하는 PDCCH는 SI-RNTI로 마스킹되어 있는 것으로 도시되어 있으나, SI-RNIT로 마스킹되어 있지 않더라도, 해당 PDCCH가 MTC를 위한 제1 타입의 SIB(SIB 타입1)에 대한 스케줄링 정보를 포함하고 있다면, 전술한 내용이 적용될 수 있다. 한편, 도 15a, 도 15b, 및 도 15c에서는 , 기존 제1 타입의 SIB(SIB 타입1)과 신규 제1 타입의 SIB(SIB 타입1)이 구분되어 도시되었으나, 신규 제1 타입의 SIB(SIB 타입1)이 아닌 기존 제1 타입의 SIB(SIB 타입1)인 경우에도 전술한 내용이 적용될 수 있다.
다른 한편, 연속적인 서브프레임을 통해 MTC 기기를 위한 제1 타입의 SIB (추가적 제1 타입의 SIB 또는 새로운 제1 타입의 SIB)이 전송될 때, 상기 MTC 기기를 위한 제1 타입의 SIB이 기존에 다른 채널과 동일 서브프레임 및 동일 RB 영역 상에서 전송되도록 설정됨으로써, 충돌이 발생할 수 있다.
이하, MTC 기기를 위한 제1 타입의 SIB과 충돌될 수 있는 채널이 무엇인지에 대해서 설명하고, 각각의 해결 방안에 대해서 설명하기로 한다.
첫 번째로, MTC 기기를 위한 제1 타입의 SIB의 예시들 중 새로운 제1 타입의 SIB이 기존 제1 타입의 SIB과 동일 서브프레임 및 동일 RB 영역에서 전송되도록 설정됨으로써 충돌되는 경우, 상기 기지국은 새로운 제1 타입의 SIB이 전송되는 서브프레임에서는 기존 제1 타입의 SIB을 전송하지 않을 수 있다. 도 13a에 나타난 예시를 참조하면, 5번, 25번, 45번 및 65번 서브프레임들 상에서 기존 제1 타입의 SIB과 새로운 제1 타입의 SIB의 전송에 충돌이 발생한다고 가정하면, 본 발명의 일 실시예에 따르면 기지국은 5번, 25번, 45번 및 65번 서브프레임들 상에서 기존 제1 타입의 SIB을 전송하지 않고, 새로운 제1 타입의 SIB만을 전송할 수 있다. 반대로, 기지국은 5번, 25번, 45번 및 65번 서브프레임들 상에서 새로운 제1 타입의 SIB을 전송하지 않고, 기존 제1 타입의 SIB을 전송할 수도 있다. 이 경우 MTC 기기는 5번, 25번, 45번 및 65번 서브프레임을 제외한 서브프레임들을 통해 새로운 제1 타입의 SIB을 수신하게 된다.
두 번째로, MTC 기기를 위한 제1 타입의 SIB의 예시들 중 새로운 제1 타입의 SIB이 기존 제1 타입의 SIB과 동일 서브프레임 및 동일 RB 영역에서 전송되도록 설정됨으로써 충돌되는 경우, 새로운 제1 타입의 SIB이 전송되는 RB의 위치와 기존 제1 타입의 SIB이 전송되는 RB의 위치를 다르게 조정함으로써, 충돌을 회피할 수도 있다. 이하, 이를 도 15를 참조하여 설명하기로 한다.
도 16는 MTC 기기를 위한 제1 타입의 SIB와 기존 제1 타입의 SIB간의 충돌을 피하기 위한 일 예를 나타낸다.
도 16을 참조하여 알 수 있는 바와 같이, 시스템 대역폭의 가운데 영역(예컨대, 가운데 6개의 RB) 상에서 새로운 제1 타입의 SIB가 전송된다고 가정하면, 기지국은 기존 제1 타입의 SIB를 상기 가운데 영역 이외의 영역 상에서 전송 함으로써, 충돌을 회피할 수 있다.
지금까지 설명한, 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 구체적으로는 도면을 참조하여 설명하기로 한다.
도 17는 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
기지국(200)은 프로세서(processor, 201), 메모리(memory, 202) 및 RF부(RF(radio frequency) unit, 203)을 포함한다. 메모리(202)는 프로세서(201)와 연결되어, 프로세서(201)를 구동하기 위한 다양한 정보를 저장한다. RF부(203)는 프로세서(201)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(201)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 기지국의 동작은 프로세서(201)에 의해 구현될 수 있다.
MTC 기기(100)는 프로세서(101), 메모리(102) 및 RF부(103)을 포함한다. 메모리(102)는 프로세서(101)와 연결되어, 프로세서(101)를 구동하기 위한 다양한 정보를 저장한다. RF부(103)는 프로세서(101)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(101)는 제안된 기능, 과정 및/또는 방법을 구현한다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (15)

  1. MTC(Machine Type Communication) 기기의 시스템 정보 수신 방법으로서,
    여러 서브프레임들 상의 PDCCH(Physical Downlink Control CHannel)들을 통해 반복적으로 수신되는 제어 정보를 디코딩하는 단계와, 상기 제어 정보는 MTC 기기를 위한 제1 타입의 시스템 정보 블록(System Information Block: SIB)에 대한 스케줄링 정보를 포함하고;
    상기 스케줄링 정보에 기초하여 여러 서브프레임들 상의 PDSCH(Physical Downlink Shared CHannel)들을 통해 반복적으로 수신되는 상기 MTC 기기를 위한 제1 타입의 SIB를 디코딩하는 단계를 포함하는 것을 특징으로 하는 시스템 정보 수신 방법.
  2. 제1항에 있어서, 상기 MTC 기기를 위한 제1 타입의 SIB는
    일반 단말을 위한 제1 타입의 SIB에 포함되는 정보 외의 추가 정보를 포함하는 것을 특징으로 하는 시스템 정보 수신 방법.
  3. 제1항에 있어서,
    MIB(master information block)를 여러 서브프레임들 상의 PBCH(Physical Broadcast CHannel)들을 통해 반복적으로 수신하여 디코딩하는 단계를 더 포함하는 것을 특징으로 하는 시스템 정보 수신 방법.
  4. 제3항에 있어서,
    상기 MIB가 수신되는 여러 서브프레임들 중 마지막 서브프레임으로부터 일정 구간 이후에, 상기 스케줄링 정보와 상기 제1 타입의 SIB가 비연속적인 여러 서브프레임들 상에서 동시에 수신되는 것을 특징으로 하는 시스템 정보 수신 방법.
  5. 제3항에 있어서,
    상기 MIB가 수신되는 여러 서브프레임들 중 마지막 서브프레임으로부터 제1 구간 이후의 여러 서브프레임들 상에서 상기 스케줄링 정보가상에서 수신되고, 상기 스케줄링 정보가 수신되는 여러 서브프레임들 중 마지막 서브프레임으로부터 제2 구간 이후의 여러 서브프레임들 상에서 상기 제1 타입의 SIB가 수신되는 것을 특징으로 하는 시스템 정보 수신 방법.
  6. 제3항에 있어서,
    상기 MIB가 수신되는 여러 서브프레임들 중 마지막 서브프레임으로부터 일정 구간 이후에, 상기 스케줄링 정보와 상기 제1 타입의 SIB가 연속적인 여러 서브프레임들 상에서 동시에 수신되는 것을 특징으로 하는 시스템 정보 수신 방법.
  7. 제1항에 있어서,
    MTC 기기가 아닌 일반 단말을 위한 제1 타입의 SIB를 수신하는 단계를 더 포함하고,
    상기 MTC 기기를 위한 제1 타입의 SIB를 디코딩하는 단계에서는, 상기 일반 단말을 위한 제1 타입의 SIB와 상기 MTC 기기를 위한 제1 타입의 SIB가 결합되어 디코딩되는 것을 특징으로 하는 시스템 정보 수신 방법.
  8. 제1항에 있어서,
    MTC 기기가 아닌 일반 단말을 위한 제1 타입의 SIB를 수신하는 단계를 더 포함하고,
    여기서 상기 MTC 기기를 위한 제1 타입의 SIB와 일반 단말을 위한 제1 타입의 SIB는 동일 서브프레임들 상의 서로 다른 RB 상에서 수신되는 것을 특징으로 하는 특징으로 하는 시스템 정보 수신 방법.
  9. MTC(Machine Type Communication) 기기로서,
    상기 MTC 기기를 위한 제1 타입 시스템 정보 블록(SIB)에 대한 스케줄링 정보를 여러 서브프레임들 상의 PDCCH(Physical Downlink Control CHannel)들을 통해 반복적으로 수신하는 송수신부와;
    상기 스케줄링 정보를 디코딩하고, 상기 디코딩된 스케줄링 정보에 기초하여 상기 MTC 기기를 위한 제1 타입의 시스템 정보블록(System Information Block: SIB)이 포함된 PDSCH(Physical Downlink Shared CHannel)가 반복적으로 수신되는 여러 서브프레임들을 결정하고, 상기 결정된 여러 서브프레임들 상에서 상기 MTC 기기를 위한 제1 타입의 SIB를 수신하여 디코딩하는 프로세서를 포함하는 것을 특징으로 하는 MTC 기기.
  10. 제9항에 있어서, 상기 프로세서는
    MIB(master information block)를 여러 서브프레임들 상의 PBCH(Physical Broadcast CHannel)들을 통해 반복적으로 수신하여 디코딩하는 것을 특징으로 하는 MTC 기기.
  11. 제10항에 있어서,
    상기 MIB가 수신되는 여러 서브프레임들 중 마지막 서브프레임으로부터 일정 구간 이후에, 상기 스케줄링 정보와 상기 제1 타입의 SIB가 비연속적인 여러 서브프레임들 상에서 동시에 수신되는 것을 특징으로 하는 MTC 기기.
  12. 제10항에 있어서,
    상기 MIB가 수신되는 여러 서브프레임들 중 마지막 서브프레임으로부터 제1 구간 이후의 여러 서브프레임들 상에서 상기 스케줄링 정보가상에서 수신되고, 상기 스케줄링 정보가 수신되는 여러 서브프레임들 중 마지막 서브프레임으로부터 제2 구간 이후의 여러 서브프레임들 상에서 상기 제1 타입의 SIB가 수신되는 것을 특징으로 하는 MTC 기기.
  13. 제10항에 있어서,
    상기 MIB가 수신되는 여러 서브프레임들 중 마지막 서브프레임으로부터 일정 구간 이후에, 상기 스케줄링 정보와 상기 제1 타입의 SIB가 연속적인 여러 서브프레임들 상에서 동시에 수신되는 것을 특징으로 하는 MTC 기기.
  14. 제9항에 있어서,
    상기 송수신부는 MTC 기기가 아닌 일반 단말을 위한 제1 타입의 SIB를 추가로 수신하고,
    상기 프로세서는 상기 일반 단말을 위한 제1 타입의 SIB와 상기 MTC 기기를 위한 제1 타입의 SIB를 결합하여 디코딩되는 것을 특징으로 하는 MTC 기기.
  15. 제9항에 있어서,
    상기 송수신부는 MTC 기기가 아닌 일반 단말을 위한 제1 타입의 SIB를 추가로 수신하고,
    여기서 상기 MTC 기기를 위한 제1 타입의 SIB와 일반 단말을 위한 제1 타입의 SIB는 동일 서브프레임들 상의 서로 다른 RB 상에서 수신되는 것을 특징으로 하는 특징으로 하는 MTC 기기.
PCT/KR2014/004129 2013-05-12 2014-05-09 셀 커버리지 확장 영역 위치한 mtc 기기의 시스템 정보 수신 방법 WO2014185659A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14798590.7A EP2999142B1 (en) 2013-05-12 2014-05-09 Method for receiving system information by mtc device located in cell coverage-expanded area
US14/888,901 US10009882B2 (en) 2013-05-12 2014-05-09 Method for receiving system information by MTC device located in cell coverage-expanded area
CN201480026723.7A CN105210311B (zh) 2013-05-12 2014-05-09 用于通过位于小区覆盖范围扩展区域中的mtc装置接收系统信息的方法

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201361822418P 2013-05-12 2013-05-12
US61/822,418 2013-05-12
US201361858627P 2013-07-26 2013-07-26
US61/858,627 2013-07-26
US201361862519P 2013-08-06 2013-08-06
US61/862,519 2013-08-06
US201361897801P 2013-10-30 2013-10-30
US61/897,801 2013-10-30
US201361916283P 2013-12-15 2013-12-15
US61/916,283 2013-12-15

Publications (1)

Publication Number Publication Date
WO2014185659A1 true WO2014185659A1 (ko) 2014-11-20

Family

ID=51898593

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2014/004132 WO2014185660A1 (ko) 2013-05-12 2014-05-09 셀 커버리지 확장 영역 위치한 mtc 기기의 정보 수신 방법
PCT/KR2014/004129 WO2014185659A1 (ko) 2013-05-12 2014-05-09 셀 커버리지 확장 영역 위치한 mtc 기기의 시스템 정보 수신 방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004132 WO2014185660A1 (ko) 2013-05-12 2014-05-09 셀 커버리지 확장 영역 위치한 mtc 기기의 정보 수신 방법

Country Status (4)

Country Link
US (2) US10856277B2 (ko)
EP (3) EP3579488B1 (ko)
CN (3) CN110266454B (ko)
WO (2) WO2014185660A1 (ko)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016122193A1 (en) * 2015-01-26 2016-08-04 Lg Electronics Inc. Method and apparatus for providing mbms service for low complexity user equipment in wireless communication system
WO2016122279A1 (en) * 2015-01-30 2016-08-04 Samsung Electronics Co., Ltd. Method and device for managing system information block, physical broadcast channel in wireless communication network
WO2016182401A1 (ko) * 2015-05-14 2016-11-17 주식회사 케이티 시스템 정보 변경 방법 및 그 장치
WO2017024874A1 (zh) * 2015-08-12 2017-02-16 中兴通讯股份有限公司 一种机器类通信系统中的信息传输方法及装置
KR20170096929A (ko) * 2016-02-17 2017-08-25 삼성전자주식회사 mmWave 빔포밍 통신 시스템을 위한 Beam reference signal 전송 방식, Broadcast신호 전송 방식 및 대응하는 Reference Signal 설계 방식 및 장치
WO2018174614A1 (ko) * 2017-03-22 2018-09-27 엘지전자 주식회사 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치
EP3247054A4 (en) * 2015-01-16 2019-03-06 Samsung Electronics Co., Ltd. METHOD AND DEVICE FOR CONTROL INFORMATION TRANSMISSION IN A WIRELESS COMMUNICATION SYSTEM
US10356582B2 (en) 2015-05-14 2019-07-16 Kt Corporation Method for changing system information, and apparatus therefor
US10700843B2 (en) 2015-08-12 2020-06-30 Zte Corporation Method and device for information transmission in machine-type communication system
CN111818616A (zh) * 2015-01-09 2020-10-23 苹果公司 用于链路预算有限的无线设备的系统信息信令

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069946A1 (en) * 2012-11-01 2014-05-08 Lg Electronics Inc. Method and apparatus for supporting scheduling groups of devices characteristics in a wireless communication system
WO2014182116A1 (ko) * 2013-05-09 2014-11-13 엘지전자 주식회사 뉴캐리어타입을 지원하는 무선접속시스템에서 단말 특정 참조신호를 펑쳐링하는 방법 및 이를 지원하는 장치
WO2015018075A1 (en) * 2013-08-09 2015-02-12 Mediatek Inc. Method to determine the starting subframe of data channel
WO2015035619A1 (zh) * 2013-09-13 2015-03-19 华为技术有限公司 一种信息传输的方法、装置及系统
US9516541B2 (en) * 2013-09-17 2016-12-06 Intel IP Corporation Congestion measurement and reporting for real-time delay-sensitive applications
WO2015108331A1 (ko) 2014-01-16 2015-07-23 한양대학교 산학협력단 Mtc 단말을 위한 하향링크 채널 전송 및 수신 방법, 그 장치
US10278120B2 (en) 2014-01-16 2019-04-30 Industry-University Cooperation Foundation Hanyang University Method for controlling small cell and apparatus for same
KR102166250B1 (ko) 2014-01-30 2020-10-15 닛본 덴끼 가부시끼가이샤 M2m(machine-to-machine) 단말, 기지국, 방법, 및 컴퓨터 가독 매체
JP6159672B2 (ja) * 2014-01-30 2017-07-05 株式会社Nttドコモ 基地局、送信方法、移動局及び再送制御方法
US10038537B2 (en) * 2014-02-09 2018-07-31 Alcatel Lucent Common search space in secondary ENBS
CN111642026B (zh) 2014-08-15 2024-04-09 交互数字专利控股公司 Wtru及在wtru中执行的方法
KR20160089844A (ko) * 2015-01-19 2016-07-28 주식회사 케이티 Mtc 단말을 위한 하향 링크 공용 제어 채널 송수신 방법 및 장치
WO2016117885A1 (ko) * 2015-01-19 2016-07-28 주식회사 케이티 하향링크 제어정보 전송 방법 및 그 장치
RU2669784C1 (ru) * 2015-01-29 2018-10-16 Телефонактиеболагет Лм Эрикссон (Пабл) Инициирование pdcch, подходящее для устройств мтс
US10200977B2 (en) * 2015-01-30 2019-02-05 Qualcomm Incorporated System information block channel design for enhanced machine type communication with coverage enhancements
WO2016120462A1 (en) * 2015-01-30 2016-08-04 Nokia Solutions And Networks Oy System information block enhancement for low complexity user equipment and/or user equipment in coverage enhancement mode
JP6767376B2 (ja) * 2015-01-30 2020-10-14 ソニー株式会社 電気通信の装置及び方法
WO2016144384A1 (en) * 2015-03-06 2016-09-15 Intel Corporation Synchronization and control channel for flexible radio interface
CN107431962B (zh) * 2015-04-20 2020-11-10 索尼公司 使用未更新的移动信息的小区重选
JP6937320B2 (ja) * 2016-05-10 2021-09-22 富士通株式会社 メッセージ送信/受信装置、方法及び通信システム
CN107426783B (zh) * 2016-05-23 2020-01-14 北京佰才邦技术有限公司 系统消息的传输方法、装置、用户终端及网络设备
CN107734647B (zh) * 2016-08-12 2023-03-24 华为技术有限公司 信息传输的方法、终端设备和网络设备
WO2018053752A1 (zh) * 2016-09-22 2018-03-29 广东欧珀移动通信有限公司 传输系统信息的方法、网络设备和终端设备
KR102638922B1 (ko) * 2016-10-10 2024-02-22 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 다중 타이밍 전송 기술의 송수신 방법 및 장치
ES2738692T3 (es) * 2016-11-03 2020-01-24 Ericsson Telefon Ab L M Habilitación de numerologías múltiples en una red
EP3567951B1 (en) * 2017-01-26 2021-03-10 Huawei Technologies Co., Ltd. Downlink control information processing method and apparatus
US11601820B2 (en) * 2017-01-27 2023-03-07 Qualcomm Incorporated Broadcast control channel for shared spectrum
US10517002B2 (en) * 2017-07-20 2019-12-24 Qualcomm Incorporated User equipment (UE) indication of coverage mismatch between common search space (CSS) and user-specific search space (USS) for remaining minimum system information (RMSI) delivery
US10736112B2 (en) * 2017-10-19 2020-08-04 Qualcomm Incorporated Common search space scrambling for MulteFire coverage enhancement
EP3629503B1 (en) 2017-12-08 2022-11-02 LG Electronics Inc. Method for transmitting or receiving signal in wireless communication system and apparatus therefor
US10869259B2 (en) 2018-06-15 2020-12-15 Sharp Laboratories Of America, Inc. Apparatus and method for acquisition of system information in wireless communications
EP3808130A1 (en) * 2018-06-15 2021-04-21 Sharp Kabushiki Kaisha Apparatus and method for acquisition of system information in wireless communications
CN112272961A (zh) * 2018-06-15 2021-01-26 夏普株式会社 用于无线通信中的系统信息采集的装置和方法
CN111436101B (zh) * 2019-01-11 2024-06-04 华为技术有限公司 一种通信方法及装置
US20220225296A1 (en) * 2021-01-08 2022-07-14 Qualcomm Incorporated Master information block and download control information design for higher bands

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083997A2 (ko) * 2010-01-06 2011-07-14 한국전자통신연구원 기계 타입 통신 시스템
WO2011120007A1 (en) * 2010-03-26 2011-09-29 Qualcomm Incorporated Method and apparatus for reliable transmission of control information in a wireless communication network
US20120282965A1 (en) * 2011-05-02 2012-11-08 Samsung Electronics Co. Ltd. Access control method and apparatus of ue
KR20130020885A (ko) * 2010-03-23 2013-03-04 인터디지탈 패튼 홀딩스, 인크 기계형 통신을 위한 효율적 시그널링

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101746668B1 (ko) 2010-12-21 2017-06-13 한국전자통신연구원 접속해제 상태의 사물통신 디바이스를 위한 데이터 전송 방법 및 이를 이용하는 이동통신 시스템
CN102104965B (zh) * 2011-02-14 2017-05-03 中兴通讯股份有限公司 小区间干扰协调方法及装置、网络节点
KR101859594B1 (ko) * 2011-03-10 2018-06-28 삼성전자 주식회사 통신시스템에서 시분할복신 지원 방법 및 장치
WO2012173432A2 (ko) 2011-06-15 2012-12-20 엘지전자 주식회사 무선 접속 시스템에서 하향링크 제어 정보 수신 방법 및 이를 위한 단말
KR101943821B1 (ko) * 2011-06-21 2019-01-31 한국전자통신연구원 무선 통신 시스템에서 제어채널 송수신 방법
US8885560B2 (en) 2011-06-27 2014-11-11 Telefonaktiebolaget L M Ericsson (Publ) Cellular communication system support for limited bandwidth communication devices
US8848638B2 (en) * 2011-06-27 2014-09-30 Telefonaktiebolaget L M Ericsson (Publ) Cellular communication system support for limited bandwidth communication devices
US9363753B2 (en) * 2011-07-19 2016-06-07 Qualcomm Incorporated Sleep mode for user equipment relays
KR102052375B1 (ko) 2011-08-04 2019-12-05 엘지전자 주식회사 무선 통신 시스템에서 mtc 단말의 검색 영역 설정 방법 및 이를 위한 장치
US20130039309A1 (en) 2011-08-14 2013-02-14 Industrial Technology Research Institute Method for renewing indication of system information and base station and user equipment using the same
CN102958025B (zh) 2011-08-24 2018-01-16 中兴通讯股份有限公司 发送mtc设备触发信息的方法、系统和目标用户设备
EP2761955B1 (en) * 2011-09-30 2017-07-26 Interdigital Patent Holdings, Inc. Device communication using a reduced channel bandwidth
US20130094457A1 (en) 2011-10-14 2013-04-18 Electronics And Telecommunications Research Institute Data transmission and reception method of machine type communication (mtc) device
KR20130040699A (ko) 2011-10-14 2013-04-24 한국전자통신연구원 사물통신 디바이스의 송수신 방법
CN104012061B (zh) 2011-11-01 2017-08-15 Lg电子株式会社 用于监控控制信道的方法和无线装置
WO2013077235A1 (en) 2011-11-25 2013-05-30 Nec Corporation Apparatus and method of providing machine type communication
US9078253B2 (en) * 2011-11-28 2015-07-07 Samsung Electronics Co., Ltd. Apparatus and method for machine-type communications
KR102082971B1 (ko) * 2012-10-05 2020-02-28 인터디지탈 패튼 홀딩스, 인크 Mtc(machine type communication) 디바이스의 커버리지를 향상시키는 방법 및 장치
US10057911B2 (en) * 2013-11-22 2018-08-21 Lg Electronics Inc. Transmission and reception method of MTC device located in cell coverage expansion area

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083997A2 (ko) * 2010-01-06 2011-07-14 한국전자통신연구원 기계 타입 통신 시스템
KR20130020885A (ko) * 2010-03-23 2013-03-04 인터디지탈 패튼 홀딩스, 인크 기계형 통신을 위한 효율적 시그널링
WO2011120007A1 (en) * 2010-03-26 2011-09-29 Qualcomm Incorporated Method and apparatus for reliable transmission of control information in a wireless communication network
US20120282965A1 (en) * 2011-05-02 2012-11-08 Samsung Electronics Co. Ltd. Access control method and apparatus of ue

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3GPP TS 36.211 V10.4.0", December 2011, article "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8"
LG ELECTRONICS: "Texi proposal for coverage enhancement of MTC UEs", 3GPP TSG-RAN WG1 MEETING #72BIS, R1-131294, 15 April 2013 (2013-04-15) - 19 April 2013 (2013-04-19), CHICAGO, USA, pages 1 - 6, XP050697171, Retrieved from the Internet <URL:http://www.3gpp.org/DynaReport/TDocExMtg--R1-72b--30042.htm> *
See also references of EP2999142A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11737118B2 (en) 2015-01-09 2023-08-22 Apple Inc. System information signaling for link budget limited wireless devices
CN111818616B (zh) * 2015-01-09 2023-07-18 苹果公司 用于链路预算有限的无线设备的系统信息信令
US11382080B2 (en) 2015-01-09 2022-07-05 Apple Inc. System information signaling for link budget limited wireless devices
CN111818616A (zh) * 2015-01-09 2020-10-23 苹果公司 用于链路预算有限的无线设备的系统信息信令
EP3247054A4 (en) * 2015-01-16 2019-03-06 Samsung Electronics Co., Ltd. METHOD AND DEVICE FOR CONTROL INFORMATION TRANSMISSION IN A WIRELESS COMMUNICATION SYSTEM
US10455552B2 (en) 2015-01-16 2019-10-22 Samsung Electronics Co., Ltd. Method and apparatus of transmitting control information in wireless communication systems
US10645675B2 (en) 2015-01-26 2020-05-05 Lg Electronics Inc. Method and apparatus for providing MBMS service for low complexity user equipment in wireless communication system
WO2016122193A1 (en) * 2015-01-26 2016-08-04 Lg Electronics Inc. Method and apparatus for providing mbms service for low complexity user equipment in wireless communication system
WO2016122279A1 (en) * 2015-01-30 2016-08-04 Samsung Electronics Co., Ltd. Method and device for managing system information block, physical broadcast channel in wireless communication network
US10341078B2 (en) 2015-01-30 2019-07-02 Samsung Electronics Co., Ltd. Method and device for managing system information block, physical broadcast channel in wireless communication network
US11212065B2 (en) 2015-01-30 2021-12-28 Samsung Electronics Co., Ltd. Method and device for managing system information block, physical broadcast channel in wireless communication network
US10356582B2 (en) 2015-05-14 2019-07-16 Kt Corporation Method for changing system information, and apparatus therefor
WO2016182401A1 (ko) * 2015-05-14 2016-11-17 주식회사 케이티 시스템 정보 변경 방법 및 그 장치
US10700843B2 (en) 2015-08-12 2020-06-30 Zte Corporation Method and device for information transmission in machine-type communication system
WO2017024874A1 (zh) * 2015-08-12 2017-02-16 中兴通讯股份有限公司 一种机器类通信系统中的信息传输方法及装置
KR102525735B1 (ko) 2016-02-17 2023-04-26 삼성전자 주식회사 mmWave 빔포밍 통신 시스템을 위한 Beam reference signal 전송 방식, Broadcast신호 전송 방식 및 대응하는 Reference Signal 설계 방식 및 장치
KR20170096929A (ko) * 2016-02-17 2017-08-25 삼성전자주식회사 mmWave 빔포밍 통신 시스템을 위한 Beam reference signal 전송 방식, Broadcast신호 전송 방식 및 대응하는 Reference Signal 설계 방식 및 장치
US10972887B2 (en) 2017-03-22 2021-04-06 Lg Electronics Inc. Method for transceiving signal by terminal and base station in wireless communication system and device supporting same
US11611859B2 (en) 2017-03-22 2023-03-21 Lg Electronics Inc. Method for transceiving signal by terminal and base station in wireless communication system and device supporting same
WO2018174614A1 (ko) * 2017-03-22 2018-09-27 엘지전자 주식회사 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치

Also Published As

Publication number Publication date
CN105210321A (zh) 2015-12-30
WO2014185660A1 (ko) 2014-11-20
US20160088595A1 (en) 2016-03-24
CN110266454A (zh) 2019-09-20
EP2999142B1 (en) 2019-04-10
EP2999150A4 (en) 2017-02-15
US10009882B2 (en) 2018-06-26
CN105210321B (zh) 2019-06-07
US10856277B2 (en) 2020-12-01
EP2999150A1 (en) 2016-03-23
EP2999142A1 (en) 2016-03-23
CN105210311B (zh) 2018-07-20
CN110266454B (zh) 2021-08-06
EP3579488B1 (en) 2022-07-06
EP3579488A1 (en) 2019-12-11
EP2999142A4 (en) 2016-12-07
CN105210311A (zh) 2015-12-30
US20160119900A1 (en) 2016-04-28

Similar Documents

Publication Publication Date Title
WO2014185659A1 (ko) 셀 커버리지 확장 영역 위치한 mtc 기기의 시스템 정보 수신 방법
WO2015076470A1 (ko) 셀 커버리지 확장 영역 위치한 mtc 기기의 송수신 방법
WO2015076501A1 (ko) 랜덤 액세스 절차를 수행하는 방법
WO2015060564A1 (ko) Mtc 기기와의 상향링크/하향링크 데이터 송수신 방법
WO2017105158A1 (ko) 상향링크 제어 정보 전송 방법 및 이를 수행하는 사용자 장치
WO2017135682A1 (ko) 상향링크 제어 채널 전송 방법 및 이를 수행하는 사용자 장치
WO2014003339A1 (ko) 소규모 셀에 대해 랜덤 액세스를 수행하는 방법 및 단말
WO2018044114A1 (ko) 다수의 검색 공간에 대해 블라인드 디코딩을 수행하는 순서를 결정하는 방법 및 단말
WO2017217797A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2015012507A1 (ko) Mtc 기기의 송수신 방법
WO2017135713A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2016204590A1 (ko) 무선 통신 시스템에서 v2v 통신을 위한 참조 신호 설정 방법 및 이를 위한 장치
WO2016163645A1 (ko) Pdsch 수신 방법 및 무선 기기
WO2016093618A1 (ko) 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 채널 상태 정보 보고 방법 및 이를 위한 장치
WO2017010798A1 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2015026060A1 (ko) 복수의 셀에 동시 접속하는 방법 및 사용자 장치
WO2015064924A1 (ko) 하향링크 데이터를 포함하는 pdsch를 mtc 기기로 전송하는 방법 및 그 기지국
WO2017119791A2 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2014098384A1 (ko) 변경된 시스템 정보 적용 방법 및 단말
WO2015065000A1 (en) Method and apparatus of transmitting control information considering tdd-fdd ca
WO2013095004A1 (ko) 무선 통신 시스템에서 랜덤 접속 과정의 수행 방법 및 장치
WO2014163302A1 (ko) 소규모 셀에서의 수신 방법 및 사용자 장치
WO2014208940A1 (ko) Mtc 기기의 동작 방법
WO2017078384A1 (ko) 협대역을 이용한 통신 방법 및 mtc 기기
WO2015064896A1 (ko) 복수의 셀에 동시 접속한 사용자 장치가 harq ack/nack을 전송하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798590

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14888901

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014798590

Country of ref document: EP