WO2015184910A1 - 一种传输数据的方法和装置 - Google Patents
一种传输数据的方法和装置 Download PDFInfo
- Publication number
- WO2015184910A1 WO2015184910A1 PCT/CN2015/075071 CN2015075071W WO2015184910A1 WO 2015184910 A1 WO2015184910 A1 WO 2015184910A1 CN 2015075071 W CN2015075071 W CN 2015075071W WO 2015184910 A1 WO2015184910 A1 WO 2015184910A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- subband
- sequence
- uplink
- transmission area
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/713—Spread spectrum techniques using frequency hopping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- This document relates to the technical field of transmitting data, and more particularly to a method and apparatus for transmitting data.
- Machine Type Communication (MTC) User Equipment also known as Machine to Machine (M2M) user equipment
- MTC Machine Type Communication
- UE User Equipment
- M2M Machine to Machine
- GSM Global System of Mobile communication
- LTE-based M2M Long Term Evolution
- the cost of the MTC UE mainly comes from two parts: the baseband processing part and the radio frequency part, and reducing the uplink and/or downlink transmission bandwidth of the UE (including baseband and radio frequency bandwidth) is a very effective way to reduce the cost of the MTC UE, for example, in When the system bandwidth is 20 MHz, the uplink and/or downlink transmission bandwidth of the MTC UE is set to a narrowband bandwidth of only 1.4 MHz.
- a related method is to respectively set a fixed transmission narrowband for the public data of the MTC UE and the uplink/downlink unicast data; although the above method is simple, it causes the MTC UE to fail to obtain the frequency diversity gain and/or Or frequency selective scheduling gain, thereby reducing the data transmission performance of the MTC UE.
- the present invention provides a method and apparatus for transmitting data, which can provide High data transfer performance.
- the invention provides a method for transmitting data, comprising:
- the method further includes: the base station or the UE acquiring a transmission area of the data;
- Determining, by the base station or the UE, the subband of the transmission data according to the obtained subband hopping sequence includes:
- the transmission area includes one or more sub-bands, wherein the sub-band occupies one or more physical resource blocks.
- the data is public data or uplink/downlink unicast data
- the different types of data having different subband hopping sequences include:
- the subband hopping sequence of the public data is different from the subband hopping sequence of the uplink/downlink unicast data.
- the acquiring, by the base station or the UE, the transmission area of the data includes: acquiring a transmission area of the public data in a predefined manner, and acquiring, by using a predefined manner, broadcast signaling, or proprietary signaling.
- the transmission area of the up/down unicast data is described.
- the resource mapping manner of the public data in the transmission area of the public data is different from the resource mapping manner of the downlink unicast data in the transmission area of the downlink unicast data.
- the non-overlapping between the public data and the transmission area of the downlink unicast data includes: a transmission area of the downlink unicast data is two sides of a system bandwidth, and a transmission area of the public data is a system bandwidth. Other areas than the transmission area of the downlink unicast data.
- the resource mapping manner of the public data in the transmission area of the public data and the resource mapping manner of the downlink unicast data in the transmission area of the downlink unicast data include:
- the public data is mapped from a lowest index physical resource block PRB position in a subband of the transmission area of the public data, and the downlink unicast data is highest in a subband of a transmission area of the downlink unicast data.
- the PRB position of the index begins to map;
- the conflicting subband is used to transmit the public data; If the priority of the public data is lower than the downlink unicast data, the conflicting subband is used to transmit the downlink unicast data.
- the broadcast signaling is a main information block MIB signaling or a system information block SIB signaling.
- the broadcast signaling or the dedicated signaling includes at least: a field indicating a number of subbands included in a transmission area of uplink/downlink unicast data; and a transmission area indicating uplink/downlink unicast data The field of the location of all subbands.
- N u is the / The number of subbands in the transmission area of the downlink unicast data
- N total is the total number of available subbands in the system bandwidth
- k i is the index of the i th subband in the N total subbands in the N u subbands.
- the sub-band hopping sequence of the base station or the UE acquiring data includes:
- the length of the subband hopping base sequence or the subband hopping sequence of the data is the number of subbands in the transmission area of the data.
- the sub-band hopping base sequence for acquiring data by the base station or the UE according to the number of sub-bands in the transmission area of the data and the cell identifier includes:
- Generating a pseudo-random sequence according to the cell identifier acquiring data according to the generated pseudo-random sequence Subband hopping base sequence; wherein the obtained subtype hopping base sequences of different types of data are different.
- the subband hopping base sequence for acquiring data according to the generated pseudo random sequence includes:
- N c is a number of subbands in a transmission area of the public data
- N u is the number of sub-band transmission region of the uplink / downlink unicast data in.
- the generating N c and N u different decimal numbers according to the pseudo random sequence includes:
- K1 takes an increment from 1 and 1 ⁇ K3 ⁇ K1
- K2 is the number of consecutive bits extracted.
- the public data is a system information block SIB message, or a random access response RAR message, or a paging Paging message.
- the subband hopping sequence of the SIB message, the subband hopping sequence of the RAR message, and the subband hopping sequence of the Paging message are different from each other, and have a determined relative offset.
- the subband hopping sequence for acquiring data according to the obtained subband hopping base sequence includes:
- ⁇ S sib,0 , S sib,1 ,...,S sib,Nc-1 ⁇ are subband hopping sequences of the SIB message
- ⁇ b c,0 , b c,1 ,...,b c, Nc-1 ⁇ is a subband hopping base sequence of the public data
- O sib is a determining offset of a subband hopping sequence of the SIB message with respect to a subband hopping base sequence of the public data
- ⁇ S rar,0 ,S rar,1 ,...,S rar,Nc-1 ⁇ are subband hopping sequences of the RAR message
- ⁇ b c,0 , b c,1 ,...,b c, Nc-1 ⁇ is a subband hopping base sequence of the public data
- O rar is a determining offset of a subband hopping sequence of the RAR message with respect to a subband hopping base sequence of the public data
- ⁇ S Paging, 0 , S Paging, 1 , . . . , S Paging, Nc-1 ⁇ is a subband hopping sequence of the Paging message
- ⁇ b c,0 , b c,1 ,...,b c, Nc-1 ⁇ is a subband hopping base sequence of the public data
- O Paging is a determining offset of a subband hopping sequence of the Paging message with respect to a subband hopping base sequence of the public data
- O sib , O rar and O paging are greater than or equal to 0 and less than N c , and O sib , O rar and O paging are different values.
- the subband hopping sequence for acquiring data according to the obtained subband hopping base sequence includes:
- ⁇ S u,0 , S u,1 ,...,S u,Nu-1 ⁇ is a sub-band hopping sequence of the uplink/downlink unicast data
- Nu-1 ⁇ is a subband hopping base sequence of the uplink/downlink unicast data
- O ue is a proprietary offset of the UE.
- determining, by the base station or the UE, the subband of the transmission data according to the obtained subband hopping sequence includes:
- the i When the data is public data, the i takes a positive integer from 1 to N c ; when the data is up/down unicast data, the i takes a positive integer from 1 to N u ; wherein N c is the number of sub-band data transmission of the public area, the number of subbands N u is the transmission area on the uplink / downlink unicast data in.
- the size of the time interval is one or more time slots, or one or more radio frames, or one or more subframes.
- the transmitting the data on the determined sub-band comprises: transmitting the uplink/downlink unicast data on the determined sub-band by using a repeated transmission mechanism.
- the base station or the UE transmits the repeatedly transmitted uplink/downlink unicast data from the first subframe of the first time interval.
- the size of the time interval and/or the determined size of the subband is determined according to the maximum number of repeated transmissions of the uplink/downlink unicast data or the actual number of repeated transmissions.
- the uplink unicast data includes: uplink unicast service data and uplink unicast control data;
- the uplink unicast control data includes: a scheduling request SR, a hybrid automatic repeat request acknowledgement HARQ-ACK, and channel state information.
- the transmitting the data on the determined sub-band includes:
- determining the subband of the transmission data is another available subband.
- the invention also proposes an apparatus for transmitting data, comprising:
- Obtaining a module configured to: acquire a subband hopping sequence of data
- Determining a module configured to: determine a subband of the transmitted data according to the obtained subband hopping sequence;
- a transmission module configured to: transmit data on the determined sub-band
- the obtaining module is further configured to:
- the determining module is specifically configured to:
- a subband of the data transmitted in the transmission area is determined according to the obtained subband hopping sequence.
- the obtaining module is specifically configured to:
- the transmission area of the public data is obtained in a predefined manner, and the transmission area of the uplink/downlink unicast data is obtained through a predefined manner or broadcast signaling or proprietary signaling.
- the broadcast signaling or the dedicated signaling includes at least: a field indicating a number of subbands included in a transmission area of uplink/downlink unicast data; and a transmission area indicating uplink/downlink unicast data The field of the location of all subbands;
- the obtaining module is further configured to:
- N u is the / The number of subbands in the transmission area of the downlink unicast data
- N total is the total number of available subbands in the system bandwidth
- k i is the index of the i th subband in the N total subbands in the N u subbands.
- the obtaining module is specifically configured to:
- the obtaining module is further configured to:
- Generating a pseudo-random sequence according to the cell identifier acquiring a sub-band hopping base sequence of data according to the generated pseudo-random sequence; wherein the obtained sub-band hopping base sequences of different types of data are different.
- the obtaining module is further configured to:
- N c is a number of subbands in a transmission area of the public data
- N u is the number of sub-band transmission region of the uplink / downlink unicast data in.
- the obtaining module is further configured to:
- K1 takes an increment from 1 and 1 ⁇ K3 ⁇ K1
- K2 is the number of consecutive bits extracted.
- the obtaining module is further configured to:
- ⁇ S sib,0 , S sib,1 ,...,S sib,Nc-1 ⁇ are subband hopping sequences of the SIB message
- ⁇ b c,0 , b c,1 ,...,b c, Nc-1 ⁇ is a subband hopping base sequence of the public data
- O sib is a determining offset of a subband hopping sequence of the SIB message with respect to a subband hopping base sequence of the public data
- ⁇ S rar,0 ,S rar,1 ,...,S rar,Nc-1 ⁇ are subband hopping sequences of the RAR message
- ⁇ b c,0 , b c,1 ,...,b c, Nc-1 ⁇ is a subband hopping base sequence of the public data
- O rar is a determining offset of a subband hopping sequence of the RAR message with respect to a subband hopping base sequence of the public data
- ⁇ S Paging, 0 , S Paging, 1 , . . . , S Paging, Nc-1 ⁇ is a subband hopping sequence of the Paging message
- ⁇ b c,0 , b c,1 ,...,b c, Nc-1 ⁇ is a subband hopping base sequence of the public data
- O Paging is a determining offset of a subband hopping sequence of the Paging message with respect to a subband hopping base sequence of the public data
- O sib , O rar and O paging are greater than or equal to 0 and less than N c , and O sib , O rar and O paging are different values.
- the obtaining module is further configured to:
- ⁇ S u,0 , S u,1 ,...,S u,Nu-1 ⁇ is a sub-band hopping sequence of the uplink/downlink unicast data
- Nu-1 ⁇ is a subband hopping base sequence of the uplink/downlink unicast data
- O ue is a UE proprietary offset.
- the determining module is further configured to:
- the i When the data is public data, the i takes a positive integer from 1 to N c ; when the data is uplink/downlink unicast data, the i takes a positive integer from 1 to N u ; wherein N c is the number of sub-band data transmission of the public area, the number of subbands N u is the transmission area on the uplink / downlink unicast data in.
- the data is public data or uplink/downlink unicast data;
- the uplink unicast data includes: uplink unicast service data and uplink unicast control data;
- the transmission module is specifically configured to:
- the determining module is further configured to:
- the subband of the transmitted data is determined to be another available subband.
- the technical solution of the present invention includes: a baseband or user terminal UE acquires a subband hopping sequence of data; and the base station or the UE determines a subband of the transmitted data according to the obtained subband hopping sequence, on the determined subband. Data is transmitted; wherein different types of data have different sub-band hopping sequences.
- the subband of the transmitted data is determined according to the obtained subband hopping sequence, and the frequency hopping transmission of different types of data is solved, thereby improving the performance of data transmission.
- FIG. 1 is a flowchart of a method for transmitting data according to an embodiment of the present invention
- FIG. 2 is a schematic view of a transmission area
- 3 is a schematic diagram of a transmission area in which public data and downlink unicast data are not overlapped;
- FIG. 4 is a schematic diagram showing a resource mapping manner of public data in a transmission area of public data and a resource mapping manner of downlink unicast data in a transmission area of downlink unicast data;
- FIG. 5 is a schematic diagram of an uplink/downlink unicast data transmission area exclusive to a low-cost MTC UE having both transmission bandwidth reduction and coverage enhancement requirements;
- FIG. 6 is a schematic diagram of uplink unicast control data occupying a fixed PRB
- FIG. 7 is a schematic diagram of a sub-band position for transmitting different public data in the first embodiment
- FIG. 8 is a schematic diagram of a subband position for transmitting uplink/downlink unicast data according to the second embodiment
- FIG. 9 is a schematic diagram of a start subframe position of uplink/downlink unicast data that is repeatedly transmitted by an MTC UE having both a transmission bandwidth reduction and a coverage enhancement requirement according to the third embodiment
- FIG. 10 is a schematic diagram of a special sub-band position of a low-cost MTC UE public data transmission that is not available for transmission bandwidth reduction in the fourth embodiment
- FIG. 11 is a schematic structural diagram of an apparatus for transmitting data according to an embodiment of the present invention.
- an embodiment of the present invention provides a method for transmitting (including transmitting or receiving) data, including:
- Step 100 A baseband or UE acquires a subband hopping sequence of data; wherein different types of data have different subband hopping sequences.
- the UE may be a low-cost MTC UE with reduced transmission bandwidth, or a non-low-cost MTC UE with no reduction in transmission bandwidth but with coverage enhancement requirements.
- the low-cost MTC UE with reduced transmission bandwidth may be a low-cost MTC UE with only transmission bandwidth reduction requirements, or a low-cost MTC UE with both transmission bandwidth reduction and coverage enhancement requirements.
- the data is public data or uplink/downlink unicast data
- different types of data have different subband hopping sequences including: subband hopping sequence of public data and subband hopping of uplink/downlink unicast data.
- the sequence is different.
- the uplink unicast data includes: uplink unicast service data and uplink unicast control data.
- the uplink unicast control data includes a scheduling request (SR, Scheduling Request), a hybrid automatic repeat request acknowledgement (HARQ-ACK, Hybrid Automatic Repeat Request Acknowledgement), and channel state information.
- SR scheduling request
- HARQ-ACK hybrid automatic repeat request acknowledgement
- HARQ-ACK Hybrid Automatic Repeat Request Acknowledgement
- the subband refers to the subband of the data transmitted by the scheduler after scheduling the data. Due to system control overhead and/or uplink/downlink unicast service requirements, the scheduler usually does not always schedule data, so it can be said that A band is a subband of potential transmission data.
- the transmission area of the data is also obtained.
- the data transmission area includes one or more sub-bands, where each sub-band occupies one or more physical resource blocks (PRBs).
- PRBs physical resource blocks
- the transmission area may be a continuous area or a discrete area.
- FIG. 2 is a schematic diagram of a transmission area. As shown in FIG. 2, the transmission area of the uplink/downlink unicast data of the first UE is five consecutive sub-bands, and the transmission area of the uplink/downlink unicast data of the second UE is Discrete 4 sub-bands.
- the transmission area of the public data and the downlink unicast data does not overlap: the transmission area of the downlink unicast data is on both sides of the system bandwidth, and the transmission area of the public data is the transmission area of the system bandwidth except the downlink unicast data. Other areas.
- the resource mapping manner of the public data in the transmission area of the public data and the resource mapping manner of the downlink unicast data in the transmission area of the downlink unicast data include: the public data is lowest in the subband of the transmission area of the public data.
- the PRB position of the index starts to be mapped, and the downlink unicast data is mapped from the highest indexed PRB position in the subband of the transmission area of the downlink unicast data.
- the conflicting subband is used to transmit the public data; if the public data has a lower priority than the downlink unicast data, Then there is a conflicting subband for transmitting downlink unicast data.
- the conflict between the public data and the downlink unicast data means that the sum of the number of PRBs for transmitting public data and the number of PRBs for transmitting downlink unicast data in the same subband is greater than the number of PRBs included in the subband.
- the priority of the public data and the downlink unicast data may be preset or may be determined according to a specific situation (ie, may be determined by the base station).
- FIG. 3 is a schematic diagram of the public data and the downlink unicast data using the transmission area without overlapping. As shown in FIG. 3, the transmission area of the downlink unicast data is set to four sub-bands located on both sides of the system bandwidth, except for the above 4 The area other than the sub-bands is the transmission area of the public data.
- the resource mapping mode and downlink unicast of the public data in the transmission area of the public data.
- the data is mapped differently in the transmission area of the downlink unicast data.
- the public data may be mapped from the lowest indexed PRB position in the subband of the transmission area of the public data, and the downlink unicast data is mapped from the highest indexed PRB position in the subband of the downlink unicast data transmission area;
- the conflicting subband is used to transmit the data with high priority according to the preset priority or the priority determined according to the specific situation.
- FIG. 4 is a schematic diagram of a resource mapping manner of public data in a transmission area of public data and a resource mapping manner of downlink unicast data in a transmission area of downlink unicast data, as shown in FIG. 4, in one subframe.
- the public data in the transmission area of the public data, is mapped from the PRB position with the index of 0, occupies 3 PRBs, and the downlink unicast data is in the transmission area of the downlink unicast data.
- the mapping starts from the PRB position with index 5, occupying 2 PRB resources.
- the transmission area for acquiring data by the base station or the UE includes: acquiring a transmission area of the public data in a predefined manner, and acquiring a transmission area of the uplink/downlink unicast data by using a predefined manner or broadcast signaling or dedicated signaling. .
- the transmission area of the uplink/downlink unicast data is obtained through the broadcast signaling
- different types of UEs can obtain the transmission area of the uplink/downlink unicast data through different broadcast signaling.
- the broadcast signaling is a Master Information Block (MIB) signaling or a System Information Block (SIB) signaling.
- MIB Master Information Block
- SIB System Information Block
- the UE may acquire the transmission area of the uplink/downlink unicast data by using broadcast signaling from the base station. After the UE accesses the system, the UE may adjust the transmission area of the uplink/downlink unicast data of the UE by using the dedicated signaling from the base station. That is, the proprietary signaling priority is higher than the broadcast nature of MIB signaling or SIB signaling. Adjusting the transmission area of the uplink/downlink unicast data of the UE by using the dedicated signaling after the UE accesses the system facilitates timely adjustment and mitigates the potential impact on data transmission of other UEs.
- the transmission of the uplink/downlink unicast data of the first UE is configured by using dedicated signaling.
- the transmission area includes the first five sub-bands within the system bandwidth, and the transmission area for configuring the second UE uplink/downlink unicast data includes four sub-bands located on both sides of the system bandwidth.
- the transmission area of the uplink/downlink unicast data indicated by the dedicated signaling includes only a single subband, it indicates that the UE always transmits its uplink/downlink unicast data using a fixed subband.
- the broadcast signaling or the dedicated signaling includes at least: a field indicating a number of subbands included in a transmission area of the uplink/downlink unicast data; and a location indicating all subbands in the transmission area of the uplink/downlink unicast data. Field.
- the field indicating the position of all the sub-bands in the transmission area may be a value calculated according to the formula (1).
- 1 ⁇ k i ⁇ N total , k i ⁇ k i+1 , v u is a specific value of a field indicating the position of all sub-bands in the transmission area of the uplink/downlink unicast data; N u is up/down the number of subbands transmission area unicast data in the; N total is the total number of usable subbands in the system bandwidth; K i of N u subbands i-th subbands N total subbands indices (from 1 Start counting).
- the UE After the UE obtains N u and v u by receiving a dedicated signaling or broadcast signaling from the base station the UE can acquire the position u u N subbands by correlation methods (e.g., table lookup) The N u and v.
- correlation methods e.g., table lookup
- a dedicated low-cost MTC UE with both transmission bandwidth reduction and coverage enhancement requirements can also be set in a predefined manner, or by broadcast signaling or proprietary signaling.
- FIG. 5 is a schematic diagram of an uplink/downlink unicast data transmission area unique to a low-cost MTC UE having both transmission bandwidth reduction and coverage enhancement requirements, as shown in FIG. 5, the last two sub-ranges within the system bandwidth range.
- the band is specifically used as an uplink/downlink unicast data transmission area of a low-cost MTC UE having both transmission bandwidth reduction and coverage enhancement requirements, and other areas than the above two sub-bands are used as a low cost of public data and transmission bandwidth reduction.
- the sub-band hopping sequence of the base station or the UE acquiring the data includes: the base station or the UE acquires the sub-band hopping base sequence of the data according to the number of sub-bands in the transmission area of the data and the cell identifier; and obtains the sub-band hop according to the obtained
- the frequency base sequence acquires a subband hopping sequence of data.
- the length of the subband hopping base sequence or the subband hopping sequence of the data may be the number of subbands in the transmission area of the data, and is represented by a random order of N integers numbered 0 to (N-1); The number of subbands in the data transfer area.
- the sub-band hopping base sequence for acquiring data according to the number of sub-bands in the transmission area of the data and the cell identifier of the base station or the UE includes: generating a pseudo-random sequence according to the cell identifier; and acquiring a sub-band hop according to the generated pseudo-random sequence A frequency-based sequence; wherein the obtained sub-band hopping base sequences of different types of data are different.
- the subband hopping base sequence of the public data is different from the subband hopping base sequence of the uplink/downlink unicast data.
- the G sequence c(n) of sufficient length may be generated according to the cell identifier based on a pseudo-random sequence generation mechanism of the related LTE standard. Specifically, it can be calculated by using formula (2).
- x 1 (n+31) (x 1 (n+3)+x 1 (n+2)+x 1 (n+1)+x 1 (n))mod2
- the cellid is a cell identifier (that is, a cell identifier of a cell where the UE is located).
- the subband hopping base sequence for acquiring data according to the generated pseudo random sequence includes:
- N c and N u different decimal numbers are sequentially generated according to the pseudo random sequence; the generated N c different decimal numbers are sorted according to a first preset rule (for example, from small to large or large to small), and sorted N c different sequence of decimal position index N c different decimal number before ordering the public data as a sub-band hopping sequence group.
- N c is the number of subbands in the transmission area of the public data;
- Sorting the generated N u different decimal numbers according to a second preset rule for example, from small to large or large to small
- sorting the sorted N u different decimal numbers before the sorting by N u different The position index sequence in the decimal number is used as the subband hopping base sequence of the up/down unicast data.
- N c and N u different decimal numbers are sequentially generated according to the pseudo random sequence, including:
- random sequence c (n) of length sufficiently long contemplated K2 is 10, N c is 10, N u is 6, the first one decimal number with bits c (0) to c (9) corresponds to the second The decimal number corresponds to bits c(10) through c(19); wherein if bits c(10) through c(19) are identical to bits c(0) through c(9), bit c(10) is discarded ) to c (19) and adjust the second decimal number to correspond with bits c (20) to c (29); and so on; obtain the decimal number in the above manner until 10 different decimal numbers are generated; then, The bits in the sequence c(n) that have been used to generate 10 different decimal numbers are deleted to obtain a new sequence c(n), and six different decimal numbers are regenerated in accordance with the above method.
- Table 1 is the mapping relationship between all decimal numbers before and after sorting. As shown in Table 1, the subband hopping base sequence of the public data is: ⁇ 3, 7, 1, 8, 6, 4, 0, 9, 5, 2 ⁇ .
- the method for acquiring the subband hopping base sequence of the data is advantageous for ensuring that the subband hopping base sequence of the public data and the downlink unicast data is different when the transmission area of the public data and the downlink unicast data is the same.
- the public data is an SIB message or a random access response (RAR, Random Access Response) message, or paging message.
- RAR Random Access Response
- the subband hopping sequence of the SIB message, the subband hopping sequence of the RAR message, and the subband hopping sequence of the Paging message are different from each other, and have a certain relative offset.
- having a certain relative offset means that there is more than 0 and less than N c and satisfying the equation Positive integer O x,y , where ⁇ S x,0 ,S x,1 ,...,S x,Nc-1 ⁇ and ⁇ S y,0 ,S y,1 ,...,S y,Nc-1 ⁇ A subband hopping sequence of the SIB message, a subband hopping sequence of the RAR message, and any two sequences in the subband hopping sequence of the Paging message.
- the subband hopping sequence for acquiring data according to the obtained subband hopping base sequence includes:
- the subband hopping sequence of the SIB message is obtained according to formula (4).
- ⁇ S sib,0 ,S sib,1 ,...,S sib,Nc-1 ⁇ are subband hopping sequences of SIB messages
- ⁇ b c,0 ,b c,1 ,...,b c,Nc- 1 ⁇ is a subband hopping base sequence of public data
- O sib is a determined offset of a subband hopping sequence of the SIB message relative to the subband hopping base sequence of the public data.
- the subband hopping sequence of the RAR message is obtained according to formula (5).
- ⁇ S rar,0 ,S rar,1 ,...,S rar,Nc-1 ⁇ is the sub-band hopping sequence of the RAR message
- O rar is the sub-band hopping sequence of the RAR message and the sub-band hopping of the public data. The determined offset of the frequency base sequence.
- the subband hopping sequence of the Paging message is obtained according to formula (6).
- O sib , O rar and O paging are greater than or equal to 0 and less than N c , and O sib , O rar and O paging are different values.
- the method of obtaining the subband hopping sequence of the public data can ensure that different public data are transmitted by different subbands to avoid overlapping of subbands transmitting different public data in the same subframe.
- the subband hopping sequence for acquiring data according to the obtained subband hopping base sequence includes:
- the subband hopping sequence of the uplink/downlink unicast data is obtained according to formula (7).
- ⁇ S u,0 ,S u,1 ,...,S u,Nu-1 ⁇ are subband hopping sequences of up/down unicast data
- Nu-1 ⁇ is a subband hopping base sequence of uplink/downlink unicast data
- O ue is a UE proprietary offset.
- the sub-band of the transmitted data is a narrowband
- the proprietary offset may be a UE identifier
- the UE may obtain a proprietary offset by using proprietary signaling from the base station, where the proprietary signaling is proprietary downlink control information (DCI, Field in DL Control Information).
- DCI proprietary downlink control information
- the UE cannot normally receive the proprietary DCI information transmitted in the full bandwidth range in real time before receiving the uplink/downlink unicast data due to the limitation of the transmission bandwidth.
- the subband hopping sequence of the uplink/downlink unicast data is adjusted in real time through the proprietary DCI information, so it is desirable to limit the proprietary offset to the UE identity.
- the UE can receive the proprietary DCI information transmitted in the full bandwidth range in real time before receiving the uplink/downlink unicast data. Therefore, the subband hopping sequence of the uplink/downlink unicast data can be adjusted in real time through the proprietary DCI information to obtain more scheduling flexibility or scheduling gain.
- the foregoing method for obtaining a subband hopping sequence of data avoids or mitigates potential conflicts that exist when different UEs transmit uplink/downlink unicast data.
- Step 101 The base station or the UE determines, according to the obtained subband hopping sequence, a subband that transmits (transmits or receives) data, and transmits (transmits or receives) the data on the determined subband.
- determining, by the base station or the UE, the subband of the transmission data according to the obtained subband hopping sequence includes: determining, by the base station or the UE, the subband of the transmission data in the obtained transmission area according to the obtained subband hopping sequence.
- the base station or the UE determines, according to the obtained subband hopping sequence, the subband of the transmission data includes:
- the subband of the data transmitted in the transmission area of the data in the i-th time interval is determined according to the i-th element in the sub-band hopping sequence of the data.
- N c is the number of subbands for data transmission in the public area, on the number of subbands is N u / downlink unicast data transmission area of.
- the subbands transmitting the public data in the transmission area of the public data are indicated one by one by the N c elements included in the subband hopping sequence of the public data;
- the subbands for transmitting uplink/downlink unicast data in the transmission area of the uplink/downlink unicast data are N u elements included in the subband hopping sequence of the uplink/downlink unicast data in consecutive N u time intervals Indicated one by one.
- the size of the time interval may be one or more time slots, or one or more radio frames, or one or more subframes (eg, 2 or 4 subframes).
- the size of the time interval is also referred to as subband hopping granularity.
- the transmitting the data on the determined sub-band includes: transmitting the uplink/downlink unicast data on the determined sub-band by using a repeated transmission mechanism.
- the base station or the UE may transmit the repeatedly transmitted uplink/downlink unicast data from the first subframe of the first time interval (ie, the first time interval in each consecutive N u time intervals).
- all UEs may have the same or different time interval size and sub-band size.
- the size of the time interval and/or the determined size of the sub-band may be determined according to the maximum number of repeated transmissions of the uplink/downlink unicast data or the actual number of repeated transmissions.
- the maximum number of repeated transmissions of the uplink/downlink unicast data may be the maximum number of repeated transmissions of the uplink/downlink unicast data supported by the system, or may be the maximum repeated transmission of the uplink/downlink unicast data supported by the UE. frequency.
- the effect achieved by the above method may be that when the maximum number of repeated transmissions or the actual number of repeated transmissions is large, a larger time interval (but not exceeding the maximum time interval supported by the system or the UE) may be set and set.
- determining the size of the time interval and/or the size of the subband enables all UEs to share the same time interval size and/or subband size, which is advantageous. Avoid and mitigate resource collisions or collisions between different UEs.
- a repeat transmission mechanism may be used to transmit uplink/downlinks. Broadcast data.
- the size of the time interval is large. Subframes.
- the first time may be from the first time.
- the first subframe of the interval i.e., the first time region in each successive N u time intervals
- This method avoids or mitigates potential conflicts between different UEs while reducing the complexity of the scheduler.
- the channel estimation gain the size of the time interval, may be different from the size of the time interval of the MTC UE having only the transmission bandwidth reduction requirement.
- the time interval size shared by all UEs is determined according to the maximum number of repeated transmissions of uplink/downlink unicast data supported by the system (the subband size is always equal to a fixed value). Narrowband size); or, according to the number of repeated transmissions of uplink/downlink unicast data actually used by the UE, only the size of the UE-specific time interval (the subband size is always equal to the fixed narrowband size) is determined.
- the time interval size and/or the subband size shared by all the UEs are determined according to the maximum number of repeated transmissions of the uplink/downlink unicast data supported by the system, where the transmission bandwidth is not reduced, but the non-low cost MTC UE with the coverage enhancement requirement is determined.
- the UE-specific time interval size and/or sub-band size is determined according to the specific repeated transmission times of the uplink/downlink unicast data actually used by each UE.
- the subband preset or the configured transmission data is unavailable (for example, most of the resources in the downlink subframe 0 have been used for the transmission of the synchronization signal and/or the MIB signaling. Band), determines that the subband of the transmitted data is an additional subband.
- the additionally available sub-bands may be the first available sub-bands that are not used for other data transmissions after the unavailable sub-bands. This method ensures to a certain extent that the data can be transmitted normally without the subband of the transmission data acquired according to the subband hopping sequence being used. It should be noted that the "described here" is located in...
- the transmitting the data on the determined sub-band includes: transmitting the uplink unicast control data on the fixed PRB of the determined sub-band of the uplink unicast data, and transmitting the uplink unicast on the PRB except the fixed PRB. Business data.
- FIG. 6 is a schematic diagram of the uplink unicast control data occupying a fixed PRB.
- a subband for transmitting uplink unicast data includes 6 PRB resources, and a PRB with index 0 is It is used to transmit uplink unicast control data, that is, if the sub-band control uplink data control data is to be transmitted, the PRB with the index of 0 in the sub-band is fixedly transmitted.
- uplink unicast control data from different UEs may be multiplexed in the same fixed PRB resource by using an orthogonal code or an orthogonal sequence.
- the method of the embodiment of the present invention ensures a low-cost MTC UE with reduced transmission bandwidth or a communication requirement of a non-low-cost MTC UE with no reduction in transmission bandwidth but with coverage enhancement requirements, and obtains a larger frequency diversity gain while avoiding or reducing
- the data transmission performance between the low-cost MTC UE having only the transmission bandwidth reduction requirement and the low-cost MTC UE having both the transmission bandwidth reduction and the coverage enhancement requirement and the data transmission between the different data types is improved, thereby improving the data transmission performance.
- the subband hopping sequence of the SIB is ⁇ 3, 7, 1, 8, 6, 4, 0, 9, 5, 2 ⁇ ;
- Transmitting subbands of SIB messages in public data transmission areas over 10 consecutive time intervals Is determined by 10 elements in the subband hopping sequence of the SIB message one by one; the subband transmitting the RAR message in the public data transmission area is determined one by one by the 10 elements included in the subband hopping sequence of the RAR message; The subband for transmitting the Paging message in the public data transmission area is determined one by one by the 10 elements included in the subband hopping sequence of the paging message.
- FIG. 7 is a schematic diagram of a subband position for transmitting different public data according to the first embodiment.
- the subband transmitting the SIB message in the first time interval, is a subband numbered 3, and the RAR is transmitted.
- the subband of the message is a subband numbered 4, and the subband transmitting the Paging message is a subband numbered 5; in the 4th time interval, the subband transmitting the SIB message is a subband numbered 8, and the RAR message is transmitted.
- the subband is a subband numbered 9, and the subband transmitting the Paging message is a subband numbered 0.
- the low-cost MTC UE When two or three messages in the SIB, the RAR message, and the Paging message are simultaneously transmitted, the low-cost MTC UE with the corresponding transmission bandwidth reduction selects one of the messages to receive at most according to its own needs.
- the above method ensures that different public data are always located in different sub-bands, thereby avoiding the overlap of sub-bands transmitting different public data in the same sub-frame.
- the subbands for transmitting uplink/downlink unicast data in the uplink/downlink unicast data transmission area are determined by 10 elements included in the subband hopping sequence of the uplink/downlink unicast data in successive 10 time intervals. .
- FIG. 8 is a schematic diagram of a subband position for transmitting uplink/downlink unicast data according to the second embodiment.
- the subband of the uplink/downlink unicast data is numbered as Subband of 4; in the 5th time interval, the subband transmitting the uplink/downlink unicast data is the subband numbered 7.
- the low-cost MTC UE When downlink unicast data is transmitted simultaneously with at least one public data and is located in a different subband than the public data, the low-cost MTC UE with corresponding transmission bandwidth reduction selects all at most according to its own needs. One of the public data or the downlink unicast data is selected for reception.
- the above method ensures that different uplink/downlink unicast data of different UEs use different subband hopping sequences, thereby avoiding or mitigating conflicts between uplink/downlink unicast data of different UEs.
- FIG. 9 is a schematic diagram of limiting the starting subframe position of uplink/downlink unicast data repeatedly transmitted by an MTC UE having both a transmission bandwidth reduction and a coverage enhancement requirement, as shown in FIG. 9, assuming that the system bandwidth is within the range
- the subband hopping base sequence of the uplink/downlink unicast data is: ⁇ 0, 1, 2 ⁇ ; the identifiers ueid1, ueid2, and ueid3 of the three UEs are 0, 1, and 2, respectively.
- the subband hopping sequences of the above three UE uplink/downlink unicast data are: ⁇ 0, 1, 2 ⁇ , ⁇ 1, 2, 0 ⁇ and ⁇ 2, 0, 1 ⁇ , respectively.
- the subband transmitting the uplink/downlink unicast data of each UE in the uplink/downlink unicast data transmission area is the uplink/downlink unicast data of each UE.
- the subband hopping sequence consists of 3 elements determined one by one.
- the actual duration of repeated transmission of uplink/downlink unicast data per UE depends on the coverage enhancement target it needs to implement.
- the above method reduces the complexity of the scheduler.
- FIG. 10 is a schematic diagram of a special sub-band position of the low-cost MTC UE public data transmission that is not available for transmission bandwidth reduction, as shown in FIG. 10(a).
- the subbands transmitting the SIB message, the RAR message, and the Paging message in the range of the subframe x should be subbands numbered 3, 4, and 5, respectively; however, if in the subframe A sub-band numbered 4 in the x range is configured as a low-cost MTC UE data transmission that is not available for transmission bandwidth reduction, and the RAR message originally supposed to be transmitted in the sub-band numbered 4 will be transferred to the sub-band numbered 6. (The first one after the sub-band numbered 4 is not used for the available sub-bands of other public data transmissions), as shown in Figure 10(b).
- the above method ensures to a certain extent that the low-cost MTC UE with reduced transmission bandwidth in the case where the sub-band of the transmission public data acquired according to the sub-band hopping sequence cannot be used by the UE can be normal. Transfer public data.
- the embodiment of the invention also discloses a computer program, comprising program instructions, which when executed by a computer, enable the computer to perform any of the above methods for transmitting data.
- the embodiment of the invention also discloses a carrier carrying the computer program.
- an embodiment of the present invention further provides an apparatus for transmitting data, including at least:
- the obtaining module 1101 is configured to: acquire a subband hopping sequence of data
- the determining module 1102 is configured to: determine a subband of the transmitted data according to the obtained subband hopping sequence;
- the transmission module 1103 is configured to: transmit data on the determined sub-band;
- the obtaining module 1101 is further configured to:
- the determining module 1102 is specifically configured to:
- a subband of the transmitted data in the transmission area is determined according to the obtained subband hopping sequence.
- the obtaining module 1101 is specifically configured to:
- the transmission area of the public data is obtained in a predefined manner, and the transmission area of the uplink/downlink unicast data is obtained through a predefined manner or broadcast signaling or proprietary signaling.
- the broadcast signaling or the dedicated signaling includes at least: a field indicating the number of subbands included in the transmission area of the uplink/downlink unicast data; and a transmission area indicating the uplink/downlink unicast data.
- the obtaining module 1101 is also configured to:
- 1 ⁇ k i ⁇ N total , k i ⁇ k i+1 , v u is a specific value of a field indicating the position of all sub-bands in the transmission area of the uplink/downlink unicast data; N u is up/down The number of subbands in the transmission area of the unicast data; N total is the total number of available subbands in the system bandwidth; k i is the index of the i th subband in the N total subbands in the N u subbands.
- the obtaining module 1101 is specifically configured to:
- the obtaining module 1101 is further configured to:
- Generating a pseudo-random sequence according to the cell identifier acquiring a sub-band hopping base sequence of the data according to the generated pseudo-random sequence; wherein the obtained sub-band hopping base sequences of different types of data are different.
- the obtaining module 1101 is further configured to:
- N c is the number of subbands in the transmission area of the public data
- the obtaining module 1101 is further configured to:
- K1 is 1 begins to take values in an incremental manner, 1 ⁇ K3 ⁇ K1, and K2 is the number of consecutive bits extracted.
- the obtaining module 1101 is further configured to:
- ⁇ S sib,0 ,S sib,1 ,...,S sib,Nc-1 ⁇ are subband hopping sequences of SIB messages
- ⁇ b c,0 ,b c,1 ,...,b c,Nc- 1 ⁇ is a subband hopping base sequence of public data
- O sib is a determined offset of a subband hopping sequence of the subband hopping sequence of the SIB message relative to the public data
- ⁇ S rar,0 ,S rar,1 ,...,S rar,Nc-1 ⁇ are subband hopping sequences of RAR messages
- ⁇ b c,0 ,b c,1 ,...,b c,Nc- 1 ⁇ is a subband hopping base sequence of public data
- O rar is a subband hopping sequence of the RAR message and a determined offset of the subband hopping base sequence of the public data
- ⁇ S Paging,0 , S Paging,1 ,...,S Paging,Nc-1 ⁇ is a subband hopping sequence of the paging message
- ⁇ b c,0 , b c,1 ,...,b c,Nc- 1 ⁇ is a subband hopping base sequence of public data
- O Paging is a determining offset of a subband hopping sequence of a Paging message with respect to a subband hopping base sequence of the public data
- O sib , O rar and O paging are greater than or equal to 0 and less than N c , and O sib , O rar and O paging are different values.
- the obtaining module 1101 is further configured to:
- ⁇ S u,0 ,S u,1 ,...,S u,Nu-1 ⁇ are subband hopping sequences of up/down unicast data
- Nu-1 ⁇ is a subband hopping base sequence of uplink/downlink unicast data
- O ue is a UE proprietary offset.
- the determining module 1102 is further configured to:
- i When the data is public data, i takes a positive integer from 1 to N c ; when the data is up/down unicast data, i takes a positive integer from 1 to N u ; where N c is the transmission area of the public data The number of subbands, N u is the number of subbands in the transmission area of the uplink/downlink unicast data.
- the determining module 1102 is further configured to:
- the subband of the transmitted data is determined to be another available subband.
- the technical solution of the present invention includes: a baseband or user terminal UE acquires a subband hopping sequence of data; and the base station or the UE determines a subband of the transmitted data according to the obtained subband hopping sequence, on the determined subband. Data is transmitted; wherein different types of data have different sub-band hopping sequences.
- the subband of the transmitted data is determined according to the obtained subband hopping sequence, and the frequency hopping transmission of different types of data is solved, thereby improving the performance of data transmission. Therefore, the present invention has strong industrial applicability.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一种传输数据的方法和装置,包括基站或用户终端UE获取数据的子带跳频序列;基站或UE根据获得的子带跳频序列确定传输数据的子带,在确定的子带上传输数据;其中,不同类型的数据具有不同的子带跳频序列。通过本发明的方案,根据获得的子带跳频序列确定传输数据的子带,解决了不同类型的数据的跳频传输,从而提高了数据传输的性能。
Description
本文涉及传输数据的技术领域,尤指一种传输数据的方法和装置。
机器类型通信(MTC,Machine Type Communication)用户终端(UE,User Equipment),又称机器到机器(M2M,Machine to Machine)用户设备,是现阶段物联网的主要应用形式。低功耗低成本是其可大规模应用的重要保障。智能抄表(Smart Metering)类设备是MTC UE最典型的应用之一。目前市场上部署的M2M用户设备主要基于全球移动通信(GSM,Global System of Mobile communication)系统。
近年来,由于长期演进(LTE,Long Term Evolution)系统的频谱效率较高,所以越来越多的移动运营商已经确定LTE作为未来宽带无线通信系统的演进方向,基于LTE的M2M多种类数据业务也将更具吸引力。但是,只有基于LTE的M2M用户设备的成本做到比基于GSM的M2M用户设备低,M2M业务才能真正从GSM转到LTE系统上,所以如何能够彻底地降低LTE-M2M用户设备的成本成为各公司和研究机构所要考虑的首要问题。
MTC UE的成本主要来自两部分:基带处理部分和射频部分,而减小UE上行和/或下行传输带宽(包括基带和射频带宽)是降低MTC UE成本的一种非常有效的方式,例如,在系统带宽为20MHz的情况下,设置MTC UE上行和/或下行传输带宽仅为1.4MHz等窄带带宽。目前,为实现上述的窄带传输,相关的做法是为MTC UE的公有数据和上/下行单播数据分别设置固定的传输窄带;上述方法虽然简单,但其导致MTC UE无法获取频率分集增益和/或频率选择性调度增益,从而降低了MTC UE的数据传输性能。
发明内容
为了解决上述问题,本发明提出了一种传输数据的方法和装置,能够提
高数据传输性能。
为了达到上述目的,采用如下技术方案:
本发明提出了一种传输数据的方法,包括:
基站或用户终端UE获取数据的子带跳频序列;
基站或UE根据获得的子带跳频序列确定传输数据的子带,在确定的子带上传输数据;
其中,不同类型的数据具有不同的子带跳频序列。
可选地,该方法之前还包括:所述基站或UE获取所述数据的传输区域;
所述基站或UE根据获得的子带跳频序列确定传输数据的子带包括:
所述基站或所述UE根据所述获得的子带跳频序列确定所述传输区域中传输数据的子带。
可选地,所述传输区域包括一个或一个以上子带,其中,所述子带占用一个或一个以上物理资源块。
可选地,所述数据为公有数据或上/下行单播数据,所述不同类型的数据具有不同的子带跳频序列包括:
所述公有数据的子带跳频序列与所述上/下行单播数据的子带跳频序列不同。
可选地,所述基站或所述UE获取所述数据的传输区域包括:通过预定义的方式获取所述公有数据的传输区域,通过预定义的方式或广播信令或专有信令获取所述上/下行单播数据的传输区域。
可选地,所述公有数据的传输区域与所述下行单播数据的传输区域之间没有重叠;
或者,所述公有数据在公有数据的传输区域中的资源映射方式与所述下行单播数据在下行单播数据的传输区域中的资源映射方式不同。
可选地,所述公有数据与所述下行单播数据的传输区域之间没有重叠包括:所述下行单播数据的传输区域为系统带宽的两侧,所述公有数据的传输区域为系统带宽中除所述下行单播数据的传输区域以外的其他区域。
可选地,所述公有数据在公有数据的传输区域中的资源映射方式与下行单播数据在下行单播数据的传输区域中的资源映射方式不同包括:
所述公有数据在所述公有数据的传输区域的子带中从最低索引的物理资源块PRB位置开始映射,所述下行单播数据在所述下行单播数据的传输区域的子带中从最高索引的PRB位置开始映射;
当所述公有数据与所述下行单播数据存在冲突时,如果所述公有数据的优先级高于所述下行单播数据,则存在冲突的子带用于传输所述公有数据;如果所述公有数据的优先级低于所述下行单播数据,则所述存在冲突的子带用于传输所述下行单播数据。
可选地,所述广播信令为主信息块MIB信令或系统信息块SIB信令。
可选地,所述广播信令或所述专有信令至少包括:指示上/下行单播数据的传输区域中包括的子带数的字段;和指示上/下行单播数据的传输区域中所有子带的位置的字段。
其中,1≤ki≤Ntotal,ki<ki+1,vu为所述指示上/下行单播数据的传输区域中所有子带的位置的字段的具体取值;Nu为上/下行单播数据的传输区域中的子带数;Ntotal为系统带宽中的总的可用子带数;ki为Nu个子带中的第i个子带在Ntotal个子带中的索引。
可选地,所述基站或UE获取数据的子带跳频序列包括:
所述基站或所述UE根据所述数据的传输区域中的子带数和小区标识,获取数据的子带跳频基序列;根据获得的子带跳频基序列获取所述数据的子带跳频序列。
可选地,所述数据的子带跳频基序列或所述子带跳频序列的长度为所述数据的传输区域中的子带数。
可选地,所述基站或UE根据数据的传输区域中的子带数以及小区标识,获取数据的子带跳频基序列包括:
根据所述小区标识生成伪随机序列;根据生成的伪随机序列获取数据的
子带跳频基序列;其中,获得的不同类型的数据的子带跳频基序列不同。
可选地,所述根据生成的伪随机序列获取数据的子带跳频基序列包括:
根据所述伪随机序列依次生成Nc个和Nu个不同的十进制数;
将生成的Nc个不同的十进制数按照第一预设规则进行排序,并将排序后的Nc个不同的十进制数在排序前的Nc个不同的十进制数中的位置索引序列作为所述公有数据的子带跳频基序列;其中,Nc为所述公有数据的传输区域中的子带数;
将生成的Nu个不同的十进制数按照第二预设规则进行排序,并将排序后的Nu个不同的十进制数在排序前的Nu个不同的十进制数中的位置索引序列作为所述上/下行单播数据的子带跳频基序列;其中,Nu为所述上/下行单播数据的传输区域中的子带数。
可选地,所述根据伪随机序列依次生成Nc个和Nu个不同的十进制数包括:
从生成的伪随机序列中提取第(K1-1)K2+1到K1K2个连续比特,并将提取的第(K1-1)K2+1到K1K2个连续比特转化为对应的十进制数;如果提取的第(K1-1)K2+1到K1K2个连续比特与提取的第(K3-1)K2+1到K3K2个连续比特相同,则丢弃提取的第(K1-1)K2+1到K1K2个连续比特;如果不相同,则将提取的第(K1-1)K2+1到K1K2个连续比特转化为对应的十进制数;继续执行提取连续比特的步骤直到获得Nc个不同的十进制数;
将所述生成的伪随机序列中用于生成Nc个不同的十进制数的比特删除生成新的伪随机序列,并按照上述方法根据所述新的伪随机序列生成Nu个不同的十进制数;其中,K1从1开始以递增的方式取值,1<K3<K1,K2为提取的连续比特数。
可选地,所述公有数据为系统信息块SIB消息、或随机接入响应RAR消息、或寻呼Paging消息。
可选地,所述SIB消息的子带跳频序列、所述RAR消息的子带跳频序列以及所述Paging消息的子带跳频序列相互不同,并且具有确定的相对偏置。
可选地,所述根据获得的子带跳频基序列获取数据的子带跳频序列包括:
其中,{Ssib,0,Ssib,1,…,Ssib,Nc-1}为所述SIB消息的子带跳频序列,{bc,0,bc,1,…,bc,Nc-1}为所述公有数据的子带跳频基序列,Osib为所述SIB消息的子带跳频序列相对所述公有数据的子带跳频基序列的确定偏置;
其中,{Srar,0,Srar,1,…,Srar,Nc-1}为所述RAR消息的子带跳频序列,{bc,0,bc,1,…,bc,Nc-1}为所述公有数据的子带跳频基序列,Orar为所述RAR消息的子带跳频序列相对所述公有数据的子带跳频基序列的确定偏置;
其中,{SPaging,0,SPaging,1,…,SPaging,Nc-1}为所述Paging消息的子带跳频序列,{bc,0,bc,1,…,bc,Nc-1}为所述公有数据的子带跳频基序列,OPaging为所述Paging消息的子带跳频序列相对所述公有数据的子带跳频基序列的确定偏置;
其中,Osib、Orar和Opaging大于或等于0且小于Nc,并且Osib、Orar和Opaging取值互不相同。
可选地,所述根据获得的子带跳频基序列获取数据的子带跳频序列包括:
其中,{Su,0,Su,1,…,Su,Nu-1}为所述上/下行单播数据的子带跳频序列,{bu,0,bu,1,…,bu,Nu-1}为所述上/下行单播数据的子带跳频基序列,Oue为所述UE的专有偏置。
可选地,所述基站或UE根据获得的子带跳频序列确定传输数据的子带包括:
根据所述数据的子带跳频序列中的第i个元素,确定第i个时间区间内在所述数据的传输区域中传输数据的子带;
当所述数据为公有数据时,所述i取1到Nc的正整数;当所述数据为上/
下行单播数据时,所述i取1到Nu的正整数;其中,所述Nc为所述公有数据的传输区域中的子带数,所述Nu为所述上/下行单播数据的传输区域中的子带数。
可选地,所述时间区间的大小为一个或一个以上时隙、或一个或一个以上无线帧、或一个或一个以上子帧。
可选地,所述在确定的子带上传输数据包括:采用重复传输机制在确定的子带上传输所述上/下行单播数据。
可选地,所述基站或UE从第一个时间区间的第一个子帧开始传输重复传输的上/下行单播数据。
可选地,所述时间区间的大小和/或所述确定的子带的大小根据所述上/下行单播数据的最大重复传输次数或实际重复传输次数确定。
可选地,所述上行单播数据包括:上行单播业务数据和上行单播控制数据;
所述上行单播控制数据包括:调度请求SR、混合自动重复请求确认HARQ-ACK和信道状态信息。
可选地,所述在确定的子带上传输数据包括:
在确定的传输上行单播数据的子带的固定物理资源块PRB上传输所述上行单播控制数据,在除所述固定PRB以外的其他PRB上传输所述上行单播业务数据。
可选地,当判断出确定的传输数据的子带预设或配置为不可用时,确定所述传输数据的子带为另外可用的子带。
本发明还提出了一种传输数据的装置,包括:
获取模块,设置成:获取数据的子带跳频序列;
确定模块,设置成:根据获得的子带跳频序列确定传输数据的子带;
传输模块,设置成:在确定的子带上传输数据;
其中,不同类型的数据具有不同的子带跳频序列。
可选地,所述获取模块还设置成:
获取所述数据的传输区域;
所述确定模块具体设置成:
根据所述获得的子带跳频序列确定所述传输区域中传输数据的子带。
可选地,所述获取模块具体设置成:
通过预定义的方式获取公有数据的传输区域,通过预定义的方式或广播信令或专有信令获取上/下行单播数据的传输区域。
可选地,所述广播信令或所述专有信令至少包括:指示上/下行单播数据的传输区域中包括的子带数的字段;和指示上/下行单播数据的传输区域中所有子带的位置的字段;
所述获取模块还设置成:
其中,1≤ki≤Ntotal,ki<ki+1,vu为所述指示上/下行单播数据的传输区域中所有子带的位置的字段的具体取值;Nu为上/下行单播数据的传输区域中的子带数;Ntotal为系统带宽中的总的可用子带数;ki为Nu个子带中的第i个子带在Ntotal个子带中的索引。
可选地,所述获取模块具体设置成:
根据所述数据的传输区域中的子带数和所述小区标识,获取数据的子带跳频基序列;根据获得的子带跳频基序列获取所述数据的子带跳频序列。
可选地,所述获取模块还设置成:
根据所述小区标识生成伪随机序列;根据生成的伪随机序列获取数据的子带跳频基序列;其中,获得的不同类型的数据的子带跳频基序列不同。
可选地,所述获取模块还设置成:
根据所述伪随机序列依次生成Nc个和Nu个不同的十进制数;
将生成的Nc个不同的十进制数按照第一预设规则进行排序,并将排序后的Nc个不同的十进制数在排序前的Nc个不同的十进制数中的位置索引序列
作为所述公有数据的子带跳频基序列;其中,Nc为所述公有数据的传输区域中的子带数;
将生成的Nu个不同的十进制数按照第二预设规则进行排序,并将排序后的Nu个不同的十进制数在排序前的Nu个不同的十进制数中的位置索引序列作为所述上/下行单播数据的子带跳频基序列;其中,Nu为所述上/下行单播数据的传输区域中的子带数。
可选地,所述获取模块还设置成:
从生成的伪随机序列中提取第(K1-1)K2+1到K1K2个连续比特,并将提取的第(K1-1)K2+1到K1K2个连续比特转化为对应的十进制数;如果提取的第(K1-1)K2+1到K1K2个连续比特与提取的第(K3-1)K2+1到K3K2个连续比特相同,则丢弃提取的第(K1-1)K2+1到K1K2个连续比特;如果不相同,则将提取的第(K1-1)K2+1到K1K2个连续比特转化为对应的十进制数;继续执行提取连续比特的步骤直到获得Nc个不同的十进制数;
将所述生成的伪随机序列中用于生成Nc个不同的十进制数的比特删除生成新的伪随机序列,并按照上述方法根据所述新的伪随机序列生成Nu个不同的十进制数;其中,K1从1开始以递增的方式取值,1<K3<K1,K2为提取的连续比特数。
可选地,所述获取模块还设置成:
其中,{Ssib,0,Ssib,1,…,Ssib,Nc-1}为所述SIB消息的子带跳频序列,{bc,0,bc,1,…,bc,Nc-1}为所述公有数据的子带跳频基序列,Osib为所述SIB消息的子带跳频序列相对所述公有数据的子带跳频基序列的确定偏置;
其中,{Srar,0,Srar,1,…,Srar,Nc-1}为所述RAR消息的子带跳频序列,{bc,0,bc,1,…,bc,Nc-1}为所述公有数据的子带跳频基序列,Orar为所述RAR消息的子带跳频序列相对所述公有数据的子带跳频基序列的确定偏置;
根据公式 获取所述Paging消息的子带跳频序列;
其中,{SPaging,0,SPaging,1,…,SPaging,Nc-1}为所述Paging消息的子带跳频序列,{bc,0,bc,1,…,bc,Nc-1}为所述公有数据的子带跳频基序列,OPaging为所述Paging消息的子带跳频序列相对所述公有数据的子带跳频基序列的确定偏置;
其中,Osib、Orar和Opaging大于或等于0且小于Nc,并且Osib、Orar和Opaging取值互不相同。
可选地,所述获取模块还设置成:
其中,{Su,0,Su,1,…,Su,Nu-1}为所述上/下行单播数据的子带跳频序列,{bu,0,bu,1,…,bu,Nu-1}为所述上/下行单播数据的子带跳频基序列,Oue为UE的专有偏置。
可选地,所述确定模块还设置成:
根据所述数据的子带跳频序列中的第i个元素,确定第i个时间区间内在所述数据的传输区域中传输数据的子带;
当所述数据为公有数据时,所述i取1到Nc的正整数;当所述数据为上/下行单播数据时,所述i取1到Nu的正整数;其中,所述Nc为所述公有数据的传输区域中的子带数,所述Nu为所述上/下行单播数据的传输区域中的子带数。
可选地,所述数据为公有数据或上/下行单播数据;所述上行单播数据包括:上行单播业务数据和上行单播控制数据;
所述传输模块具体设置成:
在确定的传输上行单播数据的子带的固定物理资源块PRB上传输所述上行单播控制数据,在所述确定的上行单播数据的子带的其他PRB上传输所述上行单播业务数据。
可选地,所述确定模块还设置成:
判断出确定的传输数据的子带预设或配置为不可用,确定传输数据的子带为另外可用的子带。
与相关技术相比,本发明技术方案包括:基站或用户终端UE获取数据的子带跳频序列;基站或UE根据获得的子带跳频序列确定传输数据的子带,在确定的子带上传输数据;其中,不同类型的数据具有不同的子带跳频序列。通过本发明的方案,根据获得的子带跳频序列确定传输数据的子带,解决了不同类型的数据的跳频传输,从而提高了数据传输的性能。
附图概述
下面对本发明实施例中的附图进行说明,实施例中的附图是用于对本发明的进一步理解,与说明书一起用于解释本发明,并不构成对本发明保护范围的限制。
图1为本发明实施例的传输数据的方法的流程图;
图2为传输区域的示意图;
图3为公有数据和下行单播数据使用没有重叠的传输区域的示意图;
图4为公有数据在公有数据的传输区域中的资源映射方式和下行单播数据在下行单播数据的传输区域中的资源映射方式不同的示意图;
图5为同时具有传输带宽减少和覆盖增强需求的低成本MTC UE所专有的上/下行单播数据传输区域的示意图;
图6为上行单播控制数据占用固定PRB的示意图;
图7为第一实施例的传输不同公有数据的子带位置的示意图;
图8为第二实施例的传输上/下行单播数据的子带位置的示意图;
图9为第三实施例的限制同时具有传输带宽减少和覆盖增强需求的MTC UE重复传输的上/下行单播数据的起始子帧位置的示意图;
图10为第四实施例的不可用于传输带宽减少的低成本MTC UE公有数据传输的特殊子带位置的示意图;
图11为本发明实施例的传输数据的装置的结构组成示意图。
本发明的较佳实施方式
下面结合附图对本发明作进一步的描述,并不能用来限制本发明的保护范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的各种方式可以相互组合。
参见图1,本发明实施例提出了一种传输(包括发送或接收)数据的方法,包括:
步骤100、基站或UE获取数据的子带跳频序列;其中,不同类型的数据具有不同的子带跳频序列。
本步骤中,UE可以是传输带宽减少的低成本MTC UE、或传输带宽没有减少但具有覆盖增强需求的非低成本MTC UE。
其中,传输带宽减少的低成本MTC UE可以是只具有传输带宽减少需求的低成本MTC UE,或同时具有传输带宽减少和覆盖增强需求的低成本MTC UE。
本步骤中,数据为公有数据或上/下行单播数据,不同类型的数据具有不同的子带跳频序列包括:公有数据的子带跳频序列与上/下行单播数据的子带跳频序列不同。
其中,上行单播数据包括:上行单播业务数据和上行单播控制数据。其中,上行单播控制数据包括调度请求(SR,Scheduling Request)、混合自动重复请求确认(HARQ-ACK,Hybrid Automatic Repeat Request Acknowledgement)和信道状态信息。
本步骤中,子带是指调度器对数据进行调度后传输数据的子带,由于系统控制开销和/或上/下行单播业务需求,调度器通常不会一直调度数据,因此,可以说子带是潜在的传输数据的子带。
本步骤中,还获取数据的传输区域。
其中,数据的传输区域包括一个或一个以上子带,其中,每个子带占用一个或一个以上物理资源块(PRB,Physical Resource Block)。
传输区域可以是连续的区域,也可以是离散的区域。例如,图2为传输区域的示意图,如图2所示,第一UE的上/下行单播数据的传输区域为连续的5个子带,第二UE的上/下行单播数据的传输区域为离散的4个子带。
其中,公有数据与下行单播数据的传输区域之间没有重叠,或者公有数据在公有数据的传输区域中的资源映射方式与下行单播数据在下行单播数据的传输区域中的资源映射方式不同。
其中,公有数据与下行单播数据的传输区域之间没有重叠包括:下行单播数据的传输区域为系统带宽的两侧,公有数据的传输区域为系统带宽中除下行单播数据的传输区域以外的其他区域。
其中,公有数据在公有数据的传输区域中的资源映射方式与下行单播数据在下行单播数据的传输区域中的资源映射方式不同包括:公有数据在公有数据的传输区域的子带中从最低索引的PRB位置开始映射,下行单播数据在下行单播数据的传输区域的子带中从最高索引的PRB位置开始映射。当公有数据与下行单播数据存在冲突时,如果公有数据的优先级高于下行单播数据,则存在冲突的子带用于传输公有数据;如果公有数据的优先级低于下行单播数据,则存在冲突的子带用于传输下行单播数据。公有数据与下行单播数据存在冲突是指同一个子带内用于传输公有数据的PRB数和用于传输下行单播数据的PRB数的和大于该子带包含的PRB数。
其中,公有数据和下行单播数据的优先级可以预先设置,也可以根据具体情况来确定(即可以由基站来确定)。
例如,对于传输带宽减少的低成本MTC UE,为避免或减轻公有数据和下行单播数据之间的冲突,可以使公有数据与下行单播数据的传输区域之间没有重叠。具体可以使所有下行单播数据的传输区域集中在系统带宽的两侧,除下行单播数据传输区域以外的其它区域为公有数据的传输区域。该方法能够完全避免公有数据和下行单播数据的冲突。例如,图3为公有数据和下行单播数据使用没有重叠的传输区域的示意图,如图3所示,下行单播数据的传输区域被设置为位于系统带宽两侧的4个子带,除了上述4个子带以外的其它区域为公有数据的传输区域。
也可以使公有数据在公有数据的传输区域中的资源映射方式与下行单播
数据在下行单播数据的传输区域中的资源映射方式不同。具体可以使公有数据在公有数据的传输区域的子带中从最低索引的PRB位置开始映射,下行单播数据在下行单播数据的传输区域的子带中从最高索引的PRB位置开始映射;当公有数据与下行单播数据存在冲突时,根据预先设置的优先级或根据具体情况所确定的优先级,将存在冲突的子带用于传输优先级高的数据。具体地,如果公有数据的优先级高于下行单播数据,则存在冲突的子带用于传输公有数据;如果公有数据的优先级低于下行单播数据,则存在冲突的子带用于传输下行单播数据。该方法有利于当公有数据与下行单播数据的传输区域存在重叠时,减轻公有数据和下行单播数据的冲突,并且有利于提高资源的利用效率。例如,图4为公有数据在公有数据的传输区域中的资源映射方式和下行单播数据在下行单播数据的传输区域中的资源映射方式不同的示意图,如图4所示,在一个子帧内的包括6个PRB的子带中,在公有数据的传输区域中,公有数据从索引为0的PRB位置开始映射,占用3个PRB,在下行单播数据的传输区域中,下行单播数据从索引为5的PRB位置开始映射,占用2个PRB资源。
其中,基站或UE获取数据的传输区域包括:通过预定义的方式获取公有数据的传输区域,以及,通过预定义的方式或广播信令或专有信令获取上/下行单播数据的传输区域。
其中,当通过广播信令获取上/下行单播数据的传输区域时,不同类型的UE可以通过不同的广播信令获取上/下行单播数据的传输区域。
其中,广播信令为主信息块(MIB,Master Information Block)信令或系统信息块(SIB,System Information Block)信令。
具体地,在UE接入系统之前,UE可以通过来自基站的广播信令获取上/下行单播数据的传输区域。在UE接入系统之后,UE可以通过来自基站的专有信令调整UE的上/下行单播数据的传输区域。即专有信令优先级高于广播性质的MIB信令或SIB信令。UE在接入系统之后通过专有信令调整UE的上/下行单播数据的传输区域有利于及时调整并减轻对其它UE的数据传输的潜在影响。
例如,如附图2所示,通过专有信令配置第一UE上/下行单播数据的传
输区域包括系统带宽内的最前面的5个子带,配置第二UE上/下行单播数据的传输区域包括位于系统带宽两侧的4个子带。其中,如果通过专有信令所指示的上/下行单播数据的传输区域仅包括唯一一个子带,则表示UE始终使用固定的子带传输它的上/下行单播数据。
其中,广播信令或专有信令至少包括:指示上/下行单播数据的传输区域中包括的子带数的字段;和指示上/下行单播数据的传输区域中所有子带的位置的字段。
其中,指示传输区域中所有子带的位置的字段可以是根据公式(1)计算得到的值。
其中,1≤ki≤Ntotal,ki<ki+1,vu为指示上/下行单播数据的传输区域中所有子带的位置的字段的具体取值;Nu为上/下行单播数据的传输区域中的子带数;Ntotal为系统带宽中的总的可用子带数;ki为Nu个子带中的第i个子带在Ntotal个子带中的索引(从1开始计数)。
当UE通过接收来自基站的广播信令或专有信令获取Nu和vu之后UE能够根据Nu和vu通过相关的方法(如查表的方式)获取Nu个子带的位置。
其中,对于传输带宽减少的低成本MTC UE,还可以以预定义的方式,或者,通过广播信令或专有信令为同时具有传输带宽减少和覆盖增强需求的低成本MTC UE设置专有的上/下行单播数据的传输区域;广播信令包括MIB信令或SIB信令。
在传输带宽减少的低成本MTC UE和同时具有传输带宽减少和覆盖增强需求的低成本MTC UE共存时,上述方法可以从可用物理资源上实现以上两种UE类型的上/下行单播数据的相互隔离,从而达到了进一步避免或减轻两者之间的相互影响的目的。例如,图5为同时具有传输带宽减少和覆盖增强需求的低成本MTC UE所专有的上/下行单播数据传输区域的示意图,如图5所示,在系统带宽范围内的最后的2个子带被专门用作同时具有传输带宽减少和覆盖增强需求的低成本MTC UE的上/下行单播数据传输区域,除了上述2个子带以外的其它区域被用作公有数据和传输带宽减少的低成本MTC UE
上/下行单播数据传输区域。
本步骤中,基站或UE获取数据的子带跳频序列包括:基站或UE根据数据的传输区域中的子带数和小区标识,获取数据的子带跳频基序列;根据获得的子带跳频基序列获取数据的子带跳频序列。其中,数据的子带跳频基序列或子带跳频序列的长度可以是数据的传输区域中的子带数,表现为编号为0至(N-1)的N个整数的随机排序;N为数据的传输区域中的子带数。
其中,基站或UE根据数据的传输区域中的子带数以及小区标识,获取数据的子带跳频基序列包括:根据小区标识生成伪随机序列;根据生成的伪随机序列获取数据的子带跳频基序列;其中,获得的不同类型的数据的子带跳频基序列不同。具体可以是公有数据的子带跳频基序列与上/下行单播数据的子带跳频基序列不同。
其中,可以基于相关LTE标准的伪随机序列生成机制,根据小区标识生成足够长度的Gold序列c(n)。具体可以采用公式(2)计算得到。
c(n)=(x0(n+1600)+x1(n+1600))mod2
x0(n+31)=(x0(n+3)+x0(n))mod2 (2)
x1(n+31)=(x1(n+3)+x1(n+2)+x1(n+1)+x1(n))mod2
其中,第1个m序列x0(n)以x0(0)=1和x0(n)=0(n=1,2,…,30)初始化,第2个m序列x1(n)根据公式(3)初始化。
其中,cellid为小区标识(即UE所在小区的小区标识)。
其中,根据生成的伪随机序列获取数据的子带跳频基序列包括:
根据伪随机序列依次生成Nc个和Nu个不同的十进制数;将生成的Nc个不同的十进制数按照第一预设规则(例如从小到大或从大到小)进行排序,并将排序后的Nc个不同的十进制数在排序前的Nc个不同的十进制数中的位置索引序列作为公有数据的子带跳频基序列。其中,Nc为公有数据的传输区域中的子带数;
将生成的Nu个不同的十进制数按照第二预设规则(例如从小到大或从大到小)进行排序,并将排序后的Nu个不同的十进制数在排序前的Nu个不同的十进制数中的位置索引序列作为上/下行单播数据的子带跳频基序列。
其中,根据伪随机序列依次生成Nc个和Nu个不同的十进制数包括:
从生成的伪随机序列中提取第(K1-1)K2+1到K1K2个连续比特,并将提取的第(K1-1)K2+1到K1K2个连续比特转化为对应的十进制数;如果提取的第(K1-1)K2+1到K1K2个连续比特与提取的第(K3-1)K2+1到K3K2个连续比特相同,则丢弃提取的第(K1-1)K2+1到K1K2个连续比特;如果不相同,则将提取的第(K1-1)K2+1到K1K2个连续比特转化为对应的十进制数;继续执行提取连续比特的步骤直到获得Nc个不同的十进制数;
将伪随机序列中用于生成Nc个不同的十进制数的比特删除生成新的伪随机序列,并按照上述方法根据新的伪随机序列生成Nu个不同的十进制数;其中,K1从1开始以递增的方式取值,1<K3<K1,K2为提取的连续比特数。
例如,随机序列c(n)的长度足够长,设想K2为10,Nc为10,Nu为6,则第1个十进制数与比特c(0)至c(9)相对应,第2个十进制数与比特c(10)至c(19)相对应;其中,如果比特c(10)至c(19)与比特c(0)至c(9)完全相同,则丢弃比特c(10)至c(19)并且调整第2个十进制数重新与比特c(20)至c(29)相对应;以此类推;按照上述方式获取十进制数,直到生成10个不同的十进制数;然后,删除序列c(n)中已经被用于生成10个不同的十进制数的比特得到新的序列c(n),并且重新按照上述方法再生成6个不同的十进制数。
如果生成的10个不同的十进制数且具体为:{29,294,10,295,97,50,7,456,52,27},则按照从小到大的顺序进行排序后的十进制数为:{7,10,27,29,50,52,97,294,295,456},表1为所有十进制数在排序前和排序后的位置索引之间的映射关系。如表1所示,公有数据的子带跳频基序列为:{3,7,1,8,6,4,0,9,5,2}。
排序前的位置索引 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
排序后的位置索引 | 3 | 7 | 1 | 8 | 6 | 4 | 0 | 9 | 5 | 2 |
表1
上述获取数据的子带跳频基序列的方法有利于确保当公有数据和下行单播数据的传输区域相同时,公有数据和下行单播数据的子带跳频基序列是不同的。
在相关的LTE系统中,公有数据为SIB消息、或随机接入响应(RAR,
Random Access Response)消息、或寻呼(Paging)消息。
其中,SIB消息的子带跳频序列、RAR消息的子带跳频序列以及Paging消息的子带跳频序列相互不同,并且具有确定的相对偏置。
其中,具有确定的相对偏置是指:存在大于0且小于Nc的并满足等式 的正整数Ox,y,其中,{Sx,0,Sx,1,…,Sx,Nc-1}和{Sy,0,Sy,1,…,Sy,Nc-1}分别SIB消息的子带跳频序列、RAR消息的子带跳频序列以及Paging消息的子带跳频序列中的任意两个序列。
其中,根据获得的子带跳频基序列获取数据的子带跳频序列包括:
根据公式(4)获取SIB消息的子带跳频序列。
其中,{Ssib,0,Ssib,1,…,Ssib,Nc-1}为SIB消息的子带跳频序列,{bc,0,bc,1,…,bc,Nc-1}为公有数据的子带跳频基序列,Osib为SIB消息的子带跳频序列相对公有数据的子带跳频基序列的确定偏置。
根据公式(5)获取RAR消息的子带跳频序列。
其中,{Srar,0,Srar,1,…,Srar,Nc-1}为RAR消息的子带跳频序列,Orar为RAR消息的子带跳频序列相对公有数据的子带跳频基序列的确定偏置。
根据公式(6)获取Paging消息的子带跳频序列。
其中,{SPaging,0,SPaging,1,…,SPaging,Nc-1}为Paging消息的子带跳频序列,OPaging为Paging消息的子带跳频序列相对公有数据的子带跳频基序列的确定偏置。
其中,Osib、Orar和Opaging大于或等于0且小于Nc,并且Osib、Orar和Opaging取值互不相同。
采用上述获取公有数据的子带跳频序列的方法能够确保不同的公有数据采用不同的子带传输,以避免相同子帧内传输不同的公有数据的子带的重叠。
其中,根据获得的子带跳频基序列获取数据的子带跳频序列包括:
根据公式(7)获取上/下行单播数据的子带跳频序列。
其中,{Su,0,Su,1,…,Su,Nu-1}为上/下行单播数据的子带跳频序列,{bu,0,bu,1,…,bu,Nu-1}为上/下行单播数据的子带跳频基序列,Oue为UE的专有偏置。
其中,对于传输带宽减少的低成本MTC UE类型,传输数据的子带为窄带,专有偏置可以是UE标识。
其中,对于传输带宽没有减少但具有覆盖增强需求的非低成本MTC UE,UE可以通过来自基站的专有信令获取专有偏置,其中,专有信令是专有下行控制信息(DCI,DL Control Information)中的字段。
其中,对于传输带宽减少的低成本MTC UE,由于传输带宽的限制,在接收上/下行单播数据之前UE通常无法正常地实时地去接收在全带宽范围内传输的专有DCI信息,从而无法通过专有DCI信息实时调整上/下行单播数据的子带跳频序列,所以限制专有偏置为UE标识是可取的。对于传输带宽没有减少但具有覆盖增强需求的非低成本MTC UE,由于没有传输带宽的限制,在接收上/下行单播数据之前UE可以实时地去接收在全带宽范围内传输的专有DCI信息,从而可以通过专有DCI信息实时调整上/下行单播数据的子带跳频序列以获取更多的调度灵活性或调度增益。
上述获取数据的子带跳频序列的方法避免或减轻了不同的UE传输上/下行单播数据时存在的潜在冲突。
步骤101、基站或UE根据获得的子带跳频序列确定传输(发送或接收)数据的子带,在确定的子带上传输(发送或接收)数据。
本步骤中,基站或UE根据获得的子带跳频序列确定传输数据的子带包括:基站或UE根据获得的子带跳频序列确定获得的传输区域中传输数据的子带。
本步骤中,基站或UE根据获得的子带跳频序列确定传输数据的子带包括:
根据数据的子带跳频序列中的第i个元素,确定第i个时间区间内在数据的传输区域中传输数据的子带。
当数据为公有数据时,i取1到Nc的正整数;当数据为上/下行单播数据时,i取1到Nu的正整数。其中,Nc为公有数据的传输区域中的子带数,Nu为上/下行单播数据的传输区域中的子带数。也就是说,在连续的Nc个时间区间内,在公有数据的传输区域中传输公有数据的子带是由公有数据的子带跳频序列包括的Nc个元素逐一指示的;以及,在连续的Nu个时间区间内,在上/下行单播数据的传输区域中传输上/下行单播数据的子带是由上/下行单播数据的子带跳频序列包括的Nu个元素逐一指示的。
其中,时间区间的大小可以是一个或一个以上时隙、或一个或一个以上无线帧、或一个或一个以上子帧(例如2个或4个子帧)。时间区间的大小又被称为子带跳频粒度。
其中,在确定的子带上传输数据包括:采用重复传输机制在确定的子带上传输上/下行单播数据。
其中,基站或UE可以从第一个时间区间(即每连续的Nu个时间区间中的第一个时间区间)的第一个子帧开始传输重复传输的上/下行单播数据。
其中,所有UE可以具有相同或不同的时间区间大小和子带大小。
其中,时间区间的大小和/或确定的子带的大小可以根据上/下行单播数据的最大重复传输次数或实际重复传输次数确定。具体地,上/下行单播数据的最大重复传输次数可以是指系统支持的上/下行单播数据的最大重复传输次数,也可以是指UE自身支持的上/下行单播数据的最大重复传输次数。上述方法最终实现的效果可以是:当最大重复传输次数或实际重复传输次数较大时,可以设置较大的时间区间(但不会超过系统或UE支持的最大的时间区间的大小),并设置较小的子带(但不会低于系统或UE支持的最小的子带的大小)。根据系统支持的上/下行单播数据的最大重复传输次数,确定时间区间的大小和/或子带的大小能够实现所有UE共享相同的时间区间的大小和/或子带的大小,这有利于避免和减轻不同UE之间的资源碰撞或冲突。
其中,对于同时具有传输带宽减少和覆盖增强需求的低成本MTC UE,或传输带宽没有减少但具有覆盖增强需求的非低成本MTC UE,为实现覆盖增强,可以采用重复传输机制传输上/下行单播数据。另外,为平衡联合信道估计和频率分集增益以尽可能的减少重复次数,通常取时间区间的大小为多
个子帧。
其中,对于传输带宽减少的低成本MTC UE,在为同时具有传输带宽减少和覆盖增强需求的低成本MTC UE设置了专有的上/下行单播数据传输区域后,可以将从第一个时间区间(即每连续的Nu个时间区间中的第一个时间区域)的第一个子帧开始传输该UE的重复传输的上/下行单播数据。该方法避免或减轻了不同UE潜在冲突,同时减少了调度器的复杂度。
其中,对于传输带宽减少的低成本MTC UE,在为同时具有传输带宽减少和覆盖增强需求的低成本MTC UE设置了专有的上/下行单播数据传输区域后,为获取重复传输下的联合信道估计增益,其时间区间的大小与只具有传输带宽减少需求的MTC UE的时间区间的大小可以不同。
其中,对于同时具有传输带宽减少和覆盖增强需求的低成本MTC UE,根据系统支持的上/下行单播数据的最大重复传输次数仅确定所有UE共享的时间区间大小(子带大小始终等于固定的窄带的大小);或者,根据UE实际采用的上/下行单播数据的重复传输次数仅确定该UE专有的时间区间的大小(子带大小始终等于固定的窄带的大小)。
其中,对于传输带宽没有减少,但具有覆盖增强需求的非低成本MTC UE,根据系统支持的上/下行单播数据的最大重复传输次数确定所有UE共享的时间区间大小和/或子带大小;或者,根据每个UE实际采用的上/下行单播数据的具体重复传输次数确定该UE专有的时间区间大小和/或子带大小。
对于传输带宽减少的低成本MTC UE类型,考虑到它至多能够同时接收一个子带,所以当它的下行单播数据与至少一个公有数据同时传输并且位于与公有数据不同的子带时,它根据自身需要至多选择所有公有数据中的一个或者选择下行单播数据进行接收。
本步骤中,当判断出确定的传输数据的子带预设或配置为不可用时(例如,在下行子帧0中的大部分资源已被用于同步信号和/或MIB信令的传输的子带),确定传输数据的子带为另外可用的子带。其中,另外可用的子带可以是位于不可用子带之后的第1个没有被用于其它数据传输的可用子带。该方法在一定程度上确保了在根据子带跳频序列获取的传输数据的子带不可被使用的情况下能够正常的传输数据。需要注意的是,这里所述的“位于……
之后”应该具有循环的性质;例如,考虑编号0至9的10个子带,以编号为4的子带为例,那么位于编号为4的子带之后的子带依次可以是:编号为5,6,7,8,9,0,1,2和3的子带。
本步骤中,在确定的子带上传输数据包括:在确定的传输上行单播数据的子带的固定的PRB上传输上行单播控制数据,在除固定PRB以外的其他PRB上传输上行单播业务数据。
例如,图6为上行单播控制数据占用固定PRB的示意图,如图6所示,在一个子帧内,用于传输上行单播数据的子带包括6个PRB资源,索引为0的PRB被用于传输上行单播控制数据,即如果想要使用该子带传输上行单播控制数据,则将固定使用该子带中的索引为0的PRB进行传输。其中,为提高控制数据容量,来自不同UE的上行单播控制数据可以通过分配的正交码或正交序列复用在相同的上述固定的PRB资源中。
本发明实施例的方法保证了传输带宽减少的低成本MTC UE或传输带宽没有减少但具有覆盖增强需求的非低成本MTC UE的通信需求,获取了更大的频率分集增益,同时避免或减轻了只具有传输带宽减少需求的低成本MTC UE和同时具有传输带宽减少和覆盖增强需求的低成本MTC UE之间以及不同数据类型之间数据传输的相互影响,从而提高了数据的传输性能。
下面通过具体实施例对本发明实施例的方法进行详细的说明。
第一实施例,假设公有数据的传输区域包括10(Nc=10)个子带,公有数据的子带跳频基序列为:{3,7,1,8,6,4,0,9,5,2};SIB消息的子带跳频序列相对公有数据子带跳频基序列的偏置Osib为0,RAR消息的子带跳频序列相对公有数据子带跳频基序列的偏置Orar为1,Paging消息的子带跳频序列相对公有数据子带跳频基序列的偏置Opaging为2。
则SIB的子带跳频序列为{3,7,1,8,6,4,0,9,5,2};RAR消息的子带跳频序列为:({3,7,1,8,6,4,0,9,5,2}+1)mod 10={4,8,2,9,7,5,1,0,6,3};Paging消息的子带跳频序列为:({3,7,1,8,6,4,0,9,5,2}+2)mod 10={5,9,3,0,8,6,2,1,7,4}。
在连续的10个时间区间内,在公有数据传输区域中传输SIB消息的子带
是由SIB消息的子带跳频序列中的10个元素逐一确定;在公有数据传输区域中传输RAR消息的子带是由RAR消息的子带跳频序列包括的10个元素逐一确定;以及在公有数据传输区域中传输Paging消息的子带是由Paging消息的子带跳频序列包括的10个元素逐一确定。
例如,图7为第一实施例的传输不同公有数据的子带位置的示意图,如图7所示,在第1时间区间内,传输SIB消息的子带为编号为3的子带,传输RAR消息的子带为编号为4的子带,传输Paging消息的子带为编号为5的子带;在第4时间区间内,传输SIB消息的子带为编号为8的子带,传输RAR消息的子带为编号为9的子带,以及传输Paging消息的子带为编号为0的子带。
当SIB、RAR消息和Paging消息中的2个或3个消息同时传输时,相应传输带宽减少的低成本MTC UE至多根据自身需要选择其中的一个消息进行接收。
上述方法确保了不同的公有数据始终是位于不同的子带,从而避免了相同子帧内传输不同公有数据的子带的重叠。
第二实施例,假设上/下行单播数据的传输区域包括10(Nu=10)个子带,且上/下行单播数据的子带跳频基序列为:{1,6,9,0,4,8,5,2,7,3};专有偏置为3。
上/下行单播数据的子带跳频序列为:({1,6,9,0,4,8,5,2,7,3}+3)mod10={4,9,2,3,7,1,8,5,0,6}。
在连续的10个时间区间内,在上/下行单播数据传输区域中传输上/下行单播数据的子带是由上/下行单播数据的子带跳频序列包括的10个元素逐一确定。
例如,图8为第二实施例的传输上/下行单播数据的子带位置的示意图,如图8所示,在第1时间区间内,传输上/下行单播数据的子带为编号为4的子带;在第5时间区间内,传输上/下行单播数据的子带为编号为7的子带。
当下行单播数据与至少一个公有数据同时传输并且位于与公有数据不同的子带时,相应传输带宽减少的低成本MTC UE根据自身需要至多选择所有
公有数据中的一个或选择下行单播数据进行接收。
上述方法确保了不同UE的上/下行单播数据使用不同的子带跳频序列,从而避免或减轻了不同UE的上/下行单播数据之间的冲突。
第三实施例,图9为限制同时具有传输带宽减少和覆盖增强需求的MTC UE重复传输的上/下行单播数据的起始子帧位置的示意图,如图9所示,假设系统带宽范围内的最后的3(Nu=3)个子带是作为同时具有传输带宽减少和覆盖增强需求的低成本MTC UE专有的上/下行单播数据传输区域,时刻t0是受限制的用于重复传输上/下行单播数据的连续子帧的起始子帧之一的开始时刻。
假设上/下行单播数据的子带跳频基序列为:{0,1,2};3个UE的标识ueid1、ueid2和ueid3依次为0、1和2。
上述3个UE上/下行单播数据的子带跳频序列分别为:{0,1,2},{1,2,0}和{2,0,1}。
在从时刻t0开始的每连续的3个时间区间内,在上/下行单播数据传输区域中传输每个UE上/下行单播数据的子带是由每个UE上/下行单播数据的子带跳频序列包括的3个元素逐一确定。
每个UE上/下行单播数据重复传输的实际持续时间依赖于它需要实现的覆盖增强目标。上述方法减少了调度器的复杂度。
第四实施例,假设公有数据的传输区域包括10个子带,图10为不可用于传输带宽减少的低成本MTC UE公有数据传输的特殊子带位置的示意图,如图10(a)所示,根据不同类型公有数据的子带跳频序列,在子帧x范围内传输SIB消息、RAR消息和Paging消息的子带应该分别是编号为3、4和5的子带;但是,如果在子帧x范围内编号为4的子带被配置为不可用于传输带宽减少的低成本MTC UE数据传输,则原本应该在编号为4的子带传输的RAR消息将被转移到编号为6的子带(位于编号为4的子带之后的第1个没有被用于其它公有数据传输的可用子带)传输,如图10(b)所示。
上述方法在一定程度上确保了在根据子带跳频序列获取的传输公有数据的子带不可被UE使用的情况下的传输带宽减少的低成本MTC UE能够正常
传输公有数据。
本发明实施例还公开了一种计算机程序,包括程序指令,当该程序指令被计算机执行时,使得该计算机可执行上述任意的传输数据的方法。
本发明实施例还公开了一种载有所述的计算机程序的载体。
参见图11,本发明实施例还提出了一种传输数据的装置,至少包括:
获取模块1101,设置成:获取数据的子带跳频序列;
确定模块1102,设置成:根据获得的子带跳频序列确定传输数据的子带;
传输模块1103,设置成:在确定的子带上传输数据;
其中,不同类型的数据具有不同的子带跳频序列。
本发明实施例的装置中,获取模块1101还设置成:
获取数据的传输区域;
确定模块1102具体设置成:
根据获得的子带跳频序列确定传输区域中传输数据的子带。
本发明实施例的装置中,获取模块1101具体设置成:
通过预定义的方式获取公有数据的传输区域,通过预定义的方式或广播信令或专有信令获取上/下行单播数据的传输区域。
本发明实施例的装置中,广播信令或专有信令至少包括:指示上/下行单播数据的传输区域中包括的子带数的字段;和指示上/下行单播数据的传输区域中所有子带的位置的字段;
获取模块1101还设置成:
其中,1≤ki≤Ntotal,ki<ki+1,vu为指示上/下行单播数据的传输区域中所有子带的位置的字段的具体取值;Nu为上/下行单播数据的传输区域中的子带数;Ntotal为系统带宽中的总的可用子带数;ki为Nu个子带中的第i个子带在
Ntotal个子带中的索引。
本发明实施例的装置中,获取模块1101具体设置成:
根据数据的传输区域中的子带数和小区标识,获取数据的子带跳频基序列;根据获得的子带跳频基序列获取数据的子带跳频序列。
本发明实施例的装置中,获取模块1101还设置成:
根据小区标识生成伪随机序列;根据生成的伪随机序列获取数据的子带跳频基序列;其中,获得的不同类型的数据的子带跳频基序列不同。
本发明实施例的装置中,获取模块1101还设置成:
根据伪随机序列依次生成Nc个和Nu个不同的十进制数;
将生成的Nc个不同的十进制数按照第一预设规则进行排序,并将排序后的Nc个不同的十进制数在排序前的Nc个不同的十进制数中的位置索引序列作为公有数据的子带跳频基序列;其中,Nc为公有数据的传输区域中的子带数;
将生成的Nu个不同的十进制数按照第二预设规则进行排序,并将排序后的Nu个不同的十进制数在排序前的Nu个不同的十进制数中的位置索引序列作为上/下行单播数据的子带跳频基序列;其中,Nu为上/下行单播数据的传输区域中的子带数。
本发明实施例的装置中,获取模块1101还设置成:
从生成的伪随机序列中提取第(K1-1)K2+1到K1K2个连续比特,并将提取的第(K1-1)K2+1到K1K2个连续比特转化为对应的十进制数;如果提取的第(K1-1)K2+1到K1K2个连续比特与提取的第(K3-1)K2+1到K3K2个连续比特相同,则丢弃提取的第(K1-1)K2+1到K1K2个连续比特;如果不相同,则将提取的第(K1-1)K2+1到K1K2个连续比特转化为对应的十进制数;继续执行提取连续比特的步骤直到获得Nc个不同的十进制数;
将生成的伪随机序列中用于生成Nc个不同的十进制数的比特删除生成新的伪随机序列,并按照上述方法根据新的伪随机序列生成Nu个不同的十进制数;其中,K1从1开始以递增的方式取值,1<K3<K1,K2为提取的连续比特数。
本发明实施例的装置中,获取模块1101还设置成:
其中,{Ssib,0,Ssib,1,…,Ssib,Nc-1}为SIB消息的子带跳频序列,{bc,0,bc,1,…,bc,Nc-1}为公有数据的子带跳频基序列,Osib为SIB消息的子带跳频序列相对公有数据的子带跳频基序列的确定偏置;
其中,{Srar,0,Srar,1,…,Srar,Nc-1}为RAR消息的子带跳频序列,{bc,0,bc,1,…,bc,Nc-1}为公有数据的子带跳频基序列,Orar为RAR消息的子带跳频序列相对公有数据的子带跳频基序列的确定偏置;
其中,{SPaging,0,SPaging,1,…,SPaging,Nc-1}为Paging消息的子带跳频序列,{bc,0,bc,1,…,bc,Nc-1}为公有数据的子带跳频基序列,OPaging为Paging消息的子带跳频序列相对公有数据的子带跳频基序列的确定偏置;
其中,Osib、Orar和Opaging大于或等于0且小于Nc,并且Osib、Orar和Opaging取值互不相同。
本发明实施例的装置中,获取模块1101还设置成:
其中,{Su,0,Su,1,…,Su,Nu-1}为上/下行单播数据的子带跳频序列,{bu,0,bu,1,…,bu,Nu-1}为上/下行单播数据的子带跳频基序列,Oue为UE的专有偏置。
本发明实施例的装置中,确定模块1102还设置成:
根据数据的子带跳频序列中的第i个元素,确定第i个时间区间内在数据的传输区域中传输数据的子带;
当数据为公有数据时,i取1到Nc的正整数;当数据为上/下行单播数据
时,i取1到Nu的正整数;其中,Nc为公有数据的传输区域中的子带数,Nu为上/下行单播数据的传输区域中的子带数。
本发明实施例的装置中,确定模块1102还设置成:
判断出确定的传输数据的子带预设或配置为不可用,确定传输数据的子带为另外可用的子带。
需要说明的是,以上所述的实施例仅是为了便于本领域的技术人员理解而已,并不用于限制本发明的保护范围,在不脱离本发明的发明构思的前提下,本领域技术人员对本发明所做出的任何显而易见的替换和改进等均在本发明的保护范围之内。
与相关技术相比,本发明技术方案包括:基站或用户终端UE获取数据的子带跳频序列;基站或UE根据获得的子带跳频序列确定传输数据的子带,在确定的子带上传输数据;其中,不同类型的数据具有不同的子带跳频序列。通过本发明的方案,根据获得的子带跳频序列确定传输数据的子带,解决了不同类型的数据的跳频传输,从而提高了数据传输的性能。因此本发明具有很强的工业实用性。
Claims (41)
- 一种传输数据的方法,包括:基站或用户终端UE获取数据的子带跳频序列;所述基站或UE根据获得的子带跳频序列确定传输数据的子带,在确定的子带上传输数据;其中,不同类型的数据具有不同的子带跳频序列。
- 根据权利要求1所述的传输数据的方法,其中,所述基站或用户终端UE获取数据的子带跳频序列的步骤之前,该方法还包括:所述基站或UE获取所述数据的传输区域;所述基站或UE根据获得的子带跳频序列确定传输数据的子带的步骤包括:所述基站或所述UE根据所述获得的子带跳频序列确定所述传输区域中传输数据的子带。
- 根据权利要求2所述的传输数据的方法,其中,所述传输区域包括一个或一个以上子带,其中,所述子带占用一个或一个以上物理资源块。
- 根据权利要求2~3中任意一项所述的传输数据的方法,其中,所述数据为公有数据或上/下行单播数据;所述不同类型的数据具有不同的子带跳频序列包括:所述公有数据的子带跳频序列与所述上/下行单播数据的子带跳频序列不同。
- 根据权利要求4所述的传输数据的方法,其中,所述基站或所述UE获取所述数据的传输区域的步骤包括:所述基站或所述UE通过预定义的方式获取所述公有数据的传输区域,通过预定义的方式或广播信令或专有信令获取所述上/下行单播数据的传输区域。
- 根据权利要求5所述的传输数据的方法,其中,所述公有数据的传输区域与所述下行单播数据的传输区域之间没有重叠;或者,所述公有数据在公有数据的传输区域中的资源映射方式与所述下行单播 数据在下行单播数据的传输区域中的资源映射方式不同。
- 根据权利要求6所述的传输数据的方法,其中,所述公有数据与所述下行单播数据的传输区域之间没有重叠包括:所述下行单播数据的传输区域为系统带宽的两侧,所述公有数据的传输区域为系统带宽中除所述下行单播数据的传输区域以外的其他区域。
- 根据权利要求6所述的传输数据的方法,其中,所述公有数据在公有数据的传输区域中的资源映射方式与下行单播数据在下行单播数据的传输区域中的资源映射方式不同包括:所述公有数据在所述公有数据的传输区域的子带中从最低索引的物理资源块PRB位置开始映射,所述下行单播数据在所述下行单播数据的传输区域的子带中从最高索引的PRB位置开始映射;当所述公有数据与所述下行单播数据存在冲突时,如果所述公有数据的优先级高于所述下行单播数据,则存在冲突的子带用于传输所述公有数据;如果所述公有数据的优先级低于所述下行单播数据,则所述存在冲突的子带用于传输所述下行单播数据。
- 根据权利要求5所述的传输数据的方法,其中,所述广播信令为主信息块MIB信令或系统信息块SIB信令。
- 根据权利要求5所述的传输数据的方法,其中,所述广播信令或所述专有信令至少包括:指示上/下行单播数据的传输区域中包括的子带数的字段;和指示上/下行单播数据的传输区域中所有子带的位置的字段。
- 根据权利要求4所述的传输数据的方法,其中,所述基站或UE获 取数据的子带跳频序列的步骤包括:所述基站或所述UE根据所述数据的传输区域中的子带数和小区标识,获取数据的子带跳频基序列;根据获得的子带跳频基序列获取所述数据的子带跳频序列。
- 根据权利要求12所述的传输数据的方法,其中,所述数据的子带跳频基序列或所述子带跳频序列的长度为所述数据的传输区域中的子带数。
- 根据权利要求12所述的传输数据的方法,其中,所述基站或UE根据数据的传输区域中的子带数和小区标识,获取数据的子带跳频基序列的步骤包括:根据所述小区标识生成伪随机序列;根据生成的伪随机序列获取数据的子带跳频基序列;其中,获得的不同类型的数据的子带跳频基序列不同。
- 根据权利要求14所述的传输数据的方法,其中,所述根据生成的伪随机序列获取数据的子带跳频基序列的步骤包括:根据所述伪随机序列依次生成Nc个和Nu个不同的十进制数;将生成的Nc个不同的十进制数按照第一预设规则进行排序,并将排序后的Nc个不同的十进制数在排序前的Nc个不同的十进制数中的位置索引序列作为所述公有数据的子带跳频基序列;其中,Nc为所述公有数据的传输区域中的子带数;将生成的Nu个不同的十进制数按照第二预设规则进行排序,并将排序后的Nu个不同的十进制数在排序前的Nu个不同的十进制数中的位置索引序列作为所述上/下行单播数据的子带跳频基序列;其中,Nu为所述上/下行单播数据的传输区域中的子带数。
- 根据权利要求15所述的传输数据的方法,其中,所述根据伪随机序列依次生成Nc个和Nu个不同的十进制数的步骤包括:从生成的伪随机序列中提取第(K1-1)K2+1到K1K2个连续比特,并将提取的第(K1-1)K2+1到K1K2个连续比特转化为对应的十进制数;如果提取的第(K1-1)K2+1到K1K2个连续比特与提取的第(K3-1)K2+1到K3K2个连续比特相同,则丢弃提取的第(K1-1)K2+1到K1K2个连续比特;如果 不相同,则将提取的第(K1-1)K2+1到K1K2个连续比特转化为对应的十进制数;继续执行提取连续比特的步骤直到获得Nc个不同的十进制数;将所述生成的伪随机序列中用于生成Nc个不同的十进制数的比特删除生成新的伪随机序列,并按照上述方法根据所述新的伪随机序列生成Nu个不同的十进制数;其中,K1从1开始以递增的方式取值,1<K3<K1,K2为提取的连续比特数。
- 根据权利要求10所述的传输数据的方法,其中,所述公有数据为系统信息块SIB消息、或随机接入响应RAR消息、或寻呼Paging消息。
- 根据权利要求17所述的传输数据的方法,其中,所述SIB消息的子带跳频序列、所述RAR消息的子带跳频序列以及所述Paging消息的子带跳频序列相互不同,并且具有确定的相对偏置。
- 根据权利要求18所述的传输数据的方法,其中,所述根据获得的子带跳频基序列获取数据的子带跳频序列的步骤包括:其中,{Ssib,0,Ssib,1,…,Ssib,Nc-1}为所述SIB消息的子带跳频序列,{bc,0,bc,1,…,bc,Nc-1}为所述公有数据的子带跳频基序列,Osib为所述SIB消息的子带跳频序列相对所述公有数据的子带跳频基序列的确定偏置;其中,{Srar,0,Srar,1,…,Srar,Nc-1}为所述RAR消息的子带跳频序列,{bc,0,bc,1,…,bc,Nc-1}为所述公有数据的子带跳频基序列,Orar为所述RAR消息的子带跳频序列相对所述公有数据的子带跳频基序列的确定偏置;其中,{SPaging,0,SPaging,1,…,SPaging,Nc-1}为所述Paging消息的子带跳频序列,{bc,0,bc,1,…,bc,Nc-1}为所述公有数据的子带跳频基序列,OPaging为所述Paging消息的子带跳频序列相对所述公有数据的子带跳频基序列的确定偏置;其中,Osib、Orar和Opaging大于或等于0且小于Nc,并且Osib、Orar和Opaging取值互不相同。
- 根据权利要求4所述的传输数据的方法,其中,所述基站或UE根据获得的子带跳频序列确定传输数据的子带的步骤包括:根据所述数据的子带跳频序列中的第i个元素,确定第i个时间区间内在所述数据的传输区域中传输数据的子带;当所述数据为公有数据时,所述i取1到Nc的正整数;当所述数据为上/下行单播数据时,所述i取1到Nu的正整数;其中,所述Nc为所述公有数据的传输区域中的子带数,所述Nu为所述上/下行单播数据的传输区域中的子带数。
- 根据权利要求21所述的传输数据的方法,其中,所述时间区间的大小为一个或一个以上时隙、或一个或一个以上无线帧、或一个或一个以上子帧。
- 根据权利要求21所述的传输数据的方法,其中,所述在确定的子带上传输数据的步骤包括:采用重复传输机制在确定的子带上传输所述上/下行单播数据。
- 根据权利要求23所述的传输数据的方法,其中,所述基站或UE从第一个时间区间的第一个子帧开始传输重复传输的上/下行单播数据。
- 根据权利要求23所述的传输数据的方法,其中,所述时间区间的大小和/或所述确定的子带的大小根据所述上/下行单播数据的最大重复传输次数或实际重复传输次数确定。
- 根据权利要求4所述的传输数据的方法,其中,所述上行单播数据包括:上行单播业务数据和上行单播控制数据;所述上行单播控制数据包括:调度请求SR、混合自动重复请求确认HARQ-ACK和信道状态信息。
- 根据权利要求26所述的传输数据的方法,其中,所述在确定的子带上传输数据的步骤包括:在确定的传输上行单播数据的子带的固定物理资源块PRB上传输所述上行单播控制数据,在除所述固定PRB以外的其他PRB上传输所述上行单播业务数据。
- 根据权利要求1~3中任意一项所述的传输数据的方法,其中,当判断出确定的传输数据的子带预设或配置为不可用时,确定所述传输数据的子带为另外可用的子带。
- 一种传输数据的装置,包括获取模块、确定模块和传输模块,其中:所述获取模块设置成:获取数据的子带跳频序列;所述确定模块设置成:根据获得的子带跳频序列确定传输数据的子带;所述传输模块设置成:在确定的子带上传输数据;其中,不同类型的数据具有不同的子带跳频序列。
- 根据权利要求29所述的传输数据的装置,其中,所述获取模块还设置成:获取所述数据的传输区域;所述确定模块具体设置成按照如下方式根据获得的子带跳频序列确定传输数据的子带:根据所述获得的子带跳频序列确定所述传输区域中传输数据的子带。
- 根据权利要求30所述的传输数据的装置,其中,所述获取模块设置成按照如下方式获取所述数据的传输区域:通过预定义的方式获取公有数据的传输区域,通过预定义的方式或广播信令或专有信令获取上/下行单播数据的传输区域。
- 根据权利要求30所述的传输数据的装置,其中,所述获取模块设置成按照如下方式获取数据的子带跳频序列:根据所述数据的传输区域中的子带数和所述小区标识,获取数据的子带跳频基序列;根据获得的子带跳频基序列获取所述数据的子带跳频序列。
- 根据权利要求33所述的传输数据的装置,其中,所述获取模块还设置成:根据所述小区标识生成伪随机序列;根据生成的伪随机序列获取数据的子带跳频基序列;其中,获得的不同类型的数据的子带跳频基序列不同。
- 根据权利要求34所述的传输数据的装置,其中,所述获取模块设置成按照如下方式根据数据的传输区域中的子带数和小区标识,获取数据的子带跳频基序列:根据所述伪随机序列依次生成Nc个和Nu个不同的十进制数;将生成的Nc个不同的十进制数按照第一预设规则进行排序,并将排序后的Nc个不同的十进制数在排序前的Nc个不同的十进制数中的位置索引序列作为所述公有数据的子带跳频基序列;其中,Nc为所述公有数据的传输区域中的子带数;将生成的Nu个不同的十进制数按照第二预设规则进行排序,并将排序后的Nu个不同的十进制数在排序前的Nu个不同的十进制数中的位置索引序列作为所述上/下行单播数据的子带跳频基序列;其中,Nu为所述上/下行单播 数据的传输区域中的子带数。
- 根据权利要求35所述的传输数据的装置,其中,所述获取模块设置成按照如下方式根据伪随机序列依次生成Nc个和Nu个不同的十进制数:从生成的伪随机序列中提取第(K1-1)K2+1到K1K2个连续比特,并将提取的第(K1-1)K2+1到K1K2个连续比特转化为对应的十进制数;如果提取的第(K1-1)K2+1到K1K2个连续比特与提取的第(K3-1)K2+1到K3K2个连续比特相同,则丢弃提取的第(K1-1)K2+1到K1K2个连续比特;如果不相同,则将提取的第(K1-1)K2+1到K1K2个连续比特转化为对应的十进制数;继续执行提取连续比特的步骤直到获得Nc个不同的十进制数;将所述生成的伪随机序列中用于生成Nc个不同的十进制数的比特删除生成新的伪随机序列,并按照上述方法根据所述新的伪随机序列生成Nu个不同的十进制数;其中,K1从1开始以递增的方式取值,1<K3<K1,K2为提取的连续比特数。
- 根据权利要求33所述的传输数据的装置,其中,所述获取模块设置成按照如下方式根据获得的子带跳频基序列获取数据的子带跳频序列:其中,{Ssib,0,Ssib,1,…,Ssib,Nc-1}为所述SIB消息的子带跳频序列,{bc,0,bc,1,…,bc,Nc-1}为所述公有数据的子带跳频基序列,Osib为所述SIB消息的子带跳频序列相对所述公有数据的子带跳频基序列的确定偏置;其中,{Srar,0,Srar,1,…,Srar,Nc-1}为所述RAR消息的子带跳频序列,{bc,0,bc,1,…,bc,Nc-1}为所述公有数据的子带跳频基序列,Orar为所述RAR消息的子带跳频序列相对所述公有数据的子带跳频基序列的确定偏置;其中,{SPaging,0,SPaging,1,…,SPaging,Nc-1}为所述Paging消息的子带跳频序列, {bc,0,bc,1,…,bc,Nc-1}为所述公有数据的子带跳频基序列,OPaging为所述Paging消息的子带跳频序列相对所述公有数据的子带跳频基序列的确定偏置;其中,Osib、Orar和Opaging大于或等于0且小于Nc,并且Osib、Orar和Opaging取值互不相同。
- 根据权利要求29所述的传输数据的装置,其中,所述确定模块设置成按照如下方式根据获得的子带跳频序列确定传输数据的子带:根据所述数据的子带跳频序列中的第i个元素,确定第i个时间区间内在所述数据的传输区域中传输数据的子带;当所述数据为公有数据时,所述i取1到Nc的正整数;当所述数据为上/下行单播数据时,所述i取1到Nu的正整数;其中,所述Nc为所述公有数据的传输区域中的子带数,所述Nu为所述上/下行单播数据的传输区域中的子带数。
- 根据权利要求29所述的传输数据的装置,其中,所述数据为公有数据或上/下行单播数据;所述上行单播数据包括:上行单播业务数据和上行单播控制数据;所述传输模块设置成按照如下方式在确定的子带上传输数据:在确定的传输上行单播数据的子带的固定物理资源块PRB上传输所述上行单播控制数据,在所述确定的上行单播数据的子带的其他PRB上传输所述上行单播业务数据。
- 根据权利要求29所述的传输数据的装置,其中,所述确定模块还设置成:判断出确定的传输数据的子带预设或配置为不可用,确定传输数据的子带为另外可用的子带。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410459366.5 | 2014-09-09 | ||
CN201410459366.5A CN105472532B (zh) | 2014-09-09 | 2014-09-09 | 一种传输数据的方法和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015184910A1 true WO2015184910A1 (zh) | 2015-12-10 |
Family
ID=54766132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/075071 WO2015184910A1 (zh) | 2014-09-09 | 2015-03-25 | 一种传输数据的方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105472532B (zh) |
WO (1) | WO2015184910A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019061910A1 (en) * | 2017-09-26 | 2019-04-04 | Huizhou Tcl Mobile Communication Co., Ltd. | METHOD, DEVICE AND INFORMATION MEDIUM FOR PAGING PAGING |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107770755B (zh) * | 2016-08-22 | 2023-07-14 | 中兴通讯股份有限公司 | 传输数据的方法、装置及系统、终端 |
CN108124310B (zh) | 2016-11-29 | 2020-04-14 | 华为技术有限公司 | 一种跳频通信方法及其设备 |
US10856296B2 (en) * | 2017-06-28 | 2020-12-01 | Qualcomm Incorporated | Techniques and apparatuses for determining channels for frequency hopping in an unlicensed radio frequency spectrum band |
SG11202004092SA (en) * | 2017-11-16 | 2020-06-29 | Beijing Xiaomi Mobile Software Co Ltd | Frequency hopping configuration method and device |
CN109818647B (zh) * | 2017-11-17 | 2020-09-01 | 北京紫光展锐通信技术有限公司 | Pucch跳频的实现方法、装置及用户设备 |
CN110138678B (zh) * | 2018-02-08 | 2023-02-24 | 华为技术有限公司 | 数据传输控制方法和装置、以及网络传输设备和存储介质 |
EP3806503B1 (en) * | 2018-06-12 | 2024-06-19 | Beijing Xiaomi Mobile Software Co., Ltd. | Method and base station for transmitting mtc downlink control information |
CN110109069B (zh) * | 2019-05-14 | 2022-09-02 | 桂林电子科技大学 | 一种去时间依赖性频控阵点状干扰波束形成方法 |
CN114337730B (zh) * | 2021-11-26 | 2024-05-03 | 中国航空无线电电子研究所 | 一种基于随机排序的跳频序列生成方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101478331A (zh) * | 2009-01-23 | 2009-07-08 | 东南大学 | 一种双时频非重复非完全跳频序列的构造方法 |
CN101584127A (zh) * | 2007-02-05 | 2009-11-18 | 日本电气株式会社 | 用于演进型通用陆地无线接入上行链路的跳频技术 |
CN103621146A (zh) * | 2011-06-27 | 2014-03-05 | 瑞典爱立信有限公司 | 用于有限带宽通信装置的蜂窝通信系统支持 |
CN103999528A (zh) * | 2011-09-30 | 2014-08-20 | 交互数字专利控股公司 | 使用减少的信道带宽的设备通信 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101162921B (zh) * | 2007-10-27 | 2012-09-05 | 中兴通讯股份有限公司 | 跳频序列生成方法及采用其的跳频资源分配方法 |
CN101778475A (zh) * | 2009-01-12 | 2010-07-14 | 华为技术有限公司 | 跳频资源分配方法及装置 |
CN103546195B (zh) * | 2012-07-10 | 2017-08-04 | 中兴通讯股份有限公司 | 数据传输方法及装置 |
CN103795505A (zh) * | 2012-11-02 | 2014-05-14 | 电信科学技术研究院 | 一种传输数据的方法、系统和设备 |
-
2014
- 2014-09-09 CN CN201410459366.5A patent/CN105472532B/zh active Active
-
2015
- 2015-03-25 WO PCT/CN2015/075071 patent/WO2015184910A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101584127A (zh) * | 2007-02-05 | 2009-11-18 | 日本电气株式会社 | 用于演进型通用陆地无线接入上行链路的跳频技术 |
CN101478331A (zh) * | 2009-01-23 | 2009-07-08 | 东南大学 | 一种双时频非重复非完全跳频序列的构造方法 |
CN103621146A (zh) * | 2011-06-27 | 2014-03-05 | 瑞典爱立信有限公司 | 用于有限带宽通信装置的蜂窝通信系统支持 |
CN103999528A (zh) * | 2011-09-30 | 2014-08-20 | 交互数字专利控股公司 | 使用减少的信道带宽的设备通信 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019061910A1 (en) * | 2017-09-26 | 2019-04-04 | Huizhou Tcl Mobile Communication Co., Ltd. | METHOD, DEVICE AND INFORMATION MEDIUM FOR PAGING PAGING |
US10798675B2 (en) | 2017-09-26 | 2020-10-06 | Huizhou Tcl Mobile Communication Co., Ltd. | Method, device and readable storage medium for paging |
US11653326B2 (en) | 2017-09-26 | 2023-05-16 | Huizhou Tcl Mobile Communication Co., Ltd. | Method, device and readable storage medium for paging |
Also Published As
Publication number | Publication date |
---|---|
CN105472532B (zh) | 2020-11-17 |
CN105472532A (zh) | 2016-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015184910A1 (zh) | 一种传输数据的方法和装置 | |
JP6653462B2 (ja) | 端末装置、通信方法及び集積回路 | |
JP7340648B2 (ja) | 車両間通信のためのロケーションおよびリッスンビフォアスケジュールベースのリソース割振り | |
RU2737202C2 (ru) | Системная информация по запросу для беспроводной связи | |
WO2018184440A1 (en) | Flexible grant-free resource configuration signaling | |
EP3878132B1 (en) | Method and apparatus for transmitting and receiving reference signal for sidelink data in wireless communication system | |
WO2017024941A1 (zh) | 一种下行控制信道的发送和接收方法、装置 | |
WO2017028051A1 (zh) | 一种信息的传输方法和基站以及用户设备 | |
WO2015166624A1 (en) | Method and system for configuring device-to-device communication | |
CN106973441A (zh) | 一种随机接入方法及装置 | |
WO2020225692A1 (en) | Dynamic indication of multi-trp pdsch transmission schemes | |
CN106936556B (zh) | 一种面向窄带物联网的时频二维稀疏码多址接入方法 | |
TW202008829A (zh) | 資源配置的方法和終端設備 | |
WO2016123772A1 (zh) | 一种传输业务数据的方法和装置 | |
CN116034556A (zh) | 用于物理侧行链路反馈信道上的调度请求的资源映射 | |
WO2022029721A1 (en) | TIMING ENHANCEMENTS RELATED TO PUCCH REPETITION TOWARDS MULTIPLE TRPs | |
JP2022550411A (ja) | 繰返しを伴う設定済みul | |
US20240015711A1 (en) | Communication method, terminal apparatus, and system | |
WO2019157634A1 (zh) | 一种harq信息的传输方法及装置、计算机存储介质 | |
WO2022029711A1 (en) | COLLISION AVOIDANCE AND/OR HANDLING OF INVALID SYMBOLS WHEN UTILIZING UPLINK CHANNEL REPETITION TOWARDS MULTIPLE TRPs | |
WO2017133479A1 (zh) | 一种下行控制信息传输方法及装置 | |
KR20210023711A (ko) | 통신 시스템에서 사이드링크 자원들의 설정 방법 | |
WO2016044978A1 (zh) | 一种设备到设备传输资源的分配方法和装置 | |
WO2018218539A1 (zh) | 一种调度系统信息块的方法及装置 | |
KR20220071951A (ko) | 사이드링크 통신에서 부분 센싱 동작의 결과를 공유하는 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15803531 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15803531 Country of ref document: EP Kind code of ref document: A1 |