WO2014185087A1 - Coating device - Google Patents

Coating device Download PDF

Info

Publication number
WO2014185087A1
WO2014185087A1 PCT/JP2014/051408 JP2014051408W WO2014185087A1 WO 2014185087 A1 WO2014185087 A1 WO 2014185087A1 JP 2014051408 W JP2014051408 W JP 2014051408W WO 2014185087 A1 WO2014185087 A1 WO 2014185087A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing chamber
opening
processing
particles
granular particles
Prior art date
Application number
PCT/JP2014/051408
Other languages
French (fr)
Japanese (ja)
Inventor
木下 直俊
泰宏 堀田
長谷川 浩司
Original Assignee
株式会社パウレック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パウレック filed Critical 株式会社パウレック
Publication of WO2014185087A1 publication Critical patent/WO2014185087A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/02Apparatus specially adapted for manufacture or treatment of sweetmeats or confectionery; Accessories therefor
    • A23G3/20Apparatus for coating or filling sweetmeats or confectionery
    • A23G3/26Apparatus for coating by tumbling with a liquid or powder, spraying device-associated, drum, rotating pan
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P20/00Coating of foodstuffs; Coatings therefor; Making laminated, multi-layered, stuffed or hollow foodstuffs
    • A23P20/10Coating with edible coatings, e.g. with oils or fats
    • A23P20/15Apparatus or processes for coating with liquid or semi-liquid products
    • A23P20/18Apparatus or processes for coating with liquid or semi-liquid products by spray-coating, fluidised-bed coating or coating by casting
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P20/00Coating of foodstuffs; Coatings therefor; Making laminated, multi-layered, stuffed or hollow foodstuffs
    • A23P20/10Coating with edible coatings, e.g. with oils or fats
    • A23P20/15Apparatus or processes for coating with liquid or semi-liquid products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/006Coating of the granules without description of the process or the device by which the granules are obtained
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/14Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic in rotating dishes or pans
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P20/00Coating of foodstuffs; Coatings therefor; Making laminated, multi-layered, stuffed or hollow foodstuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/005Coating of tablets or the like

Definitions

  • the present invention relates to a coating apparatus that performs coating, mixing, drying, and the like of powders such as pharmaceuticals, foods, and agricultural chemicals, and particularly relates to a coating apparatus that includes a rotating drum that is driven to rotate about an axis.
  • the rotating drum has a polygonal cylindrical or cylindrical body portion and a front and rear from the body portion.
  • a front wall portion and a rear wall portion that extend in the direction are provided, and are disposed so as to be rotatable around a horizontal axis.
  • Ventilation portions composed of porous portions are provided on the entire periphery or a plurality of locations around the body portion, and a ventilation jacket is formed by covering the outer peripheral side of each ventilation portion with a ventilation jacket.
  • Each aeration channel communicates with an air supply duct or an exhaust duct when it reaches a predetermined position as the rotating drum rotates, whereby a processing gas whose temperature is controlled to a predetermined temperature, for example, dry air, is vented from the air supply duct.
  • a processing gas whose temperature is controlled to a predetermined temperature, for example, dry air
  • the air is supplied into the rotating drum through the channel and the ventilation portion, and the dry air in the rotating drum is exhausted to the exhaust duct through the ventilation portion and the ventilation channel.
  • a granular material layer a rolling bed of granular particles
  • a spray liquid such as a film agent liquid is sprayed from the spray nozzle disposed inside the rotating drum toward the granular material layer, and a coating process is performed.
  • the rotating drum includes a plurality of processing chambers that are partitioned along the axial direction, and the granular particles are moved from the processing chamber on one axial end side to the axial other end side.
  • a coating apparatus that is sequentially transferred to a processing chamber and subjected to a predetermined processing is disclosed.
  • a transfer member that guides the powder particles in the processing chamber and transfers it to the processing chamber adjacent to the other end in the axial direction or the outside of the rotating drum is provided in each processing chamber.
  • the transfer member is provided for transferring the granular particles by the reversing operation of each processing chamber.
  • an object of the present invention is to efficiently transfer granular particles in a coating apparatus in which a rotating drum includes a plurality of processing chambers.
  • the coating apparatus of the present invention forms a coating layer by applying a treatment including addition of a liquid material and aeration of a treatment gas to the powder particles accommodated in the rotary drum.
  • the rotary drum includes a plurality of processing chambers partitioned along the axial direction, and the powder particles are sequentially transferred from the processing chamber on one axial end side to the processing chamber on the other axial end side. Coating in which each processing chamber is provided with a transfer member that is subjected to the processing and transfers the granular particles in the processing chamber to the processing chamber adjacent to the other axial end or the outside of the rotating drum.
  • transfer member switching means for switching the transfer member between a predetermined position above the powder layer made of the powder particles and a predetermined position below the upper predetermined position, and the powder particles During the processing of body particles, the transfer A member is disposed at the upper predetermined position, and when the powder particles are transferred, the transfer member is disposed at the lower predetermined position, and the powder particles are moved by the transfer member as the processing chamber rotates. It is characterized by being guided.
  • the transfer member is arranged at a predetermined position on the upper side during the processing of the granular particles.
  • the upper side predetermined position is an upper side from a granular material layer. Therefore, it can suppress that a transfer member influences processing of granular material particles.
  • the transfer member is arranged so that the granular particles to be discharged from the processing chamber are located in a region on the rear side in the rotation direction from the transfer member. For this reason, the granular material particle
  • the transfer member is bounded even before the discharge of the granular particles from the processing chamber is completed.
  • the transfer member is bounded even before the discharge of the granular particles from the processing chamber is completed.
  • the said structure WHEREIN The partition member which partitions off between the said several processing chambers is provided, This partition member has a passage part for the said granular material particle
  • Passing part switching means for switching between a predetermined position above the granular particle layer made of granular particles and a predetermined position below the predetermined upper position is provided, and during the processing of the granular particles, the passing part May be arranged at the upper predetermined position, and when the powder particles are transferred, the passage part may be arranged at the lower predetermined position so that the powder particles pass through the passage part.
  • a passage part will be arranged in the upper predetermined position during processing of granular material particles. And the upper predetermined position is above a granular material layer. Therefore, during the processing of the granular particles, the partition member prevents the granular particles from moving from the processing chamber to the adjacent processing chamber.
  • a partition member is a granular material. Interference with particle transfer can be suppressed.
  • the granular particles in the processing chamber on the other axial end side are introduced by adjusting the position of the passing portion. Position can be set reliably.
  • the passage portion of the partition member may lead to the front side in the rotational direction of the processing chamber from the transfer member in the processing chamber on the other axial end side.
  • the granular particles can be introduced to the front side in the rotation direction of the processing chamber from the transfer member in the processing chamber on the other axial end side. Therefore, as described above, it is possible to prevent mixing of the granular particles discharged from the processing chamber with the transfer member as a boundary and the granular particles introduced into the processing chamber.
  • an opening is provided on the other end side of the processing chamber on the other end side, and the discharge member for discharging the granular particles to the outside of the rotating drum is the other end side.
  • the inner peripheral surface of the opening is formed in a shape that gradually increases in diameter toward the other end side, and the discharge member is disposed on the other end side by the rotation of the rotating drum.
  • the granular particles inside the chamber are guided to the opening, and the granular particles guided to the opening are guided to the inner peripheral surface of the opening and discharged from the opening to the outside of the rotating drum. You may be made to do.
  • grains in the inside of the processing chamber of the other end side can be smoothly discharged
  • a second opening is further provided on one end side of the processing chamber on the most end side, and a discharge member for discharging the granular particles to the outside of the rotating drum is on the most end side.
  • the inner peripheral surface of the second opening is formed in a shape that gradually increases in diameter toward one end side, and the discharge member is processed at the most end side by the rotation of the rotating drum.
  • the granular particles inside the chamber are guided to the second opening, and the granular particles guided to the second opening are guided to the inner peripheral surface of the second opening and the first It can also be made to discharge outside the rotating drum from the two openings.
  • the granular material particles in the processing chamber on the most end side can be smoothly discharged from the second opening by the discharge member such as the discharge plate, and inspection work and the like can be performed safely and efficiently. Can be done automatically.
  • At least one of the supply condition of the processing gas and the spray condition of the liquid material may be individually controlled for each processing chamber.
  • the granular particles can be efficiently transferred in the coating apparatus in which the rotating drum includes a plurality of processing chambers.
  • FIG. 1 It is a longitudinal cross-sectional view of the coating apparatus which concerns on 1st Embodiment. 1 is a cross-sectional view conceptually showing a coating apparatus according to a first embodiment. It is the figure which looked at the partition plate of the state of FIG. 1 from the right side of FIG. It is the figure which looked at the partition plate of the state of FIG. 1 from the right side of FIG. It is the figure which looked at the partition plate of the state of FIG. 1 from the right side of FIG. It is an expanded view of the trunk
  • FIG. 7 is a cross-sectional view taken along line AA in FIG. 6. It is explanatory drawing of the operation
  • the coating apparatus of this embodiment includes a rotating drum 1 that rotates around a horizontal axis, and a casing 2 that houses the rotating drum 1.
  • the rotating drum 1 includes a plurality of processing chambers, for example, three processing chambers 1a, 1b, and 1c, which are partitioned along the axial direction.
  • the casing 2 also has an axial line.
  • a plurality of storage chambers divided along the direction, for example, three storage chambers 2a, 2b, and 2c are provided.
  • the rotary drum 1 has one end opening 1d at one end in the axial direction and the other end opening 1e at the other end in the axial direction.
  • One end in the axial direction is the left side in FIG. 1, and the other end in the axial direction is the right side in FIG. 1 (the same applies hereinafter unless otherwise specified).
  • the internal space of the one-end opening 1d of the rotating drum 1 constitutes a supply zone 1f for supplying powder particles.
  • the space between the processing chamber 1c and the other end opening 1e in the rotary drum 1 constitutes a discharge zone 1g for discharging the powder particles.
  • the discharge zone 1g communicates with the outside of the rotary drum 1 through a discharge opening 1h provided in a part of the peripheral wall 1g1 corresponding to the discharge zone 1g in the rotary drum 1.
  • the peripheral wall 1g1 does not have a ventilation portion made of a perforated plate or the like that ventilates the inside and outside of the rotary drum 1.
  • the casing 2 has a charging chute 2d for charging the granular particles supplied to the rotary drum 1, and a discharge for discharging the granular particles discharged from the rotating drum 1 to the outside of the coating apparatus.
  • a chute 2e is attached.
  • the rotary drum 1 has a circular cross section, and is rotatably accommodated in the casing 2 by, for example, a bearing 1i attached to the one end opening 1d and a bearing 1j attached to the other end opening 1e.
  • the rotating drum 1 is also rotatable with respect to the storage chambers 2a, 2b, and 2c.
  • the rotary drum 1 is driven forward and reverse by a rotary drive mechanism 1k.
  • the rotational drive mechanism 1k includes a sprocket 1k1 provided on the outer periphery of the one end opening 1d, a chain 1k2 that engages with the sprocket 1k1, and a drive source 1k3 that rotationally drives the chain 1k2.
  • the rotating drum 1 is not divided into the processing chambers 1a, 1b, and 1c. Therefore, the processing chambers 1a, 1b, and 1c are rotated forward and backward as the rotating drum 1 is rotated forward and backward.
  • the diameters of the body portions 1a1, 1b1, 1c1, which are peripheral walls corresponding to the processing chambers 1a, 1b, 1c in the rotary drum 1, are larger as they are located on the other end side in the axial direction (1a1 ⁇ 1b1 ⁇ 1c1).
  • the body portions 1a1, 1b1, and 1c1 each have a ventilation portion made of a perforated plate that ventilates the inside and outside of the rotary drum 1 over the entire circumference, and the exhaust ducts 3a (3b, 3b, 3c) is in air-tight sliding contact with the exhaust port 3a1 (3b1, 3c1) at a predetermined position.
  • air supply ducts 4a, 4b, and 4c are connected to the storage chambers 2a, 2b, and 2c of the casing 2, respectively, and the storage chambers 2a and 2b are connected to the air supply ducts 4a, 4b, and 4c, respectively.
  • the processing gas such as hot air supplied into 2c enters the processing chambers 1a, 1b, and 1c from the ventilation portions of the body portions 1a1, 1b1, and 1c1, and the granular material layer M in the processing chambers 1a, 1b, and 1c. And is exhausted from the exhaust port 3a1 (3b1, 3c1) to the exhaust duct 3a (3b, 3c).
  • spray chambers 5a, 5b, and 5c for spraying a liquid material for example, a spray liquid such as a film material liquid
  • a liquid material for example, a spray liquid such as a film material liquid
  • the spray nozzles 5 a, 5 b and 5 c are attached to a spray arm 5 d extending from the outside of the casing 2 into the rotary drum 1.
  • the spray liquid is supplied to the spray nozzles 5a, 5b, and 5c via the spray arm 5d.
  • the discharge plate 6a as a transfer member that transfers the granular particles in the processing chambers 1a, 1b, and 1c to the processing chambers 1b and 1c adjacent to the other axial end side or the discharge zone 1g.
  • 6b, 6c are provided in each processing chamber 1a, 1b, 1c.
  • partition plates 7a, 7b, and 7c are provided as partition members that partition between the processing chambers 1a, 1b, and 1c and the processing chambers 1b and 1c adjacent to the other axial end side or the discharge zone 1g.
  • the partition plate 7d which partitions off between the process chamber 1a and the supply zone 1f is also provided.
  • the partition plates 7a to 7d are connected by the discharge plates 6a, 6b, and 6c and fixed to each other. Further, connecting members 8a, 8b and 8c for connecting and fixing the partition plates 7a to 7d along the axial direction are also provided. Baffles 9a, 9b, and 9c for agitating the powder particles during processing in the processing chambers 1a, 1b, and 1c are fixed to the connecting members 8a, 8b, and 8c.
  • the coating device is provided with a transfer member switching means 10 for switching the positions of the discharge plates 6a, 6b, 6c.
  • the transfer member switching means 10 includes a drive shaft 10a attached to the partition plate 7c and a drive source 10b for rotating the drive shaft 10a.
  • the drive shaft 10a is rotatably supported by the other end opening 1e of the rotary drum 1 via a bearing 10a1.
  • the partition plate 7d is provided with a cylindrical support portion 11 extending toward one end side in the axial direction. One end of the support portion 11 is closed by a closing member 5d1 fixed to the spray arm 5d. The support portion 11 is rotatable with respect to the closing member 5d1. Further, the support portion 11 is rotatably supported by the casing 2 via a bearing 11a.
  • the partition plates 7a, 7b, and 7c have openings 7a1, 7b1, and 7c1, respectively, as passage portions through which the granular particles pass.
  • the partition plate 7d also has an opening 7d1 as a passage portion (see FIGS. 1 and 4A).
  • the discharge plates 6a, 6b, and 6c are provided at predetermined positions H1a, H1b, and H1c above the granular layer M made of granular particles and below the predetermined positions H1a, H1b, and H1c.
  • Switching to a predetermined position L1a, L1b, L1c is performed by the transfer member switching means 10.
  • the openings 7a1, 7b1, and 7c1 of the partition plates 7a, 7b, and 7c are also provided at predetermined positions H2a, H2b, and H2c above the granular material layer M and at predetermined positions below the upper predetermined positions H2a, H2b, and H2c. Switching to L2a, L2b, L2c (indicated by a two-dot chain line in FIGS. 3A to 3C) is performed by the transfer member switching means 10.
  • the opening 7d1 of the partition plate 7d also has a predetermined position above the granular material layer M and the upper The transfer member switching means 10 switches the position to a predetermined position below the predetermined position.
  • the two-dot chain line is a virtual line that divides each of the peripheral walls (body portions 1a1, 1b1, 1c1) of the processing chambers 1a, 1b, 1c into eight equal parts in the circumferential direction.
  • dotted lines indicate the positions of the openings 7a1 to 7d1 of the partition plates 7a to 7d.
  • the white arrows in FIGS. 4A to 4C indicate the rotation direction of the rotary drum 1 when the powder particles are transferred. That is, the lower side of FIGS. 4A to 4C is the front side of the rotating direction of the rotating drum 1.
  • the rotation direction of the rotary drum 1 at the time of powder particle transfer is opposite to the rotation direction of the rotary drum 1 at the time of powder particle processing.
  • the discharge plates 6a, 6b, 6c are inclined with respect to the axial direction of the rotary drum 1.
  • the openings 7a1, 7b1, and 7c1 of the partition plates 7a, 7b, and 7c are rotated by the rotating drum 1 when the granular particles are transferred from the discharge plates 6b and 6c in the processing chambers 1b and 1c on the other axial end side. Open to the front side.
  • the opening 7d1 of the partition plate 7d is also opened from the discharge plate 6a in the processing chamber 1a to the front side in the rotational direction of the rotary drum 1 when the granular particles are transferred.
  • the discharge plates 6a, 6b, 6c are arranged and fixed at the upper predetermined positions H1a, H1b, H1c by the transfer member switching means 10, and the openings of the partition plates 7a, 7b, 7c. 7a1, 7b1, and 7c1 are arranged and fixed at the upper predetermined positions H2a, H2b, and H2c (the opening 7d1 of the partition plate 7d is also arranged and fixed at the upper predetermined position).
  • the baffles 9a, 9b, 9c are arranged and fixed at predetermined positions below (see FIG. 1).
  • the upper predetermined positions H1a, H1b, and H1c are above the granular material layer M, it is possible to suppress the discharge plates 6a, 6b, and 6c from affecting the processing of the granular particles. Further, since the upper predetermined positions H2a, H2b, and H2c are higher than the powder layer M, the powder particles are processed in the processing chambers 1b and 1c and the discharge zone 1g adjacent to the other end in the axial direction during the processing of the powder particles. The movement of the granule particles is prevented by the partition plates 7a, 7b and 7c. Further, the baffles 9a, 9b, and 9c improve the stirring efficiency of the powder particles.
  • the discharge plates 6a, 6b, 6c are arranged and fixed at the lower predetermined positions L1a, L1b, L1c by the transfer member switching means 10 and the openings of the partition plates 7a, 7b, 7c.
  • the portions 7a1, 7b1, and 7c1 are arranged and fixed at predetermined lower positions L2a, L2b, and L2c (the opening 7d1 of the partition plate 7d is also arranged and fixed at a predetermined lower position).
  • the baffles 9a, 9b, 9c are arranged and fixed at predetermined positions above.
  • the granular particles are guided by the rotation of the rotary drum 1 to the discharge plates 6a, 6b, 6c fixed to the lower predetermined positions L1a, L1b, L1c of the processing chambers 1a, 1b, 1c. Is done. And since this discharge particle
  • grain has opening part 7a1, 7b1, partition plate 7a, 7b, 7c by discharge plate 6a, 6b, 6c, Guided by 7c1, passes through the openings 7a1, 7b1, and 7c1, and is discharged from the processing chambers 1a, 1b, and 1c.
  • the opening parts 7a1 and 7b1 of the partition plates 7a and 7b are opened to the front side in the rotation direction of the rotary drum 1 with respect to the discharge plates 6b and 6c in the processing chambers 1b and 1c, they are discharged in the processing chambers 1b and 1c.
  • the powder particles can be introduced to the front side in the rotation direction of the rotary drum 1 rather than the plates 6b and 6c. Thereby, it can prevent that the granular material particle
  • the granular particles are guided by the portion of the discharge plates 6a, 6b, 6c on the rear side in the rotation direction of the rotary drum 1 (the upper side in FIGS. 4A to 4C). Therefore, it is preferable that the powder particles to be discharged are arranged from the beginning in the region on the rear side in the rotation direction of the discharge plates 6a, 6b, 6c at the lower predetermined positions L1a, L1b, L1c. Therefore, in this embodiment, the discharge plates 6a, 6b, 6c are directed from the rear side in the rotation direction of the rotary drum 1 to the lower predetermined positions L1a, L1b, L1c (in FIG. 3A to FIG. 3C, white arrows). Downward (counterclockwise) by the transfer member switching means 10.
  • the lower predetermined positions L1a, L1b, and L1c on the discharge plates 6a, 6b, and 6c are inclined with respect to the axis of the discharge plates 6a, 6b, and 6c so that all the powder particles are discharged. Is set in consideration of the rotational speed of the rotary drum 1 and the size and weight of the granular particles.
  • the overall flow of the operation on the granular particles by the coating apparatus of the first embodiment configured as described above is as follows.
  • the transfer member switching means 10 causes the discharge plates 6a, 6b, 6c and the openings 7a1, 7b1, 7c1 of the partition plates 7a, 7b, 7c to be in the upper predetermined positions H1a. , H1b, H1c and upper predetermined positions H2a, H2b, H2c (the opening 7d1 of the partition plate 7d is also fixed at the upper predetermined position).
  • the lower part of the supply zone 1f, the processing chambers 1a, 1b, 1c and the discharge zone 1g is partitioned by partition plates 7a to 7d.
  • the discharge plates 6a, 6b, 6c are placed at the lower predetermined positions L1a, L1b, L1c by the transfer member switching means 10 before the powder particles such as tablets to form the coating layer are put into the coating apparatus.
  • the openings 7a1, 7b1, 7c1 of the partition plates 7a, 7b, 7c are disposed and fixed at predetermined lower positions L2a, L2b, L2c (the opening 7d1 of the partition plate 7d is also disposed and fixed at a predetermined lower position).
  • Powder particles such as tablets to form a coating layer are charged into the coating apparatus from the charging chute 2d.
  • the granular particles charged from the charging chute 2d are supplied into the processing chamber 1a through the supply zone 1f of the rotary drum 1 and the opening 7d1 of the partition plate 7d arranged at a predetermined position below.
  • the transfer member switching means 10 switches to the initial state (state shown in FIG. 1). That is, the discharge plates 6a, 6b, and 6c and the openings 7a1, 7b1, and 7c1 of the partition plates 7a, 7b, and 7c are arranged and fixed at the upper predetermined positions H1a, H1b, and H1c and the upper predetermined positions H2a, H2b, and H2c, respectively.
  • the opening 7d1 of the partition plate 7d is also arranged and fixed at a predetermined position above).
  • the lower part of the supply zone 1f, the processing chambers 1a, 1b, and 1c and the discharge zone 1g is partitioned by the partition plates 7a to 7d.
  • the powder particles inside are agitated and mixed to form a powder particle layer (rolling bed) M along with the normal rotation of the processing chamber 1a. Is done.
  • a spray liquid is sprayed with respect to the granular material layer M from the spray nozzle 5a.
  • the spray liquid sprayed on the granular material layer M is spread on the surface of each granular material particle by the stirring and mixing action of the granular material layer M accompanying the normal rotation of the processing chamber 1a.
  • the spray liquid spread on the surface of the powder particles is dried by a processing gas (hot air or the like) supplied into the processing chamber 1a.
  • the processing gas flows into the processing chamber 1a from the air supply duct 4a through the internal space of the storage chamber 2a, passes through the granular material layer M, and is exhausted from the exhaust port 3a1 to the exhaust duct 3a. .
  • the spray liquid spread on the surface of each granular particle is uniformly dried without unevenness, and a first coating layer is formed.
  • the transfer member switching means 10 causes the discharge plates 6a, 6b, 6c and the partition plate 7a,
  • the openings 7a1, 7b1, and 7c1 of 7b and 7c are respectively disposed and fixed at the lower predetermined positions L1a, L1b, and L1c and the lower predetermined positions L2a, L2b, and L2c (the opening 7d1 of the partition plate 7d is also at the lower predetermined position). Placement fixed).
  • the lower part of the supply zone 1f, the processing chambers 1a, 1b, 1c, and the discharge zone 1g communicate with each other through the openings 7a1 to 7d1.
  • the rotary drum 1 is driven reversely by the rotational drive mechanism 1k, and the powder particles in the processing chamber 1a are moved to the other end side in the axial direction by the discharge plate 6a as described above. It is transferred to the adjacent processing chamber 1b.
  • the transfer member switching means 10 switches the initial state (the state of FIG. 1). That is, the discharge plates 6a, 6b, and 6c and the openings 7a1, 7b1, and 7c1 of the partition plates 7a, 7b, and 7c are arranged and fixed at the upper predetermined positions H1a, H1b, and H1c and the upper predetermined positions H2a, H2b, and H2c, respectively.
  • the opening 7d1 of the partition plate 7d is also arranged and fixed at a predetermined upper position).
  • the lower part of the supply zone 1f, the processing chambers 1a, 1b, and 1c and the discharge zone 1g is partitioned by the partition plates 7a to 7d.
  • the rotary drum 1 is driven to rotate forward by the rotation drive mechanism 1k, and the processing chamber 1b is driven to rotate forward.
  • a spray liquid having a component different from the spray liquid used in the processing chamber 1a is sprayed on the surface of the coating layer (first coating layer) of the granular particles.
  • the second coating layer is formed on the surface of the first coating layer.
  • the transfer plates 10 are separated from the discharge plates 6a, 6b, 6c by the transfer member switching means 10.
  • the openings 7a1, 7b1, 7c1 of the plates 7a, 7b, 7c are arranged and fixed at the lower predetermined positions L1a, L1b, L1c and the lower predetermined positions L2a, L2b, L2c, respectively (the opening 7d1 of the partition plate 7d is also below) Fixed in place).
  • the lower part of the supply zone 1f, the processing chambers 1a, 1b, 1c, and the discharge zone 1g communicate with each other through the openings 7a1 to 7d1.
  • the rotary drum 1 is driven reversely by the rotational drive mechanism 1k, and the powder particles in the processing chamber 1b are moved to the other end side in the axial direction by the discharge plate 6b as described above with the reverse rotation of the processing chamber 1b. It is transferred to the adjacent processing chamber 1c.
  • the transfer member switching means 10 switches the initial state (the state of FIG. 1). That is, the discharge plates 6a, 6b, and 6c and the openings 7a1, 7b1, and 7c1 of the partition plates 7a, 7b, and 7c are arranged and fixed at the upper predetermined positions H1a, H1b, and H1c and the upper predetermined positions H2a, H2b, and H2c, respectively.
  • the opening 7d1 of the partition plate 7d is also arranged and fixed at a predetermined position above). Thereby, the lower part of the supply zone 1f, the processing chambers 1a, 1b, and 1c and the discharge zone 1g is partitioned by the partition plates 7a to 7d.
  • the rotary drum 1 is driven to rotate forward by the rotation drive mechanism 1k, and the processing chamber 1c is driven to rotate forward.
  • the spray liquid of the component different from the spray liquid used in the processing chamber 1b is sprayed from the spray nozzle 5c installed in the processing chamber 1c on the surface of the second coating layer of the granular particles, and in the same manner as described above.
  • a third coating layer is formed on the surface of the second coating layer.
  • the transfer member switching means 10 The discharge plates 6a, 6b and 6c and the openings 7a1, 7b1 and 7c1 of the partition plates 7a, 7b and 7c are arranged and fixed at lower predetermined positions L1a, L1b and L1c and lower predetermined positions L2a, L2b and L2c, respectively. .
  • the opening 7d1 of the partition plate 7d is also arranged and fixed at a predetermined position below).
  • the rotary drum 1 is driven reversely by the rotary drive mechanism, and as the processing chamber 1c is rotated in reverse, the powder product in the processing chamber 1c is discharged from the opening 7c1 to the discharge zone 1g by the discharge plate 6c as described above. It is transferred to.
  • the granular product transferred to the discharge zone 1g is discharged to the outside of the rotating drum 1 through the discharge opening 1h of the peripheral wall 1g1. And the granular material product discharged
  • the transfer member switching means 10 switches to the initial state (state shown in FIG. 1) by the transfer member switching means 10. That is, the discharge plates 6a, 6b, and 6c and the openings 7a1, 7b1, and 7c1 of the partition plates 7a, 7b, and 7c are arranged and fixed at the upper predetermined positions H1a, H1b, and H1c and the upper predetermined positions H2a, H2b, and H2c, respectively. (The opening 7d1 of the partition plate 7d is also arranged and fixed at a predetermined upper position). This completes the operation on the granular material by the coating apparatus of the first embodiment.
  • the above coating treatment by the coating apparatus may be performed in a batch type (batch type) or a continuous type.
  • the coating apparatus according to the present embodiment uses the discharge plates 6a, 6b, and 6c as boundaries, and the granular particles being supplied to the processing chamber and the processing chamber when the granular particles are transferred. Since it is not mixed with the granular particles being discharged from, it is suitable for continuous coating treatment.
  • a predetermined amount of powder particles are put into the processing chamber 1a of the rotary drum 1, and a series of processes in the processing chambers 1a to 1c are sequentially performed and discharged to the outside.
  • a predetermined amount of the granular particles are put into the processing chamber 1a of the rotary drum 1 and the same processing is repeated.
  • the next granular particles are processed. It puts into the chamber 1a and performs in parallel with the processing of the powder particles in the processing chamber 1a and the processing chamber 1b. Then, when the processing of the powder particles in the processing chamber 1a and the processing chamber 1b is completed, the next powder is transferred when the powder particles are transferred from the processing chamber 1a to the processing chamber 1b and from the processing chamber 1b to the processing chamber 1c.
  • the granule particles are put into the processing chamber 1a, and are performed in parallel with the processing of the granular particles in the processing chamber 1a, the processing chamber 1b, and the processing chamber 1c.
  • the processing of the granular particles in the processing chamber 1a, the processing chamber 1b, and the processing chamber 1c is completed, and the granular particles are transferred from the processing chamber 1a to the processing chamber 1b and from the processing chamber 1b to the processing chamber 1c.
  • the next powder particles are introduced into the processing chamber 1a, and simultaneously with the processing of the powder particles in the processing chamber 1a, the processing chamber 1b, and the processing chamber 1c. Thereafter, the same operation is repeated.
  • the layer height of the granular layer M in the processing chamber 1a is relatively set. Therefore, a predetermined process (formation of the first coating layer) can be performed. Thereby, even if the granular particles have fragile physical properties, the occurrence of cracks and chips due to the influence of gravity and the like is reduced.
  • the granular particles on which the first coating layer is formed in the processing chamber 1a are transferred to the processing chamber 1b in a state where the particle diameter is slightly increased, and a predetermined processing (formation of the second coating layer) is performed.
  • the peripheral speed of the body 1b1 is larger than that of the processing chamber 1a even if the rotation speed is the same. Therefore, in the processing chamber 1b, the spraying speed of the spray liquid by the spray nozzle 5b can be made larger than that in the processing chamber 1a, and efficient processing can be performed.
  • the granular particles on which the second coating layer is formed in the processing chamber 1b are transferred to the processing chamber 1c in a state where the particle diameter is further increased, and a predetermined processing (formation of a third coating layer) is performed.
  • the diameter of the body portion 1c1 of the processing chamber 1c is larger than that of the processing chamber 1b, the peripheral speed of the body portion 1c1 is larger than that of the processing chamber 1b even if the rotation speed is the same. Therefore, in the processing chamber 1c, the spray rate of the spray liquid by the spray nozzle 5c can be further increased as compared with the processing chamber 1b, so that efficient processing can be performed.
  • the rotation direction of the rotating drum 1 is reverse during processing of a granular material particle and at the time of transfer of a granular material particle, it is not limited to this in particular, Powder
  • the rotational direction of the rotary drum 1 may be the same during the processing of the granular particles and during the transfer.
  • the coating apparatus individually controls at least one of the supply condition of the process gas and the spray condition of the spray liquid for each of the process chambers 1a, 1b, and 1c, thereby processing the process chambers 1a, 1b, and 1c.
  • the one rotating drum 1 is provided with the three process chambers 1a, 1b, and 1c, and this rotary drum 1 is driven with one rotation drive mechanism 1k
  • the process chamber 1a For each of 1b and 1c, the rotary drum may be a separate body, and each rotary drum may be driven by a separate rotational drive mechanism.
  • the processing in each of the processing chambers 1a, 1b, and 1c can be performed more optimally and efficiently. This makes it possible to produce a granular product having excellent coating quality more efficiently and with a high yield.
  • the positions of the discharge plates 6a, 6b, 6c and the partition plates 7a, 7b, 7c are all switched by the single transfer member switching means 10, but the positions of the discharge plates 6a, 6b, 6c, The position of the partition plates 7a, 7b, 7c may be switched by another switching means. Further, the positions of the discharge plates 6a, 6b, 6c may be switched by different switching means, and the positions of the partition plates 7a, 7b, 7c may be switched by different switching means.
  • the partition plate 7c is not provided in the sense that the processing chamber 1c and the discharge zone 1g are partitioned during the powder processing (however, the processing chamber 1c is not transferred during the transfer). And an opening 7c1 communicating with the discharge zone 1g is present).
  • an annular protrusion 1n that partitions the processing chamber 1c and the discharge zone 1g is provided on the inner periphery of the rotary drum 1.
  • the protrusion 1n has an opening 1o that opens to the discharge zone 1g.
  • the opening 1o is provided on the other axial end side of the processing chamber 1c.
  • partition plate 7d in the sense of partitioning the processing chamber 1a and the supply zone 1f during the processing of the granular material (however, there is an opening 7d1 communicating the processing chamber 1a and the supply zone 1f during the transfer). To do).
  • the powder particles discharged from one end opening 1 d of the rotating drum 1 (second opening provided on one end side in the axial direction of the processing chamber 1 a) are discharged outside the coating apparatus.
  • a discharge chute 2 f is attached to one end side of the rotary drum 1.
  • the bearing 1j that supports the rotating drum 1 with respect to the casing 2 is attached to the outer periphery of the portion of the rotating drum 1 provided with the protruding portion 1n, not the other end opening 1e.
  • the bearing 10a1 which supports the drive shaft 10a with respect to the rotating drum 1 is attached not the inner periphery of the other end opening part 1e of the rotating drum 1, but the outer side of the other end opening part 1e.
  • discharge plates 15 and 16 as discharge members for discharging the powder particles in the processing chambers 1 a and 1 c at both ends to the outside of the rotary drum 1 are provided inside the rotary drum 1.
  • the discharge plates 15 and 16 are provided on the end surfaces 17 and 18 of the processing chambers 1a and 1c, respectively.
  • the discharge plates 15 and 16 are configured by, for example, a plate-like member having a bent portion bent along the longitudinal direction.
  • the discharge plate 15 extends from the other end of the end surface 17 to the axial position of one end (the other end of the one end opening 1d), and the extending direction of the discharge plate 15 (when viewed in a developed view) It is inclined with respect to the axial direction.
  • one end of the discharge plate 15 is smoothly connected to the other end of the opening 1d.
  • the discharge plate 16 extends from one end of the end surface 18 to the axial position of the other end (one end of the opening 1o), and the extending direction is the axial direction of the rotary drum 1 (when viewed in a developed view). It is inclined with respect to.
  • the other end of the discharge plate 16 is smoothly connected to one end of the opening 1o.
  • the direction of inclination of the discharge plates 15 and 16 with respect to the axial direction of the rotary drum 1 is opposite to the direction of inclination of the discharge plates 6a, 6b and 6c with respect to the axial direction of the rotary drum 1 (see FIGS. 4A to 4C).
  • the end surfaces 17 and 18 of the processing chambers 1a and 1c are inclined with respect to the radial direction of the rotary drum 1 in the axial section.
  • the shape of the inner peripheral surface 1p of the opening 1d is gradually enlarged toward one end in the axial direction, for example, gradually increased in diameter at a conical angle ⁇ (angle formed with the axis of the rotating drum 1) toward one end in the axial direction. Formed in a conical surface.
  • the inner peripheral surface 1q of the opening 1o is gradually enlarged toward the other end in the axial direction, for example, gradually with a cone angle of an angle ⁇ (angle formed with the axis of the rotating drum 1) toward the other end in the axial direction. It is formed on an expanded conical surface.
  • the inner peripheral surfaces 1p and 1q of the openings 1d and 1o may be formed in a shape gradually increasing in diameter toward one end and the other end, and need not necessarily be formed in a conical surface.
  • the inner peripheral surfaces 1p and 1q of the openings 1d and 1o may be formed in a shape in which the diameter gradually increases in a curved shape toward one end side and the other end side.
  • the arrangement of the discharge plates 6a, 6b and 6c, the openings 7a1 and 7b1 of the partition plates 7a and 7b, and the openings 7c1 and 7d1 when the granular particles are transferred is the same as in the first embodiment. Then, the rotating drum 1 is rotated in the same direction as the first embodiment (white arrow in FIGS. 4A to 4C).
  • the flow of the granular particles around the discharge plates 6a, 6b, 6c and the openings 7a1, 7b1 in the processing chambers 1a, 1b, 1c is the same as that in the first embodiment.
  • the granular particles guided by the discharge plate 6c and passing through the opening 7c1 are scooped up by the discharge plate 16 provided on the end face 18 and guided to the opening 1o.
  • the granular particles guided to the opening 1o by the discharge plate 16 are guided to the inner circumferential surface 1q having a conical surface gradually expanded in diameter ⁇ toward the other end side, and proceed to the other end side. It is discharged from the opening 1o to the outside of the rotating drum 1 through the discharge zone 1g. And the granular material particle
  • emitted outside the rotating drum 1 are discharged
  • the discharge plates 6a, 6b, 6c, the openings 7a1, 7b1, and the openings 7c1, 7d1 of the partition plates 7a, 7b are arranged in the same manner as in the first embodiment.
  • the rotating drum 1 can be rotated to transfer the granular particles.
  • the powder particles are induced by the rotation of the rotary drum 1 up to the discharge plates 6a, 6b, 6c.
  • grain has the opening part 7a1, 7b1 and opening part of partition plate 7a, 7b by discharge
  • the particulate particles that have passed through the openings 7a1 and 7b1 of the partition plates 7a and 7b are discharged from the processing chambers 1b and 1c. Since the openings 7a1 and 7b1 of the partition plates 7a and 7b are opened to the front side in the rotation direction of the rotary drum 1 with respect to the discharge plates 6a and 6b in the processing chambers 1a and 1b, the discharges in the processing chambers 1a and 1b are performed. It is possible to introduce the powder particles to the front side in the rotation direction of the rotary drum 1 rather than the plates 6a and 6b.
  • baffles 9a, 9b and 9c are arranged and fixed at predetermined positions above, the baffles 9a, 9b and 9c do not interfere with the transfer of the granular particles. Thereby, in the coating apparatus of this embodiment, it becomes possible to transfer granular material particle
  • the granular particles guided by the discharge plate 6a and passed through the opening 7d1 are scooped up by the discharge plate 15 provided on the end face 17 and guided to the opening 1d. Then, the granular particles guided to the opening 1d by the discharge plate 15 are guided to the conical inner peripheral surface 1p that gradually increases in diameter toward the one end side at an angle ⁇ , and proceeds to the one end side. 1d is discharged to the outside of the rotating drum 1 through the supply zone 1f. And the granular material particle
  • the rotation of the rotary drum 1 guides the powder particles inside the rotary drum 1 to the openings 1d and 1o by the discharge plates 15 and 16,
  • the conical surface-like inner peripheral surfaces 1p and 1q of the openings 1d and 1o are slid and guided to one end side and the other end side, and discharged from the openings 1d and 1o to the outside of the rotary drum 1.
  • the powder inside the rotary drum 1 can be obtained without extending the one end of the discharge plate 15 and the other end of the discharge plate 16 to the one end of the opening 1d and the other end of the opening 1o as in the conventional apparatus.
  • Granule particles can be smoothly discharged to the outside of the rotating drum 1.
  • one end of the discharge plate 15 extends to the axial position of the other end of the opening 1d and does not extend from that position to one end side, while the other end of the discharge plate 16 Extends to the axial position at one end of the opening 1o, and does not extend from the position to the other end.
  • the openings 1d and 1o do not have the extended portions of the discharge plates 15 and 16, it is possible to safely and efficiently perform the inspection work and the like inside the rotary drum 1.
  • the coating apparatus of this reference example includes separator plates 12 a and 12 b as separator members, scraper plates 13 a, 13 b and 13 c as transfer members, a slide plate 14, scraper plates 13 a and 13 b, And a transfer member moving means (not shown) for moving 13c.
  • the shape of the rotating drum 1 is the same as in the first embodiment.
  • the partition plate 12a partitions between the processing chamber 1a and the processing chamber 1b adjacent to the other end in the axial direction, and the partition plate 12b connects between the processing chamber 1b and the processing chamber 1c adjacent to the other end in the axial direction. punctuate.
  • the slide plate 14 separates the processing chambers 1a, 1b, 1c and the discharge zone 1g.
  • One end in the axial direction is the left side in FIG. 6 and the other end in the axial direction is the right side in FIG. 6 (the same applies hereinafter unless otherwise specified).
  • the separator plates 12a and 12b are fixed to the rotating drum 1.
  • the scraping plates 13a, 13b, 13c and the slide plate 14 are configured not to rotate relative to the rotating drum 1, but are movable along the axial direction.
  • the transfer member moving means includes, for example, a drive source such as an actuator installed outside the rotary drum 1, scraping plates 13 a, 13 b, 13 c and a slide plate 14 via the other end opening 1 e of the rotary drum 1. And a drive shaft that is connected and driven along the axial direction by a drive source.
  • the partition plate 12 a has an annular shape, and has an opening 12 a 1 as a passage for allowing the granular particles to pass therethrough at an upper predetermined position H 3 a in FIG. 7 (FIG. 6).
  • the partition plate 12b is also annular, and has an opening 12b1 as a passage for allowing the granular particles to pass through at an upper predetermined position H3b in FIG.
  • the scraping plate 13b is also in an annular shape, and the opening 13b1 as a passing part for the passage of the powder particles is placed at a predetermined position L4b on the lower side in FIG. 7 (FIG. 6). Have.
  • the scraping plates 13a and 13c are also annular, and have openings 13a1 and 13c1 as passing portions for passing the powder particles at predetermined positions L4a and L4c on the lower side in FIG. Moreover, although the slide plate 14 is annular, it does not have an opening as a passing part for the granular particles to pass.
  • the opening portions of the separator plates 12a and 12b and the opening portion of the scraping plate are configured so that the circumferential positions are different by 180 °, but the circumferential positions may be different at other angles. .
  • the separator plates 12a and 12b are fixed to the rotating drum 1, and the scraping plates 13a, 13b and 13c do not rotate relative to the rotating drum 1. Therefore, when the rotary drum 1 is rotated by the rotary drive mechanism 1k, the openings 12a1 and 12b1 of the separator plates 12a and 12b and the openings 13a1, 13b1 and 13c1 of the scraping plates 13a, 13b and 13c are accompanied with the rotation of the rotary drum 1. The circumferential position of is displaced. In other words, when the rotary drum 1 is rotated 180 ° from the state of FIG.
  • the openings 12a1 and 12b1 of the separator plates 12a and 12b move to the predetermined lower positions L3a and L3b (see FIG. 8). Further, when the rotary drum 1 is rotated 180 ° from the state of FIG. 6, the openings 13a1, 13b1, 13c1 of the scraping plates 13a, 13b, 13c move to the upper predetermined positions H4a, H4b, H4c (see FIG. 8). . That is, the rotation drive mechanism 1k is a separating member switching unit that switches between the upper predetermined positions H3a and H3b and the lower predetermined positions L3a and L3b of the openings 12a1 and 12b1 of the separating plates 12a and 12b (separating members).
  • the rotation drive mechanism 1k performs a transfer for switching the upper predetermined positions H4a, H4b, H4c and the lower predetermined positions L4a, L4b, L4c of the openings 13a1, 13b1, 13c1 of the scraping plates 13a, 13b, 13c (transfer member). It is also a member switching means.
  • At least a part of the openings 12a1 and 12b1 of the separator plates 12a and 12b at the lower predetermined positions L3a and L3b exists in the granular material layer M.
  • at least a part of the openings 13a1, 13b1, and 13c1 of the scraping plates 13a, 13b, and 13c at the lower predetermined positions L4a, L4b, and L4c exists in the granular material layer M.
  • the scraping plates 13a, 13b, 13c are disposed on the most end side (left side in FIG. 6) in the axial direction of each processing chamber 1a, 1b, 1c (initial positions P1a, P1b, P1c).
  • the slide plate 14 is disposed on the other end side (right side in FIG. 6) in the axial direction of the processing chamber 1c (position P1 in FIG. 6).
  • the scraping plates 13b and 13c are in contact with the separation plates 12a and 12b.
  • the scraping plate 13 a is in contact with a surface 11 on one end side in the axial direction inside the rotary drum 1.
  • the separator plates 12a, 12b, the scraping plates 13a, 13b, 13c, and the slide plate 14 may move the granular particles to the adjacent processing chambers 1a, 1b, 1c or the discharge zone 1g. It is regulated and powder particles in different processing chambers 1a, 1b, 1c are not mixed.
  • the rotation drive mechanism 1k causes the openings 12a1 and 12b1 of the separator plates 12a and 12b to be in the lower positions L3a and L3b, and the openings 13a1, 13b1 of the scraping plates 13a, 13b, and 13c,
  • the rotating drum 1 is rotated so that 13c1 becomes the upper positions H4a, H4b, and H4c, and when that state is reached, the rotating drum 1 is fixed so as not to rotate. In this state, the discharge opening 1h of the discharge zone 1g is positioned below.
  • the slide plate 14 reaches the position P2 in the vicinity of the surface 1m on the other axial end side inside the rotating drum 1 (the other end side of the discharge zone 1g) by the transfer member moving means.
  • the scraping plates 13a, 13b, 13c and the slide plate 14 are moved along the axial direction of the rotary drum 1 in the same distance.
  • the granular material particles in the processing chamber 1c are pressed by the scraping plate 13c, transferred to the discharge zone 1g, and discharged through the discharge opening 1h below the discharge zone 1g.
  • the scraping plate 13c is at the position (P2c) on the other end side in the movement range along the axial direction.
  • a part of the granular particles in the processing chamber 1b are pressed against the scraping plate 13b and transferred to the processing chamber 1c, and a part of the granular particles in the processing chamber 1a are pressed against the scraping plate 13a to be processed. It is transferred to the chamber 1b.
  • the granular particles in the processing chamber 1b transferred to the processing chamber 1c pass through the opening 12b1 of the separator 12b, and the granular particles in the processing chamber 1a transferred to the processing chamber 1b pass through the separator 12a. Passes through the opening 12a1.
  • the openings 13a1, 13b1, and 13c1 of the scraping plates 13a, 13b, and 13c are arranged on the upper side, so that the powder processed in the different processing chambers 1a, 1b, and 1c by the scraping plates 13a, 13b, and 13c. Granule particles are not mixed.
  • the scraping plates 13a and 13b are moved by the transfer member moving means until the scraping plate 13b reaches the position P2b where the scraping plate 13b comes into contact with the separation plate 12b (the other end side of the processing chamber 1b). The same distance is moved synchronously along the axial direction. Thereby, the remainder of the granular material particle
  • the granular particles in the processing chamber 1b transferred to the processing chamber 1c pass through the opening 12b1 of the separator 12b, and the granular particles in the processing chamber 1a transferred to the processing chamber 1b pass through the separator 12a. Passes through the opening 12a1.
  • the openings 13a1, 13b1, and 13c1 of the scraping plates 13a, 13b, and 13c are arranged on the upper side, so that the powder processed in the different processing chambers 1a, 1b, and 1c by the scraping plates 13a, 13b, and 13c. Granule particles are not mixed.
  • the scraping plate 13a is moved to the axis of the rotary drum 1 until the scraping plate 13a reaches the position P2a (the other end side of the processing chamber 1a) by the transfer member moving means. Move along the direction. Thereby, the remainder of the granular material particle
  • the openings 13a1, 13b1, and 13c1 of the scraping plates 13a, 13b, and 13c are arranged on the upper side, so that the powder processed in the different processing chambers 1a, 1b, and 1c by the scraping plates 13a, 13b, and 13c. Granule particles are not mixed.
  • the rotary drum 1 is rotated 180 ° and then fixed so as not to rotate by the rotation drive mechanism 1 k.
  • the openings 12a1 and 12b1 of the separator plates 12a and 12b are in the upper positions H3a and H3b
  • the openings 13a1, 13b1 and 13c1 of the scraping plates 13a, 13b and 13c are in the lower positions L4a, L4b and L4c. .
  • the scraping plates 13a, 13b, and 13c are moved by the transfer member moving means until the scraping plate 13c comes into contact with the partition plate 12b (one end side of the processing chamber 1c) and reaches the initial position P1c. The same distance is moved in synchronism along the axial direction of the rotating drum 1. At this time, the granular particles in the processing chambers 1a, 1b, and 1c pass through the openings 13a1, 13b1, and 13c1 of the scraping plates 13a, 13b, and 13c, respectively.
  • the scraping plates 13a and 13b are moved by the transfer member moving means until the scraping plate 13b comes into contact with the partition plate 12a (one end side of the processing chamber 1b) and reaches the initial position P1b. The same distance is moved synchronously along the axial direction. At this time, the granular particles in the processing chambers 1a and 1b pass through the openings 13a1 and 13b1 of the scraping plates 13a and 13b, respectively. In this state, since the openings 12a1 and 12b1 of the separator plates 12a and 12b are disposed above, the granular particles in the processing chambers 1a, 1b and 1c are moved by the separator plates 12a and 12b and the slide plate 14. In addition, the granular particles in different processing chambers 1a, 1b, and 1c are not mixed.
  • the scraping plate 13a comes into contact with the surface 11 on the one end side in the axial direction of the rotary drum 1 (one end side of the processing chambers 1a, 1b, 1c) and reaches the initial position P1a.
  • the scraping plate 13a is moved along the axial direction of the rotary drum 1 until it is done.
  • the granular particles in the processing chamber 1a pass through the opening 13a1 of the scraping plate 13a.
  • the openings 12a1 and 12b1 of the separator plates 12a and 12b are disposed above, the granular particles in the processing chambers 1a, 1b and 1c are moved by the separator plates 12a and 12b and the slide plate 14. It is regulated and powder particles in different processing chambers 1a, 1b, 1c are not mixed.
  • the scraping plates 13a, 13b, and 13c in the processing chambers 1a, 1b, and 1c are moved from the one end side predetermined positions P1a, P1b, and P1c to the other end side predetermined positions P2a, P2b, and P2c.
  • the powder particles in all the processing chambers 1a, 1b, and 1c can be transferred in parallel.
  • the granular particles in the processing chambers 1a, 1b, 1c Passes through the openings 13a1, 13b1, 13c1 of the scraping plates 13a, 13b, 13c.
  • the return operation of the scraping plates 13a, 13b, and 13c is facilitated.
  • the particles in the processing chambers 1a, 1b, 1c are separated by the separator plates 12a, 12b and the slide plate 14.
  • the body particles are restricted from moving, and the powder particles in the different processing chambers 1a, 1b, and 1c are not mixed.
  • the above-described coating treatment by the coating apparatus of this reference example may be performed in a batch type (batch type) or a continuous type.
  • the coating apparatus of this reference example uses the scraping plates 13a, 13b, and 13c as boundaries, and the granular particles being supplied to the processing chamber and the processing chamber when the granular particles are transferred. Since it is not mixed with the granular particles being discharged from, it is suitable for continuous coating treatment.
  • the rotary drum has a circular cross-sectional shape, but the rotary drum may have a polygonal cross-sectional shape.
  • the scraping plates 13a, 13b, and 13c are restricted in relative rotation with respect to the rotating drum 1, but these are rotatable relative to the rotating drum 1 and the rotation drive mechanism 1k.
  • the openings 13a1, 13b1, and 13c1 are fixed at the upper predetermined positions H4a, H4b, and H4c except when returning to the initial positions P1a, P1b, and P1c.
  • the opening portions 13a1, 13b1, and 13c1 may be switched to the lower predetermined positions L4a, L4b, and L4c and fixed when returning to the initial positions P1a, P1b, and P1c.
  • the rotating drum 1 can be divided into processing chambers 1a, 1b, and 1c, and each can be individually rotated. Further, by providing the separation plates 12a and 12b to be rotatable relative to the rotary drum 1 and providing separation member switching means different from the rotation drive mechanism 1k, the opening 12a1 is used except when the granular particles are transferred. 12b1 may be fixed at the upper predetermined positions H3a and H3b, and the openings 12a1 and 12b1 may be switched and fixed to the lower predetermined positions L3a and L3b when the granular particles are transferred.
  • the diameter of the rotating drum corresponding to each processing chamber is different, but the diameter of the rotating drum corresponding to each processing chamber may be the same.

Abstract

A coating device, in which a rotating drum (1) has a plurality of treatment chambers (1a, 1b, 1c), is provided with discharge plates (6a, 6b, 6c) that transport granular particles in the treatment chambers (1a, 1b, 1c) to the treatment chambers (1b, 1c) or to a discharge zone (1g). The coating device is also provided with a transport member switching means (10) that switches the discharge plates (6a, 6b, 6c) between a prescribed position above a granular layer (M) comprising the granular particles and a prescribed position below the upper prescribed position.

Description

コーティング装置Coating equipment
 本発明は、医薬品、食品、農薬等の粉粒体のコーティング、混合、乾燥等を行なうコーティング装置に関し、特に、軸線回りに回転駆動される回転ドラムを備えたコーティング装置に関する。 The present invention relates to a coating apparatus that performs coating, mixing, drying, and the like of powders such as pharmaceuticals, foods, and agricultural chemicals, and particularly relates to a coating apparatus that includes a rotating drum that is driven to rotate about an axis.
 医薬品、食品、農薬等の錠剤、ソフトカプセル、ペレット、顆粒、その他これらに類するもの(以下、これらを総称して粉粒体という。)にフィルムコーティングや糖衣コーティング等を施すために、回転ドラムを備えたコーティング装置が使用されている。 It is equipped with a rotating drum for film coating, sugar coating, etc. on tablets such as pharmaceuticals, foods, agricultural chemicals, soft capsules, pellets, granules, etc. (hereinafter collectively referred to as powders). Coating equipment is used.
 この種のコーティング装置は、一般にパンコーティング装置とも呼ばれ、例えば下記の特許文献1、2に記載されているように、回転ドラムは多角筒状又は円筒状の胴体部と、該胴体部から前後方向に延びる前壁部及び後壁部とを備え、水平な軸線回りに回転可能に配置される。胴体部の全周又は周囲複数箇所には多孔部で構成された通気部が設けられ、各通気部の外周側を通気ジャケットがそれぞれ覆って通気チャンネルが構成される。各通気チャンネルは、回転ドラムの回転に伴って所定位置に来たときに給気ダクト又は排気ダクトと連通し、これにより所定温度に温度制御された処理気体、例えば乾燥空気が給気ダクトから通気チャンネル及び通気部を介して回転ドラム内に給気され、また、回転ドラム内の乾燥空気が通気部及び通気チャンネルを介して排気ダクトに排気される。回転ドラムが所定方向に回転すると、回転ドラム内に粉粒体層(粉粒体粒子の転動床)が形成される。そして、回転ドラムの内部に配置されたスプレーノズルから粉粒体層に向けて膜剤液等のスプレー液が噴霧され、コーティング処理が行われる。 This type of coating apparatus is also generally called a pan coating apparatus. For example, as described in Patent Documents 1 and 2 below, the rotating drum has a polygonal cylindrical or cylindrical body portion and a front and rear from the body portion. A front wall portion and a rear wall portion that extend in the direction are provided, and are disposed so as to be rotatable around a horizontal axis. Ventilation portions composed of porous portions are provided on the entire periphery or a plurality of locations around the body portion, and a ventilation jacket is formed by covering the outer peripheral side of each ventilation portion with a ventilation jacket. Each aeration channel communicates with an air supply duct or an exhaust duct when it reaches a predetermined position as the rotating drum rotates, whereby a processing gas whose temperature is controlled to a predetermined temperature, for example, dry air, is vented from the air supply duct. The air is supplied into the rotating drum through the channel and the ventilation portion, and the dry air in the rotating drum is exhausted to the exhaust duct through the ventilation portion and the ventilation channel. When the rotating drum rotates in a predetermined direction, a granular material layer (a rolling bed of granular particles) is formed in the rotating drum. Then, a spray liquid such as a film agent liquid is sprayed from the spray nozzle disposed inside the rotating drum toward the granular material layer, and a coating process is performed.
特開2004-97853号公報JP 2004-97853 A 特許第2726062号公報Japanese Patent No. 2726062 特開2012-183528号公報JP 2012-183528 A
 ところで、特許文献3には、回転ドラムが、軸線方向に沿って区画された複数の処理室を備えており、粉粒体粒子は軸方向一端側の前記処理室から軸方向他端側の前記処理室に順次に移送されて所定の処理を施されるコーティング装置が開示されている。この特許文献3のコーティング装置には、前記処理室内の粉粒体粒子を案内して軸方向他端側に隣接する前記処理室又は前記回転ドラムの外部に移送する移送部材が前記各処理室に設けられており、この移送部材は、各処理室の逆転動作によって粉粒体粒子を移送するものである。 By the way, in Patent Document 3, the rotating drum includes a plurality of processing chambers that are partitioned along the axial direction, and the granular particles are moved from the processing chamber on one axial end side to the axial other end side. A coating apparatus that is sequentially transferred to a processing chamber and subjected to a predetermined processing is disclosed. In the coating apparatus of Patent Document 3, a transfer member that guides the powder particles in the processing chamber and transfers it to the processing chamber adjacent to the other end in the axial direction or the outside of the rotating drum is provided in each processing chamber. The transfer member is provided for transferring the granular particles by the reversing operation of each processing chamber.
 しかしながら、特許文献3のコーティング装置では、各処理室で処理された粉粒体粒子を、相互に混ざらないように移送するためには、移送先の処理室内が空になるのを待たなければならない。つまり、粉粒体粒子の移送は、軸方向他端側の処理室から1つの処理室ずつ行わなければならない。このため、粉粒体粒子の移送が全ての処理室で完了するまでに少なからず時間を要することになる。 However, in the coating apparatus of Patent Document 3, in order to transfer the powder particles processed in each processing chamber so as not to be mixed with each other, it is necessary to wait for the processing chamber of the transfer destination to be empty. . That is, the transfer of the powder particles must be performed one by one from the processing chamber on the other end side in the axial direction. For this reason, it takes time to complete the transfer of the granular particles in all the processing chambers.
 本発明は、上記事情に鑑み、回転ドラムが複数の処理室を備えたコーティング装置において、粉粒体粒子を効率良く移送することを課題とする。 In view of the above circumstances, an object of the present invention is to efficiently transfer granular particles in a coating apparatus in which a rotating drum includes a plurality of processing chambers.
 上記課題を解決するため、本発明のコーティング装置は、回転ドラムの内部に収容された粉粒体粒子に対して、液材の添加と処理気体の通気を含む処理を施して被覆層を形成し、前記回転ドラムは、軸方向に沿って区画された複数の処理室を備えており、粉粒体粒子は軸方向一端側の前記処理室から軸方向他端側の前記処理室に順次に移送されて前記処理を施され、前記処理室内の粉粒体粒子を軸方向他端側に隣接する前記処理室又は前記回転ドラムの外部に移送する移送部材が前記各処理室に設けられているコーティング装置において、前記移送部材を、前記粉粒体粒子からなる粉粒体層より上側の所定位置と、該上側所定位置より下側の所定位置とに切り換える移送部材切り換え手段が設けられ、前記粉粒体粒子の処理中には、前記移送部材が前記上側所定位置に配置され、前記粉粒体粒子の移送時には、前記移送部材が前記下側所定位置に配置され、前記処理室の回転に伴い、前記粉粒体粒子が前記移送部材によって案内されることを特徴とする。 In order to solve the above-mentioned problems, the coating apparatus of the present invention forms a coating layer by applying a treatment including addition of a liquid material and aeration of a treatment gas to the powder particles accommodated in the rotary drum. The rotary drum includes a plurality of processing chambers partitioned along the axial direction, and the powder particles are sequentially transferred from the processing chamber on one axial end side to the processing chamber on the other axial end side. Coating in which each processing chamber is provided with a transfer member that is subjected to the processing and transfers the granular particles in the processing chamber to the processing chamber adjacent to the other axial end or the outside of the rotating drum. In the apparatus, there is provided transfer member switching means for switching the transfer member between a predetermined position above the powder layer made of the powder particles and a predetermined position below the upper predetermined position, and the powder particles During the processing of body particles, the transfer A member is disposed at the upper predetermined position, and when the powder particles are transferred, the transfer member is disposed at the lower predetermined position, and the powder particles are moved by the transfer member as the processing chamber rotates. It is characterized by being guided.
 この構成であれば、粉粒体粒子の処理中には、移送部材が上側所定位置に配置される。そして、上側所定位置は粉粒体層より上側である。従って、粉粒体粒子の処理に移送部材が影響を与えることを抑制できる。 With this configuration, the transfer member is arranged at a predetermined position on the upper side during the processing of the granular particles. And the upper side predetermined position is an upper side from a granular material layer. Therefore, it can suppress that a transfer member influences processing of granular material particles.
 そして、この構成であれば、粉粒体粒子の移送時には、処理室の下方で、処理室の回転によって移送部材まで誘導された粉粒体粒子が、移送部材によって案内され、処理室から排出される。この場合、粉粒体粒子を案内するのは、移送部材における処理室の回転方向後側の部位である。従って、処理室から排出されるべき粉粒体粒子が、移送部材より回転方向後側の領域に位置するように、移送部材は配置される。このため、移送部材より回転方向前側の領域には、排出されるべき粉粒体粒子は存在しなくなる。そこで、処理室に供給される粉粒体粒子を、移送部材より回転方向前側の領域に導入するようにすれば、処理室からの粉粒体粒子の排出が完了する前でも、移送部材を境界として処理室から排出される粉粒体粒子と処理室に導入される粉粒体粒子とが混ざることを防止できる。従って、各処理室において、処理室からの粉粒体粒子の排出と処理室への粉粒体粒子の供給を、並行して実施することが可能となる。これにより、回転ドラムが複数の処理室を備えたコーティング装置において、粉粒体粒子を効率良く移送することが可能となる。 With this configuration, when the granular particles are transferred, the granular particles guided to the transfer member by the rotation of the processing chamber below the processing chamber are guided by the transfer member and discharged from the processing chamber. The In this case, it is a part of the transfer member on the rear side in the rotation direction of the processing chamber that guides the granular particles. Therefore, the transfer member is arranged so that the granular particles to be discharged from the processing chamber are located in a region on the rear side in the rotation direction from the transfer member. For this reason, the granular material particle | grains which should be discharged | emitted do not exist in the area | region ahead of a rotation direction from a transfer member. Therefore, if the granular particles supplied to the processing chamber are introduced to the region on the front side in the rotational direction from the transfer member, the transfer member is bounded even before the discharge of the granular particles from the processing chamber is completed. As a result, it is possible to prevent mixing of the granular particles discharged from the processing chamber and the granular particles introduced into the processing chamber. Therefore, in each processing chamber, discharge of the granular particles from the processing chamber and supply of the granular particles to the processing chamber can be performed in parallel. Thereby, in a coating apparatus in which the rotating drum includes a plurality of processing chambers, it is possible to efficiently transfer the powder particles.
 上記構成において、複数の前記処理室の間を仕切る仕切り部材が設けられ、該仕切り部材は、前記粉粒体粒子が通過するための通過部を有し、前記仕切り部材の通過部を、前記粉粒体粒子からなる粉粒体層より上方の所定位置と、該上方所定位置より下方の所定位置とに切り換える通過部切り換え手段が設けられ、前記粉粒体粒子の処理中には、前記通過部が前記上方所定位置に配置され、前記粉粒体粒子の移送時には、前記通過部が前記下方所定位置に配置され、前記通過部を粉粒体粒子が通過するようにしてもよい。 The said structure WHEREIN: The partition member which partitions off between the said several processing chambers is provided, This partition member has a passage part for the said granular material particle | grains to pass through, The passage part of the said partition member is made into the said powder. Passing part switching means for switching between a predetermined position above the granular particle layer made of granular particles and a predetermined position below the predetermined upper position is provided, and during the processing of the granular particles, the passing part May be arranged at the upper predetermined position, and when the powder particles are transferred, the passage part may be arranged at the lower predetermined position so that the powder particles pass through the passage part.
 この構成であれば、粉粒体粒子の処理中には、上方所定位置に通過部が配置される。そして、上方所定位置は、粉粒体層より上方である。従って、粉粒体粒子の処理中には、処理室から隣接する処理室に粉粒体粒子が移動することが、仕切り部材によって防止される。 If it is this composition, a passage part will be arranged in the upper predetermined position during processing of granular material particles. And the upper predetermined position is above a granular material layer. Therefore, during the processing of the granular particles, the partition member prevents the granular particles from moving from the processing chamber to the adjacent processing chamber.
 そして、この構成であれば、粉粒体粒子の移送時には、通過部が下方所定位置に配置され、移送中の粉粒体粒子が仕切り部材の通過部を通過するので、仕切り部材が粉粒体粒子の移送に干渉することを抑制できる。また、粉粒体粒子の移送時でも、通過部以外は仕切り部材で仕切られているので、通過部の位置を調整することにより、軸方向他端側の処理室における粉粒体粒子が導入される位置を確実に設定することができる。 And if it is this structure, when a granular material particle is transferred, since a passage part is arranged in the lower predetermined position and the granular material particle under transfer passes the passage part of a partition member, a partition member is a granular material. Interference with particle transfer can be suppressed. In addition, even when the granular particles are transferred, since the parts other than the passing portion are partitioned by the partition member, the granular particles in the processing chamber on the other axial end side are introduced by adjusting the position of the passing portion. Position can be set reliably.
 そして、この構成で、前記粉粒体粒子の移送時に、前記仕切り部材の通過部が、軸方向他端側の処理室における前記移送部材より処理室の回転方向前側に通じるようにしてもよい。 Then, with this configuration, when the powder particles are transferred, the passage portion of the partition member may lead to the front side in the rotational direction of the processing chamber from the transfer member in the processing chamber on the other axial end side.
 この構成であれば、軸方向他端側の処理室における移送部材より処理室の回転方向前側に、粉粒体粒子を導入することができる。従って、上述のように、移送部材を境界として処理室から排出される粉粒体粒子と処理室に導入される粉粒体粒子とが混ざることを防止できる。 With this configuration, the granular particles can be introduced to the front side in the rotation direction of the processing chamber from the transfer member in the processing chamber on the other axial end side. Therefore, as described above, it is possible to prevent mixing of the granular particles discharged from the processing chamber with the transfer member as a boundary and the granular particles introduced into the processing chamber.
 また、上記何れかの構成において、最も他端側の処理室の他端側に開口部が設けられ、前記粉粒体粒子を前記回転ドラムの外部に排出するための排出部材が最も他端側の処理室の内部に設けられ、前記開口部における内周面が、他端側に向かって漸次拡径した形状に形成され、前記排出部材は、前記回転ドラムの回転により最も他端側の処理室の内部における粉粒体粒子を前記開口部に案内し、前記開口部に案内された粉粒体粒子は前記開口部の内周面に案内されて前記開口部から前記回転ドラムの外部に排出されるようにしてもよい。 In any of the above-described configurations, an opening is provided on the other end side of the processing chamber on the other end side, and the discharge member for discharging the granular particles to the outside of the rotating drum is the other end side. The inner peripheral surface of the opening is formed in a shape that gradually increases in diameter toward the other end side, and the discharge member is disposed on the other end side by the rotation of the rotating drum. The granular particles inside the chamber are guided to the opening, and the granular particles guided to the opening are guided to the inner peripheral surface of the opening and discharged from the opening to the outside of the rotating drum. You may be made to do.
 この構成であれば、排出プレート等の排出部材により、最も他端側の処理室の内部における粉粒体粒子を開口部から円滑に排出することができ、かつ、点検作業等を安全かつ効率的に行うことができる。また、この構成において、更に、最も一端側の処理室の一端側に第2の開口部が設けられ、前記粉粒体粒子を前記回転ドラムの外部に排出するための排出部材が最も一端側の処理室の内部に設けられ、前記第2の開口部における内周面が、一端側に向かって漸次拡径した形状に形成され、前記排出部材は、前記回転ドラムの回転により最も一端側の処理室の内部における粉粒体粒子を前記第2の開口部に案内し、前記第2の開口部に案内された粉粒体粒子は前記第2の開口部の内周面に案内されて前記第2の開口部から前記回転ドラムの外部に排出されるようにすることもできる。この場合には、排出プレート等の排出部材により、最も一端側の処理室の内部における粉粒体粒子を第2の開口部から円滑に排出することができ、かつ、点検作業等を安全かつ効率的に行うことができる。 If it is this structure, the granular material particle | grains in the inside of the processing chamber of the other end side can be smoothly discharged | emitted from an opening part by discharge | emission members, such as a discharge | emission plate, and inspection work etc. are safe and efficient. Can be done. Further, in this configuration, a second opening is further provided on one end side of the processing chamber on the most end side, and a discharge member for discharging the granular particles to the outside of the rotating drum is on the most end side. Provided inside the processing chamber, the inner peripheral surface of the second opening is formed in a shape that gradually increases in diameter toward one end side, and the discharge member is processed at the most end side by the rotation of the rotating drum. The granular particles inside the chamber are guided to the second opening, and the granular particles guided to the second opening are guided to the inner peripheral surface of the second opening and the first It can also be made to discharge outside the rotating drum from the two openings. In this case, the granular material particles in the processing chamber on the most end side can be smoothly discharged from the second opening by the discharge member such as the discharge plate, and inspection work and the like can be performed safely and efficiently. Can be done automatically.
 また、上記何れかの構成において、前記処理気体の給気条件と、前記液材の噴霧条件の少なくとも一方を、前記処理室毎に個別的に制御してもよい。 In any one of the above-described configurations, at least one of the supply condition of the processing gas and the spray condition of the liquid material may be individually controlled for each processing chamber.
 この構成であれば、各処理室での処理を最適かつ効率的に行うことができ、これにより、コーティング品質に優れた粉粒体製品を効率的に収率よく製造することができる。 With this configuration, processing in each processing chamber can be performed optimally and efficiently, and thereby, a granular product excellent in coating quality can be efficiently manufactured with high yield.
 本発明によれば、回転ドラムが複数の処理室を備えたコーティング装置において、粉粒体粒子を効率良く移送することができる。 According to the present invention, the granular particles can be efficiently transferred in the coating apparatus in which the rotating drum includes a plurality of processing chambers.
第1の実施形態に係るコーティング装置の縦断面図である。It is a longitudinal cross-sectional view of the coating apparatus which concerns on 1st Embodiment. 第1の実施形態に係るコーティング装置を概念的に示す横断面図である。1 is a cross-sectional view conceptually showing a coating apparatus according to a first embodiment. 図1の状態の仕切り板を図1の右側から見た図である。It is the figure which looked at the partition plate of the state of FIG. 1 from the right side of FIG. 図1の状態の仕切り板を図1の右側から見た図である。It is the figure which looked at the partition plate of the state of FIG. 1 from the right side of FIG. 図1の状態の仕切り板を図1の右側から見た図である。It is the figure which looked at the partition plate of the state of FIG. 1 from the right side of FIG. 排出板の配置を示す回転ドラムの胴体部の展開図である。It is an expanded view of the trunk | drum part of the rotating drum which shows arrangement | positioning of a discharge plate. 排出板の配置を示す回転ドラムの胴体部の展開図である。It is an expanded view of the trunk | drum part of the rotating drum which shows arrangement | positioning of a discharge plate. 排出板の配置を示す回転ドラムの胴体部の展開図である。It is an expanded view of the trunk | drum part of the rotating drum which shows arrangement | positioning of a discharge plate. 第2の実施形態に係るコーティング装置の縦断面図である。It is a longitudinal cross-sectional view of the coating apparatus which concerns on 2nd Embodiment. 参考例としてのコーティング装置の縦断面図である。It is a longitudinal cross-sectional view of the coating apparatus as a reference example. 図6のA-A線矢視断面図である。FIG. 7 is a cross-sectional view taken along line AA in FIG. 6. 粉粒体粒子を移送する動作の説明図である。It is explanatory drawing of the operation | movement which transfers a granular material particle | grain. 粉粒体粒子を移送する動作の説明図である。It is explanatory drawing of the operation | movement which transfers a granular material particle | grain. 粉粒体粒子を移送する動作の説明図である。It is explanatory drawing of the operation | movement which transfers a granular material particle | grain. 粉粒体粒子を移送する動作の説明図である。It is explanatory drawing of the operation | movement which transfers a granular material particle | grain. 粉粒体粒子を移送する動作の説明図である。It is explanatory drawing of the operation | movement which transfers a granular material particle | grain. 掻き出し板の初期位置への復帰動作の説明図である。It is explanatory drawing of the return operation | movement to the initial position of a scraping board. 掻き出し板の初期位置への復帰動作の説明図である。It is explanatory drawing of the return operation | movement to the initial position of a scraping board. 掻き出し板の初期位置への復帰動作の説明図である。It is explanatory drawing of the return operation | movement to the initial position of a scraping board. 掻き出し板の初期位置への復帰動作の説明図である。It is explanatory drawing of the return operation | movement to the initial position of a scraping board. 掻き出し板の初期位置への復帰動作の説明図である。It is explanatory drawing of the return operation | movement to the initial position of a scraping board.
 以下、本発明の実施形態を、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1及び図2は、第1の実施形態に係るコーティング装置を示している。この実施形態のコーティング装置は、水平方向の軸線回りに回転する回転ドラム1と、回転ドラム1を収容するケーシング2とを備えている。 1 and 2 show a coating apparatus according to the first embodiment. The coating apparatus of this embodiment includes a rotating drum 1 that rotates around a horizontal axis, and a casing 2 that houses the rotating drum 1.
 図1に示すように、回転ドラム1は、軸線方向に沿って区画された複数の処理室、例えば3つの処理室1a、1b、1cを備えており、これに対応して、ケーシング2も軸線方向に沿って区画された複数の収容室、例えば3つの収容室2a、2b、2cを備えている。 As shown in FIG. 1, the rotating drum 1 includes a plurality of processing chambers, for example, three processing chambers 1a, 1b, and 1c, which are partitioned along the axial direction. Correspondingly, the casing 2 also has an axial line. A plurality of storage chambers divided along the direction, for example, three storage chambers 2a, 2b, and 2c are provided.
 また、回転ドラム1は、軸方向一端の一端開口部1dと軸方向他端の他端開口部1eを有する。なお、軸方向一端は、図1で左側、軸方向他端は、図1で右側である(特に説明のない限り、以下同じ)。 Further, the rotary drum 1 has one end opening 1d at one end in the axial direction and the other end opening 1e at the other end in the axial direction. One end in the axial direction is the left side in FIG. 1, and the other end in the axial direction is the right side in FIG. 1 (the same applies hereinafter unless otherwise specified).
 回転ドラム1の一端開口部1dの内部空間は、粉粒体粒子を供給するための供給ゾーン1fを構成する。また、回転ドラム1内の処理室1cと他端開口部1eとの間の空間は、粉粒体粒子を排出するための排出ゾーン1gを構成する。排出ゾーン1gは、回転ドラム1における排出ゾーン1gに対応する周壁1g1の一部に設けられた排出開口部1hを介して回転ドラム1の外部に通じている。周壁1g1は、回転ドラム1の内外を通気する多孔板等からなる通気部は有さない。また、ケーシング2には、回転ドラム1に供給される粉粒体粒子を投入するための投入シュート2dと、回転ドラム1から排出された粉粒体粒子をコーティング装置の外部に排出するための排出シュート2eが付設されている。 The internal space of the one-end opening 1d of the rotating drum 1 constitutes a supply zone 1f for supplying powder particles. The space between the processing chamber 1c and the other end opening 1e in the rotary drum 1 constitutes a discharge zone 1g for discharging the powder particles. The discharge zone 1g communicates with the outside of the rotary drum 1 through a discharge opening 1h provided in a part of the peripheral wall 1g1 corresponding to the discharge zone 1g in the rotary drum 1. The peripheral wall 1g1 does not have a ventilation portion made of a perforated plate or the like that ventilates the inside and outside of the rotary drum 1. Further, the casing 2 has a charging chute 2d for charging the granular particles supplied to the rotary drum 1, and a discharge for discharging the granular particles discharged from the rotating drum 1 to the outside of the coating apparatus. A chute 2e is attached.
 回転ドラム1は、横断面が円形状で、ケーシング2に対して、例えば一端開口部1dに取り付けられた軸受1iと他端開口部1eに取り付けられた軸受1jによって、回転自在に収容される。また、回転ドラム1は、収容室2a、2b、2cに対しても回転自在である。回転ドラム1は、回転駆動機構1kにより正転及び逆転駆動される。回転駆動機構1kは、本実施形態では、一端開口部1dの外周に設けられたスプロケット1k1と、スプロケット1k1に係合するチェーン1k2と、チェーン1k2を回転駆動する駆動源1k3とで構成される。本実施形態では、回転ドラム1は、処理室1a、1b、1cごとに分割されていない。従って、回転ドラム1の正転及び逆転に伴い、処理室1a、1b、1cは正転及び逆転する。 The rotary drum 1 has a circular cross section, and is rotatably accommodated in the casing 2 by, for example, a bearing 1i attached to the one end opening 1d and a bearing 1j attached to the other end opening 1e. The rotating drum 1 is also rotatable with respect to the storage chambers 2a, 2b, and 2c. The rotary drum 1 is driven forward and reverse by a rotary drive mechanism 1k. In the present embodiment, the rotational drive mechanism 1k includes a sprocket 1k1 provided on the outer periphery of the one end opening 1d, a chain 1k2 that engages with the sprocket 1k1, and a drive source 1k3 that rotationally drives the chain 1k2. In the present embodiment, the rotating drum 1 is not divided into the processing chambers 1a, 1b, and 1c. Therefore, the processing chambers 1a, 1b, and 1c are rotated forward and backward as the rotating drum 1 is rotated forward and backward.
 この実施形態において、回転ドラム1における処理室1a、1b、1cに対応する周壁である胴体部1a1、1b1、1c1の直径は、軸方向他端側に位置するものほど大きくなっている(1a1<1b1<1c1)。そして、胴体部1a1、1b1、1c1は、それぞれ、全周に亘って回転ドラム1の内外を通気する多孔板等からなる通気部を有しており、個別に設けられた排気ダクト3a(3b、3c)の排気口3a1(3b1、3c1)と所定位置で気密に摺接する。 In this embodiment, the diameters of the body portions 1a1, 1b1, 1c1, which are peripheral walls corresponding to the processing chambers 1a, 1b, 1c in the rotary drum 1, are larger as they are located on the other end side in the axial direction (1a1 < 1b1 <1c1). The body portions 1a1, 1b1, and 1c1 each have a ventilation portion made of a perforated plate that ventilates the inside and outside of the rotary drum 1 over the entire circumference, and the exhaust ducts 3a (3b, 3b, 3c) is in air-tight sliding contact with the exhaust port 3a1 (3b1, 3c1) at a predetermined position.
 図2に示すように、ケーシング2の収容室2a、2b、2cには、それぞれ、給気ダクト4a、4b、4cが接続されており、給気ダクト4a、4b、4cから収容室2a、2b、2c内に供給された熱風等の処理気体は、胴体部1a1、1b1、1c1の通気部から処理室1a、1b、1c内に入り、処理室1a、1b、1c内の粉粒体層Mを通過して、排気口3a1(3b1、3c1)から排気ダクト3a(3b、3c)に排気される。 As shown in FIG. 2, air supply ducts 4a, 4b, and 4c are connected to the storage chambers 2a, 2b, and 2c of the casing 2, respectively, and the storage chambers 2a and 2b are connected to the air supply ducts 4a, 4b, and 4c, respectively. The processing gas such as hot air supplied into 2c enters the processing chambers 1a, 1b, and 1c from the ventilation portions of the body portions 1a1, 1b1, and 1c1, and the granular material layer M in the processing chambers 1a, 1b, and 1c. And is exhausted from the exhaust port 3a1 (3b1, 3c1) to the exhaust duct 3a (3b, 3c).
 また、図1に示すように、回転ドラム1の処理室1a、1b、1cには、それぞれ、液材、例えば膜材液等のスプレー液を噴霧するスプレーノズル5a、5b、5cが設置される。スプレーノズル5a、5b、5cは、ケーシング2の外部から回転ドラム1内に延在するスプレーアーム5dに取り付けられている。スプレー液は、スプレーアーム5d内を経由してスプレーノズル5a、5b、5cに供給される。 As shown in FIG. 1, spray chambers 5a, 5b, and 5c for spraying a liquid material, for example, a spray liquid such as a film material liquid, are installed in the processing chambers 1a, 1b, and 1c of the rotary drum 1, respectively. . The spray nozzles 5 a, 5 b and 5 c are attached to a spray arm 5 d extending from the outside of the casing 2 into the rotary drum 1. The spray liquid is supplied to the spray nozzles 5a, 5b, and 5c via the spray arm 5d.
 本実施形態のコーティング装置には、処理室1a、1b、1c内の粉粒体粒子を軸方向他端側に隣接する処理室1b、1c又は排出ゾーン1gに移送する移送部材としての排出板6a、6b、6cが各処理室1a、1b、1cに設けられている。また、処理室1a、1b、1cと軸方向他端側に隣接する処理室1b、1c又は排出ゾーン1gとの間を仕切る仕切り部材としての仕切り板7a、7b、7cが設けられている。また、本実施形態では、処理室1aと供給ゾーン1fとの間の間を仕切る仕切り板7dも設けられている。 In the coating apparatus of this embodiment, the discharge plate 6a as a transfer member that transfers the granular particles in the processing chambers 1a, 1b, and 1c to the processing chambers 1b and 1c adjacent to the other axial end side or the discharge zone 1g. , 6b, 6c are provided in each processing chamber 1a, 1b, 1c. In addition, partition plates 7a, 7b, and 7c are provided as partition members that partition between the processing chambers 1a, 1b, and 1c and the processing chambers 1b and 1c adjacent to the other axial end side or the discharge zone 1g. Moreover, in this embodiment, the partition plate 7d which partitions off between the process chamber 1a and the supply zone 1f is also provided.
 本実施形態では、仕切り板7a~7dが、排出板6a、6b、6cによって連結され、相互に固定されている。また、仕切り板7a~7dの間を軸方向に沿って連結固定する連結部材8a、8b、8cも設けられている。連結部材8a、8b、8cには、各処理室1a、1b、1cで処理中に粉粒体粒子を撹拌するためのバッフル9a、9b、9cが固定されている。 In this embodiment, the partition plates 7a to 7d are connected by the discharge plates 6a, 6b, and 6c and fixed to each other. Further, connecting members 8a, 8b and 8c for connecting and fixing the partition plates 7a to 7d along the axial direction are also provided. Baffles 9a, 9b, and 9c for agitating the powder particles during processing in the processing chambers 1a, 1b, and 1c are fixed to the connecting members 8a, 8b, and 8c.
 そして、コーティング装置には、排出板6a、6b、6cの位置を切り換える移送部材切り換え手段10が設けられている。移送部材切り換え手段10は、仕切り板7cに取り付けられた駆動軸10aと駆動軸10aを回動させる駆動源10bを備える。駆動軸10aは、回転ドラム1の他端開口部1eによって軸受10a1を介して回転自在に支持されている。 And the coating device is provided with a transfer member switching means 10 for switching the positions of the discharge plates 6a, 6b, 6c. The transfer member switching means 10 includes a drive shaft 10a attached to the partition plate 7c and a drive source 10b for rotating the drive shaft 10a. The drive shaft 10a is rotatably supported by the other end opening 1e of the rotary drum 1 via a bearing 10a1.
 また、仕切り板7dには、軸方向一端側に延びる円筒状の支持部11が設けられている。この支持部11の一端側端部は、スプレーアーム5dに固定された閉塞部材5d1によって、閉塞されている。支持部11は、閉塞部材5d1に対して、回転自在である。また、支持部11は、ケーシング2によって軸受11aを介して回転自在に支持されている。 Further, the partition plate 7d is provided with a cylindrical support portion 11 extending toward one end side in the axial direction. One end of the support portion 11 is closed by a closing member 5d1 fixed to the spray arm 5d. The support portion 11 is rotatable with respect to the closing member 5d1. Further, the support portion 11 is rotatably supported by the casing 2 via a bearing 11a.
 図3A~図3Cに示すように、仕切り板7a、7b、7cは、粉粒体粒子が通過するための通過部としての開口部7a1、7b1、7c1をそれぞれ有する。また、仕切り板7dも、通過部としての開口部7d1を有する(図1、図4A参照)。上述のように、仕切り板7a、7b、7cは、排出板6a、6b、6c及び連結部材8a、8b、8cに連結固定されているので、排出板6a、6b、6cと共に、図3A~図3Cの白矢印のように、移送部材切り換え手段10によって、位置が切り換えられる。詳述すれば、排出板6a、6b、6cは、粉粒体粒子からなる粉粒体層Mより上側の所定位置H1a、H1b、H1cと、該上側所定位置H1a、H1b、H1cより下側の所定位置L1a、L1b、L1c(図3A~図3Cに二点鎖線で示す)とに、移送部材切り換え手段10によって切り換えられる。また、仕切り板7a、7b、7cの開口部7a1、7b1、7c1も、粉粒体層Mより上方の所定位置H2a、H2b、H2cと、該上方所定位置H2a、H2b、H2cより下方の所定位置L2a、L2b、L2c(図3A~図3Cに二点鎖線で示す)とに、移送部材切り換え手段10によって切り換えられる。なお、図示は省略するが、仕切り板7a、7b、7cの開口部7a1、7b1、7c1と同様に、仕切り板7dの開口部7d1も、粉粒体層Mより上方の所定位置と、該上方所定位置より下方の所定位置とに、移送部材切り換え手段10によって切り換えられる。 As shown in FIGS. 3A to 3C, the partition plates 7a, 7b, and 7c have openings 7a1, 7b1, and 7c1, respectively, as passage portions through which the granular particles pass. The partition plate 7d also has an opening 7d1 as a passage portion (see FIGS. 1 and 4A). As described above, since the partition plates 7a, 7b, and 7c are connected and fixed to the discharge plates 6a, 6b, and 6c and the connecting members 8a, 8b, and 8c, together with the discharge plates 6a, 6b, and 6c, FIG. The position is switched by the transfer member switching means 10 as indicated by the white arrow of 3C. Specifically, the discharge plates 6a, 6b, and 6c are provided at predetermined positions H1a, H1b, and H1c above the granular layer M made of granular particles and below the predetermined positions H1a, H1b, and H1c. Switching to a predetermined position L1a, L1b, L1c (indicated by a two-dot chain line in FIGS. 3A to 3C) is performed by the transfer member switching means 10. Further, the openings 7a1, 7b1, and 7c1 of the partition plates 7a, 7b, and 7c are also provided at predetermined positions H2a, H2b, and H2c above the granular material layer M and at predetermined positions below the upper predetermined positions H2a, H2b, and H2c. Switching to L2a, L2b, L2c (indicated by a two-dot chain line in FIGS. 3A to 3C) is performed by the transfer member switching means 10. Although illustration is omitted, like the openings 7a1, 7b1, and 7c1 of the partition plates 7a, 7b, and 7c, the opening 7d1 of the partition plate 7d also has a predetermined position above the granular material layer M and the upper The transfer member switching means 10 switches the position to a predetermined position below the predetermined position.
 図4A~図4Cで、二点鎖線は、処理室1a、1b、1cの周壁(胴体部1a1、1b1、1c1)のそれぞれを周方向に8等分する仮想の線である。図4A~図4Cで、点線は、仕切り板7a~7dの開口部7a1~7d1の位置を示す。図4A~図4Cの白矢印は、粉粒体粒子を移送する時の回転ドラム1の回転方向を示す。つまり、図4A~図4Cの下側が、回転ドラム1の回転方向の前側である。なお、本実施形態では、粉粒体粒子移送時の回転ドラム1の回転方向は、粉粒体粒子処理時の回転ドラム1の回転方向とは反対である。図4A~図4Cから分かるように、排出板6a、6b、6cは、回転ドラム1の軸方向に対して傾斜している。また、仕切り板7a、7b、7cの開口部7a1、7b1、7c1は、軸方向他端側の処理室1b、1cにおける排出板6b、6cより、粉粒体粒子移送時の回転ドラム1の回転方向前側に開口している。また、仕切り板7dの開口部7d1も、処理室1aにおける排出板6aより、粉粒体粒子移送時の回転ドラム1の回転方向前側に開口している。 4A to 4C, the two-dot chain line is a virtual line that divides each of the peripheral walls (body portions 1a1, 1b1, 1c1) of the processing chambers 1a, 1b, 1c into eight equal parts in the circumferential direction. 4A to 4C, dotted lines indicate the positions of the openings 7a1 to 7d1 of the partition plates 7a to 7d. The white arrows in FIGS. 4A to 4C indicate the rotation direction of the rotary drum 1 when the powder particles are transferred. That is, the lower side of FIGS. 4A to 4C is the front side of the rotating direction of the rotating drum 1. In this embodiment, the rotation direction of the rotary drum 1 at the time of powder particle transfer is opposite to the rotation direction of the rotary drum 1 at the time of powder particle processing. As can be seen from FIGS. 4A to 4C, the discharge plates 6a, 6b, 6c are inclined with respect to the axial direction of the rotary drum 1. Further, the openings 7a1, 7b1, and 7c1 of the partition plates 7a, 7b, and 7c are rotated by the rotating drum 1 when the granular particles are transferred from the discharge plates 6b and 6c in the processing chambers 1b and 1c on the other axial end side. Open to the front side. Further, the opening 7d1 of the partition plate 7d is also opened from the discharge plate 6a in the processing chamber 1a to the front side in the rotational direction of the rotary drum 1 when the granular particles are transferred.
 粉粒体粒子の処理中には、移送部材切り換え手段10によって、排出板6a、6b、6cが上側所定位置H1a、H1b、H1cに配置固定されると共に、仕切り板7a、7b、7cの開口部7a1、7b1、7c1が上方所定位置H2a、H2b、H2cに配置固定される(仕切り板7dの開口部7d1も上方所定位置に配置固定される)。また、バッフル9a、9b、9cは、下方の所定位置に配置固定される(図1参照)。上側所定位置H1a、H1b、H1cは粉粒体層Mより上側なので、粉粒体粒子の処理に排出板6a、6b、6cが影響を与えることを抑制できる。また、上方所定位置H2a、H2b、H2cは、粉粒体層Mより上方なので、粉粒体粒子の処理中には、軸方向他端側に隣接する処理室1b、1cや排出ゾーン1gに粉粒体粒子が移動することが、仕切り板7a、7b、7cによって防止される。また、バッフル9a、9b、9cによって、粉粒体粒子の撹拌効率が向上する。 During the processing of the granular particles, the discharge plates 6a, 6b, 6c are arranged and fixed at the upper predetermined positions H1a, H1b, H1c by the transfer member switching means 10, and the openings of the partition plates 7a, 7b, 7c. 7a1, 7b1, and 7c1 are arranged and fixed at the upper predetermined positions H2a, H2b, and H2c (the opening 7d1 of the partition plate 7d is also arranged and fixed at the upper predetermined position). Further, the baffles 9a, 9b, 9c are arranged and fixed at predetermined positions below (see FIG. 1). Since the upper predetermined positions H1a, H1b, and H1c are above the granular material layer M, it is possible to suppress the discharge plates 6a, 6b, and 6c from affecting the processing of the granular particles. Further, since the upper predetermined positions H2a, H2b, and H2c are higher than the powder layer M, the powder particles are processed in the processing chambers 1b and 1c and the discharge zone 1g adjacent to the other end in the axial direction during the processing of the powder particles. The movement of the granule particles is prevented by the partition plates 7a, 7b and 7c. Further, the baffles 9a, 9b, and 9c improve the stirring efficiency of the powder particles.
 一方、粉粒体粒子の移送時には、移送部材切り換え手段10によって、排出板6a、6b、6cが下側所定位置L1a、L1b、L1cに配置固定されると共に、仕切り板7a、7b、7cの開口部7a1、7b1、7c1が下方所定位置L2a、L2b、L2cに配置固定される(仕切り板7dの開口部7d1も下方所定位置に配置固定される)。また、バッフル9a、9b、9cは、上方の所定位置に配置固定される。 On the other hand, when transferring the granular particles, the discharge plates 6a, 6b, 6c are arranged and fixed at the lower predetermined positions L1a, L1b, L1c by the transfer member switching means 10 and the openings of the partition plates 7a, 7b, 7c. The portions 7a1, 7b1, and 7c1 are arranged and fixed at predetermined lower positions L2a, L2b, and L2c (the opening 7d1 of the partition plate 7d is also arranged and fixed at a predetermined lower position). Further, the baffles 9a, 9b, 9c are arranged and fixed at predetermined positions above.
 粉粒体粒子の移送時には、処理室1a、1b、1cの下側所定位置L1a、L1b、L1cに固定された排出板6a、6b、6cまで、回転ドラム1の回転によって粉粒体粒子が誘導される。そして、この粉粒体粒子は、排出板6a、6b、6cが軸線に対して傾斜していることにより、排出板6a、6b、6cによって仕切り板7a、7b、7cの開口部7a1、7b1、7c1に案内され、開口部7a1、7b1、7c1を通過して処理室1a、1b、1cから排出される。そして、仕切り板7a、7bの開口部7a1、7b1は、処理室1b、1cにおける排出板6b、6cよりも、回転ドラム1の回転方向前側に開口しているので、処理室1b、1cにおける排出板6b、6cよりも、回転ドラム1の回転方向前側に粉粒体粒子を導入することができる。これにより、排出板6bを境界として、処理室1bから排出される粉粒体粒子と処理室1bに導入される粉粒体粒子とが混ざることを防止でき、排出板6cを境界として、処理室1cから排出される粉粒体粒子と処理室1cに導入される粉粒体粒子とが混ざることを防止できる。従って、各処理室1a、1b、1cにおいて、処理室1a、1b、1cからの粉粒体粒子の排出と処理室1b、1cへの粉粒体粒子の供給を、並行して実施することが可能となる。更に、バッフル9a、9b、9cは上方の所定位置に配置固定されるので、バッフル9a、9b、9cが粉粒体粒子の移送に干渉することがない。これにより、本実施形態のコーティング装置では、粉粒体粒子を効率良く移送することが可能となる。 During the transfer of the granular particles, the granular particles are guided by the rotation of the rotary drum 1 to the discharge plates 6a, 6b, 6c fixed to the lower predetermined positions L1a, L1b, L1c of the processing chambers 1a, 1b, 1c. Is done. And since this discharge particle | grain 6a, 6b, 6c inclines with respect to an axis line, this granular material particle | grain has opening part 7a1, 7b1, partition plate 7a, 7b, 7c by discharge plate 6a, 6b, 6c, Guided by 7c1, passes through the openings 7a1, 7b1, and 7c1, and is discharged from the processing chambers 1a, 1b, and 1c. And since the opening parts 7a1 and 7b1 of the partition plates 7a and 7b are opened to the front side in the rotation direction of the rotary drum 1 with respect to the discharge plates 6b and 6c in the processing chambers 1b and 1c, they are discharged in the processing chambers 1b and 1c. The powder particles can be introduced to the front side in the rotation direction of the rotary drum 1 rather than the plates 6b and 6c. Thereby, it can prevent that the granular material particle | grains discharged | emitted from the processing chamber 1b and the granular material particle | grains introduce | transduced into the processing chamber 1b are made into a boundary with the discharge plate 6b as a boundary, and the processing chamber has the discharge plate 6c as a boundary. Mixing of the granular particles discharged from 1c and the granular particles introduced into the processing chamber 1c can be prevented. Therefore, in each processing chamber 1a, 1b, 1c, discharge of the granular particles from the processing chambers 1a, 1b, 1c and supply of the granular particles to the processing chambers 1b, 1c can be performed in parallel. It becomes possible. Further, since the baffles 9a, 9b and 9c are arranged and fixed at predetermined positions above, the baffles 9a, 9b and 9c do not interfere with the transfer of the granular particles. Thereby, in the coating apparatus of this embodiment, it becomes possible to transfer granular material particle | grains efficiently.
 粉粒体粒子の移送時に、排出板6a、6b、6cの回転ドラム1の回転方向後側(図4A~図4Cで上側)の部位によって、粉粒体粒子が案内される。従って、排出されるべき粉粒体粒子は、下側所定位置L1a、L1b、L1cにおける排出板6a、6b、6cの回転方向後側の領域に、最初から配置されることが好ましい。このために、本実施形態では、排出板6a、6b、6cは、回転ドラム1の回転方向後側から下側所定位置L1a、L1b、L1cに向かうように(図3A~図3Cで、白矢印の下向き(反時計回り)に)、移送部材切り換え手段10によって移動される。 During the transfer of the granular particles, the granular particles are guided by the portion of the discharge plates 6a, 6b, 6c on the rear side in the rotation direction of the rotary drum 1 (the upper side in FIGS. 4A to 4C). Therefore, it is preferable that the powder particles to be discharged are arranged from the beginning in the region on the rear side in the rotation direction of the discharge plates 6a, 6b, 6c at the lower predetermined positions L1a, L1b, L1c. Therefore, in this embodiment, the discharge plates 6a, 6b, 6c are directed from the rear side in the rotation direction of the rotary drum 1 to the lower predetermined positions L1a, L1b, L1c (in FIG. 3A to FIG. 3C, white arrows). Downward (counterclockwise) by the transfer member switching means 10.
 排出板6a、6b、6cの下側所定位置L1a、L1b、L1cは、粉粒体粒子が全て排出されるように、排出板6a、6b、6cの軸線に対する傾斜角度、粉粒体粒子移送時の回転ドラム1の回転速度、粉粒体粒子の大きさや重量等を考慮して設定される。 The lower predetermined positions L1a, L1b, and L1c on the discharge plates 6a, 6b, and 6c are inclined with respect to the axis of the discharge plates 6a, 6b, and 6c so that all the powder particles are discharged. Is set in consideration of the rotational speed of the rotary drum 1 and the size and weight of the granular particles.
 上記のように構成された第1の実施形態のコーティング装置による粉粒体粒子に対する動作の全体の流れは次のようになる。 The overall flow of the operation on the granular particles by the coating apparatus of the first embodiment configured as described above is as follows.
 コーティング装置の初期状態(図1の状態)では、移送部材切り換え手段10によって、排出板6a、6b、6cと仕切り板7a、7b、7cの開口部7a1、7b1、7c1は、それぞれ上側所定位置H1a、H1b、H1cと上方所定位置H2a、H2b、H2cに配置固定されている(仕切り板7dの開口部7d1も上方所定位置に配置固定されている)。この状態では、供給ゾーン1f、処理室1a、1b、1c、排出ゾーン1gの下方は、相互に仕切り板7a~7dで仕切られている。 In the initial state of the coating apparatus (the state shown in FIG. 1), the transfer member switching means 10 causes the discharge plates 6a, 6b, 6c and the openings 7a1, 7b1, 7c1 of the partition plates 7a, 7b, 7c to be in the upper predetermined positions H1a. , H1b, H1c and upper predetermined positions H2a, H2b, H2c (the opening 7d1 of the partition plate 7d is also fixed at the upper predetermined position). In this state, the lower part of the supply zone 1f, the processing chambers 1a, 1b, 1c and the discharge zone 1g is partitioned by partition plates 7a to 7d.
 そして、被覆層を形成すべき錠剤等の粉粒体粒子をコーティング装置に投入する前に、移送部材切り換え手段10によって、排出板6a、6b、6cが下側所定位置L1a、L1b、L1cに配置固定されると共に、仕切り板7a、7b、7cの開口部7a1、7b1、7c1が下方所定位置L2a、L2b、L2cに配置固定される(仕切り板7dの開口部7d1も下方所定位置に配置固定される)。これにより、供給ゾーン1f、処理室1a、1b、1c、排出ゾーン1gの下方は、相互に開口部7a1~7d1で連通する。 The discharge plates 6a, 6b, 6c are placed at the lower predetermined positions L1a, L1b, L1c by the transfer member switching means 10 before the powder particles such as tablets to form the coating layer are put into the coating apparatus. In addition to being fixed, the openings 7a1, 7b1, 7c1 of the partition plates 7a, 7b, 7c are disposed and fixed at predetermined lower positions L2a, L2b, L2c (the opening 7d1 of the partition plate 7d is also disposed and fixed at a predetermined lower position). ) Thereby, the lower part of the supply zone 1f, the processing chambers 1a, 1b, 1c, and the discharge zone 1g communicate with each other through the openings 7a1 to 7d1.
 被覆層を形成すべき錠剤等の粉粒体粒子が、投入シュート2dから、コーティング装置に投入される。投入シュート2dから投入された粉粒体粒子は、回転ドラム1の供給ゾーン1f、下方所定位置に配置された仕切り板7dの開口部7d1を介して、処理室1aの内部に供給される。 Powder particles such as tablets to form a coating layer are charged into the coating apparatus from the charging chute 2d. The granular particles charged from the charging chute 2d are supplied into the processing chamber 1a through the supply zone 1f of the rotary drum 1 and the opening 7d1 of the partition plate 7d arranged at a predetermined position below.
 次に、移送部材切り換え手段10によって、初期状態(図1の状態)に切り換えられる。つまり、排出板6a、6b、6cと仕切り板7a、7b、7cの開口部7a1、7b1、7c1は、それぞれ上側所定位置H1a、H1b、H1cと上方所定位置H2a、H2b、H2cに配置固定される(仕切り板7dの開口部7d1も上方所定位置に配置固定されている)。これにより、供給ゾーン1f、処理室1a、1b、1c、排出ゾーン1gの下方は、相互に仕切り板7a~7dで仕切られる。 Next, the transfer member switching means 10 switches to the initial state (state shown in FIG. 1). That is, the discharge plates 6a, 6b, and 6c and the openings 7a1, 7b1, and 7c1 of the partition plates 7a, 7b, and 7c are arranged and fixed at the upper predetermined positions H1a, H1b, and H1c and the upper predetermined positions H2a, H2b, and H2c, respectively. (The opening 7d1 of the partition plate 7d is also arranged and fixed at a predetermined position above). Thereby, the lower part of the supply zone 1f, the processing chambers 1a, 1b, and 1c and the discharge zone 1g is partitioned by the partition plates 7a to 7d.
 そして、回転ドラム1が回転駆動機構1kにより正転駆動されると、処理室1aの正転に伴い、内部の粉粒体粒子が攪拌混合されて粉粒体層(転動床)Mが形成される。そして、粉粒体層Mに対して、スプレーノズル5aからスプレー液が噴霧される。粉粒体層Mに噴霧されたスプレー液は、処理室1aの正転に伴う粉粒体層Mの攪拌混合作用によって、各粉粒体粒子の表面に展延される。粉粒体粒子の表面に展延されたスプレー液は、処理室1aの内部に供給される処理気体(温風等)によって乾燥される。この処理気体は、給気ダクト4aから収容室2aの内部空間を介して処理室1a内に流入し、粉粒体層Mの中を通過して、排気口3a1から排気ダクト3aに排気される。処理気体が粉粒体層Mの中を通過することにより、各粉粒体粒子の表面に展延されたスプレー液が斑なく均一に乾燥されて第1被覆層が形成される。 When the rotary drum 1 is driven to rotate forward by the rotation drive mechanism 1k, the powder particles inside are agitated and mixed to form a powder particle layer (rolling bed) M along with the normal rotation of the processing chamber 1a. Is done. And a spray liquid is sprayed with respect to the granular material layer M from the spray nozzle 5a. The spray liquid sprayed on the granular material layer M is spread on the surface of each granular material particle by the stirring and mixing action of the granular material layer M accompanying the normal rotation of the processing chamber 1a. The spray liquid spread on the surface of the powder particles is dried by a processing gas (hot air or the like) supplied into the processing chamber 1a. The processing gas flows into the processing chamber 1a from the air supply duct 4a through the internal space of the storage chamber 2a, passes through the granular material layer M, and is exhausted from the exhaust port 3a1 to the exhaust duct 3a. . As the processing gas passes through the granular material layer M, the spray liquid spread on the surface of each granular particle is uniformly dried without unevenness, and a first coating layer is formed.
 処理室1aにおいて、上記の所定の処理が終了し、粉粒体粒子の表面に第1被覆層が形成されると、移送部材切り換え手段10によって、排出板6a、6b、6cと仕切り板7a、7b、7cの開口部7a1、7b1、7c1は、それぞれ下側所定位置L1a、L1b、L1cと下方所定位置L2a、L2b、L2cに配置固定される(仕切り板7dの開口部7d1も下方所定位置に配置固定される)。これにより、供給ゾーン1f、処理室1a、1b、1c、排出ゾーン1gの下方は、相互に開口部7a1~7d1で連通する。 In the processing chamber 1a, when the above predetermined processing is completed and the first coating layer is formed on the surface of the powder particles, the transfer member switching means 10 causes the discharge plates 6a, 6b, 6c and the partition plate 7a, The openings 7a1, 7b1, and 7c1 of 7b and 7c are respectively disposed and fixed at the lower predetermined positions L1a, L1b, and L1c and the lower predetermined positions L2a, L2b, and L2c (the opening 7d1 of the partition plate 7d is also at the lower predetermined position). Placement fixed). Thereby, the lower part of the supply zone 1f, the processing chambers 1a, 1b, 1c, and the discharge zone 1g communicate with each other through the openings 7a1 to 7d1.
 そして、回転ドラム1が回転駆動機構1kにより逆転駆動され、処理室1aの逆転に伴い、処理室1a内の粉粒体粒子が、上述したように、排出板6aによって、軸方向他端側に隣接する処理室1bに移送される。 Then, the rotary drum 1 is driven reversely by the rotational drive mechanism 1k, and the powder particles in the processing chamber 1a are moved to the other end side in the axial direction by the discharge plate 6a as described above. It is transferred to the adjacent processing chamber 1b.
 粉粒体粒子が処理室1aから処理室1bに移送されると、移送部材切り換え手段10によって、初期状態(図1の状態)に切り換えられる。つまり、排出板6a、6b、6cと仕切り板7a、7b、7cの開口部7a1、7b1、7c1は、それぞれ上側所定位置H1a、H1b、H1cと上方所定位置H2a、H2b、H2cに配置固定される(仕切り板7dの開口部7d1も上方所定位置に配置固定される)。これにより、供給ゾーン1f、処理室1a、1b、1c、排出ゾーン1gの下方は、相互に仕切り板7a~7dで仕切られる。 When the granular particles are transferred from the processing chamber 1a to the processing chamber 1b, the transfer member switching means 10 switches the initial state (the state of FIG. 1). That is, the discharge plates 6a, 6b, and 6c and the openings 7a1, 7b1, and 7c1 of the partition plates 7a, 7b, and 7c are arranged and fixed at the upper predetermined positions H1a, H1b, and H1c and the upper predetermined positions H2a, H2b, and H2c, respectively. (The opening 7d1 of the partition plate 7d is also arranged and fixed at a predetermined upper position). Thereby, the lower part of the supply zone 1f, the processing chambers 1a, 1b, and 1c and the discharge zone 1g is partitioned by the partition plates 7a to 7d.
 そして、回転ドラム1が回転駆動機構1kにより正転駆動され、処理室1bが正転駆動される。そして、処理室1bに設置されたスプレーノズル5bから、処理室1aで用いるスプレー液とは異なる成分のスプレー液が粉粒体粒子の被覆層(第1被覆層)の表面に噴霧され、上記と同様の態様で、第1被覆層の表面に第2被覆層が形成される。 Then, the rotary drum 1 is driven to rotate forward by the rotation drive mechanism 1k, and the processing chamber 1b is driven to rotate forward. And from the spray nozzle 5b installed in the processing chamber 1b, a spray liquid having a component different from the spray liquid used in the processing chamber 1a is sprayed on the surface of the coating layer (first coating layer) of the granular particles. In the same manner, the second coating layer is formed on the surface of the first coating layer.
 処理室1bにおいて、上記の所定の処理が終了し、粉粒体粒子の表面に第1及び第2被覆層が形成されると、移送部材切り換え手段10によって、排出板6a、6b、6cと仕切り板7a、7b、7cの開口部7a1、7b1、7c1は、それぞれ下側所定位置L1a、L1b、L1cと下方所定位置L2a、L2b、L2cに配置固定される(仕切り板7dの開口部7d1も下方所定位置に配置固定される)。これにより、供給ゾーン1f、処理室1a、1b、1c、排出ゾーン1gの下方は、相互に開口部7a1~7d1で連通する。 In the processing chamber 1b, when the above-described predetermined processing is completed and the first and second coating layers are formed on the surface of the granular particles, the transfer plates 10 are separated from the discharge plates 6a, 6b, 6c by the transfer member switching means 10. The openings 7a1, 7b1, 7c1 of the plates 7a, 7b, 7c are arranged and fixed at the lower predetermined positions L1a, L1b, L1c and the lower predetermined positions L2a, L2b, L2c, respectively (the opening 7d1 of the partition plate 7d is also below) Fixed in place). Thereby, the lower part of the supply zone 1f, the processing chambers 1a, 1b, 1c, and the discharge zone 1g communicate with each other through the openings 7a1 to 7d1.
 そして、回転ドラム1が回転駆動機構1kにより逆転駆動され、処理室1bの逆転に伴い、処理室1b内の粉粒体粒子が、上述したように、排出板6bによって、軸方向他端側に隣接する処理室1cに移送される。 Then, the rotary drum 1 is driven reversely by the rotational drive mechanism 1k, and the powder particles in the processing chamber 1b are moved to the other end side in the axial direction by the discharge plate 6b as described above with the reverse rotation of the processing chamber 1b. It is transferred to the adjacent processing chamber 1c.
 粉粒体粒子が処理室1bから処理室1cに移送されると、移送部材切り換え手段10によって、初期状態(図1の状態)に切り換えられる。つまり、排出板6a、6b、6cと仕切り板7a、7b、7cの開口部7a1、7b1、7c1は、それぞれ上側所定位置H1a、H1b、H1cと上方所定位置H2a、H2b、H2cに配置固定される(仕切り板7dの開口部7d1も上方所定位置に配置固定されている)。これにより、供給ゾーン1f、処理室1a、1b、1c、排出ゾーン1gの下方は、相互に仕切り板7a~7dで仕切られる。 When the granular particles are transferred from the processing chamber 1b to the processing chamber 1c, the transfer member switching means 10 switches the initial state (the state of FIG. 1). That is, the discharge plates 6a, 6b, and 6c and the openings 7a1, 7b1, and 7c1 of the partition plates 7a, 7b, and 7c are arranged and fixed at the upper predetermined positions H1a, H1b, and H1c and the upper predetermined positions H2a, H2b, and H2c, respectively. (The opening 7d1 of the partition plate 7d is also arranged and fixed at a predetermined position above). Thereby, the lower part of the supply zone 1f, the processing chambers 1a, 1b, and 1c and the discharge zone 1g is partitioned by the partition plates 7a to 7d.
 そして、回転ドラム1が回転駆動機構1kにより正転駆動され、処理室1cが正転駆動される。そして、処理室1cに設置されたスプレーノズル5cから、処理室1bで用いるスプレー液とは異なる成分のスプレー液が粉粒体粒子の第2被覆層の表面に噴霧され、上記と同様の態様で、第2被覆層の表面に第3被覆層が形成される。 Then, the rotary drum 1 is driven to rotate forward by the rotation drive mechanism 1k, and the processing chamber 1c is driven to rotate forward. And the spray liquid of the component different from the spray liquid used in the processing chamber 1b is sprayed from the spray nozzle 5c installed in the processing chamber 1c on the surface of the second coating layer of the granular particles, and in the same manner as described above. A third coating layer is formed on the surface of the second coating layer.
 処理室1cにおいて、上記の所定の処理が終了し、粉粒体粒子の表面に第1~第3被覆層が形成され、所望の粉粒体製品として完成されると、移送部材切り換え手段10によって、排出板6a、6b、6cと仕切り板7a、7b、7cの開口部7a1、7b1、7c1は、それぞれ下側所定位置L1a、L1b、L1cと下方所定位置L2a、L2b、L2cに配置固定される。(仕切り板7dの開口部7d1も下方所定位置に配置固定される)。これにより、供給ゾーン1f、処理室1a、1b、1c、排出ゾーン1gの下方は、相互に開口部7a1~7d1で連通する。 In the processing chamber 1c, when the above predetermined processing is completed, the first to third coating layers are formed on the surface of the granular particles, and the desired granular product is completed, the transfer member switching means 10 The discharge plates 6a, 6b and 6c and the openings 7a1, 7b1 and 7c1 of the partition plates 7a, 7b and 7c are arranged and fixed at lower predetermined positions L1a, L1b and L1c and lower predetermined positions L2a, L2b and L2c, respectively. . (The opening 7d1 of the partition plate 7d is also arranged and fixed at a predetermined position below). Thereby, the lower part of the supply zone 1f, the processing chambers 1a, 1b, 1c, and the discharge zone 1g communicate with each other through the openings 7a1 to 7d1.
 そして、回転ドラム1が回転駆動機構により逆転駆動され、処理室1cの逆転に伴い、処理室1c内の粉粒体製品が、上述したように、排出板6cによって、開口部7c1から排出ゾーン1gに移送される。排出ゾーン1gに移送された粉粒体製品は、周壁1g1の排出開口部1hを介して、回転ドラム1の外部に排出される。そして、回転ドラム1から排出された粉粒体製品は、排出シュート2eを介してケーシング2の外部に排出される。 Then, the rotary drum 1 is driven reversely by the rotary drive mechanism, and as the processing chamber 1c is rotated in reverse, the powder product in the processing chamber 1c is discharged from the opening 7c1 to the discharge zone 1g by the discharge plate 6c as described above. It is transferred to. The granular product transferred to the discharge zone 1g is discharged to the outside of the rotating drum 1 through the discharge opening 1h of the peripheral wall 1g1. And the granular material product discharged | emitted from the rotating drum 1 is discharged | emitted outside the casing 2 via the discharge chute 2e.
 その後、移送部材切り換え手段10によって、移送部材切り換え手段10によって、初期状態(図1の状態)に切り換えられる。つまり、排出板6a、6b、6cと仕切り板7a、7b、7cの開口部7a1、7b1、7c1は、それぞれ上側所定位置H1a、H1b、H1cと上方所定位置H2a、H2b、H2cに配置固定される(仕切り板7dの開口部7d1も上方所定位置に配置固定される)。これで、第1の実施形態のコーティング装置による粉粒体に対する動作は完了である。 Thereafter, the transfer member switching means 10 switches to the initial state (state shown in FIG. 1) by the transfer member switching means 10. That is, the discharge plates 6a, 6b, and 6c and the openings 7a1, 7b1, and 7c1 of the partition plates 7a, 7b, and 7c are arranged and fixed at the upper predetermined positions H1a, H1b, and H1c and the upper predetermined positions H2a, H2b, and H2c, respectively. (The opening 7d1 of the partition plate 7d is also arranged and fixed at a predetermined upper position). This completes the operation on the granular material by the coating apparatus of the first embodiment.
 コーティング装置による上記のコーティング処理は、バッチ式(回分式)で行っても良いし、連続式で行っても良い。ただし、本実施形態のコーティング装置は、上述のように、排出板6a、6b、6cを境界として、粉粒体粒子の移送の際に、処理室に供給中の粉粒体粒子とこの処理室から排出中の粉粒体粒子とは混ざらないので、連続式でコーティング処理を行うのに好適である。 The above coating treatment by the coating apparatus may be performed in a batch type (batch type) or a continuous type. However, as described above, the coating apparatus according to the present embodiment uses the discharge plates 6a, 6b, and 6c as boundaries, and the granular particles being supplied to the processing chamber and the processing chamber when the granular particles are transferred. Since it is not mixed with the granular particles being discharged from, it is suitable for continuous coating treatment.
 バッチ式で行う場合は、例えば、所定量の粉粒体粒子を回転ドラム1の処理室1aに投入し、処理室1a~1cでの一連の処理を順次に行って外部に排出した後、次の所定量の粉粒体粒子を回転ドラム1の処理室1aに投入して同様の処理を繰り返す。 In the case of performing the batch process, for example, a predetermined amount of powder particles are put into the processing chamber 1a of the rotary drum 1, and a series of processes in the processing chambers 1a to 1c are sequentially performed and discharged to the outside. A predetermined amount of the granular particles are put into the processing chamber 1a of the rotary drum 1 and the same processing is repeated.
 連続式で行う場合は、例えば、処理室1aでの粉粒体粒子の処理が終了し、粉粒体粒子を処理室1aから処理室1bに移送する際に、次の粉粒体粒子を処理室1aに投入し、処理室1a及び処理室1bで粉粒体粒子の処理と同時並行的に行う。そして、処理室1a及び処理室1bでの粉粒体粒子の処理が終了し、粉粒体粒子を処理室1aから処理室1b、処理室1bから処理室1cに移送する際に、次の粉粒体粒子を処理室1aに投入し、処理室1a、処理室1b及び処理室1cで粉粒体粒子の処理と同時並行的に行う。処理室1a、処理室1b及び処理室1cでの粉粒体粒子の処理が終了し、粉粒体粒子を処理室1aから処理室1b、処理室1bから処理室1cに移送すると共に、粉粒体製品を処理室1cから外部に排出する際に、さらに次の粉粒体粒子を処理室1aに投入し、処理室1a、処理室1b及び処理室1cで粉粒体粒子の処理と同時並行的に行い、以後、同様の操作を繰り返す。 In the case of performing in a continuous manner, for example, when the processing of the granular particles in the processing chamber 1a is completed and the granular particles are transferred from the processing chamber 1a to the processing chamber 1b, the next granular particles are processed. It puts into the chamber 1a and performs in parallel with the processing of the powder particles in the processing chamber 1a and the processing chamber 1b. Then, when the processing of the powder particles in the processing chamber 1a and the processing chamber 1b is completed, the next powder is transferred when the powder particles are transferred from the processing chamber 1a to the processing chamber 1b and from the processing chamber 1b to the processing chamber 1c. The granule particles are put into the processing chamber 1a, and are performed in parallel with the processing of the granular particles in the processing chamber 1a, the processing chamber 1b, and the processing chamber 1c. The processing of the granular particles in the processing chamber 1a, the processing chamber 1b, and the processing chamber 1c is completed, and the granular particles are transferred from the processing chamber 1a to the processing chamber 1b and from the processing chamber 1b to the processing chamber 1c. When the body product is discharged from the processing chamber 1c to the outside, the next powder particles are introduced into the processing chamber 1a, and simultaneously with the processing of the powder particles in the processing chamber 1a, the processing chamber 1b, and the processing chamber 1c. Thereafter, the same operation is repeated.
 コーティング装置では、粉粒体粒子に対するコーティング処理の初期段階の処理を行う処理室1aは、胴体部1a1の直径が最も小さいため、処理室1a内での粉粒体層Mの層高さを相対的に小さくして所定の処理(第1被覆層の形成)を行うことができる。これにより、粉粒体粒子が脆い物性を有するものであっても、重力等の影響に起因する割れや欠けが発生することが低減される。処理室1aで第1被覆層が形成された粉粒体粒子は、粒子径がやや大きくなった状態で処理室1bに移送されて所定の処理(第2被覆層の形成)が行われるが、処理室1bは、胴体部1b1の直径が処理室1aよりも大きいため、回転数が同じであっても、胴体部1b1の周速は処理室1aよりも大きくなる。そのため、処理室1bでは、スプレーノズル5bによるスプレー液の噴霧速度を処理室1aよりも大きくして、効率的な処理を行うことができる。また、処理室1bで第2被覆層が形成された粉粒体粒子は、粒子径が更に大きくなった状態で処理室1cに移送されて所定の処理(第3被覆層の形成)が行われるが、処理室1cは、胴体部1c1の直径が処理室1bよりも大きいため、回転数が同じであっても、胴体部1c1の周速は処理室1bよりも大きくなる。そのため、処理室1cでは、スプレーノズル5cによるスプレー液の噴霧速度を処理室1bよりも更に大きくして、効率的な処理を行うことができる。 In the coating apparatus, since the diameter of the body portion 1a1 is the smallest in the processing chamber 1a that performs the initial stage of the coating process on the granular particles, the layer height of the granular layer M in the processing chamber 1a is relatively set. Therefore, a predetermined process (formation of the first coating layer) can be performed. Thereby, even if the granular particles have fragile physical properties, the occurrence of cracks and chips due to the influence of gravity and the like is reduced. The granular particles on which the first coating layer is formed in the processing chamber 1a are transferred to the processing chamber 1b in a state where the particle diameter is slightly increased, and a predetermined processing (formation of the second coating layer) is performed. Since the diameter of the body 1b1 of the processing chamber 1b is larger than that of the processing chamber 1a, the peripheral speed of the body 1b1 is larger than that of the processing chamber 1a even if the rotation speed is the same. Therefore, in the processing chamber 1b, the spraying speed of the spray liquid by the spray nozzle 5b can be made larger than that in the processing chamber 1a, and efficient processing can be performed. In addition, the granular particles on which the second coating layer is formed in the processing chamber 1b are transferred to the processing chamber 1c in a state where the particle diameter is further increased, and a predetermined processing (formation of a third coating layer) is performed. However, since the diameter of the body portion 1c1 of the processing chamber 1c is larger than that of the processing chamber 1b, the peripheral speed of the body portion 1c1 is larger than that of the processing chamber 1b even if the rotation speed is the same. Therefore, in the processing chamber 1c, the spray rate of the spray liquid by the spray nozzle 5c can be further increased as compared with the processing chamber 1b, so that efficient processing can be performed.
 また、上記実施形態のコーティング装置では、粉粒体粒子の処理中と粉粒体粒子の移送時とで、回転ドラム1の回転方向が逆となっているが、特にこれに限定されず、粉粒体粒子の処理中と移送時とで、回転ドラム1の回転方向が同じとなるように構成することもできる。 Moreover, in the coating apparatus of the said embodiment, although the rotation direction of the rotating drum 1 is reverse during processing of a granular material particle and at the time of transfer of a granular material particle, it is not limited to this in particular, Powder The rotational direction of the rotary drum 1 may be the same during the processing of the granular particles and during the transfer.
 また、コーティング装置は、処理気体の給気条件及びスプレー液の噴霧条件の少なくとも一方を処理室1a、1b、1c毎に個別的に制御することにより、各処理室1a、1b、1cでの処理を最適かつ効率的に行うことができ、これにより、コーティング品質に優れた粉粒体製品を効率的に収率よく製造することができる。 In addition, the coating apparatus individually controls at least one of the supply condition of the process gas and the spray condition of the spray liquid for each of the process chambers 1a, 1b, and 1c, thereby processing the process chambers 1a, 1b, and 1c. Can be carried out optimally and efficiently, whereby a granular product excellent in coating quality can be produced efficiently and in good yield.
 また、上記実施形態では、1つの回転ドラム1が、3つの処理室1a、1b、1cを備えており、この回転ドラム1を1つの回転駆動機構1kで駆動しているが、処理室1a、1b、1cごとに、回転ドラムを別体として、各回転ドラムを別の回転駆動機構で駆動してもよい。この場合には、回転ドラム1の回転数を処理室1a、1b、1c毎に個別的に制御することにより、各処理室1a、1b、1cでの処理を更に最適かつ効率的に行うことができ、これにより、コーティング品質に優れた粉粒体製品を更に効率的に収率よく製造することができる。 Moreover, in the said embodiment, although the one rotating drum 1 is provided with the three process chambers 1a, 1b, and 1c, and this rotary drum 1 is driven with one rotation drive mechanism 1k, the process chamber 1a, For each of 1b and 1c, the rotary drum may be a separate body, and each rotary drum may be driven by a separate rotational drive mechanism. In this case, by individually controlling the rotation speed of the rotating drum 1 for each of the processing chambers 1a, 1b, and 1c, the processing in each of the processing chambers 1a, 1b, and 1c can be performed more optimally and efficiently. This makes it possible to produce a granular product having excellent coating quality more efficiently and with a high yield.
 また、上記実施形態では、排出板6a、6b、6cと仕切り板7a、7b、7cの位置を全て単一の移送部材切り換え手段10で切り換えたが、排出板6a、6b、6cの位置と、仕切り板7a、7b、7cの位置とを、別の切り換え手段で切り換えてもよい。また、排出板6a、6b、6cのそれぞれの位置を別の切り換え手段で切り換えてもよいし、仕切り板7a、7b、7cのそれぞれの位置を別の切り換え手段で切り換えてもよい。 In the above embodiment, the positions of the discharge plates 6a, 6b, 6c and the partition plates 7a, 7b, 7c are all switched by the single transfer member switching means 10, but the positions of the discharge plates 6a, 6b, 6c, The position of the partition plates 7a, 7b, 7c may be switched by another switching means. Further, the positions of the discharge plates 6a, 6b, 6c may be switched by different switching means, and the positions of the partition plates 7a, 7b, 7c may be switched by different switching means.
 次に、第2の実施形態に係るコーティング装置について図5を参照しつつ説明する。ここでは、第1実施形態と異なる点を中心に説明し、第1実施形態と同様の構成については説明を割愛する。 Next, a coating apparatus according to the second embodiment will be described with reference to FIG. Here, it demonstrates centering on a different point from 1st Embodiment, and omits description about the structure similar to 1st Embodiment.
 図5に示すように、本実施形態のコーティング装置では、粉粒体処理時に処理室1cと排出ゾーン1gとを仕切るという意味での仕切り板7cが設けられていない(ただし、移送時に処理室1cと排出ゾーン1gとを連通する開口部7c1は存在する)。代わりに、本実施形態のコーティング装置では、処理室1cと排出ゾーン1gとを区画する環状の突出部1nが回転ドラム1の内周に設けられている。突出部1nは、排出ゾーン1gに開口する開口部1oを有する。開口部1oは処理室1cの軸方向他端側に設けられている。また、粉粒体処理時に処理室1aと供給ゾーン1fとを仕切るという意味での仕切り板7dも設けられていない(ただし、移送時に処理室1aと供給ゾーン1fとを連通する開口部7d1は存在する)。 As shown in FIG. 5, in the coating apparatus of this embodiment, the partition plate 7c is not provided in the sense that the processing chamber 1c and the discharge zone 1g are partitioned during the powder processing (however, the processing chamber 1c is not transferred during the transfer). And an opening 7c1 communicating with the discharge zone 1g is present). Instead, in the coating apparatus of the present embodiment, an annular protrusion 1n that partitions the processing chamber 1c and the discharge zone 1g is provided on the inner periphery of the rotary drum 1. The protrusion 1n has an opening 1o that opens to the discharge zone 1g. The opening 1o is provided on the other axial end side of the processing chamber 1c. There is also no partition plate 7d in the sense of partitioning the processing chamber 1a and the supply zone 1f during the processing of the granular material (however, there is an opening 7d1 communicating the processing chamber 1a and the supply zone 1f during the transfer). To do).
 また、ケーシング2には、回転ドラム1の一端開口部1d(処理室1aの軸方向一端側に設けられた第2の開口部)から排出された粉粒体粒子をコーティング装置の外部に排出するための排出シュート2fが回転ドラム1の一端側に付設されている。また、ケーシング2に対して回転ドラム1を支持する軸受1jは、他端開口部1eではなく、突出部1nが設けられた回転ドラム1の部位の外周に取り付けられている。そして、回転ドラム1に対して、駆動軸10aを支持する軸受10a1は、回転ドラム1の他端開口部1eの内周ではなく、他端開口部1eの外側に取り付けられている。 Also, in the casing 2, the powder particles discharged from one end opening 1 d of the rotating drum 1 (second opening provided on one end side in the axial direction of the processing chamber 1 a) are discharged outside the coating apparatus. A discharge chute 2 f is attached to one end side of the rotary drum 1. The bearing 1j that supports the rotating drum 1 with respect to the casing 2 is attached to the outer periphery of the portion of the rotating drum 1 provided with the protruding portion 1n, not the other end opening 1e. And the bearing 10a1 which supports the drive shaft 10a with respect to the rotating drum 1 is attached not the inner periphery of the other end opening part 1e of the rotating drum 1, but the outer side of the other end opening part 1e.
 そして、両端の処理室1a、1cの内部における粉粒体粒子を回転ドラム1の外部に排出するための排出部材としての排出プレート15、16を回転ドラム1の内部に備える。排出プレート15、16は、それぞれ、処理室1a、1cの端面17、18に設けられている。 And the discharge plates 15 and 16 as discharge members for discharging the powder particles in the processing chambers 1 a and 1 c at both ends to the outside of the rotary drum 1 are provided inside the rotary drum 1. The discharge plates 15 and 16 are provided on the end surfaces 17 and 18 of the processing chambers 1a and 1c, respectively.
 排出プレート15、16は、例えば、長手方向に沿って屈曲した屈曲部を有する板状部材で構成される。そして、排出プレート15は、端面17の他端から一端(一端開口部1dの他端)の軸方向位置まで延在し、その延在方向は、(展開図で見た場合)回転ドラム1の軸方向に対して傾斜している。この実施形態では、排出プレート15の一端部は、開口部1dの他端に円滑に接続されている。また、排出プレート16は、端面18の一端から他端(開口部1oの一端)の軸方向位置まで延在し、その延在方向は、(展開図で見た場合)回転ドラム1の軸方向に対して傾斜している。この実施形態では、排出プレート16の他端部は、開口部1oの一端に円滑に接続されている。回転ドラム1の軸方向に対する排出プレート15、16の傾斜の向きは、回転ドラム1の軸方向に対する排出板6a、6b、6cの傾斜の向きと反対である(図4A~図4C参照)。 The discharge plates 15 and 16 are configured by, for example, a plate-like member having a bent portion bent along the longitudinal direction. The discharge plate 15 extends from the other end of the end surface 17 to the axial position of one end (the other end of the one end opening 1d), and the extending direction of the discharge plate 15 (when viewed in a developed view) It is inclined with respect to the axial direction. In this embodiment, one end of the discharge plate 15 is smoothly connected to the other end of the opening 1d. The discharge plate 16 extends from one end of the end surface 18 to the axial position of the other end (one end of the opening 1o), and the extending direction is the axial direction of the rotary drum 1 (when viewed in a developed view). It is inclined with respect to. In this embodiment, the other end of the discharge plate 16 is smoothly connected to one end of the opening 1o. The direction of inclination of the discharge plates 15 and 16 with respect to the axial direction of the rotary drum 1 is opposite to the direction of inclination of the discharge plates 6a, 6b and 6c with respect to the axial direction of the rotary drum 1 (see FIGS. 4A to 4C).
 処理室1a、1cの端面17、18は、軸方向断面で、回転ドラム1の径方向に対して傾斜している。開口部1dにおける内周面1pが、軸方向一端側に向かって漸次拡径した形状、例えば軸方向一端側に向かって角度α(回転ドラム1の軸線となす角度)の円錐角で漸次拡径した円錐面に形成されている。開口部1oにおける内周面1qが、軸方向他端側に向かって漸次拡径した形状、例えば軸方向他端側に向かって角度α(回転ドラム1の軸線となす角度)の円錐角で漸次拡径した円錐面に形成されている。尚、開口部1d、1oの内周面1p、1qは、一端側、他端側に向かって漸次拡径した形状に形成すれば良く、必ずしも円錐面に形成する必要はない。例えば、開口部1d、1oの内周面1p、1qは、一端側、他端側に向かって曲面状に漸次拡径した形状に形成しても良い。 The end surfaces 17 and 18 of the processing chambers 1a and 1c are inclined with respect to the radial direction of the rotary drum 1 in the axial section. The shape of the inner peripheral surface 1p of the opening 1d is gradually enlarged toward one end in the axial direction, for example, gradually increased in diameter at a conical angle α (angle formed with the axis of the rotating drum 1) toward one end in the axial direction. Formed in a conical surface. The inner peripheral surface 1q of the opening 1o is gradually enlarged toward the other end in the axial direction, for example, gradually with a cone angle of an angle α (angle formed with the axis of the rotating drum 1) toward the other end in the axial direction. It is formed on an expanded conical surface. The inner peripheral surfaces 1p and 1q of the openings 1d and 1o may be formed in a shape gradually increasing in diameter toward one end and the other end, and need not necessarily be formed in a conical surface. For example, the inner peripheral surfaces 1p and 1q of the openings 1d and 1o may be formed in a shape in which the diameter gradually increases in a curved shape toward one end side and the other end side.
 次に、本実施形態での粉粒体粒子の移送時における粉粒体粒子の流れについて説明する。 Next, the flow of the granular particles during the transfer of the granular particles in this embodiment will be described.
 粉粒体粒子の移送時における排出板6a、6b、6c、仕切り板7a、7bの開口部7a1、7b1、及び開口部7c1、7d1の配置は、第1実施形態と同様である。そして、第1実施形態と同じ方向(図4A~図4Cの白矢印)に、回転ドラム1を回転させる。 The arrangement of the discharge plates 6a, 6b and 6c, the openings 7a1 and 7b1 of the partition plates 7a and 7b, and the openings 7c1 and 7d1 when the granular particles are transferred is the same as in the first embodiment. Then, the rotating drum 1 is rotated in the same direction as the first embodiment (white arrow in FIGS. 4A to 4C).
 この場合、処理室1a、1b、1cにおける排出板6a、6b、6cと、開口部7a1、7b1周辺での粉粒体粒子の流れは、第1実施形態と同様である。そして、処理室1cにおいて、排出板6cによって案内され、開口部7c1を通過した粉粒体粒子は、端面18に設けられた排出プレート16によってすくい上げられて開口部1oまで案内される。そして、排出プレート16によって開口部1oに案内された粉粒体粒子は、他端側に向かって角度αで漸次拡径した円錐面状の内周面1qに案内されて他端側に進み、開口部1oから排出ゾーン1gを介して回転ドラム1の外部に排出される。そして、回転ドラム1の外部に排出された粉粒体粒子は、ケーシング2の排出シュート2eから装置外に排出される。 In this case, the flow of the granular particles around the discharge plates 6a, 6b, 6c and the openings 7a1, 7b1 in the processing chambers 1a, 1b, 1c is the same as that in the first embodiment. In the processing chamber 1c, the granular particles guided by the discharge plate 6c and passing through the opening 7c1 are scooped up by the discharge plate 16 provided on the end face 18 and guided to the opening 1o. The granular particles guided to the opening 1o by the discharge plate 16 are guided to the inner circumferential surface 1q having a conical surface gradually expanded in diameter α toward the other end side, and proceed to the other end side. It is discharged from the opening 1o to the outside of the rotating drum 1 through the discharge zone 1g. And the granular material particle | grains discharged | emitted outside the rotating drum 1 are discharged | emitted out of the apparatus from the discharge chute 2e of the casing 2. FIG.
 更に、本実施形態では、排出板6a、6b、6c、仕切り板7a、7bの開口部7a1、7b1、及び開口部7c1、7d1を第1実施形態と同様の配置として、第1実施形態とは逆の方向に、回転ドラム1を回転させて、粉粒体粒子を移送することができる。 Further, in the present embodiment, the discharge plates 6a, 6b, 6c, the openings 7a1, 7b1, and the openings 7c1, 7d1 of the partition plates 7a, 7b are arranged in the same manner as in the first embodiment. In the opposite direction, the rotating drum 1 can be rotated to transfer the granular particles.
 この場合、排出板6a、6b、6cまで、回転ドラム1の回転によって粉粒体粒子が誘導される。そして、この粉粒体粒子は、排出板6a、6b、6cが軸線に対して傾斜していることにより、排出板6a、6b、6cによって仕切り板7a、7bの開口部7a1、7b1及び開口部7d1に案内され、開口部7a1、7b1、7d1を通過する(図4A~図4C参照)。 In this case, the powder particles are induced by the rotation of the rotary drum 1 up to the discharge plates 6a, 6b, 6c. And this granular material particle | grain has the opening part 7a1, 7b1 and opening part of partition plate 7a, 7b by discharge | emission board 6a, 6b, 6c because discharge | emission board 6a, 6b, 6c inclines with respect to an axis line. Guided by 7d1 and passes through the openings 7a1, 7b1, and 7d1 (see FIGS. 4A to 4C).
 仕切り板7a、7bの開口部7a1、7b1を通過した粉粒体粒子は、処理室1b、1cから排出される。そして、仕切り板7a、7bの開口部7a1、7b1は、処理室1a、1bにおける排出板6a、6bよりも、回転ドラム1の回転方向前側に開口しているので、処理室1a、1bにおける排出板6a、6bよりも、回転ドラム1の回転方向前側に粉粒体粒子を導入することができる。これにより、排出板6aを境界として、処理室1aから排出される粉粒体粒子と処理室1aに導入される粉粒体粒子とが混ざることを防止でき、排出板6bを境界として、処理室1bから排出される粉粒体粒子と処理室1bに導入される粉粒体粒子とが混ざることを防止できる。従って、各処理室1a、1b、1cにおいて、処理室1a、1b、1cからの粉粒体粒子の排出と処理室1a、1bへの粉粒体粒子の供給を、並行して実施することが可能となる。更に、バッフル9a、9b、9cは上方の所定位置に配置固定されるので、バッフル9a、9b、9cが粉粒体粒子の移送に干渉することがない。これにより、本実施形態のコーティング装置では、粉粒体粒子を効率良く移送することが可能となる。 The particulate particles that have passed through the openings 7a1 and 7b1 of the partition plates 7a and 7b are discharged from the processing chambers 1b and 1c. Since the openings 7a1 and 7b1 of the partition plates 7a and 7b are opened to the front side in the rotation direction of the rotary drum 1 with respect to the discharge plates 6a and 6b in the processing chambers 1a and 1b, the discharges in the processing chambers 1a and 1b are performed. It is possible to introduce the powder particles to the front side in the rotation direction of the rotary drum 1 rather than the plates 6a and 6b. Thereby, it can prevent that the granular material particle | grains discharged | emitted from the processing chamber 1a and the granular material particle | grains introduce | transduced into the processing chamber 1a are made into a boundary by using the discharge plate 6a as a boundary, Mixing of the granular particles discharged from 1b and the granular particles introduced into the processing chamber 1b can be prevented. Therefore, in each processing chamber 1a, 1b, 1c, discharge of the granular particles from the processing chambers 1a, 1b, 1c and supply of the granular particles to the processing chambers 1a, 1b can be performed in parallel. It becomes possible. Further, since the baffles 9a, 9b and 9c are arranged and fixed at predetermined positions above, the baffles 9a, 9b and 9c do not interfere with the transfer of the granular particles. Thereby, in the coating apparatus of this embodiment, it becomes possible to transfer granular material particle | grains efficiently.
 そして、処理室1aにおいて、排出板6aによって案内されて開口部7d1を通過した粉粒体粒子は、端面17に設けられた排出プレート15によってすくい上げられて開口部1dまで案内される。そして、排出プレート15によって開口部1dに案内された粉粒体粒子は、一端側に向かって角度αで漸次拡径した円錐面状の内周面1pに案内されて一端側に進み、開口部1dから供給ゾーン1fを介して回転ドラム1の外部に排出される。そして、回転ドラム1の外部に排出された粉粒体粒子は、ケーシング2の排出シュート2fから装置外に排出される。 In the processing chamber 1a, the granular particles guided by the discharge plate 6a and passed through the opening 7d1 are scooped up by the discharge plate 15 provided on the end face 17 and guided to the opening 1d. Then, the granular particles guided to the opening 1d by the discharge plate 15 are guided to the conical inner peripheral surface 1p that gradually increases in diameter toward the one end side at an angle α, and proceeds to the one end side. 1d is discharged to the outside of the rotating drum 1 through the supply zone 1f. And the granular material particle | grains discharged | emitted outside the rotating drum 1 are discharged | emitted out of the apparatus from the discharge chute 2f of the casing 2. FIG.
 このように、この実施形態では、粉粒体粒子の移送時、回転ドラム1の回転により、回転ドラム1の内部の粉粒体粒子を排出プレート15、16により開口部1d、1oに案内し、開口部1d、1oの円錐面状の内周面1p、1qを滑らせて一端側、他端側に案内して、開口部1d、1oから回転ドラム1の外部に排出する構成にしている。これにより、排出プレート15の一端、排出プレート16の他端を、従来装置のように、開口部1dの一端、開口部1oの他端まで延在させなくても、回転ドラム1の内部の粉粒体粒子を円滑に回転ドラム1の外部に排出することができる。すなわち、この実施形態において、排出プレート15の一端は開口部1dの他端の軸方向位置まで延びており、その位置から一端側には延在しておらず、一方、排出プレート16の他端は開口部1oの一端の軸方向位置まで延びており、その位置から他端側には延在していない。このように、開口部1d、1oには、排出プレート15、16の延在部分がないので、回転ドラム1の内部の点検作業等を安全かつ効率的に行うことができる。 Thus, in this embodiment, during the transfer of the powder particles, the rotation of the rotary drum 1 guides the powder particles inside the rotary drum 1 to the openings 1d and 1o by the discharge plates 15 and 16, The conical surface-like inner peripheral surfaces 1p and 1q of the openings 1d and 1o are slid and guided to one end side and the other end side, and discharged from the openings 1d and 1o to the outside of the rotary drum 1. Thereby, the powder inside the rotary drum 1 can be obtained without extending the one end of the discharge plate 15 and the other end of the discharge plate 16 to the one end of the opening 1d and the other end of the opening 1o as in the conventional apparatus. Granule particles can be smoothly discharged to the outside of the rotating drum 1. That is, in this embodiment, one end of the discharge plate 15 extends to the axial position of the other end of the opening 1d and does not extend from that position to one end side, while the other end of the discharge plate 16 Extends to the axial position at one end of the opening 1o, and does not extend from the position to the other end. As described above, since the openings 1d and 1o do not have the extended portions of the discharge plates 15 and 16, it is possible to safely and efficiently perform the inspection work and the like inside the rotary drum 1.
 次に、参考例としてのコーティング装置について図6、図7を参照しつつ説明する。ここでは、第1実施形態と異なる点を中心に説明し、第1実施形態と同様の構成については説明を割愛する。 Next, a coating apparatus as a reference example will be described with reference to FIGS. Here, it demonstrates centering on a different point from 1st Embodiment, and omits description about the structure similar to 1st Embodiment.
 図6に示すように、本参考例のコーティング装置は、区切り部材としての区切り板12a、12bと、移送部材としての掻き出し板13a、13b、13cと、スライド板14と、掻き出し板13a、13b、13cを移動するための移送部材移動手段(不図示)とを備えている。回転ドラム1の形状は第1実施形態と同様である。区切り板12aは、処理室1aと軸方向他端側に隣接する処理室1bとの間を区切り、区切り板12bは、処理室1bと軸方向他端側に隣接する処理室1cとの間を区切る。スライド板14は、処理室1a、1b、1cと排出ゾーン1gとの間を区切る。なお、軸方向一端は、図6で左側、軸方向他端は、図6で右側である(特に説明のない限り、以下同じ)。 As shown in FIG. 6, the coating apparatus of this reference example includes separator plates 12 a and 12 b as separator members, scraper plates 13 a, 13 b and 13 c as transfer members, a slide plate 14, scraper plates 13 a and 13 b, And a transfer member moving means (not shown) for moving 13c. The shape of the rotating drum 1 is the same as in the first embodiment. The partition plate 12a partitions between the processing chamber 1a and the processing chamber 1b adjacent to the other end in the axial direction, and the partition plate 12b connects between the processing chamber 1b and the processing chamber 1c adjacent to the other end in the axial direction. punctuate. The slide plate 14 separates the processing chambers 1a, 1b, 1c and the discharge zone 1g. One end in the axial direction is the left side in FIG. 6 and the other end in the axial direction is the right side in FIG. 6 (the same applies hereinafter unless otherwise specified).
 本参考例では、区切り板12a、12bは、回転ドラム1に対して固定されている。また、本参考例では、掻き出し板13a、13b、13cとスライド板14は、回転ドラム1に対して相対回転しないように構成されているが、軸線方向に沿って移動可能である。移送部材移動手段は、例えば、回転ドラム1の外部に設置されるアクチュエータ等の駆動源と、回転ドラム1の他端開口部1e内を経由して掻き出し板13a、13b、13cおよびスライド板14と接続され、駆動源によって軸線方向に沿って駆動される駆動軸とで構成される。 In this reference example, the separator plates 12a and 12b are fixed to the rotating drum 1. Further, in the present reference example, the scraping plates 13a, 13b, 13c and the slide plate 14 are configured not to rotate relative to the rotating drum 1, but are movable along the axial direction. The transfer member moving means includes, for example, a drive source such as an actuator installed outside the rotary drum 1, scraping plates 13 a, 13 b, 13 c and a slide plate 14 via the other end opening 1 e of the rotary drum 1. And a drive shaft that is connected and driven along the axial direction by a drive source.
 図7に示すように、区切り板12aは、円環状であり、粉粒体粒子が通過するための通過部としての開口部12a1を図7(図6)で上方の所定位置H3aに有する。区切り板12bも円環状であり、粉粒体粒子が通過するための通過部としての開口部12b1を図6で上方の所定位置H3bに有する。また、図7に示すように、掻き出し板13bも、円環状であり、粉粒体粒子が通過するための通過部としての開口部13b1を図7(図6)で下側の所定位置L4bに有する。また、掻き出し板13a、13cも、円環状であり、粉粒体粒子が通過するための通過部としての開口部13a1、13c1を図6で下側の所定位置L4a、L4cに有する。また、スライド板14は、円環状であるが、粉粒体粒子が通過するための通過部としての開口部を有さない。本参考例では、区切り板12a、12bの開口部と掻き出し板の開口部とは、周方向の位置が180°異なるように構成されているが、周方向位置はその他の角度で異なってもよい。 As shown in FIG. 7, the partition plate 12 a has an annular shape, and has an opening 12 a 1 as a passage for allowing the granular particles to pass therethrough at an upper predetermined position H 3 a in FIG. 7 (FIG. 6). The partition plate 12b is also annular, and has an opening 12b1 as a passage for allowing the granular particles to pass through at an upper predetermined position H3b in FIG. Further, as shown in FIG. 7, the scraping plate 13b is also in an annular shape, and the opening 13b1 as a passing part for the passage of the powder particles is placed at a predetermined position L4b on the lower side in FIG. 7 (FIG. 6). Have. The scraping plates 13a and 13c are also annular, and have openings 13a1 and 13c1 as passing portions for passing the powder particles at predetermined positions L4a and L4c on the lower side in FIG. Moreover, although the slide plate 14 is annular, it does not have an opening as a passing part for the granular particles to pass. In this reference example, the opening portions of the separator plates 12a and 12b and the opening portion of the scraping plate are configured so that the circumferential positions are different by 180 °, but the circumferential positions may be different at other angles. .
 本参考例では、区切り板12a、12bは、回転ドラム1に対して固定されており、掻き出し板13a、13b、13cは、回転ドラム1に対して相対回転しない。従って、回転駆動機構1kによって、回転ドラム1を回転すると、回転ドラム1の回転に伴い、区切り板12a、12bの開口部12a1、12b1と掻き出し板13a、13b、13cの開口部13a1、13b1、13c1の周方向の位置が変位する。換言すれば、図6の状態から回転ドラム1を180°回転させると、区切り板12a、12bの開口部12a1、12b1は、下方所定位置L3a、L3bに移行する(図8参照)。また、図6の状態から回転ドラム1を180°回転させると、掻き出し板13a、13b、13cの開口部13a1、13b1、13c1は、上側所定位置H4a、H4b、H4cに移行する(図8参照)。つまり、回転駆動機構1kは、区切り板12a、12b(区切り部材)の開口部12a1、12b1の上方所定位置H3a、H3bと下方所定位置L3a、L3bを切り換える区切り部材切り換え手段である。また、回転駆動機構1kは、掻き出し板13a、13b、13c(移送部材)の開口部13a1、13b1、13c1の上側所定位置H4a、H4b、H4cと下側所定位置L4a、L4b、L4cとを切り換える移送部材切り換え手段でもある。 In this reference example, the separator plates 12a and 12b are fixed to the rotating drum 1, and the scraping plates 13a, 13b and 13c do not rotate relative to the rotating drum 1. Therefore, when the rotary drum 1 is rotated by the rotary drive mechanism 1k, the openings 12a1 and 12b1 of the separator plates 12a and 12b and the openings 13a1, 13b1 and 13c1 of the scraping plates 13a, 13b and 13c are accompanied with the rotation of the rotary drum 1. The circumferential position of is displaced. In other words, when the rotary drum 1 is rotated 180 ° from the state of FIG. 6, the openings 12a1 and 12b1 of the separator plates 12a and 12b move to the predetermined lower positions L3a and L3b (see FIG. 8). Further, when the rotary drum 1 is rotated 180 ° from the state of FIG. 6, the openings 13a1, 13b1, 13c1 of the scraping plates 13a, 13b, 13c move to the upper predetermined positions H4a, H4b, H4c (see FIG. 8). . That is, the rotation drive mechanism 1k is a separating member switching unit that switches between the upper predetermined positions H3a and H3b and the lower predetermined positions L3a and L3b of the openings 12a1 and 12b1 of the separating plates 12a and 12b (separating members). In addition, the rotation drive mechanism 1k performs a transfer for switching the upper predetermined positions H4a, H4b, H4c and the lower predetermined positions L4a, L4b, L4c of the openings 13a1, 13b1, 13c1 of the scraping plates 13a, 13b, 13c (transfer member). It is also a member switching means.
 下方所定位置L3a、L3bでの区切り板12a、12bの開口部12a1、12b1は、少なくとも一部が粉粒体層M中に存在する。一方、下側所定位置L4a、L4b、L4cでの掻き出し板13a、13b、13cの開口部13a1、13b1、13c1は、少なくとも一部が粉粒体層M中に存在する。 At least a part of the openings 12a1 and 12b1 of the separator plates 12a and 12b at the lower predetermined positions L3a and L3b exists in the granular material layer M. On the other hand, at least a part of the openings 13a1, 13b1, and 13c1 of the scraping plates 13a, 13b, and 13c at the lower predetermined positions L4a, L4b, and L4c exists in the granular material layer M.
 粉粒体粒子の処理時には、掻き出し板13a、13b、13cは、各処理室1a、1b、1cの軸方向で最も一端側(図6で左側)に配置されている(初期位置P1a,P1b,P1c)。スライド板14は、処理室1cの軸方向で最も他端側(図6で右側)に配置されている(図6の位置P1)。この状態で、掻き出し板13b、13cは、区切り板12a、12bに当接している。掻き出し板13aは、回転ドラム1の内側における軸方向一端側の面1lに当接している。粉粒体粒子の処理時には、区切り板12a、12b、掻き出し板13a、13b、13c、スライド板14によって、粉粒体粒子が隣接する処理室1a、1b、1c又は排出ゾーン1gに移動することが規制されており、異なる処理室1a、1b、1cの粉粒体粒子は混ざらない。 At the time of processing the granular particles, the scraping plates 13a, 13b, 13c are disposed on the most end side (left side in FIG. 6) in the axial direction of each processing chamber 1a, 1b, 1c (initial positions P1a, P1b, P1c). The slide plate 14 is disposed on the other end side (right side in FIG. 6) in the axial direction of the processing chamber 1c (position P1 in FIG. 6). In this state, the scraping plates 13b and 13c are in contact with the separation plates 12a and 12b. The scraping plate 13 a is in contact with a surface 11 on one end side in the axial direction inside the rotary drum 1. At the time of processing the granular particles, the separator plates 12a, 12b, the scraping plates 13a, 13b, 13c, and the slide plate 14 may move the granular particles to the adjacent processing chambers 1a, 1b, 1c or the discharge zone 1g. It is regulated and powder particles in different processing chambers 1a, 1b, 1c are not mixed.
 次に、本参考例のコーティング装置による粉粒体粒子を移送する動作について、図8~図12を参照しつつ説明する。 Next, the operation of transferring the granular particles by the coating apparatus of this reference example will be described with reference to FIGS.
 最初に、回転駆動機構1kにより、図8に示すように、区切り板12a、12bの開口部12a1、12b1が、下方位置L3a、L3bとなり、掻き出し板13a、13b、13cの開口部13a1、13b1、13c1が上側位置H4a、H4b、H4cとなるように、回転ドラム1を回転させ、その状態となったら回転ドラム1を回転しないように固定する。この状態で、排出ゾーン1gの排出開口部1hは、下方に位置する。 First, as shown in FIG. 8, the rotation drive mechanism 1k causes the openings 12a1 and 12b1 of the separator plates 12a and 12b to be in the lower positions L3a and L3b, and the openings 13a1, 13b1 of the scraping plates 13a, 13b, and 13c, The rotating drum 1 is rotated so that 13c1 becomes the upper positions H4a, H4b, and H4c, and when that state is reached, the rotating drum 1 is fixed so as not to rotate. In this state, the discharge opening 1h of the discharge zone 1g is positioned below.
 次に、移送部材移動手段により、図9に示すように、スライド板14が回転ドラム1の内側における軸方向他端側の面1mの近傍の(排出ゾーン1gの他端側)位置P2に到達するまで、掻き出し板13a、13b、13c及びスライド板14を回転ドラム1の軸方向に沿って同期させて同距離移動させる。これにより、処理室1c内の粉粒体粒子が、掻き出し板13cに押圧されて排出ゾーン1gに移送され、排出ゾーン1gの下方の排出開口部1hを介して排出される。この時、掻き出し板13cは、その軸方向に沿った移動範囲の中で最も他端側の位置(P2c)となる。同時に、処理室1bの粉粒体粒子の一部が掻き出し板13bに押圧されて処理室1cに移送されると共に、処理室1aの粉粒体粒子の一部が掻き出し板13aに押圧されて処理室1bに移送される。この際に、処理室1cに移送される処理室1bの粉粒体粒子は区切り板12bの開口部12b1を通過し、処理室1bに移送される処理室1aの粉粒体粒子は区切り板12aの開口部12a1を通過する。この状態では、掻き出し板13a、13b、13cの開口部13a1、13b1、13c1は上側に配置されているため、掻き出し板13a、13b、13cにより、異なる処理室1a、1b、1cで処理された粉粒体粒子は混ざらない。 Next, as shown in FIG. 9, the slide plate 14 reaches the position P2 in the vicinity of the surface 1m on the other axial end side inside the rotating drum 1 (the other end side of the discharge zone 1g) by the transfer member moving means. Until then, the scraping plates 13a, 13b, 13c and the slide plate 14 are moved along the axial direction of the rotary drum 1 in the same distance. Thereby, the granular material particles in the processing chamber 1c are pressed by the scraping plate 13c, transferred to the discharge zone 1g, and discharged through the discharge opening 1h below the discharge zone 1g. At this time, the scraping plate 13c is at the position (P2c) on the other end side in the movement range along the axial direction. At the same time, a part of the granular particles in the processing chamber 1b are pressed against the scraping plate 13b and transferred to the processing chamber 1c, and a part of the granular particles in the processing chamber 1a are pressed against the scraping plate 13a to be processed. It is transferred to the chamber 1b. At this time, the granular particles in the processing chamber 1b transferred to the processing chamber 1c pass through the opening 12b1 of the separator 12b, and the granular particles in the processing chamber 1a transferred to the processing chamber 1b pass through the separator 12a. Passes through the opening 12a1. In this state, the openings 13a1, 13b1, and 13c1 of the scraping plates 13a, 13b, and 13c are arranged on the upper side, so that the powder processed in the different processing chambers 1a, 1b, and 1c by the scraping plates 13a, 13b, and 13c. Granule particles are not mixed.
 そして、移送部材移動手段により、図10に示すように、掻き出し板13bが区切り板12bに当接する(処理室1bの他端側)位置P2bに到達するまで、掻き出し板13a、13bを回転ドラム1の軸方向に沿って同期させて同距離移動させる。これにより、処理室1b内の粉粒体粒子の残りが、掻き出し板13bに押圧されて処理室1cに移送される。同時に、処理室1aの粉粒体粒子の一部が掻き出し板13aに押圧されて処理室1bに移送される。この際に、処理室1cに移送される処理室1bの粉粒体粒子は区切り板12bの開口部12b1を通過し、処理室1bに移送される処理室1aの粉粒体粒子は区切り板12aの開口部12a1を通過する。この状態では、掻き出し板13a、13b、13cの開口部13a1、13b1、13c1は上側に配置されているため、掻き出し板13a、13b、13cにより、異なる処理室1a、1b、1cで処理された粉粒体粒子は混ざらない。 Then, as shown in FIG. 10, the scraping plates 13a and 13b are moved by the transfer member moving means until the scraping plate 13b reaches the position P2b where the scraping plate 13b comes into contact with the separation plate 12b (the other end side of the processing chamber 1b). The same distance is moved synchronously along the axial direction. Thereby, the remainder of the granular material particle | grains in the processing chamber 1b is pressed by the scraping board 13b, and is transferred to the processing chamber 1c. At the same time, some of the granular particles in the processing chamber 1a are pressed by the scraping plate 13a and transferred to the processing chamber 1b. At this time, the granular particles in the processing chamber 1b transferred to the processing chamber 1c pass through the opening 12b1 of the separator 12b, and the granular particles in the processing chamber 1a transferred to the processing chamber 1b pass through the separator 12a. Passes through the opening 12a1. In this state, the openings 13a1, 13b1, and 13c1 of the scraping plates 13a, 13b, and 13c are arranged on the upper side, so that the powder processed in the different processing chambers 1a, 1b, and 1c by the scraping plates 13a, 13b, and 13c. Granule particles are not mixed.
 その後、移送部材移動手段により、図11に示すように、掻き出し板13aが区切り板12aに当接する(処理室1aの他端側)位置P2aに到達するまで、掻き出し板13aを回転ドラム1の軸方向に沿って移動させる。これにより、処理室1a内の粉粒体粒子の残りが、掻き出し板13aに押圧されて処理室1bに移送される。この際に、処理室1bに移送される処理室1aの粉粒体粒子は区切り板12aの開口部12a1を通過する。この状態では、掻き出し板13a、13b、13cの開口部13a1、13b1、13c1は上側に配置されているため、掻き出し板13a、13b、13cにより、異なる処理室1a、1b、1cで処理された粉粒体粒子は混ざらない。 Thereafter, as shown in FIG. 11, the scraping plate 13a is moved to the axis of the rotary drum 1 until the scraping plate 13a reaches the position P2a (the other end side of the processing chamber 1a) by the transfer member moving means. Move along the direction. Thereby, the remainder of the granular material particle | grains in the process chamber 1a is pressed by the scraping board 13a, and is transferred to the process chamber 1b. At this time, the granular material particles in the processing chamber 1a transferred to the processing chamber 1b pass through the opening 12a1 of the partition plate 12a. In this state, the openings 13a1, 13b1, and 13c1 of the scraping plates 13a, 13b, and 13c are arranged on the upper side, so that the powder processed in the different processing chambers 1a, 1b, and 1c by the scraping plates 13a, 13b, and 13c. Granule particles are not mixed.
 これで、処理室1a、1b、1c内の粉粒体粒子を隣接する処理室1b、1c又は排出ゾーン1gへ移送する動作は完了する。そして、図12に示すように、本参考例では、新たに処理室1aに所定量の粉粒体粒子を投入する。 This completes the operation of transferring the granular particles in the processing chambers 1a, 1b and 1c to the adjacent processing chambers 1b and 1c or the discharge zone 1g. Then, as shown in FIG. 12, in this reference example, a predetermined amount of granular particles are newly introduced into the processing chamber 1a.
 引き続き、掻き出し板13a、13b、13c及びスライド板14の初期位置P1a、P1b、P1c、P1への復帰動作について、図13~図17を参照しつつ説明する。 Subsequently, the return operation of the scraping plates 13a, 13b, 13c and the slide plate 14 to the initial positions P1a, P1b, P1c, P1 will be described with reference to FIGS.
 まず、移送部材移動手段により、図13に示すように、スライド板14のみを回転ドラム1の軸方向に沿って初期位置P1に復帰させる。初期位置P1でスライド板14は掻き出し板13cに当接する。 First, as shown in FIG. 13, only the slide plate 14 is returned to the initial position P1 along the axial direction of the rotary drum 1 by the transfer member moving means. At the initial position P1, the slide plate 14 comes into contact with the scraping plate 13c.
 次に、回転駆動機構1kにより、図14に示すように、回転ドラム1を180°回転させた後、回転しないように固定する。この状態で、区切り板12a、12bの開口部12a1、12b1は上方位置H3a、H3bであり、掻き出し板13a、13b、13cの開口部13a1、13b1、13c1は下側位置L4a、L4b、L4cである。 Next, as shown in FIG. 14, the rotary drum 1 is rotated 180 ° and then fixed so as not to rotate by the rotation drive mechanism 1 k. In this state, the openings 12a1 and 12b1 of the separator plates 12a and 12b are in the upper positions H3a and H3b, and the openings 13a1, 13b1 and 13c1 of the scraping plates 13a, 13b and 13c are in the lower positions L4a, L4b and L4c. .
 次に、移送部材移動手段により、図15に示すように、掻き出し板13cが区切り板12bに当接する(処理室1cの一端側)初期位置P1cに到達するまで、掻き出し板13a、13b、13cを回転ドラム1の軸方向に沿って同期させて同距離移動させる。この際に、処理室1a、1b、1cにおける粉粒体粒子のそれぞれが掻き出し板13a、13b、13cの開口部13a1、13b1、13c1を通過する。この状態では、区切り板12a、12bの開口部12a1、12b1は上方に配置されているため、区切り板12a、12b及びスライド板14により、処理室1a、1b、1c内の粉粒体粒子は移動を規制され、また、異なる処理室1a、1b、1cの粉粒体粒子は混ざらない。 Next, as shown in FIG. 15, the scraping plates 13a, 13b, and 13c are moved by the transfer member moving means until the scraping plate 13c comes into contact with the partition plate 12b (one end side of the processing chamber 1c) and reaches the initial position P1c. The same distance is moved in synchronism along the axial direction of the rotating drum 1. At this time, the granular particles in the processing chambers 1a, 1b, and 1c pass through the openings 13a1, 13b1, and 13c1 of the scraping plates 13a, 13b, and 13c, respectively. In this state, since the openings 12a1 and 12b1 of the separator plates 12a and 12b are disposed above, the granular particles in the processing chambers 1a, 1b and 1c are moved by the separator plates 12a and 12b and the slide plate 14. In addition, the granular particles in different processing chambers 1a, 1b, and 1c are not mixed.
 そして、移送部材移動手段により、図16に示すように、掻き出し板13bが区切り板12aに当接する(処理室1bの一端側)初期位置P1bに到達するまで、掻き出し板13a、13bを回転ドラム1の軸方向に沿って同期させて同距離移動させる。この際に、処理室1a、1bにおける粉粒体粒子のそれぞれが掻き出し板13a、13bの開口部13a1、13b1を通過する。この状態では、区切り板12a、12bの開口部12a1、12b1は上方に配置されているため、区切り板12a、12b及びスライド板14により、処理室1a、1b、1c内の粉粒体粒子は移動を規制され、また、異なる処理室1a、1b、1cの粉粒体粒子は混ざらない。 Then, as shown in FIG. 16, the scraping plates 13a and 13b are moved by the transfer member moving means until the scraping plate 13b comes into contact with the partition plate 12a (one end side of the processing chamber 1b) and reaches the initial position P1b. The same distance is moved synchronously along the axial direction. At this time, the granular particles in the processing chambers 1a and 1b pass through the openings 13a1 and 13b1 of the scraping plates 13a and 13b, respectively. In this state, since the openings 12a1 and 12b1 of the separator plates 12a and 12b are disposed above, the granular particles in the processing chambers 1a, 1b and 1c are moved by the separator plates 12a and 12b and the slide plate 14. In addition, the granular particles in different processing chambers 1a, 1b, and 1c are not mixed.
 そして、移送部材移動手段により、図17に示すように、掻き出し板13aが回転ドラム1の軸方向一端側の面1lに当接する(処理室1a、1b、1cの一端側)初期位置P1aに到達するまで、掻き出し板13aを回転ドラム1の軸方向に沿って移動させる。この際に、処理室1aにおける粉粒体粒子が掻き出し板13aの開口部13a1を通過する。この状態では、区切り板12a、12bの開口部12a1、12b1は上方に配置されているため、区切り板12a、12b及びスライド板14により、処理室内1a、1b、1cの粉粒体粒子は移動を規制され、また、異なる処理室1a、1b、1cの粉粒体粒子は混ざらない。 Then, as shown in FIG. 17, the scraping plate 13a comes into contact with the surface 11 on the one end side in the axial direction of the rotary drum 1 (one end side of the processing chambers 1a, 1b, 1c) and reaches the initial position P1a. The scraping plate 13a is moved along the axial direction of the rotary drum 1 until it is done. At this time, the granular particles in the processing chamber 1a pass through the opening 13a1 of the scraping plate 13a. In this state, since the openings 12a1 and 12b1 of the separator plates 12a and 12b are disposed above, the granular particles in the processing chambers 1a, 1b and 1c are moved by the separator plates 12a and 12b and the slide plate 14. It is regulated and powder particles in different processing chambers 1a, 1b, 1c are not mixed.
 これで、掻き出し板13a、13b、13c及びスライド板14の初期位置P1a、P1b、P1c、P1への復帰動作が完了する。そして、処理室1a、1b、1c内の粉粒体粒子の処理が再開される。 This completes the return operation of the scraping plates 13a, 13b, 13c and the slide plate 14 to the initial positions P1a, P1b, P1c, P1. And the process of the granular material particle | grains in process chamber 1a, 1b, 1c is restarted.
 このように、参考例のコーティング装置では、各処理室1a、1b、1c内の掻き出し板13a、13b、13cを一端側所定位置P1a、P1b、P1cから他端側所定位置P2a、P2b、P2cまで同時に移動させることによって、全ての処理室1a、1b、1c内の粉粒体粒子を並行して移送可能である。しかも、掻き出し板13a、13b、13cを境界として処理室から排出される粉粒体粒子と処理室に導入される粉粒体粒子とが混ざることが防止できる。これにより、本参考例のコーティング装置では、粉粒体粒子を効率良く移送することが可能となる。 As described above, in the coating apparatus of the reference example, the scraping plates 13a, 13b, and 13c in the processing chambers 1a, 1b, and 1c are moved from the one end side predetermined positions P1a, P1b, and P1c to the other end side predetermined positions P2a, P2b, and P2c. By moving simultaneously, the powder particles in all the processing chambers 1a, 1b, and 1c can be transferred in parallel. In addition, it is possible to prevent mixing of the granular particles discharged from the processing chamber and the granular particles introduced into the processing chamber with the scraping plates 13a, 13b, and 13c as boundaries. Thereby, in the coating apparatus of this reference example, it becomes possible to transfer a granular material particle | grain efficiently.
 また、参考例のコーティング装置では、掻き出し板13a、13b、13c及びスライド板14の初期位置P1a、P1b、P1c、P1への復帰動作において、各処理室1a、1b、1cの粉粒体粒子が、掻き出し板13a、13b、13cの開口部13a1、13b1、13c1を通過する。これにより、掻き出し板13a、13b、13cの復帰動作が容易となる。そして、掻き出し板13a、13b、13c及びスライド板14の初期位置P1a、P1b、P1c、P1への復帰動作において、区切り板12a、12b及びスライド板14により、処理室内1a、1b、1cの粉粒体粒子は移動を規制され、また、異なる処理室1a、1b、1cの粉粒体粒子は混ざらない。 Further, in the coating apparatus of the reference example, in the returning operation of the scraping plates 13a, 13b, 13c and the slide plate 14 to the initial positions P1a, P1b, P1c, P1, the granular particles in the processing chambers 1a, 1b, 1c , Passes through the openings 13a1, 13b1, 13c1 of the scraping plates 13a, 13b, 13c. As a result, the return operation of the scraping plates 13a, 13b, and 13c is facilitated. In the returning operation of the scraping plates 13a, 13b, 13c and the slide plate 14 to the initial positions P1a, P1b, P1c, P1, the particles in the processing chambers 1a, 1b, 1c are separated by the separator plates 12a, 12b and the slide plate 14. The body particles are restricted from moving, and the powder particles in the different processing chambers 1a, 1b, and 1c are not mixed.
 本参考例のコーティング装置による上記のコーティング処理は、バッチ式(回分式)で行っても良いし、連続式で行っても良い。ただし、本参考例のコーティング装置は、上述のように、掻き出し板13a、13b、13cを境界として、粉粒体粒子の移送の際に、処理室に供給中の粉粒体粒子とこの処理室から排出中の粉粒体粒子とは混ざらないので、連続式でコーティング処理を行うのに好適である。 The above-described coating treatment by the coating apparatus of this reference example may be performed in a batch type (batch type) or a continuous type. However, as described above, the coating apparatus of this reference example uses the scraping plates 13a, 13b, and 13c as boundaries, and the granular particles being supplied to the processing chamber and the processing chamber when the granular particles are transferred. Since it is not mixed with the granular particles being discharged from, it is suitable for continuous coating treatment.
 本参考例では、回転ドラムの横断面形状が円形であったが、回転ドラムの横断面形状は多角形でもよい。 In this reference example, the rotary drum has a circular cross-sectional shape, but the rotary drum may have a polygonal cross-sectional shape.
 また、本参考例では、掻き出し板13a、13b、13cは、回転ドラム1に対して相対回転が規制されていたが、これらを回転ドラム1に対して相対回転自在とすると共に回転駆動機構1kとは別の移送部材切り換え手段を設けることによって、初期位置P1a、P1b、P1cへの復帰動作の時以外は、開口部13a1、13b1、13c1を上側所定位置H4a、H4b、H4cで固定しておき、初期位置P1a、P1b、P1cへの復帰動作の時に開口部13a1、13b1、13c1を下側所定位置L4a、L4b、L4cに切り換えて固定してもよい。このような場合には、回転ドラム1を処理室1a、1b、1cごとの分割構造として、それぞれを個別に回転駆動することも可能である。また、区切り板12a、12bを回転ドラム1に対して相対回転自在とすると共に回転駆動機構1kとは別の区切り部材切り換え手段を設けることによって、粉粒体粒子の移送時以外は、開口部12a1、12b1を上方所定位置H3a、H3bで固定しておき、粉粒体粒子の移送時に開口部12a1、12b1を下方所定位置L3a、L3bに切り換えて固定してもよい。 Further, in this reference example, the scraping plates 13a, 13b, and 13c are restricted in relative rotation with respect to the rotating drum 1, but these are rotatable relative to the rotating drum 1 and the rotation drive mechanism 1k. By providing another transfer member switching means, the openings 13a1, 13b1, and 13c1 are fixed at the upper predetermined positions H4a, H4b, and H4c except when returning to the initial positions P1a, P1b, and P1c. The opening portions 13a1, 13b1, and 13c1 may be switched to the lower predetermined positions L4a, L4b, and L4c and fixed when returning to the initial positions P1a, P1b, and P1c. In such a case, the rotating drum 1 can be divided into processing chambers 1a, 1b, and 1c, and each can be individually rotated. Further, by providing the separation plates 12a and 12b to be rotatable relative to the rotary drum 1 and providing separation member switching means different from the rotation drive mechanism 1k, the opening 12a1 is used except when the granular particles are transferred. 12b1 may be fixed at the upper predetermined positions H3a and H3b, and the openings 12a1 and 12b1 may be switched and fixed to the lower predetermined positions L3a and L3b when the granular particles are transferred.
 以上の説明では、各処理室に対応する回転ドラムの径が異なっていたが、各処理室に対応する回転ドラムの径は同じであってもよい。 In the above description, the diameter of the rotating drum corresponding to each processing chamber is different, but the diameter of the rotating drum corresponding to each processing chamber may be the same.
1   回転ドラム
1a、1b、1c 処理室
1d  一端開口部(第2の開口部)
1o  開口部
6a、6b、6c 排出板(移送部材)
7a、7b、7c 仕切り板(仕切り部材)
7a1、7b1、7c1 開口部(通過部)
10  移送部材切り換え手段
12a、12b         区切り板(区切り部材)
12a1、12b1 開口部(通過部)
13a、13b、13c 掻き出し板(移送部材)
13a1、13b1、13c1 開口部(通過部)
15、16 排出プレート(排出部材)
H1a、H1b、H1c 上側所定位置
H2a、H2b、H2c 上方所定位置
L1a、L1b、L1c 下側所定位置
L2a、L2b、L2c 下方所定位置
M   粉粒体層
P1a,P1b,P1c 初期位置(一端側所定位置)
P2a,P2b,P2c 他端側所定位置
1 Rotating drum 1a, 1b, 1c Processing chamber 1d One end opening (second opening)
1o Opening 6a, 6b, 6c Discharge plate (transfer member)
7a, 7b, 7c Partition plate (partition member)
7a1, 7b1, 7c1 opening (passage)
10 Transfer member switching means 12a, 12b Separation plate (separation member)
12a1, 12b1 opening (passage)
13a, 13b, 13c Scraping plate (transfer member)
13a1, 13b1, 13c1 opening (passage)
15, 16 Discharge plate (discharge member)
H1a, H1b, H1c Upper predetermined positions H2a, H2b, H2c Upper predetermined positions L1a, L1b, L1c Lower predetermined positions L2a, L2b, L2c Lower predetermined positions M Powder layer P1a, P1b, P1c Initial position (one end predetermined position) )
P2a, P2b, P2c Other end side predetermined position

Claims (6)

  1.  回転ドラムの内部に収容された粉粒体粒子に対して、液材の添加と処理気体の通気を含む処理を施して被覆層を形成し、前記回転ドラムは、軸方向に沿って区画された複数の処理室を備えており、粉粒体粒子は軸方向一端側の前記処理室から軸方向他端側の前記処理室に順次に移送されて前記処理を施され、前記処理室内の粉粒体粒子を軸方向他端側に隣接する前記処理室又は前記回転ドラムの外部に移送する移送部材が前記各処理室に設けられているコーティング装置において、
     前記移送部材を、前記粉粒体粒子からなる粉粒体層より上側の所定位置と、該上側所定位置より下側の所定位置とに切り換える移送部材切り換え手段が設けられ、
     前記粉粒体粒子の処理中には、前記移送部材が前記上側所定位置に配置され、
     前記粉粒体粒子の移送時には、前記移送部材が前記下側所定位置に配置され、前記処理室の回転に伴い、前記粉粒体粒子が前記移送部材によって案内されることを特徴とするコーティング装置。
    The powder particles contained in the rotating drum are subjected to processing including addition of a liquid material and aeration of processing gas to form a coating layer, and the rotating drum is partitioned along the axial direction. A plurality of processing chambers are provided, and the granular particles are sequentially transferred from the processing chamber on one end side in the axial direction to the processing chamber on the other end side in the axial direction to perform the processing, and the powder particles in the processing chamber In the coating apparatus in which a transfer member for transferring body particles to the outside of the processing chamber or the rotating drum adjacent to the other end side in the axial direction is provided in each processing chamber,
    A transfer member switching means for switching the transfer member between a predetermined position above the powder layer made of the granular particles and a predetermined position below the upper predetermined position is provided;
    During the processing of the granular particles, the transfer member is disposed at the upper predetermined position,
    When transferring the granular particles, the transfer member is disposed at the predetermined position on the lower side, and the granular particles are guided by the transfer member as the processing chamber rotates. .
  2.  複数の前記処理室の間を仕切る仕切り部材が設けられ、
     該仕切り部材は、前記粉粒体粒子が通過するための通過部を有し、
     前記仕切り部材の通過部を、前記粉粒体粒子からなる粉粒体層より上方の所定位置と、該上方所定位置より下方の所定位置とに切り換える通過部切り換え手段が設けられ、
     前記粉粒体粒子の処理中には、前記通過部が前記上方所定位置に配置され、
     前記粉粒体粒子の移送時には、前記通過部が前記下方所定位置に配置され、前記通過部を粉粒体粒子が通過することを特徴とする請求項1に記載のコーティング装置。
    A partition member for partitioning the plurality of processing chambers is provided;
    The partition member has a passing portion for the powder particles to pass through,
    Passing portion switching means for switching the passage portion of the partition member between a predetermined position above the granular material layer made of the granular particles and a predetermined position below the predetermined upper position is provided,
    During the processing of the granular particles, the passage portion is disposed at the upper predetermined position,
    2. The coating apparatus according to claim 1, wherein when the granular particles are transferred, the passage portion is disposed at the predetermined position below, and the granular particles pass through the passage portion.
  3.  前記粉粒体粒子の移送時に、前記仕切り部材の通過部が、軸方向他端側の処理室における前記移送部材より処理室の回転方向前側に通じることを特徴とする請求項2に記載のコーティング装置。 3. The coating according to claim 2, wherein during the transfer of the granular particles, the passage portion of the partition member leads to the front side in the rotation direction of the processing chamber from the transfer member in the processing chamber on the other axial end side. apparatus.
  4.  最も他端側の処理室の他端側に開口部が設けられ、
     前記粉粒体粒子を前記回転ドラムの外部に排出するための排出部材が最も他端側の処理室の内部に設けられ、
     前記開口部における内周面が、他端側に向かって漸次拡径した形状に形成され、
     前記排出部材は、前記回転ドラムの回転により最も他端側の処理室の内部における粉粒体粒子を前記開口部に案内し、前記開口部に案内された粉粒体粒子は前記開口部の内周面に案内されて前記開口部から前記回転ドラムの外部に排出されることを特徴とする請求項1~3の何れか1項に記載のコーティング装置。
    An opening is provided on the other end side of the processing chamber on the other end side,
    A discharge member for discharging the powder particles to the outside of the rotating drum is provided inside the processing chamber on the other end side,
    The inner peripheral surface of the opening is formed into a shape that gradually increases in diameter toward the other end side,
    The discharge member guides the granular particles in the processing chamber on the other end side to the opening by the rotation of the rotating drum, and the granular particles guided to the opening are within the opening. The coating apparatus according to any one of claims 1 to 3, wherein the coating apparatus is guided to a peripheral surface and discharged from the opening to the outside of the rotating drum.
  5.  更に、最も一端側の処理室の一端側に第2の開口部が設けられ、
     前記粉粒体粒子を前記回転ドラムの外部に排出するための排出部材が最も一端側の処理室の内部に設けられ、
     前記第2の開口部における内周面が、一端側に向かって漸次拡径した形状に形成され、
     前記排出部材は、前記回転ドラムの回転により最も一端側の処理室の内部における粉粒体粒子を前記第2の開口部に案内し、前記第2の開口部に案内された粉粒体粒子は前記第2の開口部の内周面に案内されて前記第2の開口部から前記回転ドラムの外部に排出されることを特徴とする請求項4に記載のコーティング装置。
    Furthermore, a second opening is provided on one end side of the processing chamber on the most end side,
    A discharge member for discharging the powder particles to the outside of the rotating drum is provided inside the processing chamber on the most end side,
    The inner peripheral surface of the second opening is formed in a shape that gradually increases in diameter toward one end side,
    The discharge member guides the granular particles in the processing chamber on the most end side to the second opening by the rotation of the rotating drum, and the granular particles guided to the second opening are The coating apparatus according to claim 4, wherein the coating apparatus is guided to an inner peripheral surface of the second opening and discharged from the second opening to the outside of the rotating drum.
  6.  前記処理気体の給気条件と、前記液材の噴霧条件の少なくとも一方を、前記処理室毎に個別的に制御することを特徴とする請求項1~5の何れか1項に記載のコーティング装置。 The coating apparatus according to any one of claims 1 to 5, wherein at least one of a supply condition of the processing gas and a spray condition of the liquid material is individually controlled for each of the processing chambers. .
PCT/JP2014/051408 2013-05-15 2014-01-23 Coating device WO2014185087A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-103206 2013-05-15
JP2013103206A JP6076827B2 (en) 2013-05-15 2013-05-15 Coating equipment

Publications (1)

Publication Number Publication Date
WO2014185087A1 true WO2014185087A1 (en) 2014-11-20

Family

ID=51898075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051408 WO2014185087A1 (en) 2013-05-15 2014-01-23 Coating device

Country Status (2)

Country Link
JP (1) JP6076827B2 (en)
WO (1) WO2014185087A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53135890A (en) * 1977-04-28 1978-11-27 Azote Sa Cie Neerlandaise Coating drum
JPS62174633U (en) * 1986-04-25 1987-11-06
JPH08182926A (en) * 1994-12-28 1996-07-16 Nkk Corp Rotary drum mixer for granulating material to be sintered
JPH1190206A (en) * 1997-09-17 1999-04-06 Tochigi Pref Gov Method for granulation and its apparatus
JP2010264262A (en) * 2003-08-01 2010-11-25 Driam Anlagenbau Gmbh Method and device for continuously coating core with sugar-coated-tablet-making apparatus
JP2012183528A (en) * 2011-02-15 2012-09-27 Powrex Corp Coating apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53135890A (en) * 1977-04-28 1978-11-27 Azote Sa Cie Neerlandaise Coating drum
JPS62174633U (en) * 1986-04-25 1987-11-06
JPH08182926A (en) * 1994-12-28 1996-07-16 Nkk Corp Rotary drum mixer for granulating material to be sintered
JPH1190206A (en) * 1997-09-17 1999-04-06 Tochigi Pref Gov Method for granulation and its apparatus
JP2010264262A (en) * 2003-08-01 2010-11-25 Driam Anlagenbau Gmbh Method and device for continuously coating core with sugar-coated-tablet-making apparatus
JP2012183528A (en) * 2011-02-15 2012-09-27 Powrex Corp Coating apparatus

Also Published As

Publication number Publication date
JP6076827B2 (en) 2017-02-08
JP2014223573A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
US7112244B2 (en) Fluidized bed granulation coating device and fluidized bed granulation coating method
JP5728127B2 (en) Material drying classifier
US20090220676A1 (en) Multi-stage coating device for moulded bodies
JPH07241452A (en) Pan coating device
CN1105294A (en) Granular material coating apparatus
JP5813526B2 (en) Coating equipment
JP6076827B2 (en) Coating equipment
JP6352222B2 (en) Fluidized bed equipment
US10702881B2 (en) Coating apparatus and coating method for granular bodies
JP2020029987A (en) Dryer
JP6954362B2 (en) Shot processing device
JP6017197B2 (en) Coating equipment
JP6513505B2 (en) Powder processing system
JP6407711B2 (en) Continuous fluid bed dryer
JP2021094506A (en) Coating device
JP5996471B2 (en) Coating equipment
JP5925614B2 (en) Coating equipment
JP5762920B2 (en) Coating equipment
JP7405450B2 (en) Continuous coating equipment
JPH10192687A (en) Powdery particle treatment apparatus and powdery particle treatment using the same
JP2000354754A (en) Granular body treating device
JP2001219050A (en) Fluidized bed granulating/coating apparatus and fluidized bed granulating/coating method
JP2005315562A (en) Drying device
US7798092B2 (en) Process and apparatus for treating a particulate material
JP7165557B2 (en) Furnace equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14798363

Country of ref document: EP

Kind code of ref document: A1