WO2014185562A1 - Light scattering film for organic light emitting element and manufacturing method therefor - Google Patents

Light scattering film for organic light emitting element and manufacturing method therefor Download PDF

Info

Publication number
WO2014185562A1
WO2014185562A1 PCT/KR2013/004234 KR2013004234W WO2014185562A1 WO 2014185562 A1 WO2014185562 A1 WO 2014185562A1 KR 2013004234 W KR2013004234 W KR 2013004234W WO 2014185562 A1 WO2014185562 A1 WO 2014185562A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
scattering
forming
light
pore
Prior art date
Application number
PCT/KR2013/004234
Other languages
French (fr)
Korean (ko)
Inventor
송세호
최성열
Original Assignee
주식회사 나노신소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노신소재 filed Critical 주식회사 나노신소재
Publication of WO2014185562A1 publication Critical patent/WO2014185562A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0247Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of voids or pores
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means

Definitions

  • the present invention relates to a light scattering film of an organic light emitting device.
  • OLEDs Organic light-emitting devices sandwich an organic layer between electrodes, apply a voltage between the electrodes, inject holes and electrons, and recombine within the organic layer, whereby the light-emitting molecules are excited from the excited state. It is used to extract the light generated in the process to reach the display backlight, lighting, and the like.
  • the refractive index of the organic light emitting layer used in the organic light emitting device is about 1.8 to 2.1 at the wavelength of 430nm
  • the ITO (Indium Tin Oxide) used as the light transmitting electrode layer has a refractive index of about 1.9 to 2.1.
  • the emitted light reaches the interface between the light transmissive electrode layer and the translucent substrate without total reflection between the organic light emitting layer and the light transmissive electrode layer.
  • the refractive index of the glass or resin substrate which is normally used as a translucent substrate is about 1.5-1.6, and is lower refractive index than an organic light emitting layer or a translucent electrode layer.
  • the amount of light that can be extracted to the outside of the organic light emitting device is less than 20% of the emitted light.
  • a scattering layer is formed between the high refractive index ITO light transmissive electrode layer and the glass substrate layer so that the light passing through the ITO layer effectively prevents total reflection at the interface with the low refractive glass substrate. Layer formation techniques are being developed.
  • the oxides used as the scattering layer should have a size of about 200 ⁇ 1000nm to induce light scattering.
  • the present invention provides a light scattering film that can maintain the haze by 5% or less by forming pores in the scattering layer to induce scattering.
  • the present invention provides a light scattering film having an increased scattering rate by increasing the refractive index of the scattering layer.
  • the present invention provides a method for producing a light scattering film by forming pores.
  • the light scattering film according to an aspect of the present invention includes a scattering layer having pores therein and a flat layer formed on the scattering layer, and the average particle diameter of the pores formed in the scattering layer is 200 nm to 1000 nm.
  • the refractive index of the scattering layer and the refractive index of the flat layer is 1.7 to 2.1.
  • the scattering layer includes any one selected from the group consisting of TiO 2 , ZrO 2 , CeO 2 , ZnO and SiO 2 .
  • a light-scattering film production method comprising: preparing a scattering layer by coating a composition including a pore-forming polymer ball, a skeleton-forming particle, and a binder on a substrate; Selectively removing the pore-forming polymer balls to form pores in the scattering layer; And forming a flat layer on the scattering layer.
  • the composition is 30 wt% to 60 wt% of the pore-forming polymer ball, 20 wt% to 40 wt% of the particles for the skeleton, And 10 wt% to 30 wt% of a binder, and 70 wt% to 95 wt% of the solvent, based on the total weight of the composition.
  • the ratio of the average particle size of the pore-forming polymer ball and the average particle size of the skeleton-forming particles is 200: 1 to 2: 1.
  • haze can be lowered to 5% or less by scattering light by pores instead of scattering particles.
  • the scattering rate may be increased by increasing the refractive index of the scattering layer.
  • the size of the pores can be freely adjusted to obtain an optimal light extraction effect.
  • FIG. 1 is a conceptual diagram showing a laminated structure of an organic light emitting device according to an embodiment of the present invention
  • FIG. 2 is a conceptual diagram of a light scattering film according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of a light scattering film manufacturing method according to an embodiment of the present invention.
  • 4a to 4c are SEM images of the polymer ball for pore forming prepared according to the present invention.
  • 5 to 7 are SEM images of the light scattering film prepared according to the present invention.
  • the terms "comprises” or “having” are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
  • FIG. 1 is a conceptual diagram showing a laminated structure of an organic light emitting device according to an embodiment of the present invention
  • Figure 2 is a conceptual diagram of a light scattering film according to an embodiment of the present invention.
  • the organic light emitting diode 110 is formed by sequentially stacking a hole injection layer 111, an organic emission layer 112, an electron transport layer 113, and a transparent electrode layer 114. At this time, although not shown, a hole transport layer and an electron transport layer may be further formed as necessary.
  • the light scattering film 100 according to the present invention is formed on the electrode layer 114 of the organic light emitting device. 2, the light scattering film 100 according to the present invention includes a scattering layer 102 having pores 106 formed therein, and a flat layer 103 formed on the upper layer 102. It includes.
  • the substrate 101 is a glass substrate or a plastic substrate, so long as it is a material capable of easily transmitting light, there is no limitation on the selection.
  • the scattering layer 102 scatters the light emitted from the organic light emitting diode by the pores 106 formed therein. Therefore, when the skeletal support 105 constituting the scattering layer 102 has a high refractive index (when the refractive index of the scattering layer is high), the refractive index with the pores 106 becomes large and the scattering rate becomes relatively high.
  • the refractive index of the scattering layer 102 may be adjusted to 1.7 to 2.1. According to the present invention, since the scattering rate is controlled by the pores, the refractive index of the skeletal support forming the scattering layer can be freely adjusted.
  • haze is less than 5% is suitable for display.
  • the average particle diameter of the pores 106 has a size within 200nm to 1000nm to increase the light scattering efficiency. If the average particle diameter of the pores is less than 200nm, there is a problem that does not have a sufficient light scattering effect, if the average particle size exceeds 1000nm there is a problem that the pore size is too large to form a layer.
  • the flat layer 103 is formed on the scattering layer 102 to cover the scattering layer having a non-uniform surface. Therefore, the flatness of the transparent electrode layer is maintained by the flat layer 103, thereby preventing structural defects of the organic light emitting diode.
  • the refractive index of the flat layer 103 may be adjusted to 1.7 to 2.1 in the same manner as the transparent electrode layer 114 to increase light extraction efficiency at the interface with the transparent electrode layer 114. Therefore, when the scattering layer 102 and the flat layer 103 have the same refractive index, the refractive indexes of the transparent electrode layer 114, the flat layer 103, and the scattering layer 102 are all the same. Since there is no difference, light extraction efficiency can be maximized.
  • FIG. 3 is a flow chart of a light scattering film manufacturing method according to an embodiment of the present invention.
  • the light scattering film manufacturing method comprises the steps of forming a scattering layer by coating a composition comprising a polymer ball for forming pores, particles for forming a skeleton, a binder, and a solvent on a substrate, Selectively removing the polymer balls to form pores in the scattering layer, and forming a flat layer on the scattering layer.
  • the scattering layer may be formed by spin coating a glass substrate 101 on a composition including a pore-forming polymer ball, a skeleton-forming particle, and a binder and drying the pores.
  • a scattering layer 102 in which the forming polymer balls 104 and the skeletal forming particles 105 are dispersed is manufactured.
  • the composition for forming the scattering layer comprises 30 wt% to 60 wt% of pore-forming polymer balls, 20 wt% to 40 wt% of particles for skeletal formation, and 10 wt% to 30 wt%, based on the total weight of solids. It includes a binder. Also included is 70 wt% to 95 wt% of solvent relative to the total weight of the composition.
  • the pore-forming polymer ball 104 is selectively removed after the formation of the scattering layer to form pores, so that any material that can be easily dissolved in a specific solvent can be selected without limitation.
  • a thermoplastic resin is preferably selected.
  • the pore-forming polymer balls are made of ABS resin (acrylonitrile butadiene-styrene copolymer acetal), acrylic resin such as polymethyl methacrylate, polypropylene, polystyrene, polyvinyl chloride resin chloride, and polycarbonate, and the like.
  • ABS resin acrylonitrile butadiene-styrene copolymer acetal
  • acrylic resin such as polymethyl methacrylate, polypropylene, polystyrene, polyvinyl chloride resin chloride, and polycarbonate, and the like.
  • the pore-forming polymer ball 104 is included in an amount of 30 wt% to 60 wt% based on the total weight of solids included in the composition.
  • the pore-forming polymer ball 104 is included in an amount of 30 wt% to 60 wt% based on the total weight of solids included in the composition.
  • the average particle size (D 50 ) of the pore-forming polymer ball 104 may be 200 nm to 1000 nm. If the size of the polymer ball is less than 200nm, the size of the pores formed by the polymer ball is small, there is a problem that does not have a sufficient scattering effect, if the size of the polymer ball exceeds 1000nm, the size of the pores is too large to planarization and pore There is a problem that the skeleton cannot maintain.
  • the average particle size (D 50 ) of the pore-forming polymer ball is 200 nm to 500 nm, sufficient scattering efficiency and light extraction efficiency may be maintained while maintaining a skeleton.
  • the skeleton forming particle 105 serves to support the skeleton of the scattering layer 102 in which the pores are formed when the polymer ball for forming pores is removed.
  • Such skeleton-forming particles may be any one or more selected from the group consisting of TiO 2 , ZrO 2 , ZnO, CeO 2 ,.
  • the average particle size (D 50 ) of the skeleton forming particles 105 may be 5nm to 100nm. If the size of the particles for skeleton formation is less than 5nm, there is a problem that handling is not easy. In addition, when the particle size exceeds 100 nm, light is scattered by the particles for skeleton formation, and the haze exceeds 5%. Therefore, there is a problem that is not suitable for use in a display. In order to minimize light scattering by the particles for skeleton formation, the average particle size of the particles is preferably 5 nm or more and less than 50 nm.
  • the skeletal particles 105 are included in an amount of 20 wt% to 40 wt%, based on the total weight of solids included in the composition.
  • the content of the skeleton-forming particles is less than 20 wt%, there is a problem that the light extraction efficiency is low because the refractive index is low, and when the content exceeds 40 wt%, there is a problem that the pore density decreases due to the decrease of the content of the pore-forming polymer balls. .
  • the ratio of the average particle size of the polymer particles and the average particle size of the particles is adjusted to 200: 1 to 2: 1, it is possible to prepare a scattering layer having sufficient pores.
  • the ratio of the average particle size of the polymer particles and the average particle size of the particles may be adjusted to 100: 1 to 5: 1.
  • the particles for skeleton formation according to the present invention is an inorganic material, it does not absorb moisture and is excellent in durability. Therefore, it is suitable for an organic light emitting device having a high possibility of penetration of moisture when used for a long time.
  • the binder is comprised between 10 wt% and 30 wt%, based on the total weight of solids included in the composition. If the content of the binder is less than 10 wt%, there is a problem that the adhesion of the skeleton-forming particles falls, if the content of the binder exceeds 30 wt%, the content of the pore-forming polymer ball and the skeleton-forming particles are reduced and the refractive index is reduced There is.
  • the binder may be made of a silane compound, the weight average molecular weight of the silane compound is preferably 2,000 to 50,000, more preferably 5,000 to 30,000, most preferably 10,000 to 20,000.
  • the weight average molecular weight of the silane compound is less than 2,000, it causes cracks due to excessive shrinkage of the binder during heat treatment at a high temperature of 300 ° C. or higher, and if it exceeds 50,000, there is a problem that the viscosity is too high or a gel is formed to cause solidification. .
  • the binder is prevented from generating cracks at a high temperature of 300 ° C. or higher by appropriate molecular weight control, has a high refractive index (1.8 to 2.1), and has an absorption coefficient of less than ⁇ 0.001.
  • the composition including the binder of the present invention can be very useful in the field of organic light emitting devices.
  • the solvent is comprised between 70 wt% and 95 wt% with respect to the total weight of the composition.
  • the content of the solvent may be determined in consideration of the coatability of the coating composition.
  • the solvent include, but are not limited to, butyl acetate, isopropanol, ethanol, methanol, methyl cellulose, and propylene glycol ethyl ether. Any one or more may be selected from the group consisting of methyl cellulose and ethyl cellulose.
  • a dispersing agent for dispersing the pore-forming polymer ball and the skeleton-forming particles may be further included.
  • the forming of pores in the scattering layer may selectively remove the pore-forming polymer balls to form pores 106.
  • the skeleton forming particle 105 is firmly attached to the glass substrate 101 by a binder to maintain the skeleton even when the pore-forming polymer ball is removed.
  • a method of removing the pore-forming polymer balls a method of sintering at a predetermined temperature and a method of removing using the polymer solvent may be selected.
  • the method of sintering at a predetermined temperature sinters the substrate coated with the scattering layer at a temperature of about 450 ° C. or less. If the sintering temperature is higher than 450 ° C., the scattering layer and the substrate may be warped. At this time, the pore-forming polymer ball is preferably a plastic resin that can be melted by heat.
  • the pore-forming polymer balls are formed to have a size of 200 to 1000 nm, the pore sizes may be uniformly formed to have a size of 200 to 1000 nm, and thus may have sufficient scattering effects.
  • pores can be uniformly formed compared to a structure for forming voids by controlling the density of scattering particles and the like, and the size of each pore is uniformly formed (uniformity), which has an excellent scattering effect.
  • the method of using a polymer solvent may use acetone, PGMEA, ketones such as PGME, and organic solvents such as acetate and ether.
  • the present invention is not limited thereto, and the polymer ball for forming pores included in the composition may be used without limitation as long as the solvent can dissolve the polymer ball.
  • the scattering layer is immersed in the polymer solvent for a predetermined time to remove the pore-forming polymer balls.
  • the polymer solvent there is no high temperature heating process, so that a crack does not occur in the support or the substrate is not bent.
  • reference numeral 102a which is not described, is irregularities formed on the surface by the formation of pores.
  • a flat layer 103 having a predetermined thickness is formed by coating the top surface of the scattering layer. Since the surface of the scattering layer is not flat due to the pores, the flatness of the ITO film is lowered when the ITO film is formed thereon. Therefore, there is an advantage that the flatness of the ITO film can be maintained by the flattening layer 103.
  • the binder is preferably contained in an amount of 10 to 40 wt%, and more preferably in an amount of 15 to 25 wt%, based on the total weight of solids.
  • the binder is included in less than 10 wt%, it is difficult to stably form the flat layer on the scattering layer due to the lack of adhesion of the composition for forming the planarization layer, and when the content exceeds 40 wt%, the content of particles is relatively decreased, resulting in high refractive index. Difficult to secure.
  • the particles are preferably included in 60 to 90wt%, more preferably in the 75 to 85wt%. If it is included in less than 60 wt%, it is difficult to secure a high refractive index, and if it exceeds 90 wt%, there is a problem that the content of the binder is relatively insufficient.
  • the solvent is preferably included in 70 to 95 wt%, more preferably 80 to 90 wt% relative to the total weight of the composition.
  • the solvent include, but are not limited to, propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), isopropyl alcohol, ethanol, methyl alcohol, acetone and the like.
  • the average particle size of the particles for skeleton formation is preferably 5 nm ⁇ 100 nm. If the average particle size is less than 5 nm, the handling of the particle size is difficult, and if it exceeds 100 nm, it is difficult to obtain a sufficient light transmittance. When the skeleton-forming particles have the above particle size range, scattering may be minimized to obtain a transmittance of 90% or more of the flat layer.
  • a polymer ball having a size of 300 to 380 nm was prepared in the same manner except that 0.7 g of 2.2-Azobis (2-methylpropionamide) and 3.5 g of ethylene glylcol were added to 750 g of distilled water in a 1000 ml flask, and the temperature was raised to 84 ° C. while stirring. .
  • the SEM photograph of the prepared polymer ball is shown in Figure 4b.
  • a polymer ball having a size of 250 to 290 nm was prepared in the same manner except that 0.7 g of 2.2-Azobis (2-methylpropionamide) and 3.5 g of ethylene glylcol were added to 750 g of distilled water and heated to 90 ° C. while stirring in a 1000 ml flask. .
  • the SEM photograph of the prepared polymer ball is shown in Figure 4c.
  • MTMS methyltrimethoxysilane
  • DI water deionized water
  • a scattering film was manufactured in the same manner as in Example 2, except that 3g of the polymer ball prepared according to Example 1-2, 3g of TiO 2 , and 1g of the binder prepared according to Example 1-4 were mixed. SEM pictures of the prepared scattering film are shown in FIG. 6, and the measured refractive index, dispersion degree, and pore uniformity are shown in Table 1.
  • a scattering film was manufactured in the same manner as in Example 2, except that 3g of the polymer ball prepared according to Example 1-3, 2g of TiO 2 , and 1g of the binder prepared according to Example 1-4 were mixed.
  • the SEM photograph of the prepared scattering film is shown in FIG. 7, and the measured refractive index, dispersion degree, and pore uniformity are shown in Table 1.
  • the refractive index has a high refractive index of 1.75 to 1.97.
  • the uniformity of the pores is formed well.
  • the pore uniformity is considered good when the average elliptic ratio (pore shortening and long axis ratio) of the pores is 0.6 or more, and is poor when it is less than that.
  • the major axis of the pores is 461.953 nm and the minor axis is 361.528 nm, and the elliptic ratio is 0.78.
  • the refractive index is 1.52, indicating that the refractive index is relatively low. Although the pores are partially formed, the uniformity of the pores is low and the surface roughness is poor.
  • the scattering layer manufactured by the manufacturing method of the present invention is excellent in the uniformity (elliptic ratio) of the pores, it can be inferred that the scattering efficiency is excellent because the dispersion and roughness is good. In addition, it can be seen that the refractive index of the scattering layer is excellent in light extraction efficiency.

Abstract

Disclosed is a light scattering film comprising a scattering layer having pores formed therein and a flat layer formed on the scattering layer, wherein the pores formed in the scattering layer have an average pore diameter of 200nm to 1000nm.

Description

유기발광소자용 광산란막 및 그 제조방법Light-Scattering Film for Organic Light-Emitting Device and Manufacturing Method Thereof
본 발명은 유기발광소자의 광산란막에 관한 것이다.The present invention relates to a light scattering film of an organic light emitting device.
유기발광소자(OLED, organic light-emitting devices)는 유기층을 전극 사이에 끼우고, 전극 사이에 전압을 인가하여, 홀과 전자를 주입하고, 유기층 내에서 재결합시킴으로써, 발광 분자가 여기 상태로부터 기저 상태에 이르는 과정에서 발생하는 광을 추출하여 사용하며, 디스플레이 백라이트, 조명 등의 용도로 사용되고 있다.Organic light-emitting devices (OLEDs) sandwich an organic layer between electrodes, apply a voltage between the electrodes, inject holes and electrons, and recombine within the organic layer, whereby the light-emitting molecules are excited from the excited state. It is used to extract the light generated in the process to reach the display backlight, lighting, and the like.
유기발광소자에 사용되는 유기 발광층의 굴절률은 430㎚ 파장에서 1.8 내지 2.1 정도이며, 투광성 전극층으로 사용되는 ITO(산화인듐주석: Indium Tin Oxide)는 굴절률이 대략 1.9 내지 2.1 정도이다. The refractive index of the organic light emitting layer used in the organic light emitting device is about 1.8 to 2.1 at the wavelength of 430nm, the ITO (Indium Tin Oxide) used as the light transmitting electrode layer has a refractive index of about 1.9 to 2.1.
이와 같이 유기 발광층과 투광성 전극층의 굴절률은 거의 차이가 없기 때문에, 발광광은 유기 발광층과 투광성 전극층 사이에서 전반사하지 않고 투광성 전극층과 투광성 기판의 계면에 도달한다.As described above, since the refractive indices of the organic light emitting layer and the light transmissive electrode layer are almost not different, the emitted light reaches the interface between the light transmissive electrode layer and the translucent substrate without total reflection between the organic light emitting layer and the light transmissive electrode layer.
그러나, 투광성 기판으로 통상적으로 사용되는 유리나 수지 기판의 굴절률은 1.5 내지 1.6 정도로, 유기 발광층 혹은 투광성 전극층보다 저굴절률이다. However, the refractive index of the glass or resin substrate which is normally used as a translucent substrate is about 1.5-1.6, and is lower refractive index than an organic light emitting layer or a translucent electrode layer.
따라서, 스넬의 법칙에 의하면, 투광성 기판인 유리기판에 얕은 각도로 진입하는 광은 전반사되어 유리 기판으로부터 밖으로 추출될 수 없게 된다. 또한, 동일한 현상이 투광성 기판과 대기 계면에서도 일어난다. Therefore, according to Snell's law, light entering at a shallow angle to the glass substrate, which is a translucent substrate, is totally reflected so that it cannot be extracted out of the glass substrate. The same phenomenon also occurs at the light transmissive substrate and the air interface.
따라서, 유기발광소자의 외부로 추출될 수 있는 광의 양은 발광광의 20%에도 미치지 못한다. Therefore, the amount of light that can be extracted to the outside of the organic light emitting device is less than 20% of the emitted light.
이와 같은 광 추출 효율의 문제점을 개선시키기 위하여 고굴절 ITO 투광성 전극층과 유리기판층의 사이에 산란층을 형성시켜 ITO 층을 통과한 빛이 저굴절 유리기판과의 계면에서 전반사가 일어나는 것을 효율적으로 막는 산란층 형성 기술이 개발되고 있다.In order to improve the problem of light extraction efficiency, a scattering layer is formed between the high refractive index ITO light transmissive electrode layer and the glass substrate layer so that the light passing through the ITO layer effectively prevents total reflection at the interface with the low refractive glass substrate. Layer formation techniques are being developed.
산란층을 형성하는 경우, 산란층으로 이용되는 산화물들은 약 200~1000nm의 크기를 가져야 빛의 산란을 유도할 수 있다.When forming the scattering layer, the oxides used as the scattering layer should have a size of about 200 ~ 1000nm to induce light scattering.
그러나, 산화물이 200~1000nm의 사이즈를 갖는 경우 헤이즈(Haze)가 높아져(5%이상) 디스플레이에 적용하기 어려운 문제가 있다.However, when the oxide has a size of 200 ~ 1000nm haze (Haze) is high (5% or more) there is a problem that is difficult to apply to the display.
본 발명은 산란층에 기공을 형성하여 산란을 유도함으로써 헤이즈를 5% 이하로 유지할 수 있는 광산란막을 제공한다.The present invention provides a light scattering film that can maintain the haze by 5% or less by forming pores in the scattering layer to induce scattering.
또한, 본 발명은 산란층의 굴절률을 높여 산란율이 증가된 광산란막을 제공한다.In addition, the present invention provides a light scattering film having an increased scattering rate by increasing the refractive index of the scattering layer.
또한, 본 발명은 기공을 형성하여 광산란막 제조하는 방법을 제공한다.In addition, the present invention provides a method for producing a light scattering film by forming pores.
본 발명의 일 특징에 따른 광산란막은, 내부에 기공이 형성된 산란층과 상기 상란층 상에 형성된 평탄층을 포함하되, 상기 산란층 내에 형성된 기공의 평균 입경은 200nm 내지 1000nm이다.The light scattering film according to an aspect of the present invention includes a scattering layer having pores therein and a flat layer formed on the scattering layer, and the average particle diameter of the pores formed in the scattering layer is 200 nm to 1000 nm.
본 발명의 일 특징에 따른 광산란막에서, 상기 산란층의 굴절률과 상기 평탄층의 굴절률은 1.7 내지 2.1이다.In the light scattering film according to an aspect of the present invention, the refractive index of the scattering layer and the refractive index of the flat layer is 1.7 to 2.1.
본 발명의 일 특징에 따른 광산란막에서, 상기 산란층은 TiO2, ZrO2, CeO2, ZnO로 이루어진 그룹에서 선택된 어느 하나와 SiO2를 포함한다.In the light scattering film according to an aspect of the present invention, the scattering layer includes any one selected from the group consisting of TiO 2 , ZrO 2 , CeO 2 , ZnO and SiO 2 .
본 발명의 일 특징에 따른 광산란막 제조방법은, 기판에 기공형성용 고분자 볼, 골격형성용 파티클, 및 바인더를 포함하는 조성물을 코팅하여 산란층을 제조하는 단계; 상기 기공형성용 고분자 볼을 선택적으로 제거하여 산란층에 기공을 형성하는 단계; 및 상기 산란층 상에 평탄층을 형성하는 단계를 포함한다.According to an aspect of the present invention, there is provided a light-scattering film production method, comprising: preparing a scattering layer by coating a composition including a pore-forming polymer ball, a skeleton-forming particle, and a binder on a substrate; Selectively removing the pore-forming polymer balls to form pores in the scattering layer; And forming a flat layer on the scattering layer.
본 발명의 일 특징에 따른 광산란막 제조방법에서, 상기 조성물은 고형분 총 질량에 대해, 30 wt% 내지 60 wt%의 기공형성용 고분자 볼과, 20 wt% 내지 40 wt%의 골격형성용 파티클, 및 10 wt% 내지 30 wt%의 바인더를 포함하며, 조성물 총 중량에 대해 70 wt% 내지 95 wt%의 용매를 포함한다.In the light-scattering film production method according to an aspect of the present invention, the composition is 30 wt% to 60 wt% of the pore-forming polymer ball, 20 wt% to 40 wt% of the particles for the skeleton, And 10 wt% to 30 wt% of a binder, and 70 wt% to 95 wt% of the solvent, based on the total weight of the composition.
본 발명의 일 특징에 따른 광산란막 제조방법에서, 상기 기공형성용 고분자 볼의 평균입자크기와 상기 골격형성용 파티클의 평균입자크기의 비는 200:1 내지 2:1이다.In the light scattering film production method according to an aspect of the present invention, the ratio of the average particle size of the pore-forming polymer ball and the average particle size of the skeleton-forming particles is 200: 1 to 2: 1.
본 발명에 따르면, 산란 입자 대신 기공에 의해 광을 산란시킴으로써 헤이즈(Haze)를 5%이하로 낮출 수 있다. 또한, 산란층의 굴절률을 증가시켜 산란율을 높일 수 있다.According to the present invention, haze can be lowered to 5% or less by scattering light by pores instead of scattering particles. In addition, the scattering rate may be increased by increasing the refractive index of the scattering layer.
그리고, 기공의 사이즈를 자유롭게 조절할 수 있어 최적의 광추출 효과를 얻을 수 있다.In addition, the size of the pores can be freely adjusted to obtain an optimal light extraction effect.
도 1은 본 발명의 일 실시예에 따른 유기발광소자의 적층 구조를 도시한 개념도이고,1 is a conceptual diagram showing a laminated structure of an organic light emitting device according to an embodiment of the present invention,
도 2는 본 발명의 일 실시예에 따른 광산란막의 개념도이고,2 is a conceptual diagram of a light scattering film according to an embodiment of the present invention,
도 3은 본 발명의 일 실시예에 따른 광산란막 제조방법의 순서도이고,3 is a flow chart of a light scattering film manufacturing method according to an embodiment of the present invention,
도 4a 내지 도 4c는 본 발명에 따라 제조된 기공형성용 고분자 볼의 SEM 이미지이고,4a to 4c are SEM images of the polymer ball for pore forming prepared according to the present invention,
도 5 내지 도 7은 본 발명에 따라 제조된 광산란막의 SEM 이미지이다.5 to 7 are SEM images of the light scattering film prepared according to the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. In the present invention, the terms "comprises" or "having" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
도 1은 본 발명의 일 실시예에 따른 유기발광소자의 적층 구조를 도시한 개념도이고, 도 2는 본 발명의 일 실시예에 따른 광산란막의 개념도이다.1 is a conceptual diagram showing a laminated structure of an organic light emitting device according to an embodiment of the present invention, Figure 2 is a conceptual diagram of a light scattering film according to an embodiment of the present invention.
도 1을 참고하면, 유기발광소자(110)는 정공주입층(111)과, 유기 발광층(112)과, 전자수송층(113), 및 투명전극층(114)이 순서대로 적층되어 형성된다. 이때, 도시되지는 않았지만 필요에 따라 정공수송층과 전자수송층이 더 형성될 수 있다. Referring to FIG. 1, the organic light emitting diode 110 is formed by sequentially stacking a hole injection layer 111, an organic emission layer 112, an electron transport layer 113, and a transparent electrode layer 114. At this time, although not shown, a hole transport layer and an electron transport layer may be further formed as necessary.
유기발광소자의 전극층(114) 상에는 본 발명에 따른 광산란막(100)이 형성된다. 도 2를 참조하면, 본 발명에 따른 광산란막(100)은 기판(101)과 내부에 기공(106)이 형성된 산란층(102), 및 상기 상란층(102) 상에 형성된 평탄층(103)을 포함한다.The light scattering film 100 according to the present invention is formed on the electrode layer 114 of the organic light emitting device. 2, the light scattering film 100 according to the present invention includes a scattering layer 102 having pores 106 formed therein, and a flat layer 103 formed on the upper layer 102. It includes.
기판(101)은 유리 기판 또는 플라스틱 기판으로서 광을 용이하게 투과시킬 수 있는 재질이면 선택에 제한이 없다.The substrate 101 is a glass substrate or a plastic substrate, so long as it is a material capable of easily transmitting light, there is no limitation on the selection.
산란층(102)은 내부에 형성된 기공(106)에 의해 유기발광소자에서 방출된 광을 산란시킨다. 따라서, 산란층(102)을 구성하는 골격 지지체(105)가 굴절률이 높으면(산란층의 굴절률이 높으면) 기공(106)과의 굴절률이 커져 상대적으로 산란율이 높아진다. The scattering layer 102 scatters the light emitted from the organic light emitting diode by the pores 106 formed therein. Therefore, when the skeletal support 105 constituting the scattering layer 102 has a high refractive index (when the refractive index of the scattering layer is high), the refractive index with the pores 106 becomes large and the scattering rate becomes relatively high.
구체적으로 산란층(102)의 굴절률은 1.7 내지 2.1로 조절될 수 있다. 본 발명에 따르면, 기공에 의해 산란율이 조절되므로 산란층을 이루는 골격 지지체의 굴절률은 자유롭게 조절이 가능하다.Specifically, the refractive index of the scattering layer 102 may be adjusted to 1.7 to 2.1. According to the present invention, since the scattering rate is controlled by the pores, the refractive index of the skeletal support forming the scattering layer can be freely adjusted.
또한, 본 발명에 따른 광산란막(102)은 기공에 의해 산란되므로 헤이즈(Haze)가 5%이하로 낮아 디스플레이에 적합하다.In addition, since the light scattering film 102 according to the present invention is scattered by pores, haze (Haze) is less than 5% is suitable for display.
기공(106)의 평균입경은 광산란 효율을 높일 수 있도록 200nm 내지 1000nm 내의 크기를 갖는다. 기공의 평균입경이 200nm미만인 경우에는 충분한 광산란 효과를 갖지 못하는 문제가 있으며, 1000nm를 초과하는 경우에는 기공의 크기가 너무 커져 층을 형성할 수 없는 문제가 있다.The average particle diameter of the pores 106 has a size within 200nm to 1000nm to increase the light scattering efficiency. If the average particle diameter of the pores is less than 200nm, there is a problem that does not have a sufficient light scattering effect, if the average particle size exceeds 1000nm there is a problem that the pore size is too large to form a layer.
평탄층(103)은 산란층(102) 상에 형성되어 표면이 불균일한 산란층을 커버한다. 따라서, 평탄층(103)에 의해 투명전극층의 평탄도를 유지되므로 유기발광소자의 구조적인 결함을 방지된다. The flat layer 103 is formed on the scattering layer 102 to cover the scattering layer having a non-uniform surface. Therefore, the flatness of the transparent electrode layer is maintained by the flat layer 103, thereby preventing structural defects of the organic light emitting diode.
평탄층(103)의 굴절률은 투명전극층(114)과 동일하게 굴절률이 1.7 내지 2.1로 조절되어 투명전극층(114)과의 계면에서 광 추출 효율을 높일 수 있다. 따라서, 산란층(102)과 평탄층(103)의 굴절률이 동일하게 제작되는 경우 투명전극층(114)과, 평탄층(103), 및 산란층(102)의 굴절률이 모두 동일해지므로 계면간의 굴절률 차가 없으므로 광 추출효율이 극대화될 수 있다.The refractive index of the flat layer 103 may be adjusted to 1.7 to 2.1 in the same manner as the transparent electrode layer 114 to increase light extraction efficiency at the interface with the transparent electrode layer 114. Therefore, when the scattering layer 102 and the flat layer 103 have the same refractive index, the refractive indexes of the transparent electrode layer 114, the flat layer 103, and the scattering layer 102 are all the same. Since there is no difference, light extraction efficiency can be maximized.
도 3은 본 발명의 일 실시예에 따른 광산란막 제조방법의 순서도이다.3 is a flow chart of a light scattering film manufacturing method according to an embodiment of the present invention.
도 3을 참고하면, 본 발명에 따른 광산란막 제조방법은 기공형성용 고분자 볼, 골격형성용 파티클, 바인더, 및 용매를 포함하는 조성물을 기판에 코팅하여 산란층을 형성하는 단계와, 기공형성용 고분자 볼을 선택적으로 제거하여 산란층에 기공을 형성하는 단계, 및 산란층상에 평탄층을 형성하는 단계를 포함한다.Referring to Figure 3, the light scattering film manufacturing method according to the present invention comprises the steps of forming a scattering layer by coating a composition comprising a polymer ball for forming pores, particles for forming a skeleton, a binder, and a solvent on a substrate, Selectively removing the polymer balls to form pores in the scattering layer, and forming a flat layer on the scattering layer.
먼저 도 3의 (a)를 참조하면 산란층을 형성하는 단계는, 기공형성용 고분자 볼과, 골격형성용 파티클, 및 바인더를 포함하는 조성물을 유리기판(101)에 스핀 코팅한 후 건조하여 기공형성용 고분자 볼(104)과 골격형성용 파티클(105)이 분산된 산란층(102)을 제조한다. First, referring to FIG. 3A, the scattering layer may be formed by spin coating a glass substrate 101 on a composition including a pore-forming polymer ball, a skeleton-forming particle, and a binder and drying the pores. A scattering layer 102 in which the forming polymer balls 104 and the skeletal forming particles 105 are dispersed is manufactured.
산란층 형성용 조성물은, 고형분 총 중량에 대해, 30 wt% 내지 60 wt%의 기공형성용 고분자 볼과, 20 wt% 내지 40 wt%의 골격형성용 파티클, 및 10 wt% 내지 30 wt%의 바인더를 포함한다. 또한, 조성물의 총 중량에 대해 70wt% 내지 95wt%의 용매를 포함한다.The composition for forming the scattering layer comprises 30 wt% to 60 wt% of pore-forming polymer balls, 20 wt% to 40 wt% of particles for skeletal formation, and 10 wt% to 30 wt%, based on the total weight of solids. It includes a binder. Also included is 70 wt% to 95 wt% of solvent relative to the total weight of the composition.
기공형성용 고분자 볼(104)은 산란층 형성 후에 선택적으로 제거되어 기공을 형성하는 역할을 수행하므로 특정 용매에 용이하게 용해되는 재질이면 제한 없이 선택 가능하다. 그러나, 기공형성용 고분자 볼이 열처리에 의해 제거되는 경우에는 열 가소성 수지가 선택되는 것이 바람직하다. The pore-forming polymer ball 104 is selectively removed after the formation of the scattering layer to form pores, so that any material that can be easily dissolved in a specific solvent can be selected without limitation. However, in the case where the pore-forming polymer balls are removed by heat treatment, a thermoplastic resin is preferably selected.
구체적으로 기공형성용 고분자 볼은 ABS 수지(acrylonitrile butadiene-styrene copolymer acetal), 폴리메틸메탈크릴레이트(polymethyl methacrylate)와 같은 아크릴 수지, 폴리프로필렌(polypropylene), 폴리스티렌(polystyrene), 염화비닐수지(poly vinyl chloride), 및 폴리카보네이트(polycarbonate) 등과 같은 범용 고분자 수지로 제조될 수 있다.Specifically, the pore-forming polymer balls are made of ABS resin (acrylonitrile butadiene-styrene copolymer acetal), acrylic resin such as polymethyl methacrylate, polypropylene, polystyrene, polyvinyl chloride resin chloride, and polycarbonate, and the like.
기공형성용 고분자 볼(104)은 조성물에 포함된 고형분 총 중량에 대해 30 wt% 내지 60 wt%로 포함된다. 30 wt% 미만으로 포함되는 경우에는 기공의 밀도가 작아 충분한 산란효과를 갖지 못하는 문제가 있으며, 60 wt%를 초과하는 경우에는 높은 산란율에 의해 충분한 광투과도를 갖지 못하는 문제가 있다. 또한, 60 wt%를 초과하는 경우에는 상대적으로 골격형성용 파티클(105)의 함량이 줄어들어 층의 형태를 유지할 수 없는 문제가 있다.The pore-forming polymer ball 104 is included in an amount of 30 wt% to 60 wt% based on the total weight of solids included in the composition. When included in less than 30 wt% there is a problem that the pore density is not small enough to have a sufficient scattering effect, if it exceeds 60 wt% there is a problem that does not have sufficient light transmittance by a high scattering rate. In addition, when it exceeds 60 wt%, there is a problem in that the content of the skeleton-forming particles 105 is relatively reduced, so that the shape of the layer cannot be maintained.
기공형성용 고분자 볼(104)의 평균입자크기(D50)는 200nm 내지 1000nm일 수 있다. 고분자 볼의 크기가 200nm 미만인 경우에는 고분자 볼에 의해 형성된 기공의 크기가 작아 충분한 산란 효과를 갖지 못하는 문제가 있으며, 고분자 볼의 크기가 1000nm를 초과하는 경우에는 기공의 크기가 너무 커져 평탄화 및 기공의 골격이 유지하지 못하는 문제가 있다. 바람직하게는 기공형성용 고분자 볼의 평균입자크기(D50)가 200nm 내지 500nm인 경우 골격을 유지하면서도 충분한 산란효율 및 광추출 효율을 높일 수 있다.The average particle size (D 50 ) of the pore-forming polymer ball 104 may be 200 nm to 1000 nm. If the size of the polymer ball is less than 200nm, the size of the pores formed by the polymer ball is small, there is a problem that does not have a sufficient scattering effect, if the size of the polymer ball exceeds 1000nm, the size of the pores is too large to planarization and pore There is a problem that the skeleton cannot maintain. Preferably, when the average particle size (D 50 ) of the pore-forming polymer ball is 200 nm to 500 nm, sufficient scattering efficiency and light extraction efficiency may be maintained while maintaining a skeleton.
골격형성용 파티클(105)은 기공형성용 고분자 볼 제거시, 기공이 형성된 산란층(102)의 골격을 지지하는 역할을 수행한다. 이러한 골격형성용 파티클은 TiO2, ZrO2, ZnO, CeO2, 로 이루어진 그룹에서 어느 하나 이상이 선택될 수 있다.The skeleton forming particle 105 serves to support the skeleton of the scattering layer 102 in which the pores are formed when the polymer ball for forming pores is removed. Such skeleton-forming particles may be any one or more selected from the group consisting of TiO 2 , ZrO 2 , ZnO, CeO 2 ,.
골격형성용 파티클(105)의 평균입자크기(D50)는 5nm 내지 100nm일 수 있다. 골격형성용 파티클의 크기가 5nm 미만인 경우에는 취급이 용이하지 않은 문제가 있다. 또한, 파티클의 크기가 100nm를 초과하는 경우에는 골격형성용 파티클에 의해 광이 산란되어 헤이즈(haze)가 5%를 초과하게 되므로 디스플레이에 사용하기 부적합한 문제가 있다. 골격형성용 파티클에 의한 광산란을 최소화하기 위하여 파티클의 평균입자크기는 5nm이상이고 50nm미만 인 것이 바람직하다.The average particle size (D 50 ) of the skeleton forming particles 105 may be 5nm to 100nm. If the size of the particles for skeleton formation is less than 5nm, there is a problem that handling is not easy. In addition, when the particle size exceeds 100 nm, light is scattered by the particles for skeleton formation, and the haze exceeds 5%. Therefore, there is a problem that is not suitable for use in a display. In order to minimize light scattering by the particles for skeleton formation, the average particle size of the particles is preferably 5 nm or more and less than 50 nm.
골격형성용 파티클(105)은 조성물에 포함된 고형분 총 중량에 대해, 20 wt% 내지 40 wt%로 포함된다. 골격형성용 파티클의 함량이 20 wt% 미만인 경우에는 굴절률이 낮아 광추출 효율이 낮은 문제가 있으며, 40 wt%를 초과하는 경우에는 기공형성용 고분자 볼의 함량이 감소하여 기공 밀도가 줄어드는 문제가 있다.The skeletal particles 105 are included in an amount of 20 wt% to 40 wt%, based on the total weight of solids included in the composition. When the content of the skeleton-forming particles is less than 20 wt%, there is a problem that the light extraction efficiency is low because the refractive index is low, and when the content exceeds 40 wt%, there is a problem that the pore density decreases due to the decrease of the content of the pore-forming polymer balls. .
따라서, 고분자 입자의 평균입자크기와 파티클의 평균입자크기의 비가 200:1 내지 2:1으로 조절되면 충분한 기공을 갖는 산란층을 제조할 수 있다. 바람직하게는 고분자 입자의 평균입자크기와 파티클의 평균입자크기의 비가 100:1 내지 5:1로 조절되는 것이 좋다.Therefore, when the ratio of the average particle size of the polymer particles and the average particle size of the particles is adjusted to 200: 1 to 2: 1, it is possible to prepare a scattering layer having sufficient pores. Preferably, the ratio of the average particle size of the polymer particles and the average particle size of the particles may be adjusted to 100: 1 to 5: 1.
본 발명에 따른 골격형성용 파티클은 무기물이기 때문에 수분을 흡수하지 않아서 내구성이 우수하다. 따라서, 장기간 사용시 수분의 침투 가능성이 높은 유기발광소자에 적합하다.Since the particles for skeleton formation according to the present invention is an inorganic material, it does not absorb moisture and is excellent in durability. Therefore, it is suitable for an organic light emitting device having a high possibility of penetration of moisture when used for a long time.
바인더는 조성물에 포함된 고형분 총 중량에 대해, 10 wt% 내지 30 wt%로 포함된다. 바인더의 함량이 10 wt% 미만인 경우에는 골격형성용 파티클의 부착력이 떨어지는 문제가 있으며, 30 wt%를 초과하는 경우에는 기공형성용 고분자 볼과 골격형성용 파티클의 함량이 감소하고 굴절률이 감소하는 문제가 있다.The binder is comprised between 10 wt% and 30 wt%, based on the total weight of solids included in the composition. If the content of the binder is less than 10 wt%, there is a problem that the adhesion of the skeleton-forming particles falls, if the content of the binder exceeds 30 wt%, the content of the pore-forming polymer ball and the skeleton-forming particles are reduced and the refractive index is reduced There is.
바인더는 실란 화합물로 이루어질 수 있으며, 실란 화합물의 중량평균분자량은 2,000 내지 50,000인 것이 바람직하며, 5,000 내지 30,000인 것이 더욱 바람직하며, 10,000 내지 20,000인 것이 가장 바람직하다.The binder may be made of a silane compound, the weight average molecular weight of the silane compound is preferably 2,000 to 50,000, more preferably 5,000 to 30,000, most preferably 10,000 to 20,000.
실란 화합물의 중량평균분자량이 2,000 미만인 경우, 300℃ 이상의 고온의 열처리시 바인더의 지나친 수축으로 인하여 균열을 가져오며, 50,000을 초과할 경우, 점도가 너무 높거나 젤을 형성하여 고화가 일어나는 문제가 있다.If the weight average molecular weight of the silane compound is less than 2,000, it causes cracks due to excessive shrinkage of the binder during heat treatment at a high temperature of 300 ° C. or higher, and if it exceeds 50,000, there is a problem that the viscosity is too high or a gel is formed to cause solidification. .
이와 같이 바인더는 적절한 분자량 조절에 의해 300℃ 이상의 고온 가공시 크랙의 발생이 방지되며, 고굴절률(1.8 ~ 2.1)을 가지며, 흡광계수가 < 0.001보다 작은 특징을 갖는다.As described above, the binder is prevented from generating cracks at a high temperature of 300 ° C. or higher by appropriate molecular weight control, has a high refractive index (1.8 to 2.1), and has an absorption coefficient of less than <0.001.
유기발광소자의 광산란막은 300℃ 이상의 고온 열처리를 하여야 디바이스의 신뢰성(광추출 내구성)이 증대되기 때문에, 본 발명의 바인더를 포함하는 조성물은 유기발광소자 분야에서 매우 유용하게 사용될 수 있다.Since the light scattering film of the organic light emitting device is subjected to a high temperature heat treatment of 300 ° C. or higher to increase the reliability (light extraction durability) of the device, the composition including the binder of the present invention can be very useful in the field of organic light emitting devices.
용매는 조성물의 총 중량에 대해 70 wt% 내지 95wt%로 포함된다. 용매의 함량은 코팅 조성물의 코팅성을 고려하여 결정할 수 있다. 상기 용매로는, 이에 한정되는 것은 아니나, 부틸아세테이트, 이소프로판올, 에탄올, 메탄올, 메틸 셀루로오즈, 프로필렌글리콜 에틸 에테르. 메틸 셀로루브, 에틸셀로루브 로 이루어진 그룹에서 어느 하나 이상이 선택될 수 있다. 또한, 기공형성용 고분자 볼과 골격형성용 파티클을 분산시키기 위한 분산제 등이 더 포함될 수 있다.The solvent is comprised between 70 wt% and 95 wt% with respect to the total weight of the composition. The content of the solvent may be determined in consideration of the coatability of the coating composition. Examples of the solvent include, but are not limited to, butyl acetate, isopropanol, ethanol, methanol, methyl cellulose, and propylene glycol ethyl ether. Any one or more may be selected from the group consisting of methyl cellulose and ethyl cellulose. In addition, a dispersing agent for dispersing the pore-forming polymer ball and the skeleton-forming particles may be further included.
이후, 도 3의 (b)를 참조하면 산란층에 기공을 형성하는 단계는, 기공형성용 고분자 볼을 선택적으로 제거하여 기공(106)을 형성한다. 이때, 골격형성용 파티클(105)은 기공형성용 고분자 볼이 제거되어도 바인더에 의해 유리기판(101)에 견고히 부착되어 골격을 유지한다.Thereafter, referring to FIG. 3B, the forming of pores in the scattering layer may selectively remove the pore-forming polymer balls to form pores 106. At this time, the skeleton forming particle 105 is firmly attached to the glass substrate 101 by a binder to maintain the skeleton even when the pore-forming polymer ball is removed.
기공형성용 고분자 볼을 제거하는 방법은 소정 온도로 소결하는 방법과 고분자 용매를 사용하여 제거하는 방법을 선택할 수 있다. As a method of removing the pore-forming polymer balls, a method of sintering at a predetermined temperature and a method of removing using the polymer solvent may be selected.
소정 온도로 소결하는 방법은 산란층이 코팅된 기판을 약 450℃ 이하의 온도로 소결한다. 소결 온도가 450℃를 초과하는 경우에는 산란층 및 기판이 휘어지는 문제가 발생할 수 있다. 이때 기공형성용 고분자 볼은 열에 의해 용융될 수 있는 가소성 수지인 것이 바람직하다.The method of sintering at a predetermined temperature sinters the substrate coated with the scattering layer at a temperature of about 450 ° C. or less. If the sintering temperature is higher than 450 ° C., the scattering layer and the substrate may be warped. At this time, the pore-forming polymer ball is preferably a plastic resin that can be melted by heat.
전술한 바와 같이 기공형성용 고분자 볼의 크기는 200 내지 1000nm의 크기로 형성되므로, 기공의 크기 역시 200 내지 1000nm의 크기로 균일하게 형성되어 충분한 산란 효과를 가질 수 있다. 본 제조방법에 의하면 산란입자의 밀도 등을 제어하여 공극을 형성하는 구조에 비해 균일하게 기공을 형성할 수 있으며, 각 기공의 크기가 일정하게 형성(균일도)되어 산란효과가 뛰어난 장점이 있다.As described above, since the pore-forming polymer balls are formed to have a size of 200 to 1000 nm, the pore sizes may be uniformly formed to have a size of 200 to 1000 nm, and thus may have sufficient scattering effects. According to the present manufacturing method, pores can be uniformly formed compared to a structure for forming voids by controlling the density of scattering particles and the like, and the size of each pore is uniformly formed (uniformity), which has an excellent scattering effect.
또한, 고분자 용매를 이용하는 방법은 아세톤(Acetone), PGMEA, PGME와 같은 케톤, 및 아세테이트, 에테르와 같은 유기 용매를 이용할 수 있다. 그러나, 반드시 이에 한정되는 것은 아니고 조성물에 포함된 기공형성용 고분자 볼이 용해될 수 있는 용매이면 제한 없이 사용 가능하다.In addition, the method of using a polymer solvent may use acetone, PGMEA, ketones such as PGME, and organic solvents such as acetate and ether. However, the present invention is not limited thereto, and the polymer ball for forming pores included in the composition may be used without limitation as long as the solvent can dissolve the polymer ball.
구체적으로는 고분자 용매에 산란층을 소정시간 동안 침지하여 기공형성용 고분자 볼을 제거할 수 있다. 용매를 이용하는 경우 높은 온도의 가열 과정이 없으므로 지지체에 크랙이 발생하거나 기판이 휘어지는 문제가 발생하지 않는 장점이 있다. 이때 미설명된 도면부호(102a)는 기공의 형성에 의해 표면에 형성된 요철이다.Specifically, the scattering layer is immersed in the polymer solvent for a predetermined time to remove the pore-forming polymer balls. In the case of using a solvent, there is no high temperature heating process, so that a crack does not occur in the support or the substrate is not bent. In this case, reference numeral 102a, which is not described, is irregularities formed on the surface by the formation of pores.
이후, 도 3의 (c)를 참조하면 산란층에 평탄층을 형성하는 단계는, 산란층의 상면에 코팅하여 소정 두께의 평탄층(103)을 형성한다. 산란층은 기공에 의해 표면이 평탄하지 않으므로 그 위에 ITO 막을 형성하는 경우 ITO 막의 평탄도가 저하되는 문제가 있다. 따라서, 이러한 평탄층(103)에 의해 ITO 막의 평탄도를 유지시킬 수 있는 장점이 있다.Thereafter, referring to FIG. 3C, in the forming of the flat layer on the scattering layer, a flat layer 103 having a predetermined thickness is formed by coating the top surface of the scattering layer. Since the surface of the scattering layer is not flat due to the pores, the flatness of the ITO film is lowered when the ITO film is formed thereon. Therefore, there is an advantage that the flatness of the ITO film can be maintained by the flattening layer 103.
평탄층 형성용 조성물은, 고형분 총 중량에 대해 바인더는 10 내지 40 wt%로 포함되는 것이 바람직하며, 15 내지 25 wt%로 포함되는 것이 더욱 바람직하다. 바인더가 10 wt% 미만으로 포함되면, 평탄화층 형성용 조성물의 접착력이 부족하여 산란층 상에 평탄층을 안정적으로 형성하기 어렵고, 40 wt%를 초과하면, 상대적으로 파티클의 함량이 감소되어 높은 굴절률을 확보하기 어렵다.In the flat layer forming composition, the binder is preferably contained in an amount of 10 to 40 wt%, and more preferably in an amount of 15 to 25 wt%, based on the total weight of solids. When the binder is included in less than 10 wt%, it is difficult to stably form the flat layer on the scattering layer due to the lack of adhesion of the composition for forming the planarization layer, and when the content exceeds 40 wt%, the content of particles is relatively decreased, resulting in high refractive index. Difficult to secure.
한편, 파티클은 60 내지 90wt%로 포함되는 것이 바람직하며, 75 내지 85 wt%로 포함되는 것이 더욱 바람직하다. 60 wt% 미만으로 포함되면, 높은 굴절률을 확보하기 어렵고, 90 wt%를 초과하면 상대적으로 바인더의 함량이 부족한 문제가 발생한다. On the other hand, the particles are preferably included in 60 to 90wt%, more preferably in the 75 to 85wt%. If it is included in less than 60 wt%, it is difficult to secure a high refractive index, and if it exceeds 90 wt%, there is a problem that the content of the binder is relatively insufficient.
상기에서 용매는 조성물의 총 중량에 대해 70 내지 95 wt%로 포함되는 것이 바람직하며, 80 내지 90 wt%로 포함되는 것이 더욱 바람직하다. 상기 용매로는, 이에 한정되는 것은 아니나, 프로필렌글리콜모노메틸에테르(PGME), 프로필렌글리콜모노메틸에테르 아세테이트(PGMEA), 이소프로필알콜, 에탄올, 메틸알콜, 아세톤 등을 들 수 있다.The solvent is preferably included in 70 to 95 wt%, more preferably 80 to 90 wt% relative to the total weight of the composition. Examples of the solvent include, but are not limited to, propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), isopropyl alcohol, ethanol, methyl alcohol, acetone and the like.
이때, 골격형성용 파티클의 평균입도는 5 nm ~ 100 nm인 것이 바람직하다. 평균입도가 5 nm 미만이면 입도의 취급이 어렵고, 100 nm를 초과하면 충분한 투광율을 얻기 어렵다. 골격형성용 파티클이 상기의 입도 범위를 갖는 경우, 산란이 최소화되어 평탄층이 90% 이상의 투과율을 얻을 수 있다.At this time, the average particle size of the particles for skeleton formation is preferably 5 nm ~ 100 nm. If the average particle size is less than 5 nm, the handling of the particle size is difficult, and if it exceeds 100 nm, it is difficult to obtain a sufficient light transmittance. When the skeleton-forming particles have the above particle size range, scattering may be minimized to obtain a transmittance of 90% or more of the flat layer.
이하에서, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 그러나, 하기의 실시예는 본 발명을 더욱 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 하기의 실시예에 의하여 한정되는 것은 아니다. 하기의 실시예는 본 발명의 범위 내에서 당업자에 의해 적절히 수정, 변경될 수 있다. Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are intended to illustrate the present invention more specifically, but the scope of the present invention is not limited by the following examples. The following examples can be appropriately modified and changed by those skilled in the art within the scope of the present invention.
[실시예 1-1] 고분자 볼 제조Example 1-1 Preparation of Polymer Balls
1000ml 플라스크에 2.2-Azobis(2-methylpropionamide) 0.7g과 ethylene glylcol 3.5g을 증류수 750g에 넣고 교반하면서 온도를 83.6℃까지 가열하였다. 이후 methyl metacrylate을 150g을 넣고 90분간 온도를 유지하였다. 이후, 용액을 원심분리하여 105℃에서 건조하여 크기가 400 내지 480nm 인 고분자 볼을 제조하였다. 제조된 고분자 볼의 SEM 사진을 도 4 a에 나타내었다.In a 1000 ml flask, 0.7 g of 2.2-Azobis (2-methylpropionamide) and 3.5 g of ethylene glylcol were added to 750 g of distilled water, and the temperature was heated to 83.6 ° C. while stirring. Since 150g of methyl metacrylate was added to maintain the temperature for 90 minutes. Thereafter, the solution was centrifuged and dried at 105 ° C. to prepare a polymer ball having a size of 400 to 480 nm. The SEM photograph of the prepared polymer ball is shown in Figure 4a.
[실시예 1-2] 고분자 볼 제조Example 1-2 Polymer Ball Preparation
1000ml 플라스크에 2.2-Azobis(2-methylpropionamide) 0.7g과 ethylene glylcol 3.5g을 증류수 750g에 넣고 교반하면서 온도를 84℃까지 가열한 것을 제외하고는 동일한 방법으로 크기가 300 내지 380nm 인 고분자 볼을 제조하였다. 제조된 고분자 볼의 SEM 사진을 도 4b에 나타내었다.A polymer ball having a size of 300 to 380 nm was prepared in the same manner except that 0.7 g of 2.2-Azobis (2-methylpropionamide) and 3.5 g of ethylene glylcol were added to 750 g of distilled water in a 1000 ml flask, and the temperature was raised to 84 ° C. while stirring. . The SEM photograph of the prepared polymer ball is shown in Figure 4b.
[실시예 1-3] 고분자 볼 제조Example 1-3 Polymer Ball Preparation
1000ml 플라스크에 2.2-Azobis(2-methylpropionamide) 0.7g과 ethylene glylcol 3.5g을 증류수 750g에 넣고 교반하면서 온도를 90℃까지 가열한 것을 제외하고는 동일한 방법으로 크기가 250 내지 290nm 인 고분자 볼을 제조하였다. 제조된 고분자 볼의 SEM 사진을 도 4c에 나타내었다.A polymer ball having a size of 250 to 290 nm was prepared in the same manner except that 0.7 g of 2.2-Azobis (2-methylpropionamide) and 3.5 g of ethylene glylcol were added to 750 g of distilled water and heated to 90 ° C. while stirring in a 1000 ml flask. . The SEM photograph of the prepared polymer ball is shown in Figure 4c.
[실시예 1-4] 바인더 제조Example 1-4 Binder Preparation
100ml 플라스크에 MTMS(메틸트리메톡시실란) 60g과 탈이온수(Diwater) 10g을 넣고, 1% 질산 1g을 넣은 후, heating mantle을 이용해 온도 28℃, 교반속도 60rpm에서 교반하며 GPC로 반응을 추적하여 중량평균분자량이 12,000인 실란 화합물을 제조하였다.60 g MTMS (methyltrimethoxysilane) and 10 g deionized water (Diwater) were added to a 100 ml flask, and 1 g of 1% nitric acid was added. A silane compound having a weight average molecular weight of 12,000 was prepared.
[실시예 2] 광산란막 제조Example 2 Preparation of Light Scattering Film
실시예 1-1에 따라 제조된 고분자 볼 3g, TiO2 4g, 실시예 1-4에 따라 제조된 바인더 1g을 혼합하고 에탄올(Ethnol)을 넣어서 고형분이 10%로 되게 묽인 후 스핀코팅으로 1500rp에서 10초간 코팅하였다. 이후, 80℃에서 10분간 건조한 후 380℃에서 1시간 건조하여 산란막을 제조하였다. 제조된 산란막의 SEM 사진을 도 5에 나타내었고, 측정된 굴절률, 분산도, 기공 균일도를 표 1에 표시하였다.3 g of the polymer balls prepared according to Example 1-1, 4 g of TiO 2 , and 1 g of the binder prepared according to Example 1-4 were mixed and diluted with ethanol (Ethnol) to a solid content of 10%, followed by spin coating at 1500 rpm. Coating was for 10 seconds. Then, after drying for 10 minutes at 80 ℃ 1 hour at 380 ℃ to prepare a scattering film. The SEM image of the prepared scattering film is shown in FIG. 5, and the measured refractive index, dispersion degree, and pore uniformity are shown in Table 1.
[실시예 3] 광산란막 제조Example 3 Preparation of Light Scattering Film
실시예 1-2에 따라 제조된 고분자 볼 3g, TiO2 3g, 실시예 1-4에 따라 제조된 바인더 1g을 혼합한 것을 제외하고는 실시예 2와 동일하게 방법으로 산란막을 제조하였다. 제조된 산란막의 SEM 사진을 도 6에 나타내었고, 측정된 굴절률, 분산도, 기공 균일도를 표 1에 표시하였다.A scattering film was manufactured in the same manner as in Example 2, except that 3g of the polymer ball prepared according to Example 1-2, 3g of TiO 2 , and 1g of the binder prepared according to Example 1-4 were mixed. SEM pictures of the prepared scattering film are shown in FIG. 6, and the measured refractive index, dispersion degree, and pore uniformity are shown in Table 1.
[실시예 4] 광산란막 제조Example 4 Light Scattering Film Preparation
실시예 1-3에 따라 제조된 고분자 볼 3g, TiO2 2g, 실시예 1-4에 따라 제조된 바인더 1g을 혼합한 것을 제외하고는 실시예 2와 동일하게 방법으로 산란막을 제조하였다. 제조된 산란막의 SEM 사진을 도 7에 나타내었고, 측정된 굴절률, 분산도, 기공 균일도를 표 1에 표시하였다.A scattering film was manufactured in the same manner as in Example 2, except that 3g of the polymer ball prepared according to Example 1-3, 2g of TiO 2 , and 1g of the binder prepared according to Example 1-4 were mixed. The SEM photograph of the prepared scattering film is shown in FIG. 7, and the measured refractive index, dispersion degree, and pore uniformity are shown in Table 1.
[비교예 1]Comparative Example 1
SiO2 분말 8g을 첨가제와 혼합한 후 에탄올(Ethnol)을 넣어서 고형분이 10%로 되게 묽인 후 스핀코팅으로 1500rp에서 10초간 코팅하였다. 이후, 80℃에서 10분간 건조한 후 380℃에서 1시간 건조하여 산란막을 제조하고, 측정된 굴절률, 분산도, 기공 균일도를 표 1에 표시하였다.After mixing 8 g of SiO 2 powder with an additive, ethanol (Ethnol) was added to dilute the solid to 10%, and then coated with spin coating at 1500 rpm for 10 seconds. Then, after drying for 10 minutes at 80 ℃ and dried for 1 hour at 380 ℃ to prepare a scattering film, the measured refractive index, dispersion degree, pore uniformity is shown in Table 1.
표 1
굴절률 기공 균일도 분산도 기공 표면 거칠기
실시예 2 1.97 양호 양호 양호
실시예 3 1.86 양호 양호 양호
실시예 4 1.75 양호 양호 양호
비교예 1 1.52 불량 불량 불량
Table 1
Refractive index Pore Uniformity Dispersion Pore Surface Roughness
Example 2 1.97 Good Good Good
Example 3 1.86 Good Good Good
Example 4 1.75 Good Good Good
Comparative Example 1 1.52 Bad Bad Bad
표 1에서 볼 수 있는 바와 같이 실시예 2 내지 4의 경우 굴절률이 1.75 내지 1.97로 고굴절률을 갖는 것을 알 수 있다. 또한, 도 5 내지 7에서 볼 수 있는 바와 같이 기공의 균일도가 양호하게 형성됨을 알 수 있다. 여기서 기공 균일도란 기공의 평균 타원비(기공의 단축과 장축의 비)가 0.6이상인 경우 양호로 판단하였으며 그 이하인 경우에는 불량으로 표기하였다. 예시적으로 도 5를 참고하면, 기공의 장축이 461.953nm이고 단축이 361.528nm로서 타원비가 0.78임을 확인할 수 있다.As can be seen in Table 1, in Examples 2 to 4, it can be seen that the refractive index has a high refractive index of 1.75 to 1.97. In addition, as can be seen in Figures 5 to 7 it can be seen that the uniformity of the pores is formed well. Here, the pore uniformity is considered good when the average elliptic ratio (pore shortening and long axis ratio) of the pores is 0.6 or more, and is poor when it is less than that. For example, referring to FIG. 5, it can be seen that the major axis of the pores is 461.953 nm and the minor axis is 361.528 nm, and the elliptic ratio is 0.78.
또한, 도 5 내지 7을 참고하면 기공의 분산도가 양호한 것을 알 수 있고, 기공의 표면이 매끄럽게 형성되어 거칠기가 양호한 것을 알 수 있다.5 to 7, it can be seen that the porosity of the pores is good, and the surface of the pores is formed smoothly, it can be seen that the roughness is good.
이에 비해, 비교예 1의 경우 굴절률이 1.52로 상대적으로 저굴절률임을 알 수 있고, 부분적으로 기공이 형성되기는 하였으나 기공의 균일도가 낮으며 표면 거칠기가 불량하였다.On the other hand, in Comparative Example 1, the refractive index is 1.52, indicating that the refractive index is relatively low. Although the pores are partially formed, the uniformity of the pores is low and the surface roughness is poor.
따라서, 본 발명의 제조방법에 의해 제조된 산란층은 기공의 균일도(타원비)가 우수하며, 분산도와 거칠기가 양호하여 산란 효율이 뛰어남을 유추할 수 있다. 또한, 산란층의 굴절률이 높이 광추출효율이 뛰어남을 알 수 있다. Therefore, the scattering layer manufactured by the manufacturing method of the present invention is excellent in the uniformity (elliptic ratio) of the pores, it can be inferred that the scattering efficiency is excellent because the dispersion and roughness is good. In addition, it can be seen that the refractive index of the scattering layer is excellent in light extraction efficiency.

Claims (9)

  1. 유기발광소자의 광추출을 향상시키기 위한 산란막으로서,As a scattering film for improving the light extraction of the organic light emitting device,
    내부에 기공이 형성된 산란층과 상기 상란층 상에 형성된 평탄층을 포함하되,It includes a scattering layer having pores therein and a flat layer formed on the upper layer,
    상기 산란층 내에 형성된 기공의 평균 입경은 200nm 내지 1000nm인 광산란막.Light scattering film having an average particle diameter of the pores formed in the scattering layer is 200nm to 1000nm.
  2. 제1항에 있어서,The method of claim 1,
    상기 산란층의 굴절률과 상기 평탄층의 굴절률은 1.7 내지 2.1인 광산란막.A light scattering film having a refractive index of the scattering layer and a refractive index of the flat layer is 1.7 to 2.1.
  3. 제1항에 있어서,The method of claim 1,
    상기 산란층은 TiO2, ZrO2, CeO2, ZnO로 이루어진 그룹에서 선택된 어느 하나인 파티클과 SiO2를 포함하는 광산란막.The scattering layer is a light scattering film comprising SiO 2 particles and any one selected from the group consisting of TiO 2 , ZrO 2 , CeO 2 , ZnO.
  4. 기판에 기공형성용 고분자 볼, 골격형성용 파티클, 및 바인더를 포함하는 조성물을 코팅하여 산란층을 제조하는 단계;Preparing a scattering layer by coating a composition including a pore-forming polymer ball, a skeleton-forming particle, and a binder on a substrate;
    상기 기공형성용 고분자 볼을 선택적으로 제거하여 산란층에 기공을 형성하는 단계; 및Selectively removing the pore-forming polymer balls to form pores in the scattering layer; And
    상기 산란층 상에 평탄층을 형성하는 단계를 포함하는 광산란막 제조방법.Light scattering film manufacturing method comprising the step of forming a flat layer on the scattering layer.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 조성물은 고형분 총 질량에 대해, 30 wt% 내지 60 wt%의 기공형성용 고분자 볼과, 20 wt% 내지 40 wt%의 골격형성용 파티클, 및 10 wt% 내지 30 wt%의 바인더를 포함하며,The composition comprises 30 wt% to 60 wt% of pore-forming polymer balls, 20 wt% to 40 wt% of skeletal particles, and 10 wt% to 30 wt% of binder, based on the total mass of solids ,
    조성물 총 중량에 대해 70 wt% 내지 95 wt%의 용매를 포함하는 광산란막 제조방법.A light scattering film manufacturing method comprising 70 wt% to 95 wt% of a solvent based on the total weight of the composition.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 기공형성용 고분자 볼의 평균입자크기와 상기 골격형성용 파티클의 평균입자크기의 비는 200:1 내지 2:1인 광산란막 제조방법.The ratio of the average particle size of the pore-forming polymer ball and the average particle size of the skeleton-forming particles is 200: 1 to 2: 1 manufacturing method.
  7. 제6항에 있어서, The method of claim 6,
    상기 기공형성용 고분자 볼의 크기는 200nm 내지 1000nm이고, 상기 골격형성용 파티클의 크기는 5nm 내지 100nm 이하인 광산란막 제조방법.The pore-forming polymer ball size is 200nm to 1000nm, the size of the skeleton-forming particles is 5nm to 100nm or less light scattering film production method.
  8. 제4항에 있어서,The method of claim 4, wherein
    상기 기공을 형성하는 단계는,Forming the pores,
    상기 제조된 광산란막을 소결하거나 또는 용매에 침지하여 상기 기공형성용 고분자 볼을 제거하는 광산란막 제조방법.Sintering the prepared light-scattering film or immersed in a solvent to remove the pore-forming polymer ball to produce a light-scattering film.
  9. 제4항에 있어서,The method of claim 4, wherein
    상기 바인더는 중량평균분자량이 2,000 내지 50,000인 실란계 화합물인 광산란막 제조방법.The binder is a light scattering film production method of the silane-based compound having a weight average molecular weight of 2,000 to 50,000.
PCT/KR2013/004234 2013-05-13 2013-05-13 Light scattering film for organic light emitting element and manufacturing method therefor WO2014185562A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0053883 2013-05-13
KR20130053883 2013-05-13

Publications (1)

Publication Number Publication Date
WO2014185562A1 true WO2014185562A1 (en) 2014-11-20

Family

ID=51898531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004234 WO2014185562A1 (en) 2013-05-13 2013-05-13 Light scattering film for organic light emitting element and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2014185562A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170097944A (en) * 2016-02-19 2017-08-29 율촌화학 주식회사 Light extracting layer for OLED, OLED using the same and method for preparing the OLED
CN111239883A (en) * 2020-02-19 2020-06-05 京东方科技集团股份有限公司 Polarizer, LCD screen and OLED screen
CN112166381A (en) * 2019-03-04 2021-01-01 (株)尖端实验室 Light extraction structure and lighting device for curing machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063704A (en) * 2003-08-20 2005-03-10 Stanley Electric Co Ltd Organic el device
JP4406572B2 (en) * 2004-03-03 2010-01-27 株式会社 日立ディスプレイズ LIGHT EMITTING ELEMENT AND DISPLAY DEVICE THEREOF
KR20100029757A (en) * 2007-05-10 2010-03-17 이스트맨 코닥 캄파니 Electroluminescent device having improved light output
KR20100103694A (en) * 2008-01-15 2010-09-27 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Light scattering by controlled porosity in optical ceramics for leds
KR20120007472A (en) * 2010-07-14 2012-01-20 엘티씨 (주) Inorganic scattering films having high light extraction performance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063704A (en) * 2003-08-20 2005-03-10 Stanley Electric Co Ltd Organic el device
JP4406572B2 (en) * 2004-03-03 2010-01-27 株式会社 日立ディスプレイズ LIGHT EMITTING ELEMENT AND DISPLAY DEVICE THEREOF
KR20100029757A (en) * 2007-05-10 2010-03-17 이스트맨 코닥 캄파니 Electroluminescent device having improved light output
KR20100103694A (en) * 2008-01-15 2010-09-27 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Light scattering by controlled porosity in optical ceramics for leds
KR20120007472A (en) * 2010-07-14 2012-01-20 엘티씨 (주) Inorganic scattering films having high light extraction performance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170097944A (en) * 2016-02-19 2017-08-29 율촌화학 주식회사 Light extracting layer for OLED, OLED using the same and method for preparing the OLED
KR101957756B1 (en) * 2016-02-19 2019-03-14 율촌화학 주식회사 Light extracting layer for OLED, OLED using the same and method for preparing the OLED
CN112166381A (en) * 2019-03-04 2021-01-01 (株)尖端实验室 Light extraction structure and lighting device for curing machine
CN111239883A (en) * 2020-02-19 2020-06-05 京东方科技集团股份有限公司 Polarizer, LCD screen and OLED screen

Similar Documents

Publication Publication Date Title
KR101318374B1 (en) Organic light emitting diode and manufacturing method thereof
US8283845B2 (en) Plane emission device
KR102624558B1 (en) Advanced light extraction structure
WO2016021883A1 (en) Dye complex, photoconversion film and electronic element including same
JP5065776B2 (en) Surface emitter
US20160291236A1 (en) Waveguides comprising light scattering surfaces and display devices comprising the same
WO2012036453A2 (en) Transparent conductive sheet coated with antireflection layer and method for manufacturing same
JP2009004275A (en) Manufacturing method of surface light emitter and surface light emitter
US9142800B2 (en) Substrate glass for LEDs with layer containing scattering particles and method for production thereof
US20140322549A1 (en) High refractive index nanocomposite
WO2014185562A1 (en) Light scattering film for organic light emitting element and manufacturing method therefor
WO2016105026A1 (en) Method for manufacturing light extraction substrate for organic light emitting diode, light extraction substrate for organic light emitting diode, and organic light emitting diode comprising same
JP2017522581A (en) Low refractive composition, method for producing the same, and transparent conductive film
KR20160078137A (en) Transparent electrodes and electronic decives including the same
WO2016105027A1 (en) Method for manufacturing light extraction substrate for organic light emitting diode, light extraction substrate for organic light emitting diode, and organic light emitting diode comprising same
WO2019146941A1 (en) Color shifting film, and backlight unit and display device which comprise same
EP2965325A1 (en) Conductive film, method for manufacturing the same, and electronic device including the same
CN104051671A (en) OLED display device and manufacturing method thereof
WO2015080422A1 (en) Method for manufacturing substrate, substrate, method for manufacturing organic electroluminescence device, and organic electroluminescence device
EP3352238A1 (en) Method for preparing uneven particle layer, organic electroluminescent device, and display device
JP2020524302A (en) Color change film, and backlight unit and display device including the same
US9570709B2 (en) Method for manufacturing ultrathin organic light-emitting device
WO2016108594A2 (en) Method for manufacturing light extraction substrate for organic light emitting element, light extraction substrate for organic light emitting element, and organic light emitting element including same
WO2014092344A1 (en) Coating composition for layer having low refractive index, and transparent conductive film including same
WO2013147570A1 (en) Substrate for organic electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884739

Country of ref document: EP

Kind code of ref document: A1