WO2014185225A1 - 太陽電池モジュール及びその製造方法 - Google Patents

太陽電池モジュール及びその製造方法 Download PDF

Info

Publication number
WO2014185225A1
WO2014185225A1 PCT/JP2014/061165 JP2014061165W WO2014185225A1 WO 2014185225 A1 WO2014185225 A1 WO 2014185225A1 JP 2014061165 W JP2014061165 W JP 2014061165W WO 2014185225 A1 WO2014185225 A1 WO 2014185225A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
solar cell
wiring member
layer
electrode
Prior art date
Application number
PCT/JP2014/061165
Other languages
English (en)
French (fr)
Inventor
足立 大輔
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to US14/890,881 priority Critical patent/US20160104810A1/en
Priority to JP2014557642A priority patent/JP5739076B2/ja
Publication of WO2014185225A1 publication Critical patent/WO2014185225A1/ja
Priority to US16/689,497 priority patent/US20200091362A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell module and a manufacturing method thereof.
  • the present invention particularly relates to a connection structure between a collector electrode and a wiring member of a solar cell.
  • the solar cell incorporates a photoelectric conversion unit made of a semiconductor junction or the like.
  • the solar cell can generate electric power by taking out the generated carriers (electrons and holes) to an external circuit by irradiating the photoelectric conversion portion with light.
  • the solar cell includes a collecting electrode for intensively and efficiently extracting carriers generated in the photoelectric conversion unit to an external circuit. This collector electrode is attached on the photoelectric conversion part of a solar cell.
  • this solar cell When this solar cell is used as a power source (energy source), the output per solar cell is about several watts at most. Therefore, it is generally used as a solar cell module in which a plurality of solar cells are electrically connected in series. This solar cell module can increase the output by applying a voltage applied to the photoelectric conversion part in each solar cell by electrically connecting the solar cells in series.
  • the “solar cell module” in the present specification is not only a solar cell module connected as described above, but also a single solar cell (hereinafter also referred to as a solar cell or a cell). Is also defined.
  • the solar cell module has a surface protective material that protects the surface side (light incident surface side) of the solar cell and a back surface protective material that protects the back side of the solar cell.
  • each solar cell is sealed by filling a sealing material between the surface protective material and the back surface protective material.
  • the surface protective material a material having translucency such as a glass substrate is used.
  • EVA Ethylene Vinyl Acetate
  • the solar cell module has a collector electrode on the surface (light receiving surface, light incident surface) of each solar cell.
  • a wiring member for example, a tab or an interconnector
  • the solar cell for example, there is a so-called crystalline silicon solar cell using a single crystal silicon substrate or a polycrystalline silicon substrate.
  • a collector electrode made of metal is provided on the light receiving surface.
  • a solar cell there is a so-called heterojunction solar cell having an amorphous silicon layer and a transparent electrode layer on a crystalline silicon substrate. Also in this heterojunction solar cell, a collector electrode is provided on the transparent electrode layer.
  • the solar cells include silicon-based thin film solar cells using amorphous silicon thin films, crystalline silicon thin films, etc., thin film solar cells such as compound solar cells such as CIGS and CIS, organic thin film solar cells, and dye-sensitized solar cells.
  • a battery There is a battery.
  • a transparent electrode layer is provided on the light receiving surface side of the photoelectric conversion unit from the viewpoint of reducing the surface resistance on the light receiving surface.
  • the collector electrode can be provided on the light receiving surface in any type of solar cell.
  • the transparent electrode layer described above functions as a collecting electrode. Therefore, in principle, it is considered unnecessary to provide a separate collector electrode on the transparent electrode layer.
  • a conductive oxide such as indium tin oxide (ITO) or zinc oxide (ZnO) is often used as the transparent electrode layer. Since these conductive oxides have a higher resistivity than metals, there is a problem that when the conductive oxide is used as the transparent electrode layer, the internal resistance of the entire solar cell module is increased. Therefore, conventionally, a metal collector electrode is provided on the transparent electrode layer of the solar cell, and the collector electrode is made to function as an extraction electrode. In this way, efforts have been made to increase current extraction efficiency (for example, Patent Document 1).
  • ITO indium tin oxide
  • ZnO zinc oxide
  • this collector electrode functions as an auxiliary electrode for assisting electrical conduction of a transparent electrode layer formed of a conductive oxide or an extraction electrode for taking out current. That is, the collector electrode basically needs only to have a predetermined thickness and area necessary for assisting or extracting electrical conduction. Therefore, efforts have been made to form a collecting electrode (hereinafter also referred to as a plating electrode) by an electrolytic plating method or an electroless plating method (for example, Patent Documents 2 and 3). By forming the collector electrode by electrolytic plating or electroless plating, it is possible to reduce the cost of the solar cell module.
  • JP 2008-135654 A JP 2010-098232 A Special table 2013-507781 gazette
  • the solar cell module electrically connects between the adjacent solar cells or between the solar cell and the external circuit by connecting the collector electrode described above to a wiring member (for example, a tab or an interconnector).
  • the collector electrode and the wiring member are generally bonded by interposing a conductive adhesive such as solder or an anisotropic conductive film between the collector electrode and the wiring member.
  • the present inventor made a prototype of a solar cell module in which a collecting electrode (plating electrode) was formed by electrolytic plating and a wiring member was connected to the plating electrode.
  • This prototype solar cell module is obtained by bonding a wiring member and a plating electrode with solder as in the conventional case.
  • the inventor forms a collecting electrode by a plating method, so that the manufacturing cost can be reduced and the resistance loss between the photoelectric conversion portion and the wiring member can also be reduced. I expected.
  • the prototype solar cell module has a reduced manufacturing cost and a certain amount of resistance loss, a new problem has occurred. That is, it has been found that when the plating electrode and the wiring member are bonded via the solder, the bonding strength between the plating electrode and the underlying layer is weakened. For this reason, the prototyped solar cell module may be disconnected due to external factors such as impact, and is unstable as a solar cell module.
  • the inventor also made a prototype of a solar cell module bonded with a conductive film (CF) instead of solder.
  • the prototype solar cell module also has a result that the adhesive strength between the plating electrode and the underlying layer is weak, as in the case of using solder.
  • an object of the present invention is to provide a solar cell module that has a smaller resistance loss between the photoelectric conversion portion and the wiring member than the conventional one and has sufficient adhesive strength. Moreover, this invention makes it a subject to provide the manufacturing method of the solar cell module which can manufacture the solar cell module which has such a characteristic easily.
  • One aspect of the present invention derived based on this consideration includes a photovoltaic cell and a solar cell having a collecting electrode, and a wiring member for connecting the solar cell to an external circuit or another solar cell.
  • the solar cell has a finger electrode portion that is a portion where the collector electrode is provided when the photoelectric conversion portion is viewed in plan, and extends in a predetermined direction.
  • the electrode unit has a stacked structure in which a first conductive layer and a second conductive layer are sequentially stacked outside the photoelectric conversion unit with respect to the photoelectric conversion unit, and the second conductive layer is a first conductive layer And the electrical resistance of the second conductive layer is less than or equal to the electrical resistance of the first conductive layer, and the wiring member is outside the first conductive layer with respect to the photoelectric conversion portion, And said finger electrode part or finger electrode part It is arranged so as to intersect with the extension, and the extension part of the finger electrode part of the solar cell or the extension part of the finger electrode part and the intersection part of the wiring member has the following laminated structure (1) or (2) .
  • (2) Laminated structure in which the first conductive layer and the wiring member are in contact via an adhesive layer different from the second conductive layer.
  • extension represents a virtual extension. That is, “extension part of the finger electrode portion and the intersection part of the wiring member” represents a part where the wiring member intersects in the state where the finger electrode part is assumed to be extended, To express. For example, when viewed from above, when the finger electrode portion is intermittently extended and the wiring member is disposed between adjacent finger electrode portions in the extending direction, this overlapping portion is an extension of the finger electrode portion. It becomes an intersection part of a wiring member.
  • laminate here means that the layers are directly or indirectly overlapped.
  • the “different layers” referred to here refers to layers that are not completely identical to the comparison target.
  • Examples of the “layer different from the first conductive layer” include, for example, different materials and those not formed in the same process as the first conductive layer. That is, in this definition, not only the raw materials but also those having different compositions and blending amounts also correspond to “different layers”.
  • the term “stretching” as used herein represents a state extending as “whole”, and even if the extending directions are partially different, they are included in “stretching” if the whole extends in a predetermined direction. For example, even a zigzag shape is allowed as long as it extends in a predetermined direction as a whole.
  • the “totally extending state” means that when the width W (the length in the direction orthogonal to the entire extending direction) is 1, the length L (the entire The length in the stretching direction) is 100 or more.
  • the finger electrode portion has a laminated structure in which the first conductive layer and the second conductive layer are stacked on the photoelectric conversion portion, and the electric resistance of the second conductive layer is the first conductive layer. Is less than the electrical resistance. That is, in the portion having this laminated structure, the second conductive layer functions as an auxiliary electrode that assists electrical conduction in the first conductive layer. Therefore, according to this aspect, the resistance loss is smaller than when only the first conductive layer is provided. Even when the first conductive layer and the second conductive layer have the same electrical resistance, the first conductive layer and the second conductive layer form the same conductive path, so that compared to the case of only the first conductive layer. As a result, the cross-sectional area of the conductive path increases and the amount of current passing increases. Therefore, resistance loss can be suppressed.
  • the wiring member is disposed on the collector electrode and intersects the finger electrode portion or the extension of the finger electrode portion. That is, the wiring member extends in a direction intersecting with the finger electrode portion. Therefore, it is possible to take out current evenly in a predetermined direction (direction in which the wiring member extends) by the wiring member. Moreover, it is possible to take out electric power equally in the direction which cross
  • the second conductive layer is a plating layer.
  • a preferred aspect includes a translucent member having translucency on the outside of the wiring member with respect to the photoelectric conversion unit, and the solar cell transmits incident light to the photoelectric conversion unit via the translucent member.
  • the second conductive layer is laminated on a part or all of the outer surface of the wiring member with reference to the photoelectric conversion portion at the intersection, and the surface roughness of the second conductive layer is: It is larger than the surface roughness of the wiring member.
  • the second conductive layer having a surface roughness rougher than that of the wiring member is laminated on a part or all of the wiring member at a portion where the finger electrode portion of the solar cell or the extension of the finger electrode portion intersects the wiring member. is doing. That is, light incident from the translucent member is reflected in a direction different from the incident direction on the surface of the second conductive layer having a rough surface. In addition, the reflected light is further reflected at the interface between the translucent member and air and enters the photoelectric conversion unit. In this way, the light incident from the translucent member is confined inside the translucent member (photoelectric conversion unit side) with the photoelectric conversion unit as a reference, and thus when the second conductive layer is not provided on the wiring member. In comparison, optical loss can be reduced.
  • a more preferable aspect is that an insulating layer is provided outside the photoelectric conversion unit with the photoelectric conversion unit as a reference, and the insulating layer has a light-transmitting property.
  • the insulating layer located outside the photoelectric conversion unit has translucency, light can be taken into the photoelectric conversion unit without removing the insulating layer.
  • the second conductive layer is formed by immersing in a plating bath, the second conductive layer is not formed in principle at the portion where the insulating layer is formed. Therefore, light can be introduced into the photoelectric conversion portion without being blocked by the second conductive layer at the portion where the insulating layer is formed.
  • the finger electrode portion has an insulating layer interposed between the first conductive layer and the second conductive layer, the insulating layer has an opening, and the first conductive layer and the second conductive layer The conductive layer is conducted through the opening.
  • the second conductive layer can be deposited according to the shape of the opening by plating or the like, and the second conductive layer having a desired shape can be formed.
  • a preferred aspect is that the photoelectric conversion unit is used as a reference and an insulating layer is provided outside the photoelectric conversion unit, and the side surface of the intersecting portion is covered with the insulating layer across the first conductive layer and the wiring member. It is that.
  • the insulating layer is covered across the first conductive layer and the wiring member, water or the like can be prevented from entering between the first conductive layer and the wiring member. Further, the integrated strength between the first conductive layer and the wiring member can be reinforced by the rigidity of the insulating layer itself.
  • a preferable aspect has a plurality of the solar cells, and at least two of the solar cells are connected via the wiring member, and the two solar cells are on the collector electrode side.
  • a surface electrode layer that bears a positive electrode or a negative electrode, and a back electrode layer that bears a pole different from the surface electrode layer on the opposite side to the collector electrode, and the wiring member is a surface of one solar cell That is, the electrode layer and the back electrode layer of the other solar cell are electrically connected.
  • two solar cells have a surface electrode layer that bears the positive electrode or the negative electrode on the collector electrode side, and a back surface that bears a different electrode from the electrode layer on the opposite side of the collector electrode It has an electrode layer. That is, in the two solar cells, when the surface electrode layer serves as the positive electrode, the back electrode layer serves as the negative electrode, and when the surface electrode layer serves as the negative electrode, the back electrode layer serves as the positive electrode.
  • the wiring member has electrically connected the surface electrode layer of one solar cell, and the back surface electrode layer of the other solar cell. Therefore, the solar cells can be electrically connected in series.
  • the one solar cell may take a posture in which the top and bottom are reversed with respect to the posture of the other solar cell.
  • the posture in which the top and bottom are reversed means that the solar cell module is usually installed with the main surface facing the sun, and thus represents a posture in which the front and back are reversed. That is, it represents a state in which the front and back of the solar cell are reversed.
  • one solar cell takes a posture in which the top and bottom are reversed with respect to the posture of the other solar cell. Therefore, it is possible to connect the surface electrode layer of one solar cell and the back electrode layer of the other solar cell by extending the wiring member in a straight line, and easily and directly connect between the solar cells. can do.
  • the second conductive layer may not be interposed between the first conductive layer and the wiring member.
  • the second conductive layer is not interposed between the first conductive layer and the wiring member. Therefore, even if the second conductive layer is a plated layer and a load is applied to the wiring member due to an external factor such as an impact, the first conductive layer is compared with the first conductive layer as compared with the prior art. It can be prevented that the two conductive layers are separated and the wiring member is detached.
  • the wiring member has a wiring main body and a coating layer, and the coating layer is softer than the first conductive layer, and covers the surface of the wiring main body. A part of the one conductive layer may bite into the coating layer.
  • Soft here means low hardness
  • the wiring member since the surface of the wiring body is covered and a part of the first conductive layer bites into the coating layer that is softer than the first conductive layer, the wiring member is not easily displaced with respect to the first conductive layer. Further, when the first conductive layer and the wiring member are in direct contact, the interface resistance between the first conductive layer and the wiring member can be lowered.
  • the adhesive layer may be a conductive adhesive.
  • the “conductive adhesive” has conductivity and can bond two members.
  • the conductive adhesive may be a solidified liquid or a sheet-like pressure-sensitive adhesive.
  • the adhesive strength can be increased while maintaining conductivity.
  • the first conductive layer may include a low melting point material having a heat flow start temperature of 80 degrees Celsius (80 ° C.) or more and 250 degrees Celsius (250 ° C.) or less.
  • the second conductive layer may contain copper.
  • the second conductive layer can be formed at a relatively low cost compared to gold or silver.
  • the solar cell has a bus bar electrode portion that extends in a direction intersecting the finger electrode portion when the photoelectric conversion portion is viewed in plan.
  • the said finger electrode part has protruded from the said bus-bar electrode part, and the said wiring member may be distribute
  • bus bar electrode part is located on the extension of the finger electrode part, the extension of the finger electrode part and the wiring member intersect.
  • One aspect of the present invention is the above-described method for manufacturing a solar cell module, the first conductive layer forming step of forming a first conductive layer on the outside of the photoelectric conversion unit based on the photoelectric conversion unit, A wiring member adhesion step for connecting the wiring member to the outside of the first conductive layer and a plating step for forming the second conductive layer on the outside of the first conductive layer by a plating method are included in this order.
  • the second conductive layer of the collector electrode is formed by a plating method, it is possible to reduce the resistance of the collector electrode and improve the conversion efficiency of the solar cell. Moreover, according to this aspect, since the second conductive layer is formed by a plating method such as an electrolytic plating method or an electroless plating method, the photoelectric conversion portion is damaged when the second conductive layer is formed. Does not reach high temperatures. Therefore, the photoelectric conversion unit is not easily deteriorated. Furthermore, according to this aspect, since it is formed by the plating method, the cost can be reduced as compared with the case where it is formed using a vacuum deposition method, a sputtering method, or the like.
  • One aspect of the present invention is the above-described method for manufacturing a solar cell module, the first conductive layer forming step of forming a first conductive layer on the outside of the photoelectric conversion unit based on the photoelectric conversion unit, A wiring member bonding step for connecting the wiring member to the outside of the first conductive layer, an insulating layer forming step for forming an insulating layer on the outside of the first conductive layer, and an opening provided in the insulating layer And a plating step of forming a second conductive layer that is electrically connected to the first conductive layer by a plating method.
  • the second conductive layer is formed so as to be electrically connected to the first conductive layer through the opening provided in the insulating layer.
  • the site where the layer is formed can be controlled.
  • a preferable aspect is to perform the first conductive layer forming step, the wiring member bonding step, the insulating layer forming step, and the plating step in this order.
  • the second conductive layer is formed by immersing the solar cell in a plating solution and supplying power to the wiring member in the plating step.
  • the second conductive layer is formed by supplying power to the wiring member. Therefore, the second conductive layer can be formed without bringing the plating electrode into contact with the solar cell. That is, it is possible to reduce the occurrence of defects such as breakage due to contact of the electrode for plating in the manufacturing process, the yield is good, and the manufacturing cost can be further reduced.
  • a particularly preferable aspect is to form the second conductive layer by supplying power to a site different from the site where the wiring member is bonded to the solar cell.
  • the second conductive layer is formed by supplying power to a non-adhered portion that is a portion other than the bonded portion where the wiring member and the solar cell are bonded. That is, since the power feeding point exists at a position deviated from the bonding site where the wiring member and the solar cell are bonded, power can be easily supplied and manufacturing is easy.
  • a preferred aspect is a method of manufacturing a solar cell module including a plurality of the solar cells, wherein each solar cell is connected by a wiring member, and power is supplied to the wiring member, so that the second plurality of solar cells are simultaneously supplied to the second solar cell. It is to form a conductive layer.
  • the second conductive layer since it is possible to form the second conductive layer collectively for a plurality of solar cells, it is more productive than when the second conductive layer is formed for each solar cell. Can be improved.
  • the above-described aspect is that, even when the adjacent solar cells are connected to each other in a posture in which the top and bottom are reversed by the wiring member, and the second conductive layer is simultaneously formed on the adjacent solar cells by supplying power to the wiring member. Good.
  • the wiring member can be easily attached and the productivity can be further improved.
  • the adhesive layer is formed by thermocompression bonding on the adhesive layer.
  • An opening may be formed in a part of the adhesive layer, and the first conductive layer and the wiring member may be brought into direct contact via the opening.
  • the first conductive layer and the wiring member are in direct contact via the opening of the adhesive layer generated by thermocompression bonding of the wiring, even if the adhesive layer has insulating properties, The conduction between the one conductive layer and the wiring member can be ensured.
  • the resistance loss between the photoelectric conversion unit and the wiring member is small as compared with the conventional one.
  • the adhesive strength between the photoelectric conversion part and the wiring member is sufficiently high. Therefore, it becomes a highly reliable solar cell module with high conversion efficiency.
  • the manufacturing cost can be reduced.
  • FIG. 2 is an AA cross-sectional view of the solar cell module of FIG.
  • FIG. 2 is an AA cross-sectional view of the solar cell module of FIG.
  • FIG. 2 is an AA cross-sectional view of the solar cell module of FIG.
  • FIG. 2 is an AA cross-sectional view of the solar cell module of FIG.
  • FIG. 2 is an AA cross-sectional view of the solar cell module of FIG.
  • FIG. 2 is an AA cross-sectional view of the solar cell module of FIG.
  • FIG. is a disassembled perspective view showing the solar cell and wiring member of FIG.
  • the vertical positional relationship of the solar cell module 1 will be described with reference to the posture of FIG. Further, the drawings may be exaggerated as compared with actual sizes (length, width, thickness) as a whole for easy understanding. In the present specification, it is defined as being conductive if the volume resistivity is 10 ⁇ 2 ⁇ ⁇ cm or less. Further, if the volume resistivity is 10 2 ⁇ ⁇ cm or more, it is defined as insulating. In the following description, when the front and back of the entire solar cell 2 are represented, in principle, the surface is referred to as a first main surface and the back surface is referred to as a second main surface. Furthermore, in the following description, when expressing inside and outside, the photoelectric conversion unit 30 is used as a reference unless otherwise specified.
  • the solar cell module 1 in the first embodiment is obtained by modularizing the solar cell 2 when put to practical use.
  • the solar cell module 1 is formed by connecting a plurality of solar cells 2 (2a, 2b) electrically in series or in parallel by the wiring member 3 as shown in FIGS.
  • a case where a plurality of solar cells 2 are electrically connected in series by a wiring member 3 will be described.
  • the solar cell module 1 has a plurality of solar cells 2 interposed between the front surface member 5 (translucent member) and the back surface member 6 so that the solar cell 2 is buried.
  • a filler 7 is filled between the front surface member 5 and the back surface member 6 and sealed.
  • the solar cell module 1 has a collector electrode 8 (positive electrode) provided on the first main surface (light receiving surface) of one solar cell 2 and a second main surface of the other solar cell 2.
  • the provided back electrode 28 (back electrode layer, negative electrode) is connected by the wiring member 3. Therefore, the adjacent solar cells 2 are electrically connected to each other in series.
  • the solar cell 2 has the photoelectric conversion part 30 provided with the photoelectric conversion function like FIG. That is, the solar cell 2 collects incident light that has passed through the surface member 5 by the photoelectric conversion unit 30 and generates power.
  • a comb-shaped collector electrode 8 is provided on the surface of the photoelectric conversion unit 30 (the surface on the light receiving surface side) as shown in FIG.
  • the collector electrode 8 has a first conductive layer 21 and a second conductive layer 22 in order from the photoelectric conversion unit 30 side as shown in FIG.
  • An insulating layer 19 is interposed between the first conductive layer 21 and the second conductive layer 22.
  • the second conductive layer 22 is provided on the side facing the first conductive layer 21 with the insulating layer 19 interposed therebetween.
  • the solar cell 2 includes a first conductive layer formation region 37 in which the first conductive layer 21 is coated on the photoelectric conversion unit 30 as can be read from FIGS. 5 and 6 when the photoelectric conversion unit 30 is viewed in plan view.
  • the first conductive layer non-formation region 38 is a region other than the region.
  • the first conductive layer formation region 37 has a plurality (many) of finger electrode portions 31 and a plurality of bus bar electrode portions 32.
  • the finger electrode portion 31 is a portion where the first conductive layer 21 extends in the length direction l as shown in FIG.
  • Each finger electrode part 31 is distributed and arranged on the surface (surface on the light receiving surface side) of the photoelectric conversion part 30. That is, the finger electrode portions 31 are arranged at a predetermined interval in the width direction s, and are arranged in parallel at equal intervals so as to be parallel to each other.
  • the width (length in the width direction) W1 of each finger electrode portion 31 shown in the enlarged view of FIG. 6 is preferably 10 ⁇ m or more and more preferably 30 ⁇ m or more from the viewpoint of preventing disconnection.
  • the width W1 of each finger electrode portion 31 is preferably 150 ⁇ m or less and more preferably 90 ⁇ m or less from the viewpoint of introducing more light to the photoelectric conversion unit 30.
  • the interval (pitch) W2 between the finger electrode portions 31 is preferably 0.5 mm or more and more preferably 1 mm or more from the viewpoint of introducing more light into the photoelectric conversion unit 30.
  • the interval W2 between the finger electrode portions 31 is preferably 4 mm or less, and more preferably 2.5 mm or less, from the viewpoint of making the current distribution in the plane of the photoelectric conversion unit 30 more uniform.
  • the bus bar electrode portion 32 is a portion in which the first conductive layer 21 extends in the width direction s (direction orthogonal to the length direction), and is a strip-shaped portion.
  • Each bus bar electrode part 32 is distributed and arranged on the surface (surface on the light receiving surface side) of the photoelectric conversion part 30.
  • the bus bar electrode portions 32 are arranged at predetermined intervals in the length direction l, and are arranged in parallel so that each of them is parallel.
  • the number of bus bar electrode portions 32 is smaller than the number of finger electrode portions 31. Specifically, the number of bus bar electrode portions 32 is preferably 1 or more and 5 or less, and more preferably 2 or more and 4 or less.
  • the width (length in the length direction) W3 of each bus bar electrode portion 32 is preferably 0.3 mm or more from the viewpoint of securing a sufficient conductive path, and 0.9 mm or more from the viewpoint of surely preventing disconnection or the like. It is more preferable that The width W3 of each bus bar electrode portion 32 is preferably 3 mm or less, and more preferably 2.1 mm or less from the viewpoint of allowing light to enter the photoelectric conversion unit 30 more.
  • the finger electrode part 31 and the bus bar electrode part 32 are spread in a comb shape. That is, the bus bar electrode portion 32 extends in the width direction s as shown in FIG. 6, and the finger electrode portion 31 projects from the intermediate portion of the bus bar electrode portion 32 in a direction intersecting in the plane direction.
  • the two bus bar electrode portions 32 extend in parallel to each other, and a large number of finger electrode portions 31 extend across the two bus bar electrode portions 32. That is, the plurality of finger electrode portions 31 extend so as to protrude in the orthogonal direction with respect to one bus bar electrode portion 32.
  • the insulating layer 19 is an insulating layer. As shown in FIG. 5, the insulating layer 19 has a hole 23 (opening) penetrating in the member thickness direction.
  • the first conductive layer 21 and the second conductive layer 22 are physically connected via the opening of the hole 23 of the insulating layer 19. That is, a part of the second conductive layer 22 is electrically connected to the first conductive layer 21 through the opening of the hole 23 of the insulating layer 19.
  • “partially conducted” means a state in which part is electrically connected, and includes conduction by static electricity.
  • an opening is formed in the insulating layer 19, and the opening is filled with the material of the second conductive layer 22, thereby providing a conductive state.
  • the insulating layer 19 is located at least on the finger electrode portion 31, and the insulating layer 19 is preferably formed across the first conductive layer non-formation region 38, and almost entirely. It is particularly preferred that it is formed.
  • “substantially the entire surface” represents a portion of 90% or more of the reference surface. That is, the insulating layer 19 is laminated on 90% or more of one side of the lamination target (in this embodiment, the photoelectric conversion unit 30 and the like). It is particularly preferable that the insulating layer 19 is stacked on the entire surface of the stack target (in this embodiment, the photoelectric conversion unit 30 and the like).
  • substantially the entire surface is defined as a portion of 90% or more of the reference surface.
  • the insulating layer 19 is also formed in the first conductive layer non-formation region 38 as described above. Therefore, the insulating layer 19 can chemically and electrically protect the photoelectric conversion unit 30 from the plating solution when the second conductive layer 22 is formed by a plating method. That is, when the transparent electrode layer 18 (refer FIG. 7) mentioned later is formed in the surface (surface on the light-incidence surface side) of the photoelectric conversion part 30 like the solar cell 2 of this embodiment, in plating solution The transparent electrode layer 18 may be exposed and the transparent electrode layer 18 may be eroded.
  • the insulating layer 19 is formed on the surface of the transparent electrode layer 18 (surface electrode layer), thereby preventing the transparent electrode layer 18 from directly contacting the plating solution. Yes. Therefore, the insulating layer 19 can prevent the metal layer (second conductive layer 22) from being deposited on the transparent electrode layer 18. Further, the insulating layer 19 can prevent the transparent electrode layer 18 from being eroded by the plating solution. Also from the viewpoint of productivity, it is more preferable that the insulating layer 19 is formed on the entire surface on the first main surface side of the photoelectric conversion unit 30. In the present embodiment, the insulating layer 19 is formed so as to cover almost the entire surface of the photoelectric conversion unit 30 on the first main surface side.
  • the wiring member 3 is a long member as shown in FIG. 4, and is a foil-like or plate-like member having conductivity.
  • the wiring member 3 for example, a thin plate made of a metal such as copper and the like subjected to metal plating can be employed. That is, the wiring member 3 includes not only a single metal but also one subjected to surface processing such as plating.
  • the wiring member 3 of the present embodiment is formed of a wiring body 60 and a coating layer 61 that covers the surface of the wiring body 60.
  • the wiring body 60 is a portion that becomes a base of the wiring member 3 and is formed of a conductor.
  • the coating layer 61 is a part that protects the wiring body 60 from external damage and the like.
  • a layer softer than the first conductive layer 21 is formed.
  • the wiring member 3 of this embodiment employs a copper foil surface that has been subjected to solder plating. That is, the wiring body 60 is made of copper foil, and the coating layer 61 is made of solder or the like.
  • the wiring member 3 is physically and electrically connected via the first conductive layer 21 of the solar cell 2 and the adhesive 33 as shown in FIG.
  • the width and thickness of the wiring member 3 are determined in consideration of the number of connections of the wiring member 3 to the solar cell 2, and the width is preferably 0.5 mm or more and 2.5 mm or less, and the thickness is 50 ⁇ m or more. It is preferable that it is 500 micrometers or less.
  • the length of the wiring member 3 is not particularly limited, but is preferably longer than the length of one side of the solar cell 2. In addition, the length of the wiring member 3 is longer than the length in the lateral direction (width direction) of the photoelectric conversion unit 30 as shown in FIG. 2, and the wiring member 3 is extended to the outside of the solar cell 2. More preferred. In the present embodiment, the length of the wiring member 3 extends beyond the width of the solar cell 2a to the adjacent solar cell 2b as shown in FIG.
  • the surface member 5 (translucent member) is a member that covers the first main surface side (surface on the light incident side) of the solar cell 2 as shown in FIG. 2, and has a plate shape or a sheet shape having translucency. It is a member.
  • glass, translucent plastic, or the like can be used as the material of the surface member 5.
  • the back surface member 6 is a member that covers the second main surface side of the solar cell 2 as shown in FIG. 2, and is a plate-like or film-like member.
  • a resin film such as a polyethylene terephthalate film, a steel plate, a glass plate, or the like can be employed.
  • the filler 7 fills the space between the front surface member 5 and the back surface member 6 to seal the solar cell 2, and is an adhesive having translucency and insulation.
  • the filler 7 is a resin adhesive containing a resin.
  • a thermosetting resin such as EVA (ethylene vinyl acetate) or polyvinyl butyral which is an ethylene / vinyl acetate copolymer resin can be employed.
  • the solar cell 2 is laminated so that the first conductive layer 21 is in direct contact with the surface of the photoelectric conversion unit 30 as shown in FIG.
  • An insulating layer 19 is covered on the first conductive layer 21, and a second conductive layer 22 is laminated thereon.
  • the second conductive layer 22 is physically connected directly to the first conductive layer 21 through the hole 23 of the insulating layer 19 as described above.
  • the inside of the hole 23 of the insulating layer 19 is filled with the second conductive layer 22, and the adjacent holes 23 and 23 are connected via the second conductive layer 22. Therefore, since the second conductive layer 22 having a lower electrical resistance than the first conductive layer 21 assists the electric conduction between the first conductive layer 21 and the wiring member 3, the first conductive layer 21 and the wiring member 3 Resistance loss can be suppressed.
  • the solar cell 2 is laminated so that the first conductive layer 21 is in direct contact with the surface of the photoelectric conversion unit 30 as shown in FIG.
  • the wiring member 3 is bonded onto the first conductive layer 21 via an adhesive 33 (adhesive layer).
  • the non-adhesive surface of the first conductive layer 21 and the wiring member 3 is covered with an insulating layer 19, and the second conductive layer 22 is laminated on a part or all of the insulating layer 19. That is, the side surfaces of the first conductive layer 21 and the wiring member 3 are covered with the insulating layer 19, and the first conductive layer 21 is also joined to the wiring member 3 by the insulating layer 19. That is, in the solar cell 2, the bus bar electrode portion 32 is covered with the insulating layer 19 across the first conductive layer 21 and the wiring member 3.
  • the wiring member 3 is connected to the entire bus bar electrode portion 32, and the first conductive layer 21 and the wiring member 3 are bonded in a planar shape via an adhesive 33. Therefore, a sufficient conductive area can be ensured.
  • the insulating layer 19 covers the surface of the photoelectric conversion unit 30. That is, the insulating layer 19 is located in the entire first conductive layer non-formation region 38.
  • the solar cell 2 is laminated on the surface of the photoelectric conversion unit 30 so that the first conductive layer 21 is in direct contact as shown in FIG.
  • the wiring member 3 is bonded onto the first conductive layer 21 via an adhesive 33.
  • An insulating layer 19 covers the non-adhesive surface of the first conductive layer 21 and the wiring member 3. In the present embodiment, the first conductive layer 21 and the wiring member 3 are covered with the insulating layer 19.
  • one end of the wiring member 3 is connected to the first conductive layer 21 provided on the first main surface (front surface) of the solar cell 2a as shown in FIG.
  • the other end of the wiring member 3 is connected to a back electrode 28 located on the second main surface (back surface) of the photoelectric conversion unit 30 of another solar cell 2b by a known conductive adhesive. That is, the wiring member 3 turns from the first main surface side of the solar cell 2a to the second main surface side of the solar cell 2b via the space between the solar cell 2a and the other solar cell 2b.
  • the first conductive layer 21 has both the low melting point material 34 and the high melting point material 35 as shown in FIG. 5, and both the low melting point material 34 and the high melting point material 35 are preferably conductive. .
  • the low melting point material 34 (underlying material) causes heat flow in the annealing process and changes the surface shape of the first conductive layer 21.
  • the low melting point material 34 a simple substance or an alloy of a low melting point metal material or a mixture of a plurality of low melting point metal materials can be suitably used.
  • Examples of the low melting point metal material include indium, bismuth, and gallium.
  • the heat flow start temperature T1 of the low melting point material 34 is preferably lower than the annealing temperature Ta.
  • the softening point is a temperature at which the viscosity becomes 4.5 ⁇ 10 6 Pa ⁇ s. That is, the heat flow start temperature in this case is the same as the definition of the softening point of glass.
  • the first conductive layer 21 of the present embodiment is subjected to an annealing process at an annealing temperature Ta lower than the heat resistant temperature of the photoelectric conversion unit 30 when the solar cell module 1 is manufactured, as will be described later. Therefore, the heat flow start temperature T1 of the low melting point material 34 is preferably lower than the heat resistant temperature of the photoelectric conversion unit 30 from the viewpoint of preventing damage to the photoelectric conversion unit 30.
  • the “heat resistant temperature of the photoelectric conversion unit 30” is a temperature at which the characteristics of the solar cell 2 are irreversibly lowered.
  • the substrate 15 constituting the skeleton of the photoelectric conversion unit 30 shown in FIG. 7 hardly changes its characteristics even when heated to a high temperature of 500 ° C. or higher.
  • the 1st conductive layer 21 contains the low melting-point material 34 whose heat flow start temperature T1 is 250 degrees C or less.
  • the lower limit of the heat flow start temperature T1 of the low melting point material 34 is not particularly limited. From the viewpoint of easily forming the hole 23 in the insulating layer 19 by increasing the amount of change in the surface shape of the first conductive layer 21 in the annealing step described later, the low melting point material 34 is formed in the first conductive layer 21 forming step. It is preferable that substantially no heat flow occurs. For example, when the first conductive layer 21 is formed by coating or printing, heating may be performed for drying. In this case, the heat flow start temperature T1 of the low melting point material 34 is preferably higher than the heating temperature for drying the first conductive layer 21. From this viewpoint, the heat flow start temperature T1 of the low melting point material 34 is preferably 80 ° C. or higher, and more preferably 100 ° C. or higher.
  • the low melting point material 34 may be an organic substance or an inorganic substance as long as the heat flow start temperature T1 is in the above range.
  • the low melting point material 34 may be electrically conductive or insulating, but is a metal material having conductivity from the viewpoint of constituting a part of a conductive path between the photoelectric conversion unit 30 and the wiring member 3. It is desirable to be. If the low melting point material 34 is a metal material, the resistance value of the first conductive layer 21 can be reduced as compared with the case where other materials are used. Therefore, when the second conductive layer 22 is formed by electrolytic plating, the uniformity of the film thickness of the second conductive layer 22 can be improved. Further, if the low melting point material 34 is a metal material, the contact resistance between the photoelectric conversion unit 30 and the collector electrode 8 can be reduced.
  • the particle size DL of the low melting point material 34 is 1/20 or more of the film thickness d of the first conductive layer 21. Is preferable, and it is more preferable that it is 1/10 or more. By setting it within this range, it is possible to easily form an opening in the insulating layer 19 in the annealing step.
  • the particle size DL of the low melting point material 34 is preferably 0.25 ⁇ m or more, and more preferably 0.5 ⁇ m or more.
  • the high melting point material 35 constituting a part of the first conductive layer 21 has a heat flow starting temperature (melting point) T2 that is relatively higher than that of the low melting point material 34.
  • a single metal material such as silver, aluminum, copper, or a plurality of metal materials or alloys thereof can be preferably used.
  • the first conductive layer 21 is a layer that functions as a conductive underlayer when the second conductive layer 22 is formed by a plating method. Therefore, the first conductive layer 21 only needs to have conductivity that can function as a base layer for electrolytic plating. That is, the volume resistivity of the first conductive layer 21 is 10 ⁇ 2 ⁇ ⁇ cm or less, and preferably 10 ⁇ 4 ⁇ ⁇ cm or less.
  • the average film thickness of the first conductive layer 21 is preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less from the viewpoint of cost reduction. Further, from the viewpoint of setting the line resistance of the first conductive layer 21 in a desired range, the average film thickness is preferably 0.5 ⁇ m or more, and more preferably 1 ⁇ m or more.
  • the method for forming the first conductive layer 21 is not particularly limited.
  • the formation method of the 1st conductive layer 21 can be produced by well-known techniques, such as an inkjet method, a screen printing method, a conducting wire adhesion method, a spray method, a vacuum evaporation method, a sputtering method, an electrolytic plating method, and electroless plating.
  • the first conductive layer 21 can be formed, for example, by screen printing using a low melting point material 34 and a high melting point material 35 as a conductive paste.
  • the first conductive layer 21 may be formed by a vapor deposition method or a sputtering method using a mask corresponding to the pattern shape.
  • the first conductive layer 21 of this embodiment is patterned into a predetermined shape such as a comb shape. Therefore, a screen printing method is suitable for forming the patterned first conductive layer 21 from the viewpoint of productivity. By using this screen printing method, the thickness of the first conductive layer 21 can be reduced, the amount of the first conductive layer 21 used can be reduced, and the cost can be reduced.
  • the second conductive layer 22 can be formed by any of the electroless plating method and the electrolytic plating method, but it is preferable to use the electrolytic plating method from the viewpoint of productivity.
  • the metal deposition rate can be increased by changing the current or the like, so that the second conductive layer 22 can be formed in a short time.
  • the second conductive layer 22 is formed by an electrolytic plating method using the surface of the first conductive layer 21 as a surface to be plated.
  • the electrolytic plating method power supply from the plating power source 40 to the surface to be plated is required, but it is desirable to provide the power supply point 41 from the plating power source 40 on the wiring member 3 as shown in FIG.
  • the wiring member 3 and the solar cell substrate 46 When bonding the wiring member 3 and the solar cell substrate 46, a portion (non-bonding portion) where the wiring member 3 does not bond to the solar cell substrate 46 (the solar cell 2 before the second conductive layer 22 is laminated) is provided.
  • the feeding point 41 it is more desirable to provide the feeding point 41 at a portion that does not adhere to the solar cell substrate 46. By doing so, it becomes possible to further prevent the solar cell substrate 46 from being damaged by the contact between the contact jig at the feeding point 41 and the solar cell substrate 46.
  • the first conductive layer 21 since part of the continuity between the plated surface of the solar cell substrate 46 and the feeding point 41 can be carried by the wiring member 3 having a low electric resistance, the first conductive layer 21 has a high electric resistance. Is also applicable. Therefore, the range of selection of the material for the first conductive layer 21 can be increased.
  • the second conductive layer 22 is formed on the surface of the wiring member 3 other than the bonding surface with the first conductive layer 21 and the insulating layer 19 by immersing the solar cell substrate 46 in the plating bath and causing a current to flow through the wiring member 3. Can be formed. Thereby, the electrical resistance of the wiring member 3 can be further reduced.
  • the surface of the wiring member 3 (the surface opposite to the first conductive layer 21 side) with an insulator.
  • an insulator By covering the surface of the wiring member 3 with an insulator, waste of metal ions in the plating solution near the surface of the wiring member 3 can be suppressed.
  • the second conductive layer 22 and the wiring member 3 have low reflectance. Further, it is more preferable that the second conductive layer 22 and the wiring member 3 have substantially the same reflectance.
  • “reflectance is substantially equal” means that the difference in reflectance is within 3 percent of the reflectance.
  • the surfaces of the second conductive layer 22 and the wiring member 3 are covered with the same low reflectance material.
  • the low reflectance material include nickel and chromium.
  • the low reflectance material on the second conductive layer 22 and the low reflectance material on the wiring member 3 are formed simultaneously.
  • a second plating layer is formed separately from the second conductive layer 22, and the surface of the wiring member 3 is used as the second plating layer (a plating layer outside the second conductive layer 22). This can be realized by forming the same low reflectance material as the coating layer 61 to be formed.
  • the surface roughness of the second conductive layer 22 is larger than the surface roughness of the wiring member 3. Since the second conductive layer 22 is formed by plating, it has minute irregularities.
  • the insulating layer 19 is an electrically insulating layer.
  • the insulating layer 19 is made of a material having chemical stability against a plating solution used when forming the second conductive layer 22. That is, since the insulating layer 19 is made of a material having high chemical stability with respect to the plating solution, the insulating layer 19 is difficult to dissolve in the plating solution during the plating step when the second conductive layer 22 is formed.
  • the insulating layer 19 it is preferable to adopt a layer having a high adhesion strength with the photoelectric conversion unit 30. That is, it is preferable that the insulating layer 19 of the solar cell 2 of the present embodiment has a high adhesion strength with the transparent electrode layer 18 on the light incident side located on the surface of the photoelectric conversion unit 30 as shown in FIG. When the adhesion strength between the transparent electrode layer 18 and the insulating layer 19 is high, the insulating layer 19 becomes difficult to peel off during the plating step, and metal deposition on the transparent electrode layer 18 can be prevented.
  • the insulating layer 19 is preferably made of a material that absorbs little light. As described above, the insulating layer 19 is formed on the light incident surface side of the photoelectric conversion unit 30. Therefore, if the light absorption by the insulating layer 19 is small, more light can be taken into the photoelectric conversion unit 30. Specifically, the insulating layer 19 preferably has a transmittance of 90% or more. When such transparency is sufficient, optical loss due to light absorption in the insulating layer 19 is small. Therefore, the solar cell 2 can be used as it is without removing the insulating layer 19 after the formation of the second conductive layer 22. Moreover, the manufacturing process of the solar cell 2 can be simplified, and productivity can be improved more.
  • the insulating layer 19 When the insulating layer 19 is used as it is without removing the insulating layer 19, the insulating layer 19 has sufficient weather resistance, stability against heat and humidity, and impurities such as metal ions and water vapor in addition to transparency. It is more desirable to use a material having a high barrier property against the above.
  • the material of the insulating layer 19 can be either an inorganic insulating material or an organic insulating material.
  • organic insulating material for example, materials such as polyester, ethylene vinyl acetate copolymer, acrylic resin, epoxy resin, and polyurethane can be used.
  • Inorganic insulating materials include silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, sialon (SiAlON), yttrium oxide, magnesium oxide, barium titanate, samarium oxide, tantalum from the viewpoint of plating solution resistance and transparency. Barium acid, tantalum oxide, magnesium fluoride, titanium oxide, strontium titanate, zinc oxide and the like are preferably used.
  • inorganic insulating materials silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, sialon (SiAlON), yttrium oxide, magnesium oxide, titanic acid are used from the viewpoints of electrical characteristics and adhesion to the transparent electrode layer.
  • SiAlON sialon
  • yttrium oxide, magnesium oxide, titanic acid are used from the viewpoints of electrical characteristics and adhesion to the transparent electrode layer.
  • Barium, samarium oxide, barium tantalate, tantalum oxide, magnesium fluoride, and the like are preferable, and silicon oxide, silicon nitride, and the like are particularly preferably used from the viewpoint that the refractive index can be appropriately adjusted.
  • These inorganic materials are not limited to those having a stoichiometric composition, and may include oxygen deficiency or the like.
  • the film thickness of the insulating layer 19 is appropriately set according to the material and forming method of the insulating layer 19.
  • the film thickness of the insulating layer 19 is such that the holes 23 (openings) are formed in the insulating layer 19 due to the interface stress caused by the change in the surface shape of the first conductive layer 21 in the annealing process described later. It is preferably thin enough to be formed. From this point of view, the thickness of the insulating layer 19 of the present embodiment is preferably 1000 nm or less, and more preferably 500 nm or less.
  • the refractive index of the insulating layer 19 is preferably lower than the refractive index of the surface of the photoelectric conversion unit 30.
  • the film thickness is preferably set within a range of 30 nm to 250 nm, and more preferably within a range of 50 nm to 250 nm.
  • the film thickness of the insulating layer 19 in the first conductive layer formation region 37 (see FIG. 6) and the film thickness of the insulating layer 19 in the first conductive layer non-formation region 38 (see FIG. 6) may be different.
  • the thickness of the insulating layer 19 is set from the viewpoint of facilitating the formation of the hole 23 (opening) in the annealing process, and in the first conductive layer non-formation region 38, as appropriate.
  • the film thickness of the insulating layer 19 may be set so as to have an optical film thickness having the above antireflection characteristics.
  • the solar cell 2 of the present embodiment has a transparent electrode layer 18 (general refractive index: about 1.9 to 2.1) on the surface (light incident side) of the photoelectric conversion unit 30 as shown in FIG.
  • the refractive index of the insulating layer 19 is an intermediate value between the filler 7 and the transparent electrode layer 18. It is preferable. From such a viewpoint, the refractive index of the insulating layer 19 is preferably 1.4 to 1.9, more preferably 1.5 to 1.8, and further preferably 1.55 to 1.75. In addition, unless otherwise indicated, the refractive index in this specification is a refractive index with respect to the light of wavelength 550nm, and is a value measured by spectroscopic ellipsometry. Further, it is preferable that the optical film thickness (refractive index ⁇ film thickness) of the insulating layer 19 is set so as to improve the antireflection characteristics according to the refractive index of the insulating layer 19.
  • the insulating layer 19 can be formed using a known method.
  • a dry method such as a plasma CVD method or a sputtering method is preferably used.
  • a wet method such as a spin coating method or a screen printing method is preferably used. According to these methods, it is possible to form a dense film with few defects such as pinholes.
  • the insulating layer 19 is preferably formed by a plasma CVD method from the viewpoint of forming a film having a denser structure.
  • a plasma CVD method By this method, not only a relatively thick film of about 200 nm but also a relatively thin insulating layer 19 of about 30 to 100 nm can be formed with a highly dense structure.
  • the insulating layer 19 is preferably formed by a plasma CVD method.
  • the insulating layer 19 having high density damage to the transparent electrode layer 18 located on the surface side (light incident side) during the plating process can be reduced.
  • the insulating layer 19 with high density it is possible to prevent the metal from being deposited on the transparent electrode layer 18 in addition to this.
  • the insulating layer 19 with high density it can function as a barrier layer of water, oxygen, or the like for other layers inside the photoelectric conversion unit 30. Therefore, the effect of improving the long-term reliability of the solar cell 2 can also be expected.
  • the shape of the insulating layer 19 between the first conductive layer 21 and the second conductive layer 22, that is, the shape of the insulating layer 19 on the first conductive layer forming region 37 (see FIG. 6) is not necessarily a continuous layer. It may be an island shape.
  • the “island shape” herein means a state having a region where a layer is not formed on a part of the reference surface. In the case of this embodiment, it means a state in which a part of the surface of the first conductive layer 21 has a region where the insulating layer 19 is not formed.
  • the insulating layer 19 has a function that contributes to an improvement in adhesion between the first conductive layer 21 and the second conductive layer 22.
  • the second conductive layer 22 is formed on the first conductive layer 21 (base electrode layer) by plating. Then, the adhesive force between the first conductive layer 21 and the second conductive layer 22 is reduced. Therefore, by forming the second conductive layer 22 on the insulating layer 19 such as silicon oxide, it is expected that the adhesion of the second conductive layer 22 is enhanced and the reliability of the solar cell 2 is improved.
  • the back electrode 28 on the second main surface side shown in FIG. 7 may be formed on almost the entire surface on the back surface side of the photoelectric conversion unit 30, or the collector electrode 8 on the light receiving surface side (first main surface side). It is good also as a comb-shaped electrode like this.
  • the adhesive 33 is, for example, a conductive adhesive, and for example, a conductive adhesive such as a solder material or a conductive adhesive such as a conductive film can be used.
  • solder material for example, eutectic solder, SnAgCu solder, tin bismuth (SnBi) solder, or the like can be suitably used.
  • conductive film for example, an interconnector such as a conductive film (CF) or a tab can be suitably used.
  • CF conductive film
  • ACF anisotropic conductive adhesive film
  • the manufacturing method of the solar cell module 1 of this embodiment is demonstrated.
  • the collector electrode 8 will be described in detail.
  • 10 and 11 are explanatory views of manufacturing steps in the vicinity of the finger electrode portion 31 and in the vicinity of the bus bar electrode portion 32.
  • the photoelectric conversion unit 30 is formed as shown in FIG. 10A (photoelectric conversion unit preparation step). That is, as shown in FIG. 7, silicon-based thin films 16, 17, 25, 26 and transparent electrode layers 18, 27 are formed on the substrate 15 to form the photoelectric conversion unit 30.
  • the 1st conductive layer 21 containing the low melting-point material 34 is formed on the surface of the photoelectric conversion part 30 by the printing method like FIG.10 (b) (1st conductive layer formation process). At this time, the first conductive layer 21 is patterned into a predetermined shape.
  • the wiring member 3 is placed on the first conductive layer 21 in the bus bar electrode portion 32 and bonded by the adhesive 33 as shown in FIG. 10C (wiring member bonding step). .
  • the wiring member 3 and the first conductive layer 21 are bonded in a planar shape by the adhesive 33 and are in close contact with each other.
  • the wiring member 3 may be bonded after removing the short-circuit portion.
  • the insulating layer 19 is formed on the first conductive layer 21 and / or the wiring member 3 (insulating layer forming step).
  • the insulating layer 19 may be formed only on the first conductive layer 21 in the first conductive layer forming region 37 in the vicinity of the finger electrode portion 31. And it may be formed also on the photoelectric conversion part 30 of the 1st conductive layer non-formation area
  • the solar cell 2 is a heterojunction solar cell
  • the transparent electrode layer 18 is formed on the surface (surface on the light incident side) of the photoelectric conversion unit 30, on the first conductive layer non-formation region 38.
  • an insulating layer 19 is formed. That is, in the present embodiment, the insulating layer 19 is provided on the entire surface on the one main surface side (first main surface side) of the photoelectric conversion unit 30.
  • annealing is performed by heating at the annealing temperature Ta (annealing step). At this time, the insulating layer 19 is deformed along with the deformation of the low melting point material 34, and the hole 23 is formed in the finger electrode portion 31.
  • the annealing temperature Ta preferably satisfies T1 + 1 ° C. ⁇ Ta ⁇ T1 + 100 ° C., and more preferably satisfies T1 + 5 ° C. ⁇ Ta ⁇ T1 + 60 ° C.
  • the annealing temperature can be appropriately set according to the composition and content of the material of the first conductive layer 21.
  • T1 is the heat flow start temperature of the low melting point material 34 of the first conductive layer 21.
  • the annealing temperature Ta is lower than the heat resistant temperature of the photoelectric conversion unit 30.
  • the heat-resistant temperature of the photoelectric conversion unit 30 varies depending on the configuration of the photoelectric conversion unit 30.
  • the heat-resistant temperature when a transparent electrode layer or an amorphous silicon-based thin film such as a heterojunction solar cell or a silicon-based thin film solar cell is generally about 250 ° C. . Therefore, in the case where the photoelectric conversion unit 30 is a heterojunction solar cell including an amorphous silicon thin film or a silicon thin film solar cell, the annealing temperature Ta is used from the viewpoint of suppressing thermal damage at the amorphous silicon thin film and its interface.
  • the annealing temperature Ta is more preferably 200 ° C. or less, and further preferably 180 ° C. or less. Accordingly, the heat flow starting temperature T1 of the low melting point material 34 of the first conductive layer 21 is preferably less than 250 ° C, more preferably less than 200 ° C, and even more preferably less than 180 ° C.
  • a crystalline silicon solar cell having a reverse conductivity type diffusion layer on one surface (one main surface) of the substrate 15 does not have an amorphous silicon thin film or a transparent electrode layer, and therefore has a heat resistance temperature of 800 ° C. to 900 It is about °C. Therefore, the annealing process may be performed at an annealing temperature Ta higher than 250 ° C.
  • the second conductive layer 22 is formed on the insulating layer 19 in the first conductive layer forming region 37 by a plating method (plating step).
  • the surface of the first conductive layer 21 is covered with the insulating layer 19, and the first conductive layer 21 is exposed in a portion where the hole 23 is formed in the insulating layer 19. It has become. Therefore, in the plating step, the exposed portion of the first conductive layer 21 passes through the hole 23 and is exposed to the plating solution, and the second conductive layer 22 is deposited starting from the hole 23. Further, in the bus bar electrode portion 32 after annealing, the surface of the wiring member 3 is covered with the insulating layer 19, and the second conductive layer 22 is deposited on a part thereof. According to the method of this embodiment, the second conductive layer 22 corresponding to the shape of the collector electrode 8 is formed by plating without providing a resist material layer having an opening corresponding to the shape of the collector electrode 8. can do.
  • the metal deposited as the second conductive layer 22 is not particularly limited as long as it is a material that can be formed by a plating method.
  • a plating method copper, nickel, tin, aluminum, chromium, silver, gold, zinc, lead, Palladium or the like or a mixture thereof can be used.
  • the feeding point with the plating power source 40 is preferably provided on the wiring member 3 as shown in FIGS. By doing so, the electrical resistance of the wiring member 3 is low, and the potential on the wiring member 3 is kept almost constant even when a current is applied for plating. Therefore, the potential distribution on the surface of the solar cell 2 is generated. Can be suppressed. As a result, it is possible to suppress the distribution of precipitation amount (distribution of film thickness and line width).
  • the position of the feeding point 41 with the plating power source 40 provided on the wiring member 3 is a wiring member in a region (non-adhesive region) that is not bonded to the solar cell 2 as shown in FIG. 3 and the electrode contact of the plating power source 40 is not in direct contact with the solar cell 2.
  • the shape of the electrode contact jig 42 including this electrode contact can be arbitrarily designed.
  • the electrode contact jig 42 will be described. If an electrode contact is provided at the tip of a spring-type member as shown in FIG. 13B, the wiring member 3 can be held at the same time that the wiring member 3 can be brought into contact with this point. That is, the electrode contact jig 42 has two arms, and the wiring member 3 can be held between the arms. Therefore, according to the electrode contact jig 42, the solar cell 2 can be fixed at a predetermined position during the plating process.
  • the surface of the electrode contact jig 42 other than the contacts is preferably an insulator from the viewpoint of preventing metal deposition on the surface.
  • the feeding point 41 of the wiring member 3 and the electrode contact of the electrode contact jig 42 may be point-contacted by a part of the arm or may be contacted linearly. .
  • the number of electrode contacts can also be selected as appropriate.
  • the electrode contact may be provided only in one side direction of the solar cell 2 as shown in FIG. That is, it may be provided only on one side of the solar cell 2.
  • the electrode contacts may be provided in two sides of the solar cell 2 as shown in FIG. That is, you may provide in the one side of the solar cell 2, and its opposite side.
  • the electrode contacts are provided in the two-side directions as described above, the movement in the plating tank can be restricted, so that damage in the process and peeling of the wiring member 3 can be further prevented.
  • FIG. 12 is a conceptual diagram of the plating apparatus 45 used for forming the second conductive layer 22 as described above.
  • the solar cell substrate 46 and the anode 47 are immersed in a plating solution 49 in the plating tank 48.
  • the solar cell substrate 46 is obtained by forming the first conductive layer 21 and the insulating layer 19 on the photoelectric conversion unit 30 and performing the annealing process by the above-described process.
  • the first conductive layer 21 on the solar cell substrate 46 is electrically connected to the plating power source 40 via the substrate holder 50.
  • the finger electrode portion 31 is selectively coated on the first conductive layer 21 (non-connecting portion) that is not covered with the insulating layer 19.
  • the second conductive layer 22 (copper) can be deposited on the substrate. That is, by applying a voltage between the anode 47 and the wiring member 3 of the solar cell substrate 46, the hole 23 (opening) generated in the insulating layer 19 by the annealing process shown in FIG. Copper can be deposited on the substrate.
  • the above is the description of the plating process.
  • a plating solution removing step is provided to remove the plating solution 49 remaining on the surface of the solar cell substrate 46.
  • Module 1 is manufactured.
  • the solar cell 2 of the present embodiment employs a heterojunction crystalline silicon solar cell (hereinafter also referred to as a heterojunction solar cell).
  • the solar cell 2 includes an intrinsic silicon thin film 16, a conductive silicon thin film 17, and a transparent electrode on one surface (light incident side surface, surface) of the substrate 15. Layers 18 are stacked in this order. Further, in the solar cell 2, an insulating layer 19 and a collecting electrode 8 are further provided on the transparent electrode layer 18.
  • an intrinsic silicon-based thin film 25, a conductive silicon-based thin film 26, and a transparent electrode layer 27 are laminated in this order on the other surface (surface on the light reflection side, back surface) of the substrate 15.
  • a back electrode 28 is further laminated on the transparent electrode layer 27.
  • the photoelectric conversion unit 30 of the solar cell 2 has a transparent electrode layer 27, a conductive silicon thin film 26, and an intrinsic silicon type from the back surface side (second main surface side) to the front surface side (first main surface side).
  • the thin film 25, the substrate 15, the intrinsic silicon thin film 16, the conductive silicon thin film 17, and the transparent electrode layer 18 are stacked in this order.
  • intrinsic silicon thin films 16 and 25 are interposed between the substrate 15 and the conductive silicon thin films 17 and 26, respectively.
  • the substrate 15 is formed of a single conductivity type single crystal silicon substrate.
  • a single crystal silicon substrate contains an n-type containing atoms (for example, phosphorus) for introducing electrons into silicon atoms and atoms (for example, boron) for introducing holes into silicon atoms.
  • atoms for example, phosphorus
  • atoms for example, boron
  • “one conductivity type” means either n-type or p-type. That is, the substrate 15 is an n-type or p-type single crystal silicon substrate.
  • the substrate 15 of this embodiment is preferably an n-type single crystal silicon substrate.
  • the substrate 15 has a texture structure on the front surface and the back surface. That is, the photoelectric conversion unit 30 formed using the substrate 15 as a base also has a texture structure. Therefore, the solar cell 2 can confine incident light in the photoelectric conversion unit 30 and has high power generation efficiency.
  • a plasma CVD method is preferable.
  • the conductive silicon thin films 17 and 26 are monoconductive or reverse conductive silicon thin films.
  • the “reverse conductivity type” means a conductivity type different from the “one conductivity type”.
  • “reverse conductivity type” is p-type.
  • the conductive silicon thin film 17 is a reverse conductive silicon thin film
  • the conductive silicon thin film 26 is a single conductive silicon thin film.
  • the silicon thin film is not particularly limited as long as it is a silicon thin film, but an amorphous silicon thin film is preferably used.
  • the conductive silicon thin film 17 is a p-type amorphous silicon thin film
  • the conductive silicon thin film 26 is an n-type amorphous silicon thin film.
  • i-type hydrogenated amorphous silicon composed of silicon and hydrogen is preferable.
  • the photoelectric conversion unit 30 of the solar cell 2 includes transparent electrode layers 18 and 27 on the outside on the conductive silicon thin films 17 and 26 as shown in FIG.
  • the transparent electrode layers 18 and 27 are preferably mainly composed of a conductive oxide.
  • conductive oxides those containing indium tin oxide (ITO) as a main component are more preferable.
  • ITO indium tin oxide
  • main component means that the content is more than 50 percent by weight, preferably 70 percent by weight or more, and more preferably 90 percent by weight or more.
  • the transparent electrode layers 18 and 27 may be a single layer or a laminated structure including a plurality of layers.
  • a doping agent may be added to the transparent electrode layers 18 and 27.
  • the film thickness of the transparent electrode layer 18 on the light incident side is preferably 10 nm or more and 140 nm or less from the viewpoints of transparency, conductivity, and light reflection reduction. Since the role of the transparent electrode layer 18 is to transport carriers to the collector electrode 8, the necessary conductivity can be provided by setting the film thickness to 10 nm or more. By setting the film thickness to 140 nm or less, absorption loss in the transparent electrode layer 18 is small, and a decrease in photoelectric conversion efficiency accompanying a decrease in transmittance can be suppressed. Moreover, if the film thickness of the transparent electrode layer 18 is in the above range, an increase in carrier concentration in the transparent electrode layer 18 can be prevented. Therefore, a decrease in photoelectric conversion efficiency accompanying a decrease in infrared transmittance is also suppressed.
  • the film formation method of the transparent electrode layers 18 and 27 is not particularly limited, but can be formed by, for example, sputtering.
  • the back electrode 28 located further outside the transparent electrode layer 27 on the second main surface side with the photoelectric conversion unit 30 as a reference.
  • the back electrode 28 it is desirable to use a material having high reflectivity from the near infrared to the infrared region and having high conductivity and chemical stability. Examples of the material satisfying such characteristics include metals such as silver and aluminum.
  • the method for forming the back electrode 28 is not particularly limited.
  • the solar cell module 1 of the present embodiment the collector electrode 8 having the first conductive layer 21 and the second conductive layer 22 has a low contact resistance with the transparent electrode layer 18. Therefore, it is possible to reduce power generation loss due to contact resistance.
  • the solar cell module 1 of the present embodiment the second conductive layer 22 having a larger surface roughness than the wiring member 3 is located closest to the surface member 5 side. Further, the surface member 5 is provided on the outer side of the second conductive layer 22. Therefore, the solar cell module 1 is a solar cell module having a higher photoelectric conversion rate than the conventional one.
  • the light (incident light) that has been transmitted through the surface member 5 is reflected by the outer surface of the second conductive layer 22, and the surface It goes to the inner surface of the member 5.
  • the light reflected toward the inner surface of the surface member 5 is reflected toward the photoelectric conversion unit 30 due to the difference in refractive index between air and the surface member 5.
  • the incident light transmitted through the surface member 5 is transmitted through the insulating layer 19 or the wiring as shown in FIG.
  • the light is totally reflected on the surface of the member 3 and passes through the surface member 5 to escape to the outside.
  • the light incident from the surface member 5 and blocked by the wiring member 3 is also photoelectrically converted in the solar cell module 1 of the present embodiment by converting most of the incident light from the surface member 5.
  • Part 30 can collect.
  • the insulating layer forming step is performed after the wiring member bonding step.
  • the present invention is not limited to this, and the insulating layer forming step may be performed before the wiring member bonding step.
  • An example thereof will be described as the solar cell module 80 of the second embodiment.
  • the solar cell 81 built in the solar cell module 80 of the second embodiment is different from the solar cell 2 of the first embodiment in the laminated structure in the bus bar electrode portion 82. That is, as can be seen from FIG. 15, the bus bar electrode portion 82 of the solar cell 81 is formed by laminating the first conductive layer 21 on the photoelectric conversion unit 30 and forming the insulating layer 19 so as to cover the surface of the first conductive layer 21. Has been. In addition, the wiring member 3 is located outside the insulating layer 19 with the photoelectric conversion unit 30 as a reference. A conductive adhesive 33 is interposed between the first conductive layer 21 and the wiring member 3.
  • a through hole 83 is formed in addition to the hole 23 of the first embodiment.
  • the through hole 83 is a hole penetrating in the thickness direction of the insulating layer 19 and is a hole for electrically connecting the first conductive layer 21 and the wiring member 3.
  • the through hole 83 is filled with the adhesive 33, and the first conductive layer 21 is electrically connected to the wiring member 3 through the through hole 83 of the insulating layer 19.
  • the manufacturing method of the solar cell module 80 of this embodiment is demonstrated.
  • the collector electrode 8 will be described in detail.
  • the process same as the manufacturing method of the solar cell module 1 of 1st Embodiment is demonstrated briefly. Further, the description will be made with attention paid to the vicinity of the bus bar electrode portion 82. 16 and 17 are explanatory views of the manufacturing process in the vicinity of the finger electrode portion 31 and the bus bar electrode portion 82.
  • the photoelectric conversion unit 30 is formed in the photoelectric conversion unit preparation step. Thereafter, in the first conductive layer forming step, the first conductive layer 21 is formed outside the photoelectric conversion unit 30 by a screen printing method as shown in FIG.
  • the insulating layer 19 is formed on the first conductive layer 21 (insulating layer forming step). That is, in the method for manufacturing the solar cell module 80 of the second embodiment, the insulating layer 19 is formed prior to the wiring member bonding step.
  • the insulating layer 19 may be formed only on the first conductive layer 21 in the first conductive layer formation region 37, or the photoelectric conversion portion in the first conductive layer non-formation region 38. 30 may also be formed. In the second embodiment, the insulating layer 19 is formed on the entire main surface side (first main surface side) of the photoelectric conversion unit 30.
  • the wiring member 3 is placed on the first conductive layer 21 in the bus bar electrode portion 82 and thermocompression bonded with the adhesive 33 (wiring member bonding step). ).
  • the insulating layer 19 is interposed between the wiring member 3 and the first conductive layer 21.
  • a part of the insulating layer 19 is peeled off and a through hole 83 is formed.
  • the through hole 83 is filled with the adhesive 33, and the wiring member 3 and the first conductive layer 21 are electrically connected through the adhesive 33.
  • an annealing step is performed as shown in FIG. 17E, and the substrate on which the wiring member 3 is installed is annealed by heating at the annealing temperature Ta.
  • a hole 23 is formed in the insulating layer 19 in the finger electrode portion 31.
  • the second conductive layer 22 is formed on the insulating layer 19 in the first conductive layer forming region 37 by a plating method (plating step).
  • the second conductive layer 22 is deposited on the surface of the wiring member 3. Therefore, the outer surface of the wiring member 3 has a rough surface. A part of the wiring member 3 of the bus bar electrode portion 82 is buried in the second conductive layer 22.
  • the solar cell module 80 is manufactured.
  • the collector electrode 8 serving as the surface-side electrode is provided by the electrolytic plating method, but the present invention is not limited to this.
  • the front surface side electrode for example, the second conductive layer 22
  • the back surface side electrode for example, the back surface electrode 28
  • it can also be formed by electrolytic plating. From the viewpoint of simplifying the manufacturing process, it is preferable to form the front side electrode and the back side electrode simultaneously.
  • electrode contacts are provided in two directions, and electrode contacts (feeding points 41) so that electricity flows through the front and back surfaces of the solar cell substrate 46.
  • the anode 47 is installed so as to face both the front surface (first main surface) and the back surface (second main surface) of the solar cell 2, respectively. And by applying a voltage to these, it becomes possible to plate on both the front surface and the back surface of the solar cell substrate 46 simultaneously. In this case, since wiring can be simplified, it is preferable to carry out such that the potentials of the front surface and the back surface of the solar cell substrate 46 are common.
  • the wiring member 3 is adhered and provided on both the front and back surfaces of the solar cell substrate 46. And it is preferable to supply electric power to the to-be-plated surface of the solar cell substrate 46 through the wiring member 3.
  • adjacent solar cells 2 are connected by the wiring member 3 and then introduced into the plating apparatus.
  • the 2nd conductive layer 22 of the several solar cell 2 can be formed simultaneously by supplying electric power from the plating power supply 40 to a to-be-plated surface (for example, the 1st conductive layer 21 of the finger electrode part 31).
  • a feeding point 41 with the electrode contact of the plating power source 40 for each wiring member 3. is preferably provided.
  • tool as typically shown in FIG. 19 can also be used for manufacture of the solar cell module 1.
  • the feeding point 41 on the wiring member 3 between the solar cells 2 and 2 and the electrode contacts installed on the jig can be accurately aligned.
  • electrical connection can be reliably realized at the connection point between the wiring member 3 and the jig.
  • the solar cell 2 can be transported in a state of being installed on the jig, and therefore it is possible to prevent damage during transportation.
  • the jig is covered with the jig.
  • the second conductive layer 22 is difficult to be formed on the portion.
  • the width of the space between the adjacent solar cells 2 and 2 of the jig is approximately the same as the space between the solar cells 2 and 2, It is preferable to make it smaller than the interval between the batteries 2 and 2.
  • the solar cell substrate 46 having four arcuate shapes when used, it can be prevented by providing the position of the feeding point 41 of the wiring member 3 near one side of the solar cell substrate 46. In this case, as shown in FIG. 20, there may be a margin in the alignment accuracy of the electrode contacts and the mechanical strength of the jig.
  • the wiring member 3 Insulating treatment is preferably performed before bonding.
  • the material of the second conductive layer 22 may be deposited at the contact point between the wiring member 3 and the jig. Depending on the deposited material of the second conductive layer 22, the contact resistance at the contact point of the wiring member 3 may increase. For these reasons, as described above, it is preferable to perform washing after the plating step to remove the metal material deposited on the contacts of the wiring member 3.
  • the difference in contact resistance at the contact between the wiring member 3 and the jig is In some cases, the film thickness and the line width of the two conductive layers 22 may be changed. For this reason, it is more preferable to carry out the cleaning of the contacts after the plating step.
  • the solar cell 2a and the adjacent solar cell 2b face the same direction.
  • the invention is not limited to this, and the posture of the solar cell 2a and the solar cell 2b adjacent to the solar cell 2a may be reversed upside down as shown in FIG. That is, the front and back may be reversed between the solar cells 2a and 2b.
  • the entire surface of the wiring member 3 to be bonded and the first conductive layer 21 are bonded.
  • the present invention is not limited to this, and the entire surface of the wiring member 3 to be bonded is
  • the first conductive layer 21 may not be bonded. That is, the structure in which the first conductive layer 21 does not have the bus bar electrode portion 32 may be used, or the first conductive layer 21 may have a shape including an opening, a notch, and a gap.
  • the first conductive layer 21 having the plurality of finger electrode portions 31 and the plurality of bus bar electrode portions 32 is used.
  • the present invention is not limited to this, and the first conductive layer
  • the configuration of the layer 21 is not particularly limited.
  • the first conductive layer may be a so-called bus bar-less electrode that includes only a plurality of finger electrode portions 31 and does not have the bus bar electrode portion 32.
  • the first conductive layer 21 may be formed on a translucent conductive film provided so as to be in contact with the light receiving surface of the photoelectric conversion unit 30.
  • the translucent conductive film can be made of a translucent conductive oxide such as indium tin oxide (ITO) or zinc oxide (ZnO).
  • the back electrode 28 of one solar cell 2 is connected to the bus bar electrode portion 32 of another solar cell 2 via the wiring member 3 such as a tab.
  • the plurality of solar cells 2 are connected in series or in parallel.
  • the connected solar cells 2 and 2 are modularized by sealing with the front surface member 5, the back surface member 6 and the filler 7, but the present invention is not limited to this.
  • the solar cell 2 alone may be used. This case is also referred to as a solar cell module in this specification as described above.
  • the hole 23 (opening) is formed by combining the low melting point material 34 and the high melting point material 35 as the material of the first conductive layer 21, but the present invention is not limited to this. Absent. That is, the formation method of the hole 23 is not specifically limited, You may form the hole 23 (opening part) by methods, such as a mask, laser irradiation, mechanical drilling, and chemical etching. In that case, only the high melting point material 35 can be used.
  • the collector electrode 8 is formed by forming the hole 23 of the insulating layer 19 and forming the second conductive layer 22 using the change in the properties of the first conductive layer 21 at the annealing temperature.
  • the present invention is not limited to this.
  • the resist layer 100 such as a photoresist as shown in FIG. 26A
  • the second conductive layer is formed in the plating step as shown in FIG. 22 is formed.
  • the collector electrode 8 may be formed by removing the resist layer 100 as shown in FIG.
  • metal fine particles having a particle size of 1 ⁇ m or less may be used as the material of the first conductive layer 21 .
  • nano-order metal fine particles can cause sintering necking (fusion of fine particles) by lowering the temperature below the melting point. Therefore, by heating at a temperature of the sintering necking start temperature T1 ′ or higher and the melting point T1 or lower. Deformation occurs in the vicinity of the outer periphery of the fine particles. By doing so, the surface shape of the first conductive layer 21 can be changed, and the hole 23 can be formed in the insulating layer 19.
  • the size (for example, particle size) of the material it is possible to suppress disconnection of the first conductive layer 21 due to heating in the annealing step and improve conversion efficiency.
  • a material having a high melting point such as silver, copper, or gold
  • is sintered necking at a temperature T1 ′ of about 200 ° C. or lower than the melting point if the particle diameter is fine particles of 1 ⁇ m or less ( Fine particle fusion) may occur. Therefore, a material having a high melting point such as silver, copper, or gold can also be used as the low melting point material 34.
  • the material that causes such sintering necking is heated to a sintering necking start temperature T1 ′ or higher, deformation occurs in the vicinity of the outer periphery of the fine particles. Therefore, the surface shape of the first conductive layer 21 can be changed, and the hole 23 can be formed in the insulating layer 19. Even if the fine particles are heated to a temperature higher than the sintering necking start temperature, the fine particles maintain a solid phase as long as the temperature is lower than the melting point T2 ′. Therefore, disconnection due to coarsening of the material hardly occurs. That is, it can be said that the material that causes sintering necking such as metal fine particles is the low melting point material 34 but also has a side surface as the high melting point material 35.
  • sintering necking start temperature T1 ′ thermal flow start temperature T1.
  • the first conductive layer 21 containing fine particles is formed, the insulating layer 19 is formed on the first conductive layer 21, and the insulating layer 19 is heated to form holes.
  • the temperature at which 23 (crack) occurs can be regarded as the sintering necking start temperature.
  • the temperature at which the hole 23 (crack) is generated by heating the substrate when forming the insulating layer 19 can be regarded as the firing necking start temperature.
  • the process of attaching the wiring member 3 to the solar cell 2 has been described, but the present invention is not limited to this.
  • the wiring member 3 bonded to one solar cell substrate 46 is bonded to another solar cell substrate 46 as shown in FIG. Then, the second conductive layer 22 may be formed. According to such a method, productivity can be improved.
  • the second conductive layer 22 is formed from a single layer, but the present invention is not limited to this, and may be configured from a plurality of layers.
  • a first plating layer made of a material having high conductivity such as copper (Cu) as the second conductive layer 22 on the first conductive layer 21 via the insulating layer 19 chemical stability is achieved.
  • a second plating layer having excellent resistance is formed on the surface of the first plating layer. By doing so, it becomes a multilayer structure in which the second plating layer is laminated on the first plating layer, and the collector electrode 8 having low resistance and excellent chemical stability can be formed.
  • the solar cell module 1 is used in a state where the insulating layer 19 is covered as it is, but the present invention is not limited to this, and the insulating layer is formed after the collector electrode is formed (after the plating step).
  • a removal step may be performed.
  • the insulating layer 19 it is preferable to perform an insulating layer removing step in order to suppress a decrease in photoelectric characteristics of the solar cell due to the light absorption of the insulating layer 19. At this time, it is more preferable that all of the insulating layer 19 on the first conductive layer non-forming region 38 is removed from the viewpoint of further improving the light capturing effect.
  • a heterojunction solar cell is used as the solar cell 2 and the collector electrode 8 is provided on the light incident side (first main surface side).
  • the present invention is limited to this. Instead, a similar collector electrode may be formed on the back side (the side opposite to the light incident side).
  • the solar cell 2 is a heterojunction solar cell and a crystalline silicon solar cell is used.
  • the present invention is not limited to this, and is another type of solar cell.
  • it may be a solar cell formed from a crystalline semiconductor wafer such as a single crystal silicon wafer or a polycrystalline silicon wafer.
  • the crystalline semiconductor wafer used has a substantially square shape.
  • the average thickness of the crystalline semiconductor wafer is preferably 0.05 mm or more and 0.15 mm, and more preferably 0.1 mm or more and 0.2 mm or less.
  • This solar cell 2 has an n-type semiconductor region 10 and a p-type semiconductor region 11 in the stacking direction as shown in FIG. 21, and a semiconductor junction 12 at the interface between the n-type semiconductor region 10 and the p-type semiconductor region 11. Is formed.
  • the n-type semiconductor region 10 and the p-type semiconductor region 11 may be made of a crystalline semiconductor or an amorphous semiconductor.
  • the connection terminal of the plating power source 40 can be provided by providing a power supply point with the plating power source 40 on the wiring member 3 in the plating step as in the above-described embodiment. Can be prevented from being damaged by pressing.
  • a substantially intrinsic amorphous silicon layer is sandwiched between the single crystal silicon substrate and the amorphous silicon layer to reduce defects at the interface and to improve the characteristics of the heterojunction interface. It may be a solar cell having an improved structure.
  • the solar cell of the present invention includes a crystalline silicon solar cell other than a heterojunction solar cell, a solar cell using a semiconductor substrate other than silicon such as GaAs, an amorphous silicon thin film, or a crystalline silicon thin film pin.
  • silicon-based thin film solar cells in which a transparent electrode layer is formed on a junction or pn junction, compound semiconductor solar cells such as CIS and CIGS, organic thin film solar cells such as dye-sensitized solar cells and organic thin films (conductive polymers) Such various types of solar cells are also applicable.
  • the wiring member 3 is connected after the adhesive material 33 is provided on the first conductive layer 21.
  • the present invention is not limited to this, and the adhesive material 33 is previously placed on the surface of the wiring member 3. You may form.
  • a wiring member in which a solder material is formed in advance may be used and bonded to the surface of the solar cell 2 using the wiring member.
  • the second conductive layer 22 is laminated on the wiring member 3 with a part or all of the insulating layer 19 interposed therebetween. It is not limited. As shown in FIG. 23, the insulating layer 19 may not be sandwiched between the wiring member 3 and the second conductive layer 22. In this case, it is preferable to perform the plating step without providing the insulating layer 19 on the surface of the wiring member 3.
  • the wiring member 3 when the wiring member 3 is bonded onto the first conductive layer 21 in the wiring member bonding step, the wiring member 3 and the separate bonding material 33 are used for bonding, but the present invention is not limited thereto. It is not limited.
  • the adhesive material 33 may not be interposed between the wiring member 3 and the first conductive layer 21 again. In other words, in the wiring member bonding step, the bonding material 33 may be coated on the surface of the wiring member 3 in advance.
  • the adhesive 33 is interposed between the first conductive layer 21 and the wiring member 3 in the bus bar electrode portion 32, but the present invention is not limited to this, and the first conductive layer 21 is not limited thereto.
  • the wiring member 3 may be directly bonded on top.
  • the surface can be formed by etching or the like, or can be directly formed by a plating method or the like.
  • An example of the case of forming by plating is to perform plating so that the plating surface is roughened in a needle shape by adjusting the components of the plating solution.
  • the second conductive layer 22 having a smaller electric resistance than the first conductive layer 21 is used.
  • the present invention is not limited to this, and the second conductive layer 22 includes the first conductive layer 22. What is necessary is just to have the resistance below the electrical resistance of the conductive layer 21. FIG.
  • the intrinsic silicon thin films 16 and 25 are provided between the substrate 15 and the conductive silicon thin films 17 and 26.
  • the present invention is not limited to this, and the intrinsic silicon thin film. 16, 25 may not be provided.
  • Example 1 The heterojunction solar cell of Example 1 was manufactured as follows. A substantially square n-type single crystal silicon wafer having an incident plane of (100), a thickness of 200 ⁇ m, and a 6-inch (156 mm) square was used as the single conductivity type single crystal silicon substrate as the substrate 15. This silicon wafer was immersed in a 2% by weight hydrofluoric acid (HF) aqueous solution for 3 minutes to remove the silicon oxide film on the surface, and then rinsed with ultrapure water twice. This silicon substrate was immersed in a 5/15 wt% potassium hydroxide (KOH) / isopropyl alcohol aqueous solution maintained at 70 ° C. for 15 minutes, and a texture structure was formed by etching the surface of the wafer.
  • HF hydrofluoric acid
  • KOH potassium hydroxide
  • the etched wafer was introduced into a CVD apparatus, and i-type amorphous silicon was formed as an intrinsic silicon thin film 16 on the light incident side of the wafer so as to have a thickness of 5 nm.
  • the film forming conditions for the i-type amorphous silicon were: substrate temperature: 150 ° C., pressure: 120 Pa, SiH 4 / H 2 flow rate ratio: 3/10, and input power density: 0.011 W / cm 2 .
  • the film thickness of the thin film in a present Example measures the film thickness of the thin film formed on the glass substrate on the same conditions by spectroscopic ellipsometry (brand name M2000, JA Woollam Co., Ltd. product). It is a value calculated from the film formation rate obtained by this.
  • a p-type amorphous silicon film having a thickness of 7 nm was formed as a reverse-conductivity-type silicon thin film as the conductive silicon-based thin film 17.
  • the deposition conditions for the p-type amorphous silicon layer were a substrate temperature of 150 ° C., a pressure of 60 Pa, a SiH 4 / B 2 H 6 flow rate ratio of 1/3, and an input power density of 0.01 W / cm 2 .
  • the B 2 H 6 gas flow rate mentioned above is the flow rate of the diluted gas diluted with H 2 to a B 2 H 6 concentration of 5000 ppm.
  • an i-type amorphous silicon layer having a thickness of 6 nm was formed as an intrinsic silicon-based thin film 25 on the back side of the wafer.
  • the film formation conditions for the i-type amorphous silicon layer were the same as the film formation conditions for the i-type amorphous silicon layer.
  • an n-type amorphous silicon layer was formed as a conductive silicon-based thin film 26 to a thickness of 4 nm.
  • the deposition conditions for the n-type amorphous silicon layer were: substrate temperature: 150 ° C., pressure: 60 Pa, SiH 4 / PH 3 flow rate ratio: 1/2, input power density: 0.01 W / cm 2 .
  • the PH 3 gas flow rate mentioned above is the flow rate of the diluted gas diluted with H 2 to a PH 3 concentration of 5000 ppm.
  • indium tin oxide (ITO, refractive index: 1.9) was formed to a thickness of 100 nm as the transparent electrode layer 18 on the light incident side and the transparent electrode layer 27 on the back side.
  • Indium oxide was used as a target, and transparent electrode layers 18 and 27 were formed by applying a power density of 0.5 W / cm 2 in an argon atmosphere at a substrate temperature of room temperature and a pressure of 0.2 Pa.
  • the transparent electrode layer 27 silver was formed as a back electrode 28 by a sputtering method so as to have a film thickness of 500 nm.
  • the collector electrode 8 having the first conductive layer 21 and the second conductive layer 22 was formed as follows.
  • the formation region of the first conductive layer 21 includes a bus bar electrode part 32 and a finger electrode part 31.
  • the bus bar electrode part 32 has a width of 1.5 mm
  • the finger electrode part 31 has a line width of 105 ⁇ m
  • the finger electrode part 31 has a width.
  • the interval was 2 mm.
  • the wafer on which the first conductive layer 21 is formed is put in a CVD apparatus, and a silicon oxide layer (refractive index: 1.5) is formed as the insulating layer 19 on the light incident surface side so as to have a thickness of 80 nm by plasma CVD. Formed.
  • the film formation conditions of the insulating layer 19 were: substrate temperature: 135 ° C., pressure 133 Pa, SiH 4 / CO 2 flow rate ratio: 1/20, input power density: 0.05 W / cm 2 (frequency 13.56 MHz).
  • the refractive index (n) and extinction coefficient (k) of the insulating layer 19 formed on the light incident surface side under these conditions are as shown in FIG.
  • the wafer after the insulating layer 19 was formed was introduced into a hot air circulation oven, and annealed at 180 ° C. for 20 minutes in an air atmosphere.
  • the silicon wafer on the outer periphery of the cell was removed with a width of 0.5 mm using a laser processing machine, and the electrical short circuit between the front surface (first main surface side) and the back surface (second main surface side) was removed. .
  • a wiring member 3 made of a copper foil having a width of 1.5 mm, a thickness of 0.2 mm, and a length of 155 mm is formed on a conductive film having a width of 1.2 mm and a length of 152 mm on the first conductive layer 21 of the bus bar electrode portion 32. And adhered. That is, the wiring member 3 was placed on the first conductive layer 21 and bonded by thermocompression bonding.
  • the wiring member 3 was bonded so that one end of the wiring member 3 was placed at a position 1.5 mm from the end of the silicon substrate.
  • a conductive film was used for bonding the wiring member 3.
  • the contact point with the plating electrode side feeding point was provided at a position 1.5 mm from the other end of the wiring member 3.
  • the solar cell substrate 46 to which the wiring member 3 was bonded as described above was put into a plating tank 48 as shown in FIG.
  • the contact point with the plating power source 40 was provided on the wiring member 3 in a region not bonded to the solar cell substrate 46 (silicon substrate). That is, a contact point with the plating power source 40 was taken at a position other than the connection site between the solar cell substrate 46 and the wiring member 3.
  • plating solution 49 copper sulfate pentahydrate, sulfuric acid, and sodium chloride were added to a solution prepared to have a concentration of 120 g / l, 150 g / l, and 70 mg / l, respectively.
  • plating was performed under conditions of a temperature of 40 ° C. and a current of 3 A / dm 2 .
  • copper was uniformly deposited as the second conductive layer 22 with a thickness of about 10 ⁇ m. In principle, almost no copper was deposited in the region where the first conductive layer 21 was not formed.
  • the substrate on which the second conductive layer 22 was formed was washed with water to remove the plating solution 49 adhering to the surface.
  • the line resistivity of the bus bar electrode portion 32 was measured and found to be 1 ⁇ / cm.
  • Example 2 A solar cell was fabricated in the same manner as in Example 1 except that the ratio of the tin bismuth (SnBi) metal powder to the silver powder was 60:40, and the line resistivity of the bus bar electrode portion 32 was 10 ⁇ / cm. .
  • Example 3 A solar cell was produced in the same manner as in Example 1 except that the collector electrode 8 was not provided with the first conductive layer 21 of the bus bar electrode portion 32 and was a so-called bus bar-less collector.
  • Example 4 Four work pieces of the solar cell 2 on which the first conductive layer 21 is formed are prepared by the method described in Example 1, and the four solar cells 2 are straightened so that the p-type amorphous silicon surface is on the upper side. Arranged on the line. Thereafter, the front surface side and the back surface side of the adjacent solar cells 2 were connected by the wiring member 3 so that the four solar cells 2 were electrically connected in series.
  • the non-adhesive surface side of the wiring member 3 to the adjacent solar cells 2 The lead wire for taking out the electric power to an external circuit was adhere
  • the length of the wiring member 3 was 310 mm, and the distance between adjacent solar cells 2 (distance between adjacent solar cells 2 and 2) was 2 mm.
  • a series of solar cell substrates 46 connected by the wiring member 3 were immersed in a plating tank containing a copper sulfate plating solution.
  • electricity was applied from the plating power source 40 at the feeding point 41 to deposit copper on the first conductive layer 21 and the back electrode 28. Then, it washed with water and removed the plating solution adhering to the surface.
  • Lead wires to the external circuit were connected to the series of solar cells 2 after plating and the solar cells 2 at both ends. Thereafter, these solar cells were sandwiched between a glass substrate (front surface member 5) and a back sheet (back surface member 6), and sealed with a sealant (filler 7). Then, the lead wire was attached to the wiring box, and the solar cell module 1 was produced.
  • Comparative Example 2 A solar cell was produced in the same manner as in Comparative Example 1 except that the material used in Example 2 was used as the material of the first conductive layer 21.
  • Comparative Example 3 Four solar cells 2 produced in the same manner as in Comparative Example 1 were prepared, and these were connected so as to be electrically connected in series by the wiring member 3 in the same manner as in Example 4 to produce a solar cell module 1. .
  • the line resistance of the first conductive layer 21 of the bus bar electrode portion 32 was measured at the stage where the first conductive layer 21 was formed. Further, the solar cell characteristics of the solar cells of Examples 1 to 4 and Comparative Examples 1 to 3 described above were measured using a solar simulator. After this solar cell characteristic measurement, in order to evaluate the adhesion strength of the wiring member 3, a peeling test was performed, and the appearance after the test was observed.
  • Example 3 since the bus bar electrode portion 32 was not provided, the line resistance of the first conductive layer 21 constituting the bus bar electrode portion 32 was not measured. Further, the adhesion strength test of the wiring member 3 was not performed on the modularized Example 4 and Comparative Example 3.
  • the wiring member 3 is adhering with the solar cell 2 with sufficient intensity
  • the line resistance of the first conductive layer 21 in the bus bar electrode portion 32 a decrease in FF was confirmed in Comparative Example 2 in which the resistance was 10 ⁇ / cm. On the other hand, in this example, no decrease in FF occurred.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 集電極と接続配線間の抵抗損失が小さく、製造コストを低減可能な太陽電池モジュールを提供する。また、その太陽電池モジュールの製造方法を提供する。 太陽電池2は、光電変換部30を平面視したときに、集電極8が設けられた部位であって、所定の方向に延伸したフィンガー電極部31を有しており、フィンガー電極部31は、光電変換部30上に第一導電層21と、第一導電層21よりも抵抗が小さい第二導電層22が積層した積層構造を有し、配線部材3は、集電極8上であって、かつ、フィンガー電極部31と交差するように配されており、太陽電池2のフィンガー電極部31と配線部材3の交差部位は、第一導電層21と、配線部材3が積層した積層構造を備えている構成とする。

Description

太陽電池モジュール及びその製造方法
 本発明は、太陽電池モジュール及びその製造方法に関する。本発明は、特に太陽電池の集電極と配線部材の接続構造に関する。
 エネルギー問題や地球環境問題が深刻化する中、化石燃料にかわる代替エネルギーとして、太陽電池が注目されている。
 太陽電池は、半導体接合等からなる光電変換部を内蔵している。太陽電池は、この光電変換部に光を照射することによって、発生するキャリア(電子及び正孔)を外部回路に取り出して発電することが可能である。
 また、太陽電池は、この光電変換部で発生するキャリアを集中的に効率良く外部回路へ取り出すための集電極を備えている。この集電極は、太陽電池の光電変換部上に取り付けられている。
 この太陽電池を電力源(エネルギー源)として用いる場合、太陽電池セル1個あたりの出力は高々数ワット程度である。そのため、一般的に複数枚の太陽電池を電気的に直列に接続した太陽電池モジュールとして用いられる。この太陽電池モジュールは、太陽電池セル間を電気的に直列に接続することによって、それぞれの太陽電池内の光電変換部に加わる電圧を加えていき、出力を高めることができる。
 なお、本明細書内での「太陽電池モジュール」は、上記したような複数の太陽電池セルが接続されたものだけでなく、1枚の太陽電池(以下、太陽電池セル、又はセルともいう)も含んで定義する。
 また、太陽電池モジュールは、太陽電池の表面側(光入射面側)を保護する表面保護材と、太陽電池の背面側を保護する背面保護材とを有している。太陽電池モジュールは、これら表面保護材と背面保護材の間に封止材を充填することによって、各太陽電池が封止されている。
 一般的に、表面保護材には、ガラス基板などの透光性を有するものが使用される。また、封止材には、EVA(Ethylene Vinyl Acetate)などの透光性を有するものが使用される。
 ここで、太陽電池モジュールの各太陽電池セル間の接続構造について詳説する。太陽電池モジュールは、上記したように、各太陽電池セルの表面(受光面,光入射面)に集電極が設けられている。この集電極を配線部材(例えば、タブやインターコネクタなど)に接続することによって、隣接する太陽電池間、又は、太陽電池と外部回路の接続配線間を電気的に接続している。
 太陽電池には、例えば、単結晶シリコン基板や多結晶シリコン基板を用いた、いわゆる結晶シリコン系の太陽電池がある。この結晶シリコン系の太陽電池では、受光面に金属からなる集電極が設けられる。また、太陽電池には、結晶シリコン基板上に非晶質シリコン層及び透明電極層を有する、いわゆるヘテロ接合太陽電池がある。このヘテロ接合太陽電池でも、透明電極層上に集電極が設けられる。
 また太陽電池には、非晶質シリコン薄膜や結晶質シリコン薄膜等を用いたシリコン系薄膜太陽電池や、CIGS、CIS等の化合物太陽電池、有機薄膜太陽電池、色素増感太陽電池等の薄膜太陽電池がある。これらの太陽電池では、受光面での表面抵抗を減少させる観点から、光電変換部の受光面側の面上に透明電極層が設けられている。
 このように、いずれの種類の太陽電池でも、受光面に集電極を設けることができる。
 ここで、上記した透明電極層が導電性を有した構造においては、集電極としての機能を果たす。そのため、原理的には、透明電極層上に別途の集電極を設けることは、不要と考えられる。
 しかしながら、実用化する際には、透明電極層として、酸化インジウム錫(ITO;Indium Tin Oxide)や酸化亜鉛(ZnO;Zinc Oxide)等の導電性酸化物を使用することが多い。これらの導電性酸化物は、金属に比べて抵抗率が高いので、透明電極層として導電性酸化物を使用すると、太陽電池モジュール全体の内部抵抗が高くなるという問題がある。
 そのため、従来から、太陽電池の透明電極層上に金属製の集電極を設けて、集電極を取出電極として機能させている。こうすることによって、電流の取出効率を高める取り組みが従来からなされている(例えば、特許文献1)。
 また、この集電極は、導電性酸化物で形成された透明電極層の電気伝導を補助する補助電極又は電流を取り出す取出電極として機能させるものである。すなわち、この集電極は、基本的には、電気伝導の補助又は取出に必要な所定の厚み及び面積が確保できればよい。そこで、電解めっき法や無電解めっき法で集電極(以下、めっき電極ともいう)を形成する取り組みもなされている(例えば、特許文献2,3)。電解めっきや無電解めっきで集電極を形成することによって、太陽電池モジュールの低コスト化が実現することが可能となる。
特開2008-135654号公報 特開2010-098232号公報 特表2013-507781号公報
 ところで、太陽電池モジュールは、上記した集電極を配線部材(例えば、タブやインターコネクタなど)に接続することによって、隣接する太陽電池間、又は、太陽電池と外部回路間を電気的に接続する。この集電極と配線部材は、一般的に、集電極と配線部材の間にはんだや異方性導電膜等の導電性接着剤を介在させることによって接着されている。
 そこで、本発明者は、集電極(めっき電極)を電解めっき法にて形成し、当該めっき電極に対して配線部材を接続した太陽電池モジュールを試作した。この試作した太陽電池モジュールは、従来と同様、配線部材とめっき電極とをはんだによって接着したものである。
 本発明者は、この試作した太陽電池モジュールの構造を採用することで、めっき法によって集電極を形成するので、製造コストの低減ができるとともに、光電変換部と配線部材間の抵抗損失も低減できると予想した。
 しかしながら、試作した太陽電池モジュールは、製造コストが低減され、ある程度の抵抗損失が低減されたものの、新たな問題が発生した。
 すなわち、はんだを介して、めっき電極と配線部材を接着すると、めっき電極とその下地となる層との間の接着強度が弱くなることがわかった。
 そのため、試作した太陽電池モジュールは、衝撃等の外部要因等により断線するおそれがあり、太陽電池モジュールとして不安定なものとなっていた。
 また、本発明者は、はんだの代わりに導電性フィルム(CF;Conductive Film)によって接着した太陽電池モジュールについても試作した。
 しかしながら、当該試作した太陽電池モジュールにおいても、はんだを用いた場合と同様、めっき電極とその下地となる層との間の接着強度が弱くなるという結果となっていた。
 そこで、本発明は、従来に比べて光電変換部と配線部材間の抵抗損失が小さく、かつ、十分な接着強度を有する太陽電池モジュールを提供することを課題とする。また、本発明は、このような特性を有した太陽電池モジュールを容易に製造できる太陽電池モジュールの製造方法を提供することを課題とする。
 本発明者は、上記した接着強度の低下の原因として、次のように考察した。
 すなわち、めっき電極と配線部材をはんだ等を介して接着すると、めっき電極と配線部材は実質的に一体となる。そのため、衝撃等の外部要因等により、配線部材に荷重がかかると、配線部材に加わった荷重は、めっき電極とめっき電極の下地となる層の界面に集中的に加わってしまう。すなわち、配線部材とめっき層の界面に荷重が分散せず、集中的にめっき電極とその下地となる層の界面にかかる。そのため、めっき電極とその下地となる層との間の接着強度が特に弱くなると考察した。
 この考察のもとに導き出された本発明の一つの様相は、光電変換部と集電極を有した太陽電池と、前記太陽電池と外部回路又は他の太陽電池を接続する配線部材と、を備えた太陽電池モジュールにおいて、前記太陽電池は、光電変換部を平面視したときに、前記集電極が設けられた部位であって、所定の方向に延伸したフィンガー電極部を有しており、前記フィンガー電極部は、前記光電変換部を基準として前記光電変換部の外側に、第一導電層と、第二導電層が順に積層した積層構造を有し、当該第二導電層は、第一導電層とは異なる層であり、前記第二導電層の電気抵抗は、第一導電層の電気抵抗以下であり、前記配線部材は、前記光電変換部を基準として第一導電層の外側にあって、かつ、前記フィンガー電極部又はフィンガー電極部の延長と交差するように配されており、太陽電池のフィンガー電極部又はフィンガー電極部の延長と配線部材の交差部位は、以下の(1)又は(2)の積層構造を備えていることである。
(1)第一導電層上に配線部材が直接接する積層構造
(2)第一導電層と配線部材が、第二導電層と異なる接着層を介して接する積層構造。
 ここでいう「延長」とは、仮想的な延長を表す。すなわち、「フィンガー電極部の延長と配線部材の交差部位」とは、仮にフィンガー電極部が延長したと仮定した状態において、配線部材が交差する部位を表し、実際には、交差していない状態を表す。例えば、平面視したときに、フィンガー電極部が断続的に延びており、配線部材が延び方向で隣接するフィンガー電極部の間に配される場合には、この重なる部位がフィンガー電極部の延長と配線部材の交差部位となる。
 また、ここでいう「積層」とは、直接的又は間接的に層が重なることをいう。
 さらに、ここでいう「異なる層」とは、比較対象に対して完全に同一でない層をいう。「第一導電層と異なる層」の例としては、例えば、材質の異なるものや第一導電層と同じ工程で形成されていないものなどが挙げられる。すなわち、当該定義においては、素材だけではなく、組成や配合量が異なるものも「異なる層」に該当する。
 ここでいう「延伸」とは、「全体」として延びている状態を表し、部分的に延びる方向が異なっていても、全体が所定の方向に延びていれば、「延伸」に含まれる。例えば、ジグザグ状であっても全体として所定の方向に延びていれば許容される。
 「全体として延びる状態」とは、例えば、図27に示される物質Aの場合、幅W(全体の延伸方向に対して直交方向の長さ)を1としたときに、長さL(全体の延伸方向の長さ)が100以上である状態をいう。
 本様相によれば、フィンガー電極部は、光電変換部上に第一導電層と、第二導電層が積層した積層構造を有しており、第二導電層の電気抵抗は、第一導電層の電気抵抗以下である。すなわち、この積層構造を有する部分では、第二導電層は、第一導電層内での電気伝導を補助する補助電極として機能する。そのため、本様相によれば、第一導電層だけ設ける場合に比べて、抵抗損失が小さい。なお、第一導電層と第二導電層が同一の電気抵抗を備える場合においても、第一導電層と第二導電層は同一の導電経路を形成するので、第一導電層のみの場合に比べて、導電経路の断面積が大きくなり、電流の通過量が増加する。そのため、抵抗損失を抑制することができる。
 また、本様相によれば、配線部材は、前記集電極上であって、かつ、フィンガー電極部又はフィンガー電極部の延長と交差するように配されている。すなわち、配線部材は、フィンガー電極部と交差する方向に延びている。そのため、配線部材によって、所定の方向(配線部材の延びる方向)において均等に電流を取り出すことが可能である。また、フィンガー電極部によって、当該所定の方向と交差する方向において均等に電力を取り出すことが可能である。それ故に、太陽電池モジュールの面内において、均等に電力を取り出すことが可能であり、局所的に過負荷がかかりにくく、部分的な短絡を防止することができる。
 好ましい様相は、前記第二導電層は、めっき層であることである。
 好ましい様相は、前記光電変換部を基準として、配線部材の外側に透光性を有した透光性部材を備え、前記太陽電池は、当該透光性部材を介して光電変換部に入射光を収集可能であり、前記交差部位において、前記光電変換部を基準として、配線部材の外側面の一部又は全部に第二導電層が積層しており、前記第二導電層の表面粗さは、前記配線部材の表面粗さよりも大きいことである。
 本様相によれば、太陽電池のフィンガー電極部又はフィンガー電極部の延長と配線部材の交差部位において、配線部材上の一部又は全部に配線部材よりも表面粗さが粗い第二導電層が積層している。すなわち、透光性部材から入射した光は、表面粗さが粗い第二導電層の表面で入射方向に対して異なる方向に反射される。また、当該反射光は、透光性部材と空気との界面でさらに反射して、光電変換部に入射する。
 このように、透光性部材から入射した光は、光電変換部を基準として透光性部材の内側(光電変換部側)に封じ込められるので、配線部材上に第二導電層を設けない場合に比べて、光学損失を減少させることができる。
 より好ましい様相は、前記光電変換部を基準として、光電変換部の外側に絶縁層を有し、前記絶縁層は、透光性を有していることである。
 本様相によれば、光電変換部の外側に位置する絶縁層は、透光性を有しているので、絶縁層を除去せずとも光を光電変換部に取り込むことができる。
 また、例えば、第二導電層をめっき浴に浸して形成する場合において、絶縁層が形成された部位には、原則的には第二導電層が形成されない。そのため、当該絶縁層が形成された部位において、光は第二導電層によって遮られることなく、光電変換部内に導入することができる。
 好ましい様相は、前記フィンガー電極部は、前記第一導電層と前記第二導電層の間に絶縁層が介在しており、前記絶縁層は、開口部を有し、第一導電層と第二導電層は、開口部を経由して導通されていることである。
 本様相によれば、第二導電層をめっき法などによって開口部の形状に合わせて堆積することができ、所望の形状の第二導電層を形成させることができる。
 好ましい様相は、前記光電変換部を基準として、光電変換部の外側に絶縁層を有し、前記交差部位の側面は、第一導電層及び配線部材に跨がって、前記絶縁層が被覆されていることである。
 本様相によれば、第一導電層と配線部材に跨がって絶縁層が被覆されているので、水等が第一導電層と配線部材の間に進入することを防止できる。また、絶縁層自身の剛性により、第一導電層と配線部材間の一体化強度も補強できる。
 好ましい様相は、複数の前記太陽電池を有し、当該複数の太陽電池のうち、少なくとも2つの太陽電池は、前記配線部材を介して接続されており、前記2つの太陽電池は、前記集電極側に正極又は負極を担う表面電極層と、前記集電極に対して反対側に前記表面電極層と異なる極を担う裏面電極層とを有するものであり、前記配線部材は、一方の太陽電池の表面電極層と、他方の太陽電池の裏面電極層とを電気的に接続していることである。
 本様相によれば、複数の太陽電池のうち、2つの太陽電池は、集電極側に正極又は負極を担う表面電極層と、集電極に対して反対側に前記電極層と異なる極を担う裏面電極層を有するものである。すなわち、2つの太陽電池は、表面電極層が正極を担う場合には、裏面電極層が負極を担い、表面電極層が負極を担う場合には、裏面電極層が正極を担う。
 そして、本様相によれば、配線部材は、一方の太陽電池の表面電極層と、他方の太陽電池の裏面電極層とを電気的に接続している。そのため、太陽電池間を電気的に直列接続することができる。
 上記した様相は、前記一方の太陽電池は、前記他方の太陽電池の姿勢を基準として、天地が逆転した姿勢をとっていてもよい。
 ここでいう「天地が逆転した姿勢」とは、通常、太陽電池モジュールは主面を太陽に向けて設置するので、表裏を逆転した姿勢を表す。すなわち、太陽電池の表裏を反転させた状態を表す。
 この様相によれば、一方の太陽電池は、他方の太陽電池の姿勢を基準として、天地が逆転した姿勢をとっている。そのため、配線部材を直線状に延ばすことによって、一方の太陽電池の表面電極層と、他方の太陽電池の裏面電極層を接続することが可能であり、容易に太陽電池間を電気的に直接接続することができる。
 上記した様相は、前記第一導電層と配線部材の間に第二導電層が介在しなくてもよい。
 この様相によれば、第一導電層と配線部材の間に第二導電層が介在しない。そのため、たとえ第二導電層がめっき層である場合であって、かつ、衝撃等の外部要因等により、配線部材に荷重がかかった場合でも、従来技術に比べて第一導電層に対して第二導電層が乖離して配線部材が脱離することを防止できる。
 上記した様相は、前記配線部材は、配線本体と、コーティング層を有し、前記コーティング層は、前記第一導電層よりも軟らかいものであって、配線本体の表面を被覆しており、前記第一導電層の一部は、コーティング層に食い込んでいてもよい。
 ここでいう「軟らかい」とは、硬度が低いことをいう。
 この様相によれば、配線本体の表面を被覆し、第一導電層よりも軟らかいコーティング層に第一導電層の一部が食い込んでいるので、第一導電層に対して配線部材がずれにくい。また、第一導電層と配線部材を直接接する場合において、第一導電層と配線部材間の界面抵抗を下げることができる。
 上記した様相は、前記接着層は、導電性接着材であってもよい。
 ここでいう「導電性接着材」とは、導電性を有したものであって、かつ二部材間を接着可能なものである。導電性接着材は、例えば、液状体を固化したものでもよいし、シート状の粘着体でもよい。
 この様相によれば、導電性を維持しつつ接着強度を高めることができる。
 上記した様相は、前記第一導電層は、熱流動開始温度が摂氏80度(80℃)以上摂氏250度(250℃)以下の低融点材料を含んでいてもよい。
 上記した様相は、前記第二導電層は、銅を含んでいてもよい。
 この様相によれば、金や銀等に比べて、比較的に安価に第二導電層を形成できる。
 上記した様相は、前記太陽電池は、光電変換部を平面視したときに、前記集電極が設けられた部位であって、前記フィンガー電極部に対して交差する方向に延びたバスバー電極部を有し、前記フィンガー電極部は、前記バスバー電極部から張り出しており、前記配線部材は、前記バスバー電極部と重なるように配されていてもよい。
 この様相によれば、バスバー電極部はフィンガー電極部の延長上に位置するので、フィンガー電極部の延長と配線部材は、交差することとなる。
 本発明の一つの様相は、上記した太陽電池モジュールの製造方法であって、前記光電変換部を基準として、前記光電変換部の外側に第一導電層を形成する第一導電層形成工程と、前記配線部材を第一導電層の外側に接続する配線部材接着工程と、めっき法によって第一導電層の外側に第二導電層を形成するめっき工程をこの順に含むことである。
 本様相によれば、めっき法により集電極の第二導電層を形成するので、集電極の抵抗を下げることが可能であり、太陽電池の変換効率を向上させることができる。
 また、本様相によれば、第二導電層は、電解めっき法や無電解めっき法などのめっき法によって形成されているので、第二導電層を形成する際に光電変換部が損傷する程度の高温に至らない。そのため、光電変換部が劣化しにくい。さらに、本様相によれば、めっき法によって形成されているので、真空蒸着法やスパッタ法等を用いて形成する場合に比べてコストも低減できる。
 本発明の一つの様相は、上記した太陽電池モジュールの製造方法であって、前記光電変換部を基準として、前記光電変換部の外側に第一導電層を形成する第一導電層形成工程と、前記配線部材を第一導電層の外側に接続する配線部材接着工程と、前記第一導電層の外側に絶縁層を形成する絶縁層形成工程と、前記絶縁層に設けられた開口部を介して、めっき法により第一導電層と導通する第二導電層を形成するめっき工程と、を含むことである。
 本様相によれば、めっき工程において、絶縁層に設けられた開口部を介して第一導電層と導通するように第二導電層が形成されるので、開口部の形状等によって、第二導電層を形成する部位を制御できる。
 好ましい様相は、前記第一導電層形成工程、前記配線部材接着工程、前記絶縁層形成工程、前記めっき工程の順に行うことである。
 好ましい様相は、前記めっき工程において、太陽電池をめっき液に浸し、前記配線部材に給電することによって第二導電層を形成することである。
 本様相によれば、配線部材に給電することによって第二導電層を形成する。そのため、めっき用の電極を太陽電池に当接させることなく、第二導電層を形成することができる。すなわち、製造工程でのめっき用の電極の当接による破損等の不具合の発生を低減でき、歩留まりがよく、製造コストをさらに低減できる。
 特に好ましい様相は、配線部材の太陽電池との接着部位と異なる部位に給電することによって、第二導電層を形成することである。
 本様相によれば、配線部材と太陽電池が接着した接着部位以外の部位である非接着部に給電することにより、第二導電層を形成する。すなわち、配線部材と太陽電池が接着した接着部位からずれた位置に給電点が存在するので、容易に給電することが可能であり、製造しやすい。
 好ましい様相は、複数の前記太陽電池を備えた太陽電池モジュールの製造方法であって、各太陽電池を配線部材によって接続し、当該配線部材に給電することによって、複数の前記太陽電池に同時に第二導電層を形成することである。
 本様相によれば、複数の太陽電池に対してまとめて第二導電層を形成することが可能であるため、1枚ずつ太陽電池に対して第二導電層を形成する場合に比べて、生産性を向上させることができる。
 上記した様相は、前記配線部材によって、隣接する太陽電池を互いに天地が逆転した姿勢で接続し、前記配線部材に給電することによって、前記隣接する太陽電池に同時に第二導電層を形成してもよい。
 この様相によれば、配線部材を取り付け易く、さらに生産性を向上させることができる。
 上記した様相は、前記光電変換部を基準として、前記光電変換部の外側に第一導電層を形成する第一導電層形成工程と、前記第一導電層の外側に薄膜状の接着層を形成する接着層形成工程と、前記接着層を介して、配線部材を第一導電層上に接着する配線部材接着工程をこの順に有し、配線部材接着工程において、前記接着層上に熱圧着によって前記接着層の一部に開口を形成し、当該開口を経由して第一導電層と配線部材を直接接触させてもよい。
 この様相によれば、配線を熱圧着させることにより生じる接着層の開口を経由して第一導電層と配線部材を直接接触させているので、たとえ接着層が絶縁性を有していても第一導電層と配線部材の導通を確保することができる。
 本発明の太陽電池モジュールによれば、従来に比べて光電変換部と配線部材間の抵抗損失が小さい。また、本発明の太陽電池モジュールによれば、光電変換部と配線部材との接着強度が十分に大きい。そのため、高変換効率で、高信頼性の太陽電池モジュールとなる。
 本発明の太陽電池モジュールの製造方法によれば、製造コストを低減可能である。
第1実施形態における太陽電池モジュールを模式的に表す斜視図である。 図1の太陽電池モジュールの一部の分解斜視図である。 図1の太陽電池モジュールのA-A断面図である。 図1の太陽電池と配線部材を表す分解斜視図である。 図1の太陽電池モジュールの要部を模式的に表した説明図であり、(a)はフィンガー電極部近傍の断面図であり、(b)はバスバー電極部近傍の断面図である。 図1の太陽電池の説明図であり、各領域を表す説明図である。 図1の太陽電池の内部の断面構造を表す模式図である。 図1の太陽電池モジュールの要部の一部破断斜視図である。 図8の状態から絶縁層及び第二導電層を取り除いた図である。 図1の太陽電池モジュールの製造工程におけるフィンガー電極部近傍及びバスバー電極部近傍を模式的に表した説明図であり、(a)から(c)は、各工程を表す。 図1の太陽電池モジュールの製造工程におけるフィンガー電極部近傍及びバスバー電極部近傍を模式的に表した説明図であり、(d)から(f)は、各工程を表す。 めっき工程に使用するめっき装置の概念図である。 めっき工程の状態を表す概念図であり、(a)は電極接点治具と配線部材の設置位置の一例を表す図であり、(b)は電極接点治具を表す図であり、(c)は電極接点治具の設置位置の他の一例を表す図である。 図1の太陽電池モジュールにおける入射光の光路を模式的に表す断面図であり、矢印が光の光路を表す。(a)はフィンガー電極部近傍の断面図であり、(b)はバスバー電極部近傍の断面図である。 本発明の第2実施形態における太陽電池モジュールの要部の一部破断斜視図である。 図15の太陽電池モジュールの製造工程におけるフィンガー電極部近傍及びバスバー電極部近傍を模式的に表した説明図であり、(a)から(c)は、各工程を表す。 図15の太陽電池モジュールの製造工程におけるフィンガー電極部近傍及びバスバー電極部近傍を模式的に表した説明図であり、(d)から(f)は、各工程を表す。 他の実施形態におけるめっき工程に使用するめっき装置の概念図である。 他の実施形態におけるめっき工程に使用するめっき装置の概念図である。 他の実施形態におけるめっき工程に使用するめっき装置の概念図である。 他の実施形態における太陽電池を模式的に示した断面図である。 光入射面側に形成された絶縁層の各波長における屈折率(n)及び消衰係数(k)を表す図である。 他の実施形態における太陽電池モジュールの要部を模式的に表した説明図であり、(a)はフィンガー電極部近傍の断面図であり、(b)はバスバー電極部近傍の断面図である。 他の実施形態における太陽電池間の配線部材の接続構造の説明図である。 他の実施形態におけるバスバー電極部近傍の断面図である。 他の実施形態における孔の形成方法の説明図であり、(a)は第一導電層にレジスト層を形成する工程を表し、(b)は第二導電層を形成する工程を表し、(c)はレジスト層を剥離する工程を表す。 物質が延伸した状態を表す説明図である。
 以下、本発明の実施形態について詳細に説明する。
 なお、以下の説明において、特に断りがない限り、太陽電池モジュール1の上下の位置関係は、図1の姿勢を基準に説明する。また、図面は、理解を容易にするために全体的に実際の大きさ(長さ、幅、厚さ)に比べて誇張して描写していることがある。
 本明細書においては、体積抵抗率が10-2Ω・cm以下であれば導電性であると定義する。また、体積抵抗率が、102Ω・cm以上であれば、絶縁性であると定義する。以下の説明においては、太陽電池2全体の表裏を表す際には、原則として表面を第一主面、裏面を第二主面という。さらに、以下の説明において、内外を表すときは、特に断りがない限り、光電変換部30を基準とする。
 第1実施形態における太陽電池モジュール1は、実用に供するに際して、太陽電池2をモジュール化したものである。
 すなわち、太陽電池モジュール1は、図2,図3のように複数枚の太陽電池2(2a,2b)が配線部材3によって電気的に直列又は並列に接続されて形成されるものである。なお、本実施形態では、複数枚の太陽電池2が配線部材3によって電気的に直列接続されたものについて説明する。
 また、太陽電池モジュール1は、図1,図3のように表面部材5(透光性部材)と裏面部材6の間に複数の太陽電池2を介在しており、太陽電池2が埋没するように表面部材5と裏面部材6の間に充填材7が充填されて封止されている。
 太陽電池モジュール1は、図3に示すように、一方の太陽電池2の第一主面(受光面)に設けられた集電極8(正極)と、他方の太陽電池2の第二主面に設けられた裏面電極28(裏面電極層,負極)は、配線部材3により接続されている。そのため、隣接する太陽電池2間は互いに電気的に直列に接続されている。
 太陽電池2は、図4のように、光電変換機能を備えた光電変換部30を有している。
 すなわち、太陽電池2は、表面部材5を通過した入射光を光電変換部30で収集し、発電するものである。
 この光電変換部30の表面(受光面側の面)上には、図4に示されるように櫛形状の集電極8が設けられている。
 集電極8は、図5のように光電変換部30側から順に、第一導電層21と第二導電層22とを有している。また、第一導電層21と第二導電層22との間には、絶縁層19が介在している。言い換えると、第二導電層22は、絶縁層19を挟んで第一導電層21と対向する側に設けられている。
 太陽電池2は、光電変換部30を平面視したときに、図5,図6から読み取れるように光電変換部30上に第一導電層21が被覆された第一導電層形成領域37と、それ以外の領域である第一導電層非形成領域38を有している。また、第一導電層形成領域37は、複数(多数)のフィンガー電極部31と、複数のバスバー電極部32を有している。
 フィンガー電極部31は、図6のように長さ方向lに第一導電層21が延伸した部位であって、線状をした部位である。
 各フィンガー電極部31は、光電変換部30の表面(受光面側の面)上に分布して配されている。すなわち、各フィンガー電極部31は、幅方向sに所定の間隔を空けて配されており、そのそれぞれが平行になるように等間隔に並設されている。
 図6の拡大図に示される各フィンガー電極部31の幅(幅方向の長さ)W1は、断線防止の観点から10μm以上であることが好ましく、30μm以上であることがより好ましい。
 各フィンガー電極部31の幅W1は、光電変換部30へのより多くの光を導入する観点から150μm以下であることが好ましく、90μm以下であることがより好ましい。
 各フィンガー電極部31間の間隔(ピッチ)W2は、光電変換部30へのより多くの光を導入する観点から0.5mm以上であることが好ましく、1mm以上であることがより好ましい。
 各フィンガー電極部31間の間隔W2は、光電変換部30の面内における電流の分布をより均一にする観点から、4mm以下であることが好ましく、2.5mm以下であることがより好ましい。
 バスバー電極部32は、図6のように幅方向s(長さ方向に対して直交する方向)に第一導電層21が延伸した部位であって、帯状の部位である。
 各バスバー電極部32は、光電変換部30の表面(受光面側の面)上に分布して配されている。各バスバー電極部32は、長さ方向lに所定の間隔を空けて配されており、そのそれぞれが平行になるように並設されている。
 バスバー電極部32の個数は、フィンガー電極部31の個数に比べて少ない。具体的には、バスバー電極部32の個数は、1個以上5個以下であることが好ましく、2個以上4個以下であることがより好ましい。
 各バスバー電極部32の幅(長さ方向の長さ)W3は、十分な導電経路を確保する観点から0.3mm以上であることが好ましく、断線等を確実に防止する観点から0.9mm以上であることがより好ましい。
 各バスバー電極部32の幅W3は、より光を光電変換部30に入射させる観点から3mm以下であることが好ましく、2.1mm以下であることがより好ましい。
 ここで、フィンガー電極部31と、バスバー電極部32の位置関係について簡潔に説明する。フィンガー電極部31及びバスバー電極部32は、櫛形状に広がっている。すなわち、バスバー電極部32は、図6のように幅方向sに延びており、フィンガー電極部31は、バスバー電極部32の中間部位から面方向において交差する方向に張り出している。
 本実施形態では、2つのバスバー電極部32が互いに平行に延びており、多数のフィンガー電極部31が、2つのバスバー電極部32を跨がって延びている。すなわち、一つのバスバー電極部32に対して複数のフィンガー電極部31が直交方向に張り出すように延びている。
 絶縁層19は、絶縁性を有した層である。絶縁層19は、図5のように部材厚方向に貫通した孔23(開口部)が形成されている。
 第一導電層21と第二導電層22は、絶縁層19の孔23の開口を経由して物理的に接続されている。すなわち、第二導電層22の一部は、絶縁層19の孔23の開口を介して、第一導電層21に導通されている。
 ここで「一部が導通されている」とは、一部が電気的に接続された状態であり、静電気による導電も含む。典型的には絶縁層19に開口が形成され、その開口に第二導電層22の材料が充填されていることによって、導通されている状態である。
 絶縁層19は、図5のように少なくともフィンガー電極部31に位置しており、絶縁層19は、第一導電層非形成領域38に跨がって形成されていることが好ましく、ほぼ全面に形成されていることが特に好ましい。
 ここでいう「ほぼ全面」とは、基準面の90パーセント以上の部分を表す。すなわち、絶縁層19は、積層対象(本実施形態では、光電変換部30等)の片面の90パーセント以上の部分に積層されている。絶縁層19は、積層対象(本実施形態では、光電変換部30等)の全面に積層されていることが特に好ましい。
 以下、「ほぼ全面」は、基準面の90パーセント以上の部分と定義する。
 絶縁層19は、上記したように第一導電層非形成領域38にも形成されている。そのため、絶縁層19は、めっき法により第二導電層22が形成される場合に、光電変換部30をめっき液から化学的及び電気的に保護することが可能である。
 すなわち、本実施形態の太陽電池2のように、光電変換部30の表面(光入射面側の面)に後述する透明電極層18(図7参照)が形成されている場合は、めっき液に透明電極層18が晒されて透明電極層18が浸食されるおそれがある。
 そこで、本実施形態の太陽電池2では、透明電極層18(表面電極層)の表面上に絶縁層19が形成されることで、透明電極層18がめっき液に直接接触することを抑止されている。そのため、絶縁層19により、透明電極層18上への金属層(第二導電層22)の析出を防ぐことができる。また、絶縁層19により、めっき液による透明電極層18の浸食も防止できる。
 生産性の観点からも、光電変換部30の第一主面側の面上において、全体に絶縁層19が形成されることがより好ましい。
 本実施形態では、絶縁層19は、光電変換部30の第一主面側の面のほぼ全面を覆うように形成されている。
 配線部材3は、図4のように長尺状の部材であり、導電性を有した箔状又は板状の部材である。配線部材3としては、例えば、銅等の金属からなる薄板などに金属めっき加工を施したものが採用できる。すなわち、配線部材3には、金属単体だけではなく、めっき加工等の表面加工を施されたものを含む。
 本実施形態の配線部材3は、図9の拡大図に示されるように、配線本体60と、配線本体60の表面に被覆されたコーティング層61から形成されている。
 配線本体60は、配線部材3の基体となる部位であり、導電体によって形成されている。
 コーティング層61は、配線本体60を外傷等から守る部位である。第一導電層21よりも軟らかい層で形成されている。
 具体的には、本実施形態の配線部材3は、銅箔の表面にはんだめっき加工を施したものを採用している。すなわち、配線本体60は、銅箔で形成されており、コーティング層61は、はんだなどによって形成されている。
 配線部材3は、図5(b)のように太陽電池2の第一導電層21と接着材33を介して物理的及び電気的に接続されている。
 配線部材3の幅及び厚みは、配線部材3の太陽電池2への接続本数などを勘案して決定されるが、幅は0.5mm以上2.5mm以下であることが好ましく、厚みは50μm以上500μm以下であることが好ましい。
 配線部材3の長さは、特に限定されないが、太陽電池2の一辺の長さより長くすることが望ましい。また、配線部材3の長さは、図2のように光電変換部30の横方向(幅方向)の長さよりも長くして、配線部材3が太陽電池2の外部まで引き伸ばされていることがより好ましい。
 本実施形態では、配線部材3の長さは、図3のように、太陽電池2aの幅を超えて、さらに隣接する太陽電池2bまで至っている。
 表面部材5(透光性部材)は、図2のように太陽電池2の第一主面側(光入射側の面)を覆う部材であり、透光性を有した板状又はシート状の部材である。表面部材5の材質としては、ガラス、透光性プラスチックなどが採用できる。
 裏面部材6は、図2のように太陽電池2の第二主面側を覆う部材であり、板状又はフィルム状の部材である。裏面部材6としては、ポリエチレンテレフタレートフィルムなどの樹脂フィルムや鋼板、ガラス板などが採用できる。
 充填材7は、図1,図3のように表面部材5と裏面部材6の間を充填して太陽電池2を封止するものであり、透光性及び絶縁性を有した接着材である。具体的には、充填材7は、樹脂を含んだ樹脂接着剤である。
 この絶縁性を有した樹脂接着剤としては、例えば、エチレン・酢酸ビニル共重合樹脂であるEVA(エチレンビニルアセテート)やポリビニルブチラールなどの熱硬化性樹脂が採用できる。
 続いて、太陽電池モジュール1の各部材の位置関係について説明する。なお、太陽電池モジュール1の各部材の詳細な構成については後述する。
 まず、第一導電層形成領域37のフィンガー電極部31について注目する。太陽電池2は、図5(a)のように光電変換部30の表面上に第一導電層21が直接接触するように積層されている。
 第一導電層21上には、絶縁層19が被覆されており、その上に第二導電層22が積層されている。第二導電層22は、上記したように絶縁層19の孔23を介して第一導電層21と直接物理的に接続されている。
 絶縁層19の孔23の内部は、第二導電層22が埋まっており、隣接する孔23,23間は、第二導電層22を介して繋がっている。そのため、第一導電層21よりも電気抵抗が小さな第二導電層22によって、第一導電層21と配線部材3間の電気伝導を補助されているので、第一導電層21と配線部材3での抵抗損失を抑制することができる。
 第一導電層形成領域37のバスバー電極部32について注目する。太陽電池2は、図5(b)のように光電変換部30の表面上に第一導電層21が直接接触するように積層されている。第一導電層21上には接着材33(接着層)を介して配線部材3が接着されている。
 第一導電層21と配線部材3の非接着面には、絶縁層19が被覆されており、その上の一部又は全部に第二導電層22が積層されている。すなわち、第一導電層21と配線部材3の側面は、絶縁層19に覆われており、第一導電層21は、絶縁層19によっても、配線部材3と接合されている。
 つまり、太陽電池2は、バスバー電極部32は、第一導電層21及び配線部材3に跨がって、絶縁層19が被覆されている。
 また、バスバー電極部32全体に配線部材3が接続されており、第一導電層21と配線部材3が接着材33を介して面状に接着されている。そのため、十分に導電面積を確保することができる。
 第一導電層非形成領域38について注目する。太陽電池2は、図8から読み取れるように光電変換部30の表面上に絶縁層19が被覆している。つまり、第一導電層非形成領域38全体に絶縁層19が位置している。
 フィンガー電極部31とバスバー電極部32の交差する部位(すなわち、配線部材3とフィンガー電極部31又はその延長が交差する部位)に注目する。太陽電池2は、図9のように光電変換部30の表面上に第一導電層21が直接接触するように積層されている。第一導電層21上には接着材33を介して配線部材3が接着されている。第一導電層21と配線部材3の非接着面には、絶縁層19が被覆している。
 本実施形態では、第一導電層21と配線部材3は、絶縁層19によって被覆されている。
 太陽電池モジュール1全体をみると、配線部材3の一端は、図3のように太陽電池2aの第一主面(表面)に設けられた第一導電層21と接続されている。配線部材3のもう一端は、公知の導電性接着材によって、他の太陽電池2bの光電変換部30の第二主面(裏面)に位置する裏面電極28と接続されている。すなわち、配線部材3は、太陽電池2aの第一主面側から、太陽電池2aと他の太陽電池2bの間を経由して、太陽電池2bの第二主面側に回っている。
 続いて、太陽電池モジュール1の各部材の詳細な構成について説明する。なお、上記の説明と重複する部分は説明を省略する。
 第一導電層21は、図5のように低融点材料34及び高融点材料35の双方を有しており、低融点材料34及び高融点材料35はともに導電性を有していることが好ましい。
 低融点材料34(下地材料)は、アニール工程において熱流動を生じ、第一導電層21の表面形状に変化を生じさせるものである。
 低融点材料34としては、低融点金属材料の単体もしくは合金、複数の低融点金属材料の混合物を好適に用いることができる。
 この低融点金属材料としては、例えば、インジウムやビスマス、ガリウム等が挙げられる。
 また、低融点材料34の熱流動開始温度T1は、アニール温度Taよりも低温であることが好ましい。
 ここでいう「熱流動開始温度」とは、加熱により材料が熱流動を生じ、低融点材料34を含む層の表面形状が変化する温度である。典型的には融点である。
 高分子材料やガラスでは、融点よりも低温で材料が軟化して熱流動を生じる場合がある。このような材料では、熱流動開始温度=軟化点と定義できる。
 軟化点とは、粘度が4.5×106Pa・sとなる温度である。すなわち、この場合の熱流動開始温度はガラスの軟化点の定義と同じである。
 また、本実施形態の第一導電層21は、後述するように太陽電池モジュール1の製造時に光電変換部30の耐熱温度よりも低温のアニール温度Taでアニール工程が行われる。したがって、低融点材料34の熱流動開始温度T1は、光電変換部30の損傷を防止する観点から光電変換部30の耐熱温度よりも低温であることが好ましい。
 ここでいう「光電変換部30の耐熱温度」とは、太陽電池2の特性が不可逆的に低下する温度である。
 本実施形態の太陽電池2の場合、図7に示される光電変換部30の骨格を構成する基板15は、500℃以上の高温に加熱された場合でも特性変化を生じ難い。
 しかしながら、シリコン系薄膜16,17,25として非晶質シリコン系薄膜を用いた場合や、透明電極層18,27として透明導電酸化物を用いた場合は、250℃程度に加熱されると、熱劣化を生じたり、ドープ不純物の拡散を生じ、太陽電池特性の不可逆的な低下を生じたりする場合がある。
 そのため、本実施形態の太陽電池2においては、第一導電層21は、熱流動開始温度T1が250℃以下の低融点材料34を含むことが好ましい。
 低融点材料34の熱流動開始温度T1の下限は特に限定されない。
 後述するアニール工程における第一導電層21の表面形状の変化量を大きくして、絶縁層19に孔23を容易に形成する観点から、第一導電層21の形成工程において、低融点材料34は実質的に熱流動を生じないことが好ましい。
 例えば、塗布や印刷により第一導電層21が形成される場合は、乾燥のために加熱が行われることがある。この場合は、低融点材料34の熱流動開始温度T1は、第一導電層21の乾燥のための加熱温度よりも高温であることが好ましい。この観点から、低融点材料34の熱流動開始温度T1は、80℃以上が好ましく、100℃以上がより好ましい。
 低融点材料34は、熱流動開始温度T1が上記範囲であれば、有機物であっても、無機物であってもよい。
 低融点材料34は、電気的には導電性であっても、絶縁性でも良いが、光電変換部30と配線部材3間の導電経路の一部を構成させる観点から導電性を有する金属材料であることが望ましい。
 低融点材料34が金属材料であれば、他材料を使用する場合に比べて、第一導電層21の抵抗値を小さくできる。そのため、電解めっきにより第二導電層22が形成される場合に、第二導電層22の膜厚の均一性を高めることができる。また、低融点材料34が金属材料であれば、光電変換部30と集電極8との間の接触抵抗を低下させることも可能となる。
 低融点材料34の材料として、金属粒子等の粒子状の低融点材料が用いられる場合、低融点材料34の粒径DLは、第一導電層21の膜厚dの1/20以上であることが好ましく、1/10以上であることがより好ましい。
 この範囲にすることにより、アニール工程での絶縁層19への開口の形成を容易とすることができる。
 低融点材料34の粒径DLは、0.25μm以上が好ましく、0.5μm以上がより好ましい。
 第一導電層21の一部を構成する高融点材料35は、低融点材料34よりも相対的に高温の熱流動開始温度(融点)T2を有する。
 高融点材料35としては、例えば、銀、アルミニウム、銅などの金属材料の単体もしくは複数の金属材料やそれらの合金を好ましく用いることができる。
 第一導電層21は、めっき法により第二導電層22が形成される際の導電性下地層として機能する層である。そのため、第一導電層21は電解めっきの下地層として機能し得る程度の導電性を有していればよい。すなわち、第一導電層21の体積抵抗率は10-2Ω・cm以下であり、10-4Ω・cm以下であることが好ましい。
 第一導電層21の平均膜厚は、コストを抑制する観点から20μm以下が好ましく、10μm以下がより好ましい。
 また、第一導電層21のライン抵抗を所望の範囲とする観点から、平均膜厚は0.5μm以上が好ましく、1μm以上がより好ましい。
 第一導電層21の形成方法は、特に限定されない。第一導電層21の形成方法は、インクジェット法、スクリーン印刷法、導線接着法、スプレー法、真空蒸着法、スパッタ法、電解めっき法、無電解めっき等の公知技術によって作製できる。
 第一導電層21は、例えば、低融点材料34と高融点材料35を導電性ペーストとしてスクリーン印刷法により形成することができる。第一導電層21は、例えば、パターン形状に対応したマスクを用いて、蒸着法やスパッタ法により形成されてもよい。
 本実施形態の第一導電層21は、櫛形等の所定形状にパターン化されている。そのため、パターン化された第一導電層21の形成には、生産性の観点からスクリーン印刷法が適している。このスクリーン印刷法を用いることによって、第一導電層21の厚みを薄くすることも可能であり、第一導電層21の使用量を低減でき、低コスト化も可能となる。
 第二導電層22は、無電解めっき法、電解めっき法のいずれのめっき法でも形成され得るが、生産性の観点から、電解めっき法を用いることが好適である。電解めっき法では、電流等を変化させることで金属の析出速度を大きくできるので、第二導電層22を短時間で形成することができる。
 なお、本実施形態では、第二導電層22は、第一導電層21の表面を被めっき面として、電解めっき法により形成されている。
 電解めっき法では、めっき電源40から被めっき面への給電が必要となるが、図12のようにめっき電源40からの給電点41は配線部材3上に設けることが望ましい。
 配線部材3と太陽電池基板46を接着する際に、配線部材3が太陽電池基板46(第二導電層22が積層される前の太陽電池2)と接着しない部分(非接着部)を設け、後述するめっき工程において、当該太陽電池基板46と接着しない部分に給電点41を設けることがより望ましい。
 こうすることにより、給電点41での接点治具と太陽電池基板46との接触による太陽電池基板46の破損をより防ぐことが可能となる。また、太陽電池基板46の被めっき面と給電点41との間の導通の一部を、電気抵抗が小さい配線部材3に担わせることができるので、第一導電層21として電気抵抗が大きいものも適用可能になる。そのため、第一導電層21の材料の選択の幅を広げることも可能となる。
 また、太陽電池基板46をめっき浴に浸漬して、配線部材3に電流を流すことで、配線部材3の第一導電層21及び絶縁層19との接着面以外の表面に第二導電層22を形成することができる。このことにより、配線部材3の電気抵抗をより下げることができる。
 一方、配線部材3の表面(第一導電層21側と反対側の面)を絶縁体で被覆することが好ましい。
 配線部材3の表面を絶縁体で被覆することで、配線部材3の表面付近でのめっき液内の金属イオンの浪費を抑えることができる。
 太陽電池の外観(意匠性)の観点から、第二導電層22と配線部材3の反射率は低いことが好ましい。また、第二導電層22と配線部材3の反射率は略等しいことがより好ましい。
 ここでいう「反射率が略等しい」とは、反射率の差が反射率の3パーセント以内であることをいう。
 太陽電池の外観(意匠性)の観点から、第二導電層22と配線部材3の表面が同一の低反射率材料で覆われていることが好ましい。
 この低反射率材料としては、ニッケルやクロムなどが挙げられる。
 また、生産性の観点から、第二導電層22上の低反射率材料と配線部材3上の低反射率材料は同時に形成されることが好ましい。
 本発明においては、例えば、第二導電層22とは別に第二のめっき層を形成し、この第二のめっき層(第二導電層22の外側のめっき層)として、配線部材3の表面を形成するコーティング層61と同一の低反射率材料を形成することにより実現できる。
 第二導電層22の表面粗さは、配線部材3の表面粗さより大きい。第二導電層22は、めっき法によって形成されているので、微小な凹凸を有している。
 図8に示される、光電変換部30上を被覆する絶縁層19に目を向けると、絶縁層19は、電気的に絶縁性を有した層である。
 絶縁層19は、第二導電層22を形成する際に使用されるめっき液に対する化学的安定性を有する材料によって形成されている。すなわち、絶縁層19にめっき液に対する化学的安定性が高い材料を用いているので、第二導電層22の形成時のめっき工程中に、絶縁層19がめっき液に溶解しにくい。
 また、絶縁層19としては、光電変換部30との付着強度が大きいものを採用することが好ましい。すなわち、本実施形態の太陽電池2の絶縁層19は、図7のように光電変換部30の表面に位置する光入射側の透明電極層18との付着強度が大きいことが好ましい。
 透明電極層18と絶縁層19との付着強度が大きい場合、めっき工程中に、絶縁層19が剥離しにくくなり、透明電極層18上への金属の析出を防ぐことができる。
 また、絶縁層19は、光吸収が少ない材料によって形成されていることが好ましい。
 上記したように、絶縁層19は、光電変換部30の光入射面側に形成される。そのため、絶縁層19による光吸収が小さければ、より多くの光を光電変換部30へ取り込むことが可能である。
 具体的には、絶縁層19は、透過率90パーセント以上であることが好ましい。このような十分な透明性を有する場合、絶縁層19での光吸収による光学的な損失が小さい。そのため、第二導電層22の形成後に絶縁層19を除去することなく、そのまま太陽電池2として使用することができる。また、太陽電池2の製造工程を単純化でき、生産性をより向上させることができる。
 絶縁層19を除去せずにそのまま太陽電池2として使用される場合、絶縁層19は、透明性に加えて、十分な耐候性、熱・湿度に対する安定性、並びに、金属イオンや水蒸気等の不純物に対する高いバリア性を有する材料を用いることがより望ましい。
 絶縁層19の材料は、無機絶縁性材料と有機絶縁性材料のいずれの材料でも採用できる。
 有機絶縁性材料としては、例えば、ポリエステル、エチレン酢酸ビニル共重合体、アクリル樹脂、エポキシ樹脂、ポリウレタン等の材料を用いることができる。
 無機絶縁性材料としては、めっき液耐性や透明性の観点からは、酸化シリコン、窒化シリコン、酸化窒化シリコン、酸化アルミニウム、サイアロン(SiAlON)、酸化イットリウム、酸化マグネシウム、チタン酸バリウム、酸化サマリウム、タンタル酸バリウム、酸化タンタル、フッ化マグネシウム、酸化チタン、チタン酸ストロンチウム、酸化亜鉛等が好ましく用いられる。
 無機絶縁性材料の中でも、電気的特性や透明電極層との密着性等の観点からは、酸化シリコン、窒化シリコン、酸化窒化シリコン、酸化アルミニウム、サイアロン(SiAlON)、酸化イットリウム、酸化マグネシウム、チタン酸バリウム、酸化サマリウム、タンタル酸バリウム、酸化タンタル、フッ化マグネシウム等が好ましく、屈折率を適宜に調整し得る観点からは、酸化シリコンや窒化シリコン等が特に好ましく用いられる。
 なお、これらの無機材料は、化学量論的(stoichiometric)組成を有するものに限定されず、酸素欠損等を含むものであってもよい。
 絶縁層19の膜厚は、絶縁層19の材料や形成方法に応じて適宜設定される。
 絶縁層19の膜厚は、本実施形態においては、後述するアニール工程における第一導電層21の表面形状の変化に伴って生じる界面の応力等によって、絶縁層19に孔23(開口部)が形成される程度に薄いことが好ましい。
 かかる観点から、本実施形態の絶縁層19の膜厚は、1000nm以下であることが好ましく、500nm以下であることがより好ましい。
 また、第一導電層21を形成しない部位における絶縁層19の光学特性や膜厚を適宜設定することで、光反射特性を改善し、太陽電池2の内部へ導入される光量を増加させ、変換効率をより向上させることが可能となる。
 このような効果を得るためには、絶縁層19の屈折率が、光電変換部30の表面の屈折率よりも低いことが好ましい。また、絶縁層19に好適な反射防止特性を付与する観点から、膜厚は30nm~250nmの範囲内で設定されることが好ましく、50nm~250nmの範囲内で設定されることがより好ましい。
 なお、第一導電層形成領域37(図6参照)の絶縁層19の膜厚と第一導電層非形成領域38(図6参照)の絶縁層19の膜厚は、異なっていてもよい。
 例えば、第一導電層形成領域37では、アニール工程での孔23(開口部)の形成を容易とする観点で絶縁層19の膜厚が設定され、第一導電層非形成領域38では、適宜の反射防止特性を有する光学膜厚となるように絶縁層19の膜厚が設定されていてもよい。
 本実施形態の太陽電池2では、図7のように光電変換部30の表面(光入射側)に透明電極層18(一般的な屈折率:1.9~2.1程度)を有する。絶縁層19の屈折率は、界面での光反射防止効果を高めて太陽電池2内部へ導入される光量を増加させるために、空気(屈折率=1.0)と透明電極層18との中間的な値であることが好ましい。
 また、本実施形態の太陽電池モジュール1のように太陽電池2が封止されてモジュール化される場合、絶縁層19の屈折率は、充填材7と透明電極層18の中間的な値であることが好ましい。
 かかる観点から、絶縁層19の屈折率は、1.4~1.9が好ましく、1.5~1.8がより好ましく、1.55~1.75がさらに好ましい。
 なお、本明細書における屈折率は、特に断りがない限り、波長550nmの光に対する屈折率であり、分光エリプソメトリーにより測定される値である。また、絶縁層19の屈折率に応じて、反射防止特性が向上するように絶縁層19の光学膜厚(屈折率×膜厚)が設定されることが好ましい。
 絶縁層19は、公知の方法を用いて形成できる。例えば、酸化シリコンや窒化シリコン等の無機絶縁性材料の場合は、プラズマCVD法、スパッタ法等の乾式法が好ましく用いられる。また、有機絶縁性材料の場合は、スピンコート法、スクリーン印刷法等の湿式法が好ましく用いられる。これらの方法によれば、ピンホール等の欠陥が少なく、緻密な構造の膜を形成することが可能となる。
 中でも、より緻密な構造の膜を形成する観点から、絶縁層19はプラズマCVD法で形成されることが好ましい。
 この方法により、200nm程度の比較的厚いものだけでなく、30~100nm程度の比較的薄い膜厚の絶縁層19を形成した場合も、緻密性の高い構造の膜を形成することができる。
 図7に示される本実施形態の太陽電池2のように、光電変換部30の表面にテクスチャ構造(凹凸構造)を有する場合、テクスチャの凹部や凸部にも精度よく膜形成できる観点からも、絶縁層19はプラズマCVD法により形成されることが好ましい。
 緻密性が高い絶縁層19を用いることにより、めっき処理時の表面側(光入射側)に位置する透明電極層18へのダメージを低減できる。さらに、緻密性が高い絶縁層19を用いることにより、これに加えて、透明電極層18上への金属の析出を防止することができる。
 また、緻密性が高い絶縁層19を用いることにより、光電変換部30の内部の他の層に対しても、水や酸素などのバリア層として機能し得る。そのため、太陽電池2の長期信頼性の向上の効果も期待できる。
 なお、第一導電層21と第二導電層22との間にある絶縁層19、すなわち第一導電層形成領域37(図6参照)上の絶縁層19の形状は、必ずしも連続した層状でなくてもよく、島状であっても良い。
 ここでいう「島状」とは、基準面の一部に層が形成されていない領域を有する状態を意味する。本実施形態の場合には、第一導電層21の表面の一部に、絶縁層19が形成されていない領域を有する状態を意味する。
 絶縁層19は、第一導電層21と第二導電層22との付着力の向上にも寄与する機能を有する。
 例えば、第一導電層21の材料が銀であり、第二導電層22の材料が銅である場合、第一導電層21(下地電極層)上にめっき法により第二導電層22が形成されると、第一導電層21と第二導電層22との付着力は小さくなる。
 そこで、酸化シリコン等の絶縁層19上に第二導電層22を形成することにより、第二導電層22の付着力が高められ、太陽電池2の信頼性を向上することが期待される。
 図7に示される第二主面側の裏面電極28は、光電変換部30の裏面側の面のほぼ全面に形成してもよいし、受光面側(第一主面側)の集電極8のように櫛型電極としてもよい。
 図5(b)に示されるバスバー電極部32において、第一導電層21と配線部材3を接着する接着材33に注目する。接着材33は、例えば導電性を有した接着材であり、例えば、はんだ材料などの導電性接着剤、導電性フィルムなどの導電性接着材が採用できる。
 はんだ材料としては、例えば、共晶はんだやSnAgCu系はんだ、錫ビスマス(SnBi)系はんだ等が好適に使用できる。
 導電性フィルムとしては、例えば、導電性フィルム(CF)やタブ等のインターコネクタなどが好適に使用できる。導電性フィルムの中でも、異方性導電接着フィルム(ACF)を用いるのが望ましい。
 続いて、本実施形態の太陽電池モジュール1の製造方法について説明する。特に、集電極8について詳細に説明する。なお、図10及び図11はフィンガー電極部31近傍及びバスバー電極部32近傍の製造工程の説明図である。
 まず、図10(a)のように光電変換部30を形成する(光電変換部準備工程)。
 すなわち、図7に示されるように、基板15上に、シリコン系薄膜16,17,25,26及び透明電極層18,27等を形成し、光電変換部30を形成する。
 その後、図10(b)のように印刷法によって光電変換部30の表面上に、低融点材料34を含む第一導電層21を形成する(第一導電層形成工程)。
 このとき、第一導電層21は所定の形状にパターニングされている。
 第一導電層形成工程の後、図10(c)のように配線部材3をバスバー電極部32内の第一導電層21上に載置し、接着材33によって接着する(配線部材接着工程)。
 このとき、配線部材3と第一導電層21は、接着材33によって面状に広がりをもって接着されており、互いに密着している。
 なお、このとき、太陽電池2に第一主面側と第二主面側との短絡部があれば、短絡部を除去してから、配線部材3を接着してもよい。
 その後、図11(d)のように第一導電層21及び/又は配線部材3上に、絶縁層19を形成する(絶縁層形成工程)。
 このとき、図5,図11(d)から読み取れるように、フィンガー電極部31近傍において、絶縁層19は、第一導電層形成領域37の第一導電層21上にのみ形成されていてもよいし、第一導電層非形成領域38の光電変換部30上にも形成されていてもよい。
 また、バスバー電極部32近傍においても、絶縁層19は、配線部材3上にのみ形成されていてもよいし、第一導電層非形成領域38上にも形成されていてもよい。
 本実施形態では、太陽電池2がヘテロ接合太陽電池であって、光電変換部30の表面(光入射側の面)に透明電極層18が形成されており、第一導電層非形成領域38上にも絶縁層19が形成されている。すなわち、本実施形態では、光電変換部30の一主面側(第一主面側)の全面に絶縁層19が設けられている。
 絶縁層19が形成された後、図11(e)のように、アニール温度Taで加熱してアニールする(アニール工程)。
 このとき、低融点材料34の変形に伴って、絶縁層19が変形し、フィンガー電極部31において孔23が形成される。
 ここで、アニール温度Taは、T1+1℃≦Ta≦T1+100℃を満たすことがより好ましく、T1+5℃≦Ta≦T1+60℃を満たすことがさらに好ましい。アニール温度は、第一導電層21の材料の組成や含有量等に応じて適宜設定され得る。
 なお、上記したように、T1は、第一導電層21の低融点材料34の熱流動開始温度である。
 また、上記したように、アニール温度Taは、光電変換部30の耐熱温度よりも低温である。この光電変換部30の耐熱温度は、光電変換部30の構成により異なる。
 例えば、本実施形態の太陽電池2のように、ヘテロ接合太陽電池やシリコン系薄膜太陽電池といった透明電極層や非結晶質シリコン系薄膜を有する場合の耐熱温度は、一般的に250℃程度である。
 そのため、光電変換部30が非晶質シリコン系薄膜を備えるヘテロ接合太陽電池や、シリコン系薄膜太陽電池の場合、非晶質シリコン系薄膜及びその界面での熱ダメージ抑制の観点から、アニール温度Taは250℃以下に設定されることが好ましい。
 より高性能の太陽電池2を実現するためにはアニール温度Taは200℃以下にすることがより好ましく、180℃以下にすることがさらに好ましい。
 これに伴って、第一導電層21の低融点材料34の熱流動開始温度T1は、250℃未満であることが好ましく、200℃未満がより好ましく、180℃未満がさらに好ましい。
 一方、基板15の片面(一主面)上に逆導電型の拡散層を有する結晶シリコン太陽電池は、非晶質シリコン薄膜や透明電極層を有していないので、耐熱温度は800℃~900℃程度である。そのため、250℃よりも高温のアニール温度Taでアニール工程が行われてもよい。
 アニール工程後に、図11(f)のように、めっき法により、第一導電層形成領域37の絶縁層19上に、第二導電層22を形成する(めっき工程)。
 アニール後のフィンガー電極部31において、第一導電層21の表面は、絶縁層19により被覆されており、絶縁層19に孔23が形成された部分では、第一導電層21が露出した状態となっている。そのため、当該めっき工程においては、第一導電層21の露出部位は孔23を通過してめっき液に曝されることとなり、この孔23を起点として第二導電層22が析出される。
 また、アニール後のバスバー電極部32において、配線部材3の表面は、絶縁層19により被覆されており、その一部に第二導電層22が析出される。
 このような本実施形態の方法によれば、集電極8の形状に対応する開口部を有するレジスト材料層を設けずとも、集電極8の形状に対応する第二導電層22をめっき法により形成することができる。
 また、このとき、第二導電層22として析出させる金属は、めっき法で形成できる材料であれば特に限定されず、例えば、銅、ニッケル、錫、アルミニウム、クロム、銀、金、亜鉛、鉛、パラジウム等、あるいはこれらの混合物を用いることができる。
 なお、めっき電源40との給電点は、図12,図13のように配線部材3上に設けることが好ましい。こうすることによって、配線部材3の電気抵抗は低く、めっき用に電流を印加しても配線部材3上の電位はほぼ一定に保たれることから、太陽電池2の表面の電位分布の発生が抑制できる。その結果、析出量の分布(膜厚や線幅の分布)を抑制することができる。
 本実施形態では、配線部材3上に設けるめっき電源40との給電点41の位置は、図13(a)に示すように、太陽電池2と接着していない領域(非接着領域)の配線部材3上に設けており、めっき電源40の電極接点が太陽電池2と直接接触しない。この電極接点を含む電極接点治具42の形状は任意に設計できる。
 ここで、電極接点治具42の一例について説明する。図13(b)のようにばね式の部材の先端に電極接点を設ければ、この点で配線部材3と接触させることができると同時に、配線部材3を保持することができる。すなわち、電極接点治具42は、2つの腕があり、当該腕によって配線部材3を挟持することが可能となっている。
 そのため、この電極接点治具42によれば、めっき工程中に太陽電池2を所定の位置に固定させることが可能となる。
 また、電極接点治具42の接点以外の表面は、表面への金属の析出を防ぐ観点から、絶縁体としておくことが好ましい。配線部材3の給電点41と電極接点治具42の電極接点とは、図13(b)で示すように腕の一部で、点接触させてもよいし、線状に接触させてもよい。
 電極接点の個数もまた、適宜選択することができる。電極接点は、図13(a)に示すように、太陽電池2の一辺方向のみに設けてもよい。すなわち、太陽電池2の一辺側のみに設けてもよい。
 また電極接点は、図13(c)に示すように、太陽電池2の二辺方向に設けてもよい。すなわち、太陽電池2の一辺側及びその対辺側に設けてもよい。このように電極接点を二辺方向に設けた場合、めっき槽内での動きを制限することができるので、工程中の破損、配線部材3の剥がれをより防ぐことができる。
 ここで、上記しためっき工程について、酸性銅めっきを例として、電解めっき法による第二導電層22の形成方法を説明する。
 図12は、上記したように第二導電層22の形成に用いられるめっき装置45の概念図である。
 太陽電池基板46と、陽極47とが、めっき槽48中のめっき液49に浸されている。
 なお、太陽電池基板46は、光電変換部30上に第一導電層21及び絶縁層19が形成され、上記工程によってアニール処理が施されたものである。
 太陽電池基板46上の第一導電層21は、基板ホルダ50を介してめっき電源40と電気的に接続されている。
 陽極47と太陽電池基板46の配線部材3との間に電圧を印加することにより、フィンガー電極部31において絶縁層19で覆われていない第一導電層21(非接続部)の上に選択的に第二導電層22(銅)を析出させることができる。
 すなわち、陽極47と太陽電池基板46の配線部材3との間に電圧を印加することにより、図5に示されるアニール処理により絶縁層19に生じた孔23(開口部)を起点として、選択的に銅を析出させることができる。
 以上がめっき工程の説明である。
 製造方法の説明に戻ると、めっき工程の後には、めっき液除去工程を設けて、太陽電池基板46の表面に残留しためっき液49を除去する。
 その後、必要に応じて太陽電池2に対して外部回路への電力を取り出すための引き出し線等を接続し、表面部材5、裏面部材6及び充填材7で太陽電池2を封止して太陽電池モジュール1が製造される。
 続いて、太陽電池2の詳細な構造について説明する。
 本実施形態の太陽電池2は、ヘテロ接合結晶シリコン太陽電池(以下、ヘテロ接合太陽電池ともいう)を採用している。
 具体的には、太陽電池2は、図7のように、基板15の一方の面(光入射側の面,表面)上に、真性シリコン系薄膜16、導電型シリコン系薄膜17、及び透明電極層18がこの順に積層されている。また、太陽電池2は、さらに、透明電極層18の上に、絶縁層19及び集電極8が設けられている。
 一方、基板15の他方の面(光反射側の面,裏面)上に真性シリコン系薄膜25、導電型シリコン系薄膜26及び透明電極層27がこの順に積層されている。また、太陽電池2は、さらに、透明電極層27上に、裏面電極28が積層されている。
 すなわち、太陽電池2の光電変換部30は、裏面側(第二主面側)から表面側(第一主面側)に向けて、透明電極層27、導電型シリコン系薄膜26、真性シリコン系薄膜25、基板15、真性シリコン系薄膜16、導電型シリコン系薄膜17、及び透明電極層18の順に積層して形成されている。また、基板15と導電型シリコン系薄膜17,26とのそれぞれの間には、真性シリコン系薄膜16,25が介在している。
 基板15は、一導電型単結晶シリコン基板によって形成されている。
 ここで、一般的に単結晶シリコン基板には、シリコン原子に電子を導入するための原子(例えばリン)を含有させたn型と、シリコン原子に正孔を導入する原子(例えばホウ素)を含有させたp型がある。
 ここでいう「一導電型」とは、n型又はp型のどちらか一方であることをいう。
 つまり、基板15は、n型又はp型のどちらか一方の単結晶シリコン基板である。
 本実施形態の基板15は、n型単結晶シリコン基板であることが好ましい。
 基板15は、表面及び裏面にテクスチャ構造を有している。すなわち、基板15を基体として形成される光電変換部30もテクスチャ構造を備える。そのため、太陽電池2は、入射した光を光電変換部30に閉じ込めることができ、発電効率が高い。
 シリコン系薄膜16,17,25,26の成膜方法としては、プラズマCVD法が好ましい。
 導電型シリコン系薄膜17,26は、一導電型又は逆導電型のシリコン系薄膜である。
 ここでいう「逆導電型」とは、「一導電型」と異なる導電型であることをいう。
 例えば、「一導電型」がn型である場合には、「逆導電型」はp型である。
 本実施形態では、導電型シリコン系薄膜17は、逆導電型シリコン系薄膜であり、導電型シリコン系薄膜26は、一導電型シリコン系薄膜である。
 シリコン系薄膜は、シリコン系薄膜であれば特に限定されないが、非晶質シリコン系薄膜を用いることが好ましい。
 本実施形態では、導電型シリコン系薄膜17は、p型非晶質シリコン系薄膜であり、導電型シリコン系薄膜26は、n型非晶質シリコン系薄膜を採用している。
 真性シリコン系薄膜16,25としては、シリコンと水素で構成されるi型水素化非晶質シリコンが好ましい。
 太陽電池2の光電変換部30は、図7のように導電型シリコン系薄膜17,26上の外側に、透明電極層18,27を備えている。
 透明電極層18,27は、導電性酸化物を主成分としていることが好ましい。導電性酸化物の中でも酸化インジウム錫(ITO)を主成分とするものがより好ましい。
 ここで「主成分とする」とは、含有量が50重量パーセントより多いことを意味し、70重量パーセント以上が好ましく、90重量パーセント以上がより好ましい。
 透明電極層18,27は、単層でもよく、複数の層からなる積層構造でもよい。
 透明電極層18,27には、ドーピング剤を添加することもできる。
 光入射側の透明電極層18の膜厚は、透明性、導電性、及び光反射低減の観点から、10nm以上140nm以下であることが好ましい。
 透明電極層18の役割は、集電極8へのキャリアの輸送であるから、膜厚を10nm以上にすることによって、必要な導電性を備えることができる。
 膜厚を140nm以下にすることにより、透明電極層18での吸収ロスが小さく、透過率の低下に伴う光電変換効率の低下を抑制することができる。
 また、透明電極層18の膜厚が上記範囲内であれば、透明電極層18内のキャリア濃度上昇も防ぐことができる。そのため、赤外域の透過率低下に伴う光電変換効率の低下も抑制される。
 透明電極層18,27の成膜方法は、特に限定されないが、例えばスパッタ法などにより形成することができる。
 光電変換部30を基準として、第二主面側の透明電極層27のさらに外側に位置する裏面電極28に注目する。裏面電極28としては、近赤外から赤外域の反射率が高く、かつ導電性や化学的安定性が高い材料を用いることが望ましい。
 このような特性を満たす材料としては、銀やアルミニウム等の金属が挙げられる。裏面電極28の成膜方法は、特に限定されない。
 本実施形態の太陽電池2のように、ヘテロ接合太陽電池であって結晶シリコン基板を用いた場合、発電する電流量が大きい。そのため、透明電極層18/集電極8間の接触抵抗の損失による発電ロスが顕著となる傾向がある。
 これに対して、本実施形態の太陽電池モジュール1によると、第一導電層21と第二導電層22を有する集電極8は、透明電極層18との接触抵抗が低い。そのため、接触抵抗に起因する発電ロスを低減することが可能となる。
 本実施形態の太陽電池モジュール1は、配線部材3よりも表面粗さが大きい第二導電層22が最も表面部材5側に位置している。また、第二導電層22のさらに外側に表面部材5を有している。そのため、太陽電池モジュール1は、従来に比べて光電変換率の高い太陽電池モジュールとなる。
 この点について図14を用いて詳説する。
 本実施形態のバスバー電極部32では、図14(a)に示されるように表面部材5を透過して入射した光(入射光)は、第二導電層22の外側面で反射されて、表面部材5の内側面に向かう。表面部材5の内側面に向かって反射された光は、空気と表面部材5との屈折率の差により、反射されて光電変換部30に向かう。
 一方、従来のようにバスバー電極部32において、第二導電層22を形成しない場合には、図14(b)に示されるように、表面部材5を透過した入射光は、絶縁層19又は配線部材3の表面で全反射して表面部材5を透過して外部に逃げる。
 このように、従来であれば、表面部材5から入射し、配線部材3によって遮られていた光も、本実施形態の太陽電池モジュール1では、表面部材5からの入射光の大部分を光電変換部30で収集できる。
 上記した第1実施形態では、絶縁層形成工程を配線部材接着工程の後に行ったが、本発明はこれに限定されるものではなく、絶縁層形成工程を配線部材接着工程前に行ってもよい。
 その一例について、第2実施形態の太陽電池モジュール80として説明する。なお、第1実施形態と同様のものは同じ符番を付して説明を省略する。
 第2実施形態の太陽電池モジュール80に内蔵する太陽電池81は、第1実施形態の太陽電池2と、バスバー電極部82における積層構造が異なる。
 すなわち、太陽電池81のバスバー電極部82は、図15から読み取れるように、光電変換部30上に第一導電層21が積層し、第一導電層21の表面を覆うように絶縁層19が形成されている。また、光電変換部30を基準として絶縁層19の外側に配線部材3が位置している。そして、第一導電層21と配線部材3の間には導電性を有した接着材33が介在している。
 絶縁層19には、第1実施形態の孔23に加えて貫通孔83が形成されている。
 貫通孔83は、絶縁層19の厚み方向に貫通した孔であり、第一導電層21と配線部材3が電気的に接続するための孔である。
 貫通孔83には、接着材33が充填されており、第一導電層21は、絶縁層19の貫通孔83を経由して配線部材3と電気的に接続されている。
 続いて、本実施形態の太陽電池モジュール80の製造方法について説明する。特に、集電極8について詳細に説明する。
 なお、第1実施形態の太陽電池モジュール1の製造方法と同一の工程については、簡潔に説明する。また、バスバー電極部82の近傍に注目して説明する。図16及び図17はフィンガー電極部31近傍及びバスバー電極部82近傍の製造工程の説明図である。
 まず、図16(a)に示されるように光電変換部準備工程にて光電変換部30を形成する。
 その後、第一導電層形成工程にて、図16(b)に示されるようにスクリーン印刷法によって光電変換部30の外側に第一導電層21を形成する。
 続いて、図16(c)に示されるように第一導電層21上に、絶縁層19を形成する(絶縁層形成工程)。すなわち、第2実施形態の太陽電池モジュール80の製造方法では、配線部材接着工程よりも先に絶縁層19を形成する。
 このとき、バスバー電極部82近傍において、絶縁層19は、第一導電層形成領域37の第一導電層21上にのみ形成してもよいし、第一導電層非形成領域38の光電変換部30上にも形成されていてもよい。
 本第2実施形態では、光電変換部30の一主面側(第一主面側)の全面に絶縁層19が形成されている。
 絶縁層形成工程の後、図17(d)に示されるように配線部材3をバスバー電極部82内の第一導電層21上に載置し、接着材33によって熱圧着する(配線部材接着工程)。
 このとき、配線部材3と第一導電層21との間には、絶縁層19が介在しているが、熱圧着することによって、絶縁層19の一部が剥がれて、貫通孔83が形成される。そして、貫通孔83に接着材33が充填され、配線部材3と第一導電層21が接着材33を介して電気的に接続される。
 配線部材接着工程後、図17(e)に示されるようにアニール工程を行い、配線部材3が設置された基板をアニール温度Taで加熱してアニールする。
 このとき、フィンガー電極部31において、絶縁層19に孔23が形成される。
 アニール工程後に、図17(f)に示されるように、めっき法により、第一導電層形成領域37の絶縁層19上に、第二導電層22を形成する(めっき工程)。
 このとき、配線部材3の表面に第二導電層22が堆積する。そのため、配線部材3の外側の面は、表面が粗くなっている。また、バスバー電極部82の配線部材3の一部は、第二導電層22に埋没する。
 その後、必要に応じてめっき液除去工程を行い、外部回路への電力を取り出すための引き出し線等を接続した後、表面部材5と裏面部材6と充填材7によって封止する。
 このようにして、太陽電池モジュール80が製造される。
 上記した実施形態では、電解めっき法にて、表面側電極たる集電極8のみを設けたが、本発明はこれに限定されるものではない。例えば、太陽電池の第一主面と第二主面の両面に金属電極を形成する場合は、表面側電極(例えば、第二導電層22)と裏面側電極(例えば、裏面電極28)とを電解めっき法にて形成することもできる。
 製造工程を簡略化する観点から、表面側電極と裏面側電極を同時に形成することが好ましい。
 具体的には、図13(c)に示すように、二辺方向に電極接点(給電点41)を設けて、太陽電池基板46の表面と裏面に電気が流れるように電極接点(給電点41)を設ける。また、図18に示すように、太陽電池2の表面(第一主面)と裏面(第二主面)の両面にそれぞれ対向するように陽極47を設置する。そして、これらに電圧を印加することにより、太陽電池基板46の表面と裏面との両方に対して同時にめっきすることが可能となる。
 この際には、配線を単純化することができるので、太陽電池基板46の表面と裏面との電位が共通となるように実施することが好ましい。
 また、太陽電池基板46の両面にめっきする方法としては、太陽電池基板46の表面、裏面の両面に配線部材3を接着して設ける。そして、配線部材3を介して、太陽電池基板46の被めっき面に給電を行うことが好ましい。
 めっき工程前に隣接する太陽電池2同士を配線部材3で接続した後、めっき装置に導入する。そして、被めっき面(例えば、フィンガー電極部31の第一導電層21)へめっき電源40から給電することにより、複数の太陽電池2の第二導電層22を同時に形成することができる。
 このとき、第二導電層22の線幅及び膜厚の均一性を向上させる観点から、図13(c)に示されるように、配線部材3ごとにめっき電源40の電極接点との給電点41を設けることが好ましい。
 また、太陽電池モジュール1の製造には、図19に模式的に示すような治具も用いることができる。すなわち、太陽電池モジュール1の製造には、座ぐり等の凹凸構造や当て板等の位置調整用機構を有する治具を用いることができる。
 この治具を用いることによって、太陽電池2,2間にある配線部材3上の給電点41と、治具に設置された電極接点とが精度よく位置あわせできる。また、この治具を用いることによって、配線部材3と治具との接続点において、確実に電気的接続が実現できる。
 また、この治具を用いると、治具に設置させた状態で太陽電池2を搬送することができるため、搬送時の破損を防ぐことも可能となる。
 第二導電層22を形成するめっき工程において、治具により太陽電池基板46の被製膜面側(第二導電層22の形成面側の面)が覆われると、当該治具により覆われた部分には、第二導電層22が形成されにくくなる。
 このような現象を防ぐためには、図19に示されるように、治具の隣接した太陽電池2,2間に位置する間隔の幅を、太陽電池2,2間の間隔と同程度か、太陽電池2,2間の間隔よりも小さくすることが好ましい。
 特に四隅の形状が円弧状の太陽電池基板46を用いる場合には、配線部材3の給電点41の位置を太陽電池基板46の一辺近傍に設けることによっても防ぐことができる。
 この場合は、図20に示すように電極接点の位置あわせ精度や治具の機械的強度に余裕ができる場合がある。
 なお、太陽電池基板46の外周部で表面の電極層(例えば、裏面電極28)と裏面の電極層(例えば、第一導電層21)とが電気的に短絡している場合は、配線部材3を接着する前に、絶縁処理を行うことが好ましい。
 また、めっき工程後には、配線部材3と治具との接点にも第二導電層22の材料が析出する場合がある。この析出した第二導電層22の材料により、配線部材3の前記接点での接触抵抗が上昇する場合がある。これらのことから、上記したように、めっき工程後に洗浄を行い、配線部材3の前記接点に析出した金属材料を除去することが好ましい。
 特に、上記した場合のように、複数枚の太陽電池2を同一のめっき槽を用いてめっき処理を実施する場合においては、配線部材3と治具との接点での接触抵抗の相違が、第二導電層22の膜厚や線幅の変動要因となる場合がある。このことから、めっき工程後の接点の洗浄を実施することがより好ましい。
 上記した実施形態では、一の太陽電池2aから隣接する太陽電池2bに配線部材3を介して接続するにあたって、太陽電池2aと、それに隣接する太陽電池2bとが同一方向を向いていたが、本発明はこれに限定されるものではなく、図24のように太陽電池2aと、それに隣接する太陽電池2bの姿勢が天地逆転していてもよい。
 すなわち、太陽電池2a,2b間で表裏が逆転していてもよい。この場合、太陽電池2a,2b間を直列接続するにあたって、配線部材3を太陽電池2の第一主面側から第二主面側に回す必要がないので、容易に接続できる。
 上記した実施形態では、配線部材3の被接着面の全面と第一導電層21が接着していたが、本発明はこれに限定されるものではなく、配線部材3の被接着面の全面と第一導電層21が接着していなくてもよい。
 すなわち、第一導電層21がバスバー電極部32を有さない構造であってもよいし、第一導電層21が、開口部、切り欠き部、間隙部を含む形状であってもよい。
 また上記した実施形態では、複数のフィンガー電極部31と、複数のバスバー電極部32とを有した第一導電層21を用いたが、本発明はこれに限定されるものではなく、第一導電層21の構成は特に限定されない。
 例えば、第一導電層は、複数のフィンガー電極部31のみにより構成され、バスバー電極部32を有さない所謂バスバーレスの電極であってもよい。
 また、第一導電層21は、光電変換部30の受光面と接するように設けられた透光性導電膜上に形成しても良い。この場合、この透光性導電膜は、酸化インジウム錫(ITO)や酸化亜鉛(ZnO)等の透光性導電酸化物により構成することができる。
 上記した実施形態では、太陽電池2をモジュール化するにあたって、一の太陽電池2の裏面電極28を、タブ等の配線部材3を介して、他の太陽電池2のバスバー電極部32と接続する。こうすることによって、複数の太陽電池2を直列又は並列に接続する。そして、接続された太陽電池2,2を、表面部材5、裏面部材6、及び充填材7により封止することによってモジュール化を行ったが、本発明はこれに限定されるものではない。
 例えば、上記したように太陽電池2単独であってもよい。この場合も、本明細書では、上記したように太陽電池モジュールと呼ぶ。
 上記した実施形態では、第一導電層21の材料として、低融点材料34と高融点材料35との組み合わせることによって孔23(開口部)を形成したが、本発明はこれに限定されるものではない。
 すなわち、孔23の形成方法は、特に限定されるものではなく、マスク、レーザー照射、機械的な孔開け、化学エッチング等の方法により、孔23(開口部)を形成してもよい。その場合、高融点材料35のみでも使用可能である。
 上記した実施形態では、アニール温度における第一導電層21の性状の変化を利用して、絶縁層19の孔23を形成し、第二導電層22を形成することで集電極8を形成していたが、本発明はこれに限定されるものではない。
 例えば、絶縁層形成工程において、図26(a)のようにフォトレジスト等のレジスト層100によってあらかじめ孔101(開口部)を形成し、図26(b)のようにめっき工程で第二導電層22を形成する。そして、図26(c)のように、レジスト層100を剥がすことによって、集電極8を形成してもよい。
 また、第一導電層21の材料として、粒径が1μm以下の金属微粒子を使用してもよい。すなわち、ナノオーダーの金属微粒子は、融点よりも低温にすることで、焼結ネッキング(微粒子の融着)を生じうるので、焼結ネッキング開始温度T1’以上融点T1以下の温度で加熱することで、微粒子の外周部付近に変形が生じさせる。こうすることにより、第一導電層21の表面形状を変化させ、絶縁層19に孔23を形成することができる。
 例えば、材料の大きさ(例えば、粒径)等を調整することにより、アニール工程での加熱による第一導電層21の断線を抑制し、変換効率を向上させることも可能である。
 具体的には、銀、銅、金等の高い融点を有する材料も、粒径が1μm以下の微粒子であれば、融点よりも低温の200℃程度あるいはそれ以下の温度T1’で焼結ネッキング(微粒子の融着)を生じうる。そのため、銀、銅、金等の高い融点を有する材料も、低融点材料34として用いることができる。
 このような焼結ネッキングを生じる材料は、焼結ネッキング開始温度T1’以上に加熱されると、微粒子の外周部付近に変形が生じる。そのため、第一導電層21の表面形状を変化させ、絶縁層19に孔23を形成することができる。
 また、微粒子が焼結ネッキング開始温度以上に加熱された場合であっても、融点T2’未満の温度であれば微粒子は固相状態を維持する。そのため、材料の粗大化による断線が生じ難い。すなわち、金属微粒子等の焼結ネッキングを生じる材料は、低融点材料34でありながら、高融点材料35としての側面も有しているといえる。
 このような焼結ネッキングを生じる材料では、焼結ネッキング開始温度T1’=熱流動開始温度T1と定義できる。
 なお、焼結ネッキング開始温度を厳密に測定することが困難な場合は、微粒子を含有する第一導電層21を形成し、その上に絶縁層19を形成して、加熱により絶縁層19に孔23(き裂)が生じる温度を焼結ネッキング開始温度とみなすことができる。
 また、絶縁層19を形成する際に加熱が行われる場合は、絶縁層19を形成する際の基板の加熱により孔23(き裂)が生じる温度を、焼成ネッキング開始温度とみなすことができる。
 上記した実施形態では、太陽電池2に配線部材3を取り付ける工程について説明したが、本発明はこれに限定されるものではない。例えば、複数の太陽電池2を含む太陽電池モジュール1を製造する場合においては、図19に示されるように一の太陽電池基板46に接着した配線部材3を、他の太陽電池基板46に接着してから、第二導電層22を形成してもよい。このような方法によれば、生産性を高めることができる。
 上記した実施形態では、第二導電層22は、単一の層から形成されていたが、本発明はこれに限定されるものではなく、複数の層から構成させても良い。
 例えば、第二導電層22として、銅(Cu)等の導電率の高い材料からなる第一のめっき層を、絶縁層19を介して第一導電層21上に形成した後、化学的安定性に優れる第二のめっき層を第一のめっき層の表面に形成する。
 こうすることにより、第一のめっき層上に第二のめっき層が積層された多層構造となり、低抵抗で化学的安定性に優れた集電極8を形成することができる。
 上記した実施形態では、太陽電池モジュール1は、絶縁層19をそのまま被覆した状態で用いているが、本発明はこれに限定されるものではなく、集電極形成後(めっき工程後)に絶縁層除去工程が行われてもよい。
 特に、絶縁層19として光吸収の大きい材料が用いられる場合は、絶縁層19の光吸収による太陽電池の光電特性の低下を抑制するために、絶縁層除去工程が行われることが好ましい。
 この際、光取り込み効果をより向上させる観点から、第一導電層非形成領域38上の絶縁層19が全て除去されることがより好ましい。
 上記した実施形態では、太陽電池2として、ヘテロ接合太陽電池を用い、光入射側(第一主面側)に集電極8が設けられるものであったが、本発明はこれに限定されるものではなく、裏面側(光入射側に対して反対側)にも同様の集電極が形成されてもよい。
 上記した実施形態では、太陽電池2として、ヘテロ接合太陽電池であって、結晶シリコン系太陽電池を用いたが、本発明はこれに限定されるものでなく、他の種類の太陽電池であってもよい。例えば、単結晶シリコンウェハや多結晶シリコンウェハ等の結晶系半導体ウェハから形成される太陽電池でもよい。
 このとき、用いられる結晶系半導体ウェハは、略正方形状であることが好ましい。また、結晶系半導体ウェハは、平均厚みが0.05mm以上0.15mmであることが好ましく、0.1mm以上0.2mm以下であることがより好ましい。
 結晶系半導体ウェハをこのような範囲に設定することにより、基板としての機能を十分な強度を保持しつつ、薄い太陽電池が形成できる。
 また、結晶系半導体ウェハをこのような範囲に設定することにより、比較的平均厚みが薄くなるので、押圧等により、割れやすくなるものの、上記した実施形態のような製造方法を使用することで、破損なく製膜することができる。
 この太陽電池2は、図21のように積層方向において、n型半導体領域10とp型半導体領域11とがあり、n型半導体領域10とp型半導体領域11との界面部分で半導体接合部12が形成されている。
 n型半導体領域10とp型半導体領域11は、結晶系半導体から構成しても良いし、非晶質半導体から構成しても良い。
 このようなウェハを薄膜化した太陽電池であっても、上記した実施形態のように、めっき工程において、めっき電源40との給電点を配線部材3上に設けることで、めっき電源40の接続端子からの押圧による破損を防止することができる。
 また、この太陽電池の他に単結晶シリコン基板と非晶質シリコン層との間に実質的に真性な非晶質シリコン層を挟み、その界面での欠陥を低減し、ヘテロ結合界面の特性を改善した構造を有する太陽電池であってもよい。
 また、本発明の太陽電池には、ヘテロ接合太陽電池以外の結晶シリコン太陽電池や、GaAs等のシリコン以外の半導体基板が用いられる太陽電池、非晶質シリコン系薄膜や結晶質シリコン系薄膜のpin接合あるいはpn接合上に透明電極層が形成されたシリコン系薄膜太陽電池や、CIS,CIGS等の化合物半導体太陽電池、色素増感太陽電池や有機薄膜(導電性ポリマー)等の有機薄膜太陽電池のような各種の太陽電池でも適用可能である。
 上記した実施形態では、接着材33を第一導電層21に設けた後に配線部材3を接続したが、本発明はこれに限定されるものではなく、接着材33をあらかじめ配線部材3の表面に形成しておいてもよい。
 例えば、はんだ材料があらかじめ形成された配線部材を使用し、当該配線部材を使用して太陽電池2の表面に接着してもよい。
 上記した第1,2実施形態では、バスバー電極部32において、第二導電層22は、配線部材3上に絶縁層19を一部又は全部で挟んで積層していたが、本発明はこれに限定されるものではない。
 図23のように配線部材3と第二導電層22の間に絶縁層19を挟まなくてもよい。この場合、配線部材3の表面に絶縁層19を設けずに、めっき工程を行うことが好ましい。
 上記した実施形態では、配線部材接着工程において、第一導電層21上に配線部材3を接着する際に、配線部材3と別体の接着材33を用いて接着したが、本発明はこれに限定されるものではない。
 あらかじめ配線部材3の表面に接着材33がコーティングされているものを用いる場合には、配線部材接着工程において、再度、接着材33を塗布しなくてもよい。すなわち、配線部材3のコーティング層61が接着材33で形成されている場合には、配線部材3と第一導電層21との間に改めて接着材33を介在させなくてもよい。言い換えると、配線部材接着工程において、あらかじめ配線部材3の表面に接着材33をコーティングにして接着してもよい。
 上記した実施形態では、バスバー電極部32において第一導電層21と配線部材3との間に接着材33を介在させたが、本発明はこれに限定されるものではなく、第一導電層21上に配線部材3を直接接着してもよい。
 この場合、コーティング層61を第一導電層21よりも軟らかいものを採用し、第一導電層21の表面に凹凸を形成して、第一導電層21と配線部材3を圧着させることが好ましい。すなわち、図25に示されるように、第一導電層21の凸部を配線部材3のコーティング層61に食い込ませることが好ましい。こうすることによって、第一導電層21に対して配線部材3がずれにくくできる。
 この凹凸の形成方法として、例えば、エッチング等により、表面を加工して形成したり、めっき法等によって直接形成したりすることができる。めっき法によって形成する場合の一例には、めっき液の成分を調整して、めっき表面が針状に粗化するようにめっきを行うことが挙げられる。
 上記した実施形態では、第二導電層22として第一導電層21よりも電気抵抗が小さなものを用いたが、本発明はこれに限定されるものではなく、第二導電層22は、第一導電層21の電気抵抗以下の抵抗を有していればよい。
 上記した実施形態では、基板15と導電型シリコン系薄膜17,26のそれぞれの間に真性シリコン系薄膜16,25を設けたが、本発明はこれに限定されるものではなく、真性シリコン系薄膜16,25を設けなくてもよい。
 以下に、実施例をもって本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 本発明の具体的な実施例及び実施例に対する比較例の太陽電池及び太陽電池モジュールの作製手順と、これらの評価結果を説明する。
 (実施例1)
 実施例1のヘテロ接合太陽電池を、以下のようにして製造した。
 基板15たる一導電型単結晶シリコン基板として、入射面の面方位が(100)で、厚みが200μm、6インチ(156mm)角の略正方形のn型単結晶シリコンウェハを用いた。このシリコンウェハを2重量%のフッ化水素酸(HF)水溶液に3分間浸漬し、表面の酸化シリコン膜を除去した後、超純水によるリンスを2回行った。このシリコン基板を、70℃に保持された5/15重量%の水酸化カリウム(KOH)/イソプロピルアルコール水溶液に15分間浸漬し、ウェハの表面をエッチングすることでテクスチャ構造を形成した。その後に超純水によるリンスを2回行った。
 原子間力顕微鏡(AFM パシフィックナノテクノロジー社製)により、ウェハの表面観察を行ったところ、ウェハの表面はエッチングが最も進行しており、(111)面が露出したピラミッド型のテクスチャが形成されていた。
 エッチング後のウェハをCVD装置へ導入し、そのウェハの光入射側に、真性シリコン系薄膜16としてi型非晶質シリコンを5nmの膜厚となるように成膜した。i型非晶質シリコンの成膜条件は、基板温度:150℃、圧力:120Pa、SiH4/H2流量比:3/10、投入パワー密度:0.011W/cm2であった。なお、本実施例における薄膜の膜厚は、ガラス基板上に同条件にて成膜された薄膜の膜厚を、分光エリプソメトリー(商品名M2000、ジェー・エー・ウーラム社製)にて測定することにより求められた成膜速度から算出された値である。
 i型非晶質シリコン層上に、導電型シリコン系薄膜17たる逆導電型シリコン系薄膜としてp型非晶質シリコンを7nmの膜厚となるように成膜した。p型非晶質シリコン層の成膜条件は、基板温度が150℃、圧力60Pa、SiH4/B26流量比が1/3、投入パワー密度が0.01W/cm2であった。なお、上記でいうB26ガス流量は、H2によりB26濃度が5000ppmまで希釈された希釈ガスの流量である。
 次にウェハの裏面側に、真性シリコン系薄膜25としてi型非晶質シリコン層を6nmの膜厚で成膜した。i型非晶質シリコン層の成膜条件は、上記のi型非晶質シリコン層の成膜条件と同様であった。i型非晶質シリコン層上に、導電型シリコン系薄膜26としてn型非晶質シリコン層を4nmの膜厚となるように成膜した。n型非晶質シリコン層の成膜条件は、基板温度:150℃、圧力:60Pa、SiH4/PH3流量比:1/2、投入パワー密度:0.01W/cm2であった。なお、上記でいうPH3ガス流量は、H2によりPH3濃度が5000ppmまで希釈された希釈ガスの流量である。
 この上に光入射側の透明電極層18及び裏面側の透明電極層27として、各々酸化インジウム錫(ITO、屈折率:1.9)を100nmの膜厚となるように成膜した。ターゲットとして酸化インジウムを用い、基板温度:室温、圧力:0.2Paのアルゴン雰囲気中で、0.5W/cm2のパワー密度を印加して透明電極層18,27の成膜を行った。
 透明電極層27上には、裏面電極28として銀をスパッタ法により、500nmの膜厚となるように形成した。透明電極層18上には、第一導電層21及び第二導電層22を有する集電極8が以下のように形成された。
 第一導電層21の形成には、低融点材料34としての錫ビスマス(SnBi)金属粉末(粒径DL=25~35μm、融点T1=141℃)と、高融点材料35としての銀粉末(粒径DH=12~3μm、融点T2=971℃)とを、20:80の重量比で含み、さらにバインダー樹脂としてエポキシ系樹脂を含む印刷ペーストを用いた。この印刷ペーストを、集電極パターンに対応する開口幅(L=80μm)を有する#230メッシュ(開口幅:l=85μm)のスクリーン版を用いて、スクリーン印刷し、90℃で乾燥した。
 第一導電層21の形成領域は、バスバー電極部32と、フィンガー電極部31とからなり、バスバー電極部32の幅は1.5mm、フィンガー電極部31の線幅は105μm、フィンガー電極部31の間隔は2mmであった。
 第一導電層21が形成されたウェハを、CVD装置に投入し、絶縁層19として酸化シリコン層(屈折率:1.5)を、プラズマCVD法により80nmの厚みとなるように光入射面側に形成した。
 絶縁層19の成膜条件は、基板温度:135℃、圧力133Pa、SiH4/CO2流量比:1/20、投入パワー密度:0.05W/cm2(周波数13.56MHz)であった。
 この条件で光入射面側に形成された絶縁層19の屈折率(n)及び消衰係数(k)は図22に示す通りであった。
 その後、絶縁層19を形成した後のウェハを熱風循環型オーブンに導入し、大気雰囲気において、180℃で20分間、アニール処理を実施した。
 その後、レーザー加工機によりセル外周部のシリコンウェハを0.5mmの幅で除去し、表面(第一主面側)と裏面(第二主面側)との間の電気的短絡部を除去した。
 幅1.5mm、厚さ0.2mm、長さ155mmの銅箔からなる配線部材3を、バスバー電極部32の第一導電層21上に、幅1.2mm、長さ152mmの導電性フィルムを用いて接着した。すなわち、第一導電層21上に配線部材3を載置し、熱圧着させることによって接着した。
 このとき、配線部材3の一端がシリコン基板端部から1.5mmの位置に配置されるようにして配線部材3の接着を行った。配線部材3の接着には、導電性フィルムを用いた。また、めっき電極側給電点との接点は、配線部材3のもう一端から1.5mmの位置に設けた。
 以上のように配線部材3が接着された太陽電池基板46を、図12に示すように、めっき槽48に投入した。めっき電源40との接点は、太陽電池基板46(シリコン基板)と接着していない領域の配線部材3上に設けた。すなわち、太陽電池基板46と配線部材3の接続部位以外の位置にめっき電源40との接点をとった。
 めっき液49には、硫酸銅五水和物、硫酸、及び塩化ナトリウムが、それぞれ120g/l、150g/l、及び70mg/lの濃度となるように調製された溶液に、添加剤(上村工業製:品番ESY-2B、ESY-H、ESY-1A)が添加されたものが用いられた。
 このめっき液を用いて、温度40℃、電流3A/dm2の条件でめっきを行った。第一導電層21上の絶縁層19上に、第二導電層22として銅が10μm程度の厚みで均一に析出した。第一導電層21が形成されていない領域への銅の析出は、原則としてほとんど見られなかった。
 その後、第二導電層22が形成された基板等に対して水洗を行い、表面に付着しためっき液49を取り除いた。このとき、バスバー電極部32のライン抵抗率の測定を行ったところ、1Ω/cmであった。
 (実施例2)
 錫ビスマス(SnBi)金属粉末と銀粉末との比率を60:40として、バスバー電極部32のライン抵抗率が10Ω/cmとなった点を除き、実施例1と同様にして太陽電池を作製した。
 (実施例3)
 集電極8にバスバー電極部32の第一導電層21を設けない、所謂バスバーレス構造の集電極とした点を除き、実施例1と同様にして太陽電池を作製した。
 (実施例4)
 第一導電層21を形成した太陽電池2の仕掛品を、実施例1に記載した方法により4枚準備し、p型非晶質シリコン面が上側になるように4枚の太陽電池2を一直線上に並べた。その後、4枚の太陽電池2が電気的に直列接続となるように、それぞれ隣接する太陽電池2の表面側と裏面側とを配線部材3により接続した。
 また、並列方向両端部の太陽電池2、すなわち、いずれか一方にしか隣接する太陽電池2を有さない太陽電池2に対しては、隣接する太陽電池2への配線部材3の非接着面側に外部回路への電力を取り出すための引き出し線を接着した。このとき、配線部材3の長さを310mm、隣接する太陽電池2間の間隔(隣接する太陽電池2,2間の距離)を2mmとした。
 その後、配線部材3のうち太陽電池基板46,46の間に位置する部位、すなわち、図19に示すように太陽電池基板46と接着していない部分を給電点41として、電解めっきを実施した。
 このとき、配線部材3により接続した一連の太陽電池基板46を硫酸銅めっき液の入っためっき槽に浸漬させた。この浸漬させた状態で、給電点41においてめっき電源40から通電を行い、第一導電層21上と裏面電極28上に銅を析出させた。その後、水洗を行い、表面に付着しためっき液を取り除いた。
 めっき後の一連の太陽電池2、両端の太陽電池2に外部回路への引き出し線を接続した。その後、これらの太陽電池をガラス基板(表面部材5)及び裏面シート(裏面部材6)で挟み込み、封止剤(充填材7)を充填させて封止した。その後、引き出し線を配線ボックスに取り付けて太陽電池モジュール1を作製した。
 (比較例1)
 めっき電源との給電点を、各バスバー電極部32の第一導電層21の端部に設けて第二導電層22を形成し、その後、配線部材3を第二導電層22上に接着した点を除いて、実施例1と同様にして太陽電池2を作製した。
 (比較例2)
 第一導電層21の材料として、実施例2で用いた材料を用いた点を除き、比較例1と同様にして太陽電池を作製した。
 (比較例3)
 比較例1と同様にして作製した太陽電池2を4個準備し、これらを実施例4と同様に配線部材3により電気的に直列接続になるように連結させて、太陽電池モジュール1を作製した。
 上記した実施例1~4及び比較例1~3の太陽電池に対し、第一導電層21を形成した段階でバスバー電極部32の第一導電層21のライン抵抗測定を実施した。また、上記した実施例1~4及び比較例1~3の太陽電池に対し、太陽電池特性をソーラーシミュレータにより測定を行った。この太陽電池特性測定後、配線部材3の付着強度を評価するために、引き剥がし試験を行い、試験後の外観を観察した。
 なお、実施例3においては、バスバー電極部32を有さないことから、バスバー電極部32を構成する第一導電層21のライン抵抗の測定は実施しなかった。また、モジュール化された実施例4及び比較例3に対しては、配線部材3の付着強度テストを実施しなかった。
 上記各実施例1~4及び比較例1~3のヘテロ接合太陽電池の作製条件、配線部材3の付着強度テスト結果、及び太陽電池特性(曲線因子(FF))の測定結果(実施例1の結果を1として規格化して表記)を表1に示す。
 なお、太陽電池特性のうち、実施例1~3と比較例1、2においては、開放端電圧(Voc)と短絡電流(Jsc)には、優位差は認められなかったので、表1への記載を省略する。
Figure JPOXMLDOC01-appb-T000001
 各比較例1,2での配線部材3の付着強度の測定結果から、剥離は第一導電層21と第二導電層22との間で生じていることか明らかとなった。このことは、第一導電層21と第二導電層22との付着強度がその他の界面よりも弱いことを示しており、第一導電層21と第二導電層22との間での剥離が生じやすいことが示唆される。
 一方、本発明の太陽電池2においては、表1から読み取れるように配線部材3が十分強い強度で太陽電池2と付着していることが分かった。
 また、バスバー電極部32における第一導電層21のライン抵抗に関して、10Ω/cmとした比較例2において、FFの低下が確認された。一方、本実施例においては、いずれもFFの低下は生じなかった。
 以上、実施例を用いて説明したように、本発明によれば、信頼が高い太陽電池を単純な工程により低コストで提供することが可能となることがわかった。
  1,80 太陽電池モジュール
  2,81 太陽電池
  3 配線部材
  5 表面部材(透光性部材)
 18 透明電極層(表面電極層)
 21 第一導電層
 22 第二導電層
 23,101 孔(開口部)
 28 裏面電極(裏面電極層)
 30 光電変換部
 31 フィンガー電極部
 33 接着材(接着層)

Claims (13)

  1.  光電変換部と集電極を有した太陽電池と、前記太陽電池と外部回路又は他の太陽電池を接続する配線部材と、を備えた太陽電池モジュールにおいて、
     前記太陽電池は、光電変換部を平面視したときに、前記集電極が設けられた部位であって、所定の方向に延伸したフィンガー電極部を有しており、
     前記フィンガー電極部は、前記光電変換部を基準として前記光電変換部の外側に、第一導電層と、第二導電層が順に積層した積層構造を有し、
     当該第二導電層は、第一導電層とは異なる層であり、
     前記第二導電層の電気抵抗は、第一導電層の電気抵抗以下であり、
     前記配線部材は、前記光電変換部を基準として第一導電層の外側にあって、かつ、前記フィンガー電極部又はフィンガー電極部の延長と交差するように配されており、
     太陽電池のフィンガー電極部又はフィンガー電極部の延長と配線部材の交差部位は、以下の(1)又は(2)の積層構造を備えていることを特徴とする太陽電池モジュール。
    (1)第一導電層上に配線部材が直接接する積層構造
    (2)第一導電層と配線部材が、第二導電層と異なる接着層を介して接する積層構造。
  2.  前記第二導電層は、めっき層であることを特徴とする請求項1に記載の太陽電池モジュール。
  3.  前記光電変換部を基準として、配線部材の外側に透光性を有した透光性部材を備え、
     前記太陽電池は、当該透光性部材を介して光電変換部に入射光を収集可能であり、
     前記配線部材の交差部位において、前記光電変換部を基準として、配線部材の外側面の一部又は全部に第二導電層が積層しており、
     前記第二導電層の表面粗さは、前記配線部材の表面粗さよりも大きいことを特徴とする請求項1又は2に記載の太陽電池モジュール。
  4.  前記光電変換部を基準として、光電変換部の外側に絶縁層を有し、
     前記絶縁層は、透光性を有していることを特徴とする請求項1~3のいずれかに記載の太陽電池モジュール。
  5.  前記フィンガー電極部は、前記第一導電層と前記第二導電層の間に絶縁層が介在しており、
     前記絶縁層は、開口部を有し、
     第一導電層と第二導電層は、開口部を経由して導通されていることを特徴とする請求項1~4のいずれかに記載の太陽電池モジュール。
  6.  前記光電変換部を基準として、光電変換部の外側に絶縁層を有し、
     前記交差部位の側面は、第一導電層及び配線部材に跨がって、前記絶縁層が被覆されていることを特徴とする請求項1~5のいずれかに記載の太陽電池モジュール。
  7.  複数の前記太陽電池を有し、
     当該複数の太陽電池のうち、少なくとも2つの太陽電池は、前記配線部材を介して接続されており、
     前記2つの太陽電池は、前記集電極側に正極又は負極を担う表面電極層と、前記集電極に対して反対側に前記表面電極層と異なる極を担う裏面電極層とを有するものであり、
     前記配線部材は、一方の太陽電池の表面電極層と、他方の太陽電池の裏面電極層とを電気的に接続していることを特徴とする請求項1~6のいずれかに記載の太陽電池モジュール。
  8.  請求項1~7のいずれかに記載の太陽電池モジュールの製造方法であって、
     前記光電変換部を基準として、
     前記光電変換部の外側に第一導電層を形成する第一導電層形成工程と、
     前記配線部材を第一導電層の外側に接続する配線部材接着工程と、
     めっき法によって第一導電層の外側に第二導電層を形成するめっき工程をこの順に含むことを特徴とする太陽電池モジュールの製造方法。
  9.  請求項5~8のいずれかに記載の太陽電池モジュールの製造方法であって、
     前記光電変換部を基準として、
     前記光電変換部の外側に第一導電層を形成する第一導電層形成工程と、
     前記配線部材を第一導電層の外側に接続する配線部材接着工程と、
     前記第一導電層の外側に絶縁層を形成する絶縁層形成工程と、
     前記絶縁層に設けられた開口部を介して、めっき法により第一導電層と導通する第二導電層を形成するめっき工程と、を含むことを特徴とする太陽電池モジュールの製造方法。
  10.  前記第一導電層形成工程、前記配線部材接着工程、前記絶縁層形成工程、前記めっき工程の順に行うことを特徴とする請求項9に記載の太陽電池モジュールの製造方法。
  11.  前記めっき工程において、太陽電池をめっき液に浸し、前記配線部材に給電することによって第二導電層を形成することを特徴とする請求項8~10のいずれかに記載の太陽電池モジュールの製造方法。
  12.  配線部材の太陽電池との接着部位と異なる部位に給電することによって、第二導電層を形成することを特徴とする請求項11に記載の太陽電池モジュールの製造方法。
  13.  複数の前記太陽電池を備えた太陽電池モジュールの製造方法であって、
     各太陽電池を配線部材によって接続し、
     当該配線部材に給電することによって、複数の前記太陽電池に同時に第二導電層を形成することを特徴とする請求項8~12のいずれかに記載の太陽電池モジュールの製造方法。
PCT/JP2014/061165 2013-05-13 2014-04-21 太陽電池モジュール及びその製造方法 WO2014185225A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/890,881 US20160104810A1 (en) 2013-05-13 2014-04-21 Solar cell module and method for producing same
JP2014557642A JP5739076B2 (ja) 2013-05-13 2014-04-21 太陽電池モジュール及びその製造方法
US16/689,497 US20200091362A1 (en) 2013-05-13 2019-11-20 Solar cell module and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013101334 2013-05-13
JP2013-101334 2013-05-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/890,881 A-371-Of-International US20160104810A1 (en) 2013-05-13 2014-04-21 Solar cell module and method for producing same
US16/689,497 Division US20200091362A1 (en) 2013-05-13 2019-11-20 Solar cell module and method for producing same

Publications (1)

Publication Number Publication Date
WO2014185225A1 true WO2014185225A1 (ja) 2014-11-20

Family

ID=51898205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061165 WO2014185225A1 (ja) 2013-05-13 2014-04-21 太陽電池モジュール及びその製造方法

Country Status (3)

Country Link
US (2) US20160104810A1 (ja)
JP (1) JP5739076B2 (ja)
WO (1) WO2014185225A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3026715A1 (en) * 2014-11-26 2016-06-01 LG Electronics Inc. Solar cell module
JP2016225332A (ja) * 2015-05-27 2016-12-28 信越化学工業株式会社 太陽電池及びその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD765590S1 (en) * 2013-12-11 2016-09-06 Solaero Technologies Corp. Solar cell
USD765024S1 (en) * 2013-12-11 2016-08-30 Solaero Technologies Corp. Solar cell
JP2020088133A (ja) * 2018-11-22 2020-06-04 パナソニック株式会社 太陽電池モジュール
CN110854212B (zh) * 2019-11-05 2022-03-22 泰州隆基乐叶光伏科技有限公司 一种光伏电池及其制备方法
EP3971993A1 (en) * 2020-09-16 2022-03-23 Jbao Technology Ltd. Manufacturing method for back structure of double-sided p-type sollar cell
CN112750915B (zh) * 2021-03-03 2022-11-11 中国电子科技集团公司第十八研究所 一种薄膜砷化镓太阳电池上电极及其制备方法
CN114823961A (zh) 2022-06-27 2022-07-29 浙江晶科能源有限公司 光伏组件结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099806A (ja) * 2010-11-03 2012-05-24 Alta Devices Inc 光起電性装置の金属接点およびその低温製造プロセス
WO2012077567A1 (ja) * 2010-12-06 2012-06-14 信越化学工業株式会社 太陽電池及び太陽電池モジュール
JP2013070056A (ja) * 2011-09-20 2013-04-18 E I Du Pont De Nemours & Co 太陽電池の電極と導電性ペーストの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1103124C (zh) * 1996-05-17 2003-03-12 佳能株式会社 光电装置及其制造方法和太阳能电池组件
JP5159725B2 (ja) * 2009-08-27 2013-03-13 三洋電機株式会社 太陽電池ストリング及びそれを用いた太陽電池モジュール
EP2312641A1 (en) * 2009-10-13 2011-04-20 Ecole Polytechnique Fédérale de Lausanne (EPFL) Device comprising electrical contacts and its production process
US20130006882A1 (en) * 2011-06-20 2013-01-03 Giulio Galliani Promotion via social currency
US8762870B2 (en) * 2011-07-19 2014-06-24 Salesforce.Com, Inc. Multifunction drag-and-drop selection tool for selection of data objects in a social network application

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099806A (ja) * 2010-11-03 2012-05-24 Alta Devices Inc 光起電性装置の金属接点およびその低温製造プロセス
WO2012077567A1 (ja) * 2010-12-06 2012-06-14 信越化学工業株式会社 太陽電池及び太陽電池モジュール
JP2013070056A (ja) * 2011-09-20 2013-04-18 E I Du Pont De Nemours & Co 太陽電池の電極と導電性ペーストの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3026715A1 (en) * 2014-11-26 2016-06-01 LG Electronics Inc. Solar cell module
EP3525246A1 (en) * 2014-11-26 2019-08-14 LG Electronics Inc. Solar cell module
US10879411B2 (en) 2014-11-26 2020-12-29 Lg Electronics Inc. Solar cell module
JP2016225332A (ja) * 2015-05-27 2016-12-28 信越化学工業株式会社 太陽電池及びその製造方法

Also Published As

Publication number Publication date
JPWO2014185225A1 (ja) 2017-02-23
US20200091362A1 (en) 2020-03-19
US20160104810A1 (en) 2016-04-14
JP5739076B2 (ja) 2015-06-24

Similar Documents

Publication Publication Date Title
JP5739076B2 (ja) 太陽電池モジュール及びその製造方法
JP6550042B2 (ja) 太陽電池モジュールおよびその製造方法
CN107710419B (zh) 太阳能电池和太阳能电池模块
JP5445419B2 (ja) 太陽電池モジュール及びその製造方法
JP2008135654A (ja) 太陽電池モジュール
JP2013225712A (ja) 薄膜太陽電池の製造方法
JPWO2014185537A1 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
JP5584846B1 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
JP5771759B2 (ja) 太陽電池、太陽電池モジュール、太陽電池の製造方法、並びに太陽電池モジュールの製造方法
JP2014135343A (ja) 光電変換素子および光電変換素子の製造方法
JP6196031B2 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
JP6362932B2 (ja) 太陽電池モジュール及びその製造方法
JP6151566B2 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
WO2015098872A1 (ja) 太陽電池のi‐v測定方法、太陽電池のi‐v測定装置、太陽電池の製造方法、太陽電池モジュールの製造方法、および太陽電池モジュール
WO2014050193A1 (ja) 光電変換モジュール
JP6474578B2 (ja) 太陽電池モジュール及びその製造方法
JP2001345465A (ja) 光起電力素子及び光起電力素子の製造方法
JP6013198B2 (ja) 光電変換素子および光電変換素子の製造方法
JP2010171127A (ja) 薄膜太陽電池およびその製造方法
JP6455099B2 (ja) 太陽電池ユニット及び太陽電池ユニットの製造方法
JP2014232820A (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
WO2020255597A1 (ja) 太陽電池モジュール
WO2013042242A1 (ja) 太陽電池、太陽電池モジュール及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014557642

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14890881

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14797275

Country of ref document: EP

Kind code of ref document: A1