WO2017024874A1 - 一种机器类通信系统中的信息传输方法及装置 - Google Patents

一种机器类通信系统中的信息传输方法及装置 Download PDF

Info

Publication number
WO2017024874A1
WO2017024874A1 PCT/CN2016/084546 CN2016084546W WO2017024874A1 WO 2017024874 A1 WO2017024874 A1 WO 2017024874A1 CN 2016084546 W CN2016084546 W CN 2016084546W WO 2017024874 A1 WO2017024874 A1 WO 2017024874A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
information
candidate
pcid
narrowband
Prior art date
Application number
PCT/CN2016/084546
Other languages
English (en)
French (fr)
Inventor
陈宪明
戴博
夏树强
刘锟
石靖
张雯
方惠英
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510742961.4A external-priority patent/CN106454695B/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/752,005 priority Critical patent/US10700843B2/en
Priority to EP16834499.2A priority patent/EP3337193B1/en
Publication of WO2017024874A1 publication Critical patent/WO2017024874A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor

Definitions

  • This document relates to, but is not limited to, the field of wireless communication technologies, and in particular, to an information transmission method and apparatus in a Machine Type Communication (MTC) system.
  • MTC Machine Type Communication
  • MTC User Equipment is the main application form of the Internet of Things at this stage, and low power consumption and low cost are important guarantees for large-scale applications.
  • SIB System Information Block
  • SIBx the SIBx, where x is not equal to 1; wherein the SIB1 is transmitted in a manner of pre-defining and/or indicating SIB1 related scheduling information by a Master Information Block (MIB), and the SIBx is passed through the SIB1.
  • SIBx related scheduling information is transmitted in a manner of transmitting; wherein the scheduling information includes a subframe (time domain) location, a narrowband (frequency domain) location, and a transport block size.
  • MIB signaling is usually used to indicate the transport block size of SIB1; however, the number of bits that the related MIB signaling can additionally carry is limited, and the remaining Additional MIB bits also require extensions for future enhancements; therefore, to avoid introducing additional MIB signaling overhead, determining the subframes and narrowbands used for SIB1 transmission in a predefined manner is an optional transmission method, however, In this case, it is an urgent problem to provide an information transmission method that can effectively avoid or reduce interference caused by SIB1 transmission between adjacent cells.
  • the embodiments of the present invention are directed to providing an information transmission method and apparatus in an MTC system, which can effectively avoid or reduce interference caused by system information transmission between adjacent cells, thereby improving user experience.
  • An embodiment of the present invention provides an information transmission method in an MTC system, where the method includes:
  • PCID Physical Cell identity
  • the method before the determining, by the PCID, the subframe set and the narrowband for transmitting the first information, the method further includes:
  • the obtaining, by the candidate, the narrowband set that transmits the first information includes:
  • W is a positive integer less than or equal to NNB; NNB is a narrow band number within the system bandwidth.
  • the W is an even number
  • the W narrow bands include W/2 narrow bands near the upper sideband and W/2 narrow bands near the lower sideband.
  • the method before the acquiring the narrowband set of the candidate for transmitting the first information, the method further includes:
  • the MTC system is a frequency division duplex FDD system
  • the acquiring and transmitting The candidate subframe set of the first information includes:
  • subframe #0, subframe #4, subframe #5, and subframe #9 in the radio frame, and determining at least one subframe in the subframe #0, subframe #4, subframe #5, and subframe #9 Determining, by the candidate subframe, a subframe set consisting of candidate subframes in all radio frames as a candidate subframe set for transmitting the first information;
  • the MTC system is a time division duplex TDD system
  • the acquiring a candidate subframe set for transmitting the first information includes:
  • the method further includes:
  • the candidate subframe is determined according to at least one of a transport block TBS size, a system bandwidth, a function supported by the cell, a narrowband number included in the candidate narrowband set, and a subframe in which the PBCH is transmitted.
  • the determining, by the PCID, the subframe set and the narrowband for transmitting the first information includes:
  • N is a positive integer
  • n is an integer less than N
  • M is a positive integer
  • m is an integer less than M.
  • each subframe subset includes B subframes in A radio frames; wherein A is a positive integer; for an FDD system, B is a positive integer greater than 1 and less than 4, or B is equal to 1, or B Equal to 4, for a TDD system, the B is 1 or 2.
  • the determining, by the first rule, the belonging group of the PCID includes:
  • determining, according to the second rule, the belonging group of the PCID includes: Determining a belonging group of the PCID;
  • n and m are the group numbers of the home group of the PCID; N is the number of subframe subsets included in the candidate subframe set; and M is the number of narrowbands included in the candidate narrowband set.
  • the determining, by the first rule, the belonging group of the PCID includes:
  • n and m are the group numbers of the home group of the PCID; N is the number of subframe subsets included in the candidate subframe set; and M is the number of narrowbands included in the candidate narrowband set.
  • the determining, by the PCID, the narrowband for transmitting the first information includes:
  • the method further includes:
  • the intervals of the two narrow bands transmitting the first information of the two different cells are fixed;
  • the intervals of the two narrow bands transmitting the first information of the two different cells are not fixed within the same subframe set; the first case is different from the second case.
  • determining, according to the PCID, a subframe index that transmits the first information, and/or a radio frame index, determining a narrowband for transmitting the first information including:
  • the Idx represents a subframe or a radio frame index for transmitting the first information
  • the m(Idx) represents an index of a narrowband for transmitting the first information on a subframe or a radio frame indexed to Idx
  • the N is a transmission The number of subframe subsets included in the candidate subframe set of the first information
  • the M is a narrowband number included in the candidate narrowband set transmitting the first information.
  • the narrowband that transmits the first information is determined according to the PCID, the subframe index that transmits the first information, and/or the radio frame index, and includes:
  • the random sort sequence S includes 0 to (M-1) M integers;
  • m(Idx) represents an index of a narrowband transmitting the first information on a subframe or a radio frame indexed to Idx; the M is a narrowband number included in the candidate narrowband set transmitting the first information.
  • the method further includes:
  • the actual transmission subframe of the second information in the corresponding system information SI window is indicated by the first information using the independent configuration signaling.
  • the first information is a first system information block SIB1
  • the second information is a system information block SIBx other than the SIB1; wherein x is a positive integer not equal to 1.
  • the method further includes, by using the first configuration information, that the second information is used before the actual transmission subframe in the corresponding SI window, the method further includes:
  • the first mode is a non-contiguous subframe allocation mode
  • the candidate subframe set that transmits the second information in the SI window is divided into X subframe subsets according to the first manner, including:
  • Each X consecutive subframes in the candidate subframe set is divided into a group and numbered for each group of subframes, and the subframe subset numbered by x is subframe number numbered x in each subframe group.
  • Composition wherein X is a positive integer; x is an integer less than or equal to X-1.
  • the second mode is a contiguous subframe allocation manner; the dividing the candidate subframe set that transmits the second information in the SI window into the X subframe subsets according to the second manner includes:
  • the determining that the actual transmission subframe of the second information in the corresponding SI window is at least one of the X subframe subsets includes:
  • the actual transmission subframe of the second information in the corresponding SI window is at least one of the X subframe subsets.
  • the independent configuration signaling indicates that the number of bits required for the actual transmission subframe of the second information in the corresponding SI window is Y;
  • the Y bits are in one-to-one correspondence with the K subframe subsets in the X subframe subsets, where K is a positive integer less than or equal to X.
  • the Y ceiling (log 2 X)
  • the K subframe subsets are subframe subsets whose indexes in the X subframe subsets are 0 to K-1.
  • the MTC system is an FDD system
  • the candidate subframe set includes subframe #4 and subframe #5 in all radio frames
  • the scheduling period of the first information is 8 radio frames
  • the first information is repeatedly transmitted 4 times in the scheduling period; correspondingly, determining, according to the PCID, the subframe set for transmitting the first information, including:
  • the first information is repeatedly transmitted 8 times in the scheduling period; correspondingly, determining, according to the PCID, the subframe set for transmitting the first information, including:
  • the subframe in which the first information is transmitted in the radio frame is determined to be subframe #4 or subframe #5 according to the PCID and the radio frame index.
  • the candidate subframe set includes subframe #0 and subframe #5 in all radio frames, and the scheduling period of the first information is 8 radio frames.
  • the first information is repeatedly transmitted 4 times in the scheduling period; correspondingly, determining, according to the PCID, the subframe set for transmitting the first information, including:
  • the first information is repeatedly transmitted 8 times in the scheduling period; correspondingly, determining, according to the PCID, the subframe set for transmitting the first information, including:
  • the subframe in which the first information is transmitted in the radio frame is determined to be subframe #0 or subframe #5 according to the PCID and the radio frame index.
  • the embodiment of the present invention further provides an information transmission device in an MTC system, where the device includes: a determining module and a processing module;
  • the determining module is configured to determine, according to the PCID, a subframe set and a narrowband that transmit the first information
  • the processing module is configured to send or receive the first information on the set of subframes and the narrowband.
  • the determining module is further configured to: before determining, according to the PCID, the subframe set and the narrowband for transmitting the first information, acquiring a candidate subframe set and a candidate narrowband set for transmitting the first information;
  • the set of candidate subframes includes the set of subframes, and the set of candidate narrowbands includes the narrowband.
  • the determining module is configured to obtain a candidate narrowband set for transmitting the first information by acquiring all narrowbands within a preset system bandwidth range, or acquiring a preset system bandwidth range.
  • W is a positive integer less than or equal to NNB; NNB is a narrow band number within the system bandwidth.
  • the W is an even number
  • the W narrow bands include W/2 narrow bands near the upper sideband and W/2 narrow bands near the lower sideband.
  • the determining module is further configured to: before acquiring the candidate narrowband set for transmitting the first information, determining that the subframe in which the first information is transmitted does not have a PBCH transmission, and setting a candidate narrowband for transmitting the first information
  • the set includes all narrowbands within a system bandwidth range; or, determining that a subframe in which the first information is transmitted has a PBCH transmission, and setting a candidate narrowband set transmitting the first information includes a narrowband in a system bandwidth range except for a PBCH transmission Other narrow bands than others.
  • the MTC system is an FDD system
  • the determining module is configured to: acquire, by acquiring, a set of candidate subframes for transmitting the first information: acquiring a sub-frame in a radio frame Frame #0, subframe #4, subframe #5, and subframe #9, determining that at least one of the subframe #0, subframe #4, subframe #5, and subframe #9 is a candidate subframe, and determining A set of subframes composed of candidate subframes in all radio frames is a set of candidate subframes for transmitting the first information;
  • the MTC system is a TDD system
  • the determining module is configured to: obtain, by acquiring, a candidate subframe set for transmitting the first information by acquiring subframe #0 and subframe #5 in a radio frame, and determining At least one subframe of the subframe #0 and the subframe #5 is a candidate subframe, and the subframe set composed of the candidate subframes in all the radio frames is determined to be a candidate subframe set that transmits the first information.
  • the determining module is further configured to determine the candidate subframe according to at least one of a TBS size, a system bandwidth, a function supported by the cell, a narrowband number included in the candidate narrowband set, and a subframe in which the PBCH is transmitted.
  • the determining module is configured to: determine, according to the PCID, determining a subframe set and a narrowband for transmitting the first information according to the PCID: dividing the candidate subframe set that transmits the first information into N subframe subsets, Determining, by the first rule, the home group of the PCID, acquiring the group number n of the home group, and determining that the subframe subset having the same number as the group number n is a subframe set for transmitting the first information; Is a positive integer; n is an integer;
  • M is a positive integer
  • m is an integer.
  • each subframe subset includes B subframes in A radio frames; wherein A is a positive integer; for an FDD system, B is a positive integer greater than 1 and less than 4, or B is equal to 1, or B Equal to 4, for a TDD system, the B is 1 or 2.
  • n and m are the group numbers of the home group of the PCID; N is the number of subframe subsets included in the candidate subframe set; and M is the number of narrowbands included in the candidate narrowband set.
  • the determining module is configured to determine, according to the first rule, the belonging group of the PCID by: Determining a belonging group of the PCID;
  • n and m are the group numbers of the home group of the PCID; N is the number of subframe subsets included in the candidate subframe set; and M is the number of narrowbands included in the candidate narrowband set.
  • the determining module is configured to: determine, according to the PCID, a narrowband for transmitting the first information according to the PCID: transmitting the first information according to the PCID
  • the subframe index or the radio frame index determines a narrow band for transmitting the first information.
  • the interval of two narrowbands transmitting the first information of two different cells is fixed; in the second case, in the same subframe set, two are transmitted.
  • the interval of the two narrow bands of the first information of the different cells is not fixed; the first case is different from the second case.
  • the determining module is configured to determine, according to the PCID, the subframe index and/or the radio frame index that transmits the first information, that the first information is transmitted.
  • Narrowband: based Or m(Idx) mod(PCID+Idx, M) determines a narrow band for transmitting the first information;
  • the Idx represents a subframe or a radio frame index for transmitting the first information
  • the m(Idx) represents an index of a narrowband for transmitting the first information on a subframe or a radio frame indexed to Idx
  • the N is a transmission The number of subframe subsets included in the candidate subframe set of the first information
  • the M is a narrowband number included in the candidate narrowband set transmitting the first information.
  • the determining module is configured to determine, according to the PCID, the subframe index and/or the radio frame index that transmits the first information, that the first information is transmitted.
  • m(Idx) represents an index of a narrowband transmitting the first information on a subframe or a radio frame indexed to Idx; the M is a narrowband number included in the candidate narrowband set transmitting the first information.
  • the apparatus further includes an indication module, configured to indicate, by using the first information, the actual transmission subframe of the second information in the corresponding system information SI window by using the first configuration signaling.
  • the first information is SIB1
  • the second information is a system information block SIBx other than the SIB1; wherein x is a positive integer not equal to 1.
  • the indication module is further configured to: use the independent configuration signaling to indicate, by using the first information, that the second information transmits the second information in the SI window before the actual transmission subframe in the corresponding SI window.
  • the candidate subframe set is divided into X subframe subsets according to the first manner or the second manner, and determining that the actual transmission subframe of the second information in the corresponding SI window is at least one of the X subframe subsets; One way is different from the second way; X is a positive integer.
  • the first mode is a non-contiguous subframe allocation mode
  • the indication module is configured to implement, by using the following manner, the candidate subframe set that transmits the second information in the SI window according to the first manner.
  • X subframe subsets each X consecutive subframes in the candidate subframe set are grouped into one group and numbered for each group of subframes, and the subframe subset numbered x is from each subframe group
  • the subframe numbered x is constructed; wherein X is a positive integer; and x is an integer less than or equal to X-1.
  • the second mode is a contiguous subframe allocation mode
  • the indication module is configured to implement, by using the following manner, the candidate subframe set that transmits the second information in the SI window is divided into X according to the second manner.
  • Sub-frame subsets each of the ceiling (P/X) consecutive subframes in the candidate subframe set is divided into a group, and the subframe subset numbered with x is a divided subframe group numbered x;
  • the P represents the number of subframes included in the candidate subframe set;
  • X is a positive integer; and x is an integer less than or equal to X-1.
  • the indication module is configured to determine, by using the following manner, that the actual transmission subframe of the second information in the corresponding SI window is at least one of the X subframe subsets: according to the current information of the second information. And at least one of the coverage enhancement level, the coverage target, and the TBS size, determining that the actual transmission subframe of the second information in the corresponding SI window is at least one of the X subframe subsets.
  • the candidate subframe set includes subframe #4 and subframe #5 in all radio frames, and the scheduling period of the first information is 8 radio frames.
  • the first information is repeatedly transmitted 4 times in the scheduling period; correspondingly, the determining module is configured to determine, according to the PCID, a subframe set for transmitting the first information according to the following manner:
  • the first information is repeatedly transmitted 8 times in the scheduling period; correspondingly, the determining module is configured to determine, according to the PCID, a subframe set for transmitting the first information according to the following manner:
  • the subframe in which the first information is transmitted in the radio frame is determined to be subframe #4 or subframe #5 according to the PCID and the radio frame index.
  • the candidate subframe set includes subframe #0 and subframe #5 in all radio frames, and the scheduling period of the first information is 8 radio frames.
  • the first information is repeatedly transmitted 4 times in the scheduling period; correspondingly, the determining module is configured to determine, according to the PCID, a subframe set for transmitting the first information according to the following manner:
  • the first information is repeatedly transmitted 8 times in the scheduling period; correspondingly, the determining module is configured to determine, according to the PCID, a subframe set for transmitting the first information according to the following manner:
  • the subframe in which the first information is transmitted in the radio frame is determined to be subframe #0 or subframe #5 according to the PCID and the radio frame index.
  • the information transmission method and device in the MTC system provided by the embodiment of the present invention; determining a subframe set and a narrowband for transmitting the first information according to the PCID; and transmitting/receiving the first information on the subframe set and the narrowband.
  • the first information is system information
  • interference caused by system information transmission between adjacent cells can be effectively avoided or reduced, thereby improving user experience.
  • FIG. 1 is a schematic flowchart of an information transmission method in an MTC system according to an embodiment of the present invention
  • FIGS. 2a and 2b are schematic diagrams of a set of subframes for transmitting second information in a transmission window according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram 1 of a subframe set and a narrowband for transmitting first information determined according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram 2 of a subframe set and a narrowband for transmitting first information determined according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram 3 of a subframe set and a narrowband for transmitting first information determined according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a unified frequency hopping pattern used by a neighboring cell according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of different hopping patterns used by neighboring cells according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a structure of an information transmission apparatus in an MTC system according to an embodiment of the present invention.
  • the network side determines, according to the PCID, the subframe set and the narrowband corresponding to the first information, and sends the first information on the corresponding subframe set and the narrowband; the terminal side determines the first transmission according to the PCID.
  • the set of subframes corresponding to the information and the narrowband, the first information is received on the corresponding subframe set and the narrowband.
  • FIG. 1 is a schematic flowchart of an information transmission method in an MTC system according to an embodiment of the present invention. The method may be applied to both a network side and a terminal side. As shown in FIG. 1 , the information transmission method in the embodiment of the present invention includes:
  • Step 101 Determine, according to the PCID, a subframe set and a narrowband that transmit the first information.
  • the method further includes: acquiring a candidate subframe set and a candidate narrowband set for transmitting the first information, where the candidate subframe set includes the subframe set, and the candidate is narrow
  • the band set includes the narrow band
  • the first information may be SIB1 information
  • the obtaining a candidate subframe set and the candidate narrowband set for transmitting the first information includes:
  • the candidate narrowband set for transmitting the first information includes: all narrowbands defined within a system bandwidth range; or narrowbands other than a narrowband for a Physical Broadcast Channel (PBCH) transmission within a system bandwidth range; or W narrowbands in all narrowband defined within the system bandwidth; the system is an MTC system;
  • PBCH Physical Broadcast Channel
  • W is a positive integer less than or equal to N NB ;
  • N NB is a narrow band number defined in a system bandwidth range; optionally, the W is an even number, and at this time, the W narrow bands may include W/ near the upper sideband. 2 narrowbands and W/2 narrowbands close to the lower sideband; for example, for a 3MHz or 5MHz system bandwidth, the above W may be preset to 2, and for a system bandwidth exceeding 5MHz, the above W may take a value greater than or equal to 4;
  • each narrowband includes 6 RB (Resource Block), N RB represents the number of RBs included in the system bandwidth;
  • the system bandwidth is greater than or equal to 5 MHz
  • the set and the PBCH resource area always do not overlap; at this time, even if the SIB1 and the PBCH are transmitted in the same subframe, no collision occurs, and the PBCH repetition does not affect the SIB1 transmission;
  • the candidate narrowband set that transmits the first information when the candidate narrowband set that transmits the first information is set, if the subframe in which the first information is transmitted does not have PBCH transmission, the candidate narrowband set that transmits the first information may be set to include a definition in a system bandwidth range. If there is a PBCH transmission in the subframe in which the first information is transmitted, the candidate narrowband set that transmits the first information may be set to include all other narrowbands defined in the system bandwidth range except for the narrowband used for PBCH transmission; That is, depending on whether the subframe has a PBCH transmission, the candidate narrowband set corresponding to the first information may be different for different subframes;
  • a transport block size TBS
  • a system bandwidth a function supported by a cell
  • a narrowband number included in a candidate narrowband set a subframe in which a PBCH is transmitted.
  • At least one parameter determines a candidate subframe set for transmitting the first information; wherein the cell support function includes an MTC coverage enhancement function;
  • the terminal cannot obtain the multicast broadcast single frequency network (MBSFN) subframe configuration information of the current cell and the time division duplex according to the SIB1 message.
  • MBSFN multicast broadcast single frequency network
  • TDD Time Division Duplex
  • SIB1 messages can only be limited to transmission on downlink subframes that are never configured as MBSFN subframes and TDD special subframes; for frequency division duplexing
  • the FDD (Frequency Division Duplex) system the downlink subframe set that is not always configured as an MBSFN subframe includes subframe #0, subframe #4, subframe #5, and subframe #9 in all radio frames, correspondingly,
  • the candidate subframe set is at least one of subframe #0, subframe #4, subframe #5, and subframe #9 in all the radio frames, that is, the subframe #0, subframe #4, At least one subframe of subframe #5 and subframe #9 is a candidate subframe, and a subframe set composed of candidate subframes in all radio frames is a
  • the candidate subframe set of the transmission SIB1 corresponding to the larger TBS contains more subframes, because In the case of the same time-frequency resource allocation, in order to achieve the same coverage level or coverage as the smaller TBS, the larger TBS usually requires more repetitions; taking the FDD system as an example, it is assumed that the SIB1 message supports two TBS sets.
  • Each TBS set includes at least one determined TBS value, and the maximum TBS value in the second TBS set far exceeds the maximum TBS value included in the first TBS set; in this case, the transmission SIB1 corresponding to the first TBS set
  • the candidate subframe set may be subframe #4 and subframe #5 in all radio frames, and the candidate subframe set of the transmission SIB1 corresponding to the second TBS set may be subframe #0 in all radio frames, subframe #4, subframe #5 and subframe #9.
  • the candidate subframe set of the transmission SIB1 contains more subframes because of the enhancement or coverage for coverage enhancement. Range, more repetitions of SIB1 messages are necessary;
  • the subframe in which the PBCH is currently transmitted may be subframe #0 or subframe #0 and subframe #9, considering the subframe # 0 or all narrowbands of subframe #0 and subframe #9 may overlap with the bearer MIB information PBCH resource (72 subcarriers of the system bandwidth center), and the MIB transmission has a higher priority than the SIB1 message, so here
  • the above subframe #0 or subframe #0 and subframe #9 may no longer be used to transmit the SIB1 message, and the candidate subframe set of the final transmission SIB1 message can only be limited to the subframe #4 and the child of all the radio frames.
  • the subframe in which the PBCH is currently transmitted may be subframe #0 or subframe #0 and subframe #5, if only all narrowbands of subframe #0 and PBCH resources carrying MIB information exist. Overlap, in this case, the above subframe #0 can no longer be used to transmit the SIB1 message, and the set of candidate subframes for finally transmitting the SIB1 message can only be limited to the range of subframe #5 of all the radio frames; however, if All narrowbands of subframe #0 and subframe #5 overlap with PBCH resources carrying MIB information.
  • SIB1 messages may still be transmitted using subframe #0 and subframe #5,
  • the final transmission of the SIB1 message candidate subframe set is still limited to the range of subframe #0 and subframe #5 of all radio frames, but the frequency domain resources for transmitting SIB1 in the above subframe range can only be part of the resources in the narrowband, that is, The remaining resources in the narrowband have been allocated for resources other than PBCH transmission resources;
  • the candidate narrowband set transmitting SIB1 includes most of the narrowband defined in the system bandwidth range (eg, more than 10), then consider the foot A sufficient number of narrowbands for transmitting SIB1 can avoid interference between adjacent cell SIB1 message transmissions by using different narrowbands for neighboring cells, even if the candidate subframe set for transmitting SIB1 includes only unique among all radio frames.
  • Subframe if the candidate narrowband set transmitting SIB1 includes only a small portion of the narrowband defined in the system bandwidth range (eg, less than 4), in this case, considering less narrowbands for transmitting SIB1, only by making neighbors The use of different narrowbands in a cell cannot completely avoid interference between adjacent cell SIB1 message transmissions.
  • the candidate subframe set for transmitting SIB1 includes at least two of all radio frames. Sub-frames are preferable;
  • the candidate subframe set of the transmission SIB1 and the subframe set of the transmission PBCH ie, subframe #0 or subframe #0 and subframe #9 in all radio frames
  • the candidate subframe set of the transmission SIB1 and the subframe set of the transmission PBCH ie, subframe #0 or subframe #0 and subframe #9 in all radio frames
  • the candidate subframe set of the transmission SIB1 and the subframe set of the transmission PBCH ie, subframe #0 or subframe #0 and subframe #9 in all radio frames
  • the PBCH resource region e.g 1.4MHz and 3MHz
  • the determining, by the PCID, the subframe set and the narrowband for transmitting the first information includes:
  • the same subset of subframes is a set of subframes for transmitting the first information; N is a positive integer; n is an integer;
  • the narrow band is a narrow band for transmitting the first information; M is a positive integer; m is an integer;
  • the candidate subframe set for transmitting the first information is divided into N subframe subsets such that each subframe subset includes B subframes in A radio frames;
  • a and B are positive integers;
  • the B is 1 or 2; for example, in the FDD system, if the candidate subframe of the first information is transmitted
  • the set includes subframe #5 in all radio frames, then N may be equal to 2, in which case the subframe subset numbered 0 includes subframe #5 in all even radio frames, and the subframe subset numbered 1 includes all Subframe #5 in odd radio frames;
  • determining, according to the second rule, the belonging group of the PCID includes: Determining a belonging group of the PCID;
  • determining, according to the first rule, the belonging group of the PCID includes: Determining a belonging group of the PCID;
  • n and m are the group numbers of the belonging groups of the PCID determined according to the first rule and the second rule respectively.
  • the values of the n and m are counted from 0.
  • determining, by using the PCID, the narrowband for transmitting the first information includes:
  • a narrowband for transmitting the first information according to the PCID, a subframe index and/or a radio frame index for transmitting the first information; and in the first case, transmitting two different cells in the same subframe set
  • the interval of two narrow bands of the first information is fixed; in the second case, the interval of two narrow bands transmitting the first information of two different cells is not fixed within the same subframe set;
  • the first case refers to the case where there is a cell plan, that is, the PCID of the current cell needs to be determined according to the PCID of other neighboring cells;
  • the second case is the case where there is no cell plan, that is, the PCID of the current cell and Adjacent cells are irrelevant.
  • the subframe index or the radio frame index may be a physical subframe or a radio frame index, or a logical sub-frame or a radio frame index within a range of a hopping period;
  • the two narrowbands of the first information transmitting the two different cells are fixed at intervals, that is, two different cells transmitting the first information use a unified frequency hopping pattern; correspondingly, the first information of two different cells is transmitted.
  • the spacing of the two narrowbands is not fixed, that is, two different cells transmitting the first information use different hopping patterns.
  • determining, according to the PCID, a subframe index that transmits the first information, and/or a radio frame index, determining a narrowband for transmitting the first information including:
  • the Idx represents a subframe or a radio frame index for transmitting the first information
  • the m(Idx) table An index of a narrowband that transmits the first information on a subframe or a radio frame whose index is Idx
  • the N is a subframe subset number included in the candidate subframe set corresponding to the first information
  • the M is a transmission The number of narrowbands included in the candidate narrowband set corresponding to the first information.
  • the narrowband that transmits the first information is determined according to the PCID, the subframe index that transmits the first information, and/or the radio frame index, and includes:
  • the random sort sequence S includes 0 to (M-1) M integers;
  • m(Idx) represents an index of a narrowband transmitting the first information on a subframe or a radio frame indexed to Idx;
  • the M is a narrowband number included in the candidate narrowband set transmitting the first information;
  • S ⁇ F ⁇ Represents the Fth element in the S sequence;
  • F is an integer greater than 0 and less than M-1, or F is equal to 0, or F is equal to M-1;
  • the obtaining the random sort sequence S corresponding to the PCID includes:
  • the obtaining the pseudo-random sequence c according to the PCID may acquire a corresponding pseudo-random sequence according to the PCID by using a related pseudo-random sequence generation manner, optionally:
  • x 1 (j+31) (x 1 (j+3)+x 1 (j)) mod2;
  • x 2 (j+31) (x 2 (j+3)+x 2 (j+2)+x 2 (j+1)+x 2 (j)) mod2;
  • c(j) is a pseudo-random sequence c The jth element; j is an integer greater than or equal to 0;
  • the first pseudo-random sequence and the second pseudo-random sequence are initialized according to the following equations, respectively:
  • N C is a preset constant, optionally, N C is 1600;
  • Reordering the bit groups numbered 0 to (M-1) according to the value size includes:
  • bit groups numbered 0 to (M-1) are reordered according to the numerical value from the largest to the smallest, or the bit groups numbered 0 to (M-1) are ranked according to the numerical value from small to large. Reorder.
  • the method further includes:
  • the second information Determining, by the first information, the second information in the corresponding system information (SI, System Information) window, that is, the actual transmission subframe in the transmission window, that is, each second information and Corresponding configuration signaling is one-to-one correspondence; in an embodiment, when the first information is SIB1 information, the second information may be SIB information other than the SIB1 information, that is, SIBx, where x is not equal to 1 Positive integer
  • the number of repetitions of the second information depends on the configured corresponding SI window size and the actual number of transmitted subframes within the SI window, and the second information can be adjusted in the SI window by using independent configuration signaling.
  • the sub-frame and/or scheduling period size is actually transmitted to implement the configuration of the required number of repetitions of the second information.
  • the method further includes:
  • the candidate subframe set for transmitting the second information includes: other downlink subframes except all MBSFN downlink subframes. Or, other downlink subframes except for all MBSFN downlink subframes that transmit MBMS services; or, other downlink subframes except all MBSFN downlink subframes and all transmitted SIB1 downlink subframes; or, except for all transmission MBMS services a downlink sub-frame of the MBSFN and all downlink sub-frames other than the downlink sub-frame of the SIB1; wherein, when the candidate subframe set for transmitting the second information includes other downlink sub-frames except all MBSFN downlink sub-frames, or When all downlink subframes other than the MBSFN downlink subframe of the MBMS service are transmitted, if the transmission of the SIBx and the SIB1 conflicts, the SIBx transmission is abandoned;
  • the first mode may be a non-contiguous subframe allocation manner.
  • the candidate subframe set that transmits the second information in the SI window is divided into X subframe subsets according to the first manner, including:
  • Each X consecutive subframes in the candidate subframe set is divided into a group and numbered for each group of subframes, and the subframe subset numbered by x is subframe number numbered x in each subframe group.
  • the composition that is, the interval of adjacent subframes in any subset of subframes is X-1; x is an integer greater than 0 and less than X-1, or x is equal to 0, or x is equal to X-1;
  • the number of remaining subframes in the candidate subframe set that are not allocated to the subframe group is less than X (that is, not sufficiently divided into one group), and the last subframe group includes fewer subframes than X;
  • the second mode may be a contiguous subframe allocation mode.
  • the candidate subframe set that transmits the second information in the SI window is divided into X subframe subsets according to the second manner, including:
  • the X is a preset constant, which can be set according to the size of the SI window or according to actual needs; for the terminal side, the value of the X can also be indicated by the first information; usually, the larger SI window corresponds to Large X value;
  • the actual transmission subframe of the second information in the corresponding SI window depends on the current coverage enhancement level or coverage target or TBS size of the second information; for example, when the second information is required to reach the maximum coverage, the configurable transmission
  • the subframe set of the two information is all candidate subframes (ie, X subframe subsets); when the second information is required to satisfy the normal coverage, the subframe set that can be configured to transmit the second information is only the X subframe subsets. one of;
  • Each of the five consecutive subframes in the frame set is divided into a group, and then subframe 0 in all the subframe groups is used as the subframe subset 0, and similarly, the subframe 1 in all the subframe groups is used as a sub-frame Frame subset 1, sub-frame 2 of all the above-mentioned sub-frame groups is used as sub-frame subset 2, and sub-frame 3 in all the above-mentioned sub-frame groups
  • the subframe 4 in all the foregoing subframe groups is used as the subframe subset 4, wherein the interval of the adjacent subframes in any subframe subset is 4 (X-1 is equal to 4); Figure 2a;
  • the subframe set configured to actually transmit the second information is the subframe subset 0 of the 5 subframe subsets, as shown in FIG. 2a, or the actual transmission is configured second.
  • the subframe set of information is the subframe subset 0 and the subframe subset 1 of the above 5 subframe subsets, as shown in FIG. 2b.
  • the Y bits are in one-to-one correspondence with the K subframe subsets in the X subframe subsets, where K is an integer greater than 1 and less than X, or K is equal to 1, or K is equal to X;
  • K is an integer greater than 1 and less than X, or K is equal to 1, or K is equal to X;
  • the subset of K subframes in the subset of X subframes is a subset of the index of 0 to K-1 in the subset of X subframes; that is, to implement the letter
  • the sub-frame set configured to actually transmit the second information in the present embodiment is the sub-frame subset 0 of the 5 sub-frame subsets; or, the sub-frame subset 0 and the sub-subframe subset 1; therefore, the 3 bits take values It is 000 or 001.
  • the candidate subframe set includes subframe #4 and subframe #5 in all radio frames, and the scheduling period of the first information is 8 radio frames,
  • the first information is repeatedly transmitted 4 times in the scheduling period; correspondingly, determining, according to the PCID, the subframe set for transmitting the first information, including:
  • the odd or even number may be further determined according to the PCID and the radio frame index on the basis of the odd radio frame or the even radio frame.
  • the subframe in which the first information is transmitted in the radio frame is subframe #4 or subframe #5;
  • the radio frame transmitting the first information is an even radio frame
  • the radio frame transmitting the first information is an odd radio frame
  • generating a pseudo-random sequence of length L1 according to the PCID, 8 (scheduled cycle size) sequences of length L2 are sequentially intercepted, where L1 is an integer greater than or equal to 8, L2 is an integer greater than or equal to 1, and L1 is greater than or equal to 8 ⁇ L2;
  • the sequence of L2 is respectively in one-to-one correspondence with 8 radio frames (having different radio frame indexes) in the scheduling period; if the sequence of length L2 corresponding to the current odd or even radio frame is converted into a value and then an even number, then
  • the subframe in which the first information is transmitted in the current odd or even radio frame is the subframe #4, and if the sequence of the length L2 corresponding to the current odd or even radio frame is converted into a value and then an odd number, the current odd
  • the first information is repeatedly transmitted 8 times in the scheduling period; correspondingly, determining, according to the PCID, the subframe set for transmitting the first information, including:
  • the subframe in which the first information is transmitted in the radio frame is a sub-frame Frame #4 or subframe #5;
  • the radio frame that transmits the first information is all radio frames, so the process of determining the subframe set for transmitting the first information does not need to consider or determine the frame type of the radio frame that transmits the first information, that is, Considering whether the radio frame transmitting the first information is an odd radio frame or an even radio frame, and determining, according to the PCID and the radio frame index, the subframe in which the first information is transmitted in the radio frame is subframe #4 or a subframe. #5;
  • a pseudo-random sequence of length L1 is directly generated according to the PCID, and 8 (scheduled period size) sequences of length L2 are sequentially intercepted, where L1 is an integer greater than or equal to 8, and L2 is an integer greater than or equal to 1, and L1 is greater than or equal to 8 ⁇ L2; the eight sequences of length L2 are respectively corresponding to 8 radio frames (having different radio frame indexes) in the scheduling period; if the length of the current radio frame is If the sequence of L2 is converted to a value and then even, the subframe in which the first information is transmitted in the current radio frame is subframe #4, and if the sequence of length L2 corresponding to the current radio frame is converted into a value and is odd, then The subframe in which the first information is transmitted in the current radio frame is subframe #5.
  • the candidate subframe set includes subframe #0 and subframe #5 in all radio frames, and the scheduling period of the first information is 8 radio frames,
  • the first information is repeatedly transmitted 4 times in the scheduling period; correspondingly, determining, according to the PCID, the subframe set for transmitting the first information, including:
  • the odd or even number may be further determined according to the PCID and the radio frame index on the basis of the odd radio frame or the even radio frame.
  • the subframe in which the first information is transmitted in the radio frame is subframe #0 or subframe #5;
  • the radio frame transmitting the first information is an even radio frame
  • the radio frame transmitting the first information is an odd radio frame
  • the radio frame transmitting the first information is an odd radio frame
  • generating a pseudo-random sequence of length L1 according to the PCID And sequentially intercepting 8 (scheduled period size) sequences of length L2, where L1 is an integer greater than or equal to 8, L2 is an integer greater than or equal to 1, and L1 is large Or equal to 8 ⁇ L2; respectively, the eight sequences of length L2 are respectively corresponding to 8 radio frames (having different radio frame indexes) in the scheduling period; if the current odd or even radio frames correspond to If the sequence of length L2 is converted to a value and then even, the subframe in which the first information is transmitted in the current odd or even radio frame is subframe #0, and if the sequence of length L2 corresponding to the current odd or even radio frame is converted into After the value is odd, the subframe in which the first information is transmitted in the current
  • the first information is repeatedly transmitted 8 times in the scheduling period; correspondingly, determining, according to the PCID, the subframe set for transmitting the first information, including:
  • the radio frame transmitting the first information is all radio frames, so the process of determining the subframe set for transmitting the first information does not need to be considered, or the frame type of the radio frame transmitting the first information is determined, that is, Regardless of whether the radio frame transmitting the first information is an odd radio frame or an even radio frame, the subframe in which the first information is transmitted in the radio frame may be directly determined according to the PCID and the radio frame index as subframe #0 or sub Frame #5;
  • a pseudo-random sequence of length L1 is directly generated according to the PCID, and 8 (scheduled period size) sequences of length L2 are sequentially intercepted, where L1 is an integer greater than or equal to 8, and L2 is an integer greater than or equal to 1, and L1 is greater than or equal to 8 ⁇ L2; the eight sequences of length L2 are respectively corresponding to 8 radio frames (having different radio frame indexes) in the scheduling period; if the length of the current radio frame is If the sequence of L2 is converted to a value and then even, the subframe in which the first information is transmitted in the current radio frame is subframe #0, and if the sequence of length L2 corresponding to the current radio frame is converted into a value and is odd, then The subframe in which the first information is transmitted in the current radio frame is subframe #5.
  • Step 102 Send or receive the first information on the subframe set and the narrowband.
  • the corresponding step 102 is that the network side is on the corresponding subframe set and the narrowband. Transmitting the first information; and corresponding to the terminal side, the terminal receiving the first information on the corresponding subframe set and the narrowband;
  • the neighboring cell can use different narrowband transmission SIB1 messages, that is, the neighboring cell uses different frequency domain resources to transmit SIB1 messages (frequency division); second, neighboring cells
  • the SIB1 message may be transmitted using different subframe sets, that is, the neighboring cell transmits the SIB1 message using different time domain resources (time division); third, the neighboring cell may transmit the SIB1 message by using different narrowband and subframe sets, that is, the neighboring cell is
  • the SIB1 message (time-frequency division) is transmitted by using different frequency domain and time domain resources; in addition, interference caused by system information transmission between adjacent cells can be effectively avoided or reduced, and the user experience is improved.
  • the embodiment of the present invention provides an information transmission method, which can be applied to both the network side and the terminal side.
  • the MTC system is an FDD system, and the system bandwidth is 3 MHz, including 15 PRBs.
  • the resource, the system defines two narrowbands; as shown in FIG. 1, the information transmission method of the embodiment of the present invention includes:
  • Step 101 Determine, according to the PCID, a subframe set and a narrowband that transmit the first information.
  • the method further includes: acquiring a preset candidate subframe set and a candidate narrowband set that are configured to transmit the first information, where the candidate subframe set includes the subframe set, and the candidate narrowband set Including the narrow band;
  • the first information is SIB1 information
  • Setting the candidate narrowband set for transmitting the first information includes all narrowbands defined in the system bandwidth range, that is, including two narrowbands, respectively narrowband 0 and narrowband 1;
  • the downlink subframe set that is not always configured as an MBSFN subframe in the system in this embodiment includes subframe #0, subframe #4, subframe #5, and subframe #9 in all radio frames, however,
  • the subframes transmitted on the PBCH are the subframe #0 and the subframe #9, and therefore, the candidate subframe set in which the first information is transmitted is set as the subframe #4 and the subframe #5 in all the radio frames.
  • the determining, by the PCID, the subframe set and the narrowband for transmitting the first information includes:
  • the same subset of subframes is a set of subframes for transmitting the first information; N is a positive integer; n is an integer;
  • M is a positive integer;
  • m is an integer;
  • the candidate subframe set that transmits the first information is divided into N subframe subsets, so that each subframe subset includes B subframes in A radio frames;
  • a and B are positive integers;
  • N is 2
  • the subframe subset numbered 0 is composed of subframe #4 in all radio frames
  • the subframe subset numbered 1 is composed of subframe #5 in the radio frame;
  • determining, by the second rule, the belonging group of the PCID includes:
  • the subframe subset and the narrowband transmitting the first information are respectively a subframe subset numbered 0 and a narrowband numbered 0;
  • the subframe subset and the narrowband for transmitting the first information are respectively a subframe subset numbered 1 and a narrowband numbered 0;
  • the subframe subset and the narrowband for transmitting the first information are respectively a subframe subset numbered 0 and a narrowband numbered 1;
  • the sub-frame subset and the narrowband of the first information are respectively a sub-frame subset numbered 1 and a narrow-band number 1; as shown in FIG. 3, the transmission determined by the embodiment of the present invention is first.
  • Step 102 Send or receive the first information on the subframe set and the narrowband.
  • the information transmission method can be applied to both the network side and the terminal side
  • the corresponding network side transmits the number on the subframe set and the narrowband.
  • a message; and corresponding to the terminal side the terminal receives the first information on the subframe set and the narrowband.
  • the embodiment of the present invention provides an information transmission method, which can be applied to both the network side and the terminal side.
  • the MTC system is an FDD system, and the system bandwidth is 5 MHz, including 25 PRBs.
  • the resource, the system defines four narrowbands; as shown in FIG. 1, the information transmission method of the embodiment of the present invention includes:
  • Step 101 Determine, according to the PCID, a subframe set and a narrowband that transmit the first information.
  • the method further includes: acquiring a preset candidate subframe set and a candidate narrowband set that are configured to transmit the first information, where the candidate subframe set includes the subframe set, and the candidate narrowband set Including the narrow band;
  • the first information is SIB1 information
  • the four narrowbands defined by the system always have one or two narrowband overlaps with the PBCH frequency domain resources, so in order to avoid affecting the transmission of the PBCH, the actual transmission of the SIB1 is
  • the candidate narrowband is at most three; in the embodiment of the present invention, the set of candidate narrowbands for transmitting the first information includes two narrowbands, one narrowband near the upper sideband and one narrowband near the lower sideband; The two narrow bands are narrow band 0 and narrow band 1 respectively;
  • the downlink subframe set that is not always configured as an MBSFN subframe in the system in this embodiment includes subframe #0, subframe #4, subframe #5, and subframe #9 in all radio frames; therefore, setting The candidate subframe set transmitting the first information is subframe #0, subframe #4, subframe #5, and subframe #9 in all radio frames.
  • the determining, by the PCID, the subframe set and the narrowband for transmitting the first information includes:
  • N is a positive integer
  • n is an integer
  • the narrow band is a narrow band for transmitting the first information; M is a positive integer; m is an integer;
  • the candidate subframe set that transmits the first information is divided into N subframe subsets, so that each subframe subset includes B subframes in A radio frames;
  • a and B are positive integers;
  • N is 4, the subframe subset numbered 0 is composed of subframe #0 in all radio frames, and the subframe subset numbered 1 is composed of subframe #4 in the radio frame, numbered
  • the subframe subset of 2 is composed of subframe #5 in the radio frame, and the subframe subset numbered 3 is composed of subframe #9 in the radio frame;
  • Determining, according to the first rule, the belonging group of the PCID includes:
  • determining, by the second rule, the belonging group of the PCID includes:
  • the subframe subset and the narrowband transmitting the first information are respectively a subframe subset numbered 0 and a narrowband numbered 0;
  • the subframe subset and the narrowband for transmitting the first information are respectively a subframe subset numbered 0 and a narrowband numbered 1;
  • the subframe subset and the narrowband for transmitting the first information are respectively a sub-frame subset numbered 1 and a narrow band numbered 0;
  • the subframe subset and the narrowband for transmitting the first information are respectively a sub-frame subset numbered 1 and a narrow band numbered 1;
  • the subframe subset and the narrowband for transmitting the first information are respectively a sub-frame subset numbered 2 and a narrow band numbered 0;
  • the subframe subset and the narrowband for transmitting the first information are respectively a sub-frame subset numbered 2 and a narrow band numbered 1;
  • the subframe subset and the narrowband for transmitting the first information are respectively a sub-frame subset numbered 3 and a narrow band numbered 0;
  • the sub-frame subset and the narrowband of the first information are respectively a sub-frame subset numbered as 3 and a narrow-band number 1; as shown in FIG. 4, the transmission determined by the embodiment of the present invention is first.
  • Step 102 Send or receive the first information on the subframe set and the narrowband.
  • the embodiment of the present invention provides an information transmission method, which can be applied to both the network side and the terminal side.
  • the MTC system is a TDD system, and the system bandwidth is 10 MHz, including 50 PRBs. Resources, the system defines eight narrowbands; as shown in FIG. 1, the information transmission method of the embodiment of the present invention includes:
  • Step 101 Determine, according to the PCID, a subframe set and a narrowband that transmit the first information.
  • the method further includes: acquiring a preset candidate subframe set and a candidate narrowband set that are configured to transmit the first information, where the candidate subframe set includes the subframe set, and the candidate narrowband set Including the narrow band;
  • the first information is SIB1 information
  • the set of candidate narrowbands for transmitting the first information includes six narrowbands, which are respectively three narrowbands near the upper sideband and three narrowbands near the lower sideband; the numbers of the six narrowbands are respectively 0- 5;
  • the downlink subframe set that is not configured as an MBSFN subframe in the system in this embodiment includes subframes #0 and subframes #5 in all radio frames; and includes according to the current TBS size and the candidate narrowband set. Narrowband number (in the case of a large number of candidate narrowbands, the number of candidate subframes can be appropriately reduced),
  • the set of candidate subframes for transmitting the first information is set to subframe #5 in all radio frames.
  • the determining, by the PCID, the subframe set and the narrowband for transmitting the first information includes:
  • the same subset of subframes is a set of subframes for transmitting the first information; N is a positive integer; n is an integer smaller than N;
  • the narrow band is a narrow band for transmitting the first information; M is a positive integer; m is an integer smaller than M;
  • the candidate subframe set that transmits the first information is divided into N subframe subsets, so that each subframe subset includes B subframes in A radio frames;
  • a and B are positive integers;
  • N is 1, and the subframe subset is numbered 0, and is composed of subframes #5 in all radio frames;
  • Determining, according to the second rule, the belonging group of the PCID includes:
  • the narrowband transmitting the first information is a narrowband numbered 0;
  • the narrowband transmitting the first information is a narrowband numbered 1;
  • the narrowband transmitting the first information is a narrowband numbered 2;
  • the narrowband transmitting the first information is a narrowband numbered 3;
  • the narrowband transmitting the first information is a narrowband numbered 4;
  • the narrowband transmitting the first information is a narrowband numbered 5;
  • Frame subset or unique subset of subframes that is, transmission in subframe #5 in all radio frames
  • a message; as shown in FIG. 5, is a schematic diagram of a subframe set for transmitting first information and a schematic diagram 3 of a narrowband determined according to an embodiment of the present invention.
  • Step 102 Send or receive the first information on the subframe set and the narrowband.
  • An embodiment of the present invention provides an information transmission method, where the method can be applied to both the network side and the terminal side.
  • the information transmission method in the embodiment of the present invention includes:
  • Step 101 Determine, according to the PCID, a subframe set and a narrowband that transmit the first information.
  • the method further includes: acquiring a candidate subframe set and a candidate narrowband set for transmitting the first information, where the candidate subframe set includes the subframe set, and the candidate narrowband set includes the Narrow band
  • the first information is SIB1 information
  • the obtaining a candidate subframe set and the candidate narrowband set for transmitting the first information includes:
  • the set of candidate narrowbands for transmitting the first information includes four narrowbands, and the numbers of the four narrowbands are respectively 0-3; and the set of candidate subframes for transmitting the first information includes 2 a sub-frame subset, the number of the two sub-frame subsets is 0 and 1 respectively; in this embodiment, there are four cells adjacent to each other, and the cell numbers are respectively 0-3;
  • the determining, by the PCID, the set of subframes for transmitting the first information includes:
  • the same subset of subframes is a set of subframes for transmitting the first information; N is a positive integer; n is an integer;
  • the determining, by the first rule, the belonging group of the PCID includes: Determining a belonging group of the PCID;
  • determining that the subframe set in which the cell 0 transmits the first information is a subframe subset numbered 0;
  • the subframe set in which the first information is transmitted by the cell 1, the cell 2, and the cell 3 is a subframe subset numbered 0;
  • the first information narrowband frequency hopping is enabled, and the cell that transmits the first information in the same subframe set range uses a unified hopping pattern, that is, transmits two in the same subframe set.
  • the interval of two narrowbands of the first information of different cells is fixed; each frequency hopping period includes four consecutive transmissions of the first information (ie, equal to the number of candidate narrowbands transmitting the first information) or includes four consecutive transmissions of the first information.
  • a frame wherein the indexes of the four subframes are 0-3, that is, a logical subframe index;
  • the Idx represents a subframe or a radio frame index for transmitting the first information
  • the m(Idx) represents an index of a narrowband for transmitting the first information on a subframe or a radio frame indexed to Idx
  • the N is a transmission a number of subframe subsets included in the candidate subframe set of the first information
  • the M is a narrowband number included in the candidate narrowband set transmitting the first information
  • a narrow band of information (logical subframe index equal to 0) is narrowband 0;
  • the narrowband of the first transmission of the first information in the frequency hopping period of cell 0 is narrowband 1; the narrowband of the third transmission of the first information in the frequency hopping period of cell 0 is narrowband 2; 0, the narrowband of the fourth transmission of the first information in the frequency hopping period is narrowband 3;
  • the hopping pattern of the first information transmitted by the cell 0 can be expressed as: narrowband 0, narrowband 1, narrowband 2, and narrowband 3.
  • the hopping pattern of the first information transmitted by the cell 1 can be expressed as: narrowband 1, narrowband 2, narrowband 3, and narrowband 0;
  • the hopping pattern of the first information transmitted by the cell 2 can be expressed as: narrowband 2, narrowband 3, narrowband 0, and narrowband 1;
  • the hopping pattern of the first information transmitted by the cell 3 can be expressed as: narrowband 3, narrowband 0, narrowband 1 and narrowband 2;
  • the cell 0-3 transmits the first information in the frequency hopping period range using a uniform hopping pattern, as shown in FIG. 6, and thus does not depend on the subframe or radio frame transmitting the first information. Mutual interference between the first information transmissions of neighboring cells is completely avoided.
  • Step 102 Send or receive the first information on the subframe set and the narrowband.
  • An embodiment of the present invention provides an information transmission method, where the method can be applied to both the network side and the terminal side.
  • the information transmission method in the embodiment of the present invention includes:
  • Step 101 Determine, according to the PCID, a subframe set and a narrowband that transmit the first information.
  • the method further includes: acquiring a candidate subframe set and a candidate narrowband set for transmitting the first information, where the candidate subframe set includes the subframe set, and the candidate narrowband set includes the Narrow band
  • the first information is SIB1 information
  • the obtaining a candidate subframe set and the candidate narrowband set for transmitting the first information includes:
  • the set of candidate narrowbands for transmitting the first information includes four narrowbands, and the numbers of the four narrowbands are respectively 0-3; and the set of candidate subframes for transmitting the first information includes 2 a sub-frame subset, the number of the two sub-frame subsets is 0 and 1 respectively; in this embodiment, there are four cells adjacent to each other, and the cell numbers are respectively 0-3;
  • the determining, by the PCID, the set of subframes for transmitting the first information includes:
  • the same subset of subframes is a set of subframes for transmitting the first information; N is a positive integer; n is an integer;
  • the determining, by the first rule, the belonging group of the PCID includes: Determining a belonging group of the PCID;
  • determining that the subframe set in which the cell 0 transmits the first information is a subframe subset numbered 0;
  • the subframe set in which the first information is transmitted by the cell 1, the cell 2, and the cell 3 is a subframe subset numbered 0;
  • the first information narrowband frequency hopping is enabled, and the cells that transmit the first information in the same subframe set range use different hopping patterns, that is, in the same subframe set, two are transmitted.
  • the interval of two narrowbands of the first information of different cells is not fixed; each frequency hopping period includes six consecutive (ie, equal to the number of candidate narrowbands transmitting the first information) transmission of the first information or includes six consecutive transmissions of the first information.
  • the sub-frames, wherein the indexes of the six sub-frames are 0-5, that is, the logical sub-frame index;
  • the narrowband that determines the transmission of the first information according to the PCID includes:
  • the random ordering sequence S includes M integers from 0 to (M-1); wherein m(Idx) represents the index An index of a narrowband that transmits the first information on a subframe or a radio frame of the Idx;
  • the M is a narrowband number included in the candidate narrowband set corresponding to the first information;
  • the obtaining the random sort sequence S corresponding to the PCID includes:
  • the pseudo-random sequence corresponding to the PCID is obtained by using an existing pseudo-random sequence generation method. Listed as: 000000100001101000010010011110, 100010010110010101000000110101;
  • Each successive 10 (D equals 10) bits in the above pseudo-random sequence c(n) are sequentially intercepted and divided into one bit group, 6 different bit groups numbered 0 to 5, including:
  • bit group numbers of the 6 bit groups numbered 0 to 5 are reordered according to the values from small to large, as follows: 0, 5, 2, 1, 3, and 4;
  • the narrow band of the secondary transmission SIB1 message (logical subframe index equal to 0) is narrowband 0;
  • the narrowband of the first transmission of the first information by the cell 0 in the frequency hopping period is narrowband 5;
  • the narrowband of the first transmission of the first information by the cell 0 in the frequency hopping period is narrowband 2;
  • the narrowband of the fourth information transmitted by the cell 0 in the frequency hopping period is narrowband 1;
  • the narrowband of the first transmission of the first information by the cell 0 in the frequency hopping period is narrowband 3;
  • the narrowband of the first transmission of the first information by the cell 0 in the frequency hopping period is narrowband 4;
  • the hopping pattern of the first information transmitted by the cell 0 can be expressed as: narrowband 0, narrowband 5, narrowband 2, narrowband 1, narrowband 3, and narrowband 4;
  • the hopping pattern of the first information transmitted by the cell 1 can be expressed as: narrowband 0, narrowband 3, narrowband 1, narrowband 2, narrowband 4, and narrowband 5;
  • the hopping pattern of the cell 2 transmitting the first information may be expressed as: narrow band 5, narrow band 1, narrow band 0, narrow band 4, narrow band 2, and narrow band 3;
  • the hopping pattern of the first information transmitted by the cell 3 can be expressed as: narrowband 3, narrowband 1, narrowband 0, Narrow band 4, narrow band 2 and narrow band 5;
  • the cell 0-3 transmits the first information in the frequency hopping period to use different hopping patterns, as shown in FIG. 7; thus, it is advantageous to mitigate mutual interference between the first information transmissions of the neighboring cells.
  • the candidate narrowband of the SIB1 message is transmitted more (for example, more than 10)
  • the collision probability between the first information transmission of the neighboring cell becomes smaller, so that the first information transmission between the adjacent cells is performed.
  • the degree of mutual interference will be lower; therefore, the above method is more suitable for scenarios where there are enough narrowbands for candidates.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • Figure 8 is a block diagram showing the structure of an information transmission device in an MTC system according to an embodiment of the present invention.
  • the device may be located on the network side or on the terminal side.
  • the device according to the embodiment of the present invention The composition includes: a determining module 81 and a processing module 82; wherein
  • the determining module 81 is configured to determine, according to the PCID, a subframe set and a narrowband that transmit the first information
  • the processing module 82 is configured to send or receive the first information on the subframe set and the narrowband.
  • the determining module 81 is further configured to acquire a candidate subframe set and a candidate narrowband set that transmit the first information, where the candidate subframe set includes the subframe set, and the candidate narrowband set Including the narrow band;
  • the first information may be SIB1 information
  • the determining module 81 is configured to acquire a preset candidate subframe set and a candidate narrowband set that are configured to transmit the first information, and to obtain, by the terminal side, the candidate subframe set that transmits the first information, and a candidate narrowband set, in addition to the foregoing manner, may obtain, by using MIB signaling, a candidate subframe set and a candidate narrowband set that transmit the first information;
  • the candidate narrowband set for transmitting the first information includes: a defined area within a system bandwidth range Narrowband; or narrowbands other than the narrowband used for PBCH transmission within the system bandwidth; or W narrowbands of all narrowbands defined within the system bandwidth; the system is an MTC system;
  • W is a positive integer less than or equal to N NB ;
  • N NB is a narrow band number defined in a system bandwidth range; optionally, the W is an even number, and at this time, the W narrow bands may include W/ near the upper sideband.
  • the determining module 81 is further configured to: determine that a subframe in which the first information is transmitted does not have a PBCH transmission, and set a candidate narrowband set that transmits the first information to include all narrowbands in a system bandwidth range; or Determining that a subframe in which the first information is transmitted has a PBCH transmission, and setting a candidate narrowband set transmitting the first information includes a narrowband other than a narrowband for PBCH transmission within a system bandwidth range.
  • the MTC system is an FDD system
  • the determining module 81 is configured to acquire subframe #0, subframe #4, subframe #5, and subframe #9 in the radio frame, and determine the subframe.
  • At least one subframe of the subframe #4, the subframe #5, the subframe #5, and the subframe #9 is a candidate subframe, and determining a subframe set composed of candidate subframes in all the radio frames is a candidate for transmitting the first information.
  • the MTC system is a TDD system
  • the determining module 81 is configured to acquire the subframe #0 and the subframe #5 in the radio frame, and determine that at least one subframe in the subframe #0 and the subframe #5 is a candidate subframe, determining a subframe set consisting of candidate subframes in all radio frames as a candidate subframe set for transmitting the first information.
  • the determining module 81 is further configured to determine the candidate subframe according to at least one of a TBS size, a system bandwidth, a function supported by the cell, a narrowband number included in the candidate narrowband set, and a subframe in which the PBCH is transmitted.
  • the determining module 81 is configured to divide the candidate subframe set that transmits the first information into N subframe subsets, determine the belonging group of the PCID according to the first rule, and obtain the belonging group. a group number n, and determining that the subset of subframes having the same number as the group number n is a subframe set for transmitting the first information; N is a positive integer; n is an integer;
  • the belonging group obtains the group number m of the belonging group, and determines that the narrowband with the same number as the group number m is a narrowband for transmitting the first information;
  • M is a positive integer;
  • m is an integer;
  • the candidate subframe set that transmits the first information is divided into N subframe subsets such that each subframe subset includes B subframes in A radio frames; A and B are positive integers.
  • the second rule is:
  • the first rule is:
  • the determining module 81 is further configured to determine, according to the PCID, a subframe index that transmits the first information, or a radio frame index, that the first transmission is performed. Narrow band of information;
  • the intervals of the two narrowbands transmitting the first information of the two different cells are fixed; in the second case, the transmission of the two different cells in the same subframe set The interval between two narrow bands of a message is not fixed;
  • the first case refers to the case where there is a cell plan, that is, the PCID of the current cell needs to be determined according to the PCID of other neighboring cells;
  • the second case is the case where there is no cell plan, that is, the PCID of the current cell and Adjacent cells are irrelevant.
  • the Idx represents a subframe or a radio frame index for transmitting the first information
  • the m(Idx) represents an index of a narrowband for transmitting the first information on a subframe or a radio frame indexed to Idx
  • the N is a transmission The number of subframe subsets included in the candidate subframe set of the first information
  • the M is a narrowband number included in the candidate narrowband set transmitting the first information.
  • the sequence S includes M integers from 0 to (M-1);
  • m(Idx) represents an index of a narrowband transmitting the first information on a subframe or a radio frame indexed to Idx;
  • the M is a narrowband number included in the candidate narrowband set transmitting the first information;
  • S ⁇ F ⁇ Represents the Fth element in the S sequence;
  • F is an integer greater than 0 and less than M-1, or F is equal to 0, or F is equal to M-1;
  • the determining module 81 is configured to acquire a corresponding pseudo-random sequence c according to the PCID, and sequentially intercept the pseudo-random sequence c, and intercept each consecutive D bits into one bit group, if currently intercepted If the bit group is the same as one of the previously intercepted bit groups, the current bit group is discarded until the pseudo random sequence c is truncated into M bit groups of length D bits, and the M bit groups are performed The number is 0 to (M-1), and then the bit groups numbered 0 to (M-1) are reordered according to the value size, and the number sequence corresponding to the reordered bit group is corresponding to the PCID. Randomly sorted sequence S;
  • the determining module 81 is configured to reorder the bit groups numbered 0 to (M-1) according to the numerical value from large to small, or to use the number from 0 to (M-1)
  • the bit groups are reordered according to the order of the values from small to large.
  • the apparatus further includes an indication module 83 configured to indicate, by using the first information, the actual transmission subframe of the second information in the corresponding system information SI window by using the first configuration information.
  • an indication module 83 configured to indicate, by using the first information, the actual transmission subframe of the second information in the corresponding system information SI window by using the first configuration information.
  • the indication module 83 is further configured to divide the candidate subframe set that transmits the second information in the SI window into X subframe subsets according to the first manner or the second manner, and determine that the second information is corresponding.
  • the actual transmission subframe in the SI window is at least one of the X subframe subsets; the first manner is different from the second manner; X is a positive integer;
  • the first mode may be a non-contiguous subframe allocation mode.
  • the indication module 83 is configured to divide each X consecutive subframes in the candidate subframe set into a group, and the number is x.
  • the subframe subset consists of subframes numbered x in each subframe group, that is, the interval between adjacent subframes in any subframe subset is X-1;
  • x is an integer greater than 0 and less than X-1. Or x is equal to 0, or x is equal to X-1;
  • the second mode may be a contiguous subframe allocation mode.
  • the indication module 83 is configured to divide each ceiling (P/X) consecutive subframes in the candidate subframe set into a group.
  • a sub-frame subset of x is a divided subframe group numbered x; wherein the P represents the candidate The number of subframes included in the subframe set; the ceiling indicates an integer operation upward;
  • the x is an integer greater than 0 and less than X-1, or x is equal to 0, or x is equal to X-1;
  • the X is a preset constant, which can be set according to the size of the SI window or according to actual needs; for the terminal side, the value of the X can also be indicated by the first information; usually, the larger SI window corresponds to Large X value;
  • the actual transmission subframe of the second information in the corresponding SI window depends on the current coverage enhancement level or the coverage target or TBS size of the second information.
  • the candidate subframe set includes subframe #4 and subframe #5 in all radio frames, and the scheduling period of the first information is 8 radio frames,
  • the first information is repeatedly transmitted 4 times in the scheduling period; correspondingly, the determining module is configured to determine, according to the PCID, a frame type of a radio frame that transmits the first information, according to the PCID and the radio frame.
  • the index determines that the subframe in which the first information is transmitted in the radio frame of the frame type is subframe #4 or subframe #5;
  • the first information is repeatedly transmitted 8 times in the scheduling period; correspondingly, the determining module is configured to determine, according to the PCID and the radio frame index, that the subframe in which the first information is transmitted in the radio frame is Subframe #4 or subframe #5.
  • the candidate subframe set includes subframe #0 and subframe #5 in all radio frames, and the scheduling period of the first information is 8 radio frames,
  • the first information is repeatedly transmitted 4 times in the scheduling period; correspondingly, the determining module is configured to determine, according to the PCID, a frame type of a radio frame that transmits the first information, according to the PCID and the radio frame.
  • the index determines that the subframe in which the first information is transmitted in the radio frame of the frame type is subframe #0 or subframe #5;
  • the first information is repeatedly transmitted 8 times in the scheduling period; correspondingly, the determining module is configured to determine, according to the PCID and the radio frame index, that the subframe in which the first information is transmitted in the radio frame is Subframe #0 or subframe #5.
  • the determining module 81, the processing module 82, and the indicating module 83 may be implemented by a central processing unit (CPU) or a digital signal processor (DSP) in the terminal.
  • a central processing unit CPU
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • the invention is not limited to any specific form of combination of hardware and software.
  • the foregoing technical solution can effectively avoid or reduce interference caused by system information transmission between adjacent cells, thereby improving user experience.

Abstract

一种机器类通信(MTC)系统中信息传输方法和装置,其中,所述所述方法包括:依据物理小区身份标识(PCID)确定传输第一信息的子帧集合及窄带;在所述子帧集合及窄带上发送/接收所述第一信息。

Description

一种机器类通信系统中的信息传输方法及装置 技术领域
本文涉及但不限于无线通信技术领域,尤其涉及一种机器类通信(MTC,Machine Type Communication)系统中的信息传输方法及装置。
背景技术
MTC用户设备(UE,User Equipment)已是现阶段物联网的主要应用形式,而低功耗低成本是其可大规模应用的重要保障。
目前,按照系统信息块(SIB,System Information Block)的传输机制,相关用于机器类通信(MTC,Machine Type Communication)的SIB类型能够分为以下两类:第一系统信息块SIB1和除SIB1以外的其它系统信息块SIBx,其中x不等于1;其中,上述SIB1按照预定义和/或通过主信息块(MIB,Master Information Block)指示SIB1相关调度信息的方式进行传输,而SIBx是通过上述SIB1指示SIBx相关调度信息的方式进行传输;其中,所述调度信息包括子帧(时域)位置、窄带(频域)位置和传输块大小。
考虑到传输块大小的不确定性,以及避免UE盲检测的复杂度,通常采用MIB信令指示SIB1的传输块大小;然而,相关MIB信令能够额外承载的比特数量是有限的,并且剩余的额外MIB比特还需要用于未来增强功能的扩展;因此,为避免再引入额外的MIB信令开销,采用预定义的方式确定用于SIB1传输的子帧和窄带是可选的传输方式,然而,在这种情况下,提供一种信息传输方法,能够有效的避免或减少相邻小区间SIB1传输造成的干扰,已成为亟待解决的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
有鉴于此,本发明实施例期望提供一种MTC系统中的信息传输方法及装置,能够有效的避免或减少相邻小区间系统信息传输造成的干扰,从而提高用户体验。
本发明实施例的技术方案是这样实现的:
本发明实施例提供了一种MTC系统中的信息传输方法,所述方法包括:
依据物理小区身份标识(PCID,Physical Cell ID)确定传输第一信息的子帧集合及窄带;
在所述子帧集合及窄带上发送或接收所述第一信息。
上述方案中,所述依据PCID确定传输第一信息的子帧集合及窄带之前,所述方法还包括:
获取传输所述第一信息的候选子帧集合及候选窄带集合;其中,所述候选子帧集合包括所述子帧集合,所述候选窄带集合包括所述窄带。
上述方案中,所述获取传输所述第一信息的候选窄带集合包括:
获取预先设置的系统带宽范围内的所有窄带;或者获取预先设置的系统带宽范围内除用于物理广播信道PBCH传输的窄带以外的其它窄带;或者获取预先设置的系统带宽范围内的所有窄带中的W个窄带;
其中,W为小于或等于NNB的正整数;NNB为系统带宽范围内的窄带数。
上述方案中,所述W为偶数,所述W个窄带包括靠近上边带的W/2个窄带和靠近下边带的W/2个窄带。
上述方案中,所述获取传输所述第一信息的候选窄带集合之前,所述方法还包括:
确定传输所述第一信息的子帧不存在PBCH传输,设置传输所述第一信息的候选窄带集合包括系统带宽范围内的所有窄带;或者,确定传输所述第一信息的子帧存在PBCH传输,设置传输所述第一信息的候选窄带集合包括系统带宽范围内的除用于PBCH传输的窄带以外的其它窄带。
上述方案中,所述MTC系统为频分双工FDD系统,所述获取传输所述 第一信息的候选子帧集合包括:
获取无线帧中的子帧#0、子帧#4、子帧#5和子帧#9,确定所述子帧#0、子帧#4、子帧#5和子帧#9中至少一个子帧为候选子帧,确定所有无线帧中的候选子帧组成的子帧集合为传输所述第一信息的候选子帧集合;
或者,所述MTC系统为时分双工TDD系统,所述获取传输所述第一信息的候选子帧集合包括:
获取无线帧中的子帧#0和子帧#5,确定所述子帧#0和子帧#5中至少一个子帧为候选子帧,确定所有无线帧中的候选子帧组成的子帧集合为传输所述第一信息的候选子帧集合。
上述方案中,所述方法还包括:
依据传输块TBS大小、系统带宽、小区支持的功能、候选窄带集合包括的窄带数及传输PBCH的子帧中的至少一个,确定所述候选子帧。
上述方案中,所述依据PCID确定传输第一信息的子帧集合及窄带包括:
将传输所述第一信息的候选子帧集合划分为N个子帧子集,依据第一规则确定所述PCID的归属组,获取所述归属组的组编号n,并确定编号与所述组编号n相同的子帧子集为传输所述第一信息的子帧集合;N为正整数;n为小于N的整数;
获取所述候选窄带集合包含的窄带数目M,依据第二规则确定所述PCID的归属组,获取所述归属组的组编号m,并确定编号与所述组编号m相同的窄带为传输所述第一信息的窄带;M为正整数;m为小于M的整数。
上述方案中,每个子帧子集均包括A个无线帧中的B个子帧;其中,A为正整数;对于FDD系统,B为大于1且小于4的正整数,或B等于1,或B等于4,对于TDD系统,所述B为1或2。
上述方案中,所述依据第一规则确定所述PCID的归属组包括:
依据n=mod(PCID,N)确定所述PCID的归属组;
相应的,所述依据第二规则确定所述PCID的归属组包括:依据
Figure PCTCN2016084546-appb-000001
确定所述PCID的归属组;
其中,n和m为所述PCID的归属组的组编号;N为所述候选子帧集合包括的子帧子集的数目;M为所述候选窄带集合包含的窄带数目。
上述方案中,所述依据第一规则确定所述PCID的归属组包括:
依据
Figure PCTCN2016084546-appb-000002
确定所述PCID的归属组;
相应的,所述依据第二规则确定所述PCID的归属组包括:依据m=mod(PCID,M)确定所述PCID的归属组;
其中,n和m为所述PCID的归属组的组编号;N为所述候选子帧集合包括的子帧子集的数目;M为所述候选窄带集合包含的窄带数目。
上述方案中,在使能所述第一信息窄带跳频时,所述依据PCID确定传输第一信息的窄带包括:
依据所述PCID、传输所述第一信息的子帧索引和/或无线帧索引,确定传输第一信息的窄带。
上述方案中,所述方法还包括:
在第一情况下,在相同子帧集合内,传输两个不同小区的第一信息的两个窄带的间隔固定;
在第二情况下,在相同子帧集合内,传输两个不同小区的第一信息的两个窄带的间隔不固定;所述第一情况不同于所述第二情况。
上述方案中,在第一情况下,所述依据所述PCID、传输所述第一信息的子帧索引和/或无线帧索引,确定传输第一信息的窄带,包括:
依据
Figure PCTCN2016084546-appb-000003
或m(Idx)=mod(PCID+Idx,M)确定传输第一信息的窄带;
其中,所述Idx表示传输第一信息的子帧或无线帧索引;所述m(Idx)表示在索引为Idx的子帧或无线帧上传输第一信息的窄带的索引;所述N为传输所述第一信息的候选子帧集合包括的子帧子集数;所述M为传输所述第一信息的候选窄带集合包含的窄带数目。
上述方案中,在第二情况下,所述依据所述PCID、传输所述第一信息的子帧索引和/或无线帧索引,确定传输第一信息的窄带,包括:
获取对应所述PCID的随机排序序列S,并依据m(Idx)=S{mod(Idx,M)}确定传输第一信息的窄带;所述随机排序序列S包括0至(M-1)的M个整数;
其中,m(Idx)表示在索引为Idx的子帧或无线帧上传输第一信息的窄带的索引;所述M为传输所述第一信息的候选窄带集合包含的窄带数目。
上述方案中,所述方法还包括:
通过所述第一信息使用独立的配置信令指示第二信息在对应系统信息SI窗口内的实际传输子帧。
上述方案中,所述第一信息为第一系统信息块SIB1,所述第二信息为除所述SIB1以外的其它系统信息块SIBx;其中,x为不等于1的正整数。
上述方案中,所述通过所述第一信息使用独立的配置信令指示第二信息在对应SI窗口内的实际传输子帧之前,所述方法还包括:
将SI窗口内传输所述第二信息的候选子帧集合按照第一方式或第二方式划分为X个子帧子集,确定第二信息在对应SI窗口内的实际传输子帧为所述X个子帧子集中的至少一个;所述第一方式不同于所述第二方式;X为正整数。
上述方案中,所述第一方式为非连续子帧分配方式;所述将SI窗口内传输所述第二信息的候选子帧集合按照第一方式划分为X个子帧子集,包括:
将所述候选子帧集合中每X个连续子帧划分为一组并为每一组的子帧进行编号,编号为x的子帧子集由每一个子帧组中编号为x的子帧构成;其中,X为正整数;x为小于或等于X-1的整数。
上述方案中,所述第二方式为连续子帧分配方式;所述将SI窗口内传输所述第二信息的候选子帧集合按照第二方式划分为X个子帧子集包括:
将所述候选子帧集合中每ceiling(P/X)个连续子帧划分为一组,编号为x的子帧子集为划分后的编号为x的子帧组;其中,所述P表示所述候选子帧集合包括的子帧数;X为正整数;x为小于或等于X-1的整数。
上述方案中,所述确定第二信息在对应SI窗口内的实际传输子帧为所述X个子帧子集中的至少一个,包括:
依据所述第二信息的当前覆盖增强等级、覆盖目标、TBS大小中的至少 一个,确定第二信息在对应SI窗口内的实际传输子帧为所述X个子帧子集中的至少一个。
上述方案中,所述独立的配置信令指示第二信息在对应SI窗口内的实际传输子帧所需的比特数是Y;
其中,Y=2X-1,或Y=ceiling(log2X);其中,X为SI窗口内传输所述第二信息的候选子帧集合包括的子帧子集数,X为正整数。
上述方案中,所述Y个比特与所述X个子帧子集中的K个子帧子集一一对应,其中,K为小于或等于X的正整数。
上述方案中,所述Y=ceiling(log2X),且所述K个子帧子集为所述X个子帧子集中的索引为0至K-1的子帧子集。
上述方案中,当所述MTC系统为FDD系统、所述候选子帧集合包括所有无线帧中的子帧#4和子帧#5,且所述第一信息的调度周期为8个无线帧时,
所述第一信息在所述调度周期内重复传输4次;相应的,所述依据PCID确定传输第一信息的子帧集合,包括:
依据PCID确定传输所述第一信息的无线帧的帧类型,根据所述PCID及无线帧索引确定在所述帧类型的无线帧中传输所述第一信息的子帧为子帧#4或子帧#5;
或者,所述第一信息在所述调度周期内重复传输8次;相应的,所述依据PCID确定传输第一信息的子帧集合,包括:
根据PCID及无线帧索引确定在无线帧中传输所述第一信息的子帧为子帧#4或子帧#5。
上述方案中,当所述MTC系统为TDD系统,所述候选子帧集合包括所有无线帧中的子帧#0和子帧#5,且所述第一信息的调度周期为8个无线帧时,
所述第一信息在所述调度周期内重复传输4次;相应的,所述依据PCID确定传输第一信息的子帧集合,包括:
依据PCID确定传输所述第一信息的无线帧的帧类型,根据所述PCID及无线帧索引确定在所述帧类型的无线帧中传输所述第一信息的子帧为子帧#0或子帧#5;
或者,所述第一信息在所述调度周期内重复传输8次;相应的,所述依据PCID确定传输第一信息的子帧集合,包括:
根据PCID及无线帧索引确定在无线帧中传输所述第一信息的子帧为子帧#0或子帧#5。
本发明实施例还提供了一种MTC系统中的信息传输装置,所述装置包括:确定模块及处理模块;其中,
所述确定模块,设置为依据PCID确定传输第一信息的子帧集合及窄带;
所述处理模块,设置为在所述子帧集合及窄带上发送或接收所述第一信息。
上述方案中,所述确定模块,还设置为所述依据PCID确定传输第一信息的子帧集合及窄带之前,获取传输所述第一信息的候选子帧集合及候选窄带集合;其中,所述候选子帧集合包括所述子帧集合,所述候选窄带集合包括所述窄带。
上述方案中,所述确定模块,是设置为通过如下方式实现获取传输所述第一信息的候选窄带集合:获取预先设置的系统带宽范围内的所有窄带;或者获取预先设置的系统带宽范围内除用于PBCH传输的窄带以外的其它窄带;或者获取预先设置的系统带宽范围内的所有窄带中的W个窄带;
其中,W为小于等于NNB的正整数;NNB为系统带宽范围内的窄带数。
上述方案中,所述W为偶数,所述W个窄带包括靠近上边带的W/2个窄带和靠近下边带的W/2个窄带。
上述方案中,所述确定模块,还设置为获取传输所述第一信息的候选窄带集合之前,确定传输所述第一信息的子帧不存在PBCH传输,设置传输所述第一信息的候选窄带集合包括系统带宽范围内的所有窄带;或者,确定传输所述第一信息的子帧存在PBCH传输,设置传输所述第一信息的候选窄带集合包括系统带宽范围内的除用于PBCH传输的窄带以外的其它窄带。
上述方案中,所述MTC系统为FDD系统,所述确定模块,是设置为通过如下方式实现获取传输所述第一信息的候选子帧集合:获取无线帧中的子 帧#0、子帧#4、子帧#5和子帧#9,确定所述子帧#0、子帧#4、子帧#5和子帧#9中至少一个子帧为候选子帧,确定所有无线帧中的候选子帧组成的子帧集合为传输所述第一信息的候选子帧集合;
或者,所述MTC系统为TDD系统,所述确定模块,是设置为通过如下方式实现获取传输所述第一信息的候选子帧集合:获取无线帧中的子帧#0和子帧#5,确定所述子帧#0和子帧#5中至少一个子帧为候选子帧,确定所有无线帧中的候选子帧组成的子帧集合为传输所述第一信息的候选子帧集合。
上述方案中,所述确定模块,还设置为依据TBS大小、系统带宽、小区支持的功能、候选窄带集合包括的窄带数及传输PBCH的子帧中的至少一个,确定所述候选子帧。
上述方案中,所述确定模块,是设置为通过如下方式实现依据PCID确定传输第一信息的子帧集合及窄带:将传输所述第一信息的候选子帧集合划分为N个子帧子集,依据第一规则确定所述PCID的归属组,获取所述归属组的组编号n,并确定编号与所述组编号n相同的子帧子集为传输所述第一信息的子帧集合;N为正整数;n为整数;
获取所述候选窄带集合包含的窄带数目M,依据第二规则确定所述PCID的归属组,获取所述归属组的组编号m,并确定编号与所述组编号m相同的窄带为传输所述第一信息的窄带;M为正整数;m为整数。
上述方案中,每个子帧子集均包括A个无线帧中的B个子帧;其中,A为正整数;对于FDD系统,B为大于1且小于4的正整数,或B等于1,或B等于4,对于TDD系统,所述B为1或2。
上述方案中,所述确定模块,是设置为通过如下方式实现依据第一规则确定所述PCID的归属组:依据n=mod(PCID,N)确定所述PCID的归属组;
以及,依据
Figure PCTCN2016084546-appb-000004
确定所述PCID的归属组;
其中,n和m为所述PCID的归属组的组编号;N为所述候选子帧集合包括的子帧子集的数目;M为所述候选窄带集合包含的窄带数目。
上述方案中,所述确定模块,是设置为通过如下方式实现依据第一规则确定所述PCID的归属组:依据
Figure PCTCN2016084546-appb-000005
确定所述PCID的归属 组;
以及,依据m=mod(PCID,M)确定所述PCID的归属组;
其中,n和m为所述PCID的归属组的组编号;N为所述候选子帧集合包括的子帧子集的数目;M为所述候选窄带集合包含的窄带数目。
上述方案中,在使能所述第一信息窄带跳频时,所述确定模块,是设置为通过如下方式实现依据PCID确定传输第一信息的窄带:依据所述PCID、传输所述第一信息的子帧索引或无线帧索引,确定传输第一信息的窄带。
上述方案中,在第一情况下,在相同子帧集合内,传输两个不同小区的第一信息的两个窄带的间隔固定;在第二情况下,在相同子帧集合内,传输两个不同小区的第一信息的两个窄带的间隔不固定;所述第一情况不同于所述第二情况。
上述方案中,在第一情况下,所述确定模块,是设置为通过如下方式实现依据所述PCID、传输所述第一信息的子帧索引和/或无线帧索引,确定传输第一信息的窄带:依据
Figure PCTCN2016084546-appb-000006
或m(Idx)=mod(PCID+Idx,M)确定传输第一信息的窄带;
其中,所述Idx表示传输第一信息的子帧或无线帧索引;所述m(Idx)表示在索引为Idx的子帧或无线帧上传输第一信息的窄带的索引;所述N为传输所述第一信息的候选子帧集合包括的子帧子集数;所述M为传输所述第一信息的候选窄带集合包含的窄带数目。
上述方案中,在第二情况下,所述确定模块,是设置为通过如下方式实现依据所述PCID、传输所述第一信息的子帧索引和/或无线帧索引,确定传输第一信息的窄带:获取对应所述PCID的随机排序序列S,并依据m(Idx)=S{mod(Idx,M)}确定传输第一信息的窄带;所述随机排序序列S包括0至(M-1)的M个整数;
其中,m(Idx)表示在索引为Idx的子帧或无线帧上传输第一信息的窄带的索引;所述M为传输所述第一信息的候选窄带集合包含的窄带数目。
上述方案中,所述装置还包括指示模块,设置为通过所述第一信息使用独立的配置信令指示第二信息在对应系统信息SI窗口内的实际传输子帧。
上述方案中,所述第一信息为SIB1,所述第二信息为除所述SIB1以外的其它系统信息块SIBx;其中,x为不等于1的正整数。
上述方案中,所述指示模块,还设置为通过所述第一信息使用独立的配置信令指示第二信息在对应SI窗口内的实际传输子帧之前,将SI窗口内传输所述第二信息的候选子帧集合按照第一方式或第二方式划分为X个子帧子集,确定第二信息在对应SI窗口内的实际传输子帧为所述X个子帧子集中的至少一个;所述第一方式不同于所述第二方式;X为正整数。
上述方案中,所述第一方式为非连续子帧分配方式;所述指示模块,是设置为通过如下方式实现将SI窗口内传输所述第二信息的候选子帧集合按照第一方式划分为X个子帧子集:将所述候选子帧集合中每X个连续子帧划分为一组并为每一组的子帧进行编号,编号为x的子帧子集由每一个子帧组中编号为x的子帧构成;其中,X为正整数;x为小于或等于X-1的整数。
上述方案中,所述第二方式为连续子帧分配方式;所述指示模块,是设置为通过如下方式实现将SI窗口内传输所述第二信息的候选子帧集合按照第二方式划分为X个子帧子集:将所述候选子帧集合中每ceiling(P/X)个连续子帧划分为一组,编号为x的子帧子集为划分后的编号为x的子帧组;其中,所述P表示所述候选子帧集合包括的子帧数;X为正整数;x为小于或等于X-1的整数。
上述方案中,所述指示模块,是设置为通过如下方式实现确定第二信息在对应SI窗口内的实际传输子帧为所述X个子帧子集中的至少一个:依据所述第二信息的当前覆盖增强等级、覆盖目标、TBS大小中的至少一个,确定第二信息在对应SI窗口内的实际传输子帧为所述X个子帧子集中的至少一个。
上述技术方案中,当所述MTC系统为FDD系统、所述候选子帧集合包括所有无线帧中的子帧#4和子帧#5,且所述第一信息的调度周期为8个无线帧时,
所述第一信息在所述调度周期内重复传输4次;相应的,所述确定模块,是设置为通过如下方式实现依据PCID确定传输第一信息的子帧集合:
依据PCID确定传输所述第一信息的无线帧的帧类型,根据所述PCID及无线帧索引确定在所述帧类型的无线帧中传输所述第一信息的子帧为子帧#4或子帧#5;
或者,所述第一信息在所述调度周期内重复传输8次;相应的,所述确定模块,是设置为通过如下方式实现依据PCID确定传输第一信息的子帧集合:
根据PCID及无线帧索引确定在无线帧中传输所述第一信息的子帧为子帧#4或子帧#5。
上述技术方案中,当所述MTC系统为TDD系统,所述候选子帧集合包括所有无线帧中的子帧#0和子帧#5,且所述第一信息的调度周期为8个无线帧时,
所述第一信息在所述调度周期内重复传输4次;相应的,所述确定模块,是设置为通过如下方式实现依据PCID确定传输第一信息的子帧集合:
依据PCID确定传输所述第一信息的无线帧的帧类型,根据所述PCID及无线帧索引确定在所述帧类型的无线帧中传输所述第一信息的子帧为子帧#0或子帧#5;
或者,所述第一信息在所述调度周期内重复传输8次;相应的,所述确定模块,是设置为通过如下方式实现依据PCID确定传输第一信息的子帧集合:
根据PCID及无线帧索引确定在无线帧中传输所述第一信息的子帧为子帧#0或子帧#5。
本发明实施例所提供的MTC系统中的信息传输方法及装置;依据PCID确定传输第一信息的子帧集合及窄带;在所述的子帧集合及窄带上发送/接收所述第一信息。如此,当所述第一信息为系统信息时,能够有效的避免或减少相邻小区间系统信息传输造成的干扰,从而提高用户体验。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例MTC系统中的信息传输方法流程示意图;
图2a、图2b为本发明实施例在传输窗内传输第二信息的子帧集合示意图;
图3为本发明实施例确定的传输第一信息的子帧集合及窄带的示意图一;
图4为本发明实施例确定的传输第一信息的子帧集合及窄带的示意图二;
图5为本发明实施例确定的传输第一信息的子帧集合及窄带的示意图三;
图6为本发明实施例相邻小区使用统一跳频图样示意图;
图7为本发明实施例相邻小区使用不同跳频图样示意图;
图8为本发明实施例MTC系统中的信息传输装置的组成结构示意图。
本发明的实施方式
在本发明实施例中,网络侧依据PCID确定传输第一信息对应的子帧集合及窄带,在所述对应的子帧集合及窄带上发送所述第一信息;终端侧依据PCID确定传输第一信息对应的子帧集合及窄带,在所述对应的子帧集合及窄带上接收所述第一信息。
实施例一
图1所示为本发明实施例MTC系统中的信息传输方法流程示意图,所述方法既可应用于网络侧也可以应用于终端侧,如图1所示,本发明实施例信息传输方法包括:
步骤101:依据PCID确定传输第一信息的子帧集合及窄带;
本步骤之前,所述方法还包括:获取传输所述第一信息的候选子帧集合及候选窄带集合;其中,所述候选子帧集合包括所述子帧集合,所述候选窄 带集合包括所述窄带;
这里,所述第一信息可以为SIB1信息;
所述获取传输所述第一信息的候选子帧集合及候选窄带集合包括:
获取预先设置的传输所述第一信息的候选子帧集合及候选窄带集合;对于终端侧来说,所述获取传输所述第一信息的候选子帧集合及候选窄带集合,除上述方式外还可以通过MIB信令获取传输所述第一信息的候选子帧集合及候选窄带集合;
所述传输所述第一信息的候选窄带集合包括:系统带宽范围内定义的所有窄带;或者系统带宽范围内除用于物理广播信道(PBCH,Physical Broadcast Channel)传输的窄带以外的其它窄带;或者系统带宽范围内定义的所有窄带中的W个窄带;所述系统为MTC系统;
其中,W为小于等于NNB的正整数;NNB为系统带宽范围内定义的窄带数;可选的,所述W为偶数,此时,所述W个窄带可以包括靠近上边带的W/2个窄带和靠近下边带的W/2个窄带;例如,对于3MHz或5MHz系统带宽,上述W可以预设为2,而对于超过5MHz的系统带宽,上述W可以取大于或等于4的值;
这里,不同系统带宽可定义的窄带数目是不同的,因此,不同系统带宽包括的候选窄带集合也是不同的;如表一所示为不同系统带宽对应可定义的窄带数目;每一个窄带包括6个资源块(RB,Resource Block),NRB表示系统带宽包括的RB数;
系统带宽[MHz] 1.4 3 5 10 15 20
传输带宽配置NRB 6 15 25 50 75 100
最大窄带数NNB 1 2 4 8 12 16
表一
在系统带宽大于或等于5MHz的情况下,所述传输SIB1的候选窄带集合与PBCH资源区域(即位于系统带宽中心的72个子载波)之间始终没有重叠;对于MTC应用,较小系统带宽(例如1.4MHz和3MHz)的场景优先级可能不高;如果不考虑上述小系统带宽场景,则完全可以限制传输SIB1候选窄带 集合与PBCH资源区域始终没有重叠;此时,即使SIB1与PBCH在相同子帧传输,也不会发生冲突,从而PBCH重复不会影响SIB1传输;
可选的,在设置传输所述第一信息的候选窄带集合时,若传输所述第一信息的子帧没有PBCH传输,可设置传输所述第一信息的候选窄带集合包括系统带宽范围内定义的所有窄带;若传输所述第一信息的子帧存在PBCH传输,可设置传输所述第一信息的候选窄带集合包括系统带宽范围内定义的除用于PBCH传输的窄带以外的所有其它窄带;也就是说,依赖于该子帧是否存在PBCH传输,对于不同子帧,所述第一信息对应的候选窄带集合可以是不同的;
在设置传输所述第一信息的候选子帧集合时,可依据传输块大小(TBS,Transport Block Size)、系统带宽、小区支持的功能、候选窄带集合包括的窄带数、传输PBCH的子帧中的至少一个参数确定传输所述第一信息的候选子帧集合;其中,小区支持功能包括MTC覆盖增强功能;
当所述第一信息为SIB1时,由于终端在接收到SIB1消息之前,还无法获取当前小区的组播广播单频网络(MBSFN,Multicast and Broadcast Single Frequency Network)子帧配置信息和关于时分双工(TDD,Time Division Duplex)系统的特殊子帧配置信息,因此,SIB1消息只能限制在始终不会被配置为MBSFN子帧和TDD特殊子帧的下行子帧上传输;对于频分双工(FDD,Frequency Division Duplex)系统,始终不会被配置为MBSFN子帧的下行子帧集合包括所有无线帧中的子帧#0、子帧#4、子帧#5和子帧#9,相应的,所述候选子帧集合即为所述所有无线帧中子帧#0、子帧#4、子帧#5和子帧#9中的至少一个,即所述子帧#0、子帧#4、子帧#5和子帧#9中至少一个子帧为候选子帧,所有无线帧中的候选子帧组成的子帧集合为传输所述第一信息的候选子帧集合;对于TDD系统,始终不会配置为MBSFN子帧和TDD特殊子帧的下行子帧集合包括所有无线帧中子帧#0和子帧#5,相应的,所述候选子帧集合即为所述所有无线帧中子帧#0和子帧#5中的至少一个,即所述子帧#0和子帧#5中至少一个子帧为候选子帧,所有无线帧中的候选子帧组成的子帧集合为传输所述第一信息的候选子帧集合;
通常较大TBS所对应的传输SIB1的候选子帧集合包含的子帧更多,因 为在相同时频资源分配的情况下,为达到与较小TBS相同的覆盖等级或覆盖范围,较大TBS通常需要更多次的重复;以FDD系统为例,假设SIB1消息支持两个TBS集合,每一个TBS集合包括至少一个确定的TBS取值,且第二TBS集合中的最大TBS取值远超过第一TBS集合包括的最大TBS取值;此时,与第一TBS集合对应的传输SIB1的候选子帧集合可以是所有无线帧中的子帧#4和子帧#5,而与第二TBS集合对应的传输SIB1的候选子帧集合可以是所有无线帧中的子帧#0、子帧#4、子帧#5和子帧#9。而如果当前小区支持MTC覆盖增强功能,为确保覆盖增强终端能够正常并且及时地接收到SIB1消息,传输SIB1的候选子帧集合包含的子帧更多,因为为实现覆盖的增强或更大的覆盖范围,更多次的SIB1消息的重复是必要的;
另外,对于小的系统带宽(例如3MHz),以FDD系统为例,依赖于系统配置,当前传输PBCH的子帧可以是子帧#0或者子帧#0和子帧#9,考虑到子帧#0或者子帧#0和子帧#9的所有窄带可能与承载MIB信息PBCH资源(系统带宽中心的72个子载波)存在重叠,并且与SIB1消息相比较,MIB传输的优先级更高,所以在这种情况下,上述子帧#0或者子帧#0和子帧#9可以不再用于传输SIB1消息,最终传输SIB1消息的候选子帧集合只能限制在所有无线帧的子帧#4、子帧#5和子帧#9范围内,或者,所有无线帧的子帧#4和子帧#5范围内。以TDD系统为例,依赖于系统配置,当前传输PBCH的子帧可以是子帧#0或者子帧#0和子帧#5,如果只是子帧#0的所有窄带与承载MIB信息的PBCH资源存在重叠,在这种情况下,上述子帧#0可以不再用于传输SIB1消息,最终传输SIB1消息的候选子帧集合只能限制在所有无线帧的子帧#5范围内;然而,如果是子帧#0和子帧#5的所有窄带与承载MIB信息的PBCH资源存在重叠,在这种情况下,为确保SIB1消息的正常传输,可以仍然使用子帧#0和子帧#5传输SIB1消息,最终传输SIB1消息候选子帧集合还是限制在所有无线帧的子帧#0和子帧#5范围内,但在上述子帧范围内传输SIB1的频域资源只能是窄带内的部分资源,即除去窄带内已被分配用于PBCH传输资源以外的剩余资源;
对于较大系统带宽(例如20MHz),如果传输SIB1的候选窄带集合包括在系统带宽范围内定义的大部分窄带(例如超过10个),此时,考虑到足 够多的用于传输SIB1的窄带,通过使相邻小区使用不同的窄带即可避免在相邻小区SIB1消息传输之间的干扰,即使传输SIB1的候选子帧集合只包括所有无线帧中的唯一子帧;如果传输SIB1的候选窄带集合只包括在系统带宽范围内定义的少部分窄带(例如低于4个),此时,考虑到较少的用于传输SIB1的窄带,仅通过使相邻小区使用不同的窄带无法完全避免在相邻小区SIB1消息传输之间的干扰,为进一步增加相邻小区干扰协调的灵活性或自由度,传输SIB1的候选子帧集合包括所有无线帧中的至少两个子帧是更可取的;
在系统带宽小于5MHz的情况下,对于FDD系统,所述传输SIB1的候选子帧集合与传输PBCH的子帧集合(即所有无线帧中的子帧#0或者子帧#0和子帧#9)始终没有重叠。对于较小系统带宽(例如1.4MHz和3MHz)场景,由于可定义的窄带数目较少,所以不管如何划分窄带,任一窄带始终会与PBCH资源区域存在重叠;所以为避免PBCH影响SIB1消息传输,通过窄带(频域)上的资源避让不再适用,通过子帧集合(时域)上避让应该是可选的。
可选的,所述依据PCID确定传输第一信息的子帧集合及窄带包括:
将传输所述第一信息的候选子帧集合划分为N个子帧子集,依据第一规则确定所述PCID的归属组,获取所述归属组的组编号n,并确定编号与所述组编号n相同的子帧子集为传输第一信息的子帧集合;N为正整数;n为整数;
获取传输所述第一信息的候选窄带集合包含的窄带数目M,依据第二规则确定所述PCID的归属组,获取所述归属组的组编号m,并确定编号与所述组编号m相同的窄带为传输第一信息的窄带;M为正整数;m为整数;
这里,将传输所述第一信息的候选子帧集合划分为N个子帧子集,以使每个子帧子集包括A个无线帧中的B个子帧;A、B均为正整数;可选的,在FDD系统中,1≤B≤4,且B∈N+,在TDD系统中,所述B为1或2;例如:在FDD系统中,若传输所述第一信息的候选子帧集合包括所有无线帧中的子帧#5,则N可以等于2,此时,编号为0的子帧子集包括所有偶数无线帧中子帧#5,编号为1的子帧子集包括所有奇数无线帧中的子帧#5;
所述依据第一规则确定所述PCID的归属组包括:依据n=mod(PCID,N)确定所述PCID的归属组;
相应的,所述依据第二规则确定所述PCID的归属组包括:依据
Figure PCTCN2016084546-appb-000007
确定所述PCID的归属组;
或者,所述依据第一规则确定所述PCID的归属组包括:依据
Figure PCTCN2016084546-appb-000008
确定所述PCID的归属组;
相应的,所述依据第二规则确定所述PCID的归属组包括:依据m=mod(PCID,M)确定所述PCID的归属组;
其中,所述n及m分别为依据第一规则及第二规则确定的所述PCID的归属组的组编号;可选的,所述n及m的取值从0开始计数。
可选的,在使能所述第一信息窄带跳频时,所述依据PCID确定传输第一信息的窄带包括:
依据所述PCID、传输所述第一信息的子帧索引和/或无线帧索引,确定传输第一信息的窄带;且在第一情况下,在相同子帧集合内,传输两个不同小区的第一信息的两个窄带的间隔固定;在第二情况下,在相同子帧集合内,传输两个不同小区的第一信息的两个窄带的间隔不固定;
其中,所述第一情况指存在小区规划的情况,即当前小区的PCID需要根据其它相邻小区的PCID确定的情况;所述第二情况为不存在小区规划的情况,即当前小区的PCID与相邻小区无关。
所述子帧索引或无线帧索引可以是物理的子帧或无线帧索引,或者是在一个跳频周期范围内的逻辑上的子帧或无线帧索引;
所述传输两个不同小区的第一信息的两个窄带的间隔固定,即传输所述第一信息的两个不同小区使用统一的跳频图样;相应的,传输两个不同小区的第一信息的两个窄带的间隔不固定,即传输所述第一信息的两个不同小区使用不同的跳频图样。
可选的,在第一情况下,所述依据所述PCID、传输所述第一信息的子帧索引和/或无线帧索引,确定传输第一信息的窄带,包括:
依据
Figure PCTCN2016084546-appb-000009
或m(Idx)=mod(PCID+Idx,M)确定传输第一信息的窄带;
其中,所述Idx表示传输第一信息的子帧或无线帧索引;所述m(Idx)表 示在索引为Idx的子帧或无线帧上传输第一信息的窄带的索引;所述N为传输所述第一信息对应的候选子帧集合包括的子帧子集数;所述M为传输所述第一信息对应的候选窄带集合包含的窄带数目。
在第二情况下,所述依据所述PCID、传输所述第一信息的子帧索引和/或无线帧索引,确定传输第一信息的窄带,包括:
获取对应所述PCID的随机排序序列S,并依据m(Idx)=S{mod(Idx,M)}确定传输第一信息的窄带;所述随机排序序列S包括0至(M-1)的M个整数;
其中,m(Idx)表示在索引为Idx的子帧或无线帧上传输第一信息的窄带的索引;所述M为传输所述第一信息的候选窄带集合包含的窄带数目;S{F}表示S序列中的第F个元素;F为大于0且小于M-1的整数,或F等于0,或F等于M-1;
所述获取对应所述PCID的随机排序序列S包括:
依据所述PCID获取伪随机序列c,对所述伪随机序列c进行顺序截取,每连续D个比特截取为一个比特组,若当前截取的比特组与之前截取的比特组中的一个相同,则丢弃当前比特组,直至获取M个长度为D比特的不同比特组为止,并对所述M个比特组进行编号为0至(M-1),然后将所述编号为0至(M-1)的比特组依据数值大小重新进行排序,重新排序后的比特组对应的编号序列即为对应所述PCID的随机排序序列S;
其中,所述依据所述PCID获取伪随机序列c可以依据所述PCID采用相关的伪随机序列产生方式获取对应的伪随机序列,可选地:
c(j)=(x1(j+NC)+x2(j+NC))mod2;
x1(j+31)=(x1(j+3)+x1(j))mod2;
x2(j+31)=(x2(j+3)+x2(j+2)+x2(j+1)+x2(j))mod2;c(j)为伪随机序列c中第j个元素;j为大于等于0的整数;
第1个伪随机序列及第2个伪随机序列分别依据如下等式进行初始化:
x1(0)=1,x1(j)=0,j=1,2,...,30;
Figure PCTCN2016084546-appb-000010
NC为预设常数,可选的,NC为1600;
将所述编号为0至(M-1)的比特组依据数值大小重新进行排序包括:
将所述编号为0至(M-1)的比特组依据数值从大到小的顺序重新进行排序,或者将所述编号为0至(M-1)的比特组依据数值从小到大的顺序重新进行排序。
可选的,所述方法还包括:
通过所述第一信息使用独立的配置信令指示第二信息在对应系统信息(SI,System Information)窗口(window),即传输窗内的实际传输子帧;也就是说每一个第二信息与相应的配置信令是一一对应的;在一实施例中,所述第一信息为SIB1信息时,第二信息可以为除所述SIB1信息以外的SIB信息,即SIBx,x为不等于1的正整数;
这里,所述第二信息的重复次数依赖于配置的相应SI窗口大小以及在所述SI窗口内的实际传输子帧数目,而通过使用独立的配置信令能够调整第二信息在SI窗口内的实际传输子帧和/或调度周期大小,以实现对所述第二信息所需重复次数的配置。
可选的,所述通过所述第一信息使用独立的配置信令指示第二信息在对应SI窗口内的实际传输子帧之前,所述方法还包括:
将SI窗口内传输所述第二信息的候选子帧集合按照第一方式或第二方式划分为X个子帧子集,确定第二信息在对应SI窗口内的实际传输子帧为所述X个子帧子集中的至少一个;所述第一方式不同于所述第二方式;X为正整数;
其中,当所述第一信息为SIB1信息,所述第二信息为所述SIBx时,所述传输所述第二信息的候选子帧集合包括:除所有MBSFN下行子帧以外的其它下行子帧;或者,除所有传输MBMS业务的MBSFN下行子帧以外的其它下行子帧;或者,除所有MBSFN下行子帧和所有传输SIB1下行子帧以外的其它下行子帧;或者,除所有传输MBMS业务的MBSFN下行子帧和所有传输SIB1下行子帧以外的其它下行子帧;其中,当所述传输所述第二信息的候选子帧集合包括除所有MBSFN下行子帧以外的其它下行子帧,或者除所有传输MBMS业务的MBSFN下行子帧以外的其它下行子帧时,若SIBx与SIB1的传输存在冲突,放弃SIBx传输;
所述第一方式可以为非连续子帧分配方式;相应的,将SI窗口内传输所述第二信息的候选子帧集合按照第一方式划分为X个子帧子集包括:
将所述候选子帧集合中每X个连续子帧划分为一组并为每一组的子帧进行编号,编号为x的子帧子集由每一个子帧组中编号为x的子帧构成,即任一子帧子集中相邻子帧的间隔是X-1;x为大于0且小于X-1的整数,或x等于0,或x等于X-1;需要说明的是,如果候选子帧集合中未分配到子帧组的剩余子帧数不足X个(即不够分为一组),则最后的子帧组包括的子帧数低于X个;
所述第二方式可以为连续子帧分配方式;相应的,将SI窗口内传输所述第二信息的候选子帧集合按照第二方式划分为X个子帧子集包括:
将所述候选子帧集合中每ceiling(P/X)个连续子帧划分为一组,编号为x的子帧子集为划分后的编号为x的子帧组;其中,所述P表示所述候选子帧集合包括的子帧数;所述ceiling表示向上取整数操作;所述x是大于0且小于X-1的整数,或x等于0,或x等于X-1;需要说明的是,如果候选子帧集合中未分配到子帧组的剩余子帧数不足ceiling(P/X)个(即不够分为一组),则最后的子帧组包括的子帧数可以低于ceiling(P/X)个;
所述X为预设常数,可以依据SI窗口大小进行设定或依据实际需要进行设定;对于终端侧来说,所述X的值还可通过第一信息指示;通常较大SI窗口对应较大的X取值;
所述第二信息在对应SI窗口内的实际传输子帧依赖于所述第二信息的当前覆盖增强等级或覆盖目标或TBS大小;例如,当要求第二信息达到最大覆盖时,可配置传输第二信息的子帧集合是所有的候选子帧(即X个子帧子集);当要求第二信息满足正常覆盖即可时,可配置传输第二信息的子帧集合仅是X个子帧子集中的一个;
例如:在本发明实施例中,若所述候选子帧集合中包括40个子帧;采用非连续子帧分配方式;X=5,即将候选子帧集合划分为5个组,将所述候选子帧集合中每5个连续子帧划分为一组,然后,将上述所有子帧组中的子帧0作为子帧子集0,类似地,将上述所有子帧组中的子帧1作为子帧子集1,将上述所有子帧组中的子帧2作为子帧子集2,将上述所有子帧组中的子帧3 作为子帧子集3,将上述所有子帧组中的子帧4作为子帧子集4,其中,任一子帧子集中相邻子帧的间隔是4(X-1等于4);如图2a所示;
依赖于所述第二信息的当前覆盖增强等级,配置实际传输第二信息的子帧集合是上述5个子帧子集中的子帧子集0,如图2a所示,或者,配置实际传输第二信息的子帧集合是上述5个子帧子集中的子帧子集0和子帧子集1,如图2b所示。
其中,所述独立的配置信令指示所述第二信息在对应SI窗口内的实际传输子帧所需的比特数为Y;Y=2X-1;或Y=ceiling(log2X);X为SI窗口内传输所述第二信息的候选子帧集合划分的子帧子集数;
其中,所述Y个比特与所述X个子帧子集中的K个子帧子集一一对应,所述K是大于1且小于X的整数,或K等于1,或K等于X;当所述Y等于ceiling(log2X)时,所述X个子帧子集中的K个子帧子集是所述X个子帧子集中的索引为0至K-1的子集;也就是说,为实现信令开销的节省,需要限制所述X个子帧子集始终是开始于子帧子集0并且所述X个子帧子集是连续的子帧子集。
由于在本实施例中X=5,为节省信令开销,根据Y=ceiling(log2X)=ceiling(log25)=3确定第二信息在对应SI窗口内的实际传输子帧所需的比特数为3;其中,上述3个比特的不同取值所对应的实际传输子帧配置可以如下表所示:
000 第0子帧子集
001 第0和第1子帧子集
010 第0至第2子帧子集
011 第0至第3子帧子集
100 第0至第4子帧子集
101 -
110 -
111 -
表二
由于在本实施例中配置实际传输第二信息的子帧集合是5个子帧子集中的子帧子集0;或者,为子帧子集0和子帧子集1;因此,3个比特取值为000或001。
可选的,当所述MTC系统为FDD系统、所述候选子帧集合包括所有无线帧中的子帧#4和子帧#5,且所述第一信息的调度周期为8个无线帧时,所述第一信息在所述调度周期内重复传输4次;相应的,所述依据PCID确定传输第一信息的子帧集合,包括:
依据PCID确定传输所述第一信息的无线帧的帧类型,根据所述PCID及无线帧索引确定在所述帧类型的无线帧中传输所述第一信息的子帧为子帧#4或子帧#5;其中,所述帧类型包括:奇数无线帧及偶数无线帧;
这里,当确定了确定传输所述第一信息的无线帧为奇数无线帧或偶数无线帧后,可进一步在奇数无线帧或偶数无线帧基础上依据PCID及无线帧索引确定在所述奇数或偶数无线帧中传输所述第一信息的子帧为子帧#4或是子帧#5;
例如,如果PCID为偶数,则传输第一信息的无线帧为偶数无线帧,如果PCID为奇数,则传输第一信息的无线帧为奇数无线帧;然后,根据PCID生成长度为L1伪随机序列,依次截取8(调度周期大小)个长度为L2的序列,其中,L1是大于或等于8的整数,L2是大于或等于1的整数,且L1大于或等于8×L2;将所述8个长度为L2的序列分别与所述调度周期内的8个无线帧(具有不同无线帧索引)一一对应;如果当前奇数或偶数无线帧所对应的长度为L2的序列转化为数值后为偶数,则在当前奇数或偶数无线帧传输第一信息的子帧为子帧#4,如果当前奇数或偶数无线帧所对应的长度为L2的序列转化为数值后为奇数,则在当前奇数或偶数无线帧传输第一信息的子帧为子帧#5。
或者,所述第一信息在所述调度周期内重复传输8次;相应的,所述依据PCID确定传输第一信息的子帧集合,包括:
根据PCID及无线帧索引确定在无线帧中传输所述第一信息的子帧为子 帧#4或子帧#5;
这里,传输所述第一信息的无线帧是所有无线帧,所以所述确定传输第一信息的子帧集合的过程中无需考虑或确定传输所述第一信息的无线帧的帧类型,即无需考虑传输所述第一信息的无线帧是奇数无线帧还是偶数无线帧,可直接根据PCID及无线帧索引确定在无线帧中传输所述第一信息的子帧为子帧#4或是子帧#5;
例如,直接根据PCID生成长度为L1的伪随机序列,依次截取8(调度周期大小)个长度为L2的序列,其中,L1是大于或等于8的整数,L2是大于或等于1的整数,且L1大于或等于8×L2;将所述8个长度为L2的序列分别与所述调度周期内的8个无线帧(具有不同无线帧索引)一一对应;如果当前无线帧所对应的长度为L2的序列转化为数值后为偶数,则在当前无线帧传输所述第一信息的子帧为子帧#4,如果当前无线帧所对应的长度为L2的序列转化为数值后为奇数,则在当前无线帧传输所述第一信息的子帧为子帧#5。
可选的,当所述MTC系统为TDD系统,所述候选子帧集合包括所有无线帧中的子帧#0和子帧#5,且所述第一信息的调度周期为8个无线帧时,
所述第一信息在所述调度周期内重复传输4次;相应的,所述依据PCID确定传输第一信息的子帧集合,包括:
依据PCID确定传输所述第一信息的无线帧的帧类型,根据所述PCID及无线帧索引确定在所述帧类型的无线帧中传输所述第一信息的子帧为子帧#0或子帧#5;其中,所述帧类型包括:奇数无线帧及偶数无线帧;
这里,当确定了确定传输所述第一信息的无线帧为奇数无线帧或偶数无线帧后,可进一步在奇数无线帧或偶数无线帧基础上依据PCID及无线帧索引确定在所述奇数或偶数无线帧中传输所述第一信息的子帧为子帧#0或子帧#5;
例如,如果PCID为偶数,则传输第一信息的无线帧为偶数无线帧,如果PCID为奇数,则传输第一信息的无线帧为奇数无线帧;然后,根据PCID生成长度为L1伪随机序列,依次截取8(调度周期大小)个长度为L2的序列,其中,L1是大于或等于8的整数,L2是大于或等于1的整数,且L1大 于或等于8×L2;将所述8个长度为L2的序列分别与所述调度周期内的8个无线帧(具有不同无线帧索引)一一对应;如果当前奇数或偶数无线帧所对应的长度为L2的序列转化为数值后为偶数,则在当前奇数或偶数无线帧传输第一信息的子帧为子帧#0,如果当前奇数或偶数无线帧所对应的长度为L2的序列转化为数值后为奇数,则在当前奇数或偶数无线帧传输第一信息的子帧为子帧#5。
或者,所述第一信息在所述调度周期内重复传输8次;相应的,所述依据PCID确定传输第一信息的子帧集合,包括:
根据PCID及无线帧索引确定在无线帧中传输所述第一信息的子帧为子帧#0或子帧#5;
这里,传输所述第一信息的无线帧是所有无线帧,所以所述确定传输第一信息的子帧集合的过程中无需考虑,或确定传输所述第一信息的无线帧的帧类型,即无需考虑传输所述第一信息的无线帧是奇数无线帧还是偶数无线帧,可以直接根据PCID及无线帧索引确定在无线帧中传输所述第一信息的子帧为子帧#0或是子帧#5;
例如,直接根据PCID生成长度为L1的伪随机序列,依次截取8(调度周期大小)个长度为L2的序列,其中,L1是大于或等于8的整数,L2是大于或等于1的整数,且L1大于或等于8×L2;将所述8个长度为L2的序列分别与所述调度周期内的8个无线帧(具有不同无线帧索引)一一对应;如果当前无线帧所对应的长度为L2的序列转化为数值后为偶数,则在当前无线帧传输所述第一信息的子帧为子帧#0,如果当前无线帧所对应的长度为L2的序列转化为数值后为奇数,则在当前无线帧传输所述第一信息的子帧为子帧#5。
步骤102:在所述子帧集合及窄带上发送或接收所述第一信息;
这里,由于所述信息传输方法既可以应用于网络侧也可以应用于终端侧,当所述方法应用于网络侧时,对应的步骤102即为网络侧在所述对应的子帧集合及窄带上发送所述第一信息;而对应终端侧时,则为终端在所述对应的子帧集合及窄带上接收所述第一信息;
如此,当采用预定义的方式确定用于SIB1传输的子帧和窄带时,采用上 述信息传输方法能够实现以下三种效果:第一、相邻小区可以使用不同的窄带传输SIB1消息,即相邻小区是使用不同频域资源传输SIB1消息(频分);第二、相邻小区可以使用不同子帧集合传输SIB1消息,即相邻小区是使用不同的时域资源传输SIB1消息(时分);第三、相邻小区可以使用不同窄带和子帧集合传输SIB1消息,即相邻小区是使用不同的频域和时域资源传输SIB1消息(时频分);进而能够有效的避免或减少相邻小区间系统信息传输造成的干扰,提高用户体验。
实施例二
本发明实施例提供了一种信息传输方法,所述方法既可应用于网络侧也可以应用于终端侧,在本发明实施例中,MTC系统为FDD系统,系统带宽为3MHz,包括15个PRB资源,系统定义2个窄带;如图1所示,本发明实施例信息传输方法包括:
步骤101:依据PCID确定传输第一信息的子帧集合及窄带;
本步骤之前,所述方法还包括:获取预先设置的传输所述第一信息的候选子帧集合及候选窄带集合;其中,所述候选子帧集合包括所述子帧集合,所述候选窄带集合包括所述窄带;
在本发明实施例中,所述第一信息为SIB1信息;
设置所述传输所述第一信息的候选窄带集合包括系统带宽范围内定义的所有窄带,即包括两个窄带,分别为窄带0及窄带1;
本实施例中所述系统下始终不会被配置为MBSFN子帧的下行子帧集合包括所有无线帧中的子帧#0、子帧#4、子帧#5和子帧#9,然而,用于PBCH传输的子帧为子帧#0和子帧#9,因此,设置传输所述第一信息的候选子帧集合为所有无线帧中的子帧#4及子帧#5。
可选的,所述依据PCID确定传输第一信息的子帧集合及窄带包括:
将传输所述第一信息的候选子帧集合划分为N个子帧子集,依据第一规则确定所述PCID的归属组,获取所述归属组的组编号n,并确定编号与所述组编号n相同的子帧子集为传输第一信息的子帧集合;N为正整数;n为整数;
获取传输所述第一信息的候选窄带集合包含的窄带数目M,依据第二规 则确定所述PCID的归属组,获取所述归属组的组编号m,并确定编号与所述组编号m相同的窄带为传输第一信息的窄带;M为正整数;m为整数;
这里,将传输所述第一信息的候选子帧集合划分为N个子帧子集,以使每个子帧子集包括A个无线帧中的B个子帧;A、B均为正整数;在本发明实施例中,N为2,编号为0的子帧子集由所有无线帧中的子帧#4构成,编号为1的子帧子集是由无线帧中的子帧#5构成;
所述依据第一规则确定所述PCID的归属组包括:依据n=mod(PCID,N)确定所述PCID的归属组;即:n=mod(PCID,N)=mod(0,2)=0;
相应的,所述依据第二规则确定所述PCID的归属组包括:
依据
Figure PCTCN2016084546-appb-000011
确定所述PCID的归属组;
即:
Figure PCTCN2016084546-appb-000012
也就是说,对于PCID=0的小区,传输第一信息的子帧子集及窄带分别为编号为0的子帧子集及编号为0的窄带;
采用同上述相同的方法可得:对于PCID=1的小区,传输第一信息的子帧子集及窄带分别为编号为1的子帧子集及编号为0的窄带;
对于PCID=2的小区,传输第一信息的子帧子集及窄带分别为编号为0的子帧子集及编号为1的窄带;
对于PCID=3的小区,传输第一信息的子帧子集及窄带分别为编号为1的子帧子集及编号为1的窄带;如图3所示为本发明实施例确定的传输第一信息的子帧集合及窄带的示意图一;图中c0、c1、c2、c3分别为小区0(PCID=0)、小区1(PCID=1)、小区2(PCID=2)及小区3(PCID=3);如表三所示为采用上述确定的子帧集合及窄带达到的效果列表;
Figure PCTCN2016084546-appb-000013
Figure PCTCN2016084546-appb-000014
表三
步骤102:在所述子帧集合及窄带上发送或接收所述第一信息;
这里,由于所述信息传输方法既可以应用于网络侧也可以应用于终端侧,当所述方法应用于网络侧时,对应的即为网络侧在所述子帧集合及窄带上发送所述第一信息;而对应终端侧时,则为终端在所述子帧集合及窄带上接收所述第一信息。
实施例三
本发明实施例提供了一种信息传输方法,所述方法既可应用于网络侧也可以应用于终端侧,在本发明实施例中,MTC系统为FDD系统,系统带宽为5MHz,包括25个PRB资源,系统定义4个窄带;如图1所示,本发明实施例信息传输方法包括:
步骤101:依据PCID确定传输第一信息的子帧集合及窄带;
本步骤之前,所述方法还包括:获取预先设置的传输所述第一信息的候选子帧集合及候选窄带集合;其中,所述候选子帧集合包括所述子帧集合,所述候选窄带集合包括所述窄带;
在本发明实施例中,所述第一信息为SIB1信息;
由于PBCH始终是占用系统带宽中间的72个子载波,系统定义的4个窄带不管如何划分总是会存在一或两个窄带与PBCH频域资源重叠,所以为了避免影响PBCH的传输,实际传输SIB1的候选窄带至多为3个;在本发明实施例中,设置所述传输所述第一信息的候选窄带集合包括2个窄带,分别为靠近上边带的一个窄带和靠近下边带的一个窄带;所述2个窄带分别为窄带0及窄带1;
本实施例中所述系统下始终不会被配置为MBSFN子帧的下行子帧集合包括所有无线帧中的子帧#0、子帧#4、子帧#5和子帧#9;因此,设置传输所述第一信息的候选子帧集合为所有无线帧中的子帧#0、子帧#4、子帧#5和子帧#9。
可选的,所述依据PCID确定传输第一信息的子帧集合及窄带包括:
将传输所述第一信息的候选子帧集合划分为N个子帧子集,依据第一规则确定所述PCID的归属组,获取所述归属组的组编号n,并确定编号与所述组编号n相同的子帧子集为传输第一信息对应的子帧集合;N为正整数;n为整数;
获取传输所述第一信息的候选窄带集合包含的窄带数目M,依据第二规则确定所述PCID的归属组,获取所述归属组的组编号m,并确定编号与所述组编号m相同的窄带为传输第一信息的窄带;M为正整数;m为整数;
这里,将传输所述第一信息的候选子帧集合划分为N个子帧子集,以使每个子帧子集包括A个无线帧中的B个子帧;A、B均为正整数;在本发明实施例中,N为4,编号为0的子帧子集由所有无线帧中的子帧#0构成,编号为1的子帧子集是由无线帧中的子帧#4构成,编号为2的子帧子集是由无线帧中的子帧#5构成,编号为3的子帧子集是由无线帧中的子帧#9构成;
所述依据第一规则确定所述PCID的归属组包括:
依据
Figure PCTCN2016084546-appb-000015
确定所述PCID的归属组;
即:
Figure PCTCN2016084546-appb-000016
相应的,所述依据第二规则确定所述PCID的归属组包括:
依据m=mod(PCID,M)确定所述PCID的归属组;
即:m=mod(PCID,M)=mod(0,2)=0;
也就是说,对于PCID=0的小区,传输第一信息的子帧子集及窄带分别为编号为0的子帧子集及编号为0的窄带;
采用同上述相同的方法可得:对于PCID=1的小区,传输第一信息的子帧子集及窄带分别为编号为0的子帧子集及编号为1的窄带;
对于PCID=2的小区,传输第一信息的子帧子集及窄带分别为编号为1的子帧子集及编号为0的窄带;
对于PCID=3的小区,传输第一信息的子帧子集及窄带分别为编号为1的子帧子集及编号为1的窄带;
对于PCID=4的小区,传输第一信息的子帧子集及窄带分别为编号为2的子帧子集及编号为0的窄带;
对于PCID=5的小区,传输第一信息的子帧子集及窄带分别为编号为2的子帧子集及编号为1的窄带;
对于PCID=6的小区,传输第一信息的子帧子集及窄带分别为编号为3的子帧子集及编号为0的窄带;
对于PCID=7的小区,传输第一信息的子帧子集及窄带分别为编号为3的子帧子集及编号为1的窄带;如图4所示为本发明实施例确定的传输第一信息的子帧集合及窄带的示意图二。
步骤102:在所述子帧集合及窄带上发送或接收所述第一信息。
实施例四
本发明实施例提供了一种信息传输方法,所述方法既可应用于网络侧也可以应用于终端侧,在本发明实施例中,MTC系统为TDD系统,系统带宽为10MHz,包括50个PRB资源,系统定义8个窄带;如图1所示,本发明实施例信息传输方法包括:
步骤101:依据PCID确定传输第一信息的子帧集合及窄带;
本步骤之前,所述方法还包括:获取预先设置的传输所述第一信息的候选子帧集合及候选窄带集合;其中,所述候选子帧集合包括所述子帧集合,所述候选窄带集合包括所述窄带;
在本发明实施例中,所述第一信息为SIB1信息;
由于PBCH始终是占用系统带宽中间的72个子载波,系统定义的8个窄带不管如何划分总是会存在一或两个窄带与PBCH频域资源重叠,所以为了避免影响PBCH的传输,在本发明实施例中,设置所述传输所述第一信息的候选窄带集合包括6个窄带,分别为靠近上边带的3个窄带和靠近下边带的3个窄带;所述6个窄带的编号分别为0-5;
本实施例中所述系统下始终不会被配置为MBSFN子帧的下行子帧集合包括所有无线帧中的子帧#0和子帧#5;依据当前的TBS大小及所述候选窄带集合包括的窄带数(在候选窄带数较多情况下,候选子帧数可以适当减少), 设置传输所述第一信息的候选子帧集合为所有无线帧中的子帧#5。
可选的,所述依据PCID确定传输第一信息的子帧集合及窄带包括:
将传输所述第一信息的候选子帧集合划分为N个子帧子集,依据第一规则确定所述PCID的归属组,获取所述归属组的组编号n,并确定编号与所述组编号n相同的子帧子集为传输第一信息的子帧集合;N为正整数;n为小于N的整数;
获取传输所述第一信息的候选窄带集合包含的窄带数目M,依据第二规则确定所述PCID的归属组,获取所述归属组的组编号m,并确定编号与所述组编号m相同的窄带为传输第一信息的窄带;M为正整数;m为小于M的整数;
这里,将传输所述第一信息的候选子帧集合划分为N个子帧子集,以使每个子帧子集包括A个无线帧中的B个子帧;A、B均为正整数;在本发明实施例中,N为1,所述子帧子集的编号为0,由所有无线帧中的子帧#5构成;
所述依据第二规则确定所述PCID的归属组包括:
依据m=mod(PCID,M)确定所述PCID的归属组;
即:m=mod(PCID,M)=mod(0,6)=0;
也就是说,对于PCID=0的小区,传输第一信息的窄带为编号为0的窄带;
采用同上述相同的方法可得:对于PCID=1的小区,传输第一信息的窄带为编号为1的窄带;
对于PCID=2的小区,传输第一信息的窄带为编号为2的窄带;
对于PCID=3的小区,传输第一信息的窄带为编号为3的窄带;
对于PCID=4的小区,传输第一信息的窄带为编号为4的窄带;
对于PCID=5的小区,传输第一信息的窄带为编号为5的窄带;
也就是说,在本发明实施例中,单纯依靠频分方式,即相邻小区占用不同窄带以避免相邻小区第一信息传输之间的干扰是可行的,上述6个小区始终在相同的子帧子集或唯一的子帧子集,即所有无线帧中的子帧#5内传输第 一信息;如图5所示为本发明实施例确定的传输第一信息的子帧集合及窄带的示意图三。
步骤102:在所述子帧集合及窄带上发送或接收所述第一信息。
实施例五
本发明实施例提供了一种信息传输方法,所述方法既可应用于网络侧也可以应用于终端侧;如图1所示,本发明实施例信息传输方法包括:
步骤101:依据PCID确定传输第一信息的子帧集合及窄带;
本步骤之前,所述方法还包括:获取传输所述第一信息的候选子帧集合及候选窄带集合;其中,所述候选子帧集合包括所述子帧集合,所述候选窄带集合包括所述窄带;
在本发明实施例中所述第一信息为SIB1信息;
所述获取传输所述第一信息的候选子帧集合及候选窄带集合包括:
获取预先设置的传输所述第一信息的候选子帧集合及候选窄带集合;对于终端侧来说,所述获取传输所述第一信息的候选子帧集合及候选窄带集合,除上述方式外还可以通过MIB信令获取传输所述第一信息的候选子帧集合及候选窄带集合;
在本发明实施例中,设置传输所述第一信息的候选窄带集合包括4个窄带,所述4个窄带的编号分别为0-3;设置传输所述第一信息的候选子帧集合包括2个子帧子集,所述2个子帧子集的编号分别为0和1;在本实施例中,存在4个彼此相邻的小区,小区编号分别为0-3;
可选的,所述依据PCID确定传输第一信息的子帧集合包括:
将传输所述第一信息的候选子帧集合划分为N个子帧子集,依据第一规则确定所述PCID的归属组,获取所述归属组的组编号n,并确定编号与所述组编号n相同的子帧子集为传输第一信息的子帧集合;N为正整数;n为整数;
其中,所述依据第一规则确定所述PCID的归属组包括:依据
Figure PCTCN2016084546-appb-000017
确定所述PCID的归属组;
对于PCID=0,
Figure PCTCN2016084546-appb-000018
也就是说,确定小区0传输第一信息的子帧集合为编号为0的子帧子集;
采用同上述相同的方法,可确定小区1、小区2及小区3传输第一信息的子帧集合均为编号为0的子帧子集;
在本发明实施例中,使能所述第一信息窄带跳频,在相同的子帧集合范围内传输第一信息的小区使用统一的跳频图样,即在相同子帧集合内,传输两个不同小区的第一信息的两个窄带的间隔固定;每个跳频周期包括第一信息的连续4次(即等于传输第一信息的候选窄带数)传输或包括传输第一信息的连续4个子帧,所述4个子帧的索引分别为0-3,即为逻辑子帧索引;
在使能所述第一信息窄带跳频时,所述依据PCID确定传输第一信息的窄带包括:依据所述PCID、传输所述第一信息的子帧索引或无线帧索引,确定传输第一信息的窄带,包括:依据
Figure PCTCN2016084546-appb-000019
或m(Idx)=mod(PCID+Idx,M)确定传输第一信息的窄带;
其中,所述Idx表示传输第一信息的子帧或无线帧索引;所述m(Idx)表示在索引为Idx的子帧或无线帧上传输第一信息的窄带的索引;所述N为传输所述第一信息的候选子帧集合包括的子帧子集数;所述M为传输所述第一信息的候选窄带集合包含的窄带数目;
因此,对于小区0,m(0)=mod(PCID+Idx,M)=mod(0+0,4)=0;即确定小区0(PCID=0)在跳频周期内第1次传输第一信息(逻辑子帧索引等于0)的窄带为窄带0;
采用同上述相同的方法可得:小区0在跳频周期内第2次传输第一信息的窄带为窄带1;小区0在跳频周期内第3次传输第一信息的窄带为窄带2;小区0在跳频周期内第4次传输第一信息的窄带为窄带3;
此时,小区0传输第一信息的跳频图样可以表示为:窄带0、窄带1、窄带2和窄带3。
类似的,可得:小区1传输第一信息的跳频图样可以表示为:窄带1、窄带2、窄带3和窄带0;
小区2传输第一信息的跳频图样可以表示为:窄带2、窄带3、窄带0和窄带1;
小区3传输第一信息的跳频图样可以表示为:窄带3、窄带0、窄带1和窄带2;
最终,小区0-3在跳频周期范围内传输第一信息使用统一的跳频图样,如图6所示,如此,不依赖于传输第一信息的子帧或无线帧。完全地避免了在相邻小区第一信息传输之间的相互干扰。
步骤102:在所述子帧集合及窄带上发送或接收所述第一信息。
实施例六
本发明实施例提供了一种信息传输方法,所述方法既可应用于网络侧也可以应用于终端侧;如图1所示,本发明实施例信息传输方法包括:
步骤101:依据PCID确定传输第一信息的子帧集合及窄带;
本步骤之前,所述方法还包括:获取传输所述第一信息的候选子帧集合及候选窄带集合;其中,所述候选子帧集合包括所述子帧集合,所述候选窄带集合包括所述窄带;
在本发明实施例中所述第一信息为SIB1信息;
所述获取传输所述第一信息的候选子帧集合及候选窄带集合包括:
获取预先设置的传输所述第一信息的候选子帧集合及候选窄带集合;对于终端侧来说,所述获取传输所述第一信息的候选子帧集合及候选窄带集合,除上述方式外还可以通过MIB信令获取传输所述第一信息的候选子帧集合及候选窄带集合;
在本发明实施例中,设置传输所述第一信息的候选窄带集合包括4个窄带,所述4个窄带的编号分别为0-3;设置传输所述第一信息的候选子帧集合包括2个子帧子集,所述2个子帧子集的编号分别为0和1;在本实施例中,存在4个彼此相邻的小区,小区编号分别为0-3;
可选的,所述依据PCID确定传输第一信息的子帧集合包括:
将传输所述第一信息的候选子帧集合划分为N个子帧子集,依据第一规则确定所述PCID的归属组,获取所述归属组的组编号n,并确定编号与所述组编号n相同的子帧子集为传输第一信息的子帧集合;N为正整数;n为整数;
其中,所述依据第一规则确定所述PCID的归属组包括:依据
Figure PCTCN2016084546-appb-000020
确定所述PCID的归属组;
对于PCID=0,
Figure PCTCN2016084546-appb-000021
也就是说,确定小区0传输第一信息的子帧集合为编号为0的子帧子集;
采用同上述相同的方法,可确定小区1、小区2及小区3传输第一信息的子帧集合均为编号为0的子帧子集;
在本发明实施例中,使能所述第一信息窄带跳频,在相同的子帧集合范围内传输第一信息的小区使用不同的跳频图样,即在相同子帧集合内,传输两个不同小区的第一信息的两个窄带的间隔不固定;每个跳频周期包括第一信息的连续6次(即等于传输第一信息的候选窄带数)传输或包括传输第一信息的连续6个子帧,所述6个子帧的索引分别为0-5,即为逻辑子帧索引;
在使能所述第一信息窄带跳频时,所述依据PCID确定传输第一信息的窄带包括:
依据所述PCID、传输所述第一信息的子帧索引或无线帧索引,确定传输第一信息的窄带;在本发明实施例中包括:获取对应所述PCID的随机排序序列S,并依据m(Idx)=S{mod(Idx,M)}确定传输第一信息对应的窄带;所述随机排序序列S包括0至(M-1)的M个整数;其中,m(Idx)表示在索引为Idx的子帧或无线帧上传输第一信息的窄带的索引;所述M为传输所述第一信息对应的候选窄带集合包含的窄带数目;
所述获取对应所述PCID的随机排序序列S包括:
依据所述PCID获取对应的伪随机序列c,对所述伪随机序列c进行顺序截取,每连续D个比特截取为一个比特组,若当前截取的比特组与之前截取的比特组中的一个相同,则丢弃当前比特组,直至将所述伪随机序列c截取为M个长度为D比特的比特组为止,并对所述M个比特组进行编号为0至(M-1),然后将所述编号为0至(M-1)的比特组依据数值大小重新进行排序,重新排序后的比特组对应的编号序列即为对应所述PCID的随机排序序列S;
这里,采用现有的伪随机序列产生方式获取对应所述PCID的伪随机序 列为:000000100001101000010010011110,100010010110010101000000110101;
依次截取上述伪随机序列c(n)中的每连续的10个(D等于10)比特并将其分为一个比特组,编号为0至5的6个不同比特组,包括:
0000001000,0110100001,0010011110,1000100101,1001010100,0000110101;
获取每个比特组的数值,转化为10进制数为:8,417,158,549,596,53;
将编号为0至5的6个比特组按照数值从小到大次序重新排序后的比特组编号,如下所示:0、5、2、1、3和4;
对应所述PCID的随机排序序列S即为:S={0,5,2,1,3,4}。
可选的,依据m(Idx)=S{mod(Idx,M)},可得:
m(0)=S{mod(Idx,M)}=S{mod(0,6)}=S{0}=0;也就是说,小区0(PCID等于0)在跳频周期内第1次传输SIB1消息(逻辑子帧索引等于0)的窄带为窄带0;
类似的,可得:小区0在跳频周期内第2次传输第一信息的窄带为窄带5;
小区0在跳频周期内第3次传输第一信息的窄带为窄带2;
小区0在跳频周期内第4次传输第一信息的窄带为窄带1;
小区0在跳频周期内第5次传输第一信息的窄带为窄带3;
小区0在跳频周期内第6次传输第一信息的窄带为窄带4;
此时,小区0传输第一信息的跳频图样可以表示为:窄带0、窄带5、窄带2、窄带1、窄带3和窄带4;
类似的,可得:小区1传输第一信息的跳频图样可以表示为:窄带0、窄带3、窄带1、窄带2、窄带4和窄带5;
小区2传输第一信息的跳频图样可以表示为:窄带5、窄带1、窄带0、窄带4、窄带2和窄带3;
小区3传输第一信息的跳频图样可以表示为:窄带3、窄带1、窄带0、 窄带4、窄带2和窄带5;
最终,小区0-3在跳频周期范围内传输第一信息使用不同的跳频图样,如图7所示;如此,有利于减轻在相邻小区第一信息传输之间的相互干扰。需要说明的是,如果传输SIB1消息的候选窄带更多(例如超过10个),在相邻小区第一信息传输之间的碰撞概率变得更小,从而在相邻小区第一信息传输之间的相互干扰程度将更低;所以上述方法更适用于候选窄带足够多的场景。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述方法。
实施例七
图8所示为本发明实施例MTC系统中的信息传输装置的组成结构示意图,所述装置既可位于网络侧,也可位于终端侧;如图8所示,本发明实施例所述装置的组成包括:确定模块81及处理模块82;其中,
所述确定模块81,设置为依据PCID确定传输第一信息的子帧集合及窄带;
所述处理模块82,设置为在所述子帧集合及窄带上发送或接收所述第一信息.
可选的,所述确定模块81,还设置为获取传输所述第一信息的候选子帧集合及候选窄带集合;其中,所述候选子帧集合包括所述子帧集合,所述候选窄带集合包括所述窄带;
这里,所述第一信息可以为SIB1信息;
所述确定模块81,是设置为获取预先设置的传输所述第一信息的候选子帧集合及候选窄带集合;对于终端侧来说,所述获取传输所述第一信息的候选子帧集合及候选窄带集合,除上述方式外还可以通过MIB信令获取传输所述第一信息的候选子帧集合及候选窄带集合;
所述传输所述第一信息的候选窄带集合包括:系统带宽范围内定义的所 有窄带;或者系统带宽范围内除用于PBCH传输的窄带以外的其它窄带;或者系统带宽范围内定义的所有窄带中的W个窄带;所述系统为MTC系统;
其中,W为小于等于NNB的正整数;NNB为系统带宽范围内定义的窄带数;可选的,所述W为偶数,此时,所述W个窄带可以包括靠近上边带的W/2个窄带和靠近下边带的W/2个窄带;例如,对于3MHz或5MHz系统带宽,上述W可以预设为2,而对于超过5MHz的系统带宽,上述W可以取大于或等于4的值。
可选的,所述确定模块81,还设置为确定传输所述第一信息的子帧不存在PBCH传输,设置传输所述第一信息的候选窄带集合包括系统带宽范围内的所有窄带;或者,确定传输所述第一信息的子帧存在PBCH传输,设置传输所述第一信息的候选窄带集合包括系统带宽范围内的除用于PBCH传输的窄带以外的其它窄带。
可选的,所述MTC系统为FDD系统,所述确定模块81,是设置为获取无线帧中的子帧#0、子帧#4、子帧#5和子帧#9,确定所述子帧#0、子帧#4、子帧#5和子帧#9中至少一个子帧为候选子帧,确定所有无线帧中的候选子帧组成的子帧集合为传输所述第一信息的候选子帧集合;
或者,所述MTC系统为TDD系统,所述确定模块81,是设置为获取无线帧中的子帧#0和子帧#5,确定所述子帧#0和子帧#5中至少一个子帧为候选子帧,确定所有无线帧中的候选子帧组成的子帧集合为传输所述第一信息的候选子帧集合。
可选的,所述确定模块81,还设置为依据TBS大小、系统带宽、小区支持的功能、候选窄带集合包括的窄带数及传输PBCH的子帧中的至少一个,确定所述候选子帧。
可选的,所述确定模块81,是设置为将传输所述第一信息的候选子帧集合划分为N个子帧子集,依据第一规则确定所述PCID的归属组,获取所述归属组的组编号n,并确定编号与所述组编号n相同的子帧子集为传输所述第一信息的子帧集合;N为正整数;n为整数;
获取所述候选窄带集合包含的窄带数目M,依据第二规则确定所述PCID 的归属组,获取所述归属组的组编号m,并确定编号与所述组编号m相同的窄带为传输所述第一信息的窄带;M为正整数;m为整数;
这里,将传输所述第一信息的候选子帧集合划分为N个子帧子集,以使每个子帧子集包括A个无线帧中的B个子帧;A、B均为正整数。
可选的,所述第一规则为:n=mod(PCID,N);
第二规则为:
Figure PCTCN2016084546-appb-000022
或者,所述第一规则为:
Figure PCTCN2016084546-appb-000023
第二规则为:m=mod(PCID,M);其中,所述n及m分别为依据第一规则及第二规则确定的所述PCID的归属组的组编号;可选的,所述n及m的取值从0开始计数。
可选的,在使能所述第一信息窄带跳频时,所述确定模块81,还设置为依据所述PCID、传输所述第一信息的子帧索引或无线帧索引,确定传输第一信息的窄带;
在第一情况下,在相同子帧集合内,传输两个不同小区的第一信息的两个窄带的间隔固定;在第二情况下,在相同子帧集合内,传输两个不同小区的第一信息的两个窄带的间隔不固定;
其中,所述第一情况指存在小区规划的情况,即当前小区的PCID需要根据其它相邻小区的PCID确定的情况;所述第二情况为不存在小区规划的情况,即当前小区的PCID与相邻小区无关。
可选的,在第一情况下,所述确定模块81,是设置为依据
Figure PCTCN2016084546-appb-000024
或m(Idx)=mod(PCID+Idx,M)确定传输第一信息的窄带;
其中,所述Idx表示传输第一信息的子帧或无线帧索引;所述m(Idx)表示在索引为Idx的子帧或无线帧上传输第一信息的窄带的索引;所述N为传输所述第一信息的候选子帧集合包括的子帧子集数;所述M为传输所述第一信息的候选窄带集合包含的窄带数目。
在第二情况下,所述确定模块81,是设置为获取所述PCID的随机排序序列S,并依据m(Idx)=S{mod(Idx,M)}确定传输第一信息的窄带;所述随机排 序序列S包括0至(M-1)的M个整数;
其中,m(Idx)表示在索引为Idx的子帧或无线帧上传输第一信息的窄带的索引;所述M为传输所述第一信息的候选窄带集合包含的窄带数目;S{F}表示S序列中的第F个元素;F为大于0且小于M-1的整数,或F等于0,或F等于M-1;
可选的,所述确定模块81,是设置为依据所述PCID获取对应的伪随机序列c,对所述伪随机序列c进行顺序截取,每连续D个比特截取为一个比特组,若当前截取的比特组与之前截取的比特组中的一个相同,则丢弃当前比特组,直至将所述伪随机序列c截取为M个长度为D比特的比特组为止,并对所述M个比特组进行编号为0至(M-1),然后将所述编号为0至(M-1)的比特组依据数值大小重新进行排序,重新排序后的比特组对应的编号序列即为对应所述PCID的随机排序序列S;
所述确定模块81,是设置为将所述编号为0至(M-1)的比特组依据数值从大到小的顺序重新进行排序,或者将所述编号为0至(M-1)的比特组依据数值从小到大的顺序重新进行排序。
可选的,所述装置还包括指示模块83,设置为通过所述第一信息使用独立的配置信令指示第二信息在对应系统信息SI窗口内的实际传输子帧。
可选的,所述指示模块83,还设置为将SI窗口内传输所述第二信息的候选子帧集合按照第一方式或第二方式划分为X个子帧子集,确定第二信息在对应SI窗口内的实际传输子帧为所述X个子帧子集中的至少一个;所述第一方式不同于所述第二方式;X为正整数;
其中,所述第一方式可以为非连续子帧分配方式;相应的,所述指示模块83,是设置为将所述候选子帧集合中每X个连续子帧划分为一组,编号为x的子帧子集由每一个子帧组中编号为x的子帧构成,即任一子帧子集中相邻子帧的间隔是X-1;x为大于0且小于X-1的整数,或x等于0,或x等于X-1;
所述第二方式可以为连续子帧分配方式;相应的,所述指示模块83,是设置为将所述候选子帧集合中每ceiling(P/X)个连续子帧划分为一组,编号为x的子帧子集为划分后的编号为x的子帧组;其中,所述P表示所述候选 子帧集合包括的子帧数;所述ceiling表示向上取整数操作;所述x是大于0且小于X-1的整数,或x等于0,或x等于X-1;
所述X为预设常数,可以依据SI窗口大小进行设定或依据实际需要进行设定;对于终端侧来说,所述X的值还可通过第一信息指示;通常较大SI窗口对应较大的X取值;
所述第二信息在对应SI窗口内的实际传输子帧依赖于所述第二信息的当前覆盖增强等级或覆盖目标或TBS大小。
可选的,当所述MTC系统为FDD系统、所述候选子帧集合包括所有无线帧中的子帧#4和子帧#5,且所述第一信息的调度周期为8个无线帧时,
所述第一信息在所述调度周期内重复传输4次;相应的,所述确定模块,是设置为依据PCID确定传输所述第一信息的无线帧的帧类型,根据所述PCID及无线帧索引确定在所述帧类型的无线帧中传输所述第一信息的子帧为子帧#4或子帧#5;
或者,所述第一信息在所述调度周期内重复传输8次;相应的,所述确定模块,是设置为根据PCID及无线帧索引确定在无线帧中传输所述第一信息的子帧为子帧#4或子帧#5。
可选的,当所述MTC系统为TDD系统,所述候选子帧集合包括所有无线帧中的子帧#0和子帧#5,且所述第一信息的调度周期为8个无线帧时,
所述第一信息在所述调度周期内重复传输4次;相应的,所述确定模块,是设置为依据PCID确定传输所述第一信息的无线帧的帧类型,根据所述PCID及无线帧索引确定在所述帧类型的无线帧中传输所述第一信息的子帧为子帧#0或子帧#5;
或者,所述第一信息在所述调度周期内重复传输8次;相应的,所述确定模块,是设置为根据PCID及无线帧索引确定在无线帧中传输所述第一信息的子帧为子帧#0或子帧#5。
这里需要指出的是:以上涉及装置的描述,与上述方法描述是类似的,同方法的有益效果描述,不做赘述。对于本发明装置实施例中未披露的技术细节,请参照本发明方法实施例的描述。
在本发明实施例中,所述确定模块81、处理模块82及指示模块83均可由终端中的中央处理器(CPU,Central Processing Unit)或数字信号处理器(DSP,Digital Signal Processor)、或现场可编程门阵列(FPGA,Field Programmable Gate Array)、或集成电路(ASIC,Application Specific Integrated Circuit)实现。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本发明不限制于任何特定形式的硬件和软件的结合。
本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。
工业实用性
上述技术方案能够有效的避免或减少相邻小区间系统信息传输造成的干扰,从而提高用户体验。

Claims (49)

  1. 一种机器类通信MTC系统中的信息传输方法,所述方法包括:
    依据物理小区身份标识PCID确定传输第一信息的子帧集合及窄带;
    在所述子帧集合及窄带上发送或接收所述第一信息。
  2. 根据权利要求1所述方法,所述方法还包括:
    所述依据PCID确定传输第一信息的子帧集合及窄带之前,获取传输所述第一信息的候选子帧集合及候选窄带集合;其中,所述候选子帧集合包括所述子帧集合,所述候选窄带集合包括所述窄带。
  3. 根据权利要求2所述方法,其中,所述获取传输所述第一信息的候选窄带集合包括:
    获取预先设置的系统带宽范围内的所有窄带;或者获取预先设置的系统带宽范围内除用于物理广播信道PBCH传输的窄带以外的其它窄带;或者获取预先设置的系统带宽范围内的所有窄带中的W个窄带;
    其中,W为小于或等于NNB的正整数;NNB为系统带宽范围内的窄带数。
  4. 根据权利要求3所述方法,其中,所述W为偶数,所述W个窄带包括靠近上边带的W/2个窄带和靠近下边带的W/2个窄带。
  5. 根据权利要求3所述方法,所述方法还包括:
    所述获取传输所述第一信息的候选窄带集合之前,确定传输所述第一信息的子帧不存在PBCH传输,设置传输所述第一信息的候选窄带集合包括系统带宽范围内的所有窄带;或者,确定传输所述第一信息的子帧存在PBCH传输,设置传输所述第一信息的候选窄带集合包括系统带宽范围内的除用于PBCH传输的窄带以外的其它窄带。
  6. 根据权利要求2所述方法,其中,所述MTC系统为频分双工FDD系统,所述获取传输所述第一信息的候选子帧集合包括:
    获取无线帧中的子帧#0、子帧#4、子帧#5和子帧#9,确定所述子帧#0、子帧#4、子帧#5和子帧#9中至少一个子帧为候选子帧,确定所有无线帧中的候选子帧组成的子帧集合为传输所述第一信息的候选子帧集合;
    或者,所述MTC系统为时分双工TDD系统,所述获取传输所述第一信息的候选子帧集合包括:
    获取无线帧中的子帧#0和子帧#5,确定所述子帧#0和子帧#5中至少一个子帧为候选子帧,确定所有无线帧中的候选子帧组成的子帧集合为传输所述第一信息的候选子帧集合。
  7. 根据权利要求6所述方法,所述方法还包括:
    依据传输块TBS大小、系统带宽、小区支持的功能、候选窄带集合包括的窄带数及传输物理广播信道PBCH的子帧中的至少一个,确定所述候选子帧。
  8. 根据权利要求2所述方法,其中,所述依据PCID确定传输第一信息的子帧集合及窄带包括:
    将传输所述第一信息的候选子帧集合划分为N个子帧子集,依据第一规则确定所述PCID的归属组,获取所述归属组的组编号n,并确定编号与所述组编号n相同的子帧子集为传输所述第一信息的子帧集合;N为正整数;n为小于N的整数;
    获取所述候选窄带集合包含的窄带数目M,依据第二规则确定所述PCID的归属组,获取所述归属组的组编号m,并确定编号与所述组编号m相同的窄带为传输所述第一信息的窄带;M为正整数;m为小于M的整数。
  9. 根据权利要求8所述方法,其中,每个子帧子集均包括A个无线帧中的B个子帧;其中,A为正整数;对于频分双工FDD系统,B为大于1且小于4的正整数,或B等于1,或B等于4,对于时分双工TDD系统,所述B为1或2。
  10. 根据权利要求8所述方法,其中,所述依据第一规则确定所述PCID的归属组包括:
    依据n=mod(PCID,N)确定所述PCID的归属组;
    相应的,所述依据第二规则确定所述PCID的归属组包括:依据
    Figure PCTCN2016084546-appb-100001
    确定所述PCID的归属组;
    其中,n和m为所述PCID的归属组的组编号;N为所述候选子帧集合包 括的子帧子集的数目;M为所述候选窄带集合包含的窄带数目。
  11. 根据权利要求8所述方法,其中,所述依据第一规则确定所述PCID的归属组包括:
    依据
    Figure PCTCN2016084546-appb-100002
    确定所述PCID的归属组;
    相应的,所述依据第二规则确定所述PCID的归属组包括:依据m=mod(PCID,M)确定所述PCID的归属组;
    其中,n和m为所述PCID的归属组的组编号;N为所述候选子帧集合包括的子帧子集的数目;M为所述候选窄带集合包含的窄带数目。
  12. 根据权利要求2所述方法,其中,在使能所述第一信息窄带跳频时,所述依据PCID确定传输第一信息的窄带包括:
    依据所述PCID、传输所述第一信息的子帧索引和/或无线帧索引,确定传输第一信息的窄带。
  13. 根据权利要求12所述方法,其中:
    在第一情况下,在相同子帧集合内,传输两个不同小区的第一信息的两个窄带的间隔固定;
    在第二情况下,在相同子帧集合内,传输两个不同小区的第一信息的两个窄带的间隔不固定;所述第一情况不同于所述第二情况。
  14. 根据权利要求13所述方法,其中,在第一情况下,所述依据所述PCID、传输所述第一信息的子帧索引和/或无线帧索引,确定传输第一信息的窄带,包括:
    依据
    Figure PCTCN2016084546-appb-100003
    或m(Idx)=mod(PCID+Idx,M)确定传输第一信息的窄带;
    其中,所述Idx表示传输第一信息的子帧或无线帧索引;所述m(Idx)表示在索引为Idx的子帧或无线帧上传输第一信息的窄带的索引;所述N为传输所述第一信息的候选子帧集合包括的子帧子集数;所述M为传输所述第一信息的候选窄带集合包含的窄带数目。
  15. 根据权利要求13所述方法,其中,在第二情况下,所述依据所述 PCID、传输所述第一信息的子帧索引和/或无线帧索引,确定传输第一信息的窄带,包括:
    获取对应所述PCID的随机排序序列S,并依据m(Idx)=S{mod(Idx,M)}确定传输第一信息的窄带;所述随机排序序列S包括0至(M-1)的M个整数;
    其中,m(Idx)表示在索引为Idx的子帧或无线帧上传输第一信息的窄带的索引;所述M为传输所述第一信息的候选窄带集合包含的窄带数目。
  16. 根据权利要求1或2所述方法,所述方法还包括:
    通过所述第一信息使用独立的配置信令指示第二信息在对应系统信息SI窗口内的实际传输子帧。
  17. 根据权利要求16所述方法,其中,所述第一信息为第一系统信息块SIB1,所述第二信息为除所述SIB1以外的其它系统信息块SIBx;其中,x为不等于1的正整数。
  18. 根据权利要求16所述方法,所述方法还包括:
    所述通过所述第一信息使用独立的配置信令指示第二信息在对应SI窗口内的实际传输子帧之前,将SI窗口内传输所述第二信息的候选子帧集合按照第一方式或第二方式划分为X个子帧子集,确定第二信息在对应SI窗口内的实际传输子帧为所述X个子帧子集中的至少一个;所述第一方式不同于所述第二方式;X为正整数。
  19. 根据权利要求18所述方法,其中,所述第一方式为非连续子帧分配方式;所述将SI窗口内传输所述第二信息的候选子帧集合按照第一方式划分为X个子帧子集,包括:
    将所述候选子帧集合中每X个连续子帧划分为一组并为每一组的子帧进行编号,编号为x的子帧子集由每一个子帧组中编号为x的子帧构成;其中,X为正整数;x为小于或等于X-1的整数。
  20. 根据权利要求18所述方法,其中,所述第二方式为连续子帧分配方式;所述将SI窗口内传输所述第二信息的候选子帧集合按照第二方式划分为X个子帧子集包括:
    将所述候选子帧集合中每ceiling(P/X)个连续子帧划分为一组,编号为 x的子帧子集为划分后的编号为x的子帧组;其中,所述P表示所述候选子帧集合包括的子帧数;X为正整数;x为小于或等于X-1的整数。
  21. 根据权利要求18所述方法,其中,所述确定第二信息在对应SI窗口内的实际传输子帧为所述X个子帧子集中的至少一个,包括:
    依据所述第二信息的当前覆盖增强等级、覆盖目标、传输块TBS大小中的至少一个,确定第二信息在对应SI窗口内的实际传输子帧为所述X个子帧子集中的至少一个。
  22. 根据权利要求18所述方法,其中,所述独立的配置信令指示第二信息在对应SI窗口内的实际传输子帧所需的比特数是Y;
    其中,Y=2X-1,或Y=ceiling(log2 X);其中,X为SI窗口内传输所述第二信息的候选子帧集合包括的子帧子集数,X为正整数。
  23. 根据权利要求22所述方法,其中,所述Y个比特与所述X个子帧子集中的K个子帧子集一一对应,其中,K为小于或等于X的正整数。
  24. 根据权利要求23所述方法,其中,所述Y=ceiling(log2 X),且所述K个子帧子集为所述X个子帧子集中的索引为0至K-1的子帧子集。
  25. 根据权利要求6所述方法,其中,当所述MTC系统为FDD系统、所述候选子帧集合包括所有无线帧中的子帧#4和子帧#5,且所述第一信息的调度周期为8个无线帧时,
    所述第一信息在所述调度周期内重复传输4次;相应的,所述依据PCID确定传输第一信息的子帧集合,包括:
    依据PCID确定传输所述第一信息的无线帧的帧类型,根据所述PCID及无线帧索引确定在所述帧类型的无线帧中传输所述第一信息的子帧为子帧#4或子帧#5;
    或者,所述第一信息在所述调度周期内重复传输8次;相应的,所述依据PCID确定传输第一信息的子帧集合,包括:
    根据PCID及无线帧索引确定在无线帧中传输所述第一信息的子帧为子帧#4或子帧#5。
  26. 根据权利要求6所述方法,其中,当所述MTC系统为TDD系统, 所述候选子帧集合包括所有无线帧中的子帧#0和子帧#5,且所述第一信息的调度周期为8个无线帧时,
    所述第一信息在所述调度周期内重复传输4次;相应的,所述依据PCID确定传输第一信息的子帧集合,包括:
    依据PCID确定传输所述第一信息的无线帧的帧类型,根据所述PCID及无线帧索引确定在所述帧类型的无线帧中传输所述第一信息的子帧为子帧#0或子帧#5;
    或者,所述第一信息在所述调度周期内重复传输8次;相应的,所述依据PCID确定传输第一信息的子帧集合,包括:
    根据PCID及无线帧索引确定在无线帧中传输所述第一信息的子帧为子帧#0或子帧#5。
  27. 一种机器类通信MTC系统中的信息传输装置,所述装置包括:确定模块及处理模块;其中,
    所述确定模块,设置为依据物理小区身份标识PCID确定传输第一信息的子帧集合及窄带;
    所述处理模块,设置为在所述子帧集合及窄带上发送或接收所述第一信息。
  28. 根据权利要求27所述装置,所述确定模块,还设置为所述依据PCID确定传输第一信息的子帧集合及窄带之前,获取传输所述第一信息的候选子帧集合及候选窄带集合;其中,所述候选子帧集合包括所述子帧集合,所述候选窄带集合包括所述窄带。
  29. 根据权利要求28所述装置,其中,所述确定模块,是设置为通过如下方式实现获取传输所述第一信息的候选窄带集合:
    获取预先设置的系统带宽范围内的所有窄带;或者获取预先设置的系统带宽范围内除用于PBCH传输的窄带以外的其它窄带;或者获取预先设置的系统带宽范围内的所有窄带中的W个窄带;
    其中,W为小于等于NNB的正整数;NNB为系统带宽范围内的窄带数。
  30. 根据权利要求29所述装置,其中,所述W为偶数,所述W个窄带 包括靠近上边带的W/2个窄带和靠近下边带的W/2个窄带。
  31. 根据权利要求29所述装置,所述确定模块,还设置为获取传输所述第一信息的候选窄带集合之前,确定传输所述第一信息的子帧不存在PBCH传输,设置传输所述第一信息的候选窄带集合包括系统带宽范围内的所有窄带;或者,确定传输所述第一信息的子帧存在PBCH传输,设置传输所述第一信息的候选窄带集合包括系统带宽范围内的除用于PBCH传输的窄带以外的其它窄带。
  32. 根据权利要求28所述装置,其中,所述MTC系统为FDD系统,所述确定模块,是设置为通过如下方式实现获取传输所述第一信息的候选子帧集合:获取无线帧中的子帧#0、子帧#4、子帧#5和子帧#9,确定所述子帧#0、子帧#4、子帧#5和子帧#9中至少一个子帧为候选子帧,确定所有无线帧中的候选子帧组成的子帧集合为传输所述第一信息的候选子帧集合;
    或者,所述MTC系统为TDD系统,所述确定模块,是设置为通过如下方式实现获取传输所述第一信息的候选子帧集合:获取无线帧中的子帧#0和子帧#5,确定所述子帧#0和子帧#5中至少一个子帧为候选子帧,确定所有无线帧中的候选子帧组成的子帧集合为传输所述第一信息的候选子帧集合。
  33. 根据权利要求32所述装置,所述确定模块,还设置为依据传输块TBS大小、系统带宽、小区支持的功能、候选窄带集合包括的窄带数及传输物理广播信道PBCH的子帧中的至少一个,确定所述候选子帧。
  34. 根据权利要求28所述装置,其中,所述确定模块,是设置为通过如下方式实现依据PCID确定传输第一信息的子帧集合及窄带:将传输所述第一信息的候选子帧集合划分为N个子帧子集,依据第一规则确定所述PCID的归属组,获取所述归属组的组编号n,并确定编号与所述组编号n相同的子帧子集为传输所述第一信息的子帧集合;N为正整数;n为整数;
    获取所述候选窄带集合包含的窄带数目M,依据第二规则确定所述PCID的归属组,获取所述归属组的组编号m,并确定编号与所述组编号m相同的窄带为传输所述第一信息的窄带;M为正整数;m为整数。
  35. 根据权利要求34所述装置,其中,每个子帧子集均包括A个无线帧 中的B个子帧;其中,A为正整数;对于频分双工FDD系统,B为大于1且小于4的正整数,或B等于1,或B等于4,对于时分双工TDD系统,所述B为1或2。
  36. 根据权利要求34所述装置,其中,所述确定模块,是设置为通过如下方式实现依据第一规则确定所述PCID的归属组:
    依据n=mod(PCID,N)确定所述PCID的归属组;
    以及,依据
    Figure PCTCN2016084546-appb-100004
    确定所述PCID的归属组;
    其中,n和m为所述PCID的归属组的组编号;N为所述候选子帧集合包括的子帧子集的数目;M为所述候选窄带集合包含的窄带数目。
  37. 根据权利要求34所述装置,其中,所述确定模块,是设置为通过如下方式实现依据第一规则确定所述PCID的归属组:
    依据
    Figure PCTCN2016084546-appb-100005
    确定所述PCID的归属组;
    以及,依据m=mod(PCID,M)确定所述PCID的归属组;
    其中,n和m为所述PCID的归属组的组编号;N为所述候选子帧集合包括的子帧子集的数目;M为所述候选窄带集合包含的窄带数目。
  38. 根据权利要求28所述装置,其中,在使能所述第一信息窄带跳频时,所述确定模块,是设置为通过如下方式实现依据PCID确定传输第一信息的窄带:
    依据所述PCID、传输所述第一信息的子帧索引或无线帧索引,确定传输第一信息的窄带。
  39. 根据权利要求38所述装置,其中,在第一情况下,在相同子帧集合内,传输两个不同小区的第一信息的两个窄带的间隔固定;在第二情况下,在相同子帧集合内,传输两个不同小区的第一信息的两个窄带的间隔不固定;所述第一情况不同于所述第二情况。
  40. 根据权利要求39所述装置,其中,在第一情况下,所述确定模块,是设置为通过如下方式实现依据所述PCID、传输所述第一信息的子帧索引和/或无线帧索引,确定传输第一信息的窄带:
    依据
    Figure PCTCN2016084546-appb-100006
    或m(Idx)=mod(PCID+Idx,M)确定传输第一信息的窄带;
    其中,所述Idx表示传输第一信息的子帧或无线帧索引;所述m(Idx)表示在索引为Idx的子帧或无线帧上传输第一信息的窄带的索引;所述N为传输所述第一信息的候选子帧集合包括的子帧子集数;所述M为传输所述第一信息的候选窄带集合包含的窄带数目。
  41. 根据权利要求39所述装置,其中,在第二情况下,所述确定模块,是设置为通过如下方式实现依据所述PCID、传输所述第一信息的子帧索引和/或无线帧索引,确定传输第一信息的窄带:
    获取对应所述PCID的随机排序序列S,并依据m(Idx)=S{mod(Idx,M)}确定传输第一信息的窄带;所述随机排序序列S包括0至(M-1)的M个整数;
    其中,m(Idx)表示在索引为Idx的子帧或无线帧上传输第一信息的窄带的索引;所述M为传输所述第一信息的候选窄带集合包含的窄带数目。
  42. 根据权利要求28或29所述装置,所述装置还包括指示模块,设置为通过所述第一信息使用独立的配置信令指示第二信息在对应系统信息SI窗口内的实际传输子帧。
  43. 根据权利要求42所述装置,其中,所述第一信息为SIB1,所述第二信息为除所述SIB1以外的其它系统信息块SIBx;其中,x为不等于1的正整数。
  44. 根据权利要求42所述装置,所述指示模块,还设置为通过所述第一信息使用独立的配置信令指示第二信息在对应SI窗口内的实际传输子帧之前,将SI窗口内传输所述第二信息的候选子帧集合按照第一方式或第二方式划分为X个子帧子集,确定第二信息在对应SI窗口内的实际传输子帧为所述X个子帧子集中的至少一个;所述第一方式不同于所述第二方式;X为正整数。
  45. 根据权利要求44所述装置,其中,所述第一方式为非连续子帧分配方式;所述指示模块,是设置为通过如下方式实现将SI窗口内传输所述第二信息的候选子帧集合按照第一方式划分为X个子帧子集:
    将所述候选子帧集合中每X个连续子帧划分为一组并为每一组的子帧进行编号,编号为x的子帧子集由每一个子帧组中编号为x的子帧构成;其中,X为正整数;x为小于或等于X-1的整数。
  46. 根据权利要求44所述装置,其中,所述第二方式为连续子帧分配方式;所述指示模块,是设置为通过如下方式实现将SI窗口内传输所述第二信息的候选子帧集合按照第二方式划分为X个子帧子集:
    将所述候选子帧集合中每ceiling(P/X)个连续子帧划分为一组,编号为x的子帧子集为划分后的编号为x的子帧组;其中,所述P表示所述候选子帧集合包括的子帧数;X为正整数;x为小于或等于X-1的整数。
  47. 根据权利要求44所述装置,其中,所述指示模块,是设置为通过如下方式实现确定第二信息在对应SI窗口内的实际传输子帧为所述X个子帧子集中的至少一个:
    依据所述第二信息的当前覆盖增强等级、覆盖目标、传输块TBS大小中的至少一个,确定第二信息在对应SI窗口内的实际传输子帧为所述X个子帧子集中的至少一个。
  48. 根据权利要求32所述装置,其中,当所述MTC系统为FDD系统、所述候选子帧集合包括所有无线帧中的子帧#4和子帧#5,且所述第一信息的调度周期为8个无线帧时,
    所述第一信息在所述调度周期内重复传输4次;相应的,所述确定模块,是设置为通过如下方式实现依据PCID确定传输第一信息的子帧集合:
    依据PCID确定传输所述第一信息的无线帧的帧类型,根据所述PCID及无线帧索引确定在所述帧类型的无线帧中传输所述第一信息的子帧为子帧#4或子帧#5;
    或者,所述第一信息在所述调度周期内重复传输8次;相应的,所述确定模块,是设置为通过如下方式实现依据PCID确定传输第一信息的子帧集合:
    根据PCID及无线帧索引确定在无线帧中传输所述第一信息的子帧为子 帧#4或子帧#5。
  49. 根据权利要求32所述装置,其中,当所述MTC系统为TDD系统,所述候选子帧集合包括所有无线帧中的子帧#0和子帧#5,且所述第一信息的调度周期为8个无线帧时,
    所述第一信息在所述调度周期内重复传输4次;相应的,所述确定模块,是设置为通过如下方式实现依据PCID确定传输第一信息的子帧集合:
    依据PCID确定传输所述第一信息的无线帧的帧类型,根据所述PCID及无线帧索引确定在所述帧类型的无线帧中传输所述第一信息的子帧为子帧#0或子帧#5;
    或者,所述第一信息在所述调度周期内重复传输8次;相应的,所述确定模块,是设置为通过如下方式实现依据PCID确定传输第一信息的子帧集合:
    根据PCID及无线帧索引确定在无线帧中传输所述第一信息的子帧为子帧#0或子帧#5。
PCT/CN2016/084546 2015-08-12 2016-06-02 一种机器类通信系统中的信息传输方法及装置 WO2017024874A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/752,005 US10700843B2 (en) 2015-08-12 2016-06-02 Method and device for information transmission in machine-type communication system
EP16834499.2A EP3337193B1 (en) 2015-08-12 2016-06-02 Method and apparatus for information transmission in a machine-type communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510492355.1 2015-08-12
CN201510492355 2015-08-12
CN201510742961.4 2015-11-04
CN201510742961.4A CN106454695B (zh) 2015-08-12 2015-11-04 一种机器类通信系统中的信息传输方法及装置

Publications (1)

Publication Number Publication Date
WO2017024874A1 true WO2017024874A1 (zh) 2017-02-16

Family

ID=57983455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084546 WO2017024874A1 (zh) 2015-08-12 2016-06-02 一种机器类通信系统中的信息传输方法及装置

Country Status (1)

Country Link
WO (1) WO2017024874A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684848A (zh) * 2018-02-14 2020-09-18 华为技术有限公司 一种资源分配方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103621147A (zh) * 2011-06-27 2014-03-05 瑞典爱立信有限公司 支持有限带宽通信装置的蜂窝通信系统
WO2014185659A1 (ko) * 2013-05-12 2014-11-20 엘지전자 주식회사 셀 커버리지 확장 영역 위치한 mtc 기기의 시스템 정보 수신 방법
WO2015018497A1 (en) * 2013-08-09 2015-02-12 Alcatel Lucent Communication technique for delivering information to users experiencing high attenuation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103621147A (zh) * 2011-06-27 2014-03-05 瑞典爱立信有限公司 支持有限带宽通信装置的蜂窝通信系统
WO2014185659A1 (ko) * 2013-05-12 2014-11-20 엘지전자 주식회사 셀 커버리지 확장 영역 위치한 mtc 기기의 시스템 정보 수신 방법
WO2015018497A1 (en) * 2013-08-09 2015-02-12 Alcatel Lucent Communication technique for delivering information to users experiencing high attenuation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"RP-150583; Status Report to TSG; Further LTE Physical Layer Enhancements for MTC", 3GPPTSG RAN MEETING #68, 18 June 2015 (2015-06-18), pages 6, XP050984448 *
See also references of EP3337193A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684848A (zh) * 2018-02-14 2020-09-18 华为技术有限公司 一种资源分配方法和装置
CN111684848B (zh) * 2018-02-14 2023-10-20 华为技术有限公司 一种资源分配方法和装置
US11864187B2 (en) 2018-02-14 2024-01-02 Huawei Technologies Co., Ltd. Resource allocation method and apparatus

Similar Documents

Publication Publication Date Title
US11706795B2 (en) Random access response information transmission method, base station, and user equipment
CN110932833B (zh) 信息传输方法和装置
CN107734468B (zh) 组播传输方法及装置
WO2016161917A1 (zh) 一种实现资源分配的方法和装置
CN110601804B (zh) 通信方法和用户设备
US10721013B2 (en) Method and apparatus for information transmission
EP2385735A1 (en) Wireless communication base station device, wireless communication terminal device and cce allocation method
CN109921889A (zh) 用于通信系统中的公共控制信道的系统和方法
US11652596B2 (en) Method executed by user equipment, and user equipment
US11375488B2 (en) Method for determining and configuring a resource used for transmitting downlink data, terminal and base station
US11190960B2 (en) Methods and apparatuses for control resource mapping
WO2015184910A1 (zh) 一种传输数据的方法和装置
CN111050404A (zh) 控制资源的配置方法、解析方法及设备
CN108540985A (zh) 一种nr系统中pdsch与pdcch资源共享的方法
CN106612166A (zh) 一种窄带传输的方法和装置
CN106454695B (zh) 一种机器类通信系统中的信息传输方法及装置
CN107404763B (zh) 超级小区的下行控制信道空分多址接入方法、装置及基站
US20230276457A1 (en) Control information transmission method and device
WO2017024874A1 (zh) 一种机器类通信系统中的信息传输方法及装置
US10873879B2 (en) Data transmission method, device, and system
WO2017113901A1 (zh) 一种信息传输方法及装置
WO2016107351A1 (zh) 窄带的分配、窄带分配的获取方法和装置
CN107205277B (zh) 一种增强下行控制信道资源的指示方法及装置
WO2017028071A1 (zh) 下行控制信息的接收、发送方法及装置
WO2021026864A1 (zh) 控制信道传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834499

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15752005

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016834499

Country of ref document: EP