WO2018174614A1 - 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치 - Google Patents

무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치 Download PDF

Info

Publication number
WO2018174614A1
WO2018174614A1 PCT/KR2018/003387 KR2018003387W WO2018174614A1 WO 2018174614 A1 WO2018174614 A1 WO 2018174614A1 KR 2018003387 W KR2018003387 W KR 2018003387W WO 2018174614 A1 WO2018174614 A1 WO 2018174614A1
Authority
WO
WIPO (PCT)
Prior art keywords
sib1
subframe
transmitted
mib
asib1
Prior art date
Application number
PCT/KR2018/003387
Other languages
English (en)
French (fr)
Inventor
박창환
신석민
안준기
황승계
이완용
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020207002804A priority Critical patent/KR20200013114A/ko
Priority to KR1020197004022A priority patent/KR102073619B1/ko
Priority to US16/332,484 priority patent/US11611859B2/en
Priority to CN201880004083.8A priority patent/CN109906570B/zh
Priority to JP2019537059A priority patent/JP6808840B2/ja
Priority to EP18770228.7A priority patent/EP3514992B1/en
Publication of WO2018174614A1 publication Critical patent/WO2018174614A1/ko
Priority to US16/299,606 priority patent/US10972887B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • the following description relates to a wireless communication system, and a method for transmitting and receiving a signal between a terminal and a base station in a wireless communication system and an apparatus supporting the same.
  • a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • the multiple access system includes a code division multipleaccess (CDMA) system, a frequency division multipleaccess (FDMA) system, a time division multipleaccess (TDMA) system, an orthogonal frequency division multipleaccess (OFDMA) system, and a single carrier frequency division multipleaccess (SC-FDMA).
  • CDMA code division multipleaccess
  • FDMA frequency division multipleaccess
  • TDMA time division multipleaccess
  • OFDMA orthogonal frequency division multipleaccess
  • SC-FDMA single carrier frequency division multipleaccess
  • IoT Internet of Things
  • the conventional LTE system is designed for the purpose of supporting high-speed data communication, and has been considered as an expensive communication method to people.
  • IoT communication has a feature that it can be widely used only when the price is low due to its characteristics.
  • the present invention is to provide a method for the UE to obtain the system information faster by transmitting additional SIB1-NB in addition to the SIB1-NB.
  • the present invention provides a method for transmitting and receiving signals between a terminal and a base station in a wireless communication system, and apparatuses for supporting the same.
  • a method for receiving a signal from a base station by a terminal includes: receiving a master information block-narrow band (MIB-NB) and a system information block 1-narrow band (SIB1-NB) from a base station; Obtaining information indicating whether additional SIB1-NB is transmitted from MIB-NB or SIB1-NB, and based on the obtained information, an invalid downlink subframe by the base station; The method may include determining a subframe indicated by) as a valid subframe or an invalid subframe.
  • MIB-NB master information block-narrow band
  • SIB1-NB system information block 1-narrow band
  • receiving at least one of NRS, NPDCCH, and NPDSCH in the subframe indicated by the invalid downlink subframe may further include.
  • the method may further include receiving additional SIB1-NB in the subframe indicated by the invalid downlink subframe.
  • the additional SIB1-NB is transmitted in a subframe in which the SIB1-NB is transmitted in a radio frame in which the SIB1-NB is transmitted, and the subframe in which the additional SIB1-NB is transmitted is a subframe corresponding to the subframe index 3. It may be a frame.
  • the additional SIB1-NB may be transmitted in a subframe different from the subframe in which the SIB1-NB is transmitted in the anchor carrier.
  • the SIB1-NB is transmitted in the anchor carrier or the non-anchor carrier, and whether the SIB1-NB is transmitted in the anchor carrier or the non-anchor carrier may be indicated by the MIB-NB.
  • the signal receiving method may include obtaining location information of a non-anchor carrier on which the SIB1-NB is transmitted from the MIB-NB, and receiving the SIB-NB based on the obtained location information. have.
  • the number of repetitive transmissions of the additional SIB1-NB may be determined based on the number of repetitive transmissions of the SIB1-NB.
  • the additional SIB1-NB is not transmitted and the number of repetitive transmissions of the SIB1-NB is 16, the additional SIB1-NB is the same as the SIB1-NB. Can be sent a number of times.
  • Information indicating whether to transmit the additional SIB1-NB may be indicated by an unused bit of the MIB-NB.
  • Whether the additional SIB1-NB is transmitted according to an embodiment includes: a code rate of the SIB1-NB, a transport block size (TBS) of the SIB1-NB, a number of repetitive transmissions of the SIB1-NB, and an operation mode of the NB-IoT , NRS antenna ports, and CRS antenna ports may be determined based on at least one.
  • TBS transport block size
  • Whether additional SIB1-NB is transmitted according to an embodiment may be indicated by the changed SIB1-NB when the SIB1-NB is changed.
  • a method for transmitting a signal to a terminal by a base station includes MIB-NB (Master Information Block-Narrow Band) or SIB1-NB (System Information Block1-Narrow band) added SIB1-NB (additional SIB1). Setting to indicate whether or not to transmit the -NB), indicating a subframe in which the additional SIB1-NB can be transmitted as an invalid downlink subframe, and indicate the MIB-NB and the SIB1-NB to the UE. Transmitting, and transmitting at least one of additional SIB1-NB, NRS, NPDCC, and NPDSCH in a subframe indicated by an invalid downlink subframe.
  • a terminal receiving a signal from a base station includes a receiver and a processor connected to the receiver, the processor controls the receiver to receive the MIB-NB and SIB1-NB from the base station, and the MIB Obtain information indicating whether additional SIB1-NB is transmitted from -NB or SIB1-NB, and convert the subframe indicated by the base station into an invalid downlink subframe based on the obtained information as a valid subframe or an invalid subframe. You can judge.
  • the transmitter comprises a transmitter and a processor connected to the transmitter, the processor is a MIB-NB (Master Information Block-Narrow Band) or SIB1-NB ( Set the System Information Block1-Narrow band to indicate whether additional SIB1-NB (transitional SIB1-NB) is transmitted, and convert a subframe in which the additional SIB1-NB can be transmitted into an invalid downlink subframe.
  • MIB-NB Master Information Block-Narrow Band
  • SIB1-NB Set the System Information Block1-Narrow band to indicate whether additional SIB1-NB (transitional SIB1-NB) is transmitted, and convert a subframe in which the additional SIB1-NB can be transmitted into an invalid downlink subframe.
  • Control the transmitter to send MIB-NB and SIB1-NB to the UE, and send the transmitter to transmit at least one of additional SIB1-NB, NRS, NPDCC, and NPDSCH in a subframe indicated by an invalid downlink subframe. Can be controlled.
  • Various embodiments of the present invention allow the UE to acquire system information more quickly by sending additional SIB1-NB.
  • FIG. 1 is a diagram illustrating a process of transmitting a signal using a physical channel and a physical channel according to an embodiment.
  • FIG. 2 is a diagram illustrating a structure of a radio frame according to an embodiment.
  • FIG. 3 is a diagram illustrating a resource grid for a downlink slot according to an embodiment.
  • FIG. 4 is a diagram illustrating a structure of an uplink subframe according to an embodiment.
  • FIG. 5 is a diagram illustrating a structure of a downlink subframe according to an embodiment.
  • FIG. 6 is a diagram illustrating an arrangement of an anchor carrier of an in-band in an LTE system according to an embodiment.
  • FIG. 7 is a diagram illustrating a location where a downlink physical channel and a downlink signal are transmitted in an LTE system operating in an FDD scheme according to an embodiment.
  • FIG. 8 is a diagram illustrating resource allocation for signals of an NB-IoT system and signals of an LTE system in an in-band mode according to an embodiment.
  • FIG. 9 illustrates a method of transmitting persistent SIB1-NB scheduling information through a MIB-NB according to an embodiment.
  • FIG. 10 illustrates a method for combining SIB1-NB between SIB1-NB transmission time intervals (TTIs) within a SIB1-NB change period according to an embodiment.
  • FIG. 11 illustrates a method of transmitting an NPDSCH including an SIB1-NB according to an embodiment.
  • 12A to 12C illustrate a method of transmitting additional SIB1-NB in subframe 4 in which SIB1-NB is not transmitted according to an embodiment.
  • 13A to 13C illustrate a method of transmitting additional SIB1-NB in subframe 9 in which NSSS is not transmitted, according to an embodiment.
  • FIG. 14 is a diagram illustrating an output of a circular buffer according to an embodiment.
  • 15A and 15B are diagrams illustrating performance of a BLER according to a transmission pattern of additional SIB1-NB according to an embodiment.
  • 16A to 19C are diagrams illustrating locations where additional SIB1-NBs are transmitted according to an embodiment.
  • 20 illustrates a codeword and a resource mapping method of the additional SIB1-NB according to an embodiment.
  • 21 is a diagram illustrating a configuration of a terminal according to an embodiment.
  • 22 is a diagram illustrating a configuration of a base station according to an embodiment.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • the base station may mean a terminal node of the network that directly communicates with the terminal. Certain operations described in this document as being performed by a base station may, in some cases, be performed by an uppernode of the base station.
  • the 'base station' may be replaced with terms such as a fixed station, a Node B, an eNode B (eNB), a gNode B (gNB), an advanced base station (ABS), or an access point.
  • eNB eNode B
  • gNB gNode B
  • ABS advanced base station
  • a terminal may be a user equipment (UE), a mobile station (MS), a subscriber station (SS), a mobile subscriber station (MSS), or mobile. It may be replaced with terms such as a mobile terminal or an advanced mobile station (AMS).
  • UE user equipment
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • the transmitting end may mean a fixed and / or mobile node that provides a data service or a voice service
  • the receiving end may mean a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a terminal may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a terminal may be a receiving end and a base station may be a transmitting end.
  • Embodiments of the present invention are disclosed in at least one of the wireless access systems IEEE 802.xx system, 3rd Generation Partnership Project (3GPP) system, 3GPP Long Term Evolution (LTE) system, 3GPP 5G New Radio (NR) system and 3GPP2 system
  • 3GPP LTE / LTE-A system will be described as an example of a wireless access system in which embodiments of the present invention can be used.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP Long Term Evolution (LTE) refers to a part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (Advanced) system is an improved system of the 3GPP LTE system.
  • embodiments of the present invention will be described based on the 3GPP LTE / LTE-A system, but can also be applied to IEEE 802.16e / m system and the like.
  • a terminal receives information from a base station through downlink (DL) and transmits information to the base station through uplink (UL).
  • the information transmitted and received by the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type / use of the information transmitted and received by the base station and the terminal.
  • FIG. 1 is a diagram illustrating a process of transmitting a signal using a physical channel and a physical channel according to an embodiment.
  • step S11 the terminal is powered on again or enters a new cell in the power-off state may perform an initial cell search (synchronization with the base station).
  • the terminal receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station, and information such as a cell ID. Can be obtained.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain intra-cell broadcast information.
  • PBCH physical broadcast channel
  • the terminal may receive a downlink reference signal (DL RS) to check the downlink channel state.
  • DL RS downlink reference signal
  • the UE After completing the initial cell discovery, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S12.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the terminal may perform a random access procedure such as steps S13 to S16 to complete access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S13), and transmits a preamble through a physical downlink control channel and a corresponding physical downlink shared channel.
  • PRACH physical random access channel
  • the response message may be received (S14).
  • the UE may perform contention resolution procedures such as transmitting additional physical random access channel signals (S15) and receiving physical downlink control channel signals and corresponding physical downlink shared channel signals (S16). Procedure).
  • the UE After performing the above-described procedure, the UE receives a physical downlink control channel signal and / or a physical downlink shared channel signal as a general uplink / downlink signal transmission procedure (S17), and physical uplink shared channel (PUSCH).
  • a physical uplink shared channel (PU) signal and / or a physical uplink control channel (PUCCH) signal may be transmitted (S18).
  • UCI uplink control information
  • UCI may include HARQ-ACK / NACK (Hybrid Automatic Repeat and reQuest Acknowledgement / Negative-ACK), SR (Scheduling Request), Channel Quality Indication (CQI), Precoding Matrix Indication (PMI), and Rank Indication (RI) information.
  • HARQ-ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgement / Negative-ACK
  • SR Service Request
  • CQI Channel Quality Indication
  • PMI Precoding Matrix Indication
  • RI Rank Indication
  • UCI is generally transmitted periodically on the PUCCH. However, if control information and traffic data are to be transmitted at the same time, the UCI may be transmitted through the PUSCH. In addition, the terminal may transmit the UCI aperiodically through the PUSCH according to the request / instruction of the network.
  • FIG. 2 illustrates a structure of a radio frame according to an embodiment.
  • the first type frame structure may be applied to both a full duplex frequency division duplex (FDD) system and a half duplex FDD (half duplex) system.
  • FDD frequency division duplex
  • FDD half duplex FDD
  • One subframe is defined as two consecutive slots, and the i-th subframe may be configured as slots corresponding to 2i and 2i + 1. That is, the radio frame may consist of 10 subframes.
  • the time taken to transmit one subframe is called a transmission time interval (TTI).
  • the slot may include a plurality of OFDM symbols or SC-FDMA symbols in the time domain and may include a plurality of resource blocks in the frequency domain.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain. Since the 3GPP LTE system uses OFDMA in downlink, the OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • 10 subframes may be used simultaneously for downlink transmission and uplink transmission during each 10ms period. At this time, uplink and downlink transmission are separated in the frequency domain.
  • the terminal cannot simultaneously transmit and receive.
  • the structure of the above-described radio frame is only one example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 2 (b) shows a second type frame structure (frame structure type 2).
  • the second type frame structure is applied to the TDD scheme.
  • the second type frame includes a special subframe consisting of three fields: Downlink Pilot Time Slot (DwPTS), Guard Period (GP), and Uplink Pilot Time Slot (UpPTS).
  • DwPTS Downlink Pilot Time Slot
  • GP Guard Period
  • UpPTS Uplink Pilot Time Slot
  • the DwPTS is used for initial cell search, synchronization or channel estimation in the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is located between the uplink and the downlink, and is a section for removing interference generated in the uplink due to the multipath delay of the downlink signal.
  • Table 1 below shows the structure of the special frame (length of DwPTS / GP / UpPTS).
  • X represents the number of additional SC-FDMA symbols in the UpPTS and may be provided by a higher layer parameter srs-UpPtsAdd. X is equal to 0 if no parameter is set.
  • the UE may perform special subframe configurations ⁇ 3, 4, 7, 8 ⁇ for general CP in downlink and special subframe configurations ⁇ 2, 3, 5, 6 ⁇ for extended CP in downlink. You may not expect two additional UpPTS SC-FDMA symbols to be set for.
  • the terminal is a special subframe configurations ⁇ 1, 2, 3, 4, 6, 7, 8 ⁇ for the general CP in the downlink and special subframe configurations ⁇ 1, for the extended CP in the downlink 2, 3, 5, 6 ⁇ may not be expected to set four additional UpPTS SC-FDMA symbols.
  • the UE is not expected to be configured with 2 additional UpPTS SC-FDMA symbols for special subframeconfigurations ⁇ 3, 4, 7, 8 ⁇ for normal cyclic prefix in downlink and special subframeconfigurations ⁇ 2, 3, 5, 6 ⁇ for extended cyclic prefix in downlink and 4 additional UpPTS SC-FDMA symbols for special subframeconfigurations ⁇ 1, 2, 3, 4, 6, 7, 8 ⁇ for normal cyclic prefix in downlink and special subframeconfigurations ⁇ 1, 2, 3, 5, 6 ⁇ for extended cyclic prefix in downlink.
  • FIG. 3 is a diagram illustrating a resource grid for a downlink slot according to an embodiment.
  • one downlink slot may include a plurality of OFDM symbols in the time domain.
  • one downlink slot may include 7 OFDM symbols, and one resource block may include 12 subcarriers in the frequency domain, but is not limited thereto.
  • Each element on the resource grid is referred to as a resource element, and one resource block may include 12 x 7 resource elements.
  • the number NDL of resource blocks included in the downlink slot is determined by the downlink transmission bandwidth.
  • FIG. 4 is a diagram illustrating a structure of an uplink subframe according to an embodiment.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a PUCCH for transmitting uplink control information is allocated.
  • a PUSCH carrying user data is allocated.
  • One terminal does not simultaneously transmit the PUCCH and the PUSCH in order to maintain a single carrier characteristic.
  • a PUCCH for one UE is allocated an RB (Resource Block) pair in a subframe.
  • the RBs included in the RB pair occupy different subcarriers in each of the two slots, and the RB pair allocated to the PUCCH is frequency hopping at a slot boundary.
  • FIG. 5 is a diagram illustrating a structure of a downlink subframe according to an embodiment.
  • up to three OFDM symbols starting from OFDM symbol index 0 in a first slot in a subframe are control regions to which control channels are allocated, and remaining OFDM symbols are data regions to which PDSCH is allocated. )to be.
  • the downlink control channel used in the LTE system may include, for example, a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid-ARQ indicator channel (PHICH), and the like, but is not limited thereto. Do not.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and may carry information (eg, the size of the control region) about the number of OFDM symbols used to transmit control channels within the subframe.
  • the PHICH is a response channel for the uplink, and may transmit an acknowledgment (ACK) / negative-acknowledgement (NACK) signal for a hybrid automatic repeat request (HARQ).
  • control information transmitted through the PDCCH may be referred to as downlink control information (DCI).
  • the downlink control information may include uplink resource allocation information, downlink resource allocation information, or an uplink transmission (Tx) power control command for an arbitrary terminal group, but is not limited thereto.
  • RATs radio access technologies
  • mMTC massive machine type communications
  • the new wireless access technology system proposed as a new wireless access technology for convenience New RAT Or NR (New Radio).
  • ⁇ for each carrier bandwidth part and cyclic prefix (CP) information may be signaled for each downlink (DL, downlink) or uplink (UL, uplink), respectively.
  • ⁇ and CP information for a downlink carrier bandwidth part may be signaled through higher layer signaling DL-BWP-mu and DL-MWP-cp.
  • ⁇ and CP information for an uplink carrier bandwidth part may be signaled through higher layer signaling UL-BWP-mu and UL-MWP-cp.
  • the downlink and uplink frames may be composed of 10 ms long frames, and one frame may be configured of 10 subframes having a 1 ms long length. In this case, the number of consecutive OFDM symbols for each subframe is to be.
  • Each frame may consist of two half frames having the same size.
  • the two half-frames may be composed of subframes 0 to 4 and subframes 5 to 9, respectively.
  • slots are in ascending order within one subframe. Numbered as in ascending order within a frame It may be numbered as follows. In this case, the number of consecutive OFDM symbols in one slot ( ) May be determined according to CP as shown in Table 4 below. Start slot in one subframe ( ) Is the starting OFDM symbol () in the same subframe ) And time dimension.
  • Table 4 shows the number of OFDM symbols per slot / frame / subframe for a normal cyclic prefix (CP), and Table 5 shows slots / frame / sub / for an extended cyclic prefix (CP). This indicates the number of OFDM symbols per frame.
  • the technical features of the NB-IoT system will be described in detail. For convenience of description, it will be described based on the NB-IoT based on the 3GPP LTE standard, the configuration can be equally applied to the 3GPP NR standard. To this end, some technical configurations may be interpreted by changing (eg, changing a subframe into a slot).
  • the NB-IoT will be described based on the LTE standard technology, but the LTE standard technology can be interpreted by being replaced with the NR standard technology within a range easily derivable to those skilled in the art.
  • NB-IoT supports three modes of operation: in-band, guard-band, and stand-alone. The same requirements apply to each mode.
  • In-band mode allocates and manages some of the in-band resources of the LTE system to the NB-IoT system.
  • the guard-band mode utilizes the guard frequency band of the LTE system, and the NB-IoT carrier is arranged as close as possible to the edge subcarrier of the LTE system.
  • GSM Global System for Mobile Communications
  • the NB-IoT terminal searches for an anchor carrier in units of 100 kHz for initial synchronization, and the center frequency of the anchor carrier in the in-band and guard-bands should be located within ⁇ 7.5 kHz from the 100 kHz channel raster. do.
  • the NB-IoT terminal may mean a terminal operating in the NB-IoT system and a terminal supporting the NB-IoT.
  • 6 PRBs among the LTE Physical Resource Blocks (PRBs) are not allocated to the NB-IoT system.
  • the anchor carrier may be located only in a particular PRB.
  • FIG. 6 is a diagram illustrating an arrangement of an anchor carrier of an in-band in an LTE system according to an embodiment.
  • the Direct Current (DC) subcarrier is located in the channel raster. Since the center frequency spacing between adjacent PRBs is 180 kHz, the center frequencies of PRB indexes 4, 9, 14, 19, 30, 35, 40 and 45 are located at ⁇ 2.5 kH from the channel raster.
  • the center frequency of the PRB suitable for transmission of the anchor carrier is located at ⁇ 2.5 kHz from the channel raster, and when the bandwidth is 3 MHz, 5 MHz, and 15 MHz, the center frequency of the PRB suitable for transmission of the anchor carrier is the channel. It is located at ⁇ 7.5 kHz from the raster.
  • guard-band mode when the bandwidth is 10 MHz and 20 MHz, the center frequency of the PRB immediately adjacent to the edge PRB of the LTE system is located at ⁇ 2.5 kHz from the channel raster.
  • the bandwidth when the bandwidth is 3MHz, 5MHz, 15MHz, by using a guard frequency band corresponding to three subcarriers from the edge PRB, the center frequency of the anchor carrier can be located at ⁇ 7.5kHz from the channel raster.
  • Anchor carriers in standalone mode are aligned to the 100kHz channel raster, and all GSM carriers, including DC carriers, can be utilized as NB-IoT anchor carriers.
  • NB-IoT supports multiple carrier operations, and a combination of in-band and in-band, in-band and guard-band, guard-band and guard-band, standalone and standalone may be used.
  • the downlink of the NB-IoT system uses an Orthogonal Frequency Division Multiple Access (OFDMA) scheme having a 15 kHz subcarrier spacing.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the OFDMA scheme provides orthogonality between subcarriers, so that the NB-IOT system and the LTE system can coexist smoothly.
  • Downlink may be provided with physical channels such as Narrowband Physical Broadcast Channel (NPBCH), Narrowband Physical Downlink Shared Channel (NPDSCH), Narrowband Physical Downlink Control Channel (NPDCCH), Narrowband Primary Synchronization Signal (NPSS), Narrowband Primary Synchronization Signal Physical signals such as NSSS, Narrowband Reference Signal (NRS).
  • NNBCH Narrowband Physical Broadcast Channel
  • NPDSCH Narrowband Physical Downlink Shared Channel
  • NPDCCH Narrowband Physical Downlink Control Channel
  • NPSS Narrowband Primary Synchronization Signal
  • NSSS Narrowband Primary Synchronization Signal Physical signals
  • Narrowband Reference Signal Narrowband Reference Signal
  • FIG. 7 is a diagram illustrating a location where a downlink physical channel and a downlink signal are transmitted in an LTE system operating in an FDD scheme according to an embodiment.
  • an NB-IoT terminal In order to access a network, an NB-IoT terminal should acquire system information of a cell, and in order to obtain system information of a cell, it should acquire synchronization with a cell through a cell search process. In order for the NB-IoT terminal to acquire synchronization with the cell, the synchronization signal may be transmitted in downlink.
  • the NB-IoT terminal acquires frequency, symbol, and frame synchronization using a synchronization signal and searches for 504 physical cell IDs (PCIDs). Since the synchronization signal of the LTE system is transmitted through 6 PRB resources, it is impossible to reuse the synchronization signal of the LTE system to an NB-IoT system using 1 PRB.
  • PCIDs physical cell IDs
  • the synchronization signals (eg, NPSS and NSSS) of the new NB-IoT system are designed, and the synchronization signals of the NB-IoT system can be equally applied to the three operating modes of the NB-IoT.
  • NPBCH is transmitted in the first subframe of each radio frame
  • NPSS is in the sixth subframe of each radio frame
  • NSSS is transmitted in the last subframe of each even frame.
  • NPSS is composed of a ZCoff (Zadoff-Chu) sequence having a length of 11 and having 5 as a root index value.
  • ZCoff Zero-Chu
  • NPSS may be generated according to Equation 1 below.
  • S (l) for the symbol index l may be defined as shown in Table 6 below.
  • the NSSS consists of a combination of a binary scrambling sequence such as a ZC sequence having a length of 131 and a Hadamard sequence.
  • NSSS indicates the PCID to NB-IoT terminals in the cell through the combination of the sequences.
  • NSSS may be generated according to Equation 2 below.
  • Equation 2 variables applied to Equation 2 may be defined as shown in Table 7 below.
  • the binary sequence bq (m) may be defined as shown in Table 8 below, and the cyclic shift ⁇ f for the frame number nf may be defined as shown in Equation 3 below.
  • the NRS refers to a reference signal for channel estimation required for downlink physical channel demodulation and may be generated in the same manner as the LTE system. However, NRS uses Narrowband-Physical Cell ID (NB-PCID) as an initial value for initialization.
  • NB-PCID Narrowband-Physical Cell ID
  • NRS is transmitted to one or two antenna ports, and up to two base station transmit antennas of an NB-IoT system are supported.
  • the NPBCH delivers Master Information Block-Narrowband (MIB-NB), which is the minimum system information that the NB-IoT terminal must know in order to access the system, to the terminal.
  • MIB-NB Master Information Block-Narrowband
  • the transport block size (TBS) of the MIB-NB is 34 bits and is updated and transmitted every 640 ms Transmission Time Interval (TTI) period.
  • TTI Transmission Time Interval
  • SFN System Frame Number
  • CRS Cell-specific Reference Signal
  • the NPBCH signal may be repeatedly transmitted a total of eight times to improve coverage.
  • the NPDCCH channel has the same transmission antenna configuration as the NPBCH and supports three types of downlink control information (DCI) formats (eg, DCI NO, N1, N2).
  • DCI N0 is used to transmit NarrowSCH Physical Uplink Shared Channel (NPUSCH) scheduling information to the UE, and DCI N1 and N2 are used to deliver information necessary for demodulating the NPDSCH to the UE.
  • NPDCCH may be repeatedly transmitted up to 2048 times to improve coverage.
  • NPDSCH is a physical channel for transmitting a transport channel (TrCH) such as a downlink-shared channel (DL-SCH) and a paging channel (PCH).
  • TrCH transport channel
  • DL-SCH downlink-shared channel
  • PCH paging channel
  • the maximum TBS of the NPDSCH is 680 bits, and may be repeatedly transmitted up to 2048 times to improve coverage.
  • the uplink physical channel is composed of a Narrowband Physical Random Access Channel (NPRACH) and an NPUSCH, and supports single-tone and multi-tone transmission.
  • NPRACH Narrowband Physical Random Access Channel
  • NPUSCH Narrowband Physical Random Access Channel
  • Multitone transmission is only supported when the subcarrier spacing is 15 kHz, and single tone transmission is supported when the subcarrier spacing is 3.5 kHz and 15 kHz.
  • the subcarrier spacing is 15 kHz in the uplink, since orthogonality with the LTE system can be maintained, optimal performance can be provided. However, when the subcarrier spacing is 3.75 kHz, orthogonality may be degraded and performance degradation due to interference may occur.
  • the NPRACH preamble consists of four symbol groups. Each symbol group consists of a Cyclic Prefix (CP) and five symbols. NPRACH only supports single-tone transmissions with a subcarrier spacing of 3.75 kHz and provides CPs of 66.7 ⁇ s and 266.67 ⁇ s to support different cell radii.
  • CP Cyclic Prefix
  • Each symbol group performs frequency hopping.
  • the subcarriers transmitting the first symbol group are determined in a pseudo-random manner.
  • the second symbol group is one subcarrier
  • the third symbol group is six subcarriers
  • the fourth symbol group is one subcarrier jump.
  • the aforementioned frequency hopping procedure is repeatedly applied, and the NPRACH preamble may be repeatedly transmitted up to 128 times in order to improve coverage.
  • NPUSCH can support two formats. Format 1 is for UL-SCH transmission, and the maximum transmission block size (TBS) is 1000 bits. Format 2 is used to transmit uplink control information such as HARQ ACK signaling. Format 1 supports single-tone and multi-tone transmissions, while Format 2 only supports single-tone transmissions. In the case of single tone transmission, binary phase shift keying (p / 2-BPSK) and quadrature phase shift keying (p / 4-QPSK) may be used to reduce the Peer-to-Average Power Ratio (PAPR).
  • p / 2-BPSK binary phase shift keying
  • p / 4-QPSK quadrature phase shift keying
  • all resources included in one PRB may be allocated to the NB-IoT system.
  • resource mapping is restricted in order to maintain orthogonality with signals of legacy LTE (Legacy LTE) systems.
  • the NB-IoT terminal should detect NPSS and NSSS for initial synchronization in the absence of system information. Therefore, resources classified as allocation areas for the control channel of the LTE system (OFDM symbols 0 to 2 of each subframe) cannot be allocated to the NPSS and NSSS, and are allocated to a RE (Resource Element) overlapping the CRS of the LTE system. Mapped NPSS and NSSS symbols should be punched.
  • FIG. 8 is a diagram illustrating resource allocation for signals of an NB-IoT system and signals of an LTE system in an in-band mode according to an embodiment.
  • NPSS and NSSS regardless of the operating mode of the NB-IoT system, of the subframe corresponding to the resource region for transmitting the control channel in the conventional LTE system It is not transmitted in the first three OFDM symbols.
  • Common Reference Signal (CRS) and REs for NPSS / NSSS colliding on physical resources in the existing LTE system are punctured and mapped so as not to affect the existing LTE system.
  • the NB-IoT terminal After the cell search, since the NB-IoT terminal demodulates the NPBCH in the absence of system information other than the PCID, the NB-IoT terminal cannot map the NPBCH symbol to the control channel allocation region of the LTE system. In addition, since four LTE antenna ports and two NB-IoT antenna ports must be assumed, REs allocated to CRSs and NRSs accordingly cannot be allocated to NPBCHs. Therefore, NPBCH needs to be rate-matched according to available resources.
  • the NB-IoT terminal After the NPBCH demodulation, the NB-IoT terminal acquires information on the number of CRS antenna ports, but still cannot know the information on the region to which the control channel of the LTE system is allocated. Therefore, the NPDSCH transmitting SIB1 (System Information Block type 1) data is not mapped to a resource classified as an area to which the control channel of the LTE system is allocated.
  • SIB1 System Information Block type 1
  • NPDSCH (except when transmitting SIB1) and NPDCCH are available resources. Can be mapped to
  • the NB-IoT terminal may support both normal coverage and extended coverage that is wider than the normal coverage corresponding to the coverage of the existing LTE terminal.
  • general coverage and extended coverage correspond to -6dB and -12dB in terms of signal-to-noise ratio (SNR), respectively, and in TS 36.133 "Requirements for support of radio resource management", general coverage and extension. The requirements for covered coverage are defined separately.
  • the system information may include MIB-NB and SIB1-NB, and may include additional information such as another SIB2-NB according to an embodiment.
  • the NB-IoT terminal acquires system information of the found cell by using an advanced receiver or by additionally transmitting MIB-NB and SIB1-NB. It can improve performance. Accordingly, the present patent proposes a method of additionally transmitting at least one of the MIB-NB and the SIB1-NB in order to improve the system information acquisition performance of the NB-IoT terminal.
  • the base station may transmit aSIB-NB in addition to the existing SIB1-NB in order to improve the SIB1-NB decoding performance of the NB-IoT terminal.
  • the additionally transmitted MIB-NB and SIB1-NB will be referred to as additional MIB-NB (or additional MIB-NB) and additional SIB1-NB (or additional SIB1-NB), respectively. But it is not limited thereto.
  • the present patent proposes a message configuration of a new MIB-NB and a SIB1-NB to be additionally transmitted, a location of a transmission subframe, and the like.
  • MIB-NB and SIB1-NB will be referred to as aMIB-NB and aSIB1-NB, respectively.
  • the NB-IoT terminal may acquire system information. For example, the NB-IoT terminal may acquire a time synchronization of 20 msec units through a cell search process and may detect a MIB-NB based on the obtained time synchronization.
  • the MIB-NB may have different information at intervals of 640 msec.
  • the MIB-NB may be referred to as a MIB-NB-TTI.
  • the MIB-NB is transmitted through the NPBCH in subframe 0 every 10 msec within the MIB-NB-TTI, and the MIB-NB transmitted through each NPBCH can be self-decoded. .
  • the NB-IoT terminal may detect the SIB1-NB based on the NRS antenna number information obtained from the NPBCH and the information included in the MIB-NB.
  • the SIB1-NB scheduling information is included in the MIB-NB, and the scheduling unit of the SIB1-NB indicated by the MIB-NB may be 2560 msec (SIB1-NB-TTI). Therefore, if the SIB1-NB detection fails in the SIB1-NB-TTI interval, the NB-IoT terminal should detect the MIB1-NB again to obtain schedulingInfoSIB1-r13, which is SIB1-NB scheduling information. However, the period in which the SIB1-NB information can be changed is 40960 msec.
  • Table 9 below shows Cat. Table 1 compares the time required for the detection of system information by the terminal 0 and the NB-IoT terminal (Cat. NB1) based on the aforementioned cell search operation. In Table 9, general and extended coverage are distinguished and displayed, and general and extended coverage correspond to SNR -6dB and -12dB, respectively.
  • the time required to detect the SIB2-NB may vary depending on the configuration of the base station.
  • the time required to detect the MIB-NB since the time required to detect the MIB-NB is the same as the SIB1-NB-TTI, the NB-IoT terminal has a high probability of detecting the MIB-NB for each SIB1-NB-TTI.
  • the time required for detecting the SIB1-NB corresponds to about 12 SIB1-NB-TTIs and may occupy 70% of the 40960 msec which is the SIB1-NB change period. Accordingly, the present patent proposes a method for reducing the time required to detect the MIB-NB and SIB1-NB.
  • Radio frame structure of anchor carrier comprising aMIB-NB and aSIB1-NB
  • Tables 10 to 12 show the radio frame structures Alt.1, Alt.2, and Alt.3 of the anchor carrier including aMIB-NB and aSIB1-NB, which are proposed in the present patent, respectively.
  • aMIB-NB is located in subframe 1.
  • the legacy NB-IoT terminal does not attempt to detect the MIB-NB at the location of subframe # 1. Therefore, even if the aMIB-NB is located in subframe 1, the MIB-NB detection performance of the legacy NB-IoT terminal is not affected.
  • the first subframe may mean a subframe corresponding to the subframe index 1.
  • subframe 1 may be a subframe suitable for transmitting aMIB-NB.
  • the MIB-NB and aMIB-NB are located in two consecutive subframes. Accordingly, the NB-IoT terminal may attempt to simultaneously detect the MIB-NB and the aMIB-NB by performing ON / Off of the RF module only once, and is consumed for the detection of the MIB-NB and the aMIB-NB. Power can be reduced.
  • the NB-IoT UE may turn on and off the RF module before and after each subframe, and before and after the interval in which the RF module is turned on / off. Additional power may be consumed at.
  • aMIB-NB may not be transmitted in every radio frame. For example, referring to Tables 10 and 11, transmission of aMIB-NB in a radio frame including "(aMIB)" may be omitted. At this time, the position of the radio frame including "aMIB” and the position of the radio frame including "(aMIB)” may be changed, and the number of times (aMIB) is included within 40 msec may vary. However, when blind detection is considered in the aMIB-NB detection process of the NB-IoT terminal acquired during the 20 msec unit, the transmission pattern of the aMIB-NB needs to be determined in 20 msec units. Accordingly, the transmission period of the aMIB-NB may be 20ms.
  • the transmission position of the aSIB1-NB may be subframe 3 of subframe # 3 and subframe # 9 of a radio frame in which NSSS is not transmitted.
  • ASIB1-NB may be transmitted or omitted according to the repetition number and the TBS of the SIB1-NB defined in Table 16.4.1.3-3 and Table 16.4.1.5.2-1 of TS 36.213.
  • the aSIB-NB may be transmitted the same number of times as the SIB1-NB or half the number of the SIB1-NB. The transmission of the NB may be omitted.
  • the aSIB-NB may be transmitted the same number of times as the SIB1-NB. Can be.
  • a subframe in which aSIB1-NB is transmitted in Alt.1 and Alt.2 may be a subframe suitable for transmission of aSIB1-NB.
  • Alt.3 has the same location where aSIB1-NB is transmitted as in Alt.2, except that aMIB-NB is additionally transmitted in subframe 4 of a radio frame in which SIB1-NB is not transmitted.
  • the position where the aMIB-NB is transmitted and the radio frame in which the SIB1-NB is transmitted may be exchanged with each other in Table 12 according to the cell ID of the NB-IoT and the number of repetitive transmissions of the SIB1-NB.
  • Table 13 shows a structure (Alt. 4) that aMIB-NB can be transmitted in subframe 9 of a radio frame in which NSSS is not transmitted.
  • subframe 9 in which aMIB-NB is transmitted are as described above.
  • the NB-IoT terminal performs ON / Off of the RF module only once so that the MIB-NB and aMIB- The detection of the NB can be attempted simultaneously, and the power consumed for the detection of the MIB-NB and aMIB-NB can be reduced.
  • the MIB-NB can be effectively used when only 50% increase is required compared to the existing one, and additionally, an advantage of not restricting the configuration of the multimedia broadcast single frequency network (MBSFN) subframe of the legacy base station can be additionally obtained.
  • MMSFN multimedia broadcast single frequency network
  • the subframe position where aSIB and aMIB can be transmitted is not specified as subframe 9 and the NSSS subframe position of a radio frame in which NSSS is not transmitted.
  • the position of the NSSS subframe may mean the position of the subframe in which the NSSS can be transmitted in the radio frame.
  • the NSSS subframe position of a radio frame in which NSSS is not transmitted may refer to subframe X in a radio frame in which NSSS is not transmitted.
  • the subframe through which NSSS is transmitted in the TDD system is always downlink, when the position of the subframe where the aSIB and the aMIB can be transmitted is defined as the NSSS subframe position of the radio frame where the NSSS is not transmitted.
  • the relative position of the aMIB-NB or aSIB1-NB subframe may be specified based on the NSSS subframe position of the TDD system. For example, aMIB or aSIB1 may be transmitted in subframe 9 in which NSSS is not transmitted.
  • the positions of aMIB-NB and aSIB1-NB are intervals that cannot be used as downlinks of NPDCCH and NPDSCH from a legacy NB-IoT terminal point of view.
  • the positions of the aMIB-NB and the aSIB-NB may refer to the positions of the subframes in which the aMIB-NB and the aSIB-NB are transmitted.
  • the base station needs to inform the NB-IoT terminal by assigning a value corresponding to 0 to a position of a subframe in which aMIB-NB and aSIB1-NB are transmitted in DL-Bitmap-NB-r13.
  • the information on the position of the valid downlink subframe in the DL-Bitmap-NB-r13 may be indicated by the subframe Pattern10-r13 and the subframe Pattern40-r13, and each of 10msec and 40msec periods. Can be interpreted. If the bit corresponding to the position of the aMIB-NB and the aSIB1-NB is indicated as 0 using the subframe Pattern40-r13, there is an advantage in that the additional retransmitted aMIB and / or aSIB1 can be reduced by up to 25%.
  • the base station properly schedules the NPDCCH and the NPDSCH so as not to overlap the position of the subframe reserved for the transmission of the aMIB-NB or the aSIB1-NB, or when the collision occurs with the interference (NPDSCH by the aMIB-NB / aSIB-NB). / NPDCCH interference or vice versa) can be allowed.
  • the base station may indicate a bit corresponding to the aMIB and / or aSIB1 subframe position as 1 in the information of the DL-Bitmap-NB-r13. This has the advantage that the NRS of the subframe location indicated by 1 can be used as a measurement in the NB-IoT terminal.
  • aMIB-NB may be crossed / exchanged with each other.
  • aSIB1-NB may be sent to the location of aMIB-NB, or conversely, aMIB-NB may be sent to the location of aSIB1-NB, and the locations of aMIB-NB and aSIB1-NB may be powered on / off of the RF module. (power on / off) and the trade-off relationship of time diversity.
  • Table 14 shows an example (Alt. 1) of the structure of a radio frame additionally transmitting aMIB-NB and aSIB1-NB proposed in the present patent to a non-anchor carrier.
  • MIB-NB and SIB1-NB are indicated to refer to the position of a subframe transmitted in the anchor carrier, and MIB-NB and SIB1-NB are not transmitted in the non-anchor carrier.
  • the subframe structure of the non-anchor carrier is assumed to be generated in the same base station as the anchor carrier or does not assume to operate in the same operation mode. However, it may be assumed that the subframe numbers of the anchor carrier and the non-anchor carrier are synchronized with each other.
  • subframes 0 and 4 are subframes that cannot be set as MBSFN subframes in an existing LTE system and detect cell search performance and system information (eg, MIB-NB, SIB1-NB) of an NB-IoT terminal.
  • cell search performance and system information eg, MIB-NB, SIB1-NB
  • subframes 0, 4, 5, and 9, which are non-MBSFN subframes may not be sufficient.
  • the NB-IoT terminal first detects the NPSS and detects the NSSS in the cell search process. Thereafter, the NB-IoT terminal may decode the MIB-NB and receive the SIB1-NB according to the decoding result of the MIB-NB. In this case, when the reception power of the MIB-NB received through the anchor carrier is low, the NB-IoT terminal may additionally receive the aMIB-NB through the non-anchor carrier to improve performance. If the MIB-NB transmitted through the anchor carrier and the aMIB-NB transmitted through the non-anchor carrier are transmitted in successive subframes, the NB-IoT terminal may adjust the frequencies of the anchor carrier and the non-anchor carrier in a relatively short time. You need to tune it. This may be a factor that can increase the price of the NB-IoT terminal. Thus, a sufficient time gap between the MIB-NB and aMIB can be ensured to alleviate the requirement of frequency tuning time.
  • aMIB-NB may be allocated to subframe 5 of subframes 0, 4, 5, and 9, and aSIB1-NB is subframe 9 May be assigned to a frame.
  • aSIB1-NB may be transmitted in subframe 4 of a radio frame in which SIB1-NB of an anchor carrier is not transmitted in a corresponding cell.
  • the frequency retuning time of the NB-IoT terminal can be sufficiently guaranteed.
  • the aSIB1-NB may be transmitted in a 160msec period in which SIB1 is not transmitted at all in the anchor carrier.
  • the aMIB-NB and aSIB1-NB transmitted through the non-anchor carrier are the same as the MIB-NB and SIB1-NB transmitted through the existing anchor carrier, respectively, or are proposed below. It can follow the configuration of aMIB-NB and aSIB1-NB.
  • a 50-bit MIB-NB including a Cyclic Redundancy Check (CRC) is extended to 150 bits after tail-bit convolutional code (TBCC) channel coding, and can be rate-matched to 1600 bits during MIB-NB-TTI 640 msec. For example, 200 bits transmitted every 10 msec are repeatedly transmitted with the same value for 8 radio frames, and 200 bits subsequent to the first 200 bits are repeatedly transmitted during the next 80 msec, and are transmitted for 640 msec in the same manner.
  • 150 bits indicating TBCC encoding output having a 1/3 mother code rate can be divided into three by 50 bits, and each of the 50 bits can be sequentially denoted as Redundancy Version (RV) 0, RV1, and RV2. have.
  • RV Redundancy Version
  • 200 bits repeatedly transmitted for the first 80 msec in the MIB-NB-TTI may be configured as RV0, RV1, RV2, and RV0.
  • the MIB-NB-TTI 640msec may be divided into eight intervals of 80msec, and the 200-bit bundle representing each interval may be sequentially expressed as m0, m1, m2, m3, m4, m5, m6, and m7. . Accordingly, the transmission relationship between m0 to m7 and RV0 to RV2 in the MIB-NB TTI can be expressed as shown in Table 16 below.
  • n f represents a radio frame number.
  • the RVs transmitted within the 80 msec period are not evenly distributed.
  • a specific RV may be transmitted twice as many times, and RV2 may be transmitted less than RV0 and RV1 within the MIB-NB-TTI.
  • Tables 17 to 21 below show proposals for configuring aMIB-NB for each radio frame when the aMIB-NB is additionally transmitted every radio frame in the MIB-NB-TTI. aMIB-NB is indicated in bold.
  • aMIB-NB may be configured in the same manner as MIB-NB, and may have an advantage in terms of symbol-level combining.
  • the NB-IoT terminal may symbolize combining the MIB-NB and the aMIB-NB, which are repeatedly transmitted twice within 10msec, and perform decoding only once to reduce power consumption.
  • Alt.1-2 proposed in Table 18 is a method of circulating the RV of the aMIB-NB within an 80 msec period, and has a structure of repeating m circulated based on n f mod 8.
  • Alt.1-2 has a merit in that each RV is relatively evenly distributed within 80 msec, compared with Alt.1-1, so that the performance gain by channel coding can be improved.
  • Alt.1-2 has a disadvantage in that RV2 is relatively less than RV0 and RV1 in MIB-NB-TTI.
  • Alt.1-3 shown in Table 19 is a method for compensating for the shortcomings of Alt.1-2, and increases m by 1 based on n f mod 8. However, in order to complete the RV cycle at the position of the last value of m that is cycled based on n f mod 8, m2 rather than m0 may be allocated.
  • Alt.2-1 proposed in Table 20 is a method of transmitting an aMIB-NB composed of m that is larger than the m value of the MIB-NB by R for the RV cycle of the MIB-NB within an 80 msec period.
  • Alt.2-1 configures aMIB-NB of m2 for the RV cycle when m of the MIB-NB is 7.
  • Alt.2-1 can still transmit relatively few specific RVs within an 80msec period.
  • Alt.2-2 is characterized by allocating to cycle the RV start of each aMIB-NB so that the RV is distributed as evenly as possible within the 80msec period.
  • Each method proposed in Tables 17 to 21 defines a method of repeating or circulating an RV value within 80 msec.
  • the m value may be replaced with another value.
  • m0, m3, and m6 with matching RV configurations can be interchanged, m1, m4, m7 can also be interchanged, and m2 and m5 can also be exchanged.
  • the m values in Tables 17-21 can be used in place of exchangeable values.
  • the same resource element mapping method as the existing MIB-NB may be applied to the aMIB-NB.
  • a resource element mapping method different from the existing MIB-NB may be applied to the aMIB-NB.
  • a part of the resource mapping defined in 10.2.4.4 of TS 36.211 is used by using a time-first mapping method. You can modify it as follows.
  • mapping to resource elements (k, l) not reserved for transmission of reference signals shall be in increasing order of first the index l, then the index k.”
  • Alt.1-1 can estimate the frequency offset by estimating the phase difference between adjacent aMIB-NBs in the same manner as the MIB-NB within the 80 msec period.
  • the resource element mapping method of the aMIB-NB is not limited to the above-described method, and may be differently defined in various ways for increasing time diversity and frequency diversity with the MIB-NB.
  • resource element mapping methods of adjacent MIB-NB and aMIB-NB may be different from each other, which may be repeated alternately within 80 msec. Characterized in that it can.
  • the detection time of the SIB1-NB is about 12 SIB1-NB-TTI, and the detection time of the SIB1-NB may occupy 70% of 40960 msec, which is the SIB1-NB change period. Accordingly, within the SIB1-NB change period, there may be a problem that the NB-IoT terminal needs to detect the MIB-NB again every SIB1-NB-TTI prior to combining the SIB1-NB.
  • the present patent proposes a method for effectively reducing power consumption and unnecessary MIB-NB detection attempts of the NB-IoT terminal.
  • At least one of the first three OFDM symbol intervals of NPSS, NSSS, and NPBCH may be used, and may be applied to the guard-band mode or the standalone mode.
  • the OFDM symbol interval SIB1-NB is less than 3 may be used according to the eutraControlRegionSize-r13 value.
  • the sequence of at least one of the first three OFDM symbol intervals, or a modulated symbol, of at least one of NPSS, NSSS, and NPBCH minimizes the probability that an existing NB-IoT terminal may incorrectly detect NPSS and / or NSSS. It needs to be designed in such a way.
  • (4-2) As another method for instructing to omit MIB-NB decoding, a method of utilizing some of reserved bits of the MIB-NB, or some of bits of the SIBx-NB or utilizing an RRC message type; The method can be considered.
  • the section in which MIB-NB decoding is omitted may be set to a 640msec or 2560msec or N ⁇ 2560msec section, and may be designated as a specific value by specification, or It can be set to a semi-static value.
  • N ( ⁇ 0) is adjusted using specific sequence or modulated symbol information in the first three OFDM symbol intervals of at least one of NPSS, NSSS, and NPBCH, or time of N using a higher level message. You can adjust the unit to a value other than 640 msec or 2560 msec.
  • reserved bits of the MIB-NB it may be designed as a method of explicitly specifying N, but is not limited thereto.
  • the NB-IoT terminal may improve decoding performance by accumulating or combining specific bits and symbols of the MIB-NB within the indicated interval based on the interpretation.
  • Information on the persistence of the SIB1-NB is largely related to the scheduling information of the SIB1-NB (the number of repetitive transmissions of the SIB1-NB defined in Table 16.4.1.3-3 and Table 16.4.1.5.2-1 of TS 36.213).
  • TBS and adjacent SIB1-NB modification period (40.96 sec) can be divided into information about whether there is a change in the SIB1-NB content.
  • hyperSFN-LSB-r13 information in the SIB1-NB content is obviously changed every time, it is not included in determining whether there is a change in content.
  • the scheduling information of the SIB1-NB may be changed by the MIB-NB every 2560msec within the SIB1-NB change interval. Accordingly, there may be a disadvantage in that an additional decoding of the MIB-NB is required every 2560msec during the decoding process of the SIB1-NB. Therefore, if the NB-IoT terminal can assume that the scheduling information of the SIB1-NB does not change at least within the SIB1-NB change interval, the time required for additional decoding of the MIB-NB can be reduced.
  • the scheduling information of the persistent SIB1-NB is the same as the method of (4-1) and (4-2) described above, and the first 3 OFDM symbols of at least one of the NPSS, NSSS, and NPBCH or the SIB-NB. It can be indicated utilizing some of the reserved bits.
  • the continuous SIB1-NB scheduling unit may be set to 2560mse, N ⁇ 2560msec, or the next SIB1-NB change interval that follows from the indicated interval.
  • the corresponding message in the SIB1-NB may indicate that it does not change during the next N SIB1-NB change intervals.
  • the content of the SIB1-NB may be changed in units of SIB1-NB modification periodicity. Therefore, when the NB-IoT terminal fails to complete the SIB1-NB decoding within the SIB1-NB change interval, the NB-IoT terminal is irrelevant to whether the scheduling information of the SIB1-NB is changed in the newly started SIB1-NB change interval. It may be necessary to discard the accumulated SIB1-NB information of the previous SIB1-NB change interval and perform SIB1-NB decoding again.
  • the NB-IoT terminal may decode the SIB1-NB by accumulating the SIB1-NB of the adjacent SIB1-NB change interval.
  • a method capable of informing the NB-IoT terminal whether to change the content of the SIB1-NB, and whether or not to change the content of the SIB1-NB the method of (4-1) and (4-2) described above.
  • it may be indicated by the first three OFDM symbols of at least one of NPSS, NSSS, NPBCH, or some of the reserved bits of the MIB-NB.
  • the unit of the content information of the persistent SIB1-NB may be set to 2560msec, N ⁇ 2560msec, or the next SIB1-NB change interval following the indicated interval.
  • the content information of the persistent SIB1-NB may be indicated or interpreted as omission of the SIB1-NB decoding attempt. For example, when skipping decoding of SIB1-NB for the next SIB1-NB change interval is indicated by using some of reserved bits of the MIB-NB, the NB-IoT terminal skips decoding of systemInfoValueTag information and SIB1-NB. By using the information indicating the, it is possible to determine whether to skip the SIB1-NB decoding period of the corresponding SIB1-NB change period and the next SIB1-NB change period in one MIB-NB decoding. In addition, the corresponding message in the SIB1-NB may indicate that it does not change during the next N SIB1-NB change periods.
  • the proposed persistent SIB1-NB scheduling information and persistent SIB1-NB content information may be indicated in independent periods and methods, and may be combined and indicated together without being mutually arranged. Alternatively, each piece of information may be set such that only one piece of information is indicated.
  • the persistence information of the proposed MIB-NB and the SIB-NB, and information indicating skipping of decoding may be applied to a system (eg, an eMTC system) in which scheduling of SIB1 (-BR) is indicated through the MIB.
  • the period may be different from that of the NB-IoT system.
  • FIG. 9 is a diagram illustrating a method of delivering continuous SIB1-NB scheduling information through a MIB-NB.
  • the MIB-NB may inform in advance that the same scheduling as the current SIB1-NB is also applied to the next SIB1-NB change period.
  • the SIB1-NB scheduling information may mean the number of repetitive transmissions and the TBS of the SIB1-NB defined in Table 16.4.1.3-3 and Table 16.4.1.5.2-1 of TS 36.213. Therefore, when the NB-IoT terminal receives the continuous SIB1-NB scheduling information as true in MIB-NB-TTI m, the NB-IoT terminal of the MIB-NB detects the SIB1-NB scheduling information within a change period of the next SIB1-NB.
  • Detection attempts can be omitted. However, when the NB-IoT terminal does not detect the SIB1-NB for a predetermined time or more within the next SIB1-NB change interval, the MIB-NB may be detected again, and the time point when the MIB-NB detection is attempted again is shown in the embodiment. It may vary.
  • some of the spare 11 bits of the MIB-NB may be used to indicate a relative time value from the corresponding MIB-NB-TTI to the SIB1-NB-TTI in which the scheduling of the SIB1-NB is maintained.
  • the relative time value may be a MIB-NB-TTI (640 msec) unit, a SIB1-NB-TTI (2560 msec) unit, or a SIB1-NB change period (40.96 sec) unit.
  • the value may be decreased, maintained or increased by one in the next MIB-NB.
  • Bits including information indicating continuous scheduling in the MIB-NB or SIB1-NB are not included in determining whether to continue scheduling, and are not included in determining whether content is identical.
  • the information about the persistence of the SIB1-NB may include information about whether the contents of the SIB1-NB included in the next change period of the SIB1-NB are the same, and the scheduling information of the SIB1-NB (for example, the SIB1-NB). May include at least one of information on whether the number of times of repeated transmission and TBS information) has changed.
  • the NB-IoT terminal that has obtained the SIB1-NB scheduling information of the MIB-NB at least once within the change period of the SIB1-NB may assume that the SIB1-NB content and the TBS are not changed.
  • the NB-IoT terminal may assume that the repetitive transmission number of the SBI1-NB is 4, as shown in FIG. 10.
  • the NB-IoT terminal combines the SIB1-NB with the SIB1-NB in the previous SIB1-NB TTI (SIB1-NB TTI interval in which the SIB1-NB scheduling information of the MIB-NB is obtained) to perform SIB1-NB decoding. You can try
  • Proposal 5 "Assignment of Information for Improving Detection Performance of SIB1-NB"
  • some of the remaining 11 bits of the MIB-NB may include the following information to improve the detection performance of the SIB1-NB.
  • the NRS-CRS power offset information is information available in the same in-band PCI mode, and can be effectively applied only to NPDSCH transmitting SIB1-NB and NPDSCH transmitting BCCH. It can have a different value.
  • the control region size is information available in the in-band mode, and can be effectively applied only to the NPDSCH transmitting the SIB1-NB and the NPDSCH transmitting the BCCH, and may have a value different from the eutraControlRegionSize value of the SIB1-NB.
  • the control region size may be the same value in the SIB1-NB-TTI interval in which the SIB1-NB is repeatedly transmitted.
  • the control region size may be applied by limiting a control region size value of the SIB1-NB received from the MIB-NB according to the number of repetitive transmissions of the SIB1-NB. Also, if the control region size is smaller than 3, additional resource elements may be used.
  • a specific OFDM symbol of SIB1-NB including NRS may be repeatedly transmitted, or a specific OFDM symbol of SIB1-NB not including NRS may be repeatedly transmitted.
  • an OFDM symbol including NRS may be repeatedly transmitted or an OFDM symbol not including NRS may be repeatedly transmitted.
  • specific symbols may not be transmitted repeatedly, and resource elements scattered in the frequency and time domains may be additionally transmitted, or some of the coded bits may be further mapped and transmitted to QAM symbols.
  • the MIB-NB may inform information about additional transmission of the aSIB1-NB. For example, since the TBS of aSIB1-NB is the same as the TBS of SIB1-NB, the MIB-NB is reserved schedulingInfoSIB1-NB- defined in Table 16.4.1.5.2-1 and Table 16.4.1.3-3 of TS 36.213.
  • the r13 value may be used to indicate the presence of aSIB1-NB, and the number of repetitive transmissions of the TBS and the NPDSCH may be specified.
  • the number of repetitive transmissions of the TBS may be designated as TBS 208, 328, 440, and 680, respectively.
  • the number of repetitive transmissions of the NPDSCH of the SIB1-NB is 8 or 16.
  • the transmission position of aSIB1-NB is different from the starting radio frame of SIB1-NB defined in Table 16.4.1.3-4 of TS # 36.213. It can be defined in a way.
  • some settings may be repeated in Table 16.4.1.3-4 of TS 36.213.
  • the number of transmissions 16 may not be followed.
  • the position of the start radio frame may follow the case of repeat transmission number 16 defined in Table 16.4.1.3-4 of TS 36.213.
  • the position of the subframe in which aSIB1 is transmitted may vary according to at least one of the repeated transmission times defined in NcellID and Table 16.4.1.3-4 of TS 36.213.
  • system information may be transmitted in a specific carrier.
  • a specific carrier on which system information is transmitted may be referred to as a fast anchor carrier.
  • the NB-IoT terminal may detect from the anchor carrier to the MIB-NB, move to the fast anchor carrier indicated by the MIB-NB, and quickly detect the SIB1-NB and other SIB information. Therefore, it is necessary for the anchor carrier to inform the position information of the fast anchor carrier, and the method for notifying the position information of the fast anchor carrier may be defined differently according to the operation mode.
  • the detection performance of the SIB1-NB is sufficiently good so that the transmission of the aSIB1-NB is not necessary. It is also assumed that one of the carriers that can be assigned to an anchor carrier can be set to a fast anchor carrier.
  • the SIB1-NB transmitted in the fast anchor carrier may follow the scheduling information of schedulingInfoSIB1-r13 indicated by the MIB-NB of the anchor carrier.
  • the SIB1-NB scheduling information of the fast anchor carrier may take precedence over the SIB1-NB scheduling information of the anchor carrier.
  • the NB-IoT terminal is anchor carrier from the center carrier of the base station including the anchor carrier as shown in Table 22 according to A. Relative position and raster offset of, or Information is available.
  • the raster offset is Is a set of candidate values excluding the position B of the anchor carrier (the position of the anchor carrier corresponding to A indicated in eu-CRS-SequenceInfo-r13) and the opposite position (-B, for example, the bit index in Table 22). 12 sets of 0 to 13 except for bit indices corresponding to B and -B. At this time, 12 bit indexes are sequentially indexed, and the fast anchor carrier may be indicated as one of 12 bit indexes using 4 bits among the remaining 11 bits of the MIB-NB.
  • the raster offset is Is a set of candidate values excluding -B-1, which is the position opposite to position B of the anchor carrier corresponding to A (e.g., corresponding to B and -B-1 among bit indices 14 to 31 in Table 22).
  • the set except 16 bit indices is 16.
  • 16 bit indexes are sequentially indexed, and the fast anchor carrier may be indicated as one of the 16 bit indexes.
  • the position of the fast anchor carrier may be designated as a combination of an eutra-CRS-SequenceInfo-r13 value and a value using 4 bits among the remaining 11 bits of the MIB-NB.
  • eutra-CRS-SequenceInfo-r13 a method of further excluding one value except for the position of the anchor carrier is, as described above, eutra-CRS-SequenceInfo-r13. Values may be defined in the form of other equations or tables.
  • eutra-CRS-SequenceInfo-r13 which may be any PRB that does not meet the requirements of the anchor carrier.
  • PCI PCI
  • In-band For other PCI modes, unlike in-band same PCI mode, only the raster offset information of the anchor carrier is known. However, using the remaining 2 bits of Inband-DifferentPCI-NB-r13 and 4 bits added in the in-band same PCI mode, 64 values can be represented, using 64 values than those shown in Table 22. The location of many PRBs can be indicated by the location of the fast anchor carrier.
  • the method of indicating the position of the fast anchor carrier may be equally applied to the fast anchor carrier indicating method of the in-band same PCI mode described above, and added in the remaining 2 bits of the Inband-DifferentPCI-NB-r13 and the MIB-NB.
  • the position of the fast anchor carrier may be indicated based on some equation or table combining four bits.
  • the SIB1-NB When the SIB1-NB is transmitted in a carrier other than a carrier in which at least one of the NPSS / NSSS and the MIB-NB is transmitted in the TDD system, the method in which the MIB-NB indicates the position of the fast anchor carrier is transmitted by the SIB1-NB. It may be used to indicate the location of the carrier to be. According to an embodiment, when the non-anchor carriers to which the SIB1-NB can be transmitted in the TDD system are limited, it is obvious that some of the above-described information may be omitted.
  • the operational mode is the guard-band mode or the standalone mode
  • the SIB1-NB is always transmitted on the anchor carrier, or the carrier to which the SIB1-NB is transmitted is an unused bit of eutra-CRS-SequenceInfo-r13. (3 bits in guard-band mode, 5 bits in standalone mode).
  • additional information may be provided to indicate the location of a carrier for transmitting each SIB.
  • the remaining SIB except for the SIB1-NB may be transmitted on the same carrier as the SIB1-NB, or may be transmitted on an anchor carrier, and the location of the carrier on which the remaining SIBs may be transmitted. Can be directly indicated.
  • the aSIB1-NB may have a transmission period different from that of the SIB1-NB, and in general, may be longer than or equal to the transmission period of the SIB1-NB.
  • the repeated NPDSCH transmission method may be applied differently depending on whether the NPDSCH includes a BCCH (eg, SIB1-NB and another SIB-NB).
  • the aSIB1-NB additionally transmitted between the SIB1-NB transmissions may be transmitted in B and A which are different orders from the SIB1-NB. That is, when SIB1-NB and aSIB1-NB are arranged in subframe order within 40 msec, they may be configured as A, (B), B, and (A).
  • an NB-IoT terminal located in general coverage receives both A and (B) within 20 msec.
  • the time taken to acquire the NB can be reduced.
  • (A) and (B) is part of the TBS transmitted in the aSIB1-NB
  • (A) and (B) is the same as A and B of the SIB1-NB, respectively.
  • a and (A), B and (B) may have different resource mapping methods in the corresponding subframe.
  • (A) in the frequency domain of A resource mapping may be resource mapped by circular shifting by 6 resource elements within 180 kHz with a predetermined value.
  • aMIB-NB may be transmitted in an anchor carrier, aSIB1-NB, etc. may be transmitted in a fast anchor carrier, and both aMIB-NB and aSIB1-NB may be transmitted in a fast anchor carrier rather than an anchor carrier.
  • both aMIB-NB and aSIB1-NB are transmitted in a fast anchor carrier, they may be transmitted in a structure different from that of the aMIB-NB and aSIB1-NB proposed in the present patent.
  • the persistent SIB1-NB scheduling information may be applied not only to the anchor carrier but also to the SIB1-NB or aSIB1-NB transmitted through the fast anchor carrier.
  • the aforementioned method for indicating a fast anchor carrier may be transmitted by SIB1-NB, another SIB-NB, or RRC signaling.
  • the proposed methods can be equally applied not only to NB-IoT systems but also to systems such as eMTC using a part of LTE system bandwidth.
  • the PBCH is additionally transmitted in a PRB other than the center 6 RB in order to reduce delay in acquiring system information in the eMTC
  • the same concept as the proposed fast anchor carrier may be applied. have.
  • the location of the PRB to which the PBCH is additionally transmitted may be designated using the remaining 5 bits of the MIB.
  • the position of the fast anchor carrier of the eMTC may indicate a specific position of a continuous 6 RB.
  • a specific position of 6RB may be sufficiently represented by 4 bits.
  • the SIB1-BR additionally transmitted in the fast anchor carrier may follow scheduling information of SystemInformationBlockType1-BR.
  • the scheduling information of the SIB1-BR may preferentially follow the SIB1-BR information of the anchor carrier faster than the MIB-NB information of the 6 RBs.
  • Acquisition related information of the SIB1-NB according to the foregoing fourth to seventh proposals may not be transmitted only in the MIB-NB, and may be directly indicated in the SIB1-NB.
  • the information of the aSIB1-NB indicated by the SIB1-NB may be information about the aSIB1-NB transmitted from the corresponding SIB1-NB-TTI or the next SIB1-NB-TTI.
  • aMIB-NB and aSIB1-NB may be 1) transmitted every radio frame (e.g., every 10 msec), 2) transmitted in a configurable specific period of time, or 3) set by a base station. It is transmitted only within a specific time interval, so that the NB-IoT terminal expects aMIB-NB and aSIB-NB only in the specific time interval.
  • the aMIB-NB and aSIB1-NB may have a different settable period of time, when transmitted in a specific time interval set by the base station, aMIB-NB and Specific time intervals in which aSIB1-NB is transmitted may be different.
  • aMIB-NB and aSIB1-NB do not always assume that they are transmitted by a base station.
  • the NB-IoT terminal blindly detects the MIB-NB and the aMIB-NB, or detects the system information by combining the MIB-NB and the aMIB-NB, when the aMIB-NB is not transmitted. Including blinds need to be detected.
  • the aMIB-NB and aSIB1-NB need not be transmitted at every base station.
  • Information that the base station additionally transmits aMIB-NB or aSIB1-NB in addition to the MIB-NB and SIB1-NB may be directly indicated by the MIB-NB and / or aMIB-NB or may be directed to the SIB1-NB and / or aSIB1-NB. May be indicated directly or by a completely different SIBx-NB.
  • whether to transmit aMIB-NB may be indicated by SIB1-NB and / or aSIB1-NB, and whether to transmit aSIB1-NB may be indicated by MIB-NB and / or aMIB-NB.
  • 12A and 12B are diagrams illustrating a transmission location of aSIB1-NB according to an embodiment.
  • the SIB1-NB is additionally transmitted (eg, when aSIB1-NB is transmitted), the position of the radio frame and subframe in which the aSIB1-NB is transmitted needs to be determined. Prior to this, the definition of the transmission frequency of aSIB1-NB should be preceded in comparison with SIB1-NB. For example, if aSIB1-NB is additionally transmitted at the same frequency as SIB1-NB, the number of repetitive transmissions ⁇ 4, 8, 16 ⁇ of the existing SIB1-NB is ⁇ 8, 16, 32 ⁇ , respectively, including aSIB1-NB.
  • the number of repetitive transmissions ⁇ 4, 8 ⁇ of the existing SIB1-NB is the same as that of initially set to ⁇ 8, 16 ⁇ . Therefore, when the number of repetitive transmissions of the SIB1-NB is ⁇ 4, 8 ⁇ , it is meaningless to transmit aSIB1-NB at the same period / frequency as the SIB1-NB.
  • the probability of collision between cells of SIB1-NB increases. For example, when the number of repetitive transmissions of the SIB1-NB is 8, there is a disadvantage in that the probability of collision between cells increases twice as much as when the number of repetitive transmissions is 4.
  • aSIB1-NB transmits every 40msec (transmitted at half the frequency of SIB1-NB)
  • the number of repetitive transmissions ⁇ 4, 8 ⁇ of the existing SIB1-NB is ⁇ 6, 12, respectively, including aSIB1-NB. Therefore, even when the number of repetitive transmissions of the SIB1-NB is 16, transmission can be performed without collision between the SIB1-NB and the aSIB1-NB between cells, so that the transmission period of the aSIB1-NB is SIB1-NB.
  • the number of repetitive transmissions of the NB When the number of repetitive transmissions of the NB is ⁇ 4,8 ⁇ , it may be set to 20 msec, and when the number of repetitive transmissions of the SIB1-NB is 16, it may be set to 40 msec, but is not limited thereto.
  • the period may be determined during ⁇ 20 msec, 40 msec ⁇ (which may be set in the upper layer, set in the MIB-NB, or fixed to the standard).
  • the SIB1-NB When the transmission period of aSIB1-NB is set to 20msec, as shown in FIG. 12A, the SIB1-NB is transmitted in subframe 4 not transmitted, or as shown in FIG. 12B, NSSS is not transmitted. It can be transmitted in subframe # 9. However, in order to obtain cross-subframe channel estimation gain, it is preferable that the MIB-NB is transmitted in subframe 9 adjacent to the subframe in which the MIB-NB is transmitted, but the transmission period of the aSIB1-NB is 20 msec. If the number of repetitive transmissions of the SIB1-NB is 16, a collision between the SIB1-NB and the aSIB1-NB transmitted in the odd cell ID and the even cell ID may not be avoided.
  • the aSIB1-NB may be transmitted in subframe 9 in which the NSSS is not transmitted. If the transmission period of the aSIB1-NB is set to 40msec, unlike when set to 20msec, Even when the number of repetitive transmissions is 16, there is an advantage of avoiding collision between the aSIB1-NB transmitted in the odd cell ID and the even cell ID, for example, in a subframe 9 in which NSSS is not transmitted, Even when transmitted in 40 msec increments
  • the aSIB1-NB of the ID may be transmitted in the radio frame number ⁇ 2, 6, 10, 14,... ⁇ , and the odd cell ID may be transmitted in the radio frame number ⁇ 4, 8, 12, 16,... ⁇ .
  • a radio frame number can be assumed to be an integer that increases indefinitely, in fact listing radio frames that do not transmit NSSS, and mapping the listed radio frames to logical indexes that increment from 0 to 1.
  • the odd cell ID is an odd number
  • the even cell ID is transmitted in a radio frame corresponding to the even number logical index.
  • aSIB1-NB When aSIB1-NB is repeatedly transmitted, it is necessary to determine the resource allocation (eg, circular buffer output to be transmitted to aSIB1-NB) of the additionally transmitted aSIB1-NB between SIB-NBs being repeatedly transmitted.
  • the receiver When transmitting aSIB1-NB, if the same previously transmitted SIB1-NB is transmitted identically, the receiver may not fully utilize the channel coding output stored in the circular buffer. Therefore, according to the code rate determined based on at least one of the TBS and the number of repetitive transmissions, the operation mode, the number of CRS antenna ports, and the number of NRS antenna ports of the SIB1-NB, the SIB1-NB and aSIB1 may be used for the same time.
  • the NB-IoT terminal located near the base station can quickly complete decoding of the SIB1-NB with a higher probability.
  • the optimal "aSIB1-NB-circular buffer output" relationship is based on the TBS of the SIB1-NB and at least one of the number of repetitive transmissions, the operation mode, the number of CRS antenna ports, and the number of NRS antenna ports. Can be defined.
  • the "aSIB1-NB-circular buffer output" relationship in a simpler manner, the "aSIB1-NB-circular buffer output" based on the highest coding rate can be expected to improve performance without a significant effect of the parameters listed above. You can define patterns.
  • FIG. 13 is a diagram illustrating an example of an output of a circular buffer when one codeword is transmitted in eight subframes according to the TBS, the number of repetitive transmissions, the operation mode, the number of CRS antenna ports, and the number of NRS antenna ports of SIB1-NB. .
  • a to H are units for distinguishing eight subframes in which SIB1-NB is transmitted, and there are 0 to 9 bits in the circular buffer.
  • the coding rate is the highest
  • 7 to 80% of the circular buffer may be transmitted. Therefore, 20-30% that is not transmitted in the circular buffer needs to be transmitted through the aSIB1-NB.
  • an offset (also referred to as RV) of the circular buffer may be set differently from that of the SIB1-NB.
  • coded bits transmitted over aSIB1-NB are sequentially addressed after the last address used to transmit the SIB1-NB in a circular buffer where code bits transmitted over SIB1-NB are stored. By generating a, it may be an output value. Therefore, code bits included in SIB1-NB and aSIB1-NB transmitted in the same radio frame may not be values continuously output from the circular buffer.
  • the transmission order of SIB1-NB is ⁇ A, B, C, D, E, F, G, H ⁇
  • the transmission order of aSIB1-NB is ⁇ I, J, K, L, M, N, O , P ⁇ .
  • I to P may refer to a virtual index made to additionally transmit 20-30% that was not transmitted in the circular buffer.
  • the transmission order of aSIB1-NB may be defined only in the order of A to H.
  • aSIB1-NB may be ⁇ E, F, G, H ⁇ , ⁇ E, F, A, B ⁇ , ⁇ C, E, G, A ⁇ , or ⁇ D, F, H, B ⁇ , etc. It may be set differently from the transmission order of the SIB1-NB.
  • the transmission period of aSIB1-NB is 20msec, it may be set in the order of ⁇ E, F, G, H, A, B, C, D ⁇ .
  • the transmission order of the aSIB1-NB is not limited to the above-described example, and may be defined in various orders so that the entire channel coding output stored in the circular buffer for the codeword of the SIB1-NB is transmitted as quickly as possible.
  • the optimal transmission pattern of the aSIB1-NB (relationship between the circular buffer and aSIB1-NB) according to the TBS, the number of repetitive transmissions, the operation mode, the number of CRS antenna ports, and the number of NRS antenna ports of the SIB1-NB is determined by the TBS of the SIB1-NB. And may be predefined based on the number of repetitive transmissions, the operation mode, the number of CRS antenna ports, and the number of NRS antenna ports.
  • the base station may transmit aSIB1-NB according to a predefined transmission pattern of aSIB1-NB, and the NB-IoT terminal may determine the transmission pattern of the aSIB1-NB based on the SIB1-NB scheduling information of the MIB-NB.
  • 15A and 15B illustrate BLER (Block Error Rate) performance according to the above-described transmission pattern of aSIB1-NB.
  • [A, B, C, D, E, F, G, H] is a case where only the existing SIB1-NB is received for 160 msec
  • [A,-, B,-, C] ,-, D,-] represents a case where only the existing SIB1-NB is received for 80msec
  • [A, a, B, b, C, c, D, d] indicates a case in which SIB1-NB and aSIB1-NB are received for 80 msec when aSIB1-NB is transmitted in the same pattern as SIB1-NB. .
  • [A, e, B, f, C, g, D, h] is 80 msec when aSIB1-NB is transmitted in a pattern in which the output order of the circular buffer is changed to have an offset of 80 msec with SIB1-NB.
  • SIB1-NB and aSIB1-NB are received.
  • [A, e, B,-, C, f, D,-] has a transmission period of 40 msec for aSIB1-NB, and aSIB1 is similar to [A, e, B, f, C, g, D, h].
  • FIG. 15A shows the performance of the BLER when the TBS is 680
  • FIG. 15B shows the performance of the BLER when the TBS is 440.
  • the existing NB-IoT terminal (for example, NB-IoT terminal of LTE Release 13 and 14) does not know that aSIB1-NB is transmitted in a specific subframe, so that the NPDCCH and NPDSCH When interpreting resource allocations, you may perform incorrect actions. Therefore, the downlinkBitmap corresponding to the position of the subframe in which aSIB1-NB is transmitted needs to be indicated as '0' (invalid).
  • the NB-IoT terminal of LTE Release 15 is instructed to transmit aSIB1-NB in a cell, it may expect that aSIB1-NB exists in a specific subframe regardless of the downlinkBitmap.
  • the specific subframe may be the fourth or ninth subframe as described above, and the specific subframe may be related to the cell ID and the number of repetitive transmissions of the SIB1-NB.
  • the aSIB1-NB may not be always transmitted in a specific location (eg, a specific subframe), but may be additionally transmitted only when a specific condition is satisfied. For example, if the coding rate of the SIB1-NB is greater than a specific value, it may be defined and set to expect additional transmission of the SIB1-NB.
  • the specific value may be fixed by a specification or set by the base station and transmitted to the NB-IoT terminal, but is not limited thereto.
  • the SIB1-NB additional transmission condition is based on the values of the TBS of the SIB1-NB, the number of repetitive transmissions of the SIB1-NB, the operation mode of the NB-IoT, the number of NRS antenna ports, and the number of CRS antenna ports. It may be set.
  • the transmission pattern (encoded bits-to-subframe mapping and transmission order rearrangement) of the aSIB1-NB includes a coding rate, a TBS of SIB1-NB, a number of repetitive transmissions of SIB1-NB, an operation mode of NB-IoT, and an NRS antenna port. Another pattern may be defined based on at least one of the number and the number of CRS antenna ports. This is possible because the NB-IoT terminal has already obtained the relevant parameters before the detection of the SIB1-NB, and such a scheme may be defined differently for the performance optimization of the SIB1-NB.
  • the transmission pattern (encoded bits-to subframe mapping and transmission order rearrangement) of the proposed SIB1-NB is not limited to the SIB1-NB, but may be applied to additional transmission of repeated transmission data.
  • a method of informing a NB-IoT terminal of aSIB1-NB transmission by a base station is proposed separately from the method of configuring aSIB1-NB proposed above.
  • an effective downlink bitmap (valid) at a location where aSIB1-NB is transmitted DL bitmap) is set up.
  • the effective downlink bitmap may mean a bitmap indicating a location of a subframe in which an NB-IoT terminal can expect a downlink NRS or can receive NPDCCH and NPDSCH.
  • the effective downlink bitmap may consist of 10 bits or 40 bits in the in-band mode, and may consist of 10 bits in the guard-band mode and the standalone mode.
  • the valid downlink bitmap is defined as downlinkBitmap in TS 36.331.
  • the NB-IoT terminal may receive the MIB-NB and the SIB1-NB from the base station, and the MIB-NB or the SIB1-NB may indicate whether to transmit the aSIB1-NB.
  • the NB-IoT terminal may obtain information indicating whether to transmit aSIB1-NB from the received MIB-NB or SIB1-NB.
  • the base station may indicate the specific subframe as an invalid subframe in the valid downlink bitmap.
  • the legacy NB-IoT terminal cannot know whether to transmit aSIB1-NB. Accordingly, the base station may indicate a subframe in which aSIB1-NB is transmitted as an invalid subframe such that the legacy NB-IoT terminal does not expect NPDCCH and / or NPDSCH in the specific subframe.
  • an NB-IoT terminal eg, an NB-IoT terminal according to LTE Release 15
  • aSIB1-NB through a subframe indicated by an eNB as an invalid subframe. Can be received.
  • the aSIB-NB may not be transmitted in the specific subframe according to the Cell ID, the number of repetitive transmissions of the SIB1-NB, and the like. .
  • the NB-IoT terminal may determine the specific subframe as a valid subframe.
  • the NB-IoT terminal may expect at least one of NRS, NPDCCH, and NPDSCH in the specific subframe.
  • the NB-IoT terminal expects at least one of the NRS, NPDCCH, and NPDSCH to be transmitted in the specific subframe, and may decode.
  • the base station may inform the transmission of the aSIB1-NB using 1 bit in the MIB-NB.
  • the NB-IoT terminal When whether to transmit the aSIB1-NB is indicated by the MIB-NB, the NB-IoT terminal that has obtained information indicating the transmission of the aSIB-NB is aSIB1-NB within the SIB1-NB change interval in which the MIB-NB is included. It can be seen that the NB is being transmitted. However, when the NB-IoT terminal completes decoding the MIB-NB, since the corresponding SIB1-NB change interval may not remain much, the gain by the transmission of the aSIB1-NB may be limited.
  • signaling whether the aSIB1-NB is transmitted may be indicated by 2 bits in the MIB-NB, and when the value indicated by the 2 bits is '0', it means that the SIB1-NB is not transmitted. If not 0 ', this may mean a number representing a difference from a corresponding SIB1-NB change interval to a SIB1-NB change interval in which aSIB1-NB is transmitted. In this case, the change in the bit value used to inform whether the aSIB1-NB is transmitted does not correspond to the system information update condition.
  • the NB-IoT terminal may include EarthQuake Tsumani Warning System (ETWS) information, Commercial Mobile Alert Service (CMAS) information, time information (e.g., HyperInformationBlockType8, SystemInformationBlockType16, SystemInformationBlockType1-NB HyperSFN-MSB), and EAB ( Extended Information Barring), the AB parameter, and even if the information indicating whether to transmit aSIB1-NB is changed, the SystemInfoValueTag value is not updated. Accordingly, the information indicating whether to transmit aSIB1-NB in the MIB-NB is not included in the system information modification notification condition.
  • EWS EarthQuake Tsumani Warning System
  • CMAS Commercial Mobile Alert Service
  • time information e.g., HyperInformationBlockType8, SystemInformationBlockType16, SystemInformationBlockType1-NB HyperSFN-MSB
  • EAB Extended Information Barring
  • the change of information indicating whether or not aSIB1-NB is transmitted does not directly induce paging for system information update.
  • the NB-IoT terminal can utilize the transmission of aSIB1-NB from the first access to the cell.
  • whether to transmit the aSIB1-NB may be transmitted through the MIB-NB or the SIB1-NB. For example, if it is transmitted whether or not aSIB1-NB is transmitted through the SIB1-NB, when the SIB1-NB is changed, it may be directly informed whether or not the aSIB1-NB is transmitted in the changed SIB1-NB. Whether a transmission of the aSIB1-NB transmitted through the SIB1-NB is applied may be defined as follows for the case in which the aSIB1-NB is transmitted while not being transmitted.
  • the modified SIB1-NB at the modification boundary of the SIB1-NB may inform the transmission of the aSIB1-NB.
  • the change boundary of the SIB1-NB may mean a boundary between the SIB1-NB change periods or change intervals.
  • the base station since the NB-IoT terminal does not know that aSIB1-NB is still being transmitted, it cannot still use aSIB1-NB in the corresponding SIB1-NB change interval. Therefore, the base station does not need to transmit aSIB1-NB within the corresponding SIB1-NB change interval, and may transmit aSIB1-NB after a specific time.
  • the specific time may be defined in advance between the base station and the NB-IoT terminal, for example, may be defined as a time corresponding to one SIB1-NB change interval, but is not limited thereto. If the NB-IoT terminal fails to decode the SIB1-NB during the corresponding SIB1-NB change interval, the NB-IoT terminal may assume that the aSIB1-NB is not transmitted and may continue to decode the SIB1-NB. In addition, in the corresponding SIB1-NB change interval, the base station may indicate that the index of the subframe in which the aSIB1-NB is to be transmitted is '0' in the effective downlink bitmap.
  • the legacy NB-IoT terminal If the legacy NB-IoT terminal succeeds in decoding the SIB1-NB within the corresponding SIB1-NB change interval, the legacy NB-IoT terminal is the position of a specific subframe in the effective downlink bitmap (a subframe to be transmitted aSIB1-NB). Since the base station may be interpreted as being invalid, the base station may schedule the subframe to which the aSIB1-NB is transmitted is an invalid downlink subframe from the corresponding SIB1-NB change interval.
  • the SIB1-NB changed at the SIB1-NB change boundary may inform that it will no longer transmit aSIB1-NB.
  • the aSIB1-NB still needs to be transmitted within the corresponding SIB1-NB change interval, and after the specific time, the transmission of the aSIB1-NB is performed. I can stop it.
  • the specific time may be defined in advance so that there is no misunderstanding between the base station and the NB-IoT terminal, for example, may be defined as a time corresponding to one SIB1-NB change interval.
  • the NB-IoT terminal may assume that the aSIB1-NB is not transmitted and may continue to decode the SIB1-NB.
  • the base station in the corresponding SIB1-NB change interval, may indicate that the subframe index to which the aSIB1-NB is not transmitted is '1' in the effective downlink bitmap. If the legacy NB-IoT terminal succeeds in decoding the SIB1-NB within the corresponding SIB1-NB change interval, the aSIB1-NB is actually transmitted continuously during the SIB1-NB change interval at a specific subframe location of the valid downlink bitmap. As a result, degradation of decoding performance of NPDCCH and NPDSCH may occur.
  • the DCI format N2 CRC is scrambled with the P-RNTI, and the flag for paging / direct indication differentiation is indicated as '0'.
  • the 8-bit direct indication information may be instructed whether the system information is changed (or updated) according to each bit value. There are still three bits of unused bits in the direct indication information, and six bits of unused bits in DCI format N2. Thus, the base station is. Some of the unused 3 bits of the direct indication information and / or the unused 6 bits of the DCI format N2 can be used to know in advance whether the modified SIB1-NB is transmitted with the aSIB1-NB.
  • the base station may help the NB-IoT terminal to omit decoding of the MIB-NB to obtain scheduling information of the changed SIB1-NB.
  • the specific unused bit may convey information that the NB-IoT terminal may try to decode the changed SIB1-NB using the same MIB-NB information previously obtained.
  • a specific unused bit may indicate to perform decoding of the MIB-NB again.
  • the base station may inform the NB-IoT terminal by high-level signaling whether or not there is capability to transmit aSIB1-NB.
  • the base station does not always transmit aSIB1-NB, but aSIB1 only if the code rate of the SIB1-NB (or an index corresponding thereto or representative of the decoding performance of the SIB1-NB in an AWGN environment) is larger than a specific value. It may inform the condition to transmit the -NB.
  • the coding rate may be determined based on at least one of the number of repetitive transmissions of the SIB1-NB, an operation mode, the number of CRS antenna ports and the number of NRS antenna ports, and the TBS of the SIB1-NB.
  • CFI In the in-band mode, CFI always assumes 3 so that the first 3 OFDM symbols of a subframe may be assumed to be REs not used for transmission of SIB1-NB. If the coding rate is 1 (or a sufficiently high value), it may mean that aSIB1-NB is not always transmitted. If the coding rate is 0 (or a sufficiently small value), it may mean that aSIB1-NB is always transmitted. In addition, the coding rate information may be quantized and defined in the form of a table.
  • the base station may update whether or not the aSIB1-NB is transmitted and / or the transmission condition in units of SIB1-NB change periods by using an indicator of a coding rate, and whether or not the aSIB1-NB is transmitted may be MIB-NB. , SIB1-NB, other system information, or RRC signaling.
  • aSIB1-NB When aSIB1-NB is transmitted in a specific downlink subframe (for example, subframe 3 of a radio frame in which an existing SIB1-NB is transmitted), the position of the subframe is invalid downlink in DL-Bitmap-NB. It may be indicated as a subframe. This may be for the legacy NB-IoT UE not to expect the NPDCCH and / or NPDSCH at the location of the corresponding subframe.
  • the base station informs that it transmits aSIB1-NB through the MIB-NB and / or another channel
  • the cell ID and the number of repetitive transmissions of the SIB1-NB in a specific downlink subframe index in which the aSIB1-NB can be transmitted may be used.
  • the downlink subframe may be indicated as an invalid downlink subframe by the DL-Bitmap-NB, and the above-described set of subframes may be referred to as a B-type subframe. have.
  • the NB-IoT terminal (or NB-IoT terminal that can expect to receive aSIB1-NB) of LTE Release 15 may interpret the B-type subframes as valid subframes unlike the indication of the DL-Bitmap-NB. . This may be differently applied to the following specific conditions in terms of NRS and NPDCCH / NPDSCH.
  • the NB-IoT terminal can always expect to receive NRS in a B-type subframe.
  • the NB-IoT UE can expect NRS only in the B-type subframe that can expect USS.
  • the NB-IoT terminal in the B-type subframe, "NPDCCH including DCI format N0 / N1 scrambled with C-RNTI in UE-specific search space" and "terminal specific search space”. It can only expect to receive NPDSCH "(received DL grant) scheduled in DCI format N1 scrambled with C-RNTI at.
  • the NB-IoT terminal in the B-type subframe, the NPDCCH included in the common search space that can be received in the RRC_IDLE mode and the DCI format N0 or N2 in the common search space. You may not expect a scheduled NPDSCH.
  • the common search space that receives the RAR for the NPDCCH order-based NPRACH may be interpreted as an invalid subframe.
  • the number of repetitive transmissions of the DCI is the same as the LTE Release 13 and 14 (eg, DL-Bitmap Only a subframe indicated as a valid downlink subframe in the -NB can be interpreted as an NB-IoT downlink subframe, and the NPDCCH can be expected only in the corresponding NB-IoT downlink subframe.
  • NB-IoT downlink subframe may be defined so as to be interpreted based on only CSS belonging to the NB-IoT downlink subframe.
  • the NB-IoT terminal of LTE Release 15 (a terminal capable of determining whether aSIB1-NB of the cell is transmitted) does not actually transmit the aSIB1-NB.
  • the position of the subframe (the same as the subframe index where the aSIB1-NB can be transmitted, but the position of the subframe in which the aSIB1-NB is not actually transmitted by the cell ID of the corresponding cell and the number of repetitive transmissions of the SIB1-NB) You may want to recognize it as an invalid downlink subframe.
  • the base station does not actually transmit aSIB1-NB, even if aSIB1-NB transmission is reserved using an additional 1 bit or N bits of SIB1-NB (or other system information block).
  • Subframe 3 may be instructed to recognize a terminal of a later release including LTE Release 15 as an invalid downlink subframe.
  • this information may exist only when the base station reserves to transmit aSIB1-NB, and is defined to classify subframe 3 as an invalid subframe or a valid subframe regardless of an existing downlinkBitmap (DL-Bitmap-NB). Can be.
  • the NB-IoT terminal newly adds 1 Bit or N bit can be used to determine whether to interpret the actual invalid subframe.
  • the NB-IoT terminal is a subframe in which "aSIB1-NB is actually transmitted" (a set of subframes in which aSIB1-NB is actually transmitted is called an A-type subframe) by a downlinkBitmap. You may not expect to be specified as. For example, the NB-IoT terminal may expect that the A-type subframe is not indicated as a valid subframe by the downlinkBitmap. In addition, when some of the A-type subframes are indicated as valid subframes by the downlinkBitmap, the NB-IoT terminal may determine whether all or some subframes of the A-type subframe are valid / invalid by giving priority to the downlinkBitmap. .
  • the priority of the analysis may be such that the interpretation of the A-type subframe matches the legacy NB-IoT terminal (eg, a terminal that does not know whether aSIB1-NB is present). If there is an A-type subframe (for example, the base station informs the transmission of the aSIB1-NB), the base station must transmit downlinkBitmap information.
  • the NB-IoT terminal proposes a method that can skip decoding attempts of the MIB-NB and the SIB1-NB.
  • the proposed method can be applied regardless of duplex mode or operation mode, and is designed to have no influence on legacy NB-IoT terminals (eg, terminals of Release 13 and 14) by the proposed method.
  • it is a method that can be applied when a change of system information is transmitted through direct indication information.
  • the base station when the system information is changed, the base station needs to instruct the NB-IoT terminal to read from the MIB-NB. This may be referred to as a fallback mode, for example, a case where an operation mode is changed or an access class barring may occur.
  • the base station may directly indicate the access class blocking information in DCI format N2, and the NB-IoT terminal may try to decode the SIB14-NB directly using such information.
  • the NB-IoT terminal needs to acquire the SIB14-NB scheduling information in order to decode the SIB14-NB, and in order to obtain the SIB14-NB scheduling information, it is necessary to decode the SIB1-NB.
  • the SIB1-NB scheduling information is included in the MIB-NB, in order to obtain the SIB1-NB scheduling information and decode the SIB1-NB, the NB-IoT terminal needs to decode the MIB-NB.
  • the DCI format N2 may include SIB1-NB scheduling information.
  • SIB1-NB scheduling information is composed of 4 bits, and only some of the 4 bits of information may be included in the DCI format N2.
  • the 1-bit information may inform the UE that SIB1-NB scheduling is the same or changed as before.
  • information indicating that the SIB1-NB scheduling is the same as before, or only offset information of the changed SIB1-NB scheduling information and the previous SIB1-NB scheduling information may be included in more than 1 bit and transmitted. .
  • information indicating whether aSIB1-NB can be expected may be additionally included in the DCI format N2 when the NB-IoT terminal needs to receive the SIB1-NB again.
  • Whether aSIB1-NB is transmitted may be transmitted using 1 bit added to the MIB-NB. However, if the decoding of the MIB-NB is omitted using the DCI format N2, but the decoding of the SIB1-NB is to be performed, the base station may inform whether or not the aSIB1-NB is transmitted at once. In addition, some (eg, some low bit) information of the systemInfoValueTag included in the MIB-NB may also be included in the DCI format N2, and considering that the NB-IoT terminal may lose synchronization of SFN information, part of the SFN (E.g., some lower bits) information may also be conveyed in DCI format N2.
  • some (eg, some low bit) information of the systemInfoValueTag included in the MIB-NB may also be included in the DCI format N2, and considering that the NB-IoT terminal may lose synchronization of SFN information, part of the SFN (E.g., some lower bits) information may also be
  • the base station may instruct the NB-IoT terminal to omit decoding of the SIB1-NB using unused bits of the direct indication information of the DCI format N2.
  • the base station may indicate that the specific SIBx-NB information has been changed by using additional information of the DCI format N2 direct indication information, and may inform the NB-IoT terminal that the information of the SIB1-NB has not been changed.
  • the NB-IoT terminal may assume that the scheduling of the corresponding SIBx-NB obtained from the SIB1-NB is the same, and may immediately try to decode the SIBx-NB.
  • information that may be additionally included in the DCI format N2 and the direct indication information is as follows.
  • Instruction to decode from the MIB-NB, and the remaining information added to the DCI format N2 and the direct indication information can be ignored.
  • the access class blocking information indicates whether the access class is blocked, and decoding of the MIB-NB may be omitted according to the remaining information added to the DCI format N2 and the direct indication information. For example, when the SIB1-NB scheduling information can be derived from the information added to the DCI format N2 and the direct indication information, the NB-IoT terminal omits the decoding of the MIB-NB, and the SIB1-NB indicating the SIB1-NB. SIB1-NB decoding may be attempted using the scheduling information.
  • the NB-IoT UE when the information indicating whether the NB-IoT UE can expect aSIB1-NB transmission is also indicated through additional information of DCI format N2 and direct indication information, the NB-IoT UE includes SSI1-NB including aSIB1-NB. You can try decoding
  • SIB1-NB scheduling information may consist of 4 bits and is the same information as the SIB1-NB scheduling and size information included in the MIB-NB. In addition, by using less than 4 bits, only some information of the SIB1-NB scheduling and size information may be indicated, and only the SIB1-NB scheduling and size may be indicated whether the same as the previous value.
  • the base station can transmit aSIB1-NB, and the SIB1-NB is additionally transmitted in the section in which the system information is changed, the base station can inform the presence of the aSIB1-NB in the DCI format N2 and the additional information of the direct indication information. have.
  • systemInfoValueTag cannot directly indicate that a particular SIBx-NB has changed.
  • systemInfoValueTag, the system InfoValueTag added to DCI format N2 and direct indication information can be used to directly indicate whether a specific SIBx-NB has changed, or to indicate whether any one of the system information has changed in the same meaning as before.
  • the systemInfoValueTag additionally included in the DCI format N2 and the direct indication information may have a bit having a size different from that of the systemInfoValueTag of the MIB-NB.
  • a part of sub information of SFN may be additionally transmitted to DCI format N2 and direct indication information.
  • the above-listed contents may be included as corresponding bitmaps or undefined bits in DCI format N2 and unused bits of direct indication information, respectively.
  • DCI format N2 For example, fallback, access class blocking, SIB1-NB scheduling, and aSIB1-NB information may be conveyed through unused bits of DCI format N2 and direct indication information as follows.
  • the first or seventh bit of the seven bits may be omitted.
  • all the information may be included in the unused six bits of the DCI format N2 direct indication information and transmitted. If all information corresponding to 7 bits is transmitted, the first to sixth bits may be included in unused 6 bits of DCI format N2 direct indication information, and the 7th bit is unused 6 bits of DCI format N2 (the flag is 0). May be included).
  • the seventh bit may be omitted when the base station is incapable of transmitting aSIB1-NB.
  • the information may be transmitted using the form of a table.
  • the fallback may be included in the SIB1-NB scheduling and size information and transmitted.
  • Table 16.4.1.3-3 and Table 16.4.1.5.2-1 of TS 36.213 indicate that the Value of schedulingInfoSIB1 and ITBS are in an unused state (eg, a value between 12 and 15). May be implicitly indicated as a fallback.
  • the information layout may be given by the following example.
  • the location of the non-anchor carrier to which the SIB1-NB is transmitted and additional information (for example, in the NB-IoT FDD system, MIB- SIB1-NB scheduling related information not included in the NB) needs to be included in the DCI format N2.
  • the location and additional information of the non-anchor carrier on which the SIB1-NB is transmitted may be transmitted by changing some unused 6-bit information of the DCI format N2 direct indication information.
  • the flag fields in the DCI format N2 are 0 and 1, the flag fields may be delivered by additionally using unused 6 bits used to fit the size or DCI format to each other.
  • the additional 6-bit unused transmission method corresponds to the case in which DCI format N2 directly uses the entire 12 bits remaining as unused bits when directly transmitting indication information.
  • some information configurations of unused bits may be changed in the direct indication information of DCI format 6-2.
  • the MIB (-BR) does not include access class blocking information
  • the SIB1-BR scheduling information included in the MIB uses 18 states of 5 bits
  • the direct indication information of DCI format 6-2 is 3 Only unused bits remain. Therefore, the aforementioned access class blocking information may be omitted, and only a part of the state of the SIB1-BR scheduling information may be transmitted through three unused bits. At this time, one state may be used to indicate the fallback mode.
  • the above method of omitting MIB decoding can be applied more effectively in an environment that takes longer to perform MIB decoding. Therefore, when only some information of the SIB1-BR scheduling information is included in the direct indication information, since the high TBS or the number of repetitive transmissions is relatively limited, the limited SIB1-BR scheduling information may be included in the direct indication information.
  • the information that does not change may include at least one of access class blocking, SIB1-NB scheduling and size, and aSIB1-NB.
  • the terminal fails to detect a system information modification notification indicated by DCI format N2
  • the terminal determines whether DCI format N2 has not been transmitted or fails to detect a system information change notification. I can not know. Therefore, when DCI format N2 is transmitted at a specific time point, the NB-IoT terminal may not know the previous MIB-NB correctly.
  • old MIB-NB does not mean only the MIB-NB before DCI format N2 is received, but also the previous N times or N times MIB-NB TTI, N times SIB1-NB TTI, Or it may be extended to include the MIB-NB belonging to N number of SIB1-NB change interval.
  • the base station may need to inform the NB-IoT terminals in another way whether the NB-IoT terminal can omit the decoding attempt of the MIB-NB and / or SIB1-NB using the DCI format N2.
  • another method may include information (e.g., PCCH-) that configures high-layer signaling, such as the capability of a base station, or a search space associated with paging DCI in the SIBx-NB.
  • Config-NB it may include, but is not limited to, a method for notifying whether DCI format N2 received from the base station can be used to omit the MIB-NB decoding attempt.
  • the legacy base station may be using an arbitrary value by allocating 6 bits of unused direct information and 6 bits of reserved information of DCI format N2 without considering the method of the present proposal. Therefore, in order to match the operation and interpretation between the base station and the NB-IoT terminal, a separate signal or procedure as described above may be necessary.
  • a separate signal or procedure as described above may be necessary.
  • 5 bits of systemInfoValueTag (represented as B-bit) and 1 bit (represented as A-bit) indicating whether any information except systemInfoValueTag is changed in MIB-NB are used in direct indication information, A If the bit is '0', the NB-IoT terminal may be set to always read the MIB-NB.
  • the NB-IoT terminal when the A-bit is '0', the NB-IoT terminal always attempts to decode the MIB-NB regardless of the systemInfoValueTag value of the direct indication information, and the systemInfoValueTag value is used by the value indicated in the MIB-NB. Or stored. This is because, when the base station does not use the direct indication information for the purpose of omitting the MIB-NB decoding attempt, the NB-IoT terminal may misunderstand unused 6 bits in the direct indication information. If A-bit is '1', the NB-IoT terminal may check B-bits.
  • the NB-IoT terminal omits the attempt to decode the MIB-NB, and if it is different from the previously known systemInfoValueTag, the NB-IoT terminal performs the MIB-NB decoding. . Regardless of the original meaning of A-bit, all information except systemInfoValueTag uses a value obtained through decoding of MIB-NB.
  • the NB-IoT terminal may assume that MIB-NB information not included in DCI format N2 is the same as before. have. Taking the MIB-NB of the NB-IoT according to Release 14 as an example, since the SFN information and the hyper frame number are predictable information, timing corresponding to the timing when the NB-IoT terminal detects the DCI format N2 If there is no ambiguity about the information, the NB-IoT terminal may directly calculate the corresponding timing information.
  • the value of the system value tag is changed to a value larger by 1 than the value previously obtained by the terminal.
  • the corresponding value may be assumed to be a value obtained in the DCI format N2.
  • the DCI format N2 is not directly known and the DCI format N2 does not instruct the fallback operation to decode the MIB-NB again, it may be assumed that the access class blocking is not performed.
  • the value related to the operation mode may be assumed to be the same as the value acquired by the NB-IoT terminal.
  • DCI format N2 indicates information that may omit MIB-NB decoding attempts
  • some fields of MIB-NB must be directed or interpreted in DCI format N2 to change relative to past values when interpreting the indicated information.
  • the NB-IoT terminal may always need to attempt MIB-NB decoding. This is even more the case when the NB-IoT terminal fails to detect the DCI format N2 or whether there is no system information change notification in the DCI format N2.
  • each unused bit of DCI format N2 and direct indication information is described based on the FDD system (LTE Release 13 and 14) for convenience of description, even when the number of unused bits is changed in a TDD system or later release. May omit MIB-NB and / or SIB1-NB decoding omission in the same or similar manner to the foregoing method.
  • the proposed methods can be omitted by unnecessary operation of the NB-IoT terminal by actively using the DCI for notifying the system information change in the eMTC or other systems other than the NB-IoT.
  • each bit For example, DCI format N2 or DCI format 6-2, methods for omitting the MIB-NB decoding attempt using unused bits in a channel (for example, DCI format N2 or DCI format 6-2) indicating a change in system information are described as "each bit.” It is also possible to assign "table information" rather than "assign information by star”. For example, if the unused bit (s) or state (s) of a channel indicating system information change is always set to '0', the fallback mode (instructing to decode the master information block) is And / or some unused bit (s) or state (s) are zero.
  • the terminal does not know that the unused bit (s) or state (s) of the channel to inform the system information change to the proposed scheme, the base station that does not support the proposed scheme, and supports the proposed scheme It is possible to exclude the possibility that the intention and interpretation of the "unused bit (s) or state (s) of the channel informing the change of the system information" between the terminals to be different. This may be equally applied to the method of "allocating information for each bit".
  • the aSIB1-NB may have a transmission period different from that of the SIB1-NB, and in general, the period may be longer or equal to that of the SIB1-NB.
  • the number of repetitive transmissions of the aSIB1-NB is MIB-. It may be derived from the number of repetitive transmissions of SIB1-NB derived from schedulingInfoSIB1 of NB. In this case, the number of repetitive transmissions of the SIB1-NB may be set in two ways as follows.
  • the number of repetitive transmissions of aSIB1-NB depends on the number of repetitive transmissions of the existing SIB1-NB.
  • FIGS. 16A to 16C are diagrams showing locations where aSIB1-NB is transmitted when aSIB1-NB is transmitted at the same period and the same number of repetitive transmissions as the existing SIB1-NB. Transmission of aSIB1-NB repeatedly transmitted the same number of times as SIB1-NB may be given as shown in FIGS. 16A to 16C according to the number of repeated transmissions. 16A to 16C illustrate a case where aSIB1-NB is transmitted in the same period and the same number of repetitive transmissions as the existing SIB1-NB when the number of repetitive transmissions of the existing SIB1-NB is 4, 8, and 16, respectively.
  • the number of subframes in which the aSIB1-NB is repeatedly transmitted in the SIB1-NB change period is half of the subframe in which the existing SIB1-NB is repeatedly transmitted in the same interval, or the interval in which the existing SIB1-NB is the same interval (for example, , SIB1-NB change period 40.96 sec) may be smaller than the number of repeated subframes.
  • the number of subframes in which aSIB1-NB is repeatedly transmitted may be 1/2 or 1/4 of the subframe in which the existing SIB1-NB is repeatedly transmitted in the same interval, but is not limited thereto.
  • the number of subframes in which aSIB1-NB is repeatedly transmitted may be a fixed value or may be determined as one or more various values based on a coding rate.
  • the coding rate may be determined based on at least one of the number of resource elements capable of transmitting the SIB1-NB in the subframe / slot and the TBS of the SIB1-NB.
  • the number of REs may be determined based on the operation mode and the number of CRS / NRS antenna ports.
  • the number of subframes in which aSIB1-NB is repeatedly transmitted may be determined based on a result of comparing the coding rate with a specific value.
  • the number of subframes in which aSIB1-NB is repeatedly transmitted is equal to or equal to the number of subframes used for transmission of the existing SIB1-NB. For example, it may be as small as 1/2 or 1/4).
  • a method of omitting transmission of aSIB1-NB by half in some subframes may be as follows.
  • SIB1-NB TTI in which transmission of aSIB1-NB is omitted, may be derived by cell ID. For example, depending on whether "((cell_ID- (cell_ID% NRep)) / NRep)% 2" is 0 or 1, the SIB1-NB TTI in which aSIB1-NB transmission is omitted may be determined.
  • SIB1-NB TTIs For example, if the value of ((cell_ID- (cell_ID% NRep)) / NRep)% 2 "is 0, only even-numbered SIB1-NB TTIs can be selectively used for transmission of aSIB1-NB, and if 1, odd Only the first SIB1-NB TTI may be selectively used to transmit aSIB1-NB, where NRep may refer to the number of repetitive transmissions of the SIB1-NB induced by schedulingInfoSIB1.
  • the SIB1-NB transmission window in which the transmission of aSIB1-NB is omitted may be derived by the cell ID. For example, depending on whether "((cell_ID- (cell_ID% NRep)) / NRep)% 2" is 0 or 1, an SIB1-NB transmission window in which transmission of aSIB1-NB is omitted may be determined. For example, if the value of "((cell_ID- (cell_ID% NRep)) / NRep)% 2" is 0, SIB1 is used evenly among the SIB1-NB transmission windows used for transmission of SIB1-NB in the cell. Only the -NB transmission window may optionally be used for transmission of aSIB1-NB.
  • NRep may mean the number of repetitive transmissions of the SIB1-NB induced to schedulingInfoSIB1.
  • FIGS. 17A to 17C illustrate a position where aSIB1-NB is transmitted when the number of repetitive transmissions of the aSIB1-NB is half the number of repetitive transmissions of the existing SIB1-NB according to an embodiment.
  • FIGS. 17A to 17C show that aSIB1-NB transmits when the number of repetitive transmissions of the existing SIB1-NB is 4, 8, and 16, and the number of repetitive transmissions of the aSIB1-NB is 2, 4, and 8, respectively. Indicates the location.
  • FIGS. 18A to 18C are diagrams showing locations where aSIB1-NB is transmitted when the number of repetitive transmissions of the aSIB1-NB is half the number of repetitive transmissions of the existing SIB1-NB.
  • a radio frame in which transmission of aSIB1-NB is omitted may be derived by cell ID. For example, depending on whether "((cell_ID- (cell_ID% NRep)) / NRep)% 2" is 0 or 1, a radio frame in which transmission of aSIB1-NB is omitted may be determined. In this case, the radio frame in which the transmission of the aSIB1-NB is omitted may be a radio frame used for the transmission of the SIB1-NB.
  • NRep may mean the number of repetitive transmissions of the SIB1-NB induced to schedulingInfoSIB1.
  • the method shown in FIGS. 18a to 18c can be modified to the method shown in FIGS. 19a to 19c (eg “assignment method B").
  • the allocation method B includes four subframes located in front of the SIB1-NB transmission window or four subframes located in front of the SIB1-NB transmission window according to the cell ID, within a radio frame within 160 msec of the SIB1-NB transmission window in which the existing SIB1-NB is transmitted.
  • a method of selecting a position of a subframe in which aSIB1-NB is to be transmitted using the cell ID is performed in the aforementioned "SIB1-NB change period (40.96s)".
  • SIB1-NB change period 40.96s
  • "How to omit transmission of aSIB1-NB in some SIB1-NB TTI (2.56s)” and “How to omit transmission of aSIB1-NB in some SIB1-NB transmission window of a corresponding cell within the SIB1-NB TTI” respectively It can be applied to a method for selecting or omitting SIB1-NB TTI and SIB1-NB transmission window.
  • the repetitive transmission frequency of aSIB1-NB may be different from the above-described methods 1) and 2) according to the number of repetitive transmissions of the existing SIB1-NB.
  • the MIB-NB may directly indicate a value corresponding to the number of repetitive transmissions or the repetitive transmission frequency of the aSIB1-NB.
  • This section proposes a codeword and resource mapping of aSIB1-NB following the content of the eighth proposal "codeword and resource mapping of additional NPDSCH including BCCH".
  • the codeword and resource mapping of the aSIB1-NB the number of repetitive transmission of the aSIB1-NB transmitted in subframe 3 is the same as the number of repetitive transmission of the existing SIB1-NB (for example, aSIB1-NB within a specific interval)
  • the number of subframes used for repetitive transmission of NB is the same as the number of subframes used for repetitive transmission of existing SIB1-NB
  • Repeated transmission of aSIB1-NB additionally transmitted in "Case-1" and subframe 3
  • the number of times is half of the number of repetitive transmissions of the existing SIB1-NB, it may be separately defined as "Case-2".
  • FIG. 20 illustrates a codeword and resource mapping of aSIB1-NB according to an embodiment.
  • a through H sequentially illustrate soft-buffer outputs of SIB1-NB transmitted in eight subframes in which SIB1-NB is transmitted within a SIB1-NB transmission window.
  • aSIB1-NB may be sequentially transmitted in the order of ⁇ E, F, G, H, A, B, C, D ⁇ within the SIB1-NB transmission window interval.
  • the transmission of aSIB1-NB may include transmission of SIB1-NB and eight radio frames or eight subframe offsets. It may be transmitted in the form of a cyclic shift (circular shift) to have a.
  • aSIB1-NB is sequentially defined in an order other than ⁇ E, F, G, H, A, B, C, D ⁇ , or ⁇ A, B, C, D, E, F, G, H ⁇ .
  • aSIB1-NB may be determined based on at least one parameter of data RE, TBS, number of repetitive transmissions, and coding rate in a subframe used for transmission of aSIB1-NB or SIB1-NB.
  • the scrambling used for transmission of the SIB1-NB and aSIB1-NB in subframes 3 and 4 is Can be determined by the same equations and parameters.
  • scrambling used for transmission of SIB1-NB and aSIB1-NB in subframes 3 and 4 may include radio frame number, , Even though, and n f are the same, different scrambling may be applied.
  • subframe 3 may be defined as another c init having a specific offset with subframe 4.
  • n f of subframe 3 may be smaller than 1 by n f of subframe 4, but is not limited thereto.
  • aSIB1-NB transmitted in subframe 3 may be the same as SIB1-NB transmitted in subframe 4 of the same radio frame.
  • the same signal transmitted continuously in subframes 3 and 4 can be obtained more effectively at the I / Q-level or symbol-level combining gain or average gain.
  • aSIB1-NB may be transmitted in the same order as ⁇ A, B, C, D, E, F, G, H ⁇ .
  • scrambling different from scrambling used for transmission of SIB1-NB may be applied.
  • SIB1-NB transmitted in subframe 4 is phase-rotated at I / Q-level for each resource element in subframe 3 It can be scrambled to form. This may be similar to or the same as applying the I / Q-level phase rotation (first equation in 10.2.4.4 of TS 36.311) in the NPBCH.
  • aSIB1-NB may be transmitted by a method of increasing a coding rate.
  • the data of the circular buffer in FIG. 20 is transmitted according to the operation mode, the number of CRS / NRS antenna ports, and the TBS of the SIB1-NB.
  • D, E, F, G, H ⁇ In ⁇ A, B, C, D, E, F, G, H ⁇ where SIB1-NB is transmitted, all data in circular buffer is transmitted. May be the same), and may be implemented in a form similar to the IR-retransmission method.
  • aSIB1-NB is a value transmitted subsequent to the last address of H.
  • aSIB1-NB is a value transmitted subsequent to the last address of H.
  • the last address of H is approximately equal to the last address of the circular buffer in FIG. 20 (for example, the difference between the last address of H and the last address of the circular buffer is less than a certain value)
  • subframe 3 an offset may be added by a specific value to the circular buffer address from which the data is read. For example, an offset may be allocated by half of the circular buffer size, or an offset may be allocated by E, but the present invention is not limited thereto.
  • the aSIB1-NB transmitted in subframe 3 may have a different resource element mapping order from the SIB1-NB transmitted in subframe # 4. Accordingly, frequency diversity may be further increased between aSIB1-NB and SIB1-NB repeatedly transmitted in an adjacent subframe.
  • Setting the resource element mapping order differently between aSIB1-NB and SIB1-NB may be performed by cyclically shifting X (eg, 6) resource elements to set resource element mapping differently, or in order derived from a specific PN-sequence. Accordingly, the resource element mapping order may be set differently for every symbol or every subframe, but is not limited thereto.
  • the aSIB1-NB is sequentially configured with ⁇ E, G, A, C ⁇ or ⁇ F, H, in the SIB1-NB transmission window interval. B, D ⁇ may be transmitted in the order.
  • aSIB1-NB is not ⁇ E, G, A, C ⁇ or ⁇ F, H, B, D ⁇ in sequence, and ⁇ A, C , E, G ⁇ , ⁇ B, D, F, H ⁇ may also be transmitted in a different order.
  • the above-described transmission order of aSIB1-NB is based on the number of data resource elements used for transmission of SIB1-NB or aSIB1-NB, TBS, number of repetitive transmissions, coding rate, and radio omitted from transmission of aSIB1-NB in a subframe. It may be determined based on at least one parameter of the frame number.
  • aSIB1-NB and SIB1-NB transmitted consecutively in subframes 3 and 4 are not identical to each other, the scrambling used for transmission of aSIB1-NB and SIB1-NB in subframes 3 and 4 is the same Can be applied by expressions and parameters. For example, the scrambling equation currently used for transmission of SIB1-NB Even if it is applied to the transmission of aSIB1-NB without changing, the inter-cell interference problem may not occur significantly.
  • subframe 3 may be defined as another c init having a specific offset with subframe 4.
  • n f of subframe 3 may be a value smaller than n f of subframe 4.
  • aSIB1-NB transmitted in subframe 3 may be the same as SIB1-NB transmitted in subframe 4 of the same radio frame.
  • aSIB1-NB is represented by ⁇ A, C, E, G ⁇ . Or it may be transmitted in the order of ⁇ B, D, F, H ⁇ .
  • scrambling and other scrambling applied to transmission of SIB1-NB may be applied to transmitting aSIB1-NB.
  • Method for applying different scrambling, according to the above-described method, or SIB1-NB transmitted in subframe 4 is to be scrambled in the form of phase rotation at the I / Q-level for each resource element in subframe 3 Can be. This may be similar to or the same as applying the I / Q-level phase rotation (first equation in 10.2.4.4 of TS 36.311) in the NPBCH.
  • aSIB1-NB may be transmitted by a method of increasing a coding rate.
  • the data of the circular buffer in FIG. 20 according to the operation mode, the number of CRS / NRS antenna ports, and the SIB1-NB TBS is equal to ⁇ A, B, C,
  • the SIB1-NB TBS is equal to ⁇ A, B, C.
  • aSIB1-NB is transmitted after the last address of H.
  • the last address of H is approximately equal to the last address of the circular buffer in FIG. 20 (for example, the difference between the last address of H and the last address of the circular buffer is less than a certain value)
  • subframe 3 an offset may be added by a specific value to the circular buffer address from which the data is read. For example, an offset may be allocated by half the size of the circular buffer, or an offset may be allocated as much as E.
  • the present invention is not limited thereto.
  • the aSIB1-NB transmitted in subframe 3 may have a different resource element mapping order from the SIB1-NB transmitted in subframe 4. Accordingly, frequency diversity between the SIB1-NB repeatedly transmitted in the subframe adjacent to the aSIB1-NB may be further increased.
  • Setting the resource element mapping order differently between aSIB1-NB and SIB1-NB may be performed by cyclically shifting X (eg, 6) resource elements to set resource element mapping differently, or in order derived from a specific PN-sequence. Accordingly, the resource element mapping order may be set differently for every symbol or every subframe, but is not limited thereto.
  • All methods related to the transmission of aSIB1-NB include that, in the NB-IoT TDD system, when the SIB1-NB is transmitted on a non-anchor carrier, the number of subframes in which the SIB1-NB is transmitted on a non-anchor carrier is determined by Similarly, it may be applied to more cases than the number of subframes transmitted.
  • all methods related to the transmission of aSIB1-NB are similar to SIB1-NB transmitted in anchor carriers and SIB1-NB transmitted in non-anchor carriers. Can be applied.
  • the specific subframe is interpreted as the existing SIB1-NB, and the remaining subframes are proposed.
  • the proposal of this patent can be applied by interpreting as aSIB1-NB.
  • 21 is a diagram illustrating a configuration of a terminal according to an embodiment.
  • the terminal 100 illustrated in FIG. 21 may perform a signal receiving operation of the terminal illustrated in FIGS. 1 to 20.
  • the terminal 100 may operate as a transmitting end in the uplink and may operate as a receiving end in the downlink.
  • the terminal 100 may include a processor 110 and a receiver.
  • the terminal 100 may be implemented by more components than the illustrated components, or two or more components may be combined and implemented by one component.
  • the terminal 100 may include a processor 110, a transceiver 120 including a receiver and a transmitter, and a memory 130, and may further include an antenna. have.
  • the transmitter and the receiver may be combined to be implemented as one transceiver, or the transmitter and the receiver may be implemented separately.
  • each component will be described in turn.
  • the processor 110 controls the overall operation of the terminal 100.
  • the processor 110 controls the receiver to receive a Master Information Block-Narrow Band (MIB-NB) and a System Information Block1-Narrow Band (SIB1-NB) from a base station, and controls the MIB-NB or SIB1-.
  • MIB-NB Master Information Block-Narrow Band
  • SIB1-NB System Information Block1-Narrow Band
  • the processor 110 When it is determined that the subframe indicated by the invalid downlink subframe is a valid subframe, the processor 110 according to an embodiment includes at least one of NRS, NPDCCH, and NPDSCH in the subframe indicated by the invalid downlink subframe. You can receive one.
  • the processor 110 receives an additional SIB1-NB in the subframe indicated by the invalid downlink subframe. Receiver 110 can be controlled to do so.
  • the additional SIB1-NB may be transmitted in subframe 3 adjacent to the subframe in which the SIB1-NB is transmitted in the radio frame in which the SIB1-NB is transmitted.
  • the additional SIB1-NB may be transmitted in a subframe different from the subframe in which the SIB1-NB is transmitted in the anchor carrier, but is not limited thereto.
  • the SIB1-NB may be transmitted in the anchor carrier or the non-anchor carrier, and whether the SIB1-NB is transmitted in the anchor carrier or the non-anchor carrier may be indicated by the MIB-NB.
  • Whether to transmit the additional SIB1-NB may include: a code rate of the SIB1-NB, a transport block size (TBS) of the SIB1-NB, a number of repetitive transmissions of the SIB1-NB, and operation of the NB-IoT It may be determined based on at least one of the mode, the number of NRS antenna ports, and the number of CRS antenna ports.
  • the information indicating whether to transmit the additional SIB1-NB may be indicated by an unused bit of the MIB-NB, and the number of repetitive transmissions of the additional SIB1-NB is based on the number of repetitive transmissions of the SIB1-NB. Can be determined.
  • the processor 110 may obtain the location information of the non-anchor carrier on which the SIB1-NB is transmitted from the MIB-NB, and control the receiver to receive the SIB1-NB based on the obtained location. have.
  • the transceiver 120 may control transmission and reception of information, data, and / or messages.
  • the memory 130 may store a program for processing and controlling the processor 110 and may store data processed by the processor 110.
  • the memory 130 may be located inside or outside the processor 110, and may exchange data with the processor 110 by various known means.
  • 22 is a diagram illustrating a configuration of a base station according to an embodiment.
  • the base station 200 illustrated in FIG. 22 may perform a signal transmission operation of the base station illustrated in FIGS. 1 to 20.
  • the base station 200 may operate as a receiving end in uplink and a transmitting end in downlink.
  • the base station 200 may include a processor 210 and a transmitter. However, the base station 200 may be implemented by more components than the illustrated components, or two or more components may be combined and implemented by one component.
  • the base station 200 may include a processor 210, a transceiver 220 including a transmitter and a receiver, and a memory 230, and may further include an antenna. have.
  • the transmitter and the receiver may be combined to be implemented as one transceiver 220, and in some embodiments, the transmitter and the receiver may be separately implemented.
  • the processor 210 may control the transmitter to transmit the MIB-NB and the SIB1-NB to the terminal, and the MIB-NB or the SIB1-NB indicates whether to transmit the additional SIB1-NB. May contain information.
  • a subframe in which the additional SIB1-NB can be transmitted may be indicated as an invalid downlink subframe, and the subframe indicated by the invalid downlink subframe indicates whether the additional SIB1-NB is transmitted by the terminal. It may be determined as a valid subframe or an invalid subframe based on the information.
  • the transmitter 220 may control the transmission of information, data, and / or a message.
  • the receiver 120 of the terminal 100 and the transmitter 220 of the base station 100 may include a packet modulation and demodulation function, a fast packet channel coding function, and an orthogonal frequency division multiple access (OFDMA) for transmitting and receiving data. At least one of: Orthogonal Frequency Division Multiple Access (SPC) packet scheduling, time division duplex (TDD) packet scheduling, and / or channel multiplexing may be performed.
  • the terminal 100 and the base station 200 may further include a low power RF (Radio Frequency) / IF (Intermediate Frequency) module.
  • the terminal 100 may include a personal digital assistant (PDA), a cellular phone, a personal communication service (PCS) phone, and a global system for mobile (GSM).
  • PDA personal digital assistant
  • PCS personal communication service
  • GSM global system for mobile
  • WCDMA Wideband CDMA
  • MBS Mobile Broadband System
  • MM-MB Multi-Mode Multi-band
  • a smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and includes a terminal incorporating data communication functions such as schedule management, fax transmission and reception, which are functions of a personal mobile terminal, in a mobile communication terminal. Can mean.
  • multimode multiband terminals have a built-in multimode modem to operate in both portable Internet systems and other mobile communication systems (e.g., Code Division Multiple Access (CDMA) 2000 systems, wideband CDMA (WCDMA) systems, etc.). It can mean a terminal that can.
  • CDMA Code Division Multiple Access
  • WCDMA wideband CDMA
  • Embodiments of the invention may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • the invention When implemented through hardware, the invention provides one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs). ), A processor, a controller, a microcontroller, a microprocessor, and the like, but are not limited thereto.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • a processor a controller, a microcontroller, a microprocessor, and the like, but are not limited thereto.
  • the present invention may be implemented in the form of a module, procedure, or function that performs the above-described functions or operations.
  • a program including a module, a procedure, or a function that performs the above-described functions or operations may be stored in the memories 130 and 230 and executed by the processors 110 and 210.
  • Embodiments of the present invention can be applied to various wireless access systems.
  • wireless access systems may include a 3rd generation partnership project (3GPP) or a 3GPP2 system, but are not limited thereto.
  • 3GPP 3rd generation partnership project
  • Embodiments of the present invention can be applied not only to the above-described radio access system but also to all technical fields to which the above-described radio access system is applied.
  • the present invention can also be applied to a millimeter wave (mmWave) communication system using an ultra high frequency band.
  • mmWave millimeter wave

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

다양한 실시예들은 무선 통신 시스템에서 단말과 기지국이 신호를 송수신하는 방법 및 이를 지원하는 장치를 개시한다.

Description

무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 무선 통신 시스템에서 단말과 기지국 간 신호를 송수신하는 방법 및 이를 지원하는 장치에 대한 것이다.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 예를 들어, 다중 접속 시스템은 CDMA(code division multipleaccess) 시스템, FDMA(frequency division multipleaccess) 시스템, TDMA(time division multipleaccess) 시스템, OFDMA(orthogonal frequency division multipleaccess) 시스템, SC-FDMA(single carrier frequency division multipleaccess) 시스템 등을 포함할 수 있다.
또한, IoT(Internet of Things) 통신 기술은 새로이 제안되고 있다. 여기서, IoT는 인간 상호작용(human interaction)을 수반하지 않은 통신을 말한다. 이와 같은 IoT 통신 기술이 셀룰러 기반의 LTE(Long Term Evolution) 시스템에 수용되는 방안이 추가적으로 논의되고 있다.
다만, 종래 LTE 시스템은 고속의 데이터 통신을 지원하는 것을 목적으로 설계되어, 사람들에게 고가의 통신 방식으로 여겨져 왔다. 그러나, IoT 통신은 그 특성상 가격이 저가여야만 널리 보급되어 사용될 수 있다는 특징이 있다.
본 발명은 SIB1-NB 이외에 추가 SIB1-NB를 전송함으로써 단말이 시스템 정보를 보다 빠르게 획득하는 방법을 제공하기 위한 것이다.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
본 발명은 무선 통신 시스템에서 단말과 기지국이 신호를 송수신하는 방법 및 이를 지원하는 장치들을 제공한다.
일 실시예에 따른 무선 통신 시스템에서 단말이 기지국으로부터 신호를 수신하는 방법은, MIB-NB(Master Information Block-Narrow Band) 및 SIB1-NB (System Information Block1-Narrow Band)를 기지국으로부터 수신하는 단계, MIB-NB 또는 SIB1-NB로부터 추가 SIB1-NB(additional SIB1-NB)의 전송 여부를 지시하는 정보를 획득하는 단계, 및 획득된 정보에 기초하여, 기지국에 의해 무효 하향링크 서브프레임(invalid downlink subframe)으로 지시된 서브프레임을 유효 서브프레임(valid subframe) 또는 무효 서브프레임으로 판단하는 단계를 포함할 수 있다.
일 실시예에 따라 무효 하향링크 서브프레임으로 지시된 서브프레임이 유효 서브프레임인 것으로 판단될 때, 무효 하향링크 서브프레임으로 지시된 서브프레임에서 NRS, NPDCCH, 및 NPDSCH 중 적어도 하나를 수신하는 단계를 더 포함할 수 있다.
일 실시예에 따라 무효 하향링크 서브프레임으로 지시된 서브프레임이 무효 서브프레임인 것으로 판단될 때, 무효 하향링크 서브프레임으로 지시된 서브프레임에서 추가 SIB1-NB를 수신하는 단계를 더 포함할 수 있다.
일 실시예에 따른 추가 SIB1-NB는 SIB1-NB가 전송되는 라디오 프레임 내에서 SIB1-NB가 전송되는 서브프레임에서 전송되고, 추가 SIB1-NB가 전송되는 서브프레임은 서브프레임 인덱스 3에 대응하는 서브프레임일 수 있다.
일 실시예에 따른 추가 SIB1-NB는 앵커 캐리어에서 SIB1-NB가 전송되는 서브프레임과 다른 서브프레임에서 전송될 수 있다.
일 실시예에 따른 SIB1-NB는 앵커 캐리어 또는 비앵커 캐리어에서 전송되고, SIB1-NB가 앵커 캐리어에서 전송되는지 또는 비앵커 캐리어에서 전송되는지 여부는 MIB-NB에 의해 지시될 수 있다.
일 실시예에 따른 신호 수신 방법은, MIB-NB로부터 SIB1-NB가 전송되는 비앵커 캐리어의 위치 정보를 획득하는 단계, 및 획득된 위치 정보에 기초하여 SIB-NB를 수신하는 단계를 포함할 수 있다.
일 실시예에 따른 추가 SIB1-NB의 반복 전송 횟수는 SIB1-NB의 반복 전송 횟수에 기초하여 결정될 수 있다.
일 실시예에 따른 SIB1-NB의 반복 전송 횟수가 4 또는 8일 때, 추가 SIB1-NB가 전송되지 않고, SIB1-NB의 반복 전송 횟수가 16일 때, 추가 SIB1-NB는 SIB1-NB와 동일한 횟수로 전송될 수 있다.
일 실시예에 따른 추가 SIB1-NB의 전송 여부를 지시하는 정보는, MIB-NB의 미사용 비트(unused bit)에 의해 지시될 수 있다.
일 실시예에 따른 추가 SIB1-NB의 전송 여부는, SIB1-NB의 부호화율(code rate), SIB1-NB의 TBS(Transport Block Size), SIB1-NB의 반복 전송 횟수, NB-IoT의 운용 모드, NRS 안테나 포트 수, 및 CRS 안테나 포트 수 중 적어도 하나에 기초하여 결정될 수 있다.
일 실시예에 따른 추가 SIB1-NB의 전송 여부는 SIB1-NB가 변경될 때, 변경된 SIB1-NB에 의해 지시될 수 있다.
일 실시예에 따른 무선 통신 시스템에서 기지국이 단말에게 신호를 전송하는 방법은 MIB-NB(Master Information Block-Narrow Band) 또는 SIB1-NB(System Information Block1-Narrow band)가 추가 SIB1-NB(additional SIB1-NB)의 전송 여부를 지시하도록 설정하는 단계, 추가 SIB1-NB가 전송될 수 있는 서브프레임을 무효 하향링크 서브프레임(invalid downlink subframe)으로 지시하는 단계, MIB-NB 및 SIB1-NB를 단말에게 전송하는 단계, 및 무효 하향링크 서브프레임으로 지시된 서브프레임에서 추가 SIB1-NB, NRS, NPDCC, 및 NPDSCH 중 적어도 하나를 전송하는 단계를 포함할 수 있다.
일 실시예에 따른 무선 통신 시스템에서 기지국으로부터 신호를 수신하는 단말은 수신기 및 수신기에 연결되어 동작하는 프로세서를 포함하고, 프로세서는 MIB-NB 및 SIB1-NB를 기지국으로부터 수신하도록 수신기를 제어하고, MIB-NB 또는 SIB1-NB로부터 추가 SIB1-NB의 전송 여부를 지시하는 정보를 획득하고, 획득된 정보에 기초하여 기지국에 의해 무효 하향링크 서브프레임으로 지시된 서브프레임을 유효 서브프레임 또는 무효 서브프레임으로 판단할 수 있다.
일 실시예에 따른 무선 통신 시스템에서 단말에게 신호를 전송하는 기지국에 있어서, 송신기 및 송신기에 연결되어 동작하는 프로세서를 포함하고, 프로세서는 MIB-NB(Master Information Block-Narrow Band) 또는 SIB1-NB(System Information Block1-Narrow band)가 추가 SIB1-NB(additional SIB1-NB)의 전송 여부를 지시하도록 설정하고, 추가 SIB1-NB가 전송될 수 있는 서브프레임을 무효 하향링크 서브프레임(invalid downlink subframe)으로 지시하고, MIB-NB 및 SIB1-NB를 단말에게 전송하도록 송신기를 제어하고, 무효 하향링크 서브프레임으로 지시된 서브프레임에서 추가 SIB1-NB, NRS, NPDCC, 및 NPDSCH 중 적어도 하나를 전송하도록 송신기를 제어할 수 있다.
전술한 본 발명의 실시예들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명의 다양한 실시예들은, 추가 SIB1-NB를 전송함으로써 단말이 시스템 정보를 보다 빠르게 획득할 수 있도록 한다.
본 발명의 실시예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명의 실시에 따른 의도하지 않은 효과들 역시 본 발명의 실시예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
이하에서 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성 요소(structural elements)를 의미한다.
도 1은 일 실시예에 따라 물리 채널 및 물리 채널을 이용하여 신호를 전송하는 과정을 나타내는 도면이다.
도 2는 일 실시예에 따른 무선 프레임의 구조를 나타내는 도면이다.
도 3은 일 실시예에 따른 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타내는 도면이다.
도 4는 일 실시예에 따른 상향링크 서브 프레임의 구조를 나타내는 도면이다.
도 5는 일 실시예에 따른 하향링크 서브 프레임의 구조를 나타내는 도면이다.
도 6은 일 실시예에 따른 LTE 시스템에서 인-밴드의 앵커 캐리어의 배치를 나타내는 도면이다.
도 7은 일 실시예에 따른 FDD 방식으로 동작하는 LTE 시스템에서 하향링크 물리채널 및 하향링크 신호가 전송되는 위치를 나타내는 도면이다.
도 8은 일 실시예에 따른 인-밴드 모드에서 NB-IoT 시스템의 신호 및 LTE 시스템의 신호에 대한 자원 할당을 나타내는 도면이다.
도 9는 일 실시예에 따라 MIB-NB를 통해 persistent SIB1-NB 스케줄링 정보를 전송하는 방법을 나타내는 도면이다.
도 10은 일 실시예에 따라 SIB1-NB 변경 주기 내에서 SIB1-NB TTI(Transmission Time Interval) 간 SIB1-NB를 결합하는 방법을 나타내는 도면이다.
도 11은 일 실시예에 따른 SIB1-NB를 포함하는 NPDSCH의 전송 방법을 나타내는 도면이다.
도 12a 내지 도 12c는 일 실시예에 따라 SIB1-NB가 전송되지 않는 4번 서브프레임에서 추가 SIB1-NB를 전송하는 방법을 나타내는 도면이다.
도 13a 내지 도 13c는 일 실시예에 따라 NSSS가 전송되지 않는 9번 서브프레임에서 추가 SIB1-NB를 전송하는 방법을 나타내는 도면이다.
도 14는 일 실시예에 따른 원형 버퍼의 출력을 나타내는 도면이다.
도 15a 및 도 15b는 일 실시예에 따른 추가 SIB1-NB의 전송 패턴에 따른 BLER의 성능을 나타내는 도면이다.
도 16a 내지 도 19c는 일 실시예에 따른 추가 SIB1-NB가 전송되는 위치를 나타내는 도면이다.
도 20은 일 실시예에 따른 추가 SIB1-NB의 코드워드(codeword) 및 자원 매핑 방법을 나타내는 도면이다.
도 21은 일 실시예에 따른 단말의 구성을 나타내는 도면이다.
도 22는 일 실시예에 따른 기지국의 구성을 나타내는 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정의 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 본 발명의 실시예들은 기지국과 단말 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)를 의미할 수 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은, 경우에 따라, 기지국의 상위 노드(uppernode)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서, 단말과의 통신을 위해 수행되는 다양한 동작들은, 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), gNode B(gNB), 발전된 기지국(ABS: Advanced Base Station) 또는 액세스 포인트(access point) 등의 용어로 대체될 수 있다.
또한, 본 발명의 실시예들에서 단말(Terminal)은 사용자 기기(UE: User Equipment), 이동국(MS: Mobile Station), 가입자 단말(SS: SubscriberStation), 이동 가입자 단말(MSS: Mobile SubscriberStation), 이동 단말(Mobile Terminal) 또는 발전된 이동단말(AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 의미하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미할 수 있다. 따라서, 상향링크에서는, 단말이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는, 단말이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE(Long Term Evolution) 시스템, 3GPP 5G NR(New Radio) 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 발명의 실시예들은 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.331, 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 및 3GPP TS 38.331 문서들에 의해 뒷받침 될 수 있다. 즉, 본 발명의 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 발명의 실시예들에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하에서는, 본 발명의 실시예들이 사용될 수 있는 무선 접속 시스템의 일례로 3GPP LTE/LTE-A 시스템에 대해서 설명한다.
이하의 기술은 CDMA(code division multipleaccess), FDMA(frequency division multipleaccess), TDMA(time division multipleaccess), OFDMA(orthogonal frequency division multipleaccess), SC-FDMA(single carrier frequency division multipleaccess) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.
CDMA는 UTRA(Universal Terrestrial Radio Access) 또는 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다.
UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부를 의미하며, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced) 시스템은 3GPP LTE 시스템이 개량된 시스템이다. 본 발명의 기술적 특징에 대한 설명을 명확하게 하기 위해, 본 발명의 실시예들을 3GPP LTE/LTE-A 시스템을 위주로 기술하지만, IEEE 802.16e/m 시스템 등에도 적용될 수 있다.
1. 3GPP LTE/LTE_A 시스템
1.1. 물리 채널들 및 이를 이용한 신호 송수신 방법
무선 접속 시스템에서 단말은 하향링크(DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크(UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 기지국과 단말이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 일 실시예에 따라 물리 채널 및 물리 채널을 이용하여 신호를 전송하는 과정을 나타내는 도면이다.
S11 단계에서, 전원이 꺼진 상태에서 다시 전원이 켜지거나 또는 새로운 셀에 진입한 단말은, 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 동작을 수행할 수 있다. 초기 셀 탐색 작업을 위해, 단말은 기지국으로부터 주동기 채널(P-SCH: Primary Synchronization Channel) 및 부동기 채널(S-SCH: Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다.
그 후, 단말은 기지국으로부터 물리 방송 채널(PBCH: Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다.
한편, 단말은 초기 셀 탐색 단계에서, 하향링크 참조 신호(DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 S12 단계에서 물리 하향링크 제어 채널 (PDCCH: Physical Downlink Control Channel) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(PDSCH: Physical Downlink Control Channel)을 수신하여 보다 구체적인 시스템 정보를 획득할 수 있다.
보다 구체적인 시스템 정보를 획득한 이후, 단말은 기지국에 접속을 완료하기 위하여, 단계 S13 내지 단계 S16과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 예를 들어, 단말은 물리 임의 접속 채널(PRACH: Physical Random Access Channel)을 통해 프리앰블(preamble)을 전송하고(S13), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S14). 경쟁 기반 임의 접속의 경우, 단말은 추가적인 물리 임의 접속 채널 신호의 전송(S15) 및 물리 하향링크 제어 채널 신호 및 이에 대응하는 물리 하향링크 공유 채널 신호의 수신(S16)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
전술한 바와 같은 절차를 수행한 단말은, 일반적인 상향링크/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널 신호 및/또는 물리 하향링크 공유 채널 신호를 수신(S17)하고, 물리 상향링크 공유 채널(PUSCH: Physical Uplink Shared Channel) 신호 및/또는 물리 상향링크 제어 채널 (PUCCH: Physical Uplink Control Channel) 신호를 전송(S18)할 수 있다.
단말이 기지국으로 전송하는 제어정보는 통칭하여 상향링크 제어정보(UCI: Uplink Control Information)라고 지칭될 수 있다. UCI는 HARQ-ACK/NACK (Hybrid AutomaticRepeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel QualityIndication), PMI (Precoding Matrix Indication), RI (Rank Indication) 정보 등을 포함할 수 있다.
LTE 시스템에서 UCI는 일반적으로 PUCCH를 통해 주기적으로 전송된다. 그러나, 제어정보와 트래픽 데이터가 동시에 전송되어야 하는 경우, UCI는 PUSCH를 통해 전송될 수 있다. 또한, 단말은, 네트워크의 요청/지시에 따라 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
1.2. 자원 구조
도 2는 일 실시예에 따른 무선 프레임의 구조를 나타낸다.
도 2(a)는 제1 타입 프레임 구조(frame structure type 1)를 나타낸다. 제1 타입 프레임 구조는 전이중FDD((full duplexFrequency Division Duplex)시스템과 반이중 FDD((half duplex) 시스템에 모두 적용될 수 있다.
하나의 무선 프레임(radio frame)은 Tf = 307200*Ts = 10ms의 길이를 가지고, Tslot = 15360*Ts = 0.5ms의 균등한 길이를 가지며, 0부터 19의 인덱스가 부여된 20개의 슬롯으로 구성될 수 있다. 하나의 서브프레임은 2개의 연속된 슬롯으로 정의되며, i 번째 서브프레임은 2i 와 2i+1에 해당하는 슬롯으로 구성될 수 있다. 즉, 무선 프레임은 10개의 서브프레임(subframe)으로 구성될 수 있다. 하나의 서브프레임을 전송하는데 걸리는 시간을 TTI(transmission time interval)이라 한다. 여기서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz*2048)=3.2552*10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼 또는 SC-FDMA 심볼을 포함할 수 있으며, 주파수 영역에서 복수의 자원 블록(Resource Block)을 포함할 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing)심볼을 포함한다. 3GPP LTE 시스템은 하향링크에서 OFDMA를 사용하므로, OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부반송파(subcarrier)를 포함한다.
전이중 FDD 시스템에서는, 각 10ms 구간 동안 10개의 서브프레임은 하향링크 전송과 상향링크 전송을 위해 동시에 이용될 수 있다. 이때, 상향링크와 하향링크 전송은 주파수 영역에서 분리된다. 반면, 반이중 FDD 시스템에서는, 단말이 송신과 수신을 동시에 할 수 없다.
전술한 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 서브 프레임의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2(b)는 제2 타입 프레임 구조(frame structure type 2)를 나타낸다. 제2 타입 프레임 구조는 TDD 방식에 적용된다. 하나의 무선 프레임은 Tf = 307200*Ts = 10ms의 길이를 가지며, 153600*Ts = 5ms 길이를 가지는 2개의 하프 프레임(half-frame)으로 구성된다. 각 하프 프레임은 30720*Ts = 1ms의 길이를 가지는 5개의 서브프레임으로 구성된다. i 번째 서브프레임은 2i 와 2i+1에 해당하는 2개의 슬롯으로 구성되며, 각 슬롯은 각 Tslot = 15360*Ts = 0.5ms의 길이를 가진다. 이때, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz*2048)=3.2552*10-8(약 33ns)로 표시된다.
제2 타입 프레임은, DwPTS(Downlink Pilot Time Slot), 보호 구간(GP: GuardPeriod), UpPTS(Uplink Pilot Time Slot) 3가지의 필드로 구성되는 특별 서브프레임(special subframe)을 포함한다. 여기서, DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호 구간은 상향링크와 하향링크 사이에 위치하며, 하향링크 신호의 다중 경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
다음의 표 1은 특별 프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.
Figure PCTKR2018003387-appb-T000001
또한, LTE Release 13 시스템에서, 특별 프레임의 구성은 다음의 표 2와 같이 X를 고려하여 설정되는 구성이 추가되었으며, LTE Release 14 시스템에서는 특별 서브프레임 구성(special subframeconfiguration) #10이 추가되었다. 이때, X는 UpPTS에서의 추가적인 SC-FDMA 심볼의 개수를 나타내고, 상위 계층 파라미터(higher layer parameter) srs-UpPtsAdd 에 의해 제공될 수 있다. 파라미터가 설정되지 않으면 X는 0과 같다. 이때, 단말은 하향링크에서의 일반 CP를 위한 특별 서브프레임 구성들 {3, 4, 7, 8} 및 하향링크에서의 확장된 CP를 위한 특별 서브프레임 구성들 {2, 3, 5, 6}에 대해 2개의 추가 UpPTS SC-FDMA 심볼들이 설정될 것을 기대하지 않을 수 있다. 또한, 단말은 하향링크에서의 일반 CP를 위한 특별 서브프레임 구성들 {1, 2, 3, 4, 6, 7, 8} 및 하향링크에서의 확장된 CP를 위한 특별 서브프레임 구성들 {1, 2, 3, 5, 6}에 대해 4개의 추가 UpPTS SC-FDMA 심볼들이 설정될 것을 기대하지 않을 수 있다. (The UE is not expected to be configured with 2 additional UpPTS SC-FDMA symbols for special subframeconfigurations {3, 4, 7, 8} for normal cyclic prefix in downlink and special subframeconfigurations {2, 3, 5, 6} for extended cyclic prefix in downlink and 4 additional UpPTS SC-FDMA symbols for special subframeconfigurations {1, 2, 3, 4, 6, 7, 8} for normal cyclic prefix in downlink and special subframeconfigurations {1, 2, 3, 5, 6} for extended cyclic prefix in downlink.)
Figure PCTKR2018003387-appb-T000002
도 3은 일 실시예에 따른 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타내는 도면이다.
도 3을 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함할 수 있다. 예를 들어, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함할 수 있고, 하나의 자원 블록은 주파수 영역에서 12개의 부반송파를 포함할 수 있으나, 이에 한정되지 않는다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)라고 지칭하며, 하나의 자원 블록은 12 Х 7 개의 자원 요소를 포함할 수 있다. 하향링크 슬롯에 포함되는 자원 블록의 수 NDL은 하향링크 전송 대역폭(bandwidth)에 의해 결정된다.
도 4는 일 실시예에 따른 상향링크 서브 프레임의 구조를 나타내는 도면이다.
도 4를 참조하면, 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 구분될 수 있다. 제어 영역에는 상향링크 제어 정보를 전달하는 PUCCH가 할당된다. 데이터 영역은 사용자 데이터를 전달하는 PUSCH가 할당된다. 하나의 단말은, 단일 반송파 특성을 유지하기 위하여 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH에는 서브 프레임 내에 RB(Resource Block) 쌍이 할당된다. RB 쌍에 포함되는 RB들은 2개의 슬롯들 각각에서 서로 다른 부반송파를 차지하고, PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
도 5는 일 실시예에 따른 하향링크 서브 프레임의 구조를 나타내는 도면이다.
도 5를 참조하면, 서브프레임 내의 첫번째 슬롯에서 OFDM 심볼 인덱스 0부터 최대 3개의 OFDM 심볼들은, 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH가 할당되는 데이터 영역(data region)이다. LTE 시스템에서 사용되는 하향링크 제어 채널은, 예를 들어 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등을 포함할 수 있으나, 이에 한정되지 않는다.
PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고, 서브프레임 내에서 제어 채널들을 전송하기 위해 사용되는 OFDM 심볼들의 수에 관한 정보(예를 들어, 제어 영역의 크기)를 전달할 수 있다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Negative-Acknowledgement) 신호를 전달할 수 있다. 또한, PDCCH를 통해 전송되는 제어 정보는 하향링크 제어 정보(DCI: downlink control information)라고 지칭될 수 있다. 하향링크 제어 정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보, 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함할 수 있으나, 이에 한정되지 않는다.
2. 새로운 무선 접속 기술 (New Radio Access Technology) 시스템
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구함에 따라, 기존의 무선 접속 기술 (radio access technology, RAT)에 비해 향상된 단말 광대역 (mobile broadband) 통신에 대한 필요성이 대두되었다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 mMTC(massive Machine Type Communications) 역시 필요하게 되었다. 뿐만 아니라, 신뢰성(reliability) 및 지연(latency) 에 민감한 서비스/단말을 고려한 통신 시스템의 디자인이 제시되었다.
본 발명에서는, 전술한 바와 같이 향상된 단말 광대역 통신(enhanced mobile broadband communication), mMTC, URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려하여 새로운 무선 접속 기술로써 제안된 무선 접속 기술 시스템을 편의상 New RAT 또는 NR(New Radio)이라 명명한다.
2.1. 뉴머롤로지들(Numeriologies)
본 발명이 적용 가능한 NR 시스템에서는 다음의 표 3과 같은 다양한 OFDM 뉴머롤로지를 지원한다. 이때, 반송파 대역폭 부분(carrier bandwidth part)별 μ 및 순환 전치(CP, Cyclic prefix) 정보는 하향링크(DL, Downlink) 또는 상향링크(UL, Uplink)별로 각각 시그널링될 수 있다. 예를 들어, 하향링크 반송파 대역폭 부분(downlink carrier bandwidth part)을 위한 μ 및 CP 정보는 상위 계층 시그널링 DL-BWP-mu 및 DL-MWP-cp를 통해 시그널링될 수 있다. 다른 예로서, 상향링크 반송파 대역폭 부분(uplink carrier bandwidth part)을 위한 μ 및 CP 정보는 상위 계층 시그널링 UL-BWP-mu 및 UL-MWP-cp를 통해 시그널링될 수 있다
Figure PCTKR2018003387-appb-T000003
2.2. 프레임 구조
하향링크 및 상향링크 프레임은 10ms 길이의 프레임으로 구성되고, 하나의 프레임은 1ms 길이를 가지는 서브프레임 10개로 구성될 수 있다. 이때, 각 서브프레임 별 연속하는 OFDM 심볼의 개수는
Figure PCTKR2018003387-appb-I000001
이다.
각 프레임은 동일한 크기를 갖는 2개의 하프-프레임(half frame)으로 구성될 수 있다. 이때, 2개의 하프-프레임은 각각 0번 내지 4번 서브프레임 및 5번 서브프레임 내지 9번 서브프레임으로 구성될 수 있다.
부반송파 간격(subcarrier spacing) μ 에 대해, 슬롯은 하나의 서브프레임 내 오름차순으로
Figure PCTKR2018003387-appb-I000002
와 같이 넘버링되고, 하나의 프레임 내 오름차순으로
Figure PCTKR2018003387-appb-I000003
와 같이 넘버링될 수 있다. 이때, 하나의 슬롯 내에서 연속하는 OFDM 심볼 개수 (
Figure PCTKR2018003387-appb-I000004
)는 CP 에 따라 다음의 표4와 같이 결정될 수 있다. 하나의 서브프레임 내 시작 슬롯 (
Figure PCTKR2018003387-appb-I000005
)은 동일한 서브프레임 내 시작 OFDM 심볼 (
Figure PCTKR2018003387-appb-I000006
) 과 시간 차원에서 정렬(aligned)되어 있다.
다음의 표 4는 일반 CP(normal cyclic prefix)를 위한 슬롯별 / 프레임별/ 서브프레임별 OFDM 심볼의 개수를 나타내고, 표 5는 확장된 CP(extended cyclic prefix)를 위한 슬롯별 / 프레임별/ 서브프레임별 OFDM 심볼의 개수를 나타낸다.
Figure PCTKR2018003387-appb-T000004
Figure PCTKR2018003387-appb-T000005
3. NB-IoT (Narrow Band-Internet of Things)
이하에서는, NB-IoT 시스템의 기술적 특징에 대해 상세히 설명한다. 설명의 편의상, 3GPP LTE 표준에 기반한 NB-IoT를 중심으로 설명하지만, 해당 구성은 3GPP NR 표준에 동일하게 적용될 수 있다. 이를 위해, 일부 기술 구성들은 변경(예를 들어, 서브프레임을 슬롯으로 변경)되어 해석될 수 있다.
따라서, 이하에서는, LTE 표준 기술을 기준으로 NB-IoT에 대해 설명하지만, 당업자에게 용이하게 도출 가능한 범주 내에서 상기 LTE 표준 기술은 NR 표준 기술로 대체되어 해석될 수 있다.
3.1. 운용 모드 및 주파수
NB-IoT는 인-밴드(in-band), 가드-밴드(guard-band), 독립형(stand-alone) 모드의 세가지 운용 모드를 지원하며, 각 운용 모드별로 동일한 요구사항이 적용된다.
(1) 인-밴드 모드는 LTE 시스템의 대역 내 자원 중 일부를 NB-IoT 시스템에 할당하여 운용한다.
(2) 가드-밴드 모드는 LTE 시스템의 보호 주파수 대역을 활용하며, NB-IoT 캐리어는 LTE 시스템의 가장자리 부반송파에 가능한 가깝게 배치된다.
(3) 독립형 모드는 Global System for Mobile Communications(GSM) 대역 내 일부 캐리어를 NB-IoT 시스템에 할당하여 운용한다.
NB-IoT 단말은 초기 동기화를 위해 100kHz 단위로 앵커 캐리어(anchor carrier)를 탐색하며, 인-밴드 및 가드-밴드에서 앵커 캐리어의 중심 주파수는 100kHz 채널 래스터(channel raster)로부터 ±7.5kHz 이내에 위치하여야 한다. 이때, NB-IoT 단말은, NB-IoT 시스템에서 동작하는 단말, NB-IoT를 지원하는 단말을 의미할 수 있다. 또한, LTE PRB(Physical Resource Block) 중에서 가운데 6 PRB는 NB-IoT 시스템에 할당되지 않는다. 따라서, 앵커 캐리어는 특정 PRB에만 위치할 수 있다.
도 6은 일 실시예에 따른 LTE 시스템에서 인-밴드의 앵커 캐리어의 배치를 나타내는 도면이다.
도 6에 도시된 바와 같이, Direct Current(DC) 부반송파는 채널 래스터에 위치한다. 인접한 PRB 사이의 중심 주파수 간격은 180kHz이므로, PRB 인덱스 4, 9, 14, 19, 30, 35, 40, 45의 중심 주파수는 채널 래스터로부터 ±2.5kH에 위치한다.
대역폭이 20MHz일 때, 앵커 캐리어의 전송에 적합한 PRB의 중심 주파수는 채널 래스터로부터 ±2.5kHz에 위치하며, 대역폭이 3MHz, 5MHz, 및 15MHz일 때, 앵커 캐리어의 전송에 적합한 PRB의 중심 주파수는 채널 래스터로부터 ±7.5kHz에 위치한다.
가드-밴드 모드에서, 대역폭이 10MHz와 20MHz일 때, LTE 시스템의 가장자리 PRB에 바로 인접한 PRB의 중심 주파수는 채널 래스터로부터 ±2.5kHz에 위치한다. 또한, 대역폭이 3MHz, 5MHz, 15MHz일 때, 가장자리 PRB로부터 3개의 부반송파에 해당하는 보호 주파수 대역을 사용함으로써, 앵커 캐리어의 중심 주파수가 채널 래스터로부터 ±7.5kHz에 위치할 수 있다.
독립형 모드의 앵커 캐리어는 100kHz 채널 래스터에 정렬되며, DC 캐리어를 포함한 모든 GSM 캐리어가 NB-IoT 앵커 캐리어로 활용될 수 있다.
또한, NB-IoT는 복수의 캐리어 운용을 지원하며, 인-밴드 및 인-밴드, 인-밴드 및 가드-밴드, 가드-밴드 및 가드-밴드, 독립형 및 독립형의 조합이 사용될 수 있다.
3.2. 물리채널
3.2.1. 하향링크 (DL)
NB-IoT 시스템의 하향링크는 15kHz 부반송파 간격을 갖는 Orthogonal Frequency Division MultipleAccess(OFDMA) 방식을 사용한다. OFDMA 방식은 부반송파들 사이의 직교성을 제공함으로써, NB-IOT 시스템과 LTE 시스템이 원활하게 공존(coexistence)할 수 있도록 한다.
하향링크에는 Narrowband Physical Broadcast Channel(NPBCH), Narrowband Physical Downlink Shared Channel(NPDSCH), Narrowband Physical Downlink Control Channel(NPDCCH)와 같은 물리 채널이 제공될 수 있으며, Narrowband Primary Synchronization Signal(NPSS), Narrowband Primary Synchronization Signal(NSSS), Narrowband Reference Signal(NRS)와 같은 물리 신호가 제공된다.
도 7은 일 실시예에 따른 FDD 방식으로 동작하는 LTE 시스템에서 하향링크 물리채널 및 하향링크 신호가 전송되는 위치를 나타내는 도면이다.
NB-IoT 단말은, 망에 접속하기 위하여, 셀의 시스템 정보를 획득해야 하고, 셀의 시스템 정보를 획득하기 위하여, 셀 탐색 과정을 통해 셀과의 동기를 획득해야 한다. NB-IoT 단말이 셀과의 동기를 획득하기 위하여, 동기 신호가 하향링크로 전송될 수 있다.
NB-IoT 단말은 동기 신호를 이용하여 주파수, 심볼, 및 프레임 동기를 획득하고 504개의 PCID(Physical Cell ID)를 탐색한다. LTE 시스템의 동기 신호는 6 PRB 자원을 통해 전송되므로, LTE 시스템의 동기 신호를 1 PRB를 사용하는 NB-IoT 시스템에 재사용하는 것은 불가능하다.
이에 따라, 새로운 NB-IoT 시스템의 동기 신호(예를 들어, NPSS, NSSS)가 설계되었으며, NB-IoT 시스템의 동기 신호는 NB-IoT의 세 가지 운용 모드에 동일하게 적용될 수 있다.
도 7에 도시된 바와 같이, NPBCH는 각 라디오 프레임의 첫 번째 서브프레임, NPSS는 각 라디오 프레임의 여섯 번째 서브프레임, 그리고 NSSS는 각 짝수 프레임의 마지막 서브프레임에 전송된다.
보다 구체적으로, NPSS 는, 시퀀스의 길이가 11이며, 루트 인덱스(root index) 값으로 5를 갖는 ZC(Zadoff-Chu) 시퀀스로 구성된다. 이때, NPSS는 다음의 수학식 1에 따라 생성될 수 있다.
Figure PCTKR2018003387-appb-M000001
이때, 심볼 인덱스 l에 대한 S(l)은 다음의 표 6과 같이 정의될 수 있다.
Figure PCTKR2018003387-appb-T000006
또한, NSSS는, 시퀀스의 길이가 131인 ZC 시퀀스와 하다마드 시퀀스(Hadamard sequence)와 같은 이진 스크램블링(binary scrambling) 시퀀스의 조합으로 구성된다. 특히, NSSS는 상기 시퀀스들의 조합을 통해, 셀 내 NB-IoT 단말들에게 PCID를 지시한다.
이때, NSSS는 다음의 수학식 2에 따라 생성될 수 있다.
Figure PCTKR2018003387-appb-M000002
이때, 수학식 2에 적용되는 변수들은 다음의 표 7과 같이 정의될 수 있다.
Figure PCTKR2018003387-appb-T000007
또한, 이진 시퀀스 bq(m)은 다음의 표 8과 같이 정의될 수 있으며, 프레임 번호 nf 에 대한 순환 시프트(cyclic shift) θf는 다음의 수학식 3과 같이 정의될 수 있다.
Figure PCTKR2018003387-appb-T000008
Figure PCTKR2018003387-appb-M000003
NRS는 하향링크 물리 채널 복조에 필요한 채널 추정을 위한 기준 신호를 의미하며, LTE 시스템과 동일한 방식으로 생성될 수 있다. 다만, NRS는 초기화를 위한 초기값으로 Narrowband-Physical Cell ID(NB-PCID)를 사용한다.
NRS는 하나 또는 두 개의 안테나 포트에 전송되며, NB-IoT 시스템의 기지국 송신 안테나는 최대 2개까지 지원된다.
NPBCH는, NB-IoT 단말이 시스템에 접속하기 위해 반드시 알아야 하는 최소한의 시스템 정보인 Master Information Block-Narrowband(MIB-NB)를 단말에 전달한다.
MIB-NB의 Transport Block Size(TBS)는 34 비트이고, 640ms Transmission Time Interval(TTI) 주기마다 업데이트되어 전송되며, 운용 모드, System Frame Number(SFN),Hyper-SFN, Cell-specific Reference Signal(CRS) port 수, 채널 래스터 오프셋 등의 정보를 포함할 수 있다.
NPBCH 신호는 커버리지 향상을 위하여, 총 8번 반복하여 전송될 수 있다.
NPDCCH 채널은 NPBCH와 동일한 송신 안테나 구성을 갖게 되며, 3종류의 Downlink Control Information(DCI) 포맷(예를 들어, DCI N0, N1, N2)을 지원한다. DCI N0는 Narrowband Physical Uplink Shared Channel(NPUSCH) 스케줄링 정보를 단말에 전송하기 위해 사용되고, DCI N1 및 N2는 NPDSCH를 복조하기 위해 필요한 정보를 단말에 전달하기 위해 사용된다. NPDCCH는 커버리지 향상을 위해 최대 2048번 반복하여 전송될 수 있다.
NPDSCH는 Downlink-Shared Channel(DL-SCH), Paging Channel(PCH)과 같은 Transport Channel(TrCH)을 전송하기 위한 물리 채널이다. NPDSCH의 최대 TBS는 680 비트이며, 커버리지 향상을 위해 최대 2048번 반복하여 전송될 수 있다.
3.2.2. 상향링크 (UL)
상향링크 물리 채널은 Narrowband Physical Random Access Channel(NPRACH), NPUSCH로 구성되며, 싱글 톤(single-tone) 및 멀티 톤(multi-tone) 전송을 지원한다.
멀티 톤 전송은 부반송파 간격이 15kHz인 경우에만 지원되며, 싱글 톤 전송은 부반송파 간격이 3.5kHz와 15kHz인 경우에 지원된다.
상향링크에서 부반송파 간격이 15kHz인 경우, LTE 시스템과의 직교성을 유지할 수 있기 때문에 최적의 성능을 제공할 수 있다. 그러나, 부반송파 간격이 3.75kHz인 경우, 직교성이 와해되어 간섭으로 인한 성능 열화가 발생할 수 있다.
NPRACH 프리앰블은 네 개의 심볼 그룹으로 구성되며, 각 심볼 그룹은 Cyclic Prefix(CP)와 다섯 개의 심볼로 구성된다. NPRACH는 부반송파 간격이 3.75kHz인 싱글 톤 전송만 지원하며, 서로 다른 셀 반경을 지원하기 위해 66.7μs과 266.67μs 길이의 CP를 제공한다.
각 심볼 그룹은 주파수 도약(frequency hopping)을 수행한다. 첫 번째 심볼 그룹을 전송하는 부반송파는 의사 랜덤(pseudo-random) 방식으로 결정된다. 두 번째 심볼 그룹은 1부반송파, 세 번째 심볼 그룹은 6부반송파, 그리고 네 번째 심볼 그룹은 1부반송파 도약을 한다. 반복 전송의 경우에는, 전술한 주파수 호핑 절차를 반복하여 적용하며, 커버리지 향상을 위해 NPRACH 프리앰블은 최대 128번까지 반복하여 전송될 수 있다.
NPUSCH는 두 가지 포맷을 지원할 수 있다. 포맷 1은 UL-SCH 전송을 위한 것이며, 최대 TBS(Transmission Block Size)는 1000비트이다. 포맷 2는 HARQ ACK 시그널링과 같은 상향링크 제어 정보를 전송하기 위해 사용된다. 포맷 1은 싱글 톤 및 멀티 톤 전송을 지원하며, 포맷 2는 싱글 톤 전송만 지원한다. 싱글 톤 전송의 경우, PAPR(Peat-to-Average Power Ratio)을 줄이기 위하여, p/2-BPSK(Binary Phase Shift Keying), p/4-QPSK(Quadrature Phase Shift Keying)이 사용될 수 있다.
3.2.3. 자원 매핑
독립형 모드와 가드-밴드 모드에서는, 1 PRB에 포함된 모든 자원이 NB-IoT 시스템에 할당될 수 있다. 그러나, 인-밴드 모드에서는, 기존 LTE(legacy LTE) 시스템의 신호와의 직교성을 유지하기 위하여 자원 매핑에 제약이 따른다.
NB-IoT 단말은, 시스템 정보가 없는 상태에서, 초기 동기화를 위해 NPSS 및 NSSS를 검출해야 한다. 따라서, LTE 시스템의 제어 채널을 위한 할당 영역으로 분류되는 자원(각 서브프레임의 0~2번 OFDM 심볼)은 NPSS 및 NSSS에 할당될 수 없으며, LTE 시스템의 CRS와 중첩되는 RE(Resource Element)에 매핑된 NPSS 및 NSSS심볼은 천공(puncturing) 되어야 한다.
도 8은 일 실시예에 따른 인-밴드 모드에서 NB-IoT 시스템의 신호 및 LTE 시스템의 신호에 대한 자원 할당을 나타내는 도면이다.
구현을 용이하게 하기 위하여, NPSS 및 NSSS는, 도 8에 도시된 바와 같이, NB-IoT 시스템의 운용 모드에 상관 없이, 종래 LTE 시스템에서의 제어 채널을 전송하기 위한 자원 영역에 해당하는 서브프레임의 처음 3개의 OFDM 심볼에서는 전송되지 않는다. 기존 LTE 시스템에서의 CRS(Common Reference Signal) 및 물리 자원 상에서 충돌되는 NPSS/NSSS를 위한 RE들은 펑쳐링되어 기존 LTE 시스템에 영향을 주지 않도록 매핑된다.
셀 탐색 이후, NB-IoT 단말은 PCID 외의 시스템 정보가 없는 상황에서 NPBCH를 복조하기 때문에, LTE 시스템의 제어 채널 할당 영역에 NPBCH 심볼을 매핑할 수 없다. 또한, 4개의 LTE 안테나 포트, 2개의 NB-IoT 안테나 포트를 가정하여야 하기 때문에 그에 따른 CRS 및 NRS에 할당되는 RE는 NPBCH에 할당될 수 없다. 따라서, NPBCH는 가용 자원에 맞게 레이트 매칭(rate-matching)이 수행되어야 한다.
NPBCH 복조 후, NB-IoT 단말은 CRS 안테나 포트 수에 대한 정보를 획득하지만, 여전히 LTE 시스템의 제어 채널이 할당되는 영역에 대한 정보를 알 수 없다. 따라서, SIB1(System Information Block type 1) 데이터를 전송하는 NPDSCH를 LTE 시스템의 제어 채널이 할당되는 영역으로 분류된 자원에 매핑하지 않는다.
그러나, NPBCH와 달리, LTE 시스템의 CRS에 할당되지 않는 RE를 NPDSCH에 할당할 수 있다. SIB1 수신 후, NB-IoT 단말은 자원 매핑과 관련된 정보를 모두 획득한 상태이므로, LTE 시스템의 제어 채널 정보와 CRS 안테나 포트 수에 기초하여, NPDSCH(SIB1을 전송하는 경우 제외)와 NPDCCH을 가용 자원에 매핑할 수 있다.
4. 제안하는 실시예
이하에서는, 전술한 기술적 사상에 기반하여 본 발명에서 제안하는 구성에 대해 보다 상세히 설명한다.
NB-IoT 단말은, 기존 LTE 단말의 커버리지(coverage)에 상응하는 일반 커버리지(normal coverage) 및 일반 커버리지보다 넓은 확장된 커버리지(extended coverage)를 모두 지원할 수 있다. 예를 들어, 일반 커버리지 와 확장된 커버리지는, SNR(Signal-to-Noise Ratio) 관점에서 각각 -6dB와 -12dB에 해당하며, TS 36.133 "Requirements for support of radio resource management"에서는, 일반 커버리지 및 확장된 커버리지에 대한 요건을 별도로 정의하고 있다.
확장된 커버리지에서는, NB-IoT 단말이 시스템 정보를 획득하는데 상대적으로 많은 시간이 소요될 수 있다. 이에 따라, LTE Release 15에서는, NB-IoT 단말의 시스템 정보 획득 성능을 보다 향상시킬 수 있는 방법이 제안될 예정이다. 이때, 시스템 정보는 MIB-NB 및 SIB1-NB를 포함할 수 있으며, 실시예에 따라 다른 SIB2-NB와 같은 추가적인 정보를 포함할 수도 있다.
NB-IoT 단말은, 셀 검색(cell search)을 완료한 후, 개선된 리시버(advanced receiver)를 이용하거나, 또는 MIB-NB 및 SIB1-NB를 추가로 전송함으로써, 검색된 셀의 시스템 정보를 획득하는 성능을 향상시킬 수 있다. 이에 따라, 본 특허에서는, NB-IoT 단말의 시스템 정보 획득 성능을 향상시키기 위하여, MIB-NB 및 SIB1-NB 중 적어도 하나를 추가적으로 전송하는 방법을 제안한다. 예를 들어, 기지국은, NB-IoT 단말의 SIB1-NB 디코딩 성능을 향상시키기 위하여, 기존의 SIB1-NB 외에 추가적으로 aSIB-NB를 전송할 수 있다. 추가적으로 전송되는 MIB-NB 및 SIB1-NB는 각각 추가 MIB-NB(또는, aMIB-NB(additional MIB-NB)) 및 추가 SIB1-NB(또는, aSIB1-NB(additional SIB1-NB))로 지칭될 수 있으나, 이에 한정되지 않는다.
또한, 본 특허에서는, 추가적으로 전송되는 새로운 MIB-NB 및 SIB1-NB의 메시지(message) 구성 및 전송 서브프레임의 위치 등에 대해서 제안한다.
이하에서는, 설명의 편의상, 추가적으로 전송되는 MIB-NB 및 SIB1-NB를 각각 aMIB-NB 및 aSIB1-NB로 지칭하기로 한다.
NB-IoT 단말은, NPSS 및 NSSS를 이용하여 셀 검색 과정을 완료한 이후, 시스템 정보를 획득할 수 있다. 예를 들어, NB-IoT 단말은, 셀 검색 과정을 통해서 20msec 단위의 시간 동기를 획득할 수 있으며, 획득된 시간 동기에 기초하여 MIB-NB 검출할 수 있다. MIB-NB는 640msec를 주기로 정보가 달라질 수 있으며, MIB-NB의 정보가 변경되는 주기를 MIB-NB-TTI로 지칭할 수 있다. 예를 들어, MIB-NB는, MIB-NB-TTI 내에서 매 10msec 마다 0번 서브프레임에서 NPBCH를 통해 전송되며, 각 NPBCH를 통해 전송되는 MIB-NB는 셀프 디코딩(self-decoding)이 가능하다. 이후, NB-IoT 단말은 NPBCH에서 획득한 NRS 안테나 수 정보와 MIB-NB에 포함된 정보에 기초하여, SIB1-NB를 검출할 수 있다. SIB1-NB 스케줄링 정보는 MIB-NB에 포함되어 있으며, MIB-NB에 의해 지시되는 SIB1-NB의 스케줄링 단위는 2560msec(SIB1-NB-TTI)일 수 있다. 따라서, SIB1-NB-TTI 구간 내에서 SIB1-NB 검출을 실패하면, NB-IoT 단말은 MIB1-NB를 다시 검출하여 SIB1-NB 스케줄링 정보인 schedulingInfoSIB1-r13를 획득해야 한다. 다만, SIB1-NB 정보가 변경될 수 있는 주기는 40960msec이다.
다음의 표 9는 Cat. 0 단말과 NB-IoT 단말(Cat. NB1)이 전술한 셀 검색 동작에 기초하여 시스템 정보를 검출하는데 소요되는 시간을 비교한 표이다. 표 9에서는, 일반 커버리지와 확장된 커버리지를 구분하여 표시하였으며, 일반 커버리지와 확장된 커버리지는 각각 SNR -6dB와 -12dB에 해당한다.
Figure PCTKR2018003387-appb-T000009
표 9를 참조하면, SIB2-NB를 검출하는데 소요되는 시간은 기지국의 설정(configuration)에 따라 달라질 수 있다. 특히, 확장된 커버리지의 경우, MIB-NB를 검출하는데 소요되는 시간은 SIB1-NB-TTI와 동일하기 때문에, NB-IoT 단말은 SIB1-NB-TTI 마다 MIB-NB를 검출해야 할 확률이 높다. 또한, SIB1-NB를 검출하는데 소요되는 시간은 약 12 SIB1-NB-TTI에 해당하며, SIB1-NB 변경 주기인 40960msec의 70%를 차지할 수 있다. 이에 따라, 본 특허에서는 MIB-NB 및 SIB1-NB를 검출하는데 소요되는 시간을 줄이기 위한 방법을 제안한다.
4.1. 제1 제안: " aMIB-NB 및 aSIB1-NB를 포함하는 앵커 캐리어의 라디오 프레임 구조 "
표 10 내지 표 12는 각각 본 특허에서 제안하는 aMIB-NB와 aSIB1-NB를 포함하는 앵커 캐리어의 라디오 프레임 구조 Alt.1과 Alt.2, Alt.3를 나타낸다.
Figure PCTKR2018003387-appb-T000010
Figure PCTKR2018003387-appb-T000011
Figure PCTKR2018003387-appb-T000012
Alt.1과 Alt.2 구조에서 aMIB-NB는 1번 서브프레임에 위치한다. 레거시(legacy) NB-IoT 단말은 1번 서브프레임의 위치에서 MIB-NB 검출을 시도하지 않는다. 따라서, aMIB-NB가 1번 서브프레임에 위치하더라도, 레거시 NB-IoT 단말의 MIB-NB 검출 성능에 영향을 미치지 않는다. 이때, 1번 서브프레임은, 서브프레임 인덱스1에 대응하는 서브프레임을 의미할 수 있다.
가드-밴드 모드 및 독립형 모드일 때, 0, 1, 3, 4번 서브프레임, 및 NSSS를 전송하지 않는 9번 서브프레임이면서, DL-Bitmap-NB에서 1로 지시된 서브프레임에서는 NRS가 항상 전송될 수 있으므로, 1번 서브프레임은 aMIB-NB를 전송하기 적합한 서브프레임일 수 있다. 또한, aMIB-NB가 1번 서브프레임에서 전송되면, MIB-NB 및 aMIB-NB가 연속된 두개의 서브프레임에 위치하게 된다. 따라서, NB-IoT 단말은 RF 모듈의 온/오프(On/Off)를 한번만 수행하여 MIB-NB 및 aMIB-NB의 검출을 동시에 시도할 수 있으며, MIB-NB 및 aMIB-NB의 검출에 소모되는 전력을 줄일 수 있다.
MIB-NB와 aMIB-NB가 서로 인접하지 않은 서브프레임에 위치하는 경우, NB-IoT 단말은 각 서브프레임의 앞뒤에서 RF 모듈을 온/오프할 수 있으며, RF 모듈이 온/오프되는 구간의 앞뒤에서 전력이 추가적으로 소모될 수 있다.
다만, aMIB-NB는 매 라디오 프레임에서 전송되지 않을 수 있다. 예를 들어, 표 10 및 표 11을 참조하면, "(aMIB)"가 포함된 라디오 프레임에서 aMIB-NB의 전송이 생략될 수 있다. 이때, "aMIB"가 포함된 라디오 프레임의 위치와 "(aMIB)"가 포함된 라디오 프레임의 위치는 변경될 수 있으며, 40msec 내에서 (aMIB)가 포함되는 횟수가 달라질 수 있다. 다만, 20msec 단위의 시간 동안 획득한 NB-IoT 단말의 aMIB -NB 검출 과정에서 블라인드 검출(blind detection)을 고려하면, aMIB-NB의 전송 패턴이 20msec 단위로 결정될 필요가 있다. 이에 따라, aMIB-NB의 전송 주기는 20ms일 수 있다.
표 10 및 표 11을 참조하면, aSIB1-NB의 전송 위치는, 각각 3번 서브프레임, NSSS가 전송되는 않는 라디오 프레임의 9번 서브프레임일 수 있다. TS 36.213의 Table 16.4.1.3-3과 Table 16.4.1.5.2-1에서 정의된 SIB1-NB의 반복 전송 횟수(repetition number)와 TBS에 따라 aSIB1-NB가 전송되거나, 또는 생략될 수 있다. 예를 들어, SIB1-NB의 반복 전송 횟수가 4, 8일 때, aSIB-NB는 SIB1-NB와 동일한 횟수로 전송되거나, SIB1-NB의 절반 횟수로 전송될 수 있으며, 실시예에 따라 aSIB1-NB의 전송이 생략될 수도 있다. 또는, SIB1-NB의 반복 전송 횟수가 4, 8일 때, aSIB1-NB의 전송이 생략되고, SIB1-NB의 반복 전송 횟수가 16일 때, aSIB-NB는 SIB1-NB와 동일한 횟수로 전송될 수 있다.
전술한 바와 같이, 가드-밴드 모드와 독립형 모드인 경우, 0, 1, 3, 및 4번 서브프레임, 및 NSSS를 전송하지 않는 9번 서브프레임이면서 DL-Bitmap-NB에서 1로 지시된 서브프레임에서는, NRS가 항상 전송될 수 있다. 따라서, Alt.1 및 Alt.2에서 aSIB1-NB가 전송되는 서브프레임은, aSIB1-NB의 전송에 적합한 서브프레임일 수 있다. Alt.3는 aSIB1-NB가 전송되는 위치가 Alt.2의 경우와 동일하지만, SIB1-NB가 전송되지 않는 라디오 프레임의 4번 서브프레임에서 aMIB-NB가 추가적으로 전송되는 차이점이 있다. 이때, aMIB-NB가 전송되는 위치 및 SIB1-NB가 전송되는 라디오 프레임은 NB-IoT의 셀 ID와 SIB1-NB의 반복 전송 횟수 에 따라 표 12에서 서로 교환될 수 있다.
표 13은 NSSS가 전송되지 않는 라디오 프레임의 9번 서브프레임에서 aMIB-NB가 전송될 수 있는 구조(Alt.4)를 나타낸다.
Figure PCTKR2018003387-appb-T000013
Alt.4에서, aMIB-NB가 전송되는 9번 서브프레임의 장점은 전술한 바와 같다. 또한, 9번 서브프레임은 MIB-NB가 전송되는 0번 서브프레임과 시간적으로 인접하기 때문에, NB-IoT 단말은 RF 모듈의 온/오프(On/Off)를 한번만 수행하여 MIB-NB 및 aMIB-NB의 검출을 동시에 시도할 수 있으며, MIB-NB 및 aMIB-NB의 검출에 소모되는 전력을 줄일 수 있다. 다만, MIB-NB가 기존 대비 50%의 증가만 필요할 때 효과적으로 사용될 수 있으며, 레거시 기지국의 MBSFN(Multimedia Broadcast Single Frequency Network) 서브프레임 구성에 제약을 가하지 않는 장점을 추가적으로 얻을 수 있다.
또한, 실시예에 따라, Alt.2와 Alt.3에서, aSIB와 aMIB가 전송 될 수 있는 서브프레임 위치는, 9번 서브프레임으로 특정되지 않고, NSSS가 전송되지 않는 라디오 프레임의 NSSS 서브프레임 위치라고 일반화하여 정의할 수 있다. 이때, NSSS 서브프레임의 위치는, 라디오 프레임에서 NSSS가 전송될 수 있는 서브프레임의 위치를 의미할 수 있다. 예를 들어, NSSS가 라디오 프레임의 X번 서브프레임에서 전송될 때, NSSS가 전송되지 않는 라디오 프레임의 NSSS 서브프레임 위치는, NSSS가 전송되지 않는 라디오 프레임의 X번 서브프레임을 의미할 수 있다.
TDD 시스템을 고려하면, TDD 시스템에서 NSSS가 전송되는 서브프레임은 항상 하향링크이므로, aSIB와 aMIB가 전송될 수 있는 서브프레임의 위치를 NSSS가 전송되지 않는 라디오 프레임의 NSSS 서브프레임 위치로 정의할 경우, TDD 시스템의 NSSS 서브프레임 위치에 기초하여 aMIB-NB 또는 aSIB1-NB 서브프레임의 상대적인 위치를 특정할 수 있다. 예를 들어, aMIB 또는 aSIB1은 NSSS가 전송되지 않는 9번 서브프레임에서 전송될 수 있다.
aMIB-NB와 aSIB1-NB의 위치는, 레거시 NB-IoT 단말 입장에서, NPDCCH와 NPDSCH의 하향링크로 사용될 수 없는 구간이다. 이때, aMIB-NB와 aSIB-NB의 위치는, 각각 aMIB-NB와 aSIB-NB가 전송되는 서브프레임의 위치를 의미할 수 있다. 따라서, 기지국은, DL-Bitmap-NB-r13에서 aMIB-NB와 aSIB1-NB가 전송되는 서브프레임의 위치에 대응하는 값을 0으로 할당하여 NB-IoT 단말에게 알려줄 필요가 있다. 이때, DL-Bitmap-NB-r13에서 유효 하향링크 서브프레임(valid downlink subframe)의 위치에 대한 정보는, 서브프레임Pattern10-r13와 서브프레임Pattern40-r13에 의해 지시될 수 있으며, 각각 10msec와 40msec 주기로 해석될 수 있다. 만약, 서브프레임Pattern40-r13를 사용하여 aMIB-NB와 aSIB1-NB의 위치에 대응하는 비트를 0으로 지시하면, 추가 재전송되는 aMIB 및/또는 aSIB1을 최대 25%까지 낮출 수 있는 장점이 있다.
다만, 기지국이 aMIB-NB 또는 aSIB1-NB의 전송이 예약된 서브프레임의 위치에 NPDCCH와 NPDSCH가 중복되지 않도록 적절히 스케줄링하거나, 또는 서로 충돌이 발생할 때 간섭(aMIB-NB/aSIB-NB에 의한 NPDSCH/NPDCCH의 간섭 또는 반대의 경우)을 허용할 수 있다. 이때, 기지국은, DL-Bitmap-NB-r13의 정보에서 aMIB 및/또는 aSIB1 서브프레임 위치에 대응하는 비트를 1로 지시할 수 있다. 이는 1로 지시된 서브프레임 위치의 NRS를 NB-IoT 단말에서 measurement로 이용할 수 있도록 하는 장점이 있다.
전술한 aMIB-NB 및 aSIB1-NB의 위치는 서로 교차/교환될 수 있다. 예를 들어, aSIB1-NB가 aMIB-NB의 위치에 전송되거나, 반대로 aMIB-NB가 aSIB1-NB의 위치에 전송될 수 있으며, aMIB-NB 및 aSIB1-NB의 위치는 RF 모듈의 파워 온/오프(power on/off) 및 시간 다이버시티의 트레이드 오프(trade-off) 관계에 따라 결정될 수 있다.
4.2. 제2 제안: "aMIB-NB 및 aSIB1-NB를 포함하는 비앵커 캐리어의 라디오 프레임 구조"
표 14는 본 특허에서 제안하는 aMIB-NB 및 aSIB1-NB를 비앵커 캐리어에 추가적으로 전송하는 라디오 프레임의 구조의 예시(Alt. 1)를 나타낸다.
Figure PCTKR2018003387-appb-T000014
표 14에서, MIB-NB와 SIB1-NB는 앵커 캐리어에서 전송되는 서브프레임의 위치를 참고하기 위하여 표시한 것이며, MIB-NB 및 SIB1-NB는 비앵커 캐리어에서는 전송되지 않는다.
비앵커 캐리어의 서브프레임 구조는 앵커 캐리어와 동일한 기지국에서 생성되는 것을 가정하거나, 동일한 운용모드에서 동작하는 것을 가정하지 않는다. 다만, 앵커 캐리어와 비앵커 캐리어의 서브프레임 번호는 서로 동기화되어 있는 것으로 가정할 수 있다.
앵커 캐리어에서 MIB-NB 및 SIB1-NB가 전송되는 서브프레임의 위치는 각각 0번 및 4번 서브프레임이다. 0번 및 4번 서브프레임은, 기존 LTE 시스템에서 MBSFN 서브프레임으로 설정될 수 없는 서브프레임이며, NB-IoT 단말의 셀 검색 성능 및 시스템 정보(예를 들어, MIB-NB, SIB1-NB) 검출 성능의 향상을 위하여 NPSS와 NSSS 및 NPBCH, SIB1-NB를 추가적으로 전송하는 경우, non-MBSFN 서브프레임인 0번, 4번, 5번, 및 9번 서브프레임이 충분하지 않을 수 있다.
NB-IoT 단말은, 셀 검색 과정에서 먼저 NPSS를 검출하고, NSSS를 검출한다. 이후, NB-IoT 단말은, MIB-NB를 디코딩하고, MIB-NB의 디코딩 결과에 따라 SIB1-NB를 수신할 수 있다. 이때, 앵커 캐리어를 통해 수신되는 MIB-NB의 수신 전력이 낮은 경우, NB-IoT 단말은 비앵커 캐리어를 통해 aMIB-NB를 추가적으로 수신하여 성능을 향상시킬 수 있다. 만약, 앵커 캐리어를 통해 전송되는 MIB-NB 및 비앵커 캐리어를 통해 전송되는 aMIB-NB가 연속된 서브프레임에서 전송되면, NB-IoT 단말은 상대적으로 짧은 시간에 앵커 캐리어와 비앵커 캐리어의 주파수를 튜닝할 필요가 있다. 이는 NB-IoT 단말기의 가격을 증가시킬 수 있는 요인이 될 수 있다. 따라서, MIB-NB와 aMIB 사이에 충분한 시간 갭(gap)을 보장하여 주파수 튜닝 시간의 요구 조건을 완화시킬 수 있다.
SIB1-NB와 aSIB1-NB사이에 충분한 시간 갭을 보장하기 위하여, aMIB-NB는 0, 4, 5, 및 9번 서브프레임 중에서 5번 서브프레임에 할당될 수 있으며, aSIB1-NB는 9번 서브프레임에 할당될 수 있다. 또는, 표 15에 표시된 바와 같이, aSIB1-NB은 해당 셀에서 앵커 캐리어의 SIB1-NB이 전송되지 않는 라디오 프레임의 4번 서브프레임에서 전송될 수 있다.
Figure PCTKR2018003387-appb-T000015
이에 따라, 160mse 내에서 매 20msec 마다 전송되는 SIB1과 10msec 오프셋을 생성함으로써, NB-IoT 단말의 주파수 재튜닝(frequency retuning) 시간이 충분히 보장될 수 있다. 또한, NcellID와 SIB1-NB의 반복 전송 횟수에 따라, aSIB1-NB는, 앵커 캐리어에서 SIB1이 전혀 전송되지 않는 160msec 구간에 전송될 수 있다.
전술한 Alt.1과 Alt.2에서 비앵커 캐리어를 통해 전송되는 aMIB-NB 및 aSIB1-NB는, 각각 기존 앵커 캐리어를 통해 전송되는 MIB-NB 및 SIB1-NB와 동일하거나, 또는 이하에서 제안하는 aMIB-NB 및 aSIB1-NB의 구성을 따를 수 있다.
4.3. 제3 제안: "aMIB-NB의 구성 및 전송 방법"
CRC(Cyclic Redundancy Check)를 포함하여 50 비트로 구성된 MIB-NB는 TBCC(Tail-Biting Convolutional Code) 채널 코딩 이후에 150비트로 확장되며, MIB-NB-TTI 640msec 동안 1600 비트로 레이트 매칭되어 전송될 수 있다. 예를 들어, 매 10msec 마다 전송되는 200 비트는 8 라디오 프레임 동안 동일한 값이 반복하여 전송되며, 다음 80msec 동안은 처음 전송된 200 비트에 연이은 200 비트가 반복 전송되며, 동일한 방법으로 640msec 동안 전송된다. 이때, 1/3 마더 코더 레이트(mother code rate)를 갖는 TBCC 인코딩 출력을 나타내는 150 비트를 50 비트씩 3개로 나누어, 각 50 비트를 편의상 순차적으로 RV(Redundancy Version)0, RV1, RV2라고 나타낼 수 있다. 이에 따라, MIB-NB-TTI 내에서 처음 80msec 동안 반복 전송되는 200 비트는 RV0, RV1, RV2, RV0로 구성될 수 있다.
또한, MIB-NB-TTI 640msec는 80msec씩 8개의 구간으로 나누어질 수 있으며, 각 구간을 나타내는 200 비트 묶음은 순차적으로 m0, m1, m2, m3, m4, m5, m6, m7으로 표현될 수 있다. 이에 따라, MIB-NB TTI 내에서 m0~m7과 RV0~RV2의 전송 관계는 다음의 표 16과 같이 나타낼 수 있다.
Figure PCTKR2018003387-appb-T000016
표 16을 참조하면, nf는 라디오 프레임 번호를 나타낸다. 또한, 표 16을 참조하면, 80msec 주기 내에서 전송되는 RV가 고르게 분포되지 않음을 알 수 있다. 예를 들어, 특정 RV가 2배 많이 전송될 수 있으며, MIB-NB-TTI 내에서 RV2가 RV0과 RV1 보다 적게 전송될 수 있다.
다음의 표 17 내지 표 21은, MIB-NB-TTI 내에서 aMIB-NB가 매 라디오 프레임마다 추가적으로 전송될 때, 라디오 프레임별 aMIB-NB의 구성에 대한 제안을 나타낸다. aMIB-NB는 굵은 글씨로 표시되어 있다.
Figure PCTKR2018003387-appb-T000017
표 17에서 제안하는 Alt.1-1에 따르면, 매 서브프레임 내에서 aMIB-NB는 MIB-NB와 동일하게 구성될 수 있으며, 심볼 레벨 결합(symbol-level combining) 측면에서 장점을 가질 수 있다. 예를 들어, NB-IoT 단말은 10msec 내에서 두 번 반복 전송되는 MIB-NB와 aMIB-NB를 심볼 레벨 결합하고, 디코딩을 한 번만 수행하여 전력 소모를 줄일 수 있다.
Figure PCTKR2018003387-appb-T000018
표 18에서 제안하는 Alt.1-2는, 80msec 주기 내에서 aMIB-NB의 RV를 순환시키는 방법으로서, nf mod 8을 기준으로 순환되는 m을 반복시키는 구조이다. Alt.1-2는, Alt.1-1와 비교할 때, 80msec 내에서 각 RV가 상대적으로 고르게 분포하도록 하여, 채널 코딩에 의한 성능 이득을 높일 수 있는 장점이 있다. 하지만, Alt.1-2는, MIB-NB-TTI 내에서 RV2가 RV0및 RV1보다 상대적으로 적게 존재하는 단점이 있다.
Figure PCTKR2018003387-appb-T000019
표 19에 도시된 Alt.1-3는, Alt.1-2의 단점을 보완하기 위한 방법으로서, nf mod 8을 기준으로 순환되는 m을 1씩 증가시키는 방법이다. 다만, nf mod 8을 기준으로 순환되는 m의 마지막 값의 위치에서 RV 순환을 완성하기 위하여, m0가 아닌 m2가 할당될 수 있다.
Figure PCTKR2018003387-appb-T000020
표 20에서 제안하는 Alt.2-1은, 80msec 주기 내에서 MIB-NB의 RV 순환을 위해서, MIB-NB의 m 값보다 1 만큼 큰 m으로 구성된 aMIB-NB를 전송하는 방법이다. 다만, Alt.2-1는 MIB-NB의 m이 7인 경우에는 RV 순환을 위해서 m2의 aMIB-NB를 구성하도록 한다. 그러나, Alt.2-1은, 여전히 80msec 주기 내에서 특정 RV가 상대적으로 적게 전송될 수 있다.
Figure PCTKR2018003387-appb-T000021
Alt.2-1에서 특정 RV가 상대적으로 적게 전송되는 단점을 보완하기 위하여, 표 21에서 제안하는 Alt.2-2가 고려될 수 있다. Alt.2-2는 80msec 주기 내에서 RV가 최대한 고르게 분포할 수 있도록, 각 aMIB-NB의 RV 시작을 순환하도록 할당하는 것을 특징으로 한다.
표 17 내지 표 21에서 제안된 각 방법은, 80msec 내에서 RV 값을 반복하거나 순환하는 방법을 다르게 정의하며, 각 방식에서 m 값은 다른 값으로 대체될 수도 있다. 예를 들어, RV 구성이 일치하는 m0와 m3, m6은 상호 교환될 수 있으며, m1과 m4, m7도 상호 교환될 수 있으며, m2와 m5도 교환될 수 있다. 따라서, 표 17 내지 표 21의 m값은 교환 가능한 값과 교체되어 사용될 수 있다.
또한, 표 17 내지 표 21에서 제안된 방법은, 각각 aMIB-NB의 전송 순서에 있어서 RV 관점에서 서로 다른 특징을 가지며, aMIB-NB의 자원 요소 매핑(RE mapping, Resource Element mapping)은 이와 별개로 정의될 수 있다.
NB-IoT 단말의 주파수 오프셋(frequency offset) 추정에 도움을 주기 위하여, 기존 MIB-NB가 80msec에서 8번 반복되어 전송될 때, 기존 MIB-NB와 동일한 자원 요소 매핑 방법이 aMIB-NB에 적용될 수 있다. 그러나, MIB-NB와 시간 다이버시티 및 주파수 다이버시티를 최대화하기 위하여, 기존 MIB-NB와 다른 자원 요소 매핑 방법이 aMIB-NB에 적용될 수도 있다. 예를 들어, 표 17에 도시된 Alt.1-1의 경우, MIB-NB와 달리 시간 우선 매핑(time-first mapping) 방식을 사용하여, TS 36.211의 10.2.4.4에 정의된 자원 매핑의 일부를 다음과 같이 수정하여 정의할 수 있다.
"The mapping to resource elements (k,l) not reserved for transmission of reference signals shall be in increasing order of first the index l, then the index k."
이에 따라, Alt.1-1은, 80msec 주기 내에서는 MIB-NB와 동일한 방법으로 인접한 aMIB-NB 간의 위상 차이를 추정함으로써, 주파수 오프셋을 추정할 수 있다. 그러나, aMIB-NB의 자원 요소 매핑 방법은 전술한 방법에 제한되지 않으며, MIB-NB와 시간 다이버시티 및 주파수 다이버시티를 증가시키기 위한 여러 방법으로 다르게 정의될 수 있다. 또한, 80msec 내에서, MIB-NB 및 aMIB-NB가 서로 교차하여 주기적으로 전송되는 경우, 인접한 MIB-NB 및 aMIB-NB의 자원 요소 매핑 방법이 서로 다를 수 있으며, 이는 80msec 내에서 교차하여 반복될 수 있는 것을 특징으로 한다.
4.4. 제4 제안: "지속적인(persistent) MIB-NB 및 SIB1-NB의 스케줄링을 알려주는 정보 할당"
표 9에 표시된 바와 같이, 확장된 커버리지 환경에서 SIB1-NB의 검출 시간은 약 12 SIB1-NB-TTI이며, SIB1-NB의 검출 시간은 SIB1-NB 변경 주기인 40960msec의 70%를 차지할 수 있다. 이에 따라, SIB1-NB 변경 주기 내에서, NB-IoT 단말은 SIB1-NB의 결합에 앞서 매 SIB1-NB-TTI 마다 MIB-NB를 다시 검출해야 하는 문제가 발생할 수 있다. 뿐만 아니라, NB-IoT 단말이 SIB1-NB 변경 주기의 70% 구간에서 SIB1-NB 를 성공적으로 검출하더라도, 변경 주기의 30%의 시간 이후에, MIB1-NB의 systemInfoValueTag-r13 정보에 따라 다시 SIB1-NB의 검출을 시도해야 하는 문제가 발생할 수 있다. 따라서, 본 특허에서는, NB-IoT 단말의 전력 소모 및 불필요한 MIB-NB 검출 시도 등을 효과적으로 줄이기 위한 방법을 제안한다.
먼저, MIB-NB 컨텐츠의 변경이 없을 때, NB-IoT 단말이 MIB-NB의 디코딩을 생략(skip)하도록 지시하는 방법이 고려될 수 있다. 이때, MIB-NB에 포함된 카운터(counter) 정보인 systemFrameNumber-MSB-r13 및 hyperSFN-LSB-r13는 매 640msec 마다 변경되므로, MIB-NB 컨텐츠의 변경으로 보지 않는 것이 자명하다.
(4-1) MIB-NB 디코딩을 생략하도록 지시하기 위하여, NPSS, NSSS, NPBCH 중 적어도 하나의 처음 3개의 OFDM 심볼 구간이 사용될 수 있으며, 가드-밴드 모드 또는 독립형 모드에 적용될 수 있다. 인-밴드 모드의 경우, SIB1-NB이 eutraControlRegionSize-r13 값에 따라 3보다 작은 OFDM 심볼 구간이 사용될 수 있다. 이때, NPSS, NSSS, NPBCH 중 적어도 하나의 첫 3개의 OFDM 심볼 구간의 시퀀스, 또는 변조된 심볼(modulated symbol)은, 기존 NB-IoT 단말이 NPSS 및/또는 NSSS로 잘못 검출할 수 있는 확률을 최소화하는 방법으로 설계될 필요가 있다.
(4-2) MIB-NB 디코딩 생략을 지시하는 다른 방법으로서, MIB-NB의 예약된 비트들(reserved bits)의 일부, 또는 SIBx-NB의 일부 비트를 활용하는 방법 또는 RRC 메시지 형태를 활용하는 방법이 고려될 수 있다.
전술한 (4-1)과 (4-2)에서 MIB-NB 디코딩을 생략하는 구간은 640msec 또는 2560msec 또는 N×2560msec 구간으로 설정될 수 있으며, 규격(specification)에 의해 특정 값으로 지정되거나, 또는 반 고정된(semi-static) 값으로 설정될 수 있다. 예를 들어, NPSS, NSSS, NPBCH 중 적어도 하나의 처음 3개의 OFDM 심볼 구간에서 특정 시퀀스 또는 변조된 심볼 정보를 이용하여 N(≥ 0)을 조정하거나, 또는 상위 레벨의 메시지를 이용하여 N의 시간 단위를 640msec 또는 2560msec가 아닌 다른 값으로 조정할 수 있다. 또한, MIB-NB의 예약된 비트들을 사용하는 경우, 명시적으로 N을 지정하는 방법으로 설계될 수도 있으나, 이에 한정되지 않는다. 또한, MIB-NB 디코딩 생략을 지시할 때, MIB-NB의 컨텐츠 중 카운터 정보를 제외한 나머지 모든 정보는 지시된 기간 동안 일정하다고 해석될 수 있다. NB-IoT 단말은 상기 해석에 기초하여 지시된 구간 내에서 MIB-NB의 특정 비트 및 심볼을 누적하거나 결합하여 디코딩 성능을 향상시킬 수 있다.
SIB1-NB의 지속성(persistency)에 관한 정보는, 크게 SIB1-NB의 스케줄링 정보(TS 36.213의 Table 16.4.1.3-3과 Table 16.4.1.5.2-1에서 정의된 SIB1-NB의 반복 전송 횟수와 TBS)와 인접 SIB1-NB 변경 구간(modification period)(40.96sec)에서 SIB1-NB 컨텐츠의 변화 유무에 관한 정보로 나뉠 수 있다. 이때, SIB1-NB 컨텐츠 내의 hyperSFN-LSB-r13 정보는, 매번 변경되는 것이 자명하기 때문에 컨텐츠의 변화 유무 판단에 포함되지 않는다.
(4-3) SIB1-NB의 스케줄링 정보는, SIB1-NB 변경 구간 내에서 매 2560msec 마다 MIB-NB에 의해서 변경될 수 있다. 이에 따라, SIB1-NB의 디코딩 과정에서 매 2560msec 마다 MIB-NB를 추가적으로 디코딩해야 하는 단점이 있을 수 있다. 따라서, NB-IoT 단말이 SIB1-NB의 스케줄링 정보가 적어도 SIB1-NB 변경 구간 내에서 변하지 않는다고 가정할 수 있다면, MIB-NB를 추가적으로 디코딩하기 위해 소요되는 시간을 줄일 수 있다. 이때, 지속적인(persistent) SIB1-NB의 스케줄링 정보는 전술한 (4-1)과 (4-2)의 방법과 마찬가지로, NPSS, NSSS, 및 NPBCH 중 적어도 하나의 처음 3 OFDM 심볼 또는 SIB-NB의 예약된 비트들의 일부를 활용하여 지시될 수 있다. 다만, 지속적인 SIB1-NB 스케줄링 단위는 지시된 구간으로부터 뒤따르는 2560mse, N×2560msec, 또는 다음 SIB1-NB 변경 구간 등으로 설정될 수 있다. 또한, SIB1-NB 내에서 해당 메시지는 다음 N번의 SIB1-NB 변경 구간 동안 변하지 않음을 지시할 수 있다.
(4-4) SIB1-NB의 컨텐츠는 SIB1-NB 변경 주기(modification periodicity) 단위로 변경될 수 있다. 따라서, NB-IoT 단말이 SIB1-NB 변경 구간 내에서 SIB1-NB 디코딩을 완료하지 못한 경우, NB-IoT 단말은 새로 시작되는 SIB1-NB 변경 구간에서 SIB1-NB의 스케줄링 정보의 변화 유무와 관계 없이, 이전 SIB1-NB 변경 구간의 누적된 SIB1-NB 정보를 버리고, SIB1-NB 디코딩을 다시 수행해야 할 수 있다. 상기 단점을 극복하기 위하여, SIB1-NB 변경 구간 내에서 SIB1-NB의 컨텐츠가 변경되지 않는 경우, NB-IoT 단말은 인접한 SIB1-NB 변경 구간의 SIB1-NB를 누적하여 SIB1-NB를 디코딩할 수 있다. 이를 위해서, SIB1-NB의 컨텐츠의 변경 여부를 NB-IoT 단말에게 알려줄 수 있는 방법이 필요하며, SIB1-NB의 컨텐츠의 변경 여부는, 전술한 (4-1) 및 (4-2)의 방법과 마찬가지로, NPSS, NSSS, NPBCH 중 적어도 하나의 처음 3 OFDM 심볼, 또는 MIB-NB의 예약된 비트들의 일부에 의해 지시될 수 있다. 다만, 지속적인 SIB1-NB의 컨텐츠 정보의 단위는 지시된 구간으로부터 뒤따르는 2560msec, N×2560msec, 또는 다음 SIB1-NB 변경 구간 등으로 설정될 수 있다.
또한, 지속적인 SIB1-NB의 컨텐츠 정보는 SIB1-NB 디코딩 시도 생략으로 지시되거나 해석될 수 있다. 예를 들어, MIB-NB의 예약된 비트들 중 일부를 이용하여 다음 SIB1-NB 변경 구간에 대한 SIB1-NB의 디코딩 생략이 지시되는 경우, NB-IoT 단말은 systemInfoValueTag 정보 및 SIB1-NB의 디코딩 생략을 지시하는 정보를 이용하여, 한번의 MIB-NB 디코딩으로 해당 SIB1-NB 변경 주기와 다음 SIB1-NB 변경 주기의 SIB1-NB 디코딩 생략을 결정할 수 있다. 또한, SIB1-NB 내에서 해당 메시지는 다음 N번의 SIB1-NB 변경 주기동안 변하지 않음을 지시할 수 있다.
상기 제안된 지속적인 SIB1-NB 스케줄링 정보와 지속적인 SIB1-NB 컨텐츠 정보는 서로 독립적인 주기 및 방법으로 지시될 수 있으며, 상호 배치되지 않는 한도에서 결합되어 함께 지시될 수도 있다. 또는, 각 정보는 둘 중 하나의 정보만 지시되도록 설정될 수도 있다. 또한, 제안된 MIB-NB와 SIB-NB의 지속성 정보 및 디코딩 생략을 지시하는 정보는, MIB를 통해 SIB1(-BR)의 스케줄링이 지시되는 시스템(예를 들어, eMTC 시스템)에도 동일한 방법으로 적용될 수 있으며, 그 주기는 NB-IoT 시스템의 경우와 다를 수 있다.
도 9는 지속적인 SIB1-NB 스케줄링 정보를 MIB-NB를 통해 전달하는 방법을 나타내는 도면이다.
도 9를 참조하면, SIB1-NB 변경 주기 내의 MIB-NB-TTI m번에서, 현재 SIB1-NB와 동일한 스케줄링이 다음 SIB1-NB 변경 주기에도 적용된다는 것을 MIB-NB를 통해 미리 알려줄 수 있다. 이때, SIB1-NB 스케줄링 정보는, TS 36.213의 Table 16.4.1.3-3 및 Table 16.4.1.5.2-1에 정의된 SIB1-NB의 반복 전송 횟수와 TBS를 의미할 수 있다. 따라서, NB-IoT 단말은, MIB-NB-TTI m번에서 지속적인 SIB1-NB 스케줄링 정보를 true로 전달 받으면, 다음 SIB1-NB의 변경 주기 내에서 SIB1-NB 스케줄링 정보를 검출하기 위한 MIB-NB의 검출 시도를 생략할 수 있다. 다만, NB-IoT 단말이 다음 SIB1-NB 변경 구간 내에서 일정 시간 이상SIB1-NB를 검출하지 못하는 경우, MIB-NB를 다시 검출할 수 있으며, MIB-NB 검출을 다시 시도하는 시점은 실시예에 따라 다를 수 있다.
또한, MIB-NB의 남은(spare) 11 비트 중 일부를 사용하여, 해당 MIB-NB-TTI로부터 SIB1-NB의 스케줄링이 유지되는 SIB1-NB-TTI까지의 상대적인 시간 값을 알려줄 수도 있다. 이때, 상대적인 시간 값은 MIB-NB-TTI (640msec) 단위, SIB1-NB-TTI (2560msec) 단위, 또는 SIB1-NB 변경 주기(40.96sec) 단위일 수 있다. 또한, 해당 값은 다음 MIB-NB에서 1씩 감소하거나, 유지될 수도 있으며, 증가할 수도 있다.
MIB-NB 또는 SIB1-NB에서 지속적인 스케줄링을 지시하는 정보를 포함하는 비트는 지속적인 스케줄링 여부를 판단하는데 포함되지 않으며, 컨텐츠의 동일성 여부를 판단하는 데에도 포함되지는 않는다.
상기 제안한 방법과 같이 SIB1-NB의 지속성에 관한 정보는, 다음 SIB1-NB의 변경 주기에 포함된 SIB1-NB의 컨텐츠가 동일한지 여부, 및 SIB1-NB의 스케줄링 정보(예를 들어, SIB1-NB의 반복 전송 횟수 정보 및 TBS 정보)가 변경되었는지 여부에 관한 정보 중 적어도 하나를 포함할 수 있다.
또한, SIB1-NB의 변경 주기 내에서 MIB-NB의 SIB1-NB 스케줄링 정보를 한번이라도 획득한 NB-IoT 단말은, SIB1-NB 컨텐츠와 TBS가 변경되지 않는다고 가정할 수 있다. 그러나, SIB1-NB의 반복 전송 횟수 정보를 알 수 없을 때, NB-IoT 단말은, 도 10에 도시된 바와 같이, SBI1-NB의 반복 전송 횟수가 4라고 가정할 수 있다. 그리고, NB-IoT 단말은, SIB1-NB를 이전 SIB1-NB TTI(MIB-NB의 SIB1-NB 스케줄링 정보를 획득한 SIB1-NB TTI 구간)에서의 SIB1-NB와 결합하여, SIB1-NB 디코딩을 시도할 수 있다.
4.5. 제5 제안: "SIB1-NB의 검출 성능 향상을 위한 정보 할당"
본 특허에서는, 제한된 특정 환경에서 SIB1-NB의 검출 성능을 향상시킬 수 있는 방법을 제안한다. 예를 들어, 인-밴드 동일 PCI(in-band same PCI) 모드의 경우, CRS를 활용하여 SIB1-NB를 검출하거나, 또는 제어 영역 크기(control region size)가 3보다 작을 때, 상대적으로 많은 자원 요소를 사용하여 SIB1-NB를 전송함으로써, NB-IoT 단말의 SIB1-NB의 검출 성능을 향상시킬 수 있다. 다만, 전술한 방법은 가드-밴드 모드 및 독립형 모드에는 적용될 수 없다.
운용 모드의 조건에 따라, MIB-NB의 남은 11 비트 중 일부는 SIB1-NB의 검출 성능을 향상시키기 위하여, 다음과 같은 정보를 포함할 수 있다.
1) NRS-CRS 파워 오프셋(power offset)
NRS-CRS 파워 오프셋 정보는 인-밴드 동일 PCI 모드에서 이용 가능한 정보로서, SIB1-NB를 전송하는 NPDSCH, BCCH를 전송하는 NPDSCH에서만 유효하게 적용될 수 있으며, SIB1-NB의 nrs-CRS-PowerOffset 값과 다른 값을 가질 수 있다.
2) 제어 영역 크기
제어 영역 크기는, 인-밴드 모드에서 활용 가능한 정보이며, SIB1-NB를 전송하는 NPDSCH, BCCH를 전송하는 NPDSCH에서만 유효하게 적용될 수 있으며, SIB1-NB의 eutraControlRegionSize 값과 다른 값을 가질 수 있다. 이때, 제어 영역 크기는, SIB1-NB가 반복 전송되는 SIB1-NB-TTI 구간 내에서 모두 동일한 값일 수 있다. 또는, 제어 영역 크기는, SIB1-NB의 반복 전송 횟수에 따라, MIB-NB로부터 전달받은 SIB1-NB의 제어 영역 크기 값이 일부 제한되어 적용될 수 있다. 또한, 제어 영역 크기가 3보다 작은 경우, 추가적인 자원 요소가 사용될 수 있다. 예를 들어, NRS를 포함하는 SIB1-NB의 특정 OFDM 심볼이 반복 전송되거나, 또는 NRS를 포함하지 않는 SIB1-NB의 특정 OFDM 심볼이 반복 전송될 수 있다. 또한, 제어 영역의 크기에 따라, NRS가 포함된 OFDM 심볼이 반복 전송되거나, 또는 NRS가 포함되지 않은 OFDM 심볼이 반복 전송될 수 있다. 뿐만 아니라, 특정 심볼이 반복하여 전송되지 않고, 주파수 및 시간 영역에서 흩어져 있는 자원 요소가 추가로 전송되거나, 또는 코드 비트(coded bit)의 일부가 추가로 QAM 심볼에 매핑되어 전송될 수 있다.
4.6. 제6 제안: "aSIB1-NB의 추가 전송에 대한 정보 할당"
기존 SIB1-NB가 전송되는 서브프레임이 아닌 서브프레임에서, aSIB1-NB가 추가적으로 전송되는 경우, MIB-NB는 aSIB1-NB의 추가 전송에 대한 정보를 알려 줄 수 있다. 예를 들어, aSIB1-NB의 TBS는 SIB1-NB의 TBS와 동일하기 때문에, MIB-NB는 TS 36.213의 Table 16.4.1.5.2-1 및 Table 16.4.1.3-3에 정의된 reserved schedulingInfoSIB1-NB-r13 값을 이용하여 aSIB1-NB의 존재를 알릴 수 있고, TBS와 NPDSCH의 반복 전송 횟수를 지정할 수 있다. 예를 들어, schedulingInfoSIB1-NB-13가 12, 13, 14, 및 15일 때, TBS의 반복 전송 횟수는 각각 TBS 208, 328, 440, 및 680으로 지정될 수 있다. 이때, aSIB1-NB가 추가 재전송되는 환경을 고려하면, SIB1-NB의 NPDSCH의 반복 전송 횟수는 8 또는 16으로 가정할 수 있다. 또한, aSIB1-NB의 전송 위치는, TS 36.213의 Table 16.4.1.3-4에 정의된 SIB1-NB의 시작 라디오 프레임(starting radio frame)과 달리, 표 10 내지 표 15에서 제안된 방법들 중 하나의 방법으로 정의될 수 있다. 다만, 일부 설정(예를 들어, 짝수/홀수 라디오 프레임 중에서 aSIB1-NB가 전송되지 않는 라디오 프레임이 다른 방송 채널 또는 NSSS로 예약된 경우)은, TS 36.213의 Table 16.4.1.3-4에 정의된 반복 전송 횟수 16을 따르지 못할 수 있다. 또한, 표 10에서 제안된 방법에 따라, aSIB1-NB가 전송되는 경우, 시작 라디오 프레임의 위치는 TS 36.213의 Table 16.4.1.3-4에 정의된 반복 전송 횟수 16의 경우를 따를 수 있다. 또한, NcellID, TS 36.213의 Table 16.4.1.3-4에 정의된 반복 전송 횟수 중 적어도 한에 따라 aSIB1이 전송되는 서브프레임의 위치가 달라질 수 있다.
4.7. 제7 제안: "빠른 앵커 캐리어(fast-anchor carrier)에 대한 정보 할당"
앵커 캐리어에서 aMIB1-NB와 aSIB1-NB가 모두 추가 전송되는 방법 외에, 특정 캐리어에서 시스템 정보가 전송될 수도 있다. 설명의 편의상, 시스템 정보가 전송되는 특정 캐리어를 빠른 앵커 캐리어(fast-anchor carrier)로 지칭할 수 있다.
예를 들어, NB-IoT 단말은 앵커 캐리어에서 MIB-NB까지 검출하고, MIB-NB에서 지시하는 빠른 앵커 캐리어로 이동하여 SIB1-NB 및 다른 SIB 정보를 빠르게 검출할 수 있다. 따라서, 앵커 캐리어가 빠른 앵커 캐리어의 위치 정보를 알려 줄 필요가 있으며, 빠른 앵커 캐리어의 위치 정보를 알려주는 방법은 운용 모드에 따라 다르게 정의될 수 있다.
다만, 가드-밴드 모드 및 독립형 모드의 경우, 제어 영역 및 레거시 CRS가 없기 때문에, aSIB1-NB의 전송이 필요하지 않을 만큼 SIB1-NB의 검출 성능이 충분히 우수하다고 가정할 수 있다. 또한, 앵커 캐리어로 할당될 수 있는 캐리어들 중 하나가 빠른 앵커 캐리어로 설정될 수 있다고 가정한다. 그리고, 빠른 앵커 캐리어에서 전송되는 SIB1-NB는 앵커 캐리어의 MIB-NB에서 지시된 schedulingInfoSIB1-r13의 스케줄링 정보를 따를 수 있다. 뿐만 아니라, 빠른 앵커 캐리어에서 MIB-NB까지 전송되는 경우, 빠른 앵커 캐리어의 SIB1-NB 스케줄링 정보가 앵커 캐리어의 SIB1-NB 스케줄링 정보보다 우선될 수 있다.
1) 인-밴드 동일 PCI(Inband-Same PCI) 모드
TS 36.331의 eutra-CRS-SequenceInfo-r13에서 지시된 값을 A라고 할 때, NB-IoT 단말은, A에 따라 표 22와 같이 해당 앵커 캐리어를 포함하는 기지국의 중심 캐리어(center carrier)로부터 앵커 캐리어의 상대적인 위치 및 래스터 오프셋(raster offset,
Figure PCTKR2018003387-appb-I000007
또는
Figure PCTKR2018003387-appb-I000008
) 정보를 알 수 있다.
Figure PCTKR2018003387-appb-T000022
표 22를 참조하면, 래스터 오프셋이
Figure PCTKR2018003387-appb-I000009
일 때, 앵커 캐리어의 위치 B(eutra-CRS-SequenceInfo-r13에 지시된 A에 대응하는 앵커 캐리어의 위치) 및 반대 위치인 -B를 제외한 후보 값의 집합(예를 들어, 표 22에서 비트 인덱스 0부터 13 중에서 B와 -B에 대응하는 비트 인덱스를 제외한 집합)은 12개이다. 이때, 12개의 비트 인덱스가 순차적으로 인덱싱되고, 빠른 앵커 캐리어는, MIB-NB의 남은 11 비트 중에서 4 비트를 이용하여, 12개의 비트 인덱스 중 하나로 지시될 수 있다.
또한, 표 22를 참조하면, 래스터 오프셋이
Figure PCTKR2018003387-appb-I000010
일 때, A 에 대응하는 앵커 캐리어의 위치 B와 반대 위치인 -B-1를 제외한 후보 값의 집합(예를 들어, 표 22의 비트 인덱스 14내지 31 중에서, B와 -B-1에 대응하는 비트 인덱스를 제외한 집합)은 16개이다. 이때, 16개의 비트 인덱스가 순차적으로 인덱싱되고, 빠른 앵커 캐리어는, 16개의 비트 인덱스 중 하나로 지시될 수 있다. 따라서, 빠른 앵커 캐리어의 위치는 eutra-CRS-SequenceInfo-r13 값 및 MIB-NB의 남은 11 비트 중에서 4 비트를 이용한 값의 조합으로 지정될 수 있다.
또한, eutra-CRS-SequenceInfo-r13에 의해 지시된 각 래스터 오프셋 내에서, 앵커 캐리어의 위치를 제외하고 추가로 하나의 값을 더 제외하는 방법은, 전술한 바와 같이, eutra-CRS-SequenceInfo-r13 값을 이용하여 다른 수학식 또는 표의 형태로 정의될 수 있다.
또한, eutra-CRS-SequenceInfo-r13에 의해 지시된 앵커 캐리어의 주위 PRB 위치(앵커 캐리어의 요건에 맞지 않는 임의의 PRB 일수 있음)를 지시할 수도 있다. 그러나, 앵커 캐리어의 주위 PRB 위치를 지시하는 비트 수가 충분하지 않은 경우, 앵커 캐리어마다 빠른 앵커 캐리어를 지시할 수 있는 PRB의 위치가 제한될 수 있는 단점이 있다.
2) 인-밴드 다른 PCI(Inband-Different PCI) 모드
인-밴드 다른 PCI 모드의 경우, 인-밴드 동일 PCI 모드와 달리 앵커 캐리어의 래스터 오프셋 정보만 알 수 있다. 그러나, Inband-DifferentPCI-NB-r13의 남은 2 비트 및 인-밴드 동일 PCI 모드에서 추가된 4 비트를 이용하면, 64개의 값이 표현될 수 있으며, 64개의 값을 이용하여 표 22에 표시된 것보다 많은 PRB의 위치를 빠른 앵커 캐리어의 위치로 지시할 수 있다.
빠른 앵커 캐리어의 위치를 지시하는 방법은, 앞서 설명한 인-밴드 동일 PCI 모드의 빠른 앵커 캐리어 지시 방법이 동일하게 적용될 수 있고, Inband-DifferentPCI-NB-r13의 남은 2 비트 및 MIB-NB에서 추가되는 4 비트를 조합한 소정의 수학식 또는 표에 기초하여 빠른 앵커 캐리어의 위치가 지시될 수도 수도 있다.
TDD 시스템에서 NPSS/NSSS, 및 MIB-NB 중 적어도 하나가 전송되는 캐리어가 아닌 캐리어에서 SIB1-NB가 전송될 때, MIB-NB가 빠른 앵커 캐리어의 위치를 지시하는 방법은, SIB1-NB가 전송되는 캐리어의 위치를 지시하기 위해 사용될 수도 있다. 실시예에 따라, TDD 시스템에서 SIB1-NB가 전송될 수 있는 비앵커 캐리어가 제한적일 때, 전술한 정보의 일부가 생략될 수 있음은 자명하다.
또한, 운용 모드가 가드-밴드 모드 또는 독립형 모드일 때, SIB1-NB는 항상 앵커 캐리어를 통해 전송된다고 가정하거나, 또는 SIB1-NB가 전송되는 캐리어가 eutra-CRS-SequenceInfo-r13의 사용되지 않은 비트(가드-밴드 모드인 경우 3 비트, 독립형 모드인 경우 5 비트)에 의해 지시될 수 있다. 또한, SIB1-NB에서 다른 SIB를 스케줄링하기 위해 사용되는 schedulingInfoList 이외에, 각 SIB를 전송하는 캐리어의 위치를 지시하기 위하여 추가 정보가 제공될 수 있다. SIB1-NB에 의해 스케줄링되는 SIB를 따로 구분하지 않고, SIB1-NB를 제외한 나머지 SIB는 SIB1-NB와 동일한 캐리어에 전송되거나, 앵커 캐리어에 전송될 수 있으며, 나머지 SIB가 전송될 수 있는 캐리어의 위치를 직접 지시할 수 있다.
4.8. 제8 제안: "BCCH를 포함하는 additional NPDSCH의 코드워드(codeword) 및 자원 매핑(resource mapping)"
aSIB1-NB는 SIB1-NB와 전송 주기가 다를 수 있으며, 일반적으로는 SIB1-NB 의 전송 주기보다 길거나 같을 수 있다.
도 11은 SIB1-NB를 포함하는 NPDCH의 전송 방법을 나타내는 도면이다. 도 11을 참조하면, 반복되는 NPDSCH의 전송 방법은, NPDSCH가 BCCH(예를 들어, SIB1-NB 및 다른 SIB-NB)를 포함하는지 여부에 따라 다르게 적용될 수 있다. 이때, SIB1-NB의 전송이 서브프레임 순으로 A, B인 경우에 SIB1-NB 전송 사이에 추가 전송되는 aSIB1-NB는 SIB1-NB와 다른 순서인 B, A로 전송될 수 있다. 즉, SIB1-NB와 aSIB1-NB를 40msec 내에서 서브프레임 순으로 나열했을 때, A, (B), B, (A)로 구성될 수 있다. 이에 따라, 일반 커버리지에 위치한 NB-IoT 단말(예를 들어, SNR이 상대적으로 높아 많은 반복 전송을 필요로 하지 않는 NB-IoT 단말)은 20msec 내에서 A와 (B)를 모두 수신함으로써, SIB1-NB를 획득하는데 소요되는 시간을 줄일 수 있다. 이때, (A)와 (B)는 aSIB1-NB에서 전송되는 TBS의 일부이며, (A) 및 (B)는 각각 SIB1-NB의 A 및 B와 동일하다. 다만, A와 (A), B와 (B)는 주파수 다이버시티를 높이기 위하여, 해당 서브프레임 내에서 자원 매핑 방법이 다를 수 있다. 예를 들어, (A)는, A의 주파수 영역에서 자원 매핑이 일정 값으로 180kHz 내에서 6 자원 요소만큼 순환 시프트(circular shift)되어 자원 매핑될 수 있다.
상기 제안된 방법들은 각각 독립적으로 적용될 수 있다. 예를 들어, aMIB-NB는 앵커 캐리어에서 전송되고, aSIB1-NB 등은 빠른 앵커 캐리어에서 전송될 수 있으며, aMIB-NB와 aSIB1-NB 모두 앵커 캐리어가 아닌 빠른 앵커 캐리어에서 전송될 수도 있다. aMIB-NB와 aSIB1-NB 모두 빠른 앵커 캐리어에서 전송되는 경우, 본 특허에서 제안된 aMIB-NB 및 aSIB1-NB의 구조와 다른 구조로 전송될 수 있다. 또한, 지속적인 SIB1-NB 스케줄링 정보는 앵커 캐리어뿐만 아니라, 빠른 앵커 캐리어를 통해 전송되는 SIB1-NB 또는 aSIB1-NB에도 적용될 수 있다. 전술한 빠른 앵커 캐리어를 지시하는 방법은 SIB1-NB, 다른 SIB-NB, 또는 RRC 시그널링 등으로 전송될 수 있다.
상기 제안된 방법들은 NB-IoT 시스템뿐만 아니라, LTE 시스템 대역폭의 일부를 이용하는 eMTC와 같은 시스템에도 동일하게 적용될 수 있다. 예를 들어, eMTC에서 시스템 정보를 획득하는 과정에서 발생하는 지연을 줄이기 위해, 가운데 6 RB가 아닌 다른 위치의 PRB 에서 PBCH가 추가 전송되는 경우, 제안된 빠른 앵커 캐리어와 같은 개념이 동일하게 적용될 수 있다. 이때, PBCH가 추가 전송되는 PRB의 위치는 MIB의 남은5 비트를 이용하여 지정될 수 있다. 다만, 하나의 PRB-쌍(pair)를 이용하는 NB-IoT 시스템과 달리, eMTC의 빠른 앵커 캐리어의 위치는 연속된 6 RB의 특정 위치를 지시할 수 있다. 이때, 연속된 6RB가 서로 겹치지 않도록 빠른 앵커 캐리어 대역폭 집합을 구성하는 경우, 6RB의 특정 위치는 4 비트로 충분히 표현될 수 있다. 이때, 해당 빠른 앵커 캐리어에서 추가 전송되는 SIB1-BR은 SystemInformationBlockType1-BR의 스케줄링 정보를 따를 수 있다. 또한, MIB-NB까지 빠른 앵커 캐리어에서 전송되는 경우, SIB1-BR의 스케줄링 정보는 가운데 6 RB의 MIB -NB 정보보다 빠른 앵커 캐리어의 SIB1-BR 정보를 우선적으로 따를 수 있다.
전술한 제4 제안 내지 제7 제안에 따른 SIB1-NB의 획득 관련 정보는 MIB-NB에서만 전송될 수 있는 것은 아니며, SIB1-NB 내에서 직접 지시될 수도 있다. 이때, SIB1-NB에서 지시하는 aSIB1-NB의 정보는 해당 SIB1-NB-TTI 또는 다음 SIB1-NB-TTI에서 전송되는 aSIB1-NB에 관한 정보일 수 있다.
또한, aMIB-NB 및 aSIB1-NB는 1) 매 라디오 프레임마다(예를 들어, 10msec 마다) 전송되거나, 2) 설정 가능한(configurable) 특정 시간의 주기 단위로 전송되거나, 또는 3) 기지국에 의해 설정된 특정 시간 구간 내에서만 전송되어 NB-IoT 단말이 해당 특정 시간 구간에서만 aMIB-NB 및 aSIB-NB를 기대하도록 할 수 있다. 이때, 특정 설정 가능한 시간의 주기 단위로 전송되는 경우, aMIB-NB 및 aSIB1-NB는 서로 다른 설정 가능한 시간의 주기 가질 수 있으며, 기지국에 의해 설정된 특정 시간 구간 내에서 전송되는 경우, aMIB-NB 및 aSIB1-NB가 전송되는 특정 시간 구간이 서로 다를 수 있다.
또한, aMIB-NB 및 aSIB1-NB는 항상 기지국에 의해 전송되는 것을 전제 조건으로 하지 않는다. NB-IoT 단말은 MIB-NB 및 aMIB-NB를 독립적으로 블라인드 검출(blind detection)하거나, 또는, MIB-NB와 aMIB-NB를 결합하여 시스템 정보를 검출할 때, aMIB-NB가 전송되지 않는 경우를 포함하여 블라인드 검출할 필요가 있다.
aMIB-NB 및 aSIB1-NB는 모든 기지국에서 전송되어야 하는 것은 아니다. 기지국이 MIB-NB 및 SIB1-NB 외에 aMIB-NB 또는 aSIB1-NB를 추가적으로 전송하고 있다는 정보는, MIB-NB 및/또는 aMIB-NB에 의해 직접 지시되거나, SIB1-NB 및/또는 aSIB1-NB에 의해 직접 지시되거나, 또는 전혀 다른 SIBx-NB에 의해 지시될 수도 있다. 또한, aMIB-NB의 전송 여부는 SIB1-NB 및/또는 aSIB1-NB에 의해 지시될 수 있으며, aSIB1-NB의 전송 여부는 MIB-NB 및/또는 aMIB-NB에 의해 지시될 수 있다.
도 12a 및 도 12b는 일 실시예에 따른 aSIB1-NB의 전송 위치를 나타내는 도면이다.
SIB1-NB가 추가 전송되는 경우(예를 들어, aSIB1-NB가 전송되는 경우), aSIB1-NB가 전송되는 라디오 프레임과 서브프레임의 위치가 결정될 필요가 있다. 이에 앞서, SIB1-NB와 비교하여 aSIB1-NB의 전송 빈도에 대한 정의가 선행되어야 한다. 예를 들어, aSIB1-NB가 SIB1-NB와 동일한 빈도로 추가 전송된다면, 기존의 SIB1-NB의 반복 전송 횟수 {4, 8, 16}은 aSIB1-NB를 포함하여 각각 {8, 16, 32}가 된다. 이때, 기존의 SIB1-NB의 반복 전송 횟수 {4, 8}은 애초에 {8, 16}으로 설정한 것과 동일하다. 따라서, SIB1-NB의 반복 전송 횟수가 {4, 8}일 때, aSIB1-NB를 SIB1-NB와 동일한 주기/빈도로 전송하는 것은 무의미하다. 그러나, SIB1-NB의 셀 간 충돌 확률은 증가하는 단점이 있다. 예를 들어, SIB1-NB의 반복 전송 횟수가 8일 때, 반복 전송 횟수가 4일 때보다 셀 간 충돌 발생 확률이 2배 증가하는 단점이 있다.
반면, aSIB1-NB가 매 40msec 마다 전송((SIB1-NB의 절반의 빈도로 전송)하면, 기존의 SIB1-NB의 반복 전송 횟수 {4, 8}은 aSIB1-NB를 포함하여 각각 {6, 12, 24}가 된다. 따라서, SIB1-NB의 반복 전송 횟수가 16인 경우에도, 셀 간 SIB1-NB와 aSIB1-NB의 충돌 없이 전송이 가능하다. 따라서, aSIB1-NB의 전송 주기는, SIB1-NB의 반복 전송 횟수 {4,8}일 때 20msec로 설정될 수 있으며, SIB1-NB의 반복 전송 횟수가 16인 경우에는 40msec로 설정될 수 있으나, 이에 한정되지 않는다. 즉, aSIB1-NB의 전송 주기는 {20msec, 40msec} 중에 결정(상위 계층에서 설정되거나, MIB-NB에서 설정되거나, 표준에 고정될 수 있음)될 수 있다.
aSIB1-NB의 전송 주기가 20msec으로 설정될 때, 도 12a에 도시된 바와 같이, SIB1-NB가 전송되지 않는 4번 서브프레임에서 전송되거나, 또는 도 12b에 도시된 바와 같이, NSSS가 전송되지 않는 9번 서브프레임에서 전송될 수 있다. 다만, 크로스-서브프레임 채널 추정(cross-subframe channel estimation 이득을 얻기 위해서는, MIB-NB가 전송되는 서브프레임과 인접한 9번 서브프레임에서 전송되는 것이 바람직하다. 그러나, aSIB1-NB의 전송 주기가 20msec으로 설정되고, SIB1-NB의 반복 전송 횟수가 16인 경우, 홀수 셀 ID와 짝수 셀 ID에서 전송되는 SIB1-NB와 aSIB1-NB 간 충돌을 피할 수 없는 단점이 있다. 만약, aSIB1-NB의 전송 주기가 40msec으로 결정되는 경우, aSIB1-NB는 NSSS가 전송되지 않는 9번 서브프레임에서 전송될 수 있다. aSIB1-NB의 전송 주기가 40msec로 설정되면, 20msec로 설정된 때와 달리, SIB1-NB의 반복 전송 횟수가 16인 경우에도, 홀수 셀 ID와 짝수 셀 ID에서 전송되는 aSIB1-NB 간 충돌을 피할 수 있는 장점이 있다. 예를 들어, NSSS가 전송되지 않는 9번 서브프레임에서 aSIB1-NB가 40msec 단위로 전송될 때, 짝수 셀 ID의 aSIB1-NB는 라디오 프레임 번호 {2, 6, 10, 14, …}에서 전송되고, 홀수 셀 ID는 라디오 프레임 번호 {4, 8, 12, 16, …}에서 전송될 수 있다. 예를 들어, 라디오 프레임 번호는, 무한히 증가하는 정수로 가정할 수 있다. 실제로는 NSSS를 전송하지 않는 라디오 프레임을 순서대로 나열하고, 나열된 라디오 프레임을 0부터 1씩 증가하는 논리적 인덱스(logical index)에 매핑할 때, 홀수 셀 ID는 홀수 번째, 짝수 셀 ID는 짝수 번째 논리적 인덱스에 대응하는 라디오 프레임에서 전송되는 것을 의미한다.
aSIB1-NB가 반복 전송될 때, SIB-NB가 반복 전송되는 사이에 추가로 전송되는 aSIB1-NB의 자원 할당(예를 들어, aSIB1-NB에 전송될 원형 버퍼 출력)을 결정할 필요가 있다. aSIB1-NB를 전송할 때, 바로 이전에 전송된 SIB1-NB를 동일하게 전송한다면, 수신기가 원형 버퍼에 저장된 채널 코딩 출력을 충분히 활용하지 못하는 단점이 있다. 따라서, SIB1-NB의 TBS와 반복 전송 횟수, 운용 모드, CRS 안테나 포트 수, 및 NRS 안테나 포트 수 중 적어도 하나에 기초하여 결정되는 부호화율(code rate)에 따라, 동일한 시간동안 SIB1-NB와 aSIB1-NB를 수집하였을 때, 원형 버퍼에 저장되었던 모든 비트를 가능한 빨리 모을 수 있도록 설계하는 것이 바람직하다. 이에 따라, 기지국에 가까이 위치한 NB-IoT 단말(예를 들어, SNR이 충분히 높은 NB-IoT 단말)이 SIB1-NB의 디코딩을 보다 높은 확률로 빠르게 완료할 수 있도록 한다. 이를 최적화 하기 위하여, 앞에서 열거한 SIB1-NB의 TBS와 반복 전송 횟수, 운용 모드, CRS 안테나 포트 수, 및 NRS 안테나 포트 수 중 적어도 하나에 기초하여 최적의 "aSIB1-NB - 원형 버퍼 출력" 관계가 정의될 수 있다. 또한,"aSIB1-NB-원형 버퍼 출력" 관계를 보다 단순한 방법으로 정의하기 위해서는, 앞에서 나열한 파라미터의 큰 영향 없이 성능 향상을 기대할 수 있도록, 가장 높은 부호화율를 기준으로 "aSIB1-NB - 원형 버퍼 출력" 패턴을 정의할 수 있다.
도 13은 SIB1-NB의 TBS, 반복 전송 횟수, 운용 모드, CRS 안테나 포트 수, NRS 안테나 포트 수에 따라 하나의 코드워드가 8개의 서브프레임에서 전송될 때 원형 버퍼의 출력의 예시를 나타내는 도면이다.
도 13을 참조하면, A~H는 SIB1-NB가 전송되는 8개의 서브프레임을 구분하는 단위이며, 원형 버퍼에는 0~9까지의 비트가 있다고 가정하였다. 또한, 도 13을 참조하면, 부호화율이 가장 높을 때, A~H 구간까지 모두 전송되면, 원형 버퍼의 7~80%만 전송되는 것을 확인할 수 있다. 따라서, 원형 버퍼에서 전송되지 않은 20~30%는 aSIB1-NB를 통해 전송될 필요가 있으며, 이를 위하여 원형 버퍼의 오프셋(RV로 표현되기도 함)을 SIB1-NB와 다르게 설정할 수 있다. 예를 들어, aSIB1-NB를 통해 전송되는 코드 비트(coded-bit)들은, SIB1-NB 를 통해 전송되는 코드 비트들이 저장되는 원형 버퍼에서 SIB1-NB를 전송하는데 사용되는 마지막 주소 이후부터 순차적으로 주소를 생성함으로써, 출력되는 값일 수 있다. 따라서, 동일한 라디오 프레임 내에서 전송되는 SIB1-NB와 aSIB1-NB에 포함된 코드 비트들은 원형 버퍼에서 연속적으로 출력되는 값이 아닐 수 있다. 또는, SIB1-NB의 전송 순서가 {A, B, C, D, E, F, G, H}일 때, aSIB1-NB의 전송 순서는 {I, J, K, L, M, N, O, P}와 같이 설정될 수도 있다. 이때, I 내지 P는 원형 버퍼에서 전송되지 못한 20~30%를 추가 전송하기 위해 만든 가상의 인덱스를 의미할 수 있다.
또한, 기지국의 원형 버퍼 조작 동작을 최소화하기 위하여, aSIB1-NB의 전송 순서는 A~H까지의 순서로만 정의될 수도 있다. 예를 들어, aSIB1-NB는 {E, F, G, H}, {E, F, A, B}, {C, E, G, A}, 또는 {D, F, H, B} 등과 같이 SIB1-NB의 전송 순서와 다르게 설정될 수 있다. 또한, aSIB1-NB의 전송 주기가 20msec일 때, {E, F, G, H, A, B, C, D}와 같은 순서로 설정될 수도 있다. 그러나, aSIB1-NB의 전송 순서는 전술한 예에 한정되지 않으며, SIB1-NB의 코드워드에 대한 원형 버퍼에 저장된 채널 코딩 출력 전체가 가능한 빠르게 전송되도록 하기 위한 다양한 순서로 정의될 수 있다. 또한, SIB1-NB의 TBS, 반복 전송 횟수, 운용 모드, CRS 안테나 포트 수, NRS 안테나 포트 수에 따른 최적의 aSIB1-NB의 전송 패턴(원형 버퍼와 aSIB1-NB의 관계)은 SIB1-NB의 TBS와 반복 전송 횟수, 운용 모드, CRS 안테나 포트 수, NRS 안테나 포트 수에 기초하여 미리 정의될 수 있다. 기지국은 미리 정의된 aSIB1-NB의 전송 패턴에 따라 aSIB1-NB를 전송할 수 있으며, NB-IoT 단말은 MIB-NB의 SIB1-NB 스케줄링 정보에 기초하여 aSIB1-NB의 전송 패턴을 판단할 수 있다.
도 15a 및 도 15b는 전술한 aSIB1-NB의 전송 패턴에 따른 BLER(Block Error Rate) 성능을 나타내는 도면이다.
도 15a 및 도 15b를 참조하면, [A, B, C, D, E, F, G, H]는 160msec 동안 기존의 SIB1-NB 만 수신한 경우이며, [A,-,B,-,C,-,D,-]는 80msec 동안 기존의 SIB1-NB 만 수신한 경우를 나타낸다. 또한, [A, a, B, b, C, c, D, d]는 aSIB1-NB를 SIB1-NB와 동일한 패턴으로 전송될 때, 80msec 동안 SIB1-NB 및 aSIB1-NB를 수신한 경우를 나타낸다. 또한, [A, e, B, f, C, g, D, h]는, aSIB1-NB를 SIB1-NB와 80msec의 오프셋을 가지도록 원형 버퍼의 출력 순서를 변경한 패턴으로 전송될 때, 80msec 동안 SIB1-NB 및 aSIB1-NB를 수신한 경우를 나타내며, 두가지 경우 모두 매 20msec 마다 aSIB1-NB가 전송된 것을 가정하였다. 또한, [A, e, B, -, C, f, D, -]는 aSIB1-NB의 전송 주기가 40msec이며, [A, e, B, f, C, g, D, h]와 마찬가지로 aSIB1-NB의 원형 버퍼의 출력 순서를 변경한 패턴으로 전송될 때, 80msec 동안 SIB1-NB 및 aSIB1-NB를 수신한 경우를 나타낸다.
도 15a는 TBS가 680일 때 BLER의 성능을 나타내며, 도 15b는 TBS가440일 때 BLER의 성능을 나타낸다. TBS가 680인 경우와 440인 경우 모두, 원형 버퍼의 출력에 오프셋을 설정할 때 항상 성능이 향상되는 것을 확인할 수 있다.
aSIB1-NB가 전송될 때, 기존 NB-IoT 단말(예를 들어, LTE Release 13, 14의 NB-IoT 단말)은 특정 서브프레임에서 aSIB1-NB가 전송되는 것을 알지 못하기 때문에, NPDCCH와 NPDSCH의 자원 할당을 해석할 때 잘못된 동작을 수행할 수 있다. 따라서, aSIB1-NB가 전송되는 서브프레임의 위치에 대응하는 downlinkBitmap은 '0'(invalid)으로 지시될 필요가 있다. 반면, LTE Release 15의 NB-IoT 단말은, 셀에서 aSIB1-NB를 전송한다는 것을 지시받은 경우, downlinkBitmap과 관계없이 특정 서브프레임에서 aSIB1-NB가 존재한다고 기대할 수 있다. 이때, 특정 서브프레임은 전술한 바와 같이 4번 또는 9번 서브프레임일 수 있으며, 특정 서브프레임은 셀 ID 및 SIB1-NB의 반복 전송 횟수와 관계가 있을 수 있다.
실시예에 따라, aSIB1-NB는 특정 위치(예를 들어, 특정 서브프레임)에서 항상 전송되는 것이 아니라, 특정 조건을 만족하는 경우에 한하여 추가 전송될 수도 있다. 예를 들어, SIB1-NB의 부호화율이 특정 값보다 큰 경우, SIB1-NB의 추가 전송을 기대하도록 정의 및 설정될 수 있다. 이때, 특정 값은 규격(specification)에 의해 고정되거나, 또는 기지국에 의해 설정되어 NB-IoT 단말에게 전달될 수 있으나, 이에 한정되지 않는다.
또한, 부호화율과 마찬가지로, SIB1-NB의 TBS, SIB1-NB의 반복 전송 횟수, NB-IoT의 운용 모드, NRS 안테나 포트 수, CRS 안테나 포트 수 등의 값을 기준으로 SIB1-NB 추가 전송 조건이 설정될 수도 있다. 또한, aSIB1-NB의 전송 패턴(encoded bits-to-subframe 매핑 및 전송 순서 재배열)은 부호화율, SIB1-NB의 TBS, SIB1-NB의 반복 전송 횟수, NB-IoT의 운용 모드, NRS 안테나 포트 수, 및 CRS 안테나 포트 수 중 적어도 하나에 기초하여 다른 패턴으로 정의될 수도 있다. 이는 관련된 파라미터를 SIB1-NB의 검출 이전에 NB-IoT 단말이 이미 획득하고 있기 때문에 가능하며, 이와 같은 방식은 SIB1-NB의 성능 최적화를 위해서 서로 다르게 정의될 수 있다.
뿐만 아니라, 제안된 SIB1-NB의 전송 패턴(encoded bits-to subframe 매핑 및 전송 순서 재배열)은 SIB1-NB에만 국한되는 것은 아니며, 반복 전송되는 데이터를 추가 전송하는 경우에도 적용될 수 있다.
4.9. 제9 제안: "aSIB1-NB 전송을 지시하는 방법 및 유효 하향링크 비트맵(valid DL bitmap)을 설정하는 방법 "
본 특허에서는, 앞서 제안된 aSIB1-NB를 구성하는 방법과 별개로 기지국이 aSIB1-NB의 전송을 NB-IoT 단말에게 알리는 방법을 제안한다. 또한, 본 특허에서는, 레거시 NB-IoT 단말(예를 들어, aSIB1-NB의 존재를 모르는 단말)의 하향링크 자원 관리 및 스케줄링을 위하여, aSIB1-NB가 전송되는 위치에서 유효 하향링크 비트맵(valid DL bitmap)이 어떻게 설정되는지 제안한다.
유효 하향링크 비트맵은, NB-IoT 단말이 하향링크 NRS를 기대할 수 있거나, NPDCCH 및 NPDSCH의 수신을 기대할 수 있는 서브프레임의 위치를 알려주는 비트맵을 의미할 수 있다. 유효 하향링크 비트맵은 인-밴드 모드에서 10 비트 또는 40비트로 구성되며, 가드-밴드 모드 및 독립형 모드에서는 10 비트로 구성될 수 있다. 유효 하향링크 비트맵은, TS 36.331에서 downlinkBitmap으로 정의된다.
NB-IoT 단말은, 기지국으로부터 MIB-NB 및 SIB1-NB를 수신할 수 있으며, MIB-NB 또는 SIB1-NB는 aSIB1-NB의 전송 여부를 지시할 수 있다. 그리고, NB-IoT 단말은 수신된 MIB-NB 또는 SIB1-NB로부터 aSIB1-NB의 전송 여부를 지시하는 정보를 획득할 수 있다.
aSIB1-NB가 특정 서브프레임에서 전송될 때, 기지국은 유효 하향링크 비트맵에서 해당 특정 서브프레임을 무효 서브프레임으로 지시할 수 있다. 레거시 NB-IoT 단말은 aSIB1-NB의 전송 여부를 알 수 없다. 따라서, 기지국은, aSIB1-NB가 전송되는 서브프레임을 무효 서브프레임으로 지시함으로써, 레거시 NB-IoT 단말이 해당 특정 서브프레임에서 NPDCCH 및/또는 NPDSCH를 기대하지 않도록 할 수 있다. 이와 달리, aSIB1-NB의 전송 여부를 알 수 있는 NB-IoT 단말(예를 들어, LTE Release 15에 따른 NB-IoT 단말)은, 기지국에 의해 무효 서브프레임으로 지시된 서브프레임을 통해 aSIB1-NB를 수신할 수 있다.
그러나, aSIB1-NB의 전송이 MIB-NB 또는 SIB1-NB를 통해 전달된 경우라 하더라도, Cell ID, SIB1-NB의 반복 전송 횟수 등에 따라, aSIB-NB가 해당 특정 서브프레임에서 전송되지 않을 수도 있다. 이때, NB-IoT 단말은, 해당 특정 서브프레임이 무효 서브프레임으로 지시된 경우라 하더라도, 해당 특정 서브프레임을 유효 서브프레임으로 판단할 수 있다. 그리고, NB-IoT 단말은, 해당 특정 서브프레임에서 NRS, NPDCCH, 및 NPDSCH 중 적어도 하나를 기대할 수 있다. 예를 들어, NB-IoT 단말은, 해당 특정 서브프레임에서 NRS, NPDCCH, 및 NPDSCH 중 적어도 하나가 전송될 것임을 기대하고, 디코딩 할 수 있다.
1) MIB-NB에서 예약된 비트(또는 미사용 비트)를 사용하여 aSIB1-NB의 전송을 알리는 방법
기지국은 MIB-NB에서 1비트을 사용하여 aSIB1-NB의 전송을 알릴 수 있다.
aSIB1-NB의 전송 여부가 MIB-NB에 의해 지시되는 경우, aSIB-NB의 전송을 알리는 정보를 획득한 NB-IoT 단말은, 해당 MIB-NB가 포함된 SIB1-NB 변경 구간 내에서, aSIB1-NB가 전송되고 있다는 것을 알 수 있다. 그러나, NB-IoT 단말이 MIB-NB의 디코딩을 완료했을 때, 해당 SIB1-NB 변경 구간이 많이 남지 않았을 수 있기 때문에, aSIB1-NB의 전송에 의한 이득이 제한적일 수 있다. 이에 따라, aSIB1-NB의 전송 여부에 대한 시그널링은 MIB-NB 내의 2비트에 의해 지시될 수 있으며, 2 비트에 의해 지시된 값이 '0'이면 SIB1-NB가 전송되지 않는다는 것을 의미하고, '0'이 아니면 해당 SIB1-NB 변경 구간으로부터 aSIB1-NB가 전송되는 SIB1-NB 변경 구간까지의 차이를 나타내는 수를 의미할 수 있다. 이때, aSIB1-NB의 전송 여부를 알리는데 사용되는 비트 값의 변화는 시스템 정보 업데이트 조건에 해당하지 않는다. 예를 들어, NB-IoT 단말은, ETWS(EarthQuake Tsumani Warning System) 정보, CMAS(Commercial Mobile Alert Service) 정보, 시간 정보(예를 들어, SystemInformationBlockType8, SystemInformationBlockType16, SystemInformationBlockType1-NB의 HyperSFN-MSB), EAB(Extended Access Barring), AB 파라미터, aSIB1-NB의 전송 여부를 지시하는 정보가 변경되더라도, SystemInfoValueTag 값을 업데이트하지 않는다. 이에 따라, MIB-NB에서 aSIB1-NB 전송 여부를 지시하는 정보는 시스템 정보의 변경 알림 조건(system information modification notification condition)에 포함되지 않는다. 따라서, aSIB1-NB의 전송 여부를 나타내는 정보의 변경은 시스템 정보 업데이트에 대한 페이징(paging)을 직접 유도하지 않는다. 제안된 방법에 따르면, NB-IoT 단말이 처음 셀에 액세스할 때부터 aSIB1-NB의 전송을 활용할 수 있는 장점이 있다.
2) SIB1-NB에서 aSIB1-NB의 전송을 알리는 방법
전술한 바와 같이, aSIB1-NB의 전송 여부는 MIB-NB 또는 SIB1-NB를 통해 전달될 수 있다. 예를 들어, SIB1-NB를 통해 aSIB1-NB의 전송 여부가 전달되는 경우, SIB1-NB가 변경될 때 변경된 SIB1-NB 내에서 aSIB1-NB의 전송 여부를 직접 알릴 수 있다. SIB1-NB를 통해 전달되는 aSIB1-NB의 전송 여부가 적용되는 시점은, aSIB1-NB를 전송하다가 전송하지 않는 경우 및 반대의 경우에 대해서 다음과 같이 정의될 수 있다.
(2-1) aSIB1-NB를 전송하지 않다가, aSIB1-NB를 전송한다고 알리는 경우
SIB1-NB의 변경 경계(modification boundary)에서 변경된 SIB1-NB는 aSIB1-NB의 전송을 알릴 수 있다. 예를 들어, SIB1-NB의 변경 경계는, SIB1-NB 변경 주기 또는 변경 구간 사이의 경계를 의미할 수 있다. 이때, NB-IoT 단말은 아직 aSIB1-NB가 전송되고 있다는 것을 알지 못하기 때문에, 해당 SIB1-NB 변경 구간 내에서는 여전히 aSIB1-NB를 사용할 수 없다. 따라서, 기지국은 해당 SIB1-NB 변경 구간 내에서 aSIB1-NB를 전송할 필요가 없으며, 특정 시간 이후에 aSIB1-NB를 전송할 수 있다. 이때, 특정 시간은, 기지국과 NB-IoT 단말 사이에 미리 정의될 수 있으며, 예를 들어 하나의 SIB1-NB 변경 구간에 대응하는 시간으로 정의될 수 있으나, 이에 한정되지 않는다. 만약, NB-IoT 단말이 해당 SIB1-NB 변경 구간 동안 SIB1-NB의 디코딩을 실패한 경우, NB-IoT 단말은 aSIB1-NB가 전송되지 않는다고 가정하고, SIB1-NB의 디코딩을 계속 시도할 수 있다. 그리고, 기지국은, 해당 SIB1-NB 변경 구간에서, aSIB1-NB가 전송될 서브프레임의 인덱스를 유효 하향링크 비트맵에 '0'이라고 지시할 수 있다. 만약, 레거시 NB-IoT 단말이 해당 SIB1-NB 변경 구간 내에서 SIB1-NB의 디코딩을 성공하면, 레거시 NB-IoT 단말은 유효 하향링크 비트맵에서 특정 서브프레임의 위치(aSIB1-NB 전송될 서브프레임의 위치)가 무효하다고 해석할 것이기 때문에, 기지국은 해당 SIB1-NB 변경 구간부터 aSIB1-NB가 전송될 서브프레임을 무효 하향링크 서브프레임이라고 가정하고 스케줄링 할 수 있다.
(2-2) aSIB1-NB를 전송하다가, 더 이상 전송하지 않겠다고 알리는 경우
SIB1-NB 변경 경계에서 변경된 SIB1-NB는 aSIB1-NB를 더 이상 전송하지 않겠다고 알릴 수 있다. 이때, NB-IoT 단말은 아직 aSIB1-NB가 전송되고 있다고 가정하고 있기 때문에, 해당 SIB1-NB 변경 구간 내에서는 aSIB1-NB가 여전히 전송될 필요가 있으며, 특정 시간 이후로는 aSIB1-NB의 전송을 멈출 수 있다. 이때, 특정 시간은 기지국과 NB-IoT 단말 사이에 오해가 없도록 미리 정의될 수 있으며, 예를 들어, 하나의 SIB1-NB 변경 구간에 대응하는 시간으로 정의될 수 있다.
만약, NB-IoT 단말이 해당 SIB1-NB 변경 구간 동안 SIB1-NB의 디코딩을 실패한 경우, NB-IoT 단말은 aSIB1-NB가 전송되지 않는다고 가정하고, SIB1-NB의 디코딩을 계속 시도할 수 있다. 그리고, 기지국은, 해당 SIB1-NB 변경 구간에서, aSIB1-NB가 전송되지 않을 서브프레임 인덱스를 유효 하향링크 비트맵에 '1'이라고 지시할 수 있다. 만약, 레거시 NB-IoT 단말이 해당 SIB1-NB 변경 구간 내에서 SIB1-NB의 디코딩을 성공하면, 유효 하향링크 비트맵의 특정 서브프레임 위치에서 실제로 aSIB1-NB가 SIB1-NB 변경 구간 동안 계속 전송되고 있기 때문에 NPDCCH및 NPDSCH의 디코딩 성능의 열화가 발생할 수 있다.
3) 페이징 DCI(DCI 포맷 N2)에서 aSIB1-NB 전송을 알리는 방법
시스템 정보가 업데이트된 경우에는 DCI 포맷 N2 CRC가 P-RNTI로 스크램블링되고, Flag for paging/direct indication differentiation은 '0'으로 지시된다. 또한, 8 비트로 구성된 직접 지시 정보(Direct Indication information)은 각 비트 값에 따라 시스템 정보가 변경(또는 업데이트)되었는지 여부 등을 지시 받을 수 있다. 직접 지시 정보에는 아직 3 비트의 미사용 비트(unused bit)가 있으며, DCI 포맷 N2에는 6 비트의 미사용 비트가 있다. 따라서, 기지국은. 직접 지시 정보의 미사용 3 비트 및/또는 DCI 포맷 N2의 미사용 6 비트 중 일부를 이용하여, 변경된 SIB1-NB가 aSIB1-NB와 함께 전송되는지 여부를 미리 알 수 있다. 뿐만 아니라, 미사용 비트를 이용하면 MIB-NB에 포함된 SIB1-NB의 스케줄링 정보를 NB-IoT 단말에게 미리 알려줄 수 있다. 따라서, 기지국은, NB-IoT 단말이 변경된SIB1-NB의 스케줄링 정보를 얻기 위한 MIB-NB의 디코딩을 생략할 수 있도록 도움을 줄 수 있다.
또한, 특정 미사용 비트는, NB-IoT 단말이 이전에 획득한 MIB-NB 정보를 동일하게 이용하여 변경된 SIB1-NB의 디코딩을 시도할 수 있다는 정보를 전달할 수도 있다. 또한, NB-IoT 단말이 MIB-NB 내에서 액세스 차단 정보를 읽을 필요가 있거나, 또는 변경된 SIB1-NB를 디코딩하기 전에, 특정 미사용 비트는 MIB-NB의 디코딩을 다시 수행하라고 지시할 수 있다.
4) 부호화율에 기초하여 aSIB1-NB의 전송을 유추하는 방법
기지국은 aSIB1-NB를 전송할 수 있는 능력(capability)이 있는지 여부를 상위 레벨 시그널링(high-level signaling)으로 NB-IoT 단말에게 알려줄 수 있다. 또한, 기지국은, aSIB1-NB를 항상 전송하는 것이 아니라, SIB1-NB의 부호화율(또는 이에 상응하거나 AWGN 환경에서 SIB1-NB의 디코딩 성능을 대표할 수 있는 지표)가 특정 값보다 큰 경우에만 aSIB1-NB를 전송하겠다는 조건을 알릴 수도 있다. 이때, 부호화율은 SIB1-NB의 반복 전송 횟수, 운용 모드, CRS 안테나 포트 수 및 NRS 안테나 포트 수, 및 SIB1-NB의 TBS 중 적어도 하나에 기초하여 결정될 수 있다. 인-밴드 모드에서 CFI는 항상 3을 가정하여 서브프레임의 첫 3 OFDM 심볼은 SIB1-NB의 전송에 사용되지 않는 RE로 가정될 수 있다. 부호화율이 1(또는 충분히 높은 값)이면, aSIB1-NB가 항상 전송되지 않는다는 것을 의미할 수 있으며, 부호화율이 0(또는 충분히 작은 값)이면 aSIB1-NB가 항상 전송된다는 것을 의미할 수 있다. 또한, 부호화율 정보는 표(table)의 형태로 양자화되어 정의될 수 있다.
기지국은, 부호화율이라는 지표를 이용하여, aSIB1-NB의 전송 여부 및/또는 전송 조건을 SIB1-NB 변경 주기 단위로 업데이트할 수 있으며, aSIB1-NB의 전송 여부 및/또는 전송 조건은 MIB-NB, SIB1-NB, 다른 시스템 정보, 또는 RRC 시그널링 등을 통해 전달될 수 있다.
4.10. 제10 제안: "aSIB1-NB가 전송되는 서브프레임 인덱스가 무효 하향링크 서브프레임으로 지시될 때 이를 해석하는 방법"
aSIB1-NB가 특정 하향링크 서브프레임(예를 들어, 기존의 SIB1-NB가 전송되는 라디오 프레임의 3번 서브프레임)에서 전송될 때, 해당 서브프레임의 위치는 DL-Bitmap-NB에서 무효 하향링크 서브프레임으로 지시될 수 있다. 이는 레거시 NB-IoT 단말이 해당 서브프레임의 위치에서 NPDCCH 및/또는 NPDSCH를 기대하지 않도록 하기 위한 것일 수 있다.
기지국이 MIB-NB 및/또는 다른 채널을 통해서 aSIB1-NB를 전송한다는 것을 알린 상황에서, aSIB1-NB가 전송될 수 있는 특정 하향링크 서브프레임 인덱스에서 셀 ID와 SIB1-NB의 반복 전송 횟수 등에 의해 실제 aSIB1-NB가 전송되지는 않지만, DL-Bitmap-NB에 의해 해당 하향링크 서브프레임이 무효 하향링크 서브프레임으로 지시될 수 있으며, 전술한 서브프레임의 집합은 B-type 서브프레임으로 지칭될 수 있다. 이때, LTE Release 15의 NB-IoT 단말(또는 aSIB1-NB 수신을 기대할 수 있는 NB-IoT 단말)은, B-type 서브프레임들을 DL-Bitmap-NB의 지시와 달리 유효 서브프레임으로 해석할 수 있다. 이는 NRS와 NPDCCH/NPDSCH 관점에서 다음과 같은 구체적인 조건이 다르게 적용될 수 있다.
1) NRS
A. NB-IoT 단말은 B-type 서브프레임에서 항상 NRS의 수신을 기대할 수 있다.
B. T-type 서브프레임에서 적어도 type-2 및/또는 type-2A CSS에 포함되는 NPDCCH를 기대할 수 없다면, NB-IoT 단말은 USS를 기대할 수 있는 B-type 서브프레임에서만 NRS를 기대할 수 있다.
2) NPDCCH
A. NB-IoT 단말은, B-type 서브프레임에서, "단말 특정 검색 공간(UE-specific search space)에 C-RNTI로 스크램블링된 DCI 포맷 N0/N1를 포함하는 NPDCCH" 및 "단말 특정 검색 공간에 C-RNTI로 스크램블링된 DCI 포맷 N1으로 스케줄링된 (DL grant를 받은) NPDSCH"의 수신만 기대할 수 있다
B. 예를 들어, NB-IoT 단말은, B-type 서브프레임에서, RRC_IDLE 모드에서 수신할 수 있는 공통 검색 공간(common search space)에 포함된 NPDCCH 및 해당 공통 검색 공간에서 DCI 포맷 N0 또는 N2로 스케줄링된 NPDSCH를 기대하지 않을 수 있다.
C. 또한, RRC_CONNECTED 모드에서도 NPDCCH order-based NPRACH에 대한 RAR을 수신하는 공통 검색 공간은 무효 서브프레임으로 해석될 수 있다
D. NB-IoT 단말이 B-type 서브프레임에서 type-1 및/또는 type-1A CSS를 기대할 수 있다면, DCI의 반복 전송 횟수는 LTE Release 13 및 14와 동일한 방법(예를 들어, DL-Bitmap-NB에서 유효 하향링크 서브프레임으로 지시된 서브프레임만 NB-IoT 다운링크 서브프레임으로 해석하고, 해당 NB-IoT 하향링크 서브프레임에서만 NPDCCH를 기대할 수 있는 방법, 이때 시스템 정보를 전달하는 서브프레임은 NB-IoT 하향링크 서브프레임에서 제외될 수 있음)으로 NB-IoT 하향링크 서브프레임에 속한 CSS만을 기준으로 해석하도록 정의될 수 있다.
또한, 기지국이 aSIB1-NB를 전송한다고 선언한 경우에도, LTE Release 15의 NB-IoT 단말(해당 셀의 aSIB1-NB의 전송 여부를 판단할 수 있는 단말)은, aSIB1-NB가 실제로 전송되지 않는 서브프레임의 위치(aSIB1-NB가 전송될 수 있는 서브프레임 인덱스와 동일하지만, 해당 셀의 셀 ID 및 SIB1-NB의 반복 전송 횟수 등에 의해 실제로는 aSIB1-NB가 전송되지 않는 서브프레임의 위치)를 무효 하향링크 서브프레임으로 인식하고자 할 수 있다. 이를 위해서, 기지국은, SIB1-NB(또는 다른 시스템 정보 블록(system information block))의 추가 1 비트 또는 N 비트를 사용하여 aSIB1-NB 전송이 예약된 경우에도, 실제로는 aSIB1-NB를 전송하지 않는 3번 서브프레임을 LTE Release 15를 포함한 그 이후 Release의 단말이 무효 하향링크 서브프레임으로 인식하도록 지시할 수 있다. 다만, 해당 정보은 기지국이 aSIB1-NB를 전송하겠다고 예약한 경우에만 존재할 수 있으며, 기존의 downlinkBitmap(DL-Bitmap-NB)과 무관하게 해당 3번 서브프레임을 무효 서브프레임 또는 유효 서브프레임으로 구분하도록 정의될 수 있다. 또는, 기존의 downlinkBitmap(DL-Bitmap-NB)이 해당 서브프레임 #3(aSIB1-NB가 전송될 수 있는 서브프레임 인덱스)을 무효 서브프레임으로 지시한 경우에만, NB-IoT 단말은 새롭게 추가된 1 비트 또는 N 비트를 이용하여 실제 무효 서브프레임으로 해석할지 여부를 판단할 수 있다.
또한, NB-IoT 단말은, "aSIB1-NB가 실제로 전송되는 서브프레임의 위치"(aSIB1-NB가 실제로 전송되는 서브프레임의 집합을 A-type 서브프레임이라고 명명함)가 downlinkBitmap에 의해 유효 서브프레임으로 지정되는 것을 기대하지 않을 수 있다. 예를 들어, NB-IoT 단말은, A-type 서브프레임이 downlinkBitmap에 의해서 유효 서브프레임으로 지시되지 않는다고 기대할 수 있다. 또한, A-type 서브프레임 중 일부가 downlinkBitmap에 의해 유효 서브프레임으로 지시되면, NB-IoT 단말은 downlinkBitmap을 우선하여 A-type 서브프레임의 전체 또는 일부 서브프레임의 유효/무효 여부를 판단할 수 있다. 이때, 해석의 우선 순위는, A-type 서브프레임의 해석이 레거시 NB-IoT 단말(예를 들어, aSIB1-NB의 존재 여부를 모르는 단말)과 일치되도록 하는 것을 우선으로 할 수 있다. 만약, A-type 서브프레임이 존재하는 경우(예를 들어, 기지국이 aSIB1-NB의 전송을 알린 경우), 기지국은 downlinkBitmap 정보를 반드시 전송할 필요가 있다.
4.11. 제11 제안:"MIB-NB와 SIB1-NB의 디코딩 시도를 생략하는 방법"
전술한 제9 제안을 이용하여, NB-IoT 단말이 MIB-NB 및 SIB1-NB의 디코딩 시도를 생략(skip)할 수 있는 방법을 제안한다. 제안하는 방법은 듀플렉스 모드(duplex mode) 또는 운용 모드를 구분하지 않고 적용될 수 있으며, 제안된 방법에 의해 레거시 NB-IoT 단말(예를 들어, Release 13, 14의 단말)이 받는 영향이 없도록 설계된다. 본 제안에서는 시스템 정보의 변경이 직접 지시 정보를 통해 전달될 때 적용될 수 있는 방법이다. 먼저, 현재 NB-IoT FDD 시스템에서 해당 정보의 구성 및 관련된 NB-IoT 단말의 절차는 다음의 표 23과 같이 요약될 수 있다.
Figure PCTKR2018003387-appb-T000023
본 제안에서는 직접 지시 정보의 미사용 6비트(상기 표에서 직접 지시 정보의 3,4,5,6,7,8 번째 비트) 및/또는 DCI 포맷 N2 (플래그=0)의 미사용 6 비트 (상기 표 23에서 "Reserved information 6 bits are added until the size is equal to that of format N2 with Flag=1"에 따라 채워진 6비트)의 전체 또는 일부를 이용하여, MIB-NB 및/또는 SIB1-NB의 디코딩 시도를 생략하는 방법을 제안한다.
예를 들어, 시스템 정보가 변경된 경우, 기지국은 NB-IoT 단말이 MIB-NB부터 읽도록 지시할 필요가 있다. 이는 폴백 모드(fallback mode)라고 지칭될 수 있으며, 예를 들어, 운용 모드가 변경되거나 또는 액세스 클래스 차단(access class barring)이 되는 경우가 발생할 수 있다. 액세스 클래스 차단만 되는 경우, 기지국은 액세스 클래스 차단 정보를 직접 DCI 포맷 N2로 지시할 수 있으며, NB-IoT 단말은 이와 같은 정보를 이용하여 SIB14-NB의 디코딩을 직접 시도할 수 있다. 그러나, NB-IoT 단말은, SIB14-NB를 디코딩하기 위하여, SIB14-NB 스케줄링 정보를 획득할 필요가 있으며, SIB14-NB 스케줄링 정보를 획득하기 위하여, SIB1-NB를 디코딩할 필요가 있다. 그리고, SIB1-NB 스케줄링 정보는 MIB-NB에 포함되기 때문에, SIB1-NB 스케줄링 정보를 획득하고 SIB1-NB를 디코딩하기 위하여, NB-IoT 단말은 MIB-NB를 디코딩할 필요가 있다.
전술한 디코딩 과정들을 생략하기 위하여, DCI 포맷 N2는 SIB1-NB 스케줄링 정보까지 포함할 수 있다. 예를 들어, NB-IoT 단말이 DCI 포맷 N2로부터 SIB1-NB 스케줄링 정보를 직접 수신하는 경우, MIB-NB의 디코딩을 생략할 수 있다. 이때, SIB1-NB 스케줄링 정보는 4비트로 구성되며, 4비트 정보 중에서 일부 정보만 DCI 포맷 N2에 포함될 수 있다. 예를 들어, 1비트 정보로 SIB1-NB 스케줄링이 이전과 동일하거나 변경되었음을 단말에게 알릴 수 있다. 다른 예로서, SIB1-NB 스케줄링이 이전과 동일하다는 것을 나타내는 정보, 또는 변경된 SIB1-NB 스케줄링 정보와 이전 SIB1-NB 스케줄링 정보의 오프셋(offset) 정보만 1비트보다 많은 정보에 포함되어 전달될 수도 있다.
또한, MIB-NB의 디코딩이 생략될 수 있지만, NB-IoT 단말이 SIB1-NB를 다시 수신해야 하는 경우, aSIB1-NB를 기대할 수 있는지 여부를 나타내는 정보 또한 DCI 포맷 N2에 추가적으로 포함될 수 있다.
aSIB1-NB의 전송 여부는 MIB-NB에 추가된 1비트를 이용하여 전달될 수 있다. 다만, DCI 포맷 N2를 이용하여 MIB-NB의 디코딩을 생략하지만 SIB1-NB의 디코딩을 수행해야 하는 경우, 기지국은 aSIB1-NB의 전송 여부까지 한번에 알려줄 수 있다. 또한, MIB-NB에 포함된 systemInfoValueTag의 일부(예를 들어, 일부 하위 비트) 정보도 DCI 포맷 N2에 포함될 수 있으며, NB-IoT 단말이 SFN 정보의 동기를 잃을 수 있다는 것을 고려하면, SFN의 일부(예를 들어, 일부 하위 비트) 정보도 DCI 포맷 N2에 함께 전달될 수 있다.
또한, 기지국은, DCI 포맷 N2의 직접 지시 정보의 미사용 비트를 이용하여, NB-IoT 단말이 SIB1-NB의 디코딩도 생략하도록 지시할 수 있다. 예를 들어, 기지국은, DCI 포맷 N2 직접 지시 정보의 추가 정보를 이용하여 특정 SIBx-NB 정보가 변경되었음을 지시하면서, SIB1-NB의 정보는 변경되지 않았음을 NB-IoT 단말에게 알려줄 수 있다. 이때, NB-IoT 단말은, SIB1-NB로부터 획득되는 해당 SIBx-NB의 스케줄링이 동일하다고 가정하고, 바로 SIBx-NB의 디코딩을 시도할 수 있다.
전술한 내용을 간략히 정리하자면, DCI 포맷 N2 및 직접 지시 정보에 추가로 포함될 수 있는 정보는 다음과 같다.
1) 폴백(Fallback)
- MIB-NB부터 디코딩하도록 지시하며, DCI 포맷 N2 및 직접 지시 정보에 추가된 나머지 정보는 무시될 수 있다.
2) 액세스 클래스 차단(Access class barring)
- 액세스 클래스 차단 정보는 액세스 클래스 차단 여부를 나타내며, DCI 포맷 N2 및 직접 지시 정보에 추가된 나머지 정보에 따라, MIB-NB의 디코딩이 생략될 수 있다. 예를 들어, SIB1-NB 스케줄링 정보가 DCI 포맷 N2 및 직접 지시 정보에 추가된 정보로부터 유도될 수 있는 경우, NB-IoT 단말은 MIB-NB 디코딩을 생략하고, SIB1-NB를 지시받은 SIB1-NB 스케줄링 정보를 이용하여 SIB1-NB 디코딩을 시도할 수 있다. 이때, NB-IoT 단말이 aSIB1-NB 전송을 기대할 수 있는지 여부를 나타내는 정보 또한 DCI 포맷 N2 및 직접 지시 정보의 추가 정보를 통해 지시되는 경우, NB-IoT 단말은 aSIB1-NB를 포함하여 SIB1-NB 디코딩을 시도할 수 있다
3) SIB1-NB 스케줄링
- SIB1-NB 스케줄링 정보는 4비트로 구성될 수 있으며, MIB-NB에 포함된 SIB1-NB 스케줄링 및 크기 정보와 동일한 정보이다. 또한, 4비트보다 적은 비트를 이용하여, SIB1-NB 스케줄링 및 크기 정보의 일부 정보만 나타낼 수도 있으며, SIB1-NB 스케줄링 및 크기가 이전 값과 동일한지 여부만 나타낼 수도 있다.
4) aSIB1-NB의 존재
- 기지국이 aSIB1-NB를 전송할 수 있고, 시스템 정보가 변경된 구간에서 SIB1-NB가 추가로 전송되는 경우, 기지국은 aSIB1-NB의 존재를 DCI 포맷 N2 및 직접 지시 정보의 추가 정보에 포함하여 알려줄 수 있다.
5) systemInfoValueTag 및 SFN
- systemInfoValueTag는 특정 SIBx-NB가 변경된 것을 직접 지시할 수 없다. 그러나, systemInfoValueTag는, DCI 포맷 N2 및 직접 지시 정보에 추가되는 system InfoValueTag는 특정 SIBx-NB의 변경 여부를 직접 지시하기 위해 사용될 수 있으며, 또는 기존과 동일한 의미로 시스템 정보 중에서 하나라도 변경되었는지 여부를 알리기 위해 사용될 수 있다. 다만, 이와 같은 경우에, DCI 포맷 N2 및 직접 지시 정보에 추가로 포함되는 systemInfoValueTag는 MIB-NB의 systemInfoValueTag와 다른 크기의 비트를 가질 수 있다. 또한, NB-IoT 단말의 타이밍 시프트(timing shift) 또는 드리프트(drift)에 인한 SFN 동기 실패를 보정하기 위하여, SFN의 하위 정보 일부가 DCI 포맷 N2 및 직접 지시 정보에 추가로 전송될 수 있다.
위에서 열거한 내용은, 각각 DCI 포맷 N2 및 직접 지시 정보의 미사용 비트에 비트맵(bit-map)으로 대응되어 포함되거나 또는 표 형식으로 정의되어 포함될 수 있다. 예를 들어, 폴백, 액세스 클래스 차단, SIB1-NB 스케줄링, 및 aSIB1-NB 정보는, DCI 포맷 N2 및 직접 지시 정보의 미사용 비트들을 통해 다음과 같이 전달할 수 있다.
(1) 첫번째 비트 - 폴백
(2) 두번째 비트 - 액세스 클래스 차단
(3) 3번째-6번째 비트 - SIB1-NB 스케줄링 및 크기
(4) 7번째 비트 - aSIB1-NB
상기 7비트 중에서 첫번째 또는 7번째 비트는 생략될 수 있으며, 이때 상기 모든 정보가 DCI 포맷 N2 직접 지시 정보의 미사용 6 비트에 포함되어 전달될 수 있다. 만약, 7비트에 해당하는 정보를 모두 전송하는 경우, 첫번째 내지 6번째 비트는 DCI 포맷 N2 직접 지시 정보의 미사용 6 비트에 포함될 수 있으며, 7번째 비트는 DCI 포맷 N2의 미사용 6 비트(플래그가 0인 경우)에 포함될 수 있다. 또는, 기지국이 aSIB1-NB를 전송할 수 있는 능력이 없을 때, 7번째 비트는 생략될 수 있다. 또한, 상기 정보는 테이블의 형태를 이용하여 전송될 수도 있다. 또는, 상기 정보 중에서 폴백은, SIB1-NB 스케줄링 및 크기 정보에 포함되어 전송될 수도 있다. 예를 들어, TS 36.213의 Table 16.4.1.3-3과 Table 16.4.1.5.2-1에서 Value of schedulingInfoSIB1와 ITBS가 미사용 상태(unused state)(예를 들어, 12~15 사이 값)로 지시되는 경우에는 폴백으로 암시적으로 지시될 수 있다. 이와 같은 경우에 정보 배치는 아래와 같은 예시로 주어질 수 있다.
(1) 첫번째 비트 - 액세스 클래스 차단
(2) 두번째 내지 다섯번째 비트 - "SIB1-NB 스케줄링 및 크기와 "폴백" (12~15 사이의 값은 폴백을 지시함)
(3) 여섯번째 비트 - aSIB1-NB
만약, TDD 시스템에서 상기 제안과 유사한 목적을 달성하고자 하는 경우, SIB1-NB가 전송되는 비앵커 캐리어(non-anchor carrier)의 위치 및 추가적인 정보(예를 들어, NB-IoT FDD 시스템에서, MIB-NB에 포함되지 않는 SIB1-NB 스케줄링 관련 정보)가 DCI 포맷 N2에 포함될 필요가 있다. 이때, SIB1-NB가 전송되는 비앵커 캐리어의 위치 및 추가적인 정보는, DCI 포맷 N2 직접 지시 정보의 미사용 6 비트의 일부 정보를 변경하여 전달될 수 있다. 또는, DCI 포맷 N2에서 플래그 필드(flag field)가 0과 1인 경우, 서로 크기 또는 DCI 포맷을 맞추기 위해서 사용된 미사용 6비트를 추가로 사용하여 전달될 수 있다. 미사용 6비트를 추가로 사용하여 전달하는 방법은, DCI 포맷 N2가 직접 지시 정보를 전송하는 경우, 미사용 비트로 남아있는 전체 12 비트를 보다 적극적으로 사용하는 경우에 해당한다.
상기 예시를 (eF)eMTC에 적용하는 경우에는 DCI 포맷 6-2의 직접 지시 정보에서 미사용 비트의 일부 정보 구성이 달라질 수 있다. 예를 들어, MIB(-BR)에는 액세스 클래스 차단 정보가 포함되지 않으며, MIB에 포함된 SIB1-BR 스케줄링 정보는 5비트 중에서 18개의 상태가 사용되며, DCI 포맷 6-2의 직접 지시 정보는 3개의 미사용 비트만 남아 있다. 따라서, 전술한 액세스 클래스 차단 정보는 생략될 수 있으며, SIB1-BR 스케줄링 정보의 일부 상태만 3개의 미사용 비트를 통해 전달될 수 있다. 이때, 하나의 상태는 폴백 모드를 지시하기 위해 사용될 수 있다.
전술한 MIB 디코딩을 생략하는 방법은, MIB 디코딩을 수행하는데 오래 걸리는 환경에서 보다 효과적으로 적용될 수 있다. 따라서, SIB1-BR 스케줄링 정보의 일부 정보만 직접 지시 정보에 포함되는 경우, 높은 TBS나 반복 전송 횟수가 상대적으로 한정하여, 제한된 SIB1-BR 스케줄링 정보가 직접 지시 정보에 포함될 수 있다.
상기 나열된 정보를 보다 간단히 하기 위하여, MIB-NB 값의 변경 여부만 알려주는 방법이 고려될 수 있다. 예를 들어, 변경되지 않는 정보는, 액세스 클래스 차단, SIB1-NB 스케줄링 및 크기, 및 aSIB1-NB 중 적어도 하나를 포함할 수 있다. 그러나, 이와 같은 경우, 해당 정보 또는 정보들이 이전과 동일하다는 것을 해석함에 있어서 모호함이 있을 수 있다. 예를 들어, 단말이 DCI 포맷 N2에 의해 지시되는 시스템 정보 변경 통지(system information modification notification)의 검출을 실패한 경우, 단말은 DCI 포맷 N2가 전송되지 않았는지, 또는 시스템 정보 변경 통지의 검출을 실패한 것인지 알 수 없다. 따라서, 특정 시점에 DCI 포맷 N2가 전송되었을 때, NB-IoT 단말은 이전 MIB-NB를 정확히 알지 못할 수 있다. 이와 같은 영향을 완화하기 위하여, "이전 MIB-NB"는, DCI 포맷 N2가 수신되기 전의 MIB-NB만 의미하는 것이 아니라, 이전 N회 또는 N번의 MIB-NB TTI, N번의 SIB1-NB TTI, 또는 N번의 SIB1-NB 변경 구간에 속하는 MIB-NB를 포함하는 것으로 확장될 수 있다.
기지국은, NB-IoT 단말이 DCI 포맷 N2를 이용하여 MIB-NB 및/또는 SIB1-NB의 디코딩 시도를 생략할 수 있는지 여부를 다른 방법으로 NB-IoT 단말들에게 알려줄 필요가 있을 수 있다. 예를 들어, 다른 방법은, 기지국의 능력과 같은 상위 레벨 시그널링(high-layer signaling) 또는 SIBx-NB에서 페이징(paging) DCI 관련 검색 공간 등을 설정(configuration) 하는 정보(예를 들어, PCCH-Config-NB)에 추가 필드를 할당함으로써, 기지국으로부터 수신되는 DCI 포맷 N2를 MIB-NB 디코딩 시도를 생략하는데 사용할 수 있는지 여부를 알리는 방법을 포함할 수 있으나, 이에 한정되지 않는다. 예를 들어, 레거시 기지국은 본 제안의 방법을 고려하지 않고, 직접 지시 정보의 미사용 6 비트와 DCI 포맷 N2의 예약된 정보 6 비트에 임의의 값을 할당하여 사용하고 있을 수 있다. 따라서, 기지국과 NB-IoT 단말 간 동작 및 해석을 일치시키기 위해서는, 전술한 바와 같은 별도의 시그널 또는 절차가 필요할 수 있다. 또는, 직접 지시 정보에서 systemInfoValueTag 5비트(B-비트라고 표현함)와 MIB-NB 내에서 systemInfoValueTag를 제외한 임의의 정보가 변경되었는지 여부를 알려주는 1비트(A-비트라고 표현함)가 사용되는 경우, A-비트가 '0'이면, NB-IoT 단말이 항상 MIB-NB를 읽도록 설정될 수 있다. 예를 들어, A-비트가 '0'일 때, NB-IoT 단말은 직접 지시 정보의 systemInfoValueTag 값과 관계 없이, 항상 MIB-NB 디코딩을 시도하며, systemInfoValueTag 값은 MIB-NB에서 지시된 값이 사용되거나 저장될 수 있다. 이는 기지국이 직접 지시 정보를 MIB-NB 디코딩 시도를 생략하기 위한 용도로 사용하지 않는 경우, NB-IoT 단말이 직접 지시 정보에서 미사용 6 비트를 오해할 수 있기 때문이다. 만약, A-bit가 '1'이면, NB-IoT 단말은 B-bits를 확인할 수 있다. 그리고, NB-IoT 단말은, 확인된 B-bits가 기존에 알고 있던 systemInfoValueTag와 동일한 값이면, MIB-NB 디코딩 시도를 생략하고, 기존에 알고 있던 systemInfoValueTag와 다른 값이면, MIB-NB 디코딩을 수행한다. A-bit의 원래 의미와 관계 없이 systemInfoValueTag를 제외한 모든 정보는 MIB-NB의 디코딩을 통해서 획득된 값을 이용한다.
전술한 바와 같이, DCI 포맷 N2를 이용하여 알려진 정보가 MIB-NB 디코딩 시도를 생략하기 위해서 사용될 때, NB-IoT 단말은 DCI 포맷 N2에 포함되지 않은 MIB-NB 정보를 이전과 동일하다고 가정할 수 있다. Release 14에 따른 NB-IoT의 MIB-NB를 예로 들어, SFN 정보 및 하이퍼 프레임 번호(hyper frame number)는 예측 가능한 정보이므로, NB-IoT 단말이 DCI 포맷 N2를 검출하는 시점에 해당 타이밍(timing) 정보에 대한 모호함이 없다면, NB-IoT 단말이 해당 타이밍 정보를 직접 계산할 수 있다.
또한, 시스템 값 태그(System value tag) 값은 단말기가 이전에 획득했던 값 보다 1만큼 큰 값으로 변경되었다고 가정할 수 있다. 그리고, 액세스 클래스 차단 정보가 DCI 포맷 N2에 의해 직접 지시되는 경우, 해당 값을 DCI 포맷 N2에서 획득한 값으로 가정할 수 있다. 또한, DCI 포맷 N2로부터 직접 알 수 없고, DCI 포맷 N2가 MIB-NB를 다시 디코딩하라는 폴백 동작을 지시하지 않은 경우, 액세스 클래스 차단은 되지 않았다고 가정할 수 있다. 운용 모드와 관련된 값은 기존에 NB-IoT 단말이 획득한 값과 동일하다고 가정할 수 있다. 만약, DCI 포맷 N2에 MIB-NB 디코딩 시도를 생략하기 위해 추가되는 정보보다 많은 정보가 추후 MIB-NB에 추가되는 경우, NB-IoT 단말은 DCI 포맷 N2로 MIB-NB가 지시되더라도, 해당 정보가 이전과 동일한 값이라고 가정할 수 있다. 즉, DCI 포맷 N2가 폴백을 지시하여, NB-IoT 단말이 MIB-NB를 디코딩해야 하는 경우, 앞서 언급한 MIB-NB에 추가된 새로운 필드의 변경 때문일 수 있다.
또한, DCI 포맷 N2가 MIB-NB디코딩 시도를 생략할 수 있는 정보를 지시하지만, 지시된 정보를 해석할 때 MIB-NB의 일부 필드가 과거 값과의 상대적인 변경을 DCI 포맷 N2로 지시받거나 해석해야 하는 경우, NB-IoT 단말이 DCI 포맷 N2가 전송될 수 있는 시점(한번 또는 그 이상의 특정 횟수)에서 해당 DCI 포맷 N2를 검출하지 못한 경우, 항상 MIB-NB 디코딩을 시도해야 할 수 있다. 이는 NB-IoT 단말이 DCI 포맷 N2의 검출을 실패하였는지, 또는 DCI 포맷 N2로 시스템 정보 변경 통지가 없었는지 알 수 없는 경우에 더욱 그러하다.
상기 제안한 방법에서 DCI 포맷 N2와 직접 지시 정보의 각 미사용 비트는 설명의 편의상 FDD 시스템(LTE Release 13, 14)을 기준으로 설명한 것이며, TDD 시스템 또는 그 이후의 release에서 각 unused 비트 수가 변경되는 경우에도, 전술한 방법과 동일하거나 또는 유사한 방법으로 MIB-NB 및/또는 SIB1-NB 디코딩 생략을 허용할 수 있다. 뿐만 아니라, 제안된 방법들은, NB-IoT가 아닌 eMTC 또는 다른 시스템에서도 시스템 정보 변경을 알리기 위한 DCI를 적극적으로 이용함으로써, NB-IoT 단말의 불필요한 동작이 생략될 수 있다.
상기 제안한 NB-IoT와 eMTC에서 시스템 정보 변경을 알려주는 채널(예를 들어, DCI 포맷 N2 또는 DCI 포맷 6-2)에서 미사용 비트를 이용하여 MIB-NB 디코딩 시도를 생략하는 방법들은, "각 비트 별 정보 할당"이 아닌 "표 형태의 정보 할당"도 가능하다. 예를 들어, 시스템 정보 변경을 알려주는 채널의 미사용 비트(들) 또는 상태(들)가 항상 '0'으로 설정되어 있으면, 폴백 모드(마스터 정보 블록(Master information block)을 디코딩하도록 지시)는 모든/또는 일부 미사용 비트(들) 또는 상태 (들)가 0인 경우로 할당할 수 있다. 이에 따라, 상기 제안된 기법으로 시스템 정보 변경을 알려주는 채널의 미사용 비트(들) 또는 상태(들)이 사용되는 것을 모르는 단말, 상기 제안된 기법을 지원하지 않는 기지국, 그리고 상기 제안된 기법을 지원하는 단말 사이에 "시스템 정보의 변경을 알려주는 채널의 미사용 비트(들) 또는 상태(들)"에 대한 의도와 해석이 달라질 가능성을 배제할 수 있다. 이는 "각 비트 별 정보 할당" 방법에도 동일하게 적용될 수 있다.
4.12. 제12 제안: "aSIB1-NB의 반복 전송 횟수"
aSIB1-NB는 SIB1-NB와 전송 주기가 다를 수 있으며, 일반적으로 SIB1-NB 보다 그 주기가 길거나 같을 수 있다. 또한, aSIB1-NB가 기존의 SIB1-NB가 전송되는 라디오 프레임 내의 3번 서브프레임 (기존의 SIB1-NB는 4번 서브프레임에서 전송)에서 전송될 때, aSIB1-NB의 반복 전송 횟수는 MIB-NB의 schedulingInfoSIB1로부터 유도되는 SIB1-NB의 반복 전송 횟수로부터 유도될 수 있다. 이때, SIB1-NB의 반복 전송 횟수는 다음과 같이 두 방법으로 설정될 수 있다.
1) aSIB1-NB의 반복 전송 횟수는 기존 SIB1-NB의 반복 전송 횟수를 따른다.
A. 특징적으로, 기존 SIB1-NB의 반복 전송 횟수가 4 및 8인 경우, aSIB1-NB의 전송이 허용되지 않을 수도 있다.
B. 도 16a 내지 도 16c는 aSIB1-NB가 기존 SIB1-NB와 동일한 주기 및 동일한 반복 전송 횟수로 전송될 때 aSIB1-NB가 전송되는 위치를 나타내는 도면이다. SIB1-NB와 동일한 횟수로 반복 전송되는 aSIB1-NB의 전송은 각 반복 전송 횟수에 따라 도 16a 내지 도 16c와 같이 주어질 수 있다. 도 16a 내지 도 16c는 각각 기존 SIB1-NB의 반복 전송 횟수가 4, 8, 및 16일 때, aSIB1-NB가 기존 SIB1-NB와 동일한 주기 및 동일한 반복 전송 횟수로 전송되는 경우를 나타낸다.
2) SIB1-NB 변경 주기 내에서 aSIB1-NB가 반복 전송되는 서브프레임의 수는 기존 SIB1-NB가 동일한 구간 내에서 반복 전송된 서브프레임의 절반이거나, 기존 SIB1-NB가 동일한 구간(예를 들어, SIB1-NB 변경 주기인 40.96sec) 내에서 반복 전송된 서브프레임의 수보다 작을 수 있다. 예를 들어, aSIB1-NB가 반복 전송되는 서브프레임의 수는, 기존 SIB1-NB가 동일한 구간 내에서 반복 전송된 서브프레임의 1/2, 또는 1/4 일 수 있으나, 이에 한정되지 않는다. 또한, aSIB1-NB가 반복 전송되는 서브프레임의 수는 고정된 값일 수도 있고, 또는 부호화율을 기준으로 하나 이상의 다양한 값으로 결정될 수 있다. 이때, 부호화율은, 서브프레임/슬롯 내에서 SIB1-NB를 전송할 수 있는 자원 요소의 개수 및 SIB1-NB의 TBS 중 적어도 하나에 기초하여 결정될 수 있다. 또한, RE 개수는, 운용 모드와 CRS/NRS 안테나 포트 수에 기초하여 결정될 수 있다. 또한, 부호화율을 특정 값과 비교한 결과에 기초하여 aSIB1-NB가 반복 전송되는 서브프레임의 수가 결정될 수 있다. 예를 들어, 부호화율이 특정 값보다 큰지 또는 작은지에 따라, aSIB1-NB가 반복 전송되는 서브프레임의 수는 기존 SIB1-NB의 전송에 사용되는 서브프레임의 수와 동일하거나 또는 특정 값(예를 들어, 1/2 또는 1/4)만큼 작을 수도 있다.
A. 예외적으로, 이는 SIB1-NB의 반복 전송 횟수가 4와 8인 경우에만 해당될 수도 있다. 만약, SIB1-NB의 반복 전송 횟수가 16 보다 큰 값이 있다면, 가장 큰 반복 전송 횟수보다 작은 값들에 대해서는, 4와8인 경우와 동일하게 예외로 처리될 수 있다.
B. aSIB1-NB의 전송을 일부 서브프레임에서 절반만큼 생략하는 방법은 다음과 같을 수 있다.
a. SIB1-NB 변경 주기(40.96s) 내에서 해당 셀의 일부 SIB1-NB TTI(2.56s)에서 aSIB1-NB의 전송을 생략하는 방법
- aSIB1-NB의 전송이 생략되는 SIB1-NB TTI는 셀 ID에 의해 유도될 수 있다. 예를 들어, "((cell_ID-(cell_ID%NRep))/NRep)%2"가 0인지 1인지 여부에 따라, aSIB1-NB의 전송이 생략되는 SIB1-NB TTI가 결정될 수 있다. 예를 들어, ((cell_ID-(cell_ID%NRep))/NRep)%2" 값이 0인 경우, 짝수 번째 SIB1-NB TTI 만 선택적으로 aSIB1-NB의 전송에 사용될 수 있으며, 1인 경우, 홀수 번째 SIB1-NB TTI 만 선택적으로 aSIB1-NB의 전송에 사용될 수 있다. 이때, NRep는 schedulingInfoSIB1으로 유도되는 SIB1-NB의 반복 전송 횟수를 의미할 수 있다.
b. SIB1-NB TTI 내에서 해당 셀의 일부 SIB1-NB 전송 윈도우(transmission window) 160msec에서 aSIB1-NB 전송을 생략하는 방법
- aSIB1-NB의 전송이 생략되는 SIB1-NB 전송 윈도우는, 셀 ID에 의해 유도될 수 있다. 예를 들어, "((cell_ID-(cell_ID%NRep))/NRep)%2"가 0인지 1인지에 따라, aSIB1-NB의 전송이 생략되는 SIB1-NB 전송 윈도우가 결정될 수 있다. 예를 들어, "((cell_ID-(cell_ID%NRep))/NRep)%2" 값이 0인 경우, 해당 셀에서 SIB1-NB의 전송에 사용되는 SIB1-NB 전송 윈도우 중에서 짝수 번째로 사용되는 SIB1-NB 전송 윈도우만 선택적으로 aSIB1-NB의 전송에 사용될 수 있다. "((cell_ID-(cell_ID%NRep))/NRep)%2" 값이 1인 경우, 해당 셀에서 SIB1-NB의 전송에 사용되는 SIB1-NB 전송 윈도우 중에서 홀수 번째로 사용되는 SIB1-NB 전송 윈도우만 선택적으로 aSIB1-NB의 전송에 사용될 수 있다. 이때, NRep는 schedulingInfoSIB1으로 유도되는 SIB1-NB의 반복 전송 횟수를 의미할 수 있다.
c. SIB1-NB 전송 윈도우 내에서 해당 셀의 일부 라디오 프레임에서 aSIB1-NB의 전송을 생략하는 방법
- 도 17a 내지 도 17c는 일 실시예에 따라 aSIB1-NB의 반복 전송 횟수가 기존 SIB1-NB의 반복 전송 횟수의 절반일 때, aSIB1-NB가 전송되는 위치를 나타내는 도면이다. 예를 들어, 도 17a 내지 도 17c는 각각 기존 SIB1-NB의 반복 전송 횟수가 4, 8, 및 16이고, aSIB1-NB의 반복 전송 횟수가 2, 4, 및 8일 때, aSIB1-NB가 전송되는 위치를 나타낸다.
- 또한, 도 18a 내지 도 18c는 aSIB1-NB의 반복 전송 횟수가 기존 SIB1-NB의 반복 전송 횟수의 절반일 때, aSIB1-NB가 전송되는 위치를 나타내는 도면이다.
- aSIB1-NB의 전송이 생략되는 라디오 프레임은 셀 ID에 의해 유도될 수 있다. 예를 들어, "((cell_ID-(cell_ID%NRep))/NRep)%2"가 0인지 1인지에 따라 aSIB1-NB의 전송이 생략되는 라디오 프레임이 결정될 수 있다. 이때, aSIB1-NB의 전송이 생략되는 라디오 프레임은 SIB1-NB의 전송에 사용되는 라디오 프레임일 수 있다. 예를 들어, "((cell_ID-(cell_ID%NRep))/NRep)%2" 값이 0인 경우, 해당 셀에서 SIB1-NB의 전송에 사용되는 라디오 프레임 중에서 짝수 번째로 사용되는 라디오 프레임의 3번 서브프레임만 선택적으로 aSIB1-NB의 전송에 사용될 수 있다. 또한, "((cell_ID-(cell_ID%NRep))/NRep)%2" 값이 1인 경우, 해당 셀에서 SIB1-NB의 전송에 사용되는 라디오 프레임 중에서 홀수 번째로 사용되는 라디오 프레임의 3번 서브프레임만 선택적으로 aSIB1-NB의 전송에 사용될 수 있다. 이때, NRep는 schedulingInfoSIB1으로 유도되는 SIB1-NB의 반복 전송 횟수를 의미할 수 있다.
- 도 18a 내지 도 18c에 도시된 방법(예를 들어, "할당 방법 A")는 도 19a 내지 도 19c 에 도시된 방법(예를 들어, "할당 방법 B")로 변형될 수 있다. 할당 방법 B는, 기존의 SIB1-NB가 전송되는 SIB1-NB 전송 윈도우 160msec 내의 라디오 프레임 내에서, 셀 ID에 따라 SIB1-NB 전송 윈도우의 앞에 위치하는 4개의 3번 서브프레임 또는 뒤에 위치하는 4개의 3번 서브프레임에서 aSIB1-NB를 20msec 주기로 전송하는 방법이다. 예를 들어, SIB1-NB 전송 윈도우의 앞에 위치하는 4개의 3번 서브프레임 및 뒤에 위치하는 4개의 3번 서브프레임은 "((cell_ID-(cell_ID%NRep))/NRep)%2"에 기초하여 구분될 수 있다.
- "할당 방법 A"와 "할당 방법 B"에서 셀 ID를 이용하여 aSIB1-NB를 전송할 서브프레임의 위치를 선택하는 방법은, 전술한 "SIB1-NB 변경 주기 (40.96s) 내에서 해당 셀의 일부 SIB1-NB TTI(2.56s)에서 aSIB1-NB의 전송을 생략하는 방법"과 "SIB1-NB TTI 내에서 해당 셀의 일부 SIB1-NB 전송 윈도우 에서 aSIB1-NB의 전송을 생략하는 방법"에서 각각 SIB1-NB TTI 및 SIB1-NB 전송 윈도우를 선택 또는 생략하기 위한 방법에 적용될 수 있다.
aSIB1-NB의 반복 전송 빈도는, 기존 SIB1-NB의 반복 전송 횟수에 따라 전술한 1) 방법과 2) 방법 중에서 서로 다른 방법이 적용될 수 있다. 또는, MIB-NB가 aSIB1-NB의 반복 전송 횟수 또는 반복 전송 빈도에 대응하는 값을 직접 지시할 수 있다.
4.13. 제13 제안: "aSIB1-NB의 코드워드 및 자원 매핑(codeword and resource mapping) "
본 절은 전술한 제8 제안 "BCCH를 포함하는 additional NPDSCH의 코드 워드 및 자원 매핑"의 내용에 이어서 aSIB1-NB의 코드워드 및 자원 매핑에 대하여 제안한다. 이때, aSIB1-NB의 코드워드 및 자원 매핑은, 3번 서브프레임에서 전송되는 aSIB1-NB의 반복 전송 횟수가 기존 SIB1-NB의 반복 전송 횟수와 동일한 경우(예를 들어, 특정 구간 내에서 aSIB1-NB의 반복 전송에 사용되는 서브프레임의 수와 기존 SIB1-NB의 반복 전송에 사용되는 서브프레임의 수가 동일한 경우) "Case-1"과 3번 서브프레임에서 추가로 전송되는 aSIB1-NB의 반복 전송 횟수가 기존 SIB1-NB의 반복 전송 횟수의 절반인 경우 "Case-2"로 구분하여 따로 정의할 수 있다.
도 20은 일 실시예에 따른 aSIB1-NB의 코드워드 및 자원 매핑을 설명하기 위한 도면이다. 도 20을 참조하면, A 내지 H는 SIB1-NB 전송 윈도우 내에서 SIB1-NB가 전송되는 8개의 서브프레임에서 전송되는 SIB1-NB의 소프트 버퍼 출력(soft-buffer output)을 순차적으로 나타낸 것이다.
1) "Case-1"
A. aSIB1-NB는 SIB1-NB 전송 윈도우 구간 내에서 순차적으로 {E, F, G, H, A, B, C, D}의 순서로 전송될 수 있다. 예를 들어, 커버리지가 좋은(good-coverage) NB-IoT 단말들이 채널 코딩 이득을 보다 빨리 획득하도록 하기 위하여, aSIB1-NB의 전송은 SIB1-NB의 전송과 8개의 라디오 프레임 또는 8개의 서브프레임 오프셋을 가지도록 순환 시프트(circular shift)된 형태로 전송될 수 있다. 또한, aSIB1-NB는 순차적으로 {E, F, G, H, A, B, C, D}, 또는 {A, B, C, D, E, F, G, H}가 아닌 다른 순서로 정의되어 전송될 수 있다. 이는 NB-IoT 단말들이 채널 코딩 이득을 보다 빨리 획득할 수 있도록 하기 위한 것일 수 있다. 전술한 aSIB1-NB의 전송 순서는, aSIB1-NB 또는 SIB1-NB의 전송에 사용되는 서브프레임 내에서 data RE, TBS, 반복 전송 횟수, 부호화율 중 적어도 하나의 파라미터에 기초하여 결정될 수 있다. 이와 같이 3번 및 4번 서브프레임에서 연속하여 전송되는 SIB1-NB 및 aSIB1-NB가 서로 동일하지 않은 경우, 3번 및 4번 서브프레임에서 SIB1-NB 및 aSIB1-NB의 전송에 사용되는 스크램블링이 동일한 수학식 및 파라미터에 의해 결정될 수 있다. 예를 들어, 현재 SIB1-NB의 전송에 사용되는 스크램블링 수학식
Figure PCTKR2018003387-appb-I000011
을 변경하지 않고 aSIB1-NB에 적용하더라도, 셀 간 간섭 문제가 크게 발생하지 않을 수 있다. 물론, 셀 간 간섭을 보다 확실하게 억제하기 위하여, 3번 및 4번 서브프레임에서 SIB1-NB 및 aSIB1-NB의 전송에 사용되는 스크램블링은, 라디오 프레임 번호,
Figure PCTKR2018003387-appb-I000012
,
Figure PCTKR2018003387-appb-I000013
, 및 nf가 동일하더라도, 서로 다른 스크램블링이 적용될 수 있다. 예를 들어, 3번 서브프레임은 4번 서브프레임과 특정 오프셋을 갖는 다른 cinit로 정의될 수 있다. 예를 들어, 3번 서브프레임의 nf는 4번 서브프레임의 nf보다 1만큼 작은 값일 수 있으나, 이에 한정되지 않는다.
B. 전술한 A 방법과 달리, 3번 서브프레임에서 전송되는 aSIB1-NB는 동일한 라디오 프레임의 4번 서브프레임에서 전송되는 SIB1-NB와 동일할 수 있다. 이때, 3번 및 4번 서브프레임에서 연속적으로 전송되는 동일한 신호를 I/Q-레벨 또는 심볼-레벨(symbol-level)에서 결합 이득(combining gain) 또는 평균 이득(average gain)을 보다 효과적으로 획득하기 위하여, aSIB1-NB는 {A, B, C, D, E, F, G, H}와 같은 순서로 전송될 수 있다. 다만, 이때, 셀 간 간섭을 완화하기 위하여, SIB1-NB의 전송에 사용되는 스크램블링과 다른 스크램블링이 적용될 수 있다. 서로 다른 스크램블링을 적용하는 방법은 전술한 방법을 따르거나, 또는 4번 서브프레임에서 전송되는 SIB1-NB가 3번 서브프레임에서 각 자원 요소별로 I/Q-레벨에서 위상 회전(phase-rotation)된 형태로 스크램블링될 수 있다. 이는 NPBCH에서 I/Q-레벨의 위상 회전(TS 36.311의 10.2.4.4에서 첫번째 수학식)을 적용한 방법과 유사하거나 동일할 수 있다.
C. 전술한 A 방법과 유사한 방법으로, aSIB1-NB는 부호화율을 증가 시키는 방법으로 전송될 수 있다. 예를 들어, 도 14에 도시된 바와 같이, 운용 모드, CRS/NRS 안테나 포트 수, 및 SIB1-NB의 TBS에 따라 도 20에서 원형 버퍼의 데이터가 SIB1-NB가 전송되는 {A, B, C, D, E, F, G, H}에서 모두 전송되지 못하는 경우(SIB1-NB가 전송되는 {A, B, C, D, E, F, G, H}에서, 원형 버퍼의 데이터가 모두 전송되는 경우도 동일할 수 있다), IR-재전송(IR-retransmission) 방법과 유사한 형태로 구현될 수 있다. 즉, {A, B, C, D, E, F, G, H}에서 전송되는 데이터가 원형 버퍼에서 연속된 주소로부터 획득한 데이터일 때, aSIB1-NB는 H의 마지막 주소에 이어서 전송되는 값으로 채워질 수 있다. 예를 들어, H의 마지막 주소가 도 20에서 원형 버퍼의 마지막 주소와 거의 동일한 경우(예를 들어, H의 마지막 주소와 원형 버퍼의 마지막 주소의 차이가 특정 값보다 작은 경우), 3번 서브프레임과 4번 서브프레임에서 동일한 데이터가 전송되는 것을 회피하기 위하여, 데이터를 읽어오는 원형 버퍼 주소에 특정 값만큼 오프셋이 추가될 수 있다. 예를 들어, 원형 버퍼 크기의 절반만큼 오프셋이 할당되거나, E에 해당하는 만큼 오프셋이 할당될 수 있으나, 이에 한정되지 않는다.
D. 전술한 B 방법과 같이, aSIB1-NB가 {A, B, C, D, E, F, G, H}의 순서로 채워질 때(예를 들어, 3번 서브프레임과 4번 서브프레임의 SIB1-NB 데이터가 동일할 때), 3번 서브프레임에서 전송되는 aSIB1-NB는 4번 서브프레임에서 전송되는 SIB1-NB와 자원 요소 매핑 순서가 다를 수 있다. 이에 따라, aSIB1-NB와 인접한 서브프레임에서 반복 전송되는 SIB1-NB 사이에 주파수 다이버시티가 더욱 증가할 수 있다. aSIB1-NB와 SIB1-NB의 자원 요소 매핑 순서를 다르게 설정하는 것은, X(예를 들어, 6) 자원 요소만큼 순환 시프트시켜 자원 요소 매핑을 다르게 설정하거나, 또는 특정 PN-시퀀스로부터 유도된 순서에 따라 매 심볼 또는 매 서브프레임마다 자원 요소 매핑 순서를 다르게 설정할 수 있으나, 이에 한정되지 않는다.
"Case-2"의 경우
A. 커버리지가 좋은 NB-IoT 단말들이 채널 코딩 이득을 보다 빨리 획득하도록 하기 위하여, aSIB1-NB는 SIB1-NB 전송 윈도우 구간 내에서 순차적으로 {E, G, A, C} 또는 {F, H, B, D}의 순서로 전송될 수 있다. 또한, NB-IoT 단말이 채널 코딩 이득을 빨리 획득하도록 하기 위하여, aSIB1-NB는 순차적으로 {E, G, A, C} 또는 {F, H, B, D}가 아니면서, {A, C, E, G}, {B, D, F, H}도 아닌 다른 순서에 따라 전송될 수 있다. 전술한 aSIB1-NB의 전송 순서는, 서브프레임 내에서 SIB1-NB 또는 aSIB1-NB의 전송에 사용되는 데이터 자원 요소 수, TBS, 반복 전송 횟수, 부호화율, 및 aSIB1-NB의 전송에서 생략된 라디오 프레임 번호 중 적어도 하나의 파라미터에 기초하여 결정될 수 있다.
3번 및 4번 서브프레임에서 연속하여 전송되는 aSIB1-NB 및 SIB1-NB가 서로 동일하지 않은 경우, 3번 및 4번 서브프레임에서 aSIB1-NB 및 SIB1-NB의 전송에 사용되는 스크램블링은 동일한 수학식과 파라미터에 의해 적용될 수 있다. 예를 들어, 현재 SIB1-NB의 전송에 사용되는 스크램블링 수학식
Figure PCTKR2018003387-appb-I000014
을 변경하지 않고 aSIB1-NB의 전송에 적용하더라도, 셀 간 간섭 문제가 크게 발생하지 않을 수 있다. 물론, 셀 간 간섭을 보다 확실하게 억제하기 위해, 3번 및 4번 서브프레임에서 aSIB1-NB 및 SIB1-NB의 전송에 사용되는 스크램블링은 라디오 프레임 번호,
Figure PCTKR2018003387-appb-I000015
,
Figure PCTKR2018003387-appb-I000016
, 및 nf가 동일하더라도, 다른 스크램블링이 적용될 수 있다. 예를 들어, 3번 서브프레임은 4번 서브프레임과 특정 오프셋을 갖는 다른 cinit로 정의될 수 있다. 예를 들어, 3번 서브프레임의 nf는 4번 서브프레임의 nf보다 1만큼 작은 값일 수 있다.
B. 전술한 A 방법과 달리, 3번 서브프레임에서 전송되는 aSIB1-NB는 동일한 라디오 프레임의 4번 서브프레임에서 전송되는 SIB1-NB와 동일할 수 있다. 이때, 3번 및 4번 서브프레임에 걸쳐서 전송되는 동일한 신호를 I/Q-레벨 또는 심볼-레벨에서 결합 이득 또는 평균 이득을 보다 효과적으로 얻기 위하여, aSIB1-NB는 {A, C, E, G} 또는 {B, D, F, H}의 순서로 전송될 수 있다. 다만, 셀 간 간섭을 완화시키기 위하여, SIB1-NB의 전송에 적용되는 스크램블링과 다른 스크램블링이 aSIB1-NB를 전송하는데 적용될 수 있다. 서로 다른 스크램블링을 적용하기 위한 방법은, 전술한 방법에 따르거나, 4번 서브프레임에서 전송되는 SIB1-NB가 3번 서브프레임에서 각 자원 요소 별로 I/Q-레벨에서 위상 회전된 형태로 스크램블링될 수 있다. 이는 NPBCH에서 I/Q-레벨의 위상 회전(TS 36.311의 10.2.4.4에서 첫번째 수학식)을 적용한 방법과 유사하거나 동일할 수 있다.
C. 전술한 A 방법과 유사한 방법으로, aSIB1-NB는 부호화율을 증가 시키는 방법으로 전송될 수 있다. 예를 들어, 도 14에 도시된 바와 같이, 운용 모드, CRS/NRS 안테나 포트 수, 및 SIB1-NB TBS에 따라 도 20에서 원형 버퍼의 데이터가 SIB1-NB가 전송되는 {A, B, C, D, E, F, G, H}에서 모두 전송되지 못하는 경우(SIB1-NB가 전송되는 {A, B, C, D, E, F, G, H}에서 원형 버퍼의 데이터가 모두 전송되는 경우도 동일할 수 있다)에, IR-재전송 방법과 유사한 형태로 구현될 수 있다. 예를 들어, {A, B, C, D, E, F, G, H}에서 전송되는 데이터가 원형 버퍼에서 연속된 주소로부터 획득한 데이터일 때, aSIB1-NB는 H의 마지막 주소에 이어서 전송되는 값으로 채워질 수 있다. 예를 들어, H의 마지막 주소가 도 20에서 원형 버퍼의 마지막 주소와 거의 동일한 경우(예를 들어, H의 마지막 주소와 원형 버퍼의 마지막 주소의 차이가 특정 값보다 작은 경우), 3번 서브프레임 과 4번 서브프레임에서 동일한 데이터가 전송되는 것을 회피하기 위하여, 데이터를 읽어오는 원형 버퍼 주소에 특정 값만큼 오프셋이 추가될 수 있다. 예를 들어, 원형 버퍼 크기의 절반만큼 오프셋이 할당되거나, 또는 E에 대응하는 만큼 오프셋이 할당될 수 있으나, 이에 한정되지 않는다.
D. 전술한 B 방법과 같이, aSIB1-NB가 {A, C, E, G} 또는 {B, D, F, H}의 순서로 채워질 때(예를 들어, 3번 서브프레임과 4번 서브프레임의 SIB1-NB 데이터가 동일할 때), 3번 서브프레임에서 전송되는 aSIB1-NB는 4번 서브프레임에서 전송되는 SIB1-NB와 자원 요소 매핑 순서가 다를 수 있다. 이에 따라, aSIB1-NB와 인접한 서브프레임에서 반복 전송되는 SIB1-NB 간 주파수 다이버시티가 더욱 증가할 수 있다. aSIB1-NB와 SIB1-NB의 자원 요소 매핑 순서를 다르게 설정하는 것은, X(예를 들어, 6) 자원 요소만큼 순환 시프트시켜 자원 요소 매핑을 다르게 설정하거나, 또는 특정 PN-시퀀스로부터 유도된 순서에 따라 매 심볼 또는 매 서브프레임마다 자원 요소 매핑 순서를 다르게 설정할 수 있으나, 이에 한정되지 않는다.
aSIB1-NB의 전송에 관한 모든 방법은, NB-IoT TDD 시스템에서 SIB1-NB가 비앵커 캐리어에서 전송되는 경우, 비앵커 캐리어에서 SIB1-NB가 전송되는 서브프레임의 수가 앵커 캐리어에서 SIB1-NB가 전송되는 서브프레임의 수보다 많은 경우에도 유사하게 적용될 수도 있다. 또한, SIB1-NB가 앵커 캐리어 및 비앵커 캐리어에서 모두 전송되는 경우에도, aSIB1-NB의 전송에 관한 모든 방법이 앵커 캐리어에서 전송되는 SIB1-NB 및 비앵커 캐리어에서 전송되는 SIB1-NB에 유사하게 적용될 수 있다. 예를 들어, 기존 SIB1-NB가 전송되는 서브프레임의 수보다 TDD 시스템에서 SIB1-NB가 전송되는 서브프레임의 수가 많은 경우, 특정 서브프레임은 기존 SIB1-NB로 해석하고, 나머지 서브프레임은 제안된 aSIB1-NB로 해석하여 본 특허의 제안을 적용할 수 있다.
5. 장치의 구성
도 21은 일 실시예에 따른 단말의 구성을 나타내는 도면이다.
도 21에 도시된 단말(100)은 도 1 내지 도 20에 도시된 단말의 신호 수신 동작을 수행할 수 있다.
일 실시예에 따른 단말(100)은 상향링크에서는 송신단으로 동작하고, 하향링크에서는 수신단으로 동작할 수 있다.
일 실시예에 따른 단말(100)은 프로세서(110) 및 수신기를 포함할 수 있다. 그러나, 단말(100)은, 도시된 구성요소보다 많은 구성요소에 의해 구현될 수 있으며, 둘 이상의 구성요소가 결합되어 하나의 구성요소에 의해 구현될 수도 있다. 예를 들어, 도 21에 도시된 바와 같이, 단말(100)은 프로세서(110), 수신기와 송신기를 포함하는 트랜시버(120), 및 메모리(130)를 포함할 수 있으며, 안테나를 더 포함할 수도 있다. 송신기와 수신기가 결합되어 하나의 트랜시버(transceiver)로 구현될 수도 있으며, 송신기와 수신기가 별도로 구현될 수도 있다. 이하, 각 구성요소에 대하여 차례로 살펴본다.
프로세서(110)는 단말(100)의 전반적인 동작을 제어한다.
일 실시예에 따른 프로세서(110)는, MIB-NB(Master Information Block-Narrow Band) 및 SIB1-NB (System Information Block1-Narrow Band)를 기지국으로부터 수신하도록 수신기를 제어하고, MIB-NB 또는 SIB1-NB로부터 추가 SIB1-NB(additional SIB1-NB)의 전송 여부를 지시하는 정보를 획득하고, 획득된 정보에 기초하여 기지국에 의해 무효 하향링크 서브프레임으로 지시된 서브프레임을 유효 서브프레임(valid subframe) 또는 무효 서브프레임으로 판단할 수 있다.
일 실시예에 따른 프로세서(110)는, 무효 하향링크 서브프레임으로 지시된 서브프레임이 유효 서브프레임인 것으로 판단될 때, 무효 하향링크 서브프레임으로 지시된 서브프레임에서 NRS, NPDCCH, 및 NPDSCH 중 적어도 하나를 수신할 수 있다.
또한, 일 실시예에 따른 프로세서(110)는, 무효 하향링크 서브프레임으로 지시된 서브프레임이 무효 서브프레임인 것으로 판단될 때, 무효 하향링크 서브프레임으로 지시된 서브프레임에서 추가 SIB1-NB를 수신하도록 수신기(110)를 제어할 수 있다.
이때, 일 실시예에 따른 추가 SIB1-NB는 SIB1-NB가 전송되는 라디오 프레임 내에서 SIB1-NB가 전송되는 서브프레임에 인접한 3번 서브프레임에서 전송될 수 있다. 또한, 추가 SIB1-NB는, 앵커 캐리어에서 SIB1-NB가 전송되는 서브프레임과 다른 서브프레임에서 전송될 수 있으나, 이에 한정되지 않는다. 실시예예 따라, SIB1-NB는 앵커 캐리어 또는 비앵커 캐리어에서 전송될 수 있으며, SIB1-NB가 앵커 캐리어에서 전송되는지 또는 비앵커 캐리어에서 전송되는지 여부는 MIB-NB에 의해 지시될 수 있다.
일 실시예에 따른 추가 SIB1-NB의 전송 여부는, SIB1-NB의 부호화율(code rate), 상기 SIB1-NB의 TBS(Transport Block Size), SIB1-NB의 반복 전송 횟수, NB-IoT의 운용 모드, NRS 안테나 포트 수, 및 CRS 안테나 포트 수 중 적어도 하나에 기초하여 결정될 수 있다. 또한, 추가 SIB1-NB의 전송 여부를 지시하는 정보는, MIB-NB의 미사용 비트(unused bit)에 의해 지시될 수 있으며, 추가 SIB1-NB의 반복 전송 횟수는 SIB1-NB의 반복 전송 횟수에 기초하여 결정될 수 있다.
또한, 일 실시예에 따른 프로세서(110)는, MIB-NB로부터 SIB1-NB가 전송되는 비앵커 캐리어의 위치 정보를 획득하고, 획득된 위치에 기초하여 SIB1-NB를 수신하도록 수신기를 제어할 수 있다.
일 실시예에 따른 트랜시버(120)는, 정보, 데이터, 및/또는 메시지의 송수신을 제어할 수 있다.
일 실시예에 따른 메모리(130)는, 프로세서(110)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 프로세서(110)에서 처리되는 데이터를 저장할 수 있다. 메모리(130)은 프로세서(110)의 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 프로세서(110)와 데이터를 주고받을 수 있다.
도 22는 일 실시예에 따른 기지국의 구성을 나타내는 도면이다.
도 22에 도시된 기지국(200)은 도 1 내지 도 20에 도시된 기지국의 신호 전송 동작을 수행할 수 있다.
일 실시예에 따른 기지국(200)은 상향링크에서는 수신단으로 동작하고, 하향링크에서는 송신단으로 동작할 수 있다.
일 실시예에 따른 기지국(200)은 프로세서(210) 및 송신기를 포함할 수 있다. 그러나, 기지국(200)은, 도시된 구성요소보다 많은 구성요소에 의해 구현될 수 있으며, 둘 이상의 구성요소가 결합되어 하나의 구성요소에 의해 구현될 수도 있다. 예를 들어, 도 22에 도시된 바와 같이, 기지국(200)은 프로세서(210), 송신기와 수신기를 포함하는 트랜시버(220), 및 메모리(230)를 포함할 수 있으며, 안테나를 더 포함할 수도 있다. 전술한 바와 같이, 송신기와 수신기가 결합되어 하나의 트랜시버(220)로 구현될 수 있으며, 실시예에 따라 송신기와 수신기가 별도로 구현될 수도 있다.
일 실시예에 따른 프로세서(210)는, MIB-NB 및 SIB1-NB를 단말에게 전송하도록 송신기를 제어할 수 있으며, MIB-NB 또는 상기 SIB1-NB는, 추가 SIB1-NB의 전송 여부를 지시하는 정보를 포함할 수 있다. 또한, 추가 SIB1-NB가 전송될 수 있는 서브프레임은 무효 하향링크 서브프레임으로 지시될 수 있으며, 무효 하향링크 서브프레임으로 지시된 서브프레임은, 단말에 의해, 추가 SIB1-NB의 전송 여부를 지시하는 정보에 기초하여 유효 서브프레임(valid subframe) 또는 무효 서브프레임으로 판단될 수 있다.
일 실시예에 따른 송신기(220)는, 정보, 데이터, 및/또는 메시지의 송신을 제어할 수 있다.
일 실시예에 따른 단말(100)의 수신기(120) 및 기지국(100)의 송신기(220)는, 데이터를 송수신하기 위한 패킷 변조 및 복조 기능, 고속 패킷 채널 코딩 기능, 직교 주파수 분할 다중 접속(OFDMA: Orthogonal Frequency Division Multiple Access) 패킷 스케줄링, 시분할 듀플렉스(TDD: Time Division Duplex) 패킷 스케줄링 및/또는 채널 다중화 기능 중 적어도 하나를 수행할 수 있으나, 이에 한정되지 않는다. 또한, 실시예에 따라, 단말(100) 및 기지국(200)은 저전력 RF(Radio Frequency)/IF(Intermediate Frequency) 모듈을 더 포함할 수 있다.
한편, 일 실시예에 따른 단말(100)은, 개인휴대단말기(PDA: Personal Digital Assistant), 셀룰러 폰(cellular phone), 개인통신서비스(PCS: Personal Communication Service) 폰, GSM(Global System for Mobile) 폰, WCDMA(Wideband CDMA) 폰, MBS(Mobile Broadband System) 폰, 핸드헬드 PC(Hand-Held PC), 노트북 PC, 스마트(Smart) 폰 또는 멀티모드 멀티밴드(MM-MB: Multi Mode-Multi Band) 단말기 등을 포함할 수 있으나, 이에 한정되지 않는다. 예를 들어, 스마트 폰은, 이동통신 단말기와 개인 휴대 단말기의 장점을 혼합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다. 또한, 멀티모드 멀티밴드 단말기는, 멀티 모뎀 칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템(예를 들어, CDMA(Code Division Multiple Access) 2000 시스템, WCDMA(Wideband CDMA) 시스템 등)에서 모두 작동할 수 있는 단말기를 의미할 수 있다.
본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어를 통해 구현되는 경우, 본 발명은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서(processor), 컨트롤러(controller), 마이크로 컨트롤러(micro controller), 및 마이크로 프로세서(micro-processor) 등에 의해 구현될 수 있으나, 이에 한정되지 않는다.
펌웨어나 소프트웨어를 통해 구현되는 경우, 본 발명은 전술한 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 예를 들어, 전술한 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하는 프로그램은 메모리(130, 230)에 저장되어 프로세서(110, 210)에 의해 실행될 수 있다.
본 발명은 본 발명의 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고, 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
본 발명의 실시예들은 다양한 무선접속 시스템에 적용될 수 있다. 예를 들어, 무선접속 시스템들은 3GPP(3rd Generation Partnership Project) 또는 3GPP2 시스템 등을 포함할 수 있으나, 이에 한정되지 않는다. 본 발명의 실시예들은 전술한 무선접속 시스템뿐만 아니라, 전술한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다. 나아가, 본 발명은 초고주파 대역을 이용하는 밀리미터웨이브(mmWave) 통신 시스템에도 적용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 단말이 기지국으로부터 신호를 수신하는 방법에 있어서,
    MIB-NB(Master Information Block-Narrow Band) 및 SIB1-NB (System Information Block1-Narrow Band)를 상기 기지국으로부터 수신하는 단계;
    상기 MIB-NB 또는 상기 SIB1-NB로부터 추가 SIB1-NB(additional SIB1-NB)의 전송 여부를 지시하는 정보를 획득하는 단계; 및
    상기 획득된 정보에 기초하여, 상기 기지국에 의해 무효 하향링크 서브프레임(invalid downlink subframe)으로 지시된 서브프레임을 유효 서브프레임(valid subframe) 또는 무효 서브프레임(invalid subframe)으로 판단하는 단계;
    를 포함하는, 신호 수신 방법.
  2. 제 1항에 있어서,
    상기 무효 하향링크 서브프레임으로 지시된 서브프레임이 상기 유효 서브프레임인 것으로 판단될 때, 상기 무효 하향링크 서브프레임으로 지시된 서브프레임에서 NRS, NPDCCH, 및 NPDSCH 중 적어도 하나를 수신하는 단계;
    를 더 포함하는, 신호 수신 방법.
  3. 제 1항에 있어서,
    상기 무효 하향링크 서브프레임으로 지시된 서브프레임이 상기 무효 서브프레임인 것으로 판단될 때, 상기 무효 하향링크 서브프레임으로 지시된 서브프레임에서 상기 추가 SIB1-NB를 수신하는 단계;
    를 더 포함하는, 신호 수신 방법.
  4. 제 3항에 있어서,
    상기 추가 SIB1-NB는 상기 SIB1-NB가 전송되는 라디오 프레임 내에서 상기 SIB1-NB가 전송되는 서브프레임에 인접한 서브프레임에서 전송되며,
    상기 추가 SIB1-NB가 전송되는 서브프레임은 서브프레임 인덱스 3에 대응하는 서브프레임인 것을 특징으로 하는, 신호 수신 방법.
  5. 제 3항에 있어서,
    상기 추가 SIB1-NB는 앵커 캐리어에서 상기 SIB1-NB가 전송되는 서브프레임과 다른 서브프레임에서 전송되는, 신호 수신 방법.
  6. 제 3항에 있어서,
    상기 SIB1-NB는 앵커 캐리어 또는 비앵커 캐리어에서 전송되고,
    상기 SIB1-NB가 상기 앵커 캐리어에서 전송되는지 또는 상기 비앵커 캐리어에서 전송되는지 여부는 상기 MIB-NB에 의해 지시되는, 신호 수신 방법.
  7. 제 6항에 있어서, 상기 신호 수신 방법은,
    상기 MIB-NB로부터 상기 SIB1-NB가 전송되는 비앵커 캐리어의 위치 정보를 획득하는 단계; 및
    상기 획득된 위치 정보에 기초하여, 상기 SIB-NB를 수신하는 단계;
    를 더 포함하는, 신호 수신 방법.
  8. 제 1항에 있어서,
    상기 추가 SIB1-NB의 반복 전송 횟수는 상기 SIB1-NB의 반복 전송 횟수에 기초하여 결정되는, 신호 수신 방법.
  9. 제 1항에 있어서,
    상기 추가 SIB1-NB의 전송 여부를 지시하는 정보는, 상기 MIB-NB의 미사용 비트(unused bit)에 의해 지시되는, 신호 수신 방법.
  10. 제 1항에 있어서,
    상기 추가 SIB1-NB의 전송 여부는, 상기 SIB1-NB의 부호화율(code rate), 상기 SIB1-NB의 TBS(Transport Block Size), 상기 SIB1-NB의 반복 전송 횟수, NB-IoT의 운용 모드, NRS 안테나 포트 수, 및 CRS 안테나 포트 수 중 적어도 하나에 기초하여 결정되는, 신호 수신 방법.
  11. 제 1항에 있어서,
    상기 SIB1-NB의 반복 전송 횟수가 4 또는 8일 때, 상기 추가 SIB1-NB가 전송되지 않고,
    상기 SIB1-NB의 반복 전송 횟수가 16일 때, 상기 추가 SIB1-NB는 상기 SIB1-NB와 동일한 횟수로 전송되는, 신호 수신 방법.
  12. 제 1항에 있어서,
    상기 SIB1-NB가 변경될 때, 상기 추가 SIB1-NB의 전송 여부는 변경된 SIB1-NB에 의해 지시되는, 신호 수신 방법.
  13. 무선 통신 시스템에서 기지국이 단말에게 신호를 전송하는 방법에 있어서,
    MIB-NB(Master Information Block-Narrow Band) 또는 SIB1-NB(System Information Block1-Narrow band)가 추가 SIB1-NB(additional SIB1-NB)의 전송 여부를 지시하도록 설정하는 단계;
    상기 추가 SIB1-NB가 전송될 수 있는 서브프레임을 무효 하향링크 서브프레임(invalid downlink subframe)으로 지시하는 단계;
    상기 MIB-NB 및 상기 SIB1-NB를 상기 단말에게 전송하는 단계; 및
    상기 무효 하향링크 서브프레임으로 지시된 서브프레임에서 상기 추가 SIB1-NB, NRS, NPDCC, 및 NPDSCH 중 적어도 하나를 전송하는 단계;
    를 포함하는, 신호 전송 방법.
  14. 무선 통신 시스템에서 기지국으로부터 신호를 수신하는 단말에 있어서,
    수신기; 및
    상기 수신기에 연결되어 동작하는 프로세서;를 포함하고,
    상기 프로세서는 MIB-NB(Master Information Block-Narrow Band) 및 SIB1-NB (System Information Block1-Narrow Band)를 상기 기지국으로부터 수신하도록 상기 수신기를 제어하고,
    상기 MIB-NB 또는 상기 SIB1-NB로부터 추가 SIB1-NB(additional SIB1-NB)의 전송 여부를 지시하는 정보를 획득하고,
    상기 획득된 정보에 기초하여, 상기 기지국에 의해 무효 하향링크 서브프레임(invalid downlink subframe)으로 지시된 서브프레임을 유효 서브프레임(valid subframe) 또는 무효 서브프레임으로 판단하는, 단말.
  15. 무선 통신 시스템에서 단말에게 신호를 전송하는 기지국에 있어서,
    송신기; 및
    상기 송신기에 연결되어 동작하는 프로세서;를 포함하고,
    상기 프로세서는,
    MIB-NB(Master Information Block-Narrow Band) 또는 SIB1-NB(System Information Block1-Narrow band)가 추가 SIB1-NB(additional SIB1-NB)의 전송 여부를 지시하도록 설정하고,
    상기 추가 SIB1-NB가 전송될 수 있는 서브프레임을 무효 하향링크 서브프레임(invalid downlink subframe)으로 지시하고,
    상기 MIB-NB 및 상기 SIB1-NB를 상기 단말에게 전송하도록 상기 송신기를 제어하고,
    상기 무효 하향링크 서브프레임으로 지시된 서브프레임에서 상기 추가 SIB1-NB, NRS, NPDCC, 및 NPDSCH 중 적어도 하나를 전송하도록 상기 송신기를 제어하는, 기지국.
PCT/KR2018/003387 2017-03-22 2018-03-22 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치 WO2018174614A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020207002804A KR20200013114A (ko) 2017-03-22 2018-03-22 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치
KR1020197004022A KR102073619B1 (ko) 2017-03-22 2018-03-22 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치
US16/332,484 US11611859B2 (en) 2017-03-22 2018-03-22 Method for transceiving signal by terminal and base station in wireless communication system and device supporting same
CN201880004083.8A CN109906570B (zh) 2017-03-22 2018-03-22 无线通信系统中由终端和基站收发信号的方法和支持该方法的设备
JP2019537059A JP6808840B2 (ja) 2017-03-22 2018-03-22 無線通信システムにおいて端末と基地局の信号送受信方法及びそれを支援する装置
EP18770228.7A EP3514992B1 (en) 2017-03-22 2018-03-22 Method for transceiving signal by terminal and base station in wireless communication system and device supporting same
US16/299,606 US10972887B2 (en) 2017-03-22 2019-03-12 Method for transceiving signal by terminal and base station in wireless communication system and device supporting same

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
US201762475150P 2017-03-22 2017-03-22
US62/475,150 2017-03-22
US201762479289P 2017-03-30 2017-03-30
US62/479,289 2017-03-30
US201762501102P 2017-05-04 2017-05-04
US62/501,102 2017-05-04
US201762543934P 2017-08-10 2017-08-10
US62/543,934 2017-08-10
US201762547770P 2017-08-19 2017-08-19
US62/547,770 2017-08-19
US201762564319P 2017-09-28 2017-09-28
US62/564,319 2017-09-28
US201762584882P 2017-11-12 2017-11-12
US62/584,882 2017-11-12
US201762586187P 2017-11-15 2017-11-15
US62/586,187 2017-11-15
US201762587430P 2017-11-16 2017-11-16
US62/587,430 2017-11-16
US201762590366P 2017-11-24 2017-11-24
US62/590,366 2017-11-24
US201762591135P 2017-11-27 2017-11-27
US201762591177P 2017-11-27 2017-11-27
US62/591,177 2017-11-27
US62/591,135 2017-11-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/299,606 Continuation US10972887B2 (en) 2017-03-22 2019-03-12 Method for transceiving signal by terminal and base station in wireless communication system and device supporting same

Publications (1)

Publication Number Publication Date
WO2018174614A1 true WO2018174614A1 (ko) 2018-09-27

Family

ID=63586521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003387 WO2018174614A1 (ko) 2017-03-22 2018-03-22 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치

Country Status (6)

Country Link
US (2) US11611859B2 (ko)
EP (1) EP3514992B1 (ko)
JP (1) JP6808840B2 (ko)
KR (2) KR102073619B1 (ko)
CN (1) CN109906570B (ko)
WO (1) WO2018174614A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098932A1 (en) * 2017-11-17 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Methods of transmitting and receiving additional sib1-nb subframes in a nb-iot network
CN112956152A (zh) * 2018-10-26 2021-06-11 瑞典爱立信有限公司 下行链路控制信息(dci)大小匹配
EP3975633A4 (en) * 2019-07-04 2022-06-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
US20230134170A1 (en) * 2021-11-03 2023-05-04 At&T Intellectual Property I, L.P. Mobile broadband and machine type communication network coexistence

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2606398C1 (ru) 2012-11-13 2017-01-10 Телефонактиеболагет Л М Эрикссон (Пабл) Способ и устройство запуска особого режима работы для терминалов, работающих на увеличенной большой дальности
DK3240353T3 (da) 2012-11-13 2019-06-11 Ericsson Telefon Ab L M Fremgangsmåde til modificering af parameterværdier til long range-forlængelse, tilsvarende hukommelse og trådløs indretning
MX2018006353A (es) * 2015-12-11 2018-09-05 Ericsson Telefon Ab L M Un nodo de red de radio y un dispositivo inalambrico, y metodos en los mismos.
EP3400672B1 (en) * 2016-02-05 2023-10-11 Sony Group Corporation Communications devices, infrastructure equipment and methods
WO2018115386A1 (en) * 2016-12-22 2018-06-28 Sony Corporation Apparatus and method for a mobile telecommunications system
JP7066735B2 (ja) * 2017-03-22 2022-05-13 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける端末の動作方法及びそれを支援する装置
WO2018175249A1 (en) * 2017-03-23 2018-09-27 Intel IP Corporation Narrowband internet-of-things (nb-iot) enhacements
WO2019191948A1 (zh) * 2018-04-04 2019-10-10 北京小米移动软件有限公司 下行控制信息格式大小的确定方法及装置
US11196512B2 (en) * 2018-06-29 2021-12-07 Qualcomm Incorporated Resolving decodability for subsequent transmissions whose throughput exceeds a threshold
EP3952373B1 (en) * 2019-03-28 2024-03-20 Huawei Technologies Co., Ltd. Cell selection method and device
EP3963932B1 (en) * 2019-05-03 2023-11-08 Telefonaktiebolaget LM Ericsson (publ) Method and devices for scheduling transmissions of carriers to narrowband internet of things cells
KR20210020397A (ko) * 2019-08-14 2021-02-24 삼성전자주식회사 무선 통신 시스템에서 네트워크에 액세스하기 위한 장치 및 방법
US12016028B2 (en) * 2020-03-19 2024-06-18 Qualcomm Incorporated Supporting allocation modification during transition instance in integrated access and backhaul network
CN111818617B (zh) * 2020-08-07 2022-11-08 上海创远仪器技术股份有限公司 实现lte系统快速搜索基站系统消息的方法及其装置
WO2022151161A1 (en) * 2021-01-14 2022-07-21 Apple Inc. Control resource set/system information block 1 transmission with mixed numerology
US11646777B2 (en) * 2021-04-30 2023-05-09 Qualcomm Incorporated Detecting static channels
CN113411877B (zh) * 2021-08-20 2021-12-21 北京智联安科技有限公司 下行窄带参考信号的接收功率的确定方法、装置及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185659A1 (ko) * 2013-05-12 2014-11-20 엘지전자 주식회사 셀 커버리지 확장 영역 위치한 mtc 기기의 시스템 정보 수신 방법
WO2016048422A1 (en) * 2014-09-25 2016-03-31 Intel IP Corporation Transmission of common control messages for machine-type communication (mtc) user equipments with reduced bandwidth
WO2016169714A1 (en) * 2015-04-20 2016-10-27 Sony Corporation Cell reselection using not updated mobility information

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2600540T3 (pl) 2003-08-06 2019-08-30 Optis Wireless Technology, Llc Urządzenie komunikacji bezprzewodowej i sposób komunikacji bezprzewodowej
DE102005050416B3 (de) 2005-10-19 2007-04-19 Siemens Ag Verfahren zum Ausgeben von Alarmmeldungen an Teilnehmerendgeräten eines Funk-Kommunikationssystems
EP1799003B1 (en) 2005-12-13 2010-02-17 Panasonic Corporation Mapping of broadcast system information to transport channels in a mobile communication system
JP4740306B2 (ja) 2008-10-31 2011-08-03 株式会社エヌ・ティ・ティ・ドコモ 移動局及び移動通信方法
CN101742572B (zh) 2008-11-07 2016-03-30 中兴通讯股份有限公司 调度信息的传输方法和装置
CN101848420B (zh) 2009-03-23 2014-01-01 中兴通讯股份有限公司 长期演进系统中回程链路的配置方法与装置
KR101720334B1 (ko) 2010-01-12 2017-04-05 삼성전자주식회사 이동통신 시스템에서 불연속 수신 동작을 지원하는 방법 및 장치
US9107186B2 (en) 2011-02-23 2015-08-11 Qualcomm Incorporated Carrier aggregation for evolved multimedia broadcast multicast service enhancement
US8737276B2 (en) 2012-06-27 2014-05-27 Qualcomm Incorporated Method and apparatus using modified subframes
CA2886634C (en) 2012-09-26 2020-03-24 Interdigital Patent Holdings, Inc. Methods for dynamic tdd uplink/downlink configuration
US9780929B2 (en) 2013-02-05 2017-10-03 Lg Electronics Inc. Method and apparatus for performing resource allocation in wireless communication system
US9967805B2 (en) 2013-02-25 2018-05-08 Telefonaktiebolaget Lm Ericsson (Publ) Extended system information distribution mechanisms
CN104349333B (zh) * 2013-08-02 2018-07-13 上海诺基亚贝尔股份有限公司 增强mtc ue的无线覆盖的方法和装置
JP6566575B2 (ja) * 2013-11-01 2019-08-28 サムスン エレクトロニクス カンパニー リミテッド Lteアドバンスト向け拡張カバレッジ送信のための方法及び装置
CN104811264B (zh) 2014-01-28 2019-09-24 中兴通讯股份有限公司 一种系统信息的传输方法、基站、终端和系统
BR112016017545A2 (pt) 2014-01-29 2017-08-08 Huawei Tech Co Ltd Método de transmissão de canal físico melhorada e dispositivo de comunicações
US10070364B2 (en) 2014-07-21 2018-09-04 Intel IP Corporation Neighbor cell system information provisioning
US20170215157A1 (en) 2014-08-06 2017-07-27 Lg Electronics Inc. Method for transmitting uplink signal and user equipment, and method for receiving uplink signal and base station
EP3860227A1 (en) 2015-01-15 2021-08-04 Mitsubishi Electric Corporation Communication system, base station and communication terminal
US9860030B2 (en) 2015-03-26 2018-01-02 Samsung Electronics Co., Ltd. Transmission of system information for low cost user equipment
US10993098B2 (en) 2015-03-31 2021-04-27 Sony Corporation Telecommunications apparatus and methods
US10111067B2 (en) 2015-04-07 2018-10-23 Sierra Wireless, Inc. Method and apparatus for communicating system information and random access in a wireless system
US10555322B2 (en) 2015-06-18 2020-02-04 Intel IP Corporation Low latency contention based scheduling request
WO2017017880A1 (ja) 2015-07-24 2017-02-02 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 基地局、端末および通信方法
CN106454695B (zh) * 2015-08-12 2021-03-26 中兴通讯股份有限公司 一种机器类通信系统中的信息传输方法及装置
EP3373658B1 (en) 2015-11-05 2020-10-21 NTT DoCoMo, Inc. User device and radio communication method
CN112135337A (zh) 2016-01-14 2020-12-25 华为技术有限公司 激活类系统信息的传输方法、装置和设备
AU2016387934A1 (en) 2016-01-22 2018-08-09 Huawei Technologies Co., Ltd. System message processing method, network device, and user terminal
EP3240332A1 (en) 2016-04-29 2017-11-01 Gemalto M2M GmbH Method for transmitting system information by a base node
KR102313906B1 (ko) 2016-05-13 2021-10-18 한국전자통신연구원 제어 채널을 위한 자원의 설정 정보를 전송하는 방법 및 장치, 상향링크 drs를 위한 자원의 설정 정보를 전송하는 방법 및 장치, 서브프레임/슬롯의 타입을 지시하는 지시자를 전송하는 방법 및 장치, 그리고 하향링크 심볼의 개수를 전송하는 방법 및 장치
US11044111B2 (en) 2016-07-14 2021-06-22 Qualcomm Incorporated Subframe validity and system information reception for machine type communication
WO2018014256A1 (en) 2016-07-20 2018-01-25 Nec Corporation Methods and apparatuses for information transmission and information reception
US10256957B2 (en) 2016-08-12 2019-04-09 Innovative Technology Lab Co., Ltd. Method and apparatus for transmitting/receiving positioning reference signal
US10383035B2 (en) 2016-09-29 2019-08-13 Sharp Laboratories Of America, Inc. Providing and obtaining system information for remote wireless terminal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185659A1 (ko) * 2013-05-12 2014-11-20 엘지전자 주식회사 셀 커버리지 확장 영역 위치한 mtc 기기의 시스템 정보 수신 방법
WO2016048422A1 (en) * 2014-09-25 2016-03-31 Intel IP Corporation Transmission of common control messages for machine-type communication (mtc) user equipments with reduced bandwidth
WO2016169714A1 (en) * 2015-04-20 2016-10-27 Sony Corporation Cell reselection using not updated mobility information

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol Specification (Release 14)", 3GPP TSG RAN TS 36.331, 12 January 2017 (2017-01-12), XP055548717 *
SAMSUNG: "Dedicated Signalling of SI in Rel-13 eMTC", R2-163454, 3GPP TSG-RAN WG2 MEETING #94, 14 May 2016 (2016-05-14), Nanjing, China, XP051089649 *
See also references of EP3514992A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098932A1 (en) * 2017-11-17 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Methods of transmitting and receiving additional sib1-nb subframes in a nb-iot network
US11554318B2 (en) 2017-11-17 2023-01-17 Telefonaktiebolaget Lm Ericsson (Publ) Methods of transmitting and receiving additional SIB1-NB subframes in a NB-IoT network
CN112956152A (zh) * 2018-10-26 2021-06-11 瑞典爱立信有限公司 下行链路控制信息(dci)大小匹配
CN112956152B (zh) * 2018-10-26 2024-03-26 瑞典爱立信有限公司 下行链路控制信息(dci)大小匹配
US12063671B2 (en) 2018-10-26 2024-08-13 Telefonaktiebolaget Lm Ericsson (Publ) Downlink control information (DCI) size matching
EP3975633A4 (en) * 2019-07-04 2022-06-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
US12101770B2 (en) 2019-07-04 2024-09-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, terminal device and network device
US20230134170A1 (en) * 2021-11-03 2023-05-04 At&T Intellectual Property I, L.P. Mobile broadband and machine type communication network coexistence
US12035356B2 (en) * 2021-11-03 2024-07-09 At&T Intellectual Property I, L.P. Mobile broadband and machine type communication network coexistence

Also Published As

Publication number Publication date
JP6808840B2 (ja) 2021-01-06
EP3514992A1 (en) 2019-07-24
KR102073619B1 (ko) 2020-02-05
EP3514992A4 (en) 2020-06-17
JP2020507246A (ja) 2020-03-05
KR20200013114A (ko) 2020-02-05
EP3514992B1 (en) 2024-08-07
US11611859B2 (en) 2023-03-21
CN109906570B (zh) 2021-02-05
US20220256570A1 (en) 2022-08-11
US10972887B2 (en) 2021-04-06
US20190364408A1 (en) 2019-11-28
KR20190026888A (ko) 2019-03-13
CN109906570A (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
WO2018174614A1 (ko) 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치
WO2021020955A1 (ko) 무선 통신 시스템에서 상향링크 공유 채널(physical uplink shared channel: pusch)를 송수신하는 방법, 장치 및 시스템
WO2019190251A1 (en) Method and apparatus for supporting large subcarrier spacing for ss/pbch block
WO2018169347A1 (ko) 무선 통신 시스템에서 단말과 기지국의 동작 방법 및 이를 지원하는 장치
WO2018174546A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2018203682A1 (ko) 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치
WO2018128493A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 상향링크 신호 송수신 방법 및 이를 지원하는 장치
WO2018174653A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2018174550A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 단말의 상향링크 신호 전송 방법 및 이를 지원하는 장치
WO2018151565A1 (ko) 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치
WO2017126935A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 이를 지원하는 장치
WO2019194531A1 (ko) 무선 통신 시스템에서 신호의 송수신 방법 및 이를 위한 장치
WO2018084661A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2018084672A1 (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2016105127A1 (ko) 비면허 대역을 지원하는 무선 접속 시스템에서 향상된 물리 하향링크 제어채널을 송수신하는 방법 및 이를 지원하는 장치
WO2018203722A1 (ko) 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치
WO2018030792A1 (ko) 협대역 사물인터넷을 지원하는 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2017171422A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 하향링크 제어 정보를 수신하는 방법 및 이를 지원하는 장치
WO2017217799A1 (ko) 무선 통신 시스템에서 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2018151564A1 (ko) 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치
WO2018159999A1 (ko) 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치
WO2019050381A1 (ko) 무선 통신시스템에서 상향링크 전송 및 하향링크 수신방법, 장치 및 시스템
WO2018174600A1 (ko) 무선 통신 시스템에서 단말의 동작 방법 및 이를 지원하는 장치
WO2018169326A1 (ko) 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2018203627A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197004022

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018770228

Country of ref document: EP

Effective date: 20190419

ENP Entry into the national phase

Ref document number: 2019537059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE