WO2014184971A1 - Foreign object removal device and method for producing solar cell using same - Google Patents

Foreign object removal device and method for producing solar cell using same Download PDF

Info

Publication number
WO2014184971A1
WO2014184971A1 PCT/JP2013/079148 JP2013079148W WO2014184971A1 WO 2014184971 A1 WO2014184971 A1 WO 2014184971A1 JP 2013079148 W JP2013079148 W JP 2013079148W WO 2014184971 A1 WO2014184971 A1 WO 2014184971A1
Authority
WO
WIPO (PCT)
Prior art keywords
brush
foreign matter
cell
foreign
removing apparatus
Prior art date
Application number
PCT/JP2013/079148
Other languages
French (fr)
Japanese (ja)
Inventor
光徳 中谷
黒田 章裕
浅野 聡也
聖 沖本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015516877A priority Critical patent/JP6091610B2/en
Priority to TW103108967A priority patent/TWI514610B/en
Publication of WO2014184971A1 publication Critical patent/WO2014184971A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/20Cleaning of moving articles, e.g. of moving webs or of objects on a conveyor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/30Cleaning by methods involving the use of tools by movement of cleaning members over a surface
    • B08B1/32Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/04Cleaning by suction, with or without auxiliary action
    • B08B5/043Cleaning travelling work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/20Cleaning; Removing snow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a foreign matter removing apparatus and a solar battery manufacturing method using the same, and more particularly, to a brush device that removes foreign matter adhering to the surface of a solar battery cell.
  • a solar battery cell is formed on a silicon substrate, a pn junction that converts light energy of sunlight into electrical energy, an antireflection film that is provided on the substrate on the light-receiving surface side and suppresses reflection of sunlight, and antireflection A collector electrode provided on the film and outputting electric energy to the outside is formed.
  • the antireflection film is formed of silicon nitride, and a plasma CVD apparatus is used for the film formation.
  • a silicon nitride film is formed on a silicon substrate as a substrate to be processed using a plasma CVD apparatus
  • the film is also formed on the inner wall, electrode, and stage inside the apparatus at the time of film formation. Then, these films are peeled off to become foreign substances, and fall onto the silicon substrate before, during or during processing. If foreign matter adhering in the process of forming the antireflection film is present on the silicon substrate, the current collecting electrode cannot be formed in a desired pattern when the current collecting electrode is formed by screen printing in the next process. Furthermore, foreign matter adheres to the pattern portion of the print mask, causing clogging. If pattern formation is performed using this print mask, the collector electrode cannot be formed in a desired pattern on another silicon substrate. Sometimes. That is, the same defect may occur even in a solar battery cell to which no foreign matter is attached. In order to suppress such defects, the printing mask is periodically replaced. However, there is a problem that productivity is reduced due to an increase in printing mask cost and time required for the replacement.
  • a method of forming an antireflection film having a thickness of 60 nm to 95 nm by a plasma CVD (Chemical-Vapor-Deposition) method is disclosed (for example, Patent Document 1).
  • the plasma CVD apparatus deposits a film made of the same material as the antireflection film in the chamber and peripheral jigs, and the film peels off and becomes a foreign substance and falls into the cell to cause a defect. cause.
  • the foreign matter comes out on the cell with a size of 1 mm or less.
  • the particle size distribution of the foreign matter 10 ⁇ m or less is 95% or more.
  • a comb-like grid electrode having a width of 30 ⁇ m to 150 ⁇ m is printed by a screen printing method. At this time, if a foreign substance having a size equal to or larger than the grid width blocks the opening of the mask, a printing defect occurs and cell characteristic defects continuously occur.
  • those having a size of 0.1 mm or more can be removed by air blow, but those having a size of 0.1 mm or less cannot be removed by air blow.
  • the texture step is generally 1 ⁇ m to 30 ⁇ m.
  • the texture is formed by a dry etching technique using plasma, the texture is 0.5 ⁇ m to 3 ⁇ m. There are many.
  • This CVD foreign matter can be easily removed by applying a force of about 0.1 N, but it is understood that with a general cell size of 156 mm ⁇ , several thousand foreign matters of 10 ⁇ m to 100 ⁇ m are carried on one cell. The foreign particles increase exponentially as the particle size decreases. It takes too much time to remove such countless foreign substances one by one, which is a major obstacle to production. For this reason, it is necessary to pay a great deal of labor for the maintenance of the chamber of the CVD film forming apparatus. Examples of the occurrence of CVD foreign matter are disclosed in Patent Document 2 and the like.
  • Patent Document 3 a method of cleaning foreign matter in the CVD chamber with a charging plate is disclosed.
  • Patent Document 4 discloses a rotating brush.
  • a protective film used in the production of a solar cell using a CdTe film is adhered to a hard resin rotating shaft and rubbed to remove it. Even if this apparatus is used for removing CVD foreign matter, the cell surface Is markedly scratched, leading to deterioration of characteristics.
  • the present inventors tried to remove the CVD foreign matter by rubbing the cell surface with a net or cloth formed of a soft resin made of vinyl, but even if the foreign matter could be removed, clear streak marks that can be visually recognized on the cell surface. I knew I could enter. In some cases, the pn junction in the texture portion was broken, or vinyl adhered to the top of the texture. When vinyl adheres to the textured shape, CVD foreign matter may adhere to the print mask and become clogged in the printing process, as in the case where CVD foreign matter has adhered.
  • Japanese Patent No. 4144241 Japanese Patent No. 3651977 JP 2009-144193 A Japanese Patent Laid-Open No. 2001-15777
  • the present invention has been made in view of the above, and while removing CVD foreign matter that interferes with printing of fine line widths such as grid electrode widths of 30 ⁇ m to 150 ⁇ m, the cell surface is scratched or troubles occur in the printing process.
  • An object of the present invention is to obtain a foreign matter removing apparatus that does not cause the brush material to adhere to the cell surface and a method for producing a solar cell using the same.
  • the foreign matter removing device of the present invention is a foreign matter removing device for removing foreign matter adhering to the surface of the solar battery cell, holding the solar battery cell on a smooth surface. Conveying part to convey and a large number of non-metallic hairs, contact with the solar cells on the conveying part to remove foreign matter, contact with the brush and adhere to the brush And a wiping plate for wiping off the foreign matter.
  • the present invention since the foreign matter is removed while removing the foreign matter adhering to the brush using the brush and the wiper plate, the pn junction breakage due to the lack of texture is avoided, and the printing process is performed. It is possible to prevent the occurrence of a defect. As a result, it is possible not only to improve the cell non-defective rate and the productivity, but also to form a fine grid electrode even in a fine region with a large distribution of CVD foreign matter. Therefore, the cell output can be improved and the cost can be reduced, and high-quality solar cells can be provided with high productivity.
  • FIG. 1 is a schematic diagram of a foreign matter removing apparatus using a rotating brush device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the AA cross-sectional view of FIG. 1, which is a foreign matter removing apparatus using a rotating brush device according to the first embodiment of the present invention.
  • FIG. 3 is a schematic view of a rotating brush device without a cell edge receiving roller.
  • FIG. 4 is an enlarged view of a main part of FIG.
  • FIG. 5 is a schematic diagram when the tip of the rotating brush is disturbed.
  • FIG. 6 is a schematic diagram for obtaining the outer diameter accuracy by rotating the rotating brush at a high speed to straighten the hair tips and cutting the hair tips.
  • 7A and 7B are diagrams showing a turntable type printing stage, where FIG.
  • FIG. 7A is a layout and function diagram
  • FIG. 7B is a schematic diagram of a foreign matter removing apparatus using a flat brush.
  • FIG. 8 is a diagram for explaining the configuration of the solar battery cell according to the third embodiment of the present invention, in which (a) is a cross-sectional view, (b) is a top view, and (c) is a bottom view.
  • FIG. 9 is a flowchart for explaining a manufacturing process of the solar battery cell according to the third embodiment of the present invention.
  • 10 (a) to 10 (g) are cross-sectional views for explaining the manufacturing process of the solar battery cell according to the third embodiment of the present invention.
  • FIGS. 11A to 11C are process cross-sectional views illustrating the foreign matter removing process according to the third embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a foreign matter removing apparatus using a rotating brush device according to a fourth embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a foreign matter removing apparatus using a rotating brush device according to a fifth embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a foreign matter removing apparatus using a rotating brush device according to a sixth embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a foreign matter removing apparatus using the rotating brush device according to the first embodiment of the present invention.
  • This foreign matter removing apparatus includes a solar battery cell (hereinafter also referred to as a cell) after CVD film formation. It is mounted on a transport belt 20 for transport.
  • This foreign matter removing device is a device for removing foreign matter adhering to the surface of a cell 10 constituting a solar battery, and removes foreign matter by bringing it into contact with the transport belt 20 as a transport section and the cell 10 on the transport belt 20.
  • the rotating brush 37, the wiper plate 40 which contacts the rotating brush 37 and wipes off the foreign matter attached to the rotating brush 37, and a cleaning unit are included.
  • the conveyance belt 20 conveys the cell 10 while holding the cell 10 on a smooth surface.
  • the rotating brush 37 is made of a high-molecular fiber made of a large number of non-metallic hairs and having a hardness lower than that of silicon, which is a substrate for a solar battery constituting a solar battery cell.
  • the cleaning unit cleans the tip of the rotating brush 37 by blowing air at a speed larger than the floating speed of the foreign matter to be removed.
  • FIG. 4 is an enlarged view of a main part of FIG.
  • an n-type impurity diffusion layer 3 is formed by phosphorus diffusion as a second conductivity type semiconductor layer on the light-receiving surface side of a p-type single crystal silicon substrate as a substrate 2, and a semiconductor having a pn junction.
  • a substrate 11 is configured.
  • the antireflection film 4 is formed on the surface of the substrate 2 on which the n-type impurity diffusion layer 3 is formed by the CVD film forming method.
  • the outline of the function of FIG. 1 is that the cell 10 on the transport belt 20 is transported, and the coarse foreign particles 14G are removed and collected to the first dust collector 36 using the air blow 35 in the first stage, and in the second stage.
  • the rotating brush 37 Using the rotating brush 37, the foreign particle 14 adhering to the cell 10 is removed and collected in the second dust collector 41.
  • the foreign matter coarse particles 14G and the foreign matter fine particles 14 sandwiched between the hairs of the rotating brush 37 between the hairs and the hairs are not subjected to static electricity removal measures and do not contain metal.
  • the tip of the rotary brush 37 is wiped off with the conductive wiper 40 or blown off by the air blow 42 on the tip of the rotary brush 37 and collected by the second dust collector 41 or the third dust collector 43.
  • the duct cross-sectional area of the collection path to the first dust collector 36, the second dust collector 41, and the third dust collector 43 is kept constant to collect the foreign matter that has been moved or floated by brushing or air blow. It is desirable to do.
  • the cover 44 be a cylindrical body having a constant cross section and the duct cross-sectional area be constant in the vicinity of the rotating brush 37.
  • the vicinity of the rotating brush 37 refers to a portion in a cross section perpendicular to the rotating shaft 39 of the rotating brush 37, and is formed to be a cylindrical body having a constant cross section at least in this region.
  • a so-called anti-static plate is effective as the conductive deburring plate 40 that does not contain metal and has been subjected to static electricity removal measures.
  • a material obtained by conducting a conductive treatment on the surface of a PVC (polyvinyl chloride) substrate is used as the antistatic plate.
  • the conveyance belt 20 is provided with several suction holes of 1 to 3 mm ⁇ per cell. By suctioning through the suction holes, suction is performed at a negative pressure of several tens of kPa per cell. Yes.
  • the suction hole prevents the cell 10 from being displaced on the conveyor belt 20, and when removing the cell 10 from the conveyor belt 20, the suction is turned off and the negative pressure is released.
  • the cell 10 is moved from the left to the right in the drawing by the conveyor belt 20.
  • the conveyance belt 20 and the cell 10 are integrated and repeatedly accelerated and decelerated.
  • FIG. 1 shows a state in which CVD foreign matters such as foreign matter coarse particles 14G and foreign matter fine particles 14 are placed on the cell 10.
  • the CVD foreign substances are coarse foreign particles 14G that can be suspended and removed by the air flow 35N flowing from the air blow 35 or the gap between the covers 44, and foreign particles 14 that can be removed by the rotating brush 37.
  • the floating speed is 0.3 m / sec if the spherical particle has a size of 50 ⁇ m, which is a problem in the grid printing process. In the 10 ⁇ m size, the floating speed is 0.01 m / sec. The floating speed varies exponentially with the particle size. Large coarse particles with a size of 0.1 mm soar with an air blow of 1 to 2 m / sec.
  • air of 2 m / sec or more is blown by the air blow 35 and collected in the first dust collector 36 on the upstream side.
  • a cover 44 is provided so that foreign matter to be collected is not scattered outside.
  • the rotary brush 37 is preferably made of a general-purpose material of a linear fiber that is soft and has a hardness that does not damage the cell surface, such as vinyl chloride resin or nylon resin.
  • the brush contains metal or the surface is contaminated, the output of the solar cell is greatly deteriorated.
  • the surface of the silicon crystal solar battery cell exceeds 2E12 atoms / cm 2 , the cell output is significantly reduced.
  • the brush material contains 1000 ppm or more of Fe, if the brush marks adhere to the texture surface at a density of 1E-3 / mm 2 with a volume of 1 ⁇ m 3 , the cell output begins to decrease.
  • a rotating brush 37 is a structure in which several thousand or more hairs are bundled and wound around the rotating shaft 39.
  • the diameter of the hair of the brush should ideally be determined by the size of the foreign matter to be removed and the texture size formed on the cell surface. Limited by.
  • the diameter of the hair of the brush is also determined by the accuracy of the cut surface of the hair tip.
  • the average size of the target foreign particle 14 to be removed is 50 ⁇ m
  • one hair of the rotating brush is preferably 50 ⁇ m ⁇ and 5 to 40 mm long. Particularly desirable is 10 to 30 mm.
  • the density of the hairs of the brush is 40,000 / cm 2 for each hair of 50 ⁇ m ⁇ .
  • the cross-sectional area density of the ciliary body is ⁇ / 4 to 80%.
  • the force applied at that time is 20 Pa, which is sufficiently smaller than the cell breaking stress.
  • the hair cross-sectional area density required for the hair of the brush to be surely removed by contact with foreign matter on the cell surface must be 20% or more.
  • the foreign particle 14 which is a CVD foreign substance on the cell 10 is rotated by a motor (not shown) on the rotary shaft 39 and brought into contact with the rotary brush 37.
  • a motor not shown
  • the rotary brush 37 has a configuration in which the height can be accurately positioned on the micron order by a vertical drive motor.
  • the hair at the tip of the brush becomes a wholesale state with a hard pyramid-like texture (not shown) of the cell 10, and the hair tip Is scraped off to the top of the texture, and part of it is caught on the top of the texture, and the white streak-like brush marks can be visually observed.
  • the amount of pushing of the rotating brush 37 into the cell 10 is 0.001 to 3 mm. From the viewpoint of safety, it is desirable that the amount of pushing of the rotating brush 37 into the cell 10 is 0.001 to 0.1 mm. This brush mark induces a printing failure in a later printing process.
  • brush marks are made of brush material. If it is a grade which does not generate
  • the conveying speed of the conveying belt 20 and the cell 10 is constant 600 mm / s, the hair of the rotating brush 37 is 20 mm long, the outer diameter of the rotating shaft is 40 mm ⁇ , and the outer diameter of the rotating brush 37 is 80 mm ⁇ . Then, assuming that the rotation direction is positive in FIG. 1 and the brush is overtaking the cell surface, the relative speed is positive.
  • the relationship between the brush rotation speed and the relative speed between the cell surface is as shown in Table 1. .
  • the parameters that influence the brush mark are the amount of pressing of the brush to the cell, the number of rotations of the brush, the accuracy of the brush outer diameter, and the accuracy of brush pressing control.
  • the brush rotation speed is lowered, the CVD foreign matter removal rate is likely to be lowered. Therefore, brush marks should be suppressed with other parameters.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • the cell 10 protrudes outward from the conveyor belt 20, and when the rotating brush 37 is pressed, the periphery of the cell 10 warps downward, causing problems such as defective cell adsorption, defective cell conveyance, and broken cells. It becomes.
  • the receiving roller 38 can be synchronized at the same height as the conveying belt 20 as shown in FIG. 2, the rotation direction is opposite to the rotating brush 37 as shown in FIG. 1, and the same peripheral speed as the conveying belt 20. desirable.
  • FIG. 3 shows a case where the receiving roller 38 is not provided.
  • FIG. 6 is a state diagram before and after the rotating brush 37 is pressed against the cell 10, and when there is no receiving roller 38, the height of the cell periphery outside the conveyor belt 20 moves up and down by 1 mm when the cell thickness is 0.2 mm in high-speed video camera shooting. I know that. This vertical movement around the cell is not recommended when a rotating brush is used at high speed, as it tends to cause brush marks.
  • FIG. 5 shows a schematic diagram of a normal rotating brush 45 in which the bristles and hair lengths are not uniform.
  • the brush outer diameter is 80 mm ⁇ 2 mm, which is a problem level for brush marks.
  • the cutting blade 46 which cuts a hair-like body, and cuts the outer diameter of the rotary brush 37 from which the length of a hair-like body differs in this cut blade 46 to a desired value.
  • the tip of a brush the tip is bent due to airflow turbulence if there is a disturbing stationary object because of high-speed rotation. For this reason, it is desirable to use a vacuum when cutting the brush tip.
  • the outer diameter, height, and rotation speed of the rotating brush 37 can be controlled with high accuracy in FIG. 1, when the level is set to the same level as the texture height, the conveyor belt 20 and the receiving roller 38 operate at the same speed in conjunction with the rotating brush 37. Synchronize with. For this reason, even in a region where the relative speed between the cell surface and the brush tip exceeds 600 mm / sec or more, the foreign particle 14 which is a CVD foreign material is bounced by the bristles of the rotating brush 37 and removed into the air. At this time, when the brush bristles begin to rub against the cell surface, the ciliary body is pushed back and most of the ciliary body does not come into contact with the cell surface, so that a brush mark is hardly generated.
  • the tip cut portion of one hair of the rotating brush can be cut in a vertical section, and the outer diameter of the rotating brush is close to the accuracy of the cut surface of one hair of the rotating brush. .
  • the accuracy of the amount of pushing the rotating brush 37 into the cell 10 is close to the diameter of one brush hair, so the outer diameter of one brush hair is reduced, and one hair The longer the length, the better to suppress the brush marks.
  • the outer diameter of the brush hair is preferably 0.2 mm or less. If it exceeds 0.2 mm, the accuracy of the amount by which the rotary brush 37 is pushed into the cell 10 cannot be obtained. However, if the outer diameter of the brush hair is too thin, the processing and operability of the hair tend to be poor.
  • the foreign particle 14 blown from the surface of the cell 10 by the rotating brush 37 is 50 ⁇ m ⁇ and has a floating speed of 0.3 m / sec, it is exhausted with a larger air volume and collected by the second dust collector 41.
  • the foreign particle coarse particles 14G and the foreign particle 14 may be sandwiched between the hairs of the rotating brush 37 and the hairs. If the surface of the cell 10 is rubbed with the rotating brush 37 in this state, the cell 10 is scratched and the cell output deteriorates. Therefore, it is desirable that the rotating brush 37 is completely wiped off during one rotation.
  • the texture of the texture is determined by pressing the rotating brush produced with the same level of accuracy as the texture size against the cell immediately after film formation of the CVD film by an amount corresponding to the texture size. It is possible to avoid pn junction breakage due to chipping, and to remove only the CVD foreign matter with the rotational force of the brush.
  • FIG. The rotary brush 37 according to the first embodiment is preferably used for removing foreign substances caused by CVD, but there are cases where foreign substances adhering during conveyance are desired to be removed at the same time in the printing process, which is a subsequent process of the CVD film forming process. Therefore, in this embodiment, a foreign matter removing apparatus using a linear brush (hereinafter referred to as a flat brush) will be described.
  • a linear brush hereinafter referred to as a flat brush
  • FIG. 7A and 7B show an example of a foreign matter removing apparatus used in the solar cell manufacturing apparatus according to Embodiment 2 of the present invention.
  • FIG. 7A is a diagram showing an overall layout of the printing apparatus when the foreign matter removing apparatus is attached to the printing apparatus, and is a turntable type printing apparatus.
  • the four stages R1 to R4 of the turntable 21 are arranged symmetrically in the vertical and horizontal directions and in point symmetry, and the function of the order in which the cells 10 are supplied and processed is as follows: cell insertion positioning position R1 ⁇ brush cleaning position R2 ⁇ printing Position R3 ⁇ print inspection cell discharge position R4.
  • FIG. 7B is an enlarged view of a main part showing a brush cleaning position R2 for cleaning the second cell surface.
  • a stage plate 22 is provided on the turntable 21, and the cell 10 is disposed thereon.
  • the turntable 21 rotates and the cell 10 adsorbed on the stage plate 22 is lowered and brought into contact with the flat brush 49 so that the tip of the brush is touched (V 1 ). is there.
  • the scan is moved from the left to the right (H 2 ), and when it is finished, it is retracted upward (V 2 ).
  • the turntable 21 rotates and moves from right to left (H 1 ) and from top to bottom (V 1 ) while the cell moves to the next printing position R 3, and returns to the original position.
  • the foreign material remaining on the flat brush 49 is removed by contacting the wiping plate 40P.
  • the wiping plate 40P is formed so as to be movable up and down, and when the foreign matter remaining on the flat brush 49 is removed, the wiping plate 40P shifts upward and does not come into contact with the flat brush 49.
  • the flat brush 49 may be made of the material, scan speed, and push-in amount described in the first embodiment, but the flat brush 49 corrects wrinkles when the hair tips are bent and wrinkled compared to the rotating brush 37.
  • the flat brush 49 has a life shorter than that of the rotating brush 37 due to scissors, and it is difficult to control the height, but the same effect as that of the rotating brush 37 can be obtained, and the device is simple and easy to use.
  • a minute scratch on the cell surface induces device characteristics deterioration, but a minute scratch on the back surface of the cell has a likelihood.
  • a linear brush that is, a flat brush 49
  • the pushing depth of the cell 10 into the bristles is about 0 to 5 mm from the cell passing part and pushed so as to come into contact.
  • the CVD foreign matter adhering to the back surface of the cell can be removed. Since the cell 10 is damaged when the pushing depth of the cell 10 into the bristles of the flat brush 49 exceeds 5 mm, it is desirable not to exceed 5 mm.
  • one hair of the flat brush 49 has a length of about 50 ⁇ m ⁇ and 5 to 40 mm. Particularly desirable is 10 to 30 mm. If the length of the ciliary body exceeds 40 mm, it is difficult to obtain processing accuracy when cutting the hair tips. Also, as you continue to use it, the hair tips will bend and become wrinkled easily. In particular, in the case of a flat brush, it is difficult to correct wrinkles. Moreover, it will become easy to be damaged, if the length of a ciliary body is less than 5 mm.
  • FIG. 8A is a cross-sectional view for explaining the configuration of the solar battery cell 10 according to the embodiment of the present invention
  • FIG. 8B is a top view of the solar battery cell 10 viewed from the light receiving surface side
  • 8 (c) is a bottom view of the solar battery cell 10 as viewed from the side opposite to the light receiving surface.
  • FIG. 8A is a cross-sectional view in the XX direction of FIG.
  • FIG. 9 is a flowchart showing a manufacturing process of the solar battery cell 10.
  • an n-type impurity diffusion layer 3 is formed by phosphorus diffusion as a second conductivity type semiconductor layer on the light-receiving surface side of a p-type single crystal silicon substrate as a substrate 2, and a semiconductor having a pn junction.
  • a substrate 11 is configured.
  • An antireflection film 4 made of a silicon nitride film (SiN film) is formed on the n-type impurity diffusion layer 3.
  • a foreign matter removing step (FIG. 9: Step S40) using the rotating brush 37 is added.
  • the substrate 2 is not limited to a p-type single crystal silicon substrate, and a p-type polycrystalline silicon substrate may be used.
  • n-type impurity diffusion layer 3 fine irregularities are formed as a texture structure.
  • the micro unevenness increases the area for absorbing light from the outside on the light receiving surface, suppresses the reflectance on the light receiving surface, and has a structure for confining light.
  • a light receiving surface side electrode 12 including the surface silver grid electrode 6 and the surface silver bus electrode 5 is formed on the light receiving surface side of the semiconductor substrate 11.
  • the front silver bus electrode 5 is provided so as to be orthogonal to the front silver grid electrode 6, and is electrically connected to the n-type impurity diffusion layer 3 at the bottom surface portion. .
  • the front silver bus electrode 5 and the front silver grid electrode 6 are made of a silver material.
  • a back surface electrode 7 made of an aluminum material is provided on the entire back surface (surface opposite to the light receiving surface) of the semiconductor substrate 11, and extends in the same direction as the front silver bus electrode 5 and made of a silver material.
  • a back surface collecting electrode 8 is provided. The back electrode 7 and the back collecting electrode 8 constitute a back electrode 13 as the second electrode.
  • solar cell 10 configured in this way, sunlight is applied to the pn junction surface (the junction surface between substrate 2 and n-type impurity diffusion layer 3) of semiconductor substrate 11 from the light-receiving surface side of solar cell 10. Then, holes and electrons are generated. Due to the electric field at the pn junction, the generated electrons move toward the n-type impurity diffusion layer 3, and the holes move toward the substrate 2. As a result, electrons are excessive in the n-type impurity diffusion layer 3 and holes are excessive in the substrate 2. As a result, a photovoltaic force is generated.
  • This photovoltaic power is generated in the direction of biasing the pn junction in the forward direction, the light receiving surface side electrode 12 connected to the n-type impurity diffusion layer 3 becomes a negative pole, and the back surface side electrode 13 connected to the substrate 2 becomes a positive pole. Thus, a current flows through an external circuit (not shown).
  • FIG. 9 is a flowchart for explaining a manufacturing process of the solar battery cell 10.
  • FIG. 10A to FIG. 10G are cross-sectional views for explaining the manufacturing process of the solar battery cell.
  • a p-type single crystal silicon substrate is prepared as the substrate 2, and the p-type single crystal silicon substrate is cleaned using hydrogen fluoride, pure water, or the like. After that, fine irregularities are formed on the surface of the p-type single crystal silicon substrate to form a texture structure (pyramid structure) on the surface (FIG. 9: Step S10, FIG. 10 (a)). )).
  • a texture structure for example, a p-type single crystal silicon substrate is etched with an aqueous alkali solution such as an aqueous sodium hydroxide solution (additives may be added in some cases).
  • the p-type single crystal silicon substrate is put into a thermal oxidation furnace and heated in the presence of phosphorus oxychloride (POCl 3 ) vapor to form phosphorus glass on the surface of the p-type single crystal silicon substrate.
  • phosphorus is diffused into the p-type single crystal silicon substrate, the n-type impurity diffusion layer 3 is formed on the surface layer of the p-type single crystal silicon substrate, and a pn junction is formed (FIG. 9: Step S20, FIG. 10). (B)).
  • a phosphor glass layer mainly composed of glass on the surface immediately after the formation of the n-type impurity diffusion layer 3 and an n-type impurity diffusion layer 3 formed on the back surface of the p-type single crystal silicon substrate are hydrofluoric acid (HF). It is removed by wet etching with a mixed acid of / nitric acid (HNO 3 ) / sulfuric acid (H 2 SO 4 ).
  • HNO 3 nitric acid
  • H 2 SO 4 sulfuric acid
  • a pn junction is formed by the substrate 2 made of p-type single crystal silicon as the first conductivity type layer and the n-type impurity diffusion layer 3 as the second conductivity type layer formed on the light receiving surface side of the substrate 2.
  • the formed semiconductor substrate 11 is obtained (FIG. 10C).
  • a SiN film is formed on the n-type impurity diffusion layer 3 as the antireflection film 4 by the plasma CVD method (FIG. 9: step S30, FIG. 10 (d)).
  • the film thickness and refractive index of the antireflection film 4 are set to values that most suppress light reflection. Note that two or more layers having different refractive indexes may be laminated as the antireflection film 4.
  • the antireflection film 4 may be formed by a different film forming method such as a sputtering method.
  • Step S40 the surface of the antireflection film 4 is lightly rubbed by the foreign matter removing device using the rotating brush 37 shown in FIG. 1 to remove the foreign matter attached to the surface.
  • This process is a feature of the present embodiment, and this process will be described in detail later.
  • Electrodes are formed by screen printing.
  • the back side electrode 13 is created (before firing). That is, the aluminum paste 7a as the electrode material paste is applied to the shape of the back electrode 7 by screen printing on the back side of the p-type single crystal silicon substrate, and dried at about 100 ° C. to 300 ° C. Further, a silver paste 8a as an electrode material paste is applied to the shape of the back surface collecting electrode 8, and dried at about 100 ° C. to 300 ° C. (FIG. 9: Step S50, FIG. 10 (e)).
  • the light receiving surface side (surface side) electrode 12 is prepared (before firing). That is, after applying the silver paste 12a to the shape of the front silver bus electrode 5 and the front silver grid electrode 6 on the antireflection film 4 which is the light receiving surface of the p-type single crystal silicon substrate as the substrate 2, by screen printing, The silver paste 12a is dried (FIG. 9: Step S60, FIG. 10 (f)).
  • the paste is baked at a temperature of about 700 ° C. to 900 ° C. for a time of several minutes to ten and several minutes.
  • the front silver bus electrode 5 and the front silver grid electrode 6 as the light receiving surface side electrode 12, and the back electrode 7 and the back current collecting electrode 8 as the back surface side electrode 13 are obtained (FIG. 9: Step S70, FIG. 10). (G)).
  • the solar battery cell 10 shown in FIGS. 8A to 8C can be manufactured.
  • the order of arrangement of the paste, which is an electrode material, on the semiconductor substrate 11 may be switched between the light receiving surface side and the back surface side.
  • 11 (a) to 11 (c) are enlarged cross-sectional views of the main part showing the foreign matter removing step S40 according to the present embodiment.
  • the formation process of the antireflection film (FIG. 9: Step S30)
  • the SiNOH film is formed using the plasma CVD method
  • foreign substances fall and adhere to the semiconductor substrate during the film formation.
  • the following inconveniences may occur in the printing process. That is, when the electrode material paste is applied to the surface of the solar battery cell by screen printing, the electrode material paste may not be applied in a desired shape to a place where the foreign material is present.
  • the electrode material paste cannot be applied in a desired shape due to the clogging of foreign matter in the printing mask pattern, the electrode material paste may not be applied in the desired shape even in a solar battery cell without foreign matter adhesion. is there.
  • the electrode material paste cannot be applied in a desired shape as described above, the photoelectric conversion efficiency is lowered due to a decrease in curvature factor (F.F), and if the desired photoelectric conversion efficiency cannot be obtained, it becomes defective. The rate increases.
  • the productivity decreases.
  • step S40 the foreign matter removing apparatus shown in FIG.
  • the surface of the antireflection film is rubbed with the rotating brush 37 while air blowing.
  • FIG. 11A shows an enlarged view of the vicinity of the surface of the semiconductor substrate 11 when the foreign particle 14 adheres before the antireflection film 4 is formed. This step corresponds to an enlarged view of the vicinity of the surface of the semiconductor substrate 11 during the step of forming the antireflection film 4 in FIG.
  • foreign particles 14 or coarse particles
  • the antireflection film 4 is formed so as to surround the periphery of the foreign particle 14 as shown in FIG. A portion where the antireflection film 4 surrounds the foreign particle 14 as in the portion A in FIG. 11B has a low foreign matter removal rate in the water washing process.
  • the foreign particles 14 are peeled off, including the antireflection film 4 that wraps around the foreign particles 14 like the A 'portion, by rubbing lightly using the rotating brush 37. To do.
  • a physical process of rubbing with the rotating brush 37 is used in the third embodiment, but a fluorine gas system (F 2 , NF 3 , ClF) is used. Chemical treatment such as dry etching treatment with plasma of 3 ) may be used in combination.
  • the hair material constituting the rotating brush 37 must be made of silicon oxynitride or a material that is sufficiently softer than silicon.
  • a soft material having a Mohs hardness of 3 or less is preferable. Examples thereof include nylon and polypropylene.
  • the diameter of the hair of the rotating brush is preferably 10 to 100 ⁇ m.
  • the surface of the antireflection film 4 when the surface of the antireflection film 4 is brushed with the rotating brush 37 to which the foreign particle 14 is attached by the brushing process, a desired foreign matter removal rate may not be obtained due to the reattachment.
  • the surface of the antireflection film 4 (silicon nitride) or the n-type impurity diffusion layer 3 (silicon) may be damaged or the texture structure may be destroyed. These all cause a decrease in photoelectric conversion efficiency.
  • a third dust collector 43 that sucks the foreign particle 14 or coarse particle 14 ⁇ / b> G attached to the brush is installed in the removal mechanism including the rotary brush 37, and the rotary brush 37. Remove foreign material adhering to the surface. Thereby, a desired foreign matter removal rate can be stably obtained, and it is possible to prevent the silicon nitride or silicon from being damaged or the texture structure from being destroyed.
  • FIG. FIG. 12 is a cross-sectional view of the foreign matter removing apparatus using the rotating brush device according to the fourth embodiment of the present invention.
  • This foreign matter removing apparatus is on the side where the tip of the rotating brush 37 descends, that is, after contacting the cell 10.
  • the rotating plate 40S which contacts is provided at the position rotated by 270 degrees.
  • this wiping board 40S is covered with the dust collection nozzle 50 installed apart from the rotating brush 37, and exhausts the circumference
  • the space between the wiping plate 40S and the dust collection nozzle 50 is 6 mm or less, the exhaust speed of the space is 5 m / sec or more, and the protruding amount X of the wiping plate 40S from the dust collection nozzle 50 is within 10 mm.
  • the dust collection nozzle 50 is connected to the 4th dust collector 51, and exhausts the circumference
  • Tip of the payment plate 40S is disposed to come to the position of the axial center distance S A of the rotary brush 37.
  • the distance between the tip of the payment plate 40S and the rotary brush 37 has a value obtained by subtracting the distance S A from the radius R of the rotary brush 37.
  • the payment plate 40S is supported by support (not shown) at a distance S C from the conveyor belt 20.
  • the payment plate height of 40S height of the axis of the rotary brush 37 that is located at a distance S B from the conveying belt 20, slightly pay plate 40S is low.
  • the amount that the brush tip pushes into the cell is the same as the amount that the brush tip pushes into the wiper, and is preferably 1 mm or less.
  • the distance S B and the distance S C are desirably the same value, and even if there is a difference, it is desirable that the distance S B and the distance S C be 2 mm or less.
  • This foreign matter removing apparatus is mounted on a conveyor belt 20 that conveys solar cells after forming a functional film by the CVD method, as in the first to third embodiments.
  • This foreign matter removing device is a device for removing foreign fine particles 14 adhering to the surface of a cell 10 constituting a solar battery, and makes the foreign matter come into contact with the transport belt 20 as a transport section and the cell 10 on the transport belt 20.
  • the rotary brush 37 to be removed, the wiper plate 40S that comes into contact with the rotary brush 37 and wipes off the foreign matter attached to the rotary brush 37, and a cleaning unit are included.
  • the conveyor belt 20 holds the cell 10 with a smooth surface and conveys it in the direction indicated by the arrow A.
  • the rotating brush 37 is made of a high-molecular fiber made of a large number of non-metallic hairs and having a hardness lower than that of silicon, which is a substrate for a solar battery constituting a solar battery cell.
  • the foreign matter fine particles 14 are wiped off by the rotating brush 37 and most of them are blown off or collected by the fourth dust collector 51. Some of them are adsorbed on the wiping plate 40S, but are removed by the dust collecting nozzle 50. Therefore, even when a large amount of foreign particles 14 are generated, they fall in a large amount from the wiping plate 40S to the brush bristle gap. It is possible to avoid a situation in which the brush is soiled or a large amount of foreign particle 14 is reattached to the cell 10.
  • the foreign particle 14 on the cell 10 adheres to the tip of the rotating brush 37 and is then adsorbed to the wiping plate 40S.
  • the tip of the wiping plate 40S slightly protrudes from the dust collecting nozzle 50 in a “tongue shape”, and the dust collecting nozzle 50 covering the wiping plate 40S exhausts a narrow gap at an air flow velocity V, and the foreign particle 14 Is collected and exhausted by the fourth dust collector 51 to be recovered.
  • the foreign particle 14 having a size of 0.5 mm or less is all the fourth if the distance X from the wiper plate 40S to the dust collection nozzle 50 is within 10 mm.
  • the exhaust gas can be collected up to the dust collector 51. If the gap d exceeds 6 mm, it is difficult to apply a sufficient exhaust flow to the wiping plate 40S, and exhaust recovery becomes difficult.
  • Embodiment 4 of the present invention by providing the conveyor belt 20 of the solar battery cell and the rotating brush 37 in contact with the solar battery cell, foreign matter adhering to the surface of the solar battery cell can be removed. Further, by providing the wiper plate 40S that comes into contact with the bristles of the rotating brush 37, foreign substances attached to the bristles of the rotating brush 37 can be removed, so that the solar cells are damaged by the foreign substances attached to the rotating brush 37. It can prevent that the foreign material adhering to the rotating brush 37 adheres again to a photovoltaic cell.
  • the foreign particle 14 is prevented from adsorbing to the wiping plate 40S, and the foreign particle 14 is reattached to the rotating brush 37 from the wiping plate 40S. Can be prevented.
  • the wiping plate 40S contacts on the side where the tip of the rotary brush 37 having the radius R descends. If the rotation direction is counterclockwise as shown in FIG. 12, the tip of the rotating brush 37 descends in the left half of the rotating brush 37, so that the wiper plate 40 ⁇ / b> S is installed in the left half. Thereby, the foreign particle 14 that has been wiped off from the bristles of the rotating brush 37 floats above the wiping plate 40S. Thereby, even if the suction force of the dust collection nozzle 50 is temporarily reduced, foreign matter can be received on the wiping plate 40S, so that there is an effect of preventing the foreign matter from falling onto the cell 10.
  • no air blow is performed, but also in this embodiment, the tip of the rotating brush 37 is cleaned by performing an air blow (not shown) at a speed larger than the floating speed of the foreign matter to be removed. May be.
  • Embodiment 5 FIG.
  • the clearance gap is provided above and below the payment plate 40S.
  • the foreign particles 14 adhering to the tips of the rotating brush 37 and the wiper plate 40S can be exhausted and recovered more efficiently.
  • Others are the same as those of the fourth embodiment, and the description is omitted here.
  • Embodiment 6 In the foreign matter removing apparatus of Embodiments 4 and 5 shown in FIGS. 12 and 13, dust collection is performed only by the wiping plate 40S and the dust collection nozzle 50, but it is covered by the cover 44 as in the first embodiment. The foreign matter to be collected may not be scattered outside.
  • the wiping plate 40 r Due to the relationship with the cover 44, the wiping plate 40 r is provided at a position where the rotating brush 37 rotates 90 degrees after the foreign particles 14 on the cell 10 are removed.
  • the dust collection nozzle 50 covers the periphery of the wiping plate 40 r and is connected to the fourth dust collector 51. Also in the present embodiment, the AA cross section is as shown in FIG. 2 as in the first embodiment, but the description is omitted here.
  • the CVD foreign matter includes foreign matter coarse particles 14G that can be suspended and removed by an air flow 35N flowing into the cover through a gap between the air blow 35 and the cover 44, and foreign matter fine particles 14 that can be removed by the rotating brush 37.
  • the floating speed is 0.3 m / sec if it is a spherical particle of 50 ⁇ m size, which is a problem in the grid printing process. In the 10 ⁇ m size, the floating speed is 0.01 m / sec. The floating speed varies exponentially with the particle size. Large coarse particles with a size of 0.1 mm soar with an air blow of 1 to 2 m / sec.
  • air of 2 m / sec or more is blown by the air blow 35 and collected in the first dust collector 36 on the upstream side.
  • the wiping plate 40r is provided at a position where the rotating brush 37 is rotated 90 degrees after the foreign particle 14 on the cell 10 is removed.
  • the rotating brush 37 peels off the foreign particles 14 by the wiping plate 40r and is efficiently recovered by the dust collection nozzle 50. The flying of the foreign particle 14 can be suppressed.
  • a second wiping plate may be provided at a position facing the wiping plate 40r with respect to the axial center of the rotating brush 37 to further clean the rotating brush 37.
  • the diffusion type solar cell in which the n-type impurity is diffused in the p-type single crystal silicon substrate to form the pn junction has been described.
  • the n-type single crystal silicon substrate, the n-type polycrystalline silicon substrate, etc. It can be applied to other optical elements such as thin film EL elements as well as thin film solar cells in which a pn junction is formed by forming a p-type amorphous silicon layer, a p-type polycrystalline silicon layer, etc. on the surface of a silicon substrate. .
  • the antireflection film is not limited to a silicon oxynitride film, but is a silicon oxynitride film, a silicon nitride film, or a multilayer film in which a silicon oxynitride film, a silicon nitride film, etc. are laminated. This is particularly effective for an inorganic film formed by vapor deposition in a chamber such as an apparatus.
  • the foreign matter removing apparatus and the solar cell manufacturing method using the same according to the present invention are useful for removing foreign matters without damaging the surface, and in particular, solar cells after formation of a CVD film. It is suitable for removing foreign substances on the substrate surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning In General (AREA)
  • Photovoltaic Devices (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

In the present invention, a rotating brush (37) of soft hairs produced at high precision and having an outer diameter equivalent to a texture size is contacted to a solar cell (10) immediately after CVD film production by an amount corresponding to the texture size, p-n junction breakage resulting from texture chipping is avoided, and only CVD foreign objects such as foreign object microparticles (14) and foreign object coarse particles (14G) are eliminated by means of the rotational force of the rotating brush (37). As a result, it is possible to produce a solar cell without a brush material adhering to the cell surface in a manner so as to cause problems in a printing step or in a manner so as to cause scratches at the cell surface, even while eliminating CVD foreign objects that lead to a hindrance in the printing of a grid electrode having a width of 30-150 μm.

Description

異物除去装置及びこれを用いた太陽電池の製造方法Foreign matter removing apparatus and method for manufacturing solar cell using the same
 本発明は、異物除去装置及びこれを用いた太陽電池の製造方法に係り、特に太陽電池セル表面に付着した異物を除去するブラシ装置に関するものである。 The present invention relates to a foreign matter removing apparatus and a solar battery manufacturing method using the same, and more particularly, to a brush device that removes foreign matter adhering to the surface of a solar battery cell.
 太陽電池セルは、例えば、シリコン基板に、太陽光の光エネルギーを電気エネルギーに変換するpn接合と、受光面側の基板上に設けられて太陽光の反射を抑制する反射防止膜と、反射防止膜上に設けられて電気エネルギーを外部へ出力する集電電極とを形成したものである。多くの場合、反射防止膜は窒化シリコンで形成され、その成膜にはプラズマCVD装置が用いられる。 For example, a solar battery cell is formed on a silicon substrate, a pn junction that converts light energy of sunlight into electrical energy, an antireflection film that is provided on the substrate on the light-receiving surface side and suppresses reflection of sunlight, and antireflection A collector electrode provided on the film and outputting electric energy to the outside is formed. In many cases, the antireflection film is formed of silicon nitride, and a plasma CVD apparatus is used for the film formation.
 プラズマCVD装置を用いて、被処理基板としてのシリコン基板に窒化シリコン膜が成膜される際、成膜時に装置内部の内壁や電極、ステージ上へも膜が形成される。そして、これらの膜が剥がれて異物となり、処理前後、または処理中にシリコン基板上へ落下する。反射防止膜の形成工程で付着した異物がシリコン基板上に存在すると、次工程のスクリーン印刷により集電電極を形成する際に、集電電極が所望のパターン通りに形成できない。さらに印刷マスクのパターン部に異物が付着して目詰まりを起こし、この印刷マスクを用いてパターン形成がなされると、他のシリコン基板に対しても集電電極が所望のパターン通りに形成できなくなることがある。つまり、異物が付着していない太陽電池セルでも同様の不良が発生する場合がある。このような不良を抑制するために、定期的に印刷マスクの交換を実施するが、印刷マスクコストの増加と、交換にかかる時間により生産性が低下するという問題がある。 When a silicon nitride film is formed on a silicon substrate as a substrate to be processed using a plasma CVD apparatus, the film is also formed on the inner wall, electrode, and stage inside the apparatus at the time of film formation. Then, these films are peeled off to become foreign substances, and fall onto the silicon substrate before, during or during processing. If foreign matter adhering in the process of forming the antireflection film is present on the silicon substrate, the current collecting electrode cannot be formed in a desired pattern when the current collecting electrode is formed by screen printing in the next process. Furthermore, foreign matter adheres to the pattern portion of the print mask, causing clogging. If pattern formation is performed using this print mask, the collector electrode cannot be formed in a desired pattern on another silicon substrate. Sometimes. That is, the same defect may occur even in a solar battery cell to which no foreign matter is attached. In order to suppress such defects, the printing mask is periodically replaced. However, there is a problem that productivity is reduced due to an increase in printing mask cost and time required for the replacement.
 例えば、60nm~95nm厚の反射防止膜をプラズマCVD(Chemical-Vapor-Deposition)法で形成する方法が開示されている(例えば特許文献1)。この方法では、プラズマCVD装置は、成膜回数が多くなると反射防止膜と同じ材質の膜がチャンバー内や周辺冶具に堆積し、この膜が剥離して異物となってセルに落下して不良を引き起こす。CVD膜成膜後に異物は1mm以下のサイズでセル上に乗って出てくる。異物の粒子径分布は、10μm以下が95%以上である。CVD膜成膜後の電極形成工程では、スクリーン印刷法で30μm~150μm幅の櫛状のグリッド電極を印刷する。この際に、グリッド幅と同程度以上のサイズの異物がマスクの開口を塞ぐと印刷不良が発生して、セル特性不良が連続して発生する。 For example, a method of forming an antireflection film having a thickness of 60 nm to 95 nm by a plasma CVD (Chemical-Vapor-Deposition) method is disclosed (for example, Patent Document 1). In this method, when the number of times of film formation increases, the plasma CVD apparatus deposits a film made of the same material as the antireflection film in the chamber and peripheral jigs, and the film peels off and becomes a foreign substance and falls into the cell to cause a defect. cause. After the CVD film is formed, the foreign matter comes out on the cell with a size of 1 mm or less. As for the particle size distribution of the foreign matter, 10 μm or less is 95% or more. In the electrode forming step after the CVD film is formed, a comb-like grid electrode having a width of 30 μm to 150 μm is printed by a screen printing method. At this time, if a foreign substance having a size equal to or larger than the grid width blocks the opening of the mask, a printing defect occurs and cell characteristic defects continuously occur.
 このCVD膜成膜後の異物は、0.1mm以上のサイズのものはエアーブローで除去できるものが多いが、0.1mm以下のサイズのものは2/3以上がエアーブローでは除去できない。 As for foreign matters after the CVD film formation, those having a size of 0.1 mm or more can be removed by air blow, but those having a size of 0.1 mm or less cannot be removed by air blow.
 ところで、太陽電池セルは太陽光を効率良く閉じ込めるためピラミッド状のテクスチャーを形成している。テクスチャーはアルカリ系あるいは酸系のウエット液で形成する場合、一般的にテクスチャー段差は1μm~30μmである場合が多く、プラズマを用いたドライエッチング技術で形成した場合は0.5μm~3μmである場合が多い。 By the way, solar cells form a pyramid-like texture in order to confine sunlight efficiently. When the texture is formed with an alkali or acid type wet solution, the texture step is generally 1 μm to 30 μm. When the texture is formed by a dry etching technique using plasma, the texture is 0.5 μm to 3 μm. There are many.
 このようなテクスチャー上に1個の数μm以上のCVD異物が乗った状態を観察すると、数個のテクスチャー頭頂部に異物が乗って点接触し、点接触部を形成している。分析調査を進めた結果、CVD膜成膜中に異物がセル上に乗ることで、CVD膜が少し異物上に堆積して下地セルと数nm厚のCVD膜とで点接触部が保護されて除去しにくい状態になっていると考えられる。CVD異物を硬い物体で除去しようとすると、太陽電池セル表面に形成したpn接合が異物サイズと同等サイズで破壊されてセル出力が著しく劣化する。このCVD異物は0.1N程度の力を加えると容易に除去が出来るが、一般的なセルサイズ156mm□では、1枚のセルに10μm~100μmの異物は数千個以上乗っていることが判っており、異物粒子は粒子径が小さくなると指数関数的に激増する。このような無数に存在する異物を1個ずつ除去するには手間が要り過ぎ、生産の大きな障害となっている。このためCVD成膜装置のチャンバー等のメンテナンスに多大な労力を払う必要がある。CVD異物発生の事例は特許文献2などに開示されている。 When observing the state in which one foreign substance of several μm or more is placed on such a texture, the foreign substance gets on the top of several textures and makes point contact to form a point contact part. As a result of proceeding with the analysis investigation, foreign matter gets on the cell during the CVD film formation, and the CVD film is slightly deposited on the foreign matter, and the point contact portion is protected by the underlying cell and the CVD film having a thickness of several nm. It seems that it is difficult to remove. If the CVD foreign matter is to be removed with a hard object, the pn junction formed on the surface of the solar battery cell is destroyed with a size equivalent to the size of the foreign matter, and the cell output is significantly deteriorated. This CVD foreign matter can be easily removed by applying a force of about 0.1 N, but it is understood that with a general cell size of 156 mm □, several thousand foreign matters of 10 μm to 100 μm are carried on one cell. The foreign particles increase exponentially as the particle size decreases. It takes too much time to remove such countless foreign substances one by one, which is a major obstacle to production. For this reason, it is necessary to pay a great deal of labor for the maintenance of the chamber of the CVD film forming apparatus. Examples of the occurrence of CVD foreign matter are disclosed in Patent Document 2 and the like.
 また、CVDチャンバー内の異物清掃を帯電板で実施する方法も開示されている(特許文献3)。 Also, a method of cleaning foreign matter in the CVD chamber with a charging plate is disclosed (Patent Document 3).
 また、特許文献4には回転ブラシが開示されている。この例では、CdTe膜を用いた太陽電池の製造で使用済みの保護膜を硬い樹脂の回転軸に貼り付けて擦って除去するものであり、この装置をCVD異物除去に使用してもセル表面に著しくキズがつき特性劣化を招く。 Further, Patent Document 4 discloses a rotating brush. In this example, a protective film used in the production of a solar cell using a CdTe film is adhered to a hard resin rotating shaft and rubbed to remove it. Even if this apparatus is used for removing CVD foreign matter, the cell surface Is markedly scratched, leading to deterioration of characteristics.
 また本発明者らは、ビニル製の柔らかい樹脂で形成されたネットや布でセル表面を擦ってCVD異物除去を試みたが、異物は除去できてもセル表面に目視で判る明瞭なスジ痕が入ることが判った。テクスチャー部のpn接合が破壊されたり、ビニルがテクスチャー頭頂部に付着したりすることもあった。ビニルがテクスチャー形状に付着すると、CVD異物が付着していた場合と同様、印刷工程においてCVD異物が印刷マスクに付着し目詰りになる恐れがある。 In addition, the present inventors tried to remove the CVD foreign matter by rubbing the cell surface with a net or cloth formed of a soft resin made of vinyl, but even if the foreign matter could be removed, clear streak marks that can be visually recognized on the cell surface. I knew I could enter. In some cases, the pn junction in the texture portion was broken, or vinyl adhered to the top of the texture. When vinyl adheres to the textured shape, CVD foreign matter may adhere to the print mask and become clogged in the printing process, as in the case where CVD foreign matter has adhered.
特許第4144241号公報Japanese Patent No. 4144241 特許第3651977号公報Japanese Patent No. 3651977 特開2009-144193号公報JP 2009-144193 A 特開2001-15777号公報Japanese Patent Laid-Open No. 2001-15777
 本発明は、上記に鑑みてなされたもので、グリッド電極幅30μm~150μmなど微細な線幅の印刷に支障をきたすCVD異物を除去しながらも、セル表面にキズを付けたり、印刷工程でトラブルを引き起こすようなブラシ材をセル表面に付着させることのない異物除去装置及びこれを用いた太陽電池の製造方法を得ることを目的とする。 The present invention has been made in view of the above, and while removing CVD foreign matter that interferes with printing of fine line widths such as grid electrode widths of 30 μm to 150 μm, the cell surface is scratched or troubles occur in the printing process. An object of the present invention is to obtain a foreign matter removing apparatus that does not cause the brush material to adhere to the cell surface and a method for producing a solar cell using the same.
 上述した課題を解決し、目的を達成するために、本発明の異物除去装置は、太陽電池セル表面に付着する異物を除去するための異物除去装置で、太陽電池セルを平滑面で保持して搬送する搬送部と、多数本の非金属製の毛状体からなり、前記搬送部上の前記太陽電池セルに、接触して異物を除去するブラシと、前記ブラシと接触し、前記ブラシに付着した異物を払い落とす払い板とを有する。 In order to solve the above-described problems and achieve the object, the foreign matter removing device of the present invention is a foreign matter removing device for removing foreign matter adhering to the surface of the solar battery cell, holding the solar battery cell on a smooth surface. Conveying part to convey and a large number of non-metallic hairs, contact with the solar cells on the conveying part to remove foreign matter, contact with the brush and adhere to the brush And a wiping plate for wiping off the foreign matter.
 本発明によれば、ブラシと払い板とを用いて、ブラシに付着した異物を払い板で払い落としつつ、異物除去を行なうようにしているため、テクスチャー欠けによるpn接合破壊を回避し、印刷工程での不良の発生を防止することができる。その結果、セル良品率向上や生産性の向上をはかることができるだけでなく、CVD異物分布が多い微細な領域でも微細なグリッド電極が形成できる。従って、セル出力の向上及び低コスト化が可能となり、高品質の太陽電池セルを生産性よく提供することができる。 According to the present invention, since the foreign matter is removed while removing the foreign matter adhering to the brush using the brush and the wiper plate, the pn junction breakage due to the lack of texture is avoided, and the printing process is performed. It is possible to prevent the occurrence of a defect. As a result, it is possible not only to improve the cell non-defective rate and the productivity, but also to form a fine grid electrode even in a fine region with a large distribution of CVD foreign matter. Therefore, the cell output can be improved and the cost can be reduced, and high-quality solar cells can be provided with high productivity.
図1は、本発明の実施の形態1にかかる、回転ブラシ装置を用いた異物除去装置の模式図である。FIG. 1 is a schematic diagram of a foreign matter removing apparatus using a rotating brush device according to a first embodiment of the present invention. 図2は、本発明の実施の形態1にかかる、回転ブラシ装置を用いた異物除去装置で、図1のA-A断面図の模式図である。FIG. 2 is a schematic diagram of the AA cross-sectional view of FIG. 1, which is a foreign matter removing apparatus using a rotating brush device according to the first embodiment of the present invention. 図3は、セル端部受けローラがない回転ブラシ装置の模式図である。FIG. 3 is a schematic view of a rotating brush device without a cell edge receiving roller. 図4は、図1の要部拡大図である。FIG. 4 is an enlarged view of a main part of FIG. 図5は、回転ブラシの毛先が乱れている場合の模式図である。FIG. 5 is a schematic diagram when the tip of the rotating brush is disturbed. 図6は、回転ブラシを高速回転して毛先を真っ直ぐにして毛先端をカットして外径精度を出す模式図である。FIG. 6 is a schematic diagram for obtaining the outer diameter accuracy by rotating the rotating brush at a high speed to straighten the hair tips and cutting the hair tips. 図7は、ターンテーブル方式の印刷ステージを示す図であり、(a)は配置及び機能図、(b)は平ブラシによる異物除去装置の模式図である。7A and 7B are diagrams showing a turntable type printing stage, where FIG. 7A is a layout and function diagram, and FIG. 7B is a schematic diagram of a foreign matter removing apparatus using a flat brush. 図8は、本発明の実施の形態3にかかる太陽電池セルの構成を説明するための図であり、(a)は断面図、(b)は上面図、(c)は下面図である。FIG. 8 is a diagram for explaining the configuration of the solar battery cell according to the third embodiment of the present invention, in which (a) is a cross-sectional view, (b) is a top view, and (c) is a bottom view. 図9は、本発明の実施の形態3にかかる太陽電池セルの製造工程を説明するためのフローチャートである。FIG. 9 is a flowchart for explaining a manufacturing process of the solar battery cell according to the third embodiment of the present invention. 図10(a)~(g)は、本発明の実施の形態3にかかる太陽電池セルの製造工程を説明するための断面図である。10 (a) to 10 (g) are cross-sectional views for explaining the manufacturing process of the solar battery cell according to the third embodiment of the present invention. 図11(a)~(c)は、本発明の実施の形態3にかかる異物除去工程を示す工程断面図である。FIGS. 11A to 11C are process cross-sectional views illustrating the foreign matter removing process according to the third embodiment of the present invention. 図12は、本発明の実施の形態4にかかる回転ブラシ装置を用いた異物除去装置の模式図である。FIG. 12 is a schematic diagram of a foreign matter removing apparatus using a rotating brush device according to a fourth embodiment of the present invention. 図13は、本発明の実施の形態5にかかる回転ブラシ装置を用いた異物除去装置の模式図である。FIG. 13 is a schematic diagram of a foreign matter removing apparatus using a rotating brush device according to a fifth embodiment of the present invention. 図14は、本発明の実施の形態6にかかる回転ブラシ装置を用いた異物除去装置の模式図である。FIG. 14 is a schematic diagram of a foreign matter removing apparatus using a rotating brush device according to a sixth embodiment of the present invention.
 以下に、本発明にかかる異物除去装置及びこれを用いた太陽電池の製造方法の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。 Embodiments of a foreign matter removing apparatus and a solar cell manufacturing method using the same according to the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited to the following description, In the range which does not deviate from the summary of this invention, it can change suitably. In the drawings shown below, the scale of each member may be different from the actual scale for easy understanding. The same applies between the drawings.
実施の形態1.
 図1は、本発明の実施の形態1の回転ブラシ装置を用いた異物除去装置の断面図であり、この異物除去装置は、CVD成膜後の太陽電池セル(以下セルということもある)を搬送する搬送ベルト20上に搭載されている。この異物除去装置は、太陽電池を構成するセル10表面に付着する異物の除去装置であって、搬送部としての搬送ベルト20と、搬送ベルト20上のセル10に、接触させて異物を除去する回転ブラシ37と、回転ブラシ37と接触し、回転ブラシ37に付着した異物を払い落とす払い板40と、清掃部とを有する。搬送ベルト20は、セル10を平滑面で保持して搬送する。この回転ブラシ37は、多数本の非金属製の毛状体からなり、太陽電池セルを構成する太陽電池用基板であるシリコンより硬度が小さい、高分子繊維で構成されている。清掃部は、回転ブラシ37の先端で、除去すべき異物の浮遊速度より大きな速度でエアーブローを行って清掃する。図4は、図1の要部拡大図である。この太陽電池セル10では、基板2としてのp型単結晶シリコン基板の受光面側に、第2導電型の半導体層として、リン拡散によってn型不純物拡散層3が形成され、pn接合を有する半導体基板11を構成している。このようにn型不純物拡散層3が形成された基板2表面に、CVD成膜法により反射防止膜4が形成される。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view of a foreign matter removing apparatus using the rotating brush device according to the first embodiment of the present invention. This foreign matter removing apparatus includes a solar battery cell (hereinafter also referred to as a cell) after CVD film formation. It is mounted on a transport belt 20 for transport. This foreign matter removing device is a device for removing foreign matter adhering to the surface of a cell 10 constituting a solar battery, and removes foreign matter by bringing it into contact with the transport belt 20 as a transport section and the cell 10 on the transport belt 20. The rotating brush 37, the wiper plate 40 which contacts the rotating brush 37 and wipes off the foreign matter attached to the rotating brush 37, and a cleaning unit are included. The conveyance belt 20 conveys the cell 10 while holding the cell 10 on a smooth surface. The rotating brush 37 is made of a high-molecular fiber made of a large number of non-metallic hairs and having a hardness lower than that of silicon, which is a substrate for a solar battery constituting a solar battery cell. The cleaning unit cleans the tip of the rotating brush 37 by blowing air at a speed larger than the floating speed of the foreign matter to be removed. FIG. 4 is an enlarged view of a main part of FIG. In this solar cell 10, an n-type impurity diffusion layer 3 is formed by phosphorus diffusion as a second conductivity type semiconductor layer on the light-receiving surface side of a p-type single crystal silicon substrate as a substrate 2, and a semiconductor having a pn junction. A substrate 11 is configured. Thus, the antireflection film 4 is formed on the surface of the substrate 2 on which the n-type impurity diffusion layer 3 is formed by the CVD film forming method.
 まず、図1の機能の概略は、搬送ベルト20上のセル10が搬送され、第1段階でエアーブロー35を用いて異物粗大粒子14Gを第1の集塵機36へ除去回収し、第2段階で回転ブラシ37を用いてセル10に付着している異物微粒子14を第2の集塵機41へ除去回収する。回転ブラシ37が1回転する間に、異物粗大粒子14G、異物微粒子14の中で回転ブラシ37の毛状体と毛状体の隙間に挟まる物を、静電気除去対策がなされた、金属を含まない導電性の払い板40で回転ブラシ37の毛先を払い落とすか、エアーブロー42で回転ブラシ37の毛先に吹き付けて飛ばし、第2の集塵機41や第3の集塵機43で回収する。ここでブラシ処理やエアーブローで移動させたり浮遊させた異物を回収する部分すなわち、第1の集塵機36,第2の集塵機41,第3の集塵機43までの捕集経路のダクト断面積は一定にするのが望ましい。特にカバー44を断面一定の筒状体とし、回転ブラシ37の近傍でダクト断面積を一定にするのが望ましい。ここで回転ブラシ37の近傍とは、回転ブラシ37の回転軸39に垂直な断面内にある部分をさすものとし、少なくともこの領域で断面一定の筒状体となるように形成されている。このように、ダクト断面積を一定にすることにより、層流状態を維持しながら第1の集塵機36,第2の集塵機41,第3の集塵機43まで効率よく流速を維持することが可能となり、浮遊速度ギリギリで飛んだ異物が、気流速度の低下により想定外の箇所で落下堆積するのを抑制することができる。ここで静電気除去対策がなされた、金属を含まない導電性の払い板40としては、制電プレートと呼ばれるものが有効である。例えばPVC(ポリ塩化ビニル)基板表面に導電処理をしたものが、制電プレートとして用いられる。 First, the outline of the function of FIG. 1 is that the cell 10 on the transport belt 20 is transported, and the coarse foreign particles 14G are removed and collected to the first dust collector 36 using the air blow 35 in the first stage, and in the second stage. Using the rotating brush 37, the foreign particle 14 adhering to the cell 10 is removed and collected in the second dust collector 41. During the rotation of the rotating brush 37, the foreign matter coarse particles 14G and the foreign matter fine particles 14 sandwiched between the hairs of the rotating brush 37 between the hairs and the hairs are not subjected to static electricity removal measures and do not contain metal. The tip of the rotary brush 37 is wiped off with the conductive wiper 40 or blown off by the air blow 42 on the tip of the rotary brush 37 and collected by the second dust collector 41 or the third dust collector 43. Here, the duct cross-sectional area of the collection path to the first dust collector 36, the second dust collector 41, and the third dust collector 43 is kept constant to collect the foreign matter that has been moved or floated by brushing or air blow. It is desirable to do. In particular, it is desirable that the cover 44 be a cylindrical body having a constant cross section and the duct cross-sectional area be constant in the vicinity of the rotating brush 37. Here, the vicinity of the rotating brush 37 refers to a portion in a cross section perpendicular to the rotating shaft 39 of the rotating brush 37, and is formed to be a cylindrical body having a constant cross section at least in this region. Thus, by making the duct cross-sectional area constant, it becomes possible to efficiently maintain the flow velocity to the first dust collector 36, the second dust collector 41, and the third dust collector 43 while maintaining a laminar flow state. It is possible to suppress the foreign matter flying at the limit of the floating speed from falling and accumulating at an unexpected place due to the decrease in the airflow speed. Here, a so-called anti-static plate is effective as the conductive deburring plate 40 that does not contain metal and has been subjected to static electricity removal measures. For example, a material obtained by conducting a conductive treatment on the surface of a PVC (polyvinyl chloride) substrate is used as the antistatic plate.
 次に回転ブラシの各機能の詳細について主に図1について述べる。図示していないが搬送ベルト20には1~3mmΦの吸着穴がセル1枚当り数個設けられ、この吸着穴を介して吸引することでセル1枚あたり数十kPaの負圧で吸着している。この吸着穴により、セル10が搬送ベルト20上で位置ずれをしないようになっており、セル10を搬送ベルト20から取り除く際には吸着を切って負圧を解除してから行う。図1ではセル10が搬送ベルト20によって図の左から右方向へ移動している。移動方法は色々あり、(1)一定速度である場合や、(2)セルサイズより大きいピッチ分だけ移動したら一定時間停止して、また同じように移動することを繰り返すようにピッチ送りする場合や、(3)(1)と(2)の組合せである場合がある。このように搬送ベルト20とセル10は、一体となって、加速、減速を繰り返している。 Next, the details of each function of the rotating brush will be described mainly with reference to FIG. Although not shown, the conveyance belt 20 is provided with several suction holes of 1 to 3 mmΦ per cell. By suctioning through the suction holes, suction is performed at a negative pressure of several tens of kPa per cell. Yes. The suction hole prevents the cell 10 from being displaced on the conveyor belt 20, and when removing the cell 10 from the conveyor belt 20, the suction is turned off and the negative pressure is released. In FIG. 1, the cell 10 is moved from the left to the right in the drawing by the conveyor belt 20. There are various movement methods. (1) When the speed is constant, (2) When the robot moves by a pitch larger than the cell size, it stops for a certain time and repeats the same movement. (3) In some cases, the combination of (1) and (2). Thus, the conveyance belt 20 and the cell 10 are integrated and repeatedly accelerated and decelerated.
 図1において、セル10上には異物粗大粒子14G、異物微粒子14などのCVD異物が乗った状態が示されている。このCVD異物は、エアーブロー35あるいはカバー44の隙間から流入する大気流35Nで浮遊除去できる異物粗大粒子14Gと回転ブラシ37で除去できる異物微粒子14などである。CVD異物粒子サイズと浮遊速度の関係を計算すると、反射防止膜4がSiNOH膜であれば、グリッド印刷工程で問題となる50μmサイズの球形粒子であれば浮遊速度は0.3m/secである。10μmサイズでは浮遊速度は0.01m/secである。浮遊速度は粒子サイズで指数関数的に変化する。0.1mmサイズの大きな粗大粒子は1~2m/secのエアーブローで舞い上がる。 FIG. 1 shows a state in which CVD foreign matters such as foreign matter coarse particles 14G and foreign matter fine particles 14 are placed on the cell 10. The CVD foreign substances are coarse foreign particles 14G that can be suspended and removed by the air flow 35N flowing from the air blow 35 or the gap between the covers 44, and foreign particles 14 that can be removed by the rotating brush 37. When calculating the relationship between the size of the CVD foreign matter particle and the floating speed, if the antireflection film 4 is a SiNOH film, the floating speed is 0.3 m / sec if the spherical particle has a size of 50 μm, which is a problem in the grid printing process. In the 10 μm size, the floating speed is 0.01 m / sec. The floating speed varies exponentially with the particle size. Large coarse particles with a size of 0.1 mm soar with an air blow of 1 to 2 m / sec.
 最初に、異物粗大粒子14Gで回転ブラシ37が劣化することを避けるため、エアーブロー35で2m/sec以上のエアーを吹きつけて上流側にある第1の集塵機36に回収する。回収すべき異物が外部へ撒き散らないようにカバー44が設けられている。 First, in order to avoid the deterioration of the rotating brush 37 due to the foreign particle coarse particles 14G, air of 2 m / sec or more is blown by the air blow 35 and collected in the first dust collector 36 on the upstream side. A cover 44 is provided so that foreign matter to be collected is not scattered outside.
 回転ブラシ37は、塩化ビニル樹脂、ナイロン樹脂等の柔らかくてセル表面にキズを付けない硬度の直線的な繊維の汎用材料が望ましい。但し、ブラシに金属を含んでいたり、表面汚染していたりすると太陽電地セルの出力は大きく劣化する。例えば、Fe汚染の場合、シリコン結晶系太陽電池セル表面に2E12atom/cm2を超えると顕著なセル出力低下を招く。ブラシ材料がFeを1000ppm以上含有していると、ブラシ痕が1μm3の体積でテクスチャー表面に密度1E-3個/mm2で付着すれば、セル出力が低下しはじめる。毛状体を数千本以上束ねて回転軸39に巻きつけた構造が回転ブラシ37である。ブラシの毛状体の径は、理想的には除去すべき異物サイズとセル表面に形成されているテクスチャーサイズで決定されるべきであるが、毛状体の直線性の維持力やブラシ加工性によって限定される。また、ブラシの毛状体の径は毛先のカット面の精度でも決まる。ここでは、除去したいターゲットの異物微粒子14の平均サイズを50μmとすると、回転ブラシの1本の毛状体は50μmΦ、5~40mm長さが望ましい。特に望ましくは10~30mmである。ブラシの毛状体の密度は1本50μmΦの毛状体で40000本/cm2もある。毛状体の断面方向の最密断面積計算では、毛状体断面積密度はπ/4~80%である。セル表面に接触する際には、多くの毛状体がセルと接触し、その際にかかる力は20Paであり、セル破壊応力より十分に小さい。ブラシの毛状体が必ずセル表面の異物に接触除去するのに必要な毛状体断面積密度は20%以上が必要である。 The rotary brush 37 is preferably made of a general-purpose material of a linear fiber that is soft and has a hardness that does not damage the cell surface, such as vinyl chloride resin or nylon resin. However, if the brush contains metal or the surface is contaminated, the output of the solar cell is greatly deteriorated. For example, in the case of Fe contamination, if the surface of the silicon crystal solar battery cell exceeds 2E12 atoms / cm 2 , the cell output is significantly reduced. If the brush material contains 1000 ppm or more of Fe, if the brush marks adhere to the texture surface at a density of 1E-3 / mm 2 with a volume of 1 μm 3 , the cell output begins to decrease. A rotating brush 37 is a structure in which several thousand or more hairs are bundled and wound around the rotating shaft 39. The diameter of the hair of the brush should ideally be determined by the size of the foreign matter to be removed and the texture size formed on the cell surface. Limited by. The diameter of the hair of the brush is also determined by the accuracy of the cut surface of the hair tip. Here, if the average size of the target foreign particle 14 to be removed is 50 μm, one hair of the rotating brush is preferably 50 μmΦ and 5 to 40 mm long. Particularly desirable is 10 to 30 mm. The density of the hairs of the brush is 40,000 / cm 2 for each hair of 50 μmΦ. In the calculation of the closest cross-sectional area in the cross-sectional direction of the ciliary body, the cross-sectional area density of the ciliary body is π / 4 to 80%. When contacting the cell surface, many hairs contact the cell, and the force applied at that time is 20 Pa, which is sufficiently smaller than the cell breaking stress. The hair cross-sectional area density required for the hair of the brush to be surely removed by contact with foreign matter on the cell surface must be 20% or more.
 次に、セル10上のCVD異物である異物微粒子14は回転軸39に図示していないモータで回転させて回転ブラシ37に接触される。同様に図示はしていないが回転ブラシ37は上下駆動モータによりミクロンオーダーで精度良く高さ位置決めが出来る構成とするのが望ましい。セル10へ回転ブラシ37を3mm以上押込んで回転ブラシ37を高速回転すると、ブラシ先端の毛状体が硬いセル10のピラミッド状テクスチャー(図示はしていない)で卸し金状態になって、毛先がテクスチャー頭頂部に削り取られて、一部はテクスチャー頭頂部に引っかかった状態になり、白スジ状のブラシ痕が目視でも観察できるようになる。傷の抑制には、セル10への回転ブラシ37の押し込み量は0.001~3mmとするのが望ましい。安全をみるとセル10への回転ブラシ37の押し込み量は0.001~0.1mmとするのが望ましい。このブラシ痕は後の印刷工程で印刷不良を誘発する。このため、ブラシ痕が形成されないように異物除去を行なうことが望ましい。ブラシ痕はブラシ材料によるものが多い。電極印刷で不良が発生しない程度であればブラシ材料が燃焼する温度よりも十分に高い電極焼成工程で処理すれば、ブラシ痕は消失する。ブラシ材料に重金属が含有されているとセル出力は低下するが、CVD異物除去をしてセル出力が向上する分とトレードオフの関係にあるので、生産条件では最適なブラシ押込み量とブラシ回転数を決める必要がある。 Next, the foreign particle 14 which is a CVD foreign substance on the cell 10 is rotated by a motor (not shown) on the rotary shaft 39 and brought into contact with the rotary brush 37. Similarly, although not shown in the figure, it is desirable that the rotary brush 37 has a configuration in which the height can be accurately positioned on the micron order by a vertical drive motor. When the rotary brush 37 is pushed into the cell 10 by 3 mm or more and the rotary brush 37 is rotated at a high speed, the hair at the tip of the brush becomes a wholesale state with a hard pyramid-like texture (not shown) of the cell 10, and the hair tip Is scraped off to the top of the texture, and part of it is caught on the top of the texture, and the white streak-like brush marks can be visually observed. In order to suppress scratches, it is desirable that the amount of pushing of the rotating brush 37 into the cell 10 is 0.001 to 3 mm. From the viewpoint of safety, it is desirable that the amount of pushing of the rotating brush 37 into the cell 10 is 0.001 to 0.1 mm. This brush mark induces a printing failure in a later printing process. For this reason, it is desirable to remove foreign matter so that brush marks are not formed. Most brush marks are made of brush material. If it is a grade which does not generate | occur | produce a defect by electrode printing, if it processes in an electrode baking process sufficiently higher than the temperature which a brush material burns, a brush trace will lose | disappear. When heavy metal is contained in the brush material, the cell output decreases, but there is a trade-off relationship with the increase in cell output by removing CVD foreign matter, so the optimum brush push-in amount and brush rotation speed under production conditions It is necessary to decide.
 搬送ベルト20とセル10の搬送速度を一定600mm/sとして、回転ブラシ37の毛状体を20mm長、回転軸外径を40mmΦとし、回転ブラシ37の外径を80mmΦとする。そして、回転方向を図1の方向を正とし、ブラシがセル表面を追い抜いていく場合を相対速度の正とすると、ブラシ回転数とセル表面との相対速度との関係は表1の関係となる。 The conveying speed of the conveying belt 20 and the cell 10 is constant 600 mm / s, the hair of the rotating brush 37 is 20 mm long, the outer diameter of the rotating shaft is 40 mmΦ, and the outer diameter of the rotating brush 37 is 80 mmΦ. Then, assuming that the rotation direction is positive in FIG. 1 and the brush is overtaking the cell surface, the relative speed is positive. The relationship between the brush rotation speed and the relative speed between the cell surface is as shown in Table 1. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、セル表面の回転ブラシに対する相対速度が600mm/sec以上でブラシ痕が顕在化するので、回転数の制御が重要であることが判る。色々な搬送モードにも対応するように、搬送ベルト20と回転ブラシ37の駆動系は加速、減速ともに同期させることが望ましい。表1では搬送ベルト20がかなり速い一定速度で移動して、ブラシ先端と搬送ベルト20が接触して磨耗するので、ベルト静止状態で回転ブラシが左右にも移動してブラシ除去処理をすることも望ましい。但し、搬送系を停止させることは生産性を著しく低下させる場合が多い。 From Table 1, it can be seen that the control of the number of rotations is important because the brush marks become apparent when the relative speed of the cell surface with respect to the rotating brush is 600 mm / sec or more. It is desirable to synchronize both the acceleration and deceleration of the drive system of the conveyance belt 20 and the rotating brush 37 so as to correspond to various conveyance modes. In Table 1, the conveyor belt 20 moves at a fairly fast constant speed, and the brush tip and the conveyor belt 20 come into contact with each other and wear. desirable. However, stopping the transport system often significantly reduces productivity.
 ブラシ痕を左右するパラメータは、ブラシのセルへの押し当て量、ブラシ回転数、ブラシ外径精度、ブラシ押込み制御精度である。ここで、ブラシ回転数は、下げるとCVD異物除去率低下を招きやすいので、他のパラメータでブラシ痕抑制をはかるべきである。 The parameters that influence the brush mark are the amount of pressing of the brush to the cell, the number of rotations of the brush, the accuracy of the brush outer diameter, and the accuracy of brush pressing control. Here, if the brush rotation speed is lowered, the CVD foreign matter removal rate is likely to be lowered. Therefore, brush marks should be suppressed with other parameters.
 次に、図1に示す回転ブラシ37とセル10の反対側に示す受けローラ38の役割について説明する。図1のA-A断面図を図2に示す。図2に示すように搬送ベルト20よりもセル10が外側に出ており、回転ブラシ37を押し当てるとセル10周辺部が下側に反り返って、セル吸着不良やセル搬送不良、セル破損が問題となる。受けローラ38は図2で示すように搬送ベルト20と同じ高さで、図1に示すように回転方向は回転ブラシ37と反対方向で、かつ、搬送ベルト20と同じ周速度で同期させることが望ましい。特に、太陽電池セルのセル表面より前記ブラシが外にはみ出たはみ出し部を有する場合、はみ出し部に対向する箇所に受けローラ38を設けて、セル搬送系と受けローラとブラシの3者の同期を取る同期機構を形成することで、製造歩留まりが向上する。図3に受けローラ38が無い場合を示す。回転ブラシ37をセル10に押し当てる前後の状態図であり、受けローラ38が無いと搬送ベルト20より外側のセル周辺部高さは高速ビデオカメラ撮影ではセル厚みが0.2mmでは1mm上下動することが判っている。このセル周辺の上下動は回転ブラシを高速回転で使用する場合はブラシ痕が発生しやすく推奨できない。 Next, the roles of the rotating brush 37 shown in FIG. 1 and the receiving roller 38 shown on the opposite side of the cell 10 will be described. FIG. 2 is a cross-sectional view taken along the line AA in FIG. As shown in FIG. 2, the cell 10 protrudes outward from the conveyor belt 20, and when the rotating brush 37 is pressed, the periphery of the cell 10 warps downward, causing problems such as defective cell adsorption, defective cell conveyance, and broken cells. It becomes. The receiving roller 38 can be synchronized at the same height as the conveying belt 20 as shown in FIG. 2, the rotation direction is opposite to the rotating brush 37 as shown in FIG. 1, and the same peripheral speed as the conveying belt 20. desirable. In particular, when the brush has a protruding portion that protrudes from the cell surface of the solar battery cell, a receiving roller 38 is provided at a location facing the protruding portion, and the cell conveyance system, the receiving roller, and the brush are synchronized. The production yield is improved by forming the synchronous mechanism. FIG. 3 shows a case where the receiving roller 38 is not provided. FIG. 6 is a state diagram before and after the rotating brush 37 is pressed against the cell 10, and when there is no receiving roller 38, the height of the cell periphery outside the conveyor belt 20 moves up and down by 1 mm when the cell thickness is 0.2 mm in high-speed video camera shooting. I know that. This vertical movement around the cell is not recommended when a rotating brush is used at high speed, as it tends to cause brush marks.
 次に、回転ブラシ37とセル10の押込み量の精度を向上させてもブラシが50μmΦの細い毛先の集合体であるため、毛状体に癖が付くあるいは、毛並みが揃わない場合、回転ブラシ外径精度が得られず、ブラシ痕が発生しやすくなる。図5に毛並みや毛状体長さが揃っていない通常の回転ブラシ45の模式図を示す。図5の場合ではブラシ外径80mm±2mmとブラシ痕にとっては問題となるレベルである。図5の回転ブラシ45の毛状体の癖を取るために、あらかじめ回転軸39の周りで超高速回転させると、図6に示すように回転ブラシ37は遠心力で毛先が真っ直ぐに伸びて癖が取れる。更に、毛状体をカットするカット刃46を有しており、このカット刃46で毛状体の長さが異なる回転ブラシ37の外径を所望の値になるようにカットする。ブラシの毛先をカットする場合、高速回転であるため邪魔な静止物体があると気流乱れで毛先が曲がる。このため、ブラシ毛先をカットする際は真空中が望ましい。 Next, even if the accuracy of the pushing amount of the rotating brush 37 and the cell 10 is improved, the brush is an aggregate of thin hair tips of 50 μmΦ. Outer diameter accuracy cannot be obtained, and brush marks are likely to occur. FIG. 5 shows a schematic diagram of a normal rotating brush 45 in which the bristles and hair lengths are not uniform. In the case of FIG. 5, the brush outer diameter is 80 mm ± 2 mm, which is a problem level for brush marks. In order to remove the wrinkles of the hair of the rotating brush 45 in FIG. 5, if the ultra high speed rotation is performed around the rotating shaft 39 in advance, the rotating brush 37 has its hair tips straightened by centrifugal force as shown in FIG. You can take a spear. Furthermore, it has the cutting blade 46 which cuts a hair-like body, and cuts the outer diameter of the rotary brush 37 from which the length of a hair-like body differs in this cut blade 46 to a desired value. When cutting the tip of a brush, the tip is bent due to airflow turbulence if there is a disturbing stationary object because of high-speed rotation. For this reason, it is desirable to use a vacuum when cutting the brush tip.
 図1で回転ブラシ37の外径と高さ、回転数を高精度に制御できるので、テクスチャー高さと同等レベルに設定すると、回転ブラシ37と連動して、搬送ベルト20と受けローラ38が同じ速度で同期する。このため、セル表面とブラシ先端の相対速度が600mm/sec以上を超える領域でも、CVD異物である異物微粒子14は回転ブラシ37の毛先で弾かれて空気中に除去される。この際、ブラシ毛先はセル表面を擦り始めると毛状体が押し戻されて大半の毛状体がセル表面と接触しないので、ブラシ痕が発生しにくい状態となる。このように、回転ブラシの毛状体1本の先端カット部は垂直断面でカットすることが出来るようになり、回転ブラシ外径は回転ブラシの毛状体1本のカット面の精度に近くなる。このため、回転ブラシ37をセル10に押込む量の精度はブラシの毛状体1本の径に近くなるので、ブラシの毛状体1本の外径を小さくし、毛状体1本の長さを長くするほどブラシ痕を抑制するには良い。このような観点から、ブラシの毛状体の外径は、0.2mm以下とするのが望ましい。0.2mmを越えると回転ブラシ37をセル10に押込む量の精度を得ることができない。しかしながら、ブラシの毛状体の外径が、細くなりすぎると、毛状体の加工や操作性が悪くなる傾向がある。 Since the outer diameter, height, and rotation speed of the rotating brush 37 can be controlled with high accuracy in FIG. 1, when the level is set to the same level as the texture height, the conveyor belt 20 and the receiving roller 38 operate at the same speed in conjunction with the rotating brush 37. Synchronize with. For this reason, even in a region where the relative speed between the cell surface and the brush tip exceeds 600 mm / sec or more, the foreign particle 14 which is a CVD foreign material is bounced by the bristles of the rotating brush 37 and removed into the air. At this time, when the brush bristles begin to rub against the cell surface, the ciliary body is pushed back and most of the ciliary body does not come into contact with the cell surface, so that a brush mark is hardly generated. As described above, the tip cut portion of one hair of the rotating brush can be cut in a vertical section, and the outer diameter of the rotating brush is close to the accuracy of the cut surface of one hair of the rotating brush. . For this reason, the accuracy of the amount of pushing the rotating brush 37 into the cell 10 is close to the diameter of one brush hair, so the outer diameter of one brush hair is reduced, and one hair The longer the length, the better to suppress the brush marks. From such a viewpoint, the outer diameter of the brush hair is preferably 0.2 mm or less. If it exceeds 0.2 mm, the accuracy of the amount by which the rotary brush 37 is pushed into the cell 10 cannot be obtained. However, if the outer diameter of the brush hair is too thin, the processing and operability of the hair tend to be poor.
 図1で、回転ブラシ37によってセル10表面から飛ばされた異物微粒子14は50μmΦで浮遊速度0.3m/secであるので、それ以上の風量で排気して第2の集塵機41へ回収される。回転ブラシ37の毛状体と毛状体の隙間に異物粗大粒子14Gや異物微粒子14が挟まれる場合もある。この状態でセル10表面を回転ブラシ37で擦るとセル10に傷が付いてセル出力が劣化するので、回転ブラシ37は1回転する間に全て払い落とすことが望ましい。 In FIG. 1, since the foreign particle 14 blown from the surface of the cell 10 by the rotating brush 37 is 50 μmΦ and has a floating speed of 0.3 m / sec, it is exhausted with a larger air volume and collected by the second dust collector 41. The foreign particle coarse particles 14G and the foreign particle 14 may be sandwiched between the hairs of the rotating brush 37 and the hairs. If the surface of the cell 10 is rubbed with the rotating brush 37 in this state, the cell 10 is scratched and the cell output deteriorates. Therefore, it is desirable that the rotating brush 37 is completely wiped off during one rotation.
 図1では、回転ブラシ37の毛先に払い板40を1mm押込んで当ててCVD異物である異物粗大粒子14G,異物微粒子14を払い落としている。払い落とした異物は第2の集塵機41へ回収される。強制的にCVD異物を混ぜ込んだ回転ブラシ37で払い板40の効果を確認すると、数割除去できないことが判った。引き続き、エアーブロー42で回転ブラシ37の毛先を10m/sec~20m/secでエアーブローするとブラシ付着のCVD異物である異物粗大粒子14Gや異物微粒子14は皆無となった。 In FIG. 1, 1 mm of the wiping plate 40 is pushed into the bristles of the rotating brush 37 and applied to wipe off the coarse foreign particles 14G and foreign particles 14 which are CVD foreign matters. The removed foreign matter is collected in the second dust collector 41. When the effect of the wiper plate 40 was confirmed with the rotating brush 37 forcibly mixed with the CVD foreign matter, it was found that several tenths could not be removed. Subsequently, when the air blow 42 was used to blow the tip of the rotating brush 37 at 10 m / sec to 20 m / sec, there were no coarse foreign particles 14G or foreign particles 14 as CVD foreign matters attached to the brush.
 以上のように、本実施の形態によれば、テクスチャーサイズと同程度高精度に作製された回転ブラシをCVD膜成膜直後のセルに対し、テクスチャーサイズに相当する分だけ押し当てることで、テクスチャー欠けによるpn接合破壊を回避し、CVD異物のみをブラシの回転力で除去することが可能となる。 As described above, according to the present embodiment, the texture of the texture is determined by pressing the rotating brush produced with the same level of accuracy as the texture size against the cell immediately after film formation of the CVD film by an amount corresponding to the texture size. It is possible to avoid pn junction breakage due to chipping, and to remove only the CVD foreign matter with the rotational force of the brush.
実施の形態2.
 CVD起因の異物除去は実施の形態1の回転ブラシ37が望ましいが、CVD成膜工程の後工程である印刷工程でも、搬送中に付着する異物も同時に除去したい場合がある。そこで本実施の形態では直線状ブラシ(以下平ブラシと呼称)を用いた異物除去装置について説明する。
Embodiment 2. FIG.
The rotary brush 37 according to the first embodiment is preferably used for removing foreign substances caused by CVD, but there are cases where foreign substances adhering during conveyance are desired to be removed at the same time in the printing process, which is a subsequent process of the CVD film forming process. Therefore, in this embodiment, a foreign matter removing apparatus using a linear brush (hereinafter referred to as a flat brush) will be described.
 本発明の実施の形態2の太陽電池製造装置に用いられる異物除去装置の一例を図7(a)及び(b)に示す。図7(a)は、この異物除去装置が印刷装置に取り付けられたときの印刷装置の全体配置図を示す図であり、ターンテーブル式の印刷装置である。ターンテーブル21の4個のステージR1~R4が上下左右対称、点対称に配置されていて、セル10が供給されて処理される順番の機能は、セル投入位置決めポジションR1→ブラシ清掃ポジションR2→印刷ポジションR3→印刷検査セル排出ポジションR4とする。 7A and 7B show an example of a foreign matter removing apparatus used in the solar cell manufacturing apparatus according to Embodiment 2 of the present invention. FIG. 7A is a diagram showing an overall layout of the printing apparatus when the foreign matter removing apparatus is attached to the printing apparatus, and is a turntable type printing apparatus. The four stages R1 to R4 of the turntable 21 are arranged symmetrically in the vertical and horizontal directions and in point symmetry, and the function of the order in which the cells 10 are supplied and processed is as follows: cell insertion positioning position R1 → brush cleaning position R2 → printing Position R3 → print inspection cell discharge position R4.
 図7(b)は2番目のセル表面を清掃するブラシ清掃ポジションR2を示す要部拡大図である。ブラシ清掃ポジションR2ではターンテーブル21上にステージ板22が設けられ、この上にセル10が配置されている。この図7(b)において、ターンテーブル21が回転して、ステージ板22に吸着されたセル10を平ブラシ49でブラシ先端が触れる程度に下方向(V1)に降下させて接触させるものである。図7(b)の左から右へスキャン移動させ(H2)、終了すれば上方向(V2)に退避する。引き続き、ターンテーブル21が回転して次の印刷ポジションR3にセルが行く間に右から左(H1)、上から下(V1)へと移動し元の位置に戻る。このとき、払い板40Pに接触して、平ブラシ49に残留している異物が除去される。払い板40Pは上下動可能に形成されており、平ブラシ49に残留している異物を除去すると、払い板40Pは上方にシフトし、平ブラシ49に接触しなくなる。平ブラシ49は、実施の形態1で述べた材質やスキャン速度、押込み量で良いが、平ブラシ49は回転ブラシ37と比較して、毛先が曲がって癖が付くと、癖を矯正することが難しく、セルへの押込み量が変動することが課題である。平ブラシ49は癖によって寿命が回転ブラシ37より短く、高さ制御は難しいが、回転ブラシ37と同等な効果が得られる上に、装置が簡便なため利用しやすい。 FIG. 7B is an enlarged view of a main part showing a brush cleaning position R2 for cleaning the second cell surface. At the brush cleaning position R2, a stage plate 22 is provided on the turntable 21, and the cell 10 is disposed thereon. In FIG. 7B, the turntable 21 rotates and the cell 10 adsorbed on the stage plate 22 is lowered and brought into contact with the flat brush 49 so that the tip of the brush is touched (V 1 ). is there. In FIG. 7B, the scan is moved from the left to the right (H 2 ), and when it is finished, it is retracted upward (V 2 ). Subsequently, the turntable 21 rotates and moves from right to left (H 1 ) and from top to bottom (V 1 ) while the cell moves to the next printing position R 3, and returns to the original position. At this time, the foreign material remaining on the flat brush 49 is removed by contacting the wiping plate 40P. The wiping plate 40P is formed so as to be movable up and down, and when the foreign matter remaining on the flat brush 49 is removed, the wiping plate 40P shifts upward and does not come into contact with the flat brush 49. The flat brush 49 may be made of the material, scan speed, and push-in amount described in the first embodiment, but the flat brush 49 corrects wrinkles when the hair tips are bent and wrinkled compared to the rotating brush 37. Is difficult, and the amount of pushing into the cell varies. The flat brush 49 has a life shorter than that of the rotating brush 37 due to scissors, and it is difficult to control the height, but the same effect as that of the rotating brush 37 can be obtained, and the device is simple and easy to use.
 セル表面で微小なキズがデバイス特性劣化を誘発するが、セル裏面は微小なキズには尤度がある。ここでベルト搬送等の水平移動部に直線状のブラシすなわち平ブラシ49を用いた場合、毛先へのセル10の押込み深さがセル通過部より0~5mm程度で、接触するように押し込むことで、セル裏面に付着しているCVD異物を除去することができる。平ブラシ49の毛先へのセル10の押込み深さが5mmを越えるとセル10に傷が付くため、5mmを越えないようにするのが望ましい。 A minute scratch on the cell surface induces device characteristics deterioration, but a minute scratch on the back surface of the cell has a likelihood. Here, when a linear brush, that is, a flat brush 49, is used for a horizontal moving part such as a belt transporter, the pushing depth of the cell 10 into the bristles is about 0 to 5 mm from the cell passing part and pushed so as to come into contact. Thus, the CVD foreign matter adhering to the back surface of the cell can be removed. Since the cell 10 is damaged when the pushing depth of the cell 10 into the bristles of the flat brush 49 exceeds 5 mm, it is desirable not to exceed 5 mm.
 また、平ブラシ49の1本の毛状体は50μmΦ程度、5~40mmの長さが望ましい。特に望ましくは10~30mmである。毛状体の長さが40mmを越えると、毛先をカットする際に加工精度を得るのが困難である。また使用を続けていくと、毛先が曲がって癖がつきやすい。特に平ブラシの場合、癖の矯正が難しいため30mm以下とするのが望ましい。また、毛状体の長さが5mmに満たないとキズがつきやすくなる。 Also, it is desirable that one hair of the flat brush 49 has a length of about 50 μmΦ and 5 to 40 mm. Particularly desirable is 10 to 30 mm. If the length of the ciliary body exceeds 40 mm, it is difficult to obtain processing accuracy when cutting the hair tips. Also, as you continue to use it, the hair tips will bend and become wrinkled easily. In particular, in the case of a flat brush, it is difficult to correct wrinkles. Moreover, it will become easy to be damaged, if the length of a ciliary body is less than 5 mm.
実施の形態3.
 この発明にかかる太陽電池セルの製造方法、太陽電池セルの構成およびその製造過程について説明する。図8(a)~(c)を用いて、太陽電池セルの構成について説明する。図8(a)は、本発明の実施の形態にかかる太陽電池セル10の構成を説明するための断面図、図8(b)は、受光面側からみた太陽電池セル10の上面図、図8(c)は、受光面と反対側からみた太陽電池セル10の下面図である。図8(a)は、図8(c)のX-X方向における断面図である。図9は同太陽電池セル10の製造工程を示すフローチャートである。この太陽電池セル10では、基板2としてのp型単結晶シリコン基板の受光面側に、第2導電型の半導体層として、リン拡散によってn型不純物拡散層3が形成され、pn接合を有する半導体基板11を構成している。そして、このn型不純物拡散層3上には、窒化シリコン膜(SiN膜)よりなる反射防止膜4が形成されている。本実施の形態では、反射防止膜4の成膜後、受光面側及び裏面側に電極を形成するに先立ち、回転ブラシ37を用いた異物除去工程(図9:ステップS40)を追加したことを特徴とする。
Embodiment 3 FIG.
The manufacturing method of the photovoltaic cell concerning this invention, the structure of a photovoltaic cell, and its manufacturing process are demonstrated. The configuration of the solar battery cell will be described with reference to FIGS. 8 (a) to (c). FIG. 8A is a cross-sectional view for explaining the configuration of the solar battery cell 10 according to the embodiment of the present invention, and FIG. 8B is a top view of the solar battery cell 10 viewed from the light receiving surface side. 8 (c) is a bottom view of the solar battery cell 10 as viewed from the side opposite to the light receiving surface. FIG. 8A is a cross-sectional view in the XX direction of FIG. FIG. 9 is a flowchart showing a manufacturing process of the solar battery cell 10. In this solar cell 10, an n-type impurity diffusion layer 3 is formed by phosphorus diffusion as a second conductivity type semiconductor layer on the light-receiving surface side of a p-type single crystal silicon substrate as a substrate 2, and a semiconductor having a pn junction. A substrate 11 is configured. An antireflection film 4 made of a silicon nitride film (SiN film) is formed on the n-type impurity diffusion layer 3. In the present embodiment, after the formation of the antireflection film 4, prior to forming the electrodes on the light receiving surface side and the back surface side, a foreign matter removing step (FIG. 9: Step S40) using the rotating brush 37 is added. Features.
 なお、基板2としてはp型単結晶シリコン基板に限定されず、p型の多結晶シリコン基板を用いてもよい。 The substrate 2 is not limited to a p-type single crystal silicon substrate, and a p-type polycrystalline silicon substrate may be used.
 また、半導体基板11(n型不純物拡散層3)の受光面側の表面には、テクスチャー構造として微小凹凸が形成されている。微小凹凸は、受光面において外部からの光を吸収する面積を増加し、受光面における反射率を抑え、光を閉じ込める構造となっている。また、半導体基板11の受光面側には、表銀グリッド電極6および表銀バス電極5を含む受光面側電極12が形成されている。図8(b)に示すように、表銀バス電極5は該表銀グリッド電極6と直交するように設けられており、それぞれ底面部においてn型不純物拡散層3に電気的に接続している。これら表銀バス電極5および表銀グリッド電極6は銀材料により構成されている。 Further, on the light receiving surface side surface of the semiconductor substrate 11 (n-type impurity diffusion layer 3), fine irregularities are formed as a texture structure. The micro unevenness increases the area for absorbing light from the outside on the light receiving surface, suppresses the reflectance on the light receiving surface, and has a structure for confining light. Further, on the light receiving surface side of the semiconductor substrate 11, a light receiving surface side electrode 12 including the surface silver grid electrode 6 and the surface silver bus electrode 5 is formed. As shown in FIG. 8B, the front silver bus electrode 5 is provided so as to be orthogonal to the front silver grid electrode 6, and is electrically connected to the n-type impurity diffusion layer 3 at the bottom surface portion. . The front silver bus electrode 5 and the front silver grid electrode 6 are made of a silver material.
 一方、半導体基板11の裏面(受光面と反対側の面)には、全体にわたってアルミニウム材料からなる裏面電極7が設けられ、また表銀バス電極5と同一方向に延在して銀材料からなる裏面集電電極8が設けられている。そして、裏面電極7と裏面集電電極8とにより第2電極である裏面側電極13が構成される。 On the other hand, a back surface electrode 7 made of an aluminum material is provided on the entire back surface (surface opposite to the light receiving surface) of the semiconductor substrate 11, and extends in the same direction as the front silver bus electrode 5 and made of a silver material. A back surface collecting electrode 8 is provided. The back electrode 7 and the back collecting electrode 8 constitute a back electrode 13 as the second electrode.
 このように構成された太陽電池セル10では、太陽光が太陽電池セル10の受光面側から半導体基板11のpn接合面(基板2とn型不純物拡散層3との接合面)に照射されると、ホールと電子が生成される。pn接合部の電界によって、生成された電子はn型不純物拡散層3に向かって移動し、ホールは基板2に向かって移動する。これにより、n型不純物拡散層3に電子が過剰となり、基板2にホールが過剰となる結果、光起電力が発生する。この光起電力はpn接合を順方向にバイアスする向きに生じ、n型不純物拡散層3に接続した受光面側電極12がマイナス極となり、基板2に接続した裏面側電極13がプラス極となって、図示しない外部回路に電流が流れる。 In solar cell 10 configured in this way, sunlight is applied to the pn junction surface (the junction surface between substrate 2 and n-type impurity diffusion layer 3) of semiconductor substrate 11 from the light-receiving surface side of solar cell 10. Then, holes and electrons are generated. Due to the electric field at the pn junction, the generated electrons move toward the n-type impurity diffusion layer 3, and the holes move toward the substrate 2. As a result, electrons are excessive in the n-type impurity diffusion layer 3 and holes are excessive in the substrate 2. As a result, a photovoltaic force is generated. This photovoltaic power is generated in the direction of biasing the pn junction in the forward direction, the light receiving surface side electrode 12 connected to the n-type impurity diffusion layer 3 becomes a negative pole, and the back surface side electrode 13 connected to the substrate 2 becomes a positive pole. Thus, a current flows through an external circuit (not shown).
 次に、太陽電池セル10の製造方法の一例について説明する。図9は、太陽電池セル10の製造工程を説明するためのフローチャートである。図10(a)~図10(g)は、太陽電池セルの製造工程を説明するための断面図である。 Next, an example of a method for manufacturing the solar battery cell 10 will be described. FIG. 9 is a flowchart for explaining a manufacturing process of the solar battery cell 10. FIG. 10A to FIG. 10G are cross-sectional views for explaining the manufacturing process of the solar battery cell.
 まず、基板2として例えばp型単結晶シリコン基板を用意し、該p型単結晶シリコン基板をフッ化水素、純水などを用いて洗浄する。その後、このp型単結晶シリコン基板に対して該p型単結晶シリコン基板の表面に微小凹凸を形成して表面にテクスチャー構造(ピラミッド構造)を形成する(図9:ステップS10、図10(a))。テクスチャー形成としては、例えばp型単結晶シリコン基板を、水酸化ナトリウム水溶液等のアルカリ水溶液(加えて添加剤等を添加する場合もある)によるエッチングを行う。 First, for example, a p-type single crystal silicon substrate is prepared as the substrate 2, and the p-type single crystal silicon substrate is cleaned using hydrogen fluoride, pure water, or the like. After that, fine irregularities are formed on the surface of the p-type single crystal silicon substrate to form a texture structure (pyramid structure) on the surface (FIG. 9: Step S10, FIG. 10 (a)). )). As the texture formation, for example, a p-type single crystal silicon substrate is etched with an aqueous alkali solution such as an aqueous sodium hydroxide solution (additives may be added in some cases).
 次に、p型単結晶シリコン基板を熱酸化炉へ投入し、オキシ塩化リン(POCl3)蒸気の存在下で加熱してp型単結晶シリコン基板の表面にリンガラスを形成する。これにより、p型単結晶シリコン基板中にリンを拡散させ、p型単結晶シリコン基板の表層にn型不純物拡散層3を形成して、pn接合を形成する(図9:ステップS20、図10(b))。ここで、n型不純物拡散層3の形成直後の表面のガラスを主成分とするリンガラス層、またp型単結晶シリコン基板の裏面に形成されたn型不純物拡散層3をフッ酸(HF)/硝酸(HNO3)/硫酸(H2SO4)の混酸等によるウェットエッチング処理により除去する。これにより、第1導電型層であるp型単結晶シリコンからなる基板2と、該基板2の受光面側に形成された第2導電型層であるn型不純物拡散層3とによりpn接合が形成された半導体基板11が得られる(図10(c))。 Next, the p-type single crystal silicon substrate is put into a thermal oxidation furnace and heated in the presence of phosphorus oxychloride (POCl 3 ) vapor to form phosphorus glass on the surface of the p-type single crystal silicon substrate. As a result, phosphorus is diffused into the p-type single crystal silicon substrate, the n-type impurity diffusion layer 3 is formed on the surface layer of the p-type single crystal silicon substrate, and a pn junction is formed (FIG. 9: Step S20, FIG. 10). (B)). Here, a phosphor glass layer mainly composed of glass on the surface immediately after the formation of the n-type impurity diffusion layer 3 and an n-type impurity diffusion layer 3 formed on the back surface of the p-type single crystal silicon substrate are hydrofluoric acid (HF). It is removed by wet etching with a mixed acid of / nitric acid (HNO 3 ) / sulfuric acid (H 2 SO 4 ). Thus, a pn junction is formed by the substrate 2 made of p-type single crystal silicon as the first conductivity type layer and the n-type impurity diffusion layer 3 as the second conductivity type layer formed on the light receiving surface side of the substrate 2. The formed semiconductor substrate 11 is obtained (FIG. 10C).
 次に、反射防止膜4としてプラズマCVD法によりSiN膜をn型不純物拡散層3上に形成する(図9:ステップS30、図10(d))。反射防止膜4の膜厚および屈折率は、光反射を最も抑制する値に設定する。なお、反射防止膜4として屈折率の異なる2層以上の膜を積層してもよい。また、反射防止膜4は、スパッタリング法など、異なる成膜方法により形成しても良い。 Next, a SiN film is formed on the n-type impurity diffusion layer 3 as the antireflection film 4 by the plasma CVD method (FIG. 9: step S30, FIG. 10 (d)). The film thickness and refractive index of the antireflection film 4 are set to values that most suppress light reflection. Note that two or more layers having different refractive indexes may be laminated as the antireflection film 4. The antireflection film 4 may be formed by a different film forming method such as a sputtering method.
 この後、図1に示した回転ブラシ37を用いた異物除去装置により反射防止膜4表面を軽く擦ることで、表面に付着している異物除去を行なう(図9:ステップS40)。この工程が本実施の形態の特徴であり、この工程については後に詳細に説明する。 Thereafter, the surface of the antireflection film 4 is lightly rubbed by the foreign matter removing device using the rotating brush 37 shown in FIG. 1 to remove the foreign matter attached to the surface (FIG. 9: Step S40). This process is a feature of the present embodiment, and this process will be described in detail later.
 ついで、スクリーン印刷により電極を形成する。まず、裏面側電極13を作成する(焼成前)。すなわち、p型単結晶シリコン基板の裏面側にスクリーン印刷によって、裏面電極7の形状に電極材料ペーストであるアルミニウムペースト7aを塗布し100℃~300℃程度で乾燥する。さらに裏面集電電極8の形状に電極材料ペーストである銀ペースト8aを塗布し、100℃~300℃程度で乾燥する(図9:ステップS50、図10(e))。 Next, electrodes are formed by screen printing. First, the back side electrode 13 is created (before firing). That is, the aluminum paste 7a as the electrode material paste is applied to the shape of the back electrode 7 by screen printing on the back side of the p-type single crystal silicon substrate, and dried at about 100 ° C. to 300 ° C. Further, a silver paste 8a as an electrode material paste is applied to the shape of the back surface collecting electrode 8, and dried at about 100 ° C. to 300 ° C. (FIG. 9: Step S50, FIG. 10 (e)).
 次に、受光面側(表面側)電極12を作製する(焼成前)。すなわち、基板2としてのp型単結晶シリコン基板の受光面である反射防止膜4上に、表銀バス電極5と表銀グリッド電極6の形状に、銀ペースト12aをスクリーン印刷によって塗布した後、銀ペースト12aを乾燥する(図9:ステップS60、図10(f))。 Next, the light receiving surface side (surface side) electrode 12 is prepared (before firing). That is, after applying the silver paste 12a to the shape of the front silver bus electrode 5 and the front silver grid electrode 6 on the antireflection film 4 which is the light receiving surface of the p-type single crystal silicon substrate as the substrate 2, by screen printing, The silver paste 12a is dried (FIG. 9: Step S60, FIG. 10 (f)).
 その後、温度700℃~900℃程度で、数分から十数分間の時間だけペーストを焼成する。これにより、受光面側電極12としての表銀バス電極5および表銀グリッド電極6と、裏面側電極13としての裏面電極7および裏面集電電極8が得られる(図9:ステップS70、図10(g))。 Thereafter, the paste is baked at a temperature of about 700 ° C. to 900 ° C. for a time of several minutes to ten and several minutes. Thereby, the front silver bus electrode 5 and the front silver grid electrode 6 as the light receiving surface side electrode 12, and the back electrode 7 and the back current collecting electrode 8 as the back surface side electrode 13 are obtained (FIG. 9: Step S70, FIG. 10). (G)).
 以上のような工程を実施することにより、図8(a)~図8(c)に示した太陽電池セル10を作製することができる。なお、電極材料であるペーストの半導体基板11への配置の順番については、受光面側と裏面側とで入れ替えてもよい。 By performing the steps as described above, the solar battery cell 10 shown in FIGS. 8A to 8C can be manufactured. In addition, the order of arrangement of the paste, which is an electrode material, on the semiconductor substrate 11 may be switched between the light receiving surface side and the back surface side.
 次に、本実施の形態にかかる太陽電池セルの製造方法における異物除去工程S40について説明する。図11(a)~図11(c)は、本実施の形態にかかる異物除去工程S40を示す要部拡大断面図である。反射防止膜の形成工程において(図9:ステップS30)、プラズマCVD法を用いてSiNOH膜を成膜した際、成膜中に異物が半導体基板上に落下して付着することで、その後の電極印刷工程で以下のような不都合が生じることがある。つまり、太陽電池セル表面にスクリーン印刷で電極材料ペーストの塗布を行う際、異物が存在することで塗布したい箇所に電極材料ペーストが所望の形状に塗布されないことがある。そしてさらには、印刷マスクパターンに異物が目詰まりすることにより、電極材料ペーストを所望の形状に塗布できなくなるため、異物付着のない太陽電池セルでも電極材料ペーストが所望の形状に塗布できなくなる場合がある。このように電極材料ペーストが所望の形状に塗布できない場合、曲率因子(フィルファクター:F.F)低下により光電変換効率が低下、所望の光電変換効率が得られない場合は不良となるため、不良率が増加する。また、異物が目詰まりした印刷マスクの交換を実施した場合、生産性が低下する。 Next, the foreign matter removing step S40 in the method for manufacturing the solar cell according to the present embodiment will be described. 11 (a) to 11 (c) are enlarged cross-sectional views of the main part showing the foreign matter removing step S40 according to the present embodiment. In the formation process of the antireflection film (FIG. 9: Step S30), when the SiNOH film is formed using the plasma CVD method, foreign substances fall and adhere to the semiconductor substrate during the film formation. The following inconveniences may occur in the printing process. That is, when the electrode material paste is applied to the surface of the solar battery cell by screen printing, the electrode material paste may not be applied in a desired shape to a place where the foreign material is present. Furthermore, since the electrode material paste cannot be applied in a desired shape due to the clogging of foreign matter in the printing mask pattern, the electrode material paste may not be applied in the desired shape even in a solar battery cell without foreign matter adhesion. is there. When the electrode material paste cannot be applied in a desired shape as described above, the photoelectric conversion efficiency is lowered due to a decrease in curvature factor (F.F), and if the desired photoelectric conversion efficiency cannot be obtained, it becomes defective. The rate increases. In addition, when the printing mask that is clogged with foreign matter is replaced, the productivity decreases.
 そこで、本実施の形態では、反射防止膜の形成工程後に異物除去工程(図9:ステップS40)として、図1に示した異物除去装置を用いて、除去すべき異物の浮遊速度より大きな速度でエアーブローを行いつつ、回転ブラシ37で反射防止膜表面を擦る。 Therefore, in the present embodiment, as a foreign matter removing step (FIG. 9: step S40) after the antireflection film forming step, the foreign matter removing apparatus shown in FIG. The surface of the antireflection film is rubbed with the rotating brush 37 while air blowing.
 回転ブラシ37を用いた異物除去で異物除去率が向上した要因について図11(a)~図11(c)を用いて説明する。図11(a)は反射防止膜4の成膜前に異物微粒子14が付着した場合の半導体基板11表面付近の拡大図を示す。この工程は図10(d)における反射防止膜4の成膜工程中における半導体基板11表面付近の拡大図に相当する。反射防止膜4の成膜前に、n型不純物拡散層3にCVD装置から異物微粒子14(又は異物粗大粒子)が落下し、n型不純物拡散層3の表面に付着する。異物付着後、この反射防止膜4の成膜工程において、図11(b)に示すように反射防止膜4が異物微粒子14の周辺を取り囲むようにして成膜される。図11(b)中のA部分のように反射防止膜4が異物微粒子14を取り囲んでいる箇所は、水洗処理では異物除去率が低い。しかし、図11(c)に示すように、回転ブラシ37を用いて軽く擦ることで、A’部分のように異物微粒子14周辺に回り込んでいる反射防止膜4を含めて異物微粒子14が剥離する。 Factors that improve the foreign matter removal rate by removing foreign matter using the rotating brush 37 will be described with reference to FIGS. 11 (a) to 11 (c). FIG. 11A shows an enlarged view of the vicinity of the surface of the semiconductor substrate 11 when the foreign particle 14 adheres before the antireflection film 4 is formed. This step corresponds to an enlarged view of the vicinity of the surface of the semiconductor substrate 11 during the step of forming the antireflection film 4 in FIG. Prior to the formation of the antireflection film 4, foreign particles 14 (or coarse particles) fall from the CVD apparatus to the n-type impurity diffusion layer 3 and adhere to the surface of the n-type impurity diffusion layer 3. After the foreign matter adheres, in the film formation step of the antireflection film 4, the antireflection film 4 is formed so as to surround the periphery of the foreign particle 14 as shown in FIG. A portion where the antireflection film 4 surrounds the foreign particle 14 as in the portion A in FIG. 11B has a low foreign matter removal rate in the water washing process. However, as shown in FIG. 11 (c), the foreign particles 14 are peeled off, including the antireflection film 4 that wraps around the foreign particles 14 like the A 'portion, by rubbing lightly using the rotating brush 37. To do.
 このように回転ブラシ37により擦る工程を実施することで、異物微粒子14が半導体基板11の表面から剥がれやすくなり、異物除去率が向上する。また、異物微粒子14周辺に回り込んでいる反射防止膜4の除去に際し、本実施の形態3では、回転ブラシ37によって擦る物理的処理を用いたが、フッ素ガス系(F2、NF3、ClF3等)のプラズマによる、ドライエッチング処理などの化学処理を併用しても良い。 By carrying out the step of rubbing with the rotating brush 37 in this way, the foreign particle 14 is easily peeled off from the surface of the semiconductor substrate 11, and the foreign matter removal rate is improved. In addition, in removing the antireflection film 4 that wraps around the foreign particle 14, a physical process of rubbing with the rotating brush 37 is used in the third embodiment, but a fluorine gas system (F 2 , NF 3 , ClF) is used. Chemical treatment such as dry etching treatment with plasma of 3 ) may be used in combination.
 ブラッシング処理を行う際に、反射防止膜4表面(窒化シリコン)またはn型不純物拡散層3(シリコン)に傷がついたり、テクスチャー構造が破壊されたりすると、光電変換効率が低下する原因となる。このため、回転ブラシ37を構成する毛状体材の硬さは、水酸窒化シリコンまたはシリコンより十分柔らかい材質を使用しなければならない。好ましくは、モース硬度3以下の軟質な材質が良い。例えば、ナイロン、ポリプロピレン等が挙げられる。また、回転ブラシの毛状体径が細い場合、異物を除去する力が弱くなり、太すぎると基板表面のテクスチャー形状の溝にある異物が除去しにくくなるため、所望の異物除去率を得るには、回転ブラシの毛状体径は10~100μmとするのが好ましい。 When performing the brushing process, if the surface of the antireflection film 4 (silicon nitride) or the n-type impurity diffusion layer 3 (silicon) is scratched or the texture structure is destroyed, the photoelectric conversion efficiency is lowered. For this reason, the hair material constituting the rotating brush 37 must be made of silicon oxynitride or a material that is sufficiently softer than silicon. A soft material having a Mohs hardness of 3 or less is preferable. Examples thereof include nylon and polypropylene. In addition, when the diameter of the crust of the rotating brush is thin, the force to remove the foreign matter is weak, and if it is too thick, it is difficult to remove the foreign matter in the textured groove on the substrate surface, so that a desired foreign matter removal rate can be obtained. The diameter of the hair of the rotating brush is preferably 10 to 100 μm.
 さらに、ブラッシング処理により異物微粒子14が付着した回転ブラシ37で反射防止膜4の表面をブラッシング処理すると、再付着により所望の異物除去率が得られない場合がある。あるいは、反射防止膜4表面(窒化シリコン)またはn型不純物拡散層3(シリコン)に傷がついたり、テクスチャー構造が破壊されたりする場合もある。これらは、いずれも光電変換効率が低下する原因となる。 Furthermore, when the surface of the antireflection film 4 is brushed with the rotating brush 37 to which the foreign particle 14 is attached by the brushing process, a desired foreign matter removal rate may not be obtained due to the reattachment. Alternatively, the surface of the antireflection film 4 (silicon nitride) or the n-type impurity diffusion layer 3 (silicon) may be damaged or the texture structure may be destroyed. These all cause a decrease in photoelectric conversion efficiency.
 本実施の形態では、図1に示したように回転ブラシ37からなる除去機構に、ブラシに付いた異物微粒子14又は異物粗大粒子14Gを吸引する第3の集塵機43を設置して、回転ブラシ37に付着した異物を除去する。これにより、所望の異物除去率が安定して得られ、窒化シリコンまたはシリコンに傷がついたり、テクスチャー構造が破壊されたりするのを防止することができる。 In the present embodiment, as shown in FIG. 1, a third dust collector 43 that sucks the foreign particle 14 or coarse particle 14 </ b> G attached to the brush is installed in the removal mechanism including the rotary brush 37, and the rotary brush 37. Remove foreign material adhering to the surface. Thereby, a desired foreign matter removal rate can be stably obtained, and it is possible to prevent the silicon nitride or silicon from being damaged or the texture structure from being destroyed.
実施の形態4.
 図12は、本発明の実施の形態4の回転ブラシ装置を用いた異物除去装置の断面図であり、この異物除去装置は、回転ブラシ37の先端が下降する側すなわち、セル10と接触後、270度回転したところで、接触する払い板40Sを設けたものである。そしてこの払い板40Sは、回転ブラシ37と離間して設置された集塵ノズル50で覆われており、払い板40Sの周りを排気する。この払い板40Sと集塵ノズル50との間の空間は6mm以下、空間の排気速度5m/sec以上、払い板40Sの集塵ノズル50からの突出量Xは10mm以内としている。そして集塵ノズル50は第4の集塵機51に接続され、払い板40Sの周囲を排気する。この払い板40Sの先端は回転ブラシ37の軸心から距離SAの位置に来るように配置される。したがって払い板40Sの先端と回転ブラシ37との距離は、回転ブラシ37の半径Rから距離SAを引いた値となっている。又払い板40Sは搬送ベルト20から距離SCの位置に図示しない支持具で支持されている。この払い板40Sの高さは回転ブラシ37の軸心の高さつまり、搬送ベルト20から距離SBの位置にあり、わずかに払い板40Sが低くなっている。なお、ブラシ先端がセルに押し込む量と、ブラシ先端が払い板に押込む量は同じで1mm以下が望ましい。距離SB、距離SCは同じ値が望ましく、差があったとしても2mm以下とするのが望ましい。
Embodiment 4 FIG.
FIG. 12 is a cross-sectional view of the foreign matter removing apparatus using the rotating brush device according to the fourth embodiment of the present invention. This foreign matter removing apparatus is on the side where the tip of the rotating brush 37 descends, that is, after contacting the cell 10. The rotating plate 40S which contacts is provided at the position rotated by 270 degrees. And this wiping board 40S is covered with the dust collection nozzle 50 installed apart from the rotating brush 37, and exhausts the circumference | surroundings of the wiping board 40S. The space between the wiping plate 40S and the dust collection nozzle 50 is 6 mm or less, the exhaust speed of the space is 5 m / sec or more, and the protruding amount X of the wiping plate 40S from the dust collection nozzle 50 is within 10 mm. And the dust collection nozzle 50 is connected to the 4th dust collector 51, and exhausts the circumference | surroundings of the wiping board 40S. Tip of the payment plate 40S is disposed to come to the position of the axial center distance S A of the rotary brush 37. Thus the distance between the tip of the payment plate 40S and the rotary brush 37 has a value obtained by subtracting the distance S A from the radius R of the rotary brush 37. The payment plate 40S is supported by support (not shown) at a distance S C from the conveyor belt 20. The payment plate height of 40S height of the axis of the rotary brush 37 that is located at a distance S B from the conveying belt 20, slightly pay plate 40S is low. The amount that the brush tip pushes into the cell is the same as the amount that the brush tip pushes into the wiper, and is preferably 1 mm or less. The distance S B and the distance S C are desirably the same value, and even if there is a difference, it is desirable that the distance S B and the distance S C be 2 mm or less.
 そしてこの異物除去装置は、前記実施の形態1~3と同様、CVD法により機能膜を成膜した後の太陽電池セルを搬送する搬送ベルト20上に搭載されている。この異物除去装置は、太陽電池を構成するセル10表面に付着する異物微粒子14の除去装置であって、搬送部としての搬送ベルト20と、搬送ベルト20上のセル10に、接触させて異物を除去する回転ブラシ37と、回転ブラシ37と接触し、回転ブラシ37に付着した異物を払い落とす払い板40Sと、清掃部とを有する。搬送ベルト20は、セル10を平滑面で保持して矢印Aで示す方向に搬送する。この回転ブラシ37は、多数本の非金属製の毛状体からなり、太陽電池セルを構成する太陽電池用基板であるシリコンより硬度が小さい、高分子繊維で構成されている。 This foreign matter removing apparatus is mounted on a conveyor belt 20 that conveys solar cells after forming a functional film by the CVD method, as in the first to third embodiments. This foreign matter removing device is a device for removing foreign fine particles 14 adhering to the surface of a cell 10 constituting a solar battery, and makes the foreign matter come into contact with the transport belt 20 as a transport section and the cell 10 on the transport belt 20. The rotary brush 37 to be removed, the wiper plate 40S that comes into contact with the rotary brush 37 and wipes off the foreign matter attached to the rotary brush 37, and a cleaning unit are included. The conveyor belt 20 holds the cell 10 with a smooth surface and conveys it in the direction indicated by the arrow A. The rotating brush 37 is made of a high-molecular fiber made of a large number of non-metallic hairs and having a hardness lower than that of silicon, which is a substrate for a solar battery constituting a solar battery cell.
 この異物除去装置によれば、異物微粒子14は回転ブラシ37に払われて大半は吹き飛ばされたり、第4の集塵機51に回収される。そして、中には払い板40Sに吸着する物があるが、集塵ノズル50によって排除されるため、異物微粒子14が大量に発生した場合にも払い板40Sからブラシ毛隙間に大量に落下してブラシを汚してしまったり、セル10に異物微粒子14が大量に再付着するような事態を回避することができる。 According to this foreign matter removing device, the foreign matter fine particles 14 are wiped off by the rotating brush 37 and most of them are blown off or collected by the fourth dust collector 51. Some of them are adsorbed on the wiping plate 40S, but are removed by the dust collecting nozzle 50. Therefore, even when a large amount of foreign particles 14 are generated, they fall in a large amount from the wiping plate 40S to the brush bristle gap. It is possible to avoid a situation in which the brush is soiled or a large amount of foreign particle 14 is reattached to the cell 10.
 図12に示すように、セル10上の異物微粒子14は回転ブラシ37の毛先に付着した後、払い板40Sに吸着される。この払い板40Sは集塵ノズル50から僅かに払い板40S先端が「舌状に」突き出ており、払い板40Sを覆う集塵ノズル50は狭い隙間を気流速度Vで排気して、異物微粒子14を第4の集塵機51によって集塵排気して除去回収する。 As shown in FIG. 12, the foreign particle 14 on the cell 10 adheres to the tip of the rotating brush 37 and is then adsorbed to the wiping plate 40S. In this wiping plate 40S, the tip of the wiping plate 40S slightly protrudes from the dust collecting nozzle 50 in a “tongue shape”, and the dust collecting nozzle 50 covering the wiping plate 40S exhausts a narrow gap at an air flow velocity V, and the foreign particle 14 Is collected and exhausted by the fourth dust collector 51 to be recovered.
 隙間d=6mm以下、排気速度V=5m/sec以上あれば、0.5mm以下のサイズの異物微粒子14は払い板40Sから集塵ノズル50までの距離X=10mm以内であれば全て第4の集塵機51まで排気回収できる。なお、隙間dが6mmを越えると、十分に排気流を払い板40Sに当てるのが困難となり、排気回収が難しくなる。また、排気速度がV=5m/secに満たないと、集塵ノズル50の内壁に異物微粒子14が付着したままとなり、異物微粒子14を排気回収するのが困難となる。望ましくは10から30m/sec程度の排気速度での排気を実現することで、確実に異物微粒子14を排気回収することができる。 If the clearance d = 6 mm or less and the exhaust velocity V = 5 m / sec or more, the foreign particle 14 having a size of 0.5 mm or less is all the fourth if the distance X from the wiper plate 40S to the dust collection nozzle 50 is within 10 mm. The exhaust gas can be collected up to the dust collector 51. If the gap d exceeds 6 mm, it is difficult to apply a sufficient exhaust flow to the wiping plate 40S, and exhaust recovery becomes difficult. If the exhaust speed is less than V = 5 m / sec, the foreign particle 14 remains attached to the inner wall of the dust collection nozzle 50, making it difficult to collect the foreign particle 14 by exhaust. Desirably, by realizing exhaust at an exhaust speed of about 10 to 30 m / sec, foreign particles 14 can be reliably recovered by exhaust.
 本発明の実施の形態4では、太陽電池セルの搬送ベルト20と、太陽電池セルに接触する回転ブラシ37を設けることにより、太陽電池セルの表面に付着した異物を除去することができる。また、回転ブラシ37の毛先に接触する払い板40Sを設けることにより、回転ブラシ37の毛先に付着した異物を除去することができるので、回転ブラシ37に付着した異物によって太陽電池セルが傷付いたり、回転ブラシ37に付着した異物が太陽電池セルに再付着したりするのを防止することができる。また、払い板40Sの周囲を集塵ノズル50で囲って排気することにより、異物微粒子14が払い板40Sに吸着するのを防止し、異物微粒子14が払い板40Sから回転ブラシ37に再付着するのを防止することができる。 In Embodiment 4 of the present invention, by providing the conveyor belt 20 of the solar battery cell and the rotating brush 37 in contact with the solar battery cell, foreign matter adhering to the surface of the solar battery cell can be removed. Further, by providing the wiper plate 40S that comes into contact with the bristles of the rotating brush 37, foreign substances attached to the bristles of the rotating brush 37 can be removed, so that the solar cells are damaged by the foreign substances attached to the rotating brush 37. It can prevent that the foreign material adhering to the rotating brush 37 adheres again to a photovoltaic cell. Further, by surrounding the wiping plate 40S with the dust collecting nozzle 50 and exhausting it, the foreign particle 14 is prevented from adsorbing to the wiping plate 40S, and the foreign particle 14 is reattached to the rotating brush 37 from the wiping plate 40S. Can be prevented.
 なお、図12に示したように、払い板40Sは、半径Rの回転ブラシ37の先端が下降する側で接触する。図12のように回転方向が反時計まわりであれば、回転ブラシ37の左側半分では回転ブラシ37の先端は下降するので、左側半分に払い板40Sを設置する。これにより、回転ブラシ37の毛先から払い落とされた異物微粒子14は払い板40Sの上側に浮遊する。これにより、集塵ノズル50の吸引力が一時的に低下しても、異物を払い板40S上に受けることができるので、異物のセル10への落下を防止する効果がある。前記実施の形態では、エアーブローを行わなかったが、本実施の形態においても、回転ブラシ37の先端で、除去すべき異物の浮遊速度より大きな速度で図示しないエアーブローを行って清掃するようにしてもよい。 In addition, as shown in FIG. 12, the wiping plate 40S contacts on the side where the tip of the rotary brush 37 having the radius R descends. If the rotation direction is counterclockwise as shown in FIG. 12, the tip of the rotating brush 37 descends in the left half of the rotating brush 37, so that the wiper plate 40 </ b> S is installed in the left half. Thereby, the foreign particle 14 that has been wiped off from the bristles of the rotating brush 37 floats above the wiping plate 40S. Thereby, even if the suction force of the dust collection nozzle 50 is temporarily reduced, foreign matter can be received on the wiping plate 40S, so that there is an effect of preventing the foreign matter from falling onto the cell 10. In the above embodiment, no air blow is performed, but also in this embodiment, the tip of the rotating brush 37 is cleaned by performing an air blow (not shown) at a speed larger than the floating speed of the foreign matter to be removed. May be.
実施の形態5.
 図12に示した前記実施の形態4では払い板40Sと集塵ノズル50の隙間は上側に1箇所であり、払い板40Sの裏側に異物微粒子14が付着することが懸念される。本実施の形態では、図13に示すように、払い板40Sの上下に隙間を設けている。この例では回転ブラシ37の毛先や払い板40Sに付着する異物微粒子14を一層効率良く排気回収できる。他は前記実施の形態4と同様であり、ここでは説明を省略する。
Embodiment 5 FIG.
In the fourth embodiment shown in FIG. 12, there is one gap on the upper side of the wiper plate 40S and the dust collecting nozzle 50, and there is a concern that the foreign fine particles 14 adhere to the back side of the wiper plate 40S. In this Embodiment, as shown in FIG. 13, the clearance gap is provided above and below the payment plate 40S. In this example, the foreign particles 14 adhering to the tips of the rotating brush 37 and the wiper plate 40S can be exhausted and recovered more efficiently. Others are the same as those of the fourth embodiment, and the description is omitted here.
実施の形態6.
 図12及び図13に示した実施の形態4及び5の異物除去装置では、払い板40Sと集塵ノズル50のみで集塵を行ったが、前記実施の形態1のようにカバー44で覆い、回収すべき異物が外部へ撒き散らないようにしてもよい。実施の形態6として、図14に示すように、集塵ノズル50とカバー44の両方を用いた例について説明する。他は前記実施の形態1及び実施の形態4と同様であり、ここでは説明を省略する。カバー44との関係上、払い板40rは回転ブラシ37がセル10上の異物微粒子14を払った後、90度回転したところに、設けられている。集塵ノズル50は、実施の形態4と同様、払い板40rの周りを覆い、第4の集塵機51に接続されている。本実施の形態においても、A-A断面は前記実施の形態1と同様図2に示すようになっているが、ここでは説明を省略する。
Embodiment 6 FIG.
In the foreign matter removing apparatus of Embodiments 4 and 5 shown in FIGS. 12 and 13, dust collection is performed only by the wiping plate 40S and the dust collection nozzle 50, but it is covered by the cover 44 as in the first embodiment. The foreign matter to be collected may not be scattered outside. As the sixth embodiment, an example using both the dust collection nozzle 50 and the cover 44 will be described as shown in FIG. Others are the same as those in the first embodiment and the fourth embodiment, and the description is omitted here. Due to the relationship with the cover 44, the wiping plate 40 r is provided at a position where the rotating brush 37 rotates 90 degrees after the foreign particles 14 on the cell 10 are removed. As in the fourth embodiment, the dust collection nozzle 50 covers the periphery of the wiping plate 40 r and is connected to the fourth dust collector 51. Also in the present embodiment, the AA cross section is as shown in FIG. 2 as in the first embodiment, but the description is omitted here.
 図1に示した実施の形態1と同様、セル10上には異物粗大粒子14G、異物微粒子14などのCVD異物が乗った状態が示されている。このCVD異物は、エアーブロー35及びカバー44の隙間からカバー内に流入する大気流35Nで浮遊除去できる異物粗大粒子14Gと回転ブラシ37で除去できる異物微粒子14などである。CVD異物粒子サイズと浮遊速度の関係を計算すると、反射防止膜がSiNOH膜であれば、グリッド印刷工程で問題となる50μmサイズの球形粒子であれば浮遊速度0.3m/secである。10μmサイズでは浮遊速度は0.01m/secである。浮遊速度は粒子サイズで指数関数的に変化する。0.1mmサイズの大きな粗大粒子は1~2m/secのエアーブローで舞い上がる。 As in the first embodiment shown in FIG. 1, a state where CVD foreign matters such as coarse foreign particles 14G and foreign fine particles 14 are on the cell 10 is shown. The CVD foreign matter includes foreign matter coarse particles 14G that can be suspended and removed by an air flow 35N flowing into the cover through a gap between the air blow 35 and the cover 44, and foreign matter fine particles 14 that can be removed by the rotating brush 37. When the relationship between the size of CVD foreign particles and the floating speed is calculated, if the antireflection film is a SiNOH film, the floating speed is 0.3 m / sec if it is a spherical particle of 50 μm size, which is a problem in the grid printing process. In the 10 μm size, the floating speed is 0.01 m / sec. The floating speed varies exponentially with the particle size. Large coarse particles with a size of 0.1 mm soar with an air blow of 1 to 2 m / sec.
 ここでも最初に、異物粗大粒子14Gで回転ブラシ37が劣化することを避けるため、エアーブロー35で2m/sec以上のエアーを吹きつけて上流側にある第1の集塵機36に回収する。 Also here, first, in order to avoid deterioration of the rotating brush 37 due to the foreign particle coarse particles 14G, air of 2 m / sec or more is blown by the air blow 35 and collected in the first dust collector 36 on the upstream side.
 本実施の形態においても、効率よく、異物除去がなされ、信頼性の高い太陽電池を得ることができる。ただし、本実施の形態では払い板40rは回転ブラシ37がセル10上の異物微粒子14を払った後、90度回転したところに、設けられている。本実施の形態では、セル10上の異物微粒子14を払った直後に、回転ブラシ37は払い板40rによって異物微粒子14を剥離され集塵ノズル50によって効率よく回収されるため、カバー44内での異物微粒子14の飛翔を抑制することができる。回転ブラシ37の軸心に対して払い板40rに対向する位置に第2の払い板を設け、回転ブラシ37の更なる清浄化をはかるようにしてもよい。 Also in this embodiment, the foreign matter is efficiently removed and a highly reliable solar cell can be obtained. However, in this embodiment, the wiping plate 40r is provided at a position where the rotating brush 37 is rotated 90 degrees after the foreign particle 14 on the cell 10 is removed. In the present embodiment, immediately after the foreign particles 14 on the cell 10 are removed, the rotating brush 37 peels off the foreign particles 14 by the wiping plate 40r and is efficiently recovered by the dust collection nozzle 50. The flying of the foreign particle 14 can be suppressed. A second wiping plate may be provided at a position facing the wiping plate 40r with respect to the axial center of the rotating brush 37 to further clean the rotating brush 37.
 前記実施の形態では、p型単結晶シリコン基板内にn型不純物を拡散してpn接合を形成した拡散型太陽電池について説明したが、n型単結晶シリコン基板、n型多結晶シリコン基板などのシリコン基板表面にp型非晶質シリコン層、p型多結晶シリコン層などを形成してpn接合を形成した薄膜型太陽電池をはじめ、薄膜EL素子などの他の光学素子にも適用可能である。 In the above-described embodiment, the diffusion type solar cell in which the n-type impurity is diffused in the p-type single crystal silicon substrate to form the pn junction has been described. However, the n-type single crystal silicon substrate, the n-type polycrystalline silicon substrate, etc. It can be applied to other optical elements such as thin film EL elements as well as thin film solar cells in which a pn junction is formed by forming a p-type amorphous silicon layer, a p-type polycrystalline silicon layer, etc. on the surface of a silicon substrate. .
 また反射防止膜としては、水酸窒化シリコン膜に限定されることなく、酸窒化シリコン膜、窒化シリコン膜あるいは、酸窒化シリコン膜、窒化シリコン膜などを積層した多層膜など、CVD装置、プラズマCVD装置などチャンバー内での気相成長によって形成される無機膜に特に有効である。 The antireflection film is not limited to a silicon oxynitride film, but is a silicon oxynitride film, a silicon nitride film, or a multilayer film in which a silicon oxynitride film, a silicon nitride film, etc. are laminated. This is particularly effective for an inorganic film formed by vapor deposition in a chamber such as an apparatus.
 以上のように、本発明にかかる異物除去装置及びこれを用いた太陽電池の製造方法は、表面に傷をつけることなく異物除去を行なうのに有用であり、特に、CVD膜形成後の太陽電池用の基板表面の異物除去に適している。 As described above, the foreign matter removing apparatus and the solar cell manufacturing method using the same according to the present invention are useful for removing foreign matters without damaging the surface, and in particular, solar cells after formation of a CVD film. It is suitable for removing foreign substances on the substrate surface.
 2 (p型単結晶シリコン)基板、3 n型不純物拡散層、4 反射防止膜、5 表銀バス電極、6 表銀グリッド電極、7 裏面電極、7a アルミニウムペースト、8 裏面集電電極、8a 銀ペースト、10 セル、11 半導体基板、12 受光面側電極、12a 銀ペースト、13 裏面側電極、14G 異物粗大粒子、14 異物微粒子、20 搬送ベルト、21 ターンテーブル、22 ステージ板、35 エアーブロー、35N 大気流、36 第1の集塵機、37 回転ブラシ、38 受けローラ、39 回転軸、40,40S,40P,40r 払い板、41 第2の集塵機、42 エアーブロー、43 第3の集塵機、44 カバー、45 回転ブラシ(毛乱れ)、46 カット刃、49 平ブラシ、50 集塵ノズル、51 第4の集塵機。 2 (p-type single crystal silicon) substrate, 3 n-type impurity diffusion layer, 4 antireflection film, 5 surface silver bus electrode, 6 surface silver grid electrode, 7 back electrode, 7a aluminum paste, 8 back current collecting electrode, 8a silver Paste, 10 cells, 11 semiconductor substrate, 12 light receiving surface side electrode, 12a silver paste, 13 back surface side electrode, 14G foreign material coarse particles, 14 foreign material fine particles, 20 transport belt, 21 turntable, 22 stage plate, 35 air blow, 35N Large airflow, 36 1st dust collector, 37 rotating brush, 38 receiving roller, 39 rotating shaft, 40, 40S, 40P, 40r wiper plate, 41 2nd dust collector, 42 air blow, 43 3rd dust collector, 44 cover, 45 Rotating Brush (Fuzz Disorder), 46 Cut Blade, 49 Flat Brush, 50 Dust Collection Le, 51 fourth dust collector.

Claims (20)

  1.  太陽電池セル表面に付着する異物を除去するための異物除去装置であって、
     太陽電池セルを平滑面で保持して搬送する搬送部と、
     多数本の非金属製の毛状体からなり、前記搬送部上の前記太陽電池セルに、接触して異物を除去するブラシと、
     前記ブラシと接触し、前記ブラシに付着した異物を払い落とす払い板と、
     を有する異物除去装置。
    A foreign matter removing device for removing foreign matter adhering to the surface of a solar battery cell,
    A transport unit that transports the solar battery cell while holding it on a smooth surface;
    A brush composed of a large number of non-metallic hairs, which contacts the solar cells on the transport unit to remove foreign substances,
    A wiping plate that contacts the brush and wipes off foreign matter adhering to the brush;
    Foreign matter removing device having
  2.  前記ブラシが回転ブラシであることを特徴とする請求項1に記載の異物除去装置。 The foreign matter removing apparatus according to claim 1, wherein the brush is a rotating brush.
  3.  前記払い板を囲い、前記ブラシと離間して設置され、前記払い板の周りを排気する集塵ノズルを有することを特徴とする請求項1または2に記載の異物除去装置。 The foreign matter removing apparatus according to claim 1 or 2, further comprising a dust collection nozzle that surrounds the wiping plate and is spaced apart from the brush and exhausts around the wiping plate.
  4.  前記払い板が、前記回転ブラシの先端が下降する側で接触することを特徴とする請求項3に記載の異物除去装置。 4. The foreign matter removing apparatus according to claim 3, wherein the wiper plate contacts on the side where the tip of the rotating brush descends.
  5.  前記払い板と前記集塵ノズルとの間の空間は6mm以下、前記空間の排気速度5m/sec以上、前記払い板の前記集塵ノズルからの突出量が10mm以内であることを特徴とする請求項4に記載の異物除去装置。 The space between the wiping plate and the dust collecting nozzle is 6 mm or less, the exhaust speed of the space is 5 m / sec or more, and the protruding amount of the wiping plate from the dust collecting nozzle is within 10 mm. Item 5. A foreign matter removing apparatus according to Item 4.
  6.  前記ブラシは、前記毛状体の外径が0.2mm以下であることを特徴とする請求項1から5のいずれか1項に記載の異物除去装置。 The foreign matter removing apparatus according to any one of claims 1 to 5, wherein the brush has an outer diameter of the ciliary body of 0.2 mm or less.
  7.  前記ブラシは、前記毛状体の長さが5mm以上40mm以下であることを特徴とする請求項1から6のいずれか1項に記載の異物除去装置。 The foreign matter removing apparatus according to any one of claims 1 to 6, wherein the brush has a length of the ciliary body of 5 mm to 40 mm.
  8.  前記ブラシは、前記毛状体の断面密度が20%から80%であることを特徴とする請求項1から7のいずれか1項に記載の異物除去装置。 The foreign matter removing apparatus according to any one of claims 1 to 7, wherein the brush has a cross-sectional density of 20% to 80% of the ciliary body.
  9.  前記ブラシは、金属の含有量が1000ppm未満であることを特徴とする請求項1から8のいずれか1項に記載の異物除去装置。 The foreign matter removing apparatus according to any one of claims 1 to 8, wherein the brush has a metal content of less than 1000 ppm.
  10.  前記太陽電池セルのセル表面より前記ブラシが外にはみ出たはみ出し部を有する場合、前記はみ出し部に対向する箇所に受けローラを設けて、セル搬送系と受けローラとブラシの3者の同期を取る同期機構を有することを特徴とする請求項1から9のいずれか1項に記載の異物除去装置。 When the brush has a protruding part that protrudes outward from the cell surface of the solar battery cell, a receiving roller is provided at a position facing the protruding part to synchronize the cell conveyance system, the receiving roller, and the brush. The foreign matter removing apparatus according to claim 1, further comprising a synchronization mechanism.
  11.  前記ブラシのブラシ周速度と前記太陽電池セルのセル表面の相対速度が600mm/sec以下であることを特徴とする請求項1から10のいずれか1項に記載の異物除去装置。 The foreign matter removing apparatus according to any one of claims 1 to 10, wherein a brush peripheral speed of the brush and a relative speed of a cell surface of the solar battery cell are 600 mm / sec or less.
  12.  前記太陽電池セルのセル表面に前記ブラシを押込む量が0.001mm以上、3mm以下であることを特徴とする請求項1から11のいずれか1項に記載の異物除去装置。 The foreign matter removing apparatus according to any one of claims 1 to 11, wherein an amount of pushing the brush into a cell surface of the solar battery cell is 0.001 mm or more and 3 mm or less.
  13.  前記ブラシの外径寸法精度を0.01mm以下、かつ、セル表面にブラシを押込む量を0.001mmから0.1mmの高さ精度を有する場合、ブラシ周速度とセル表面の相対速度を2000mm/sec以下としたことを特徴とする請求項1から12のいずれか1項に記載の異物除去装置。 When the outer diameter dimensional accuracy of the brush is 0.01 mm or less and the amount of pushing the brush into the cell surface has a height accuracy of 0.001 mm to 0.1 mm, the brush peripheral speed and the cell surface relative speed are 2000 mm. The foreign matter removing apparatus according to any one of claims 1 to 12, wherein the foreign matter removing apparatus is set to / sec or less.
  14.  前記ブラシが直線状ブラシであることを特徴とする請求項1に記載の異物除去装置。 The foreign matter removing apparatus according to claim 1, wherein the brush is a linear brush.
  15.  前記太陽電池セルのセル表面に前記ブラシを押込む量が0から5mmであることを特徴とする請求項14に記載の異物除去装置。 15. The foreign matter removing apparatus according to claim 14, wherein an amount of pushing the brush into a cell surface of the solar battery cell is 0 to 5 mm.
  16.  前記ブラシは、前記太陽電池セルを構成する太陽電池用基板より硬度が小さい高分子繊維で構成された請求項1から15のいずれか1項に記載の異物除去装置。 The foreign matter removing apparatus according to any one of claims 1 to 15, wherein the brush is made of a polymer fiber having a hardness lower than that of a solar battery substrate constituting the solar battery cell.
  17.  自動搬送印刷ラインにおいて1台の印刷機の各機能が処理順にセル投入位置決めポジション、セル表面異物清掃ポジション、電極印刷ポジション、セル検査排出ポジションを有しており、前記セル表面異物清掃ポジションで前記ブラシによってセル表面を掃引して異物除去を行うことを特徴とする請求項1から16のいずれか1項に記載の異物除去装置。 Each function of one printing machine in the automatic conveyance printing line has a cell insertion positioning position, a cell surface foreign matter cleaning position, an electrode printing position, and a cell inspection discharge position in the order of processing. The foreign matter removal apparatus according to claim 1, wherein the foreign matter removal is performed by sweeping the cell surface by the method.
  18.  さらに、前記ブラシの先端で、除去すべき異物の浮遊速度より大きな速度でエアーブローを行って清掃する清掃部を具備したことを特徴とする請求項1から17のいずれか1項に記載の異物除去装置。 The foreign matter according to any one of claims 1 to 17, further comprising a cleaning unit that performs air blowing at a tip of the brush at a speed larger than a floating speed of the foreign matter to be removed. Removal device.
  19.  テクスチャ構造を有する第1の表面側に、第2導電型の半導体層を有する第1導電型の結晶系半導体基板を用意する工程と、
     前記第2導電型の半導体層上に反射防止膜を形成する工程と、
     多数本の非金属製の毛状体からなり、搬送部上の前記反射防止膜の形成された結晶系半導体基板に、接触して異物を除去するブラシと、前記ブラシと接触し、前記ブラシに付着した異物を払い落とす払い板とを備えた異物除去装置を用い、
     前記反射防止膜表面を、前記払い板で、前記ブラシと接触し、前記ブラシに付着した異物を払い落としつつ、前記ブラシでブラッシング処理することで異物除去を行う工程と、
     前記反射防止膜上に、前記第2導電型の半導体層に電気的に接続する受光面側電極を形成する工程とを含むことを特徴とする太陽電池の製造方法。
    Preparing a first conductive type crystalline semiconductor substrate having a second conductive type semiconductor layer on the first surface side having a texture structure;
    Forming an antireflection film on the semiconductor layer of the second conductivity type;
    A brush made of a large number of non-metallic hairs, in contact with the crystalline semiconductor substrate on which the anti-reflection film is formed on the transport section, contacts the brush to remove foreign matter, contacts the brush, Using a foreign material removal device equipped with a wiper plate to remove the adhered foreign material,
    The step of removing the foreign matter by brushing with the brush while the antireflection film surface is in contact with the brush with the wiping plate and the foreign matter attached to the brush is wiped off;
    Forming a light receiving surface side electrode electrically connected to the semiconductor layer of the second conductivity type on the antireflection film.
  20.  前記異物除去装置は、さらに
     前記ブラシの先端で、除去すべき異物の浮遊速度より大きな速度でエアーブローを行って清掃する清掃部を具備しており、
     前記異物除去を行なう工程は、
     前記反射防止膜表面を、除去すべき異物の浮遊速度より大きな速度でエアーブローを行いつつ、ブラシでブラッシング処理することで異物除去を行う工程であることを特徴とする請求項19に記載の太陽電池の製造方法。
    The foreign matter removing apparatus further includes a cleaning unit that performs air blowing at a tip larger than the floating speed of the foreign matter to be removed at the tip of the brush for cleaning.
    The step of removing the foreign matter includes
    21. The sun according to claim 19, wherein the antireflection film surface is a step of removing foreign matter by brushing with a brush while performing air blowing at a speed larger than a floating speed of the foreign matter to be removed. Battery manufacturing method.
PCT/JP2013/079148 2013-05-14 2013-10-28 Foreign object removal device and method for producing solar cell using same WO2014184971A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015516877A JP6091610B2 (en) 2013-05-14 2013-10-28 Foreign matter removing apparatus and method for manufacturing solar cell using the same
TW103108967A TWI514610B (en) 2013-05-14 2014-03-13 A foreign matter removing device, and a method of manufacturing the solar cell using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2013/063439 2013-05-14
PCT/JP2013/063439 WO2014184876A1 (en) 2013-05-14 2013-05-14 Foreign object removal device and method for producing solar cell using same

Publications (1)

Publication Number Publication Date
WO2014184971A1 true WO2014184971A1 (en) 2014-11-20

Family

ID=51897897

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/063439 WO2014184876A1 (en) 2013-05-14 2013-05-14 Foreign object removal device and method for producing solar cell using same
PCT/JP2013/079148 WO2014184971A1 (en) 2013-05-14 2013-10-28 Foreign object removal device and method for producing solar cell using same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063439 WO2014184876A1 (en) 2013-05-14 2013-05-14 Foreign object removal device and method for producing solar cell using same

Country Status (3)

Country Link
JP (1) JP6091610B2 (en)
TW (1) TWI514610B (en)
WO (2) WO2014184876A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019051517A (en) * 2018-12-04 2019-04-04 バンドー化学株式会社 Cleaning device
JP2020037110A (en) * 2018-12-04 2020-03-12 バンドー化学株式会社 Cleaning device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105458891B (en) * 2015-12-25 2017-07-21 苏州达力客自动化科技有限公司 A kind of battery pole piece sander
CN105457925B (en) * 2015-12-25 2017-07-28 苏州达力客自动化科技有限公司 A kind of battery pole piece wheat flour purifier
CN105458887B (en) * 2015-12-25 2017-07-21 苏州达力客自动化科技有限公司 A kind of reciprocal sanding apparatus of battery pole piece
CN106180075B (en) * 2016-09-30 2019-10-15 宁德时代新能源科技股份有限公司 Be applied to cleaning device and processing equipment of electric core
KR102063264B1 (en) * 2017-12-13 2020-01-07 주식회사 대성엔지니어링 cleaning system for wastewater piping
CN108273774A (en) * 2018-01-19 2018-07-13 德淮半导体有限公司 Cleaning device and clean method, wafer processing apparatus and processing method
WO2020080549A1 (en) * 2018-10-19 2020-04-23 株式会社未来機械 Cleaning robot
CN110665869A (en) * 2019-10-22 2020-01-10 江苏国知中研知识产权发展有限公司 Cleaning system of solar power generation device
CN110813834B (en) * 2019-11-05 2021-09-17 宁波大学 Solar panel cleaning robot based on non-contact parallel line drive
CN110846771A (en) * 2019-11-16 2020-02-28 安徽翰联色纺股份有限公司 Yarn production and processing thread combing machine convenient for cleaning cotton wool
CN112452861B (en) * 2020-11-04 2022-03-25 江苏天烁数字科技有限公司 Artificial intelligence-based ice and snow removal adjusting method and device for photovoltaic cleaning robot
CN113578827B (en) * 2021-08-25 2022-10-11 上海能源科技发展有限公司 A photovoltaic board surface cleaning device for many sand blown by wind area uses

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174687U (en) * 1986-04-26 1987-11-06
JP2003218368A (en) * 2002-01-22 2003-07-31 Sharp Corp Method for manufacturing semiconductor junction layer and solar buttery
JP2006334084A (en) * 2005-06-01 2006-12-14 Toshiba Tec Corp Suction port body for vacuum cleaner
JP2007514177A (en) * 2004-02-10 2007-05-31 シャープ株式会社 Substrate cleaning apparatus and cleaning method, flat display panel, electronic component mounting apparatus and mounting method
JP2007294809A (en) * 2006-04-27 2007-11-08 Sharp Corp Porous growth substrate cleaning device, and sheet-shaped substrate fabricating method
JP2009022644A (en) * 2007-07-23 2009-02-05 Mitsubishi Electric Corp Suction device for vacuum cleaner, and vacuum cleaner
JP2009195968A (en) * 2008-02-25 2009-09-03 Mitsubishi Electric Corp Laser scribing apparatus
GB2469729A (en) * 2009-04-23 2010-10-27 Samsung Kwangju Electronics Co Nozzle assembly
JP2013030665A (en) * 2011-07-29 2013-02-07 Sharp Corp Photoelectric conversion device module, manufacturing method of the same, and photoelectric conversion device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054765A (en) * 1999-08-19 2001-02-27 Dainippon Screen Mfg Co Ltd Substrate cleaning device
JP2001121096A (en) * 1999-10-28 2001-05-08 Tokyo Electron Ltd Roll brush cleaning device
TWI422438B (en) * 2008-05-09 2014-01-11 Hon Hai Prec Ind Co Ltd Solar panel automatic cleaning system and method same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174687U (en) * 1986-04-26 1987-11-06
JP2003218368A (en) * 2002-01-22 2003-07-31 Sharp Corp Method for manufacturing semiconductor junction layer and solar buttery
JP2007514177A (en) * 2004-02-10 2007-05-31 シャープ株式会社 Substrate cleaning apparatus and cleaning method, flat display panel, electronic component mounting apparatus and mounting method
JP2006334084A (en) * 2005-06-01 2006-12-14 Toshiba Tec Corp Suction port body for vacuum cleaner
JP2007294809A (en) * 2006-04-27 2007-11-08 Sharp Corp Porous growth substrate cleaning device, and sheet-shaped substrate fabricating method
JP2009022644A (en) * 2007-07-23 2009-02-05 Mitsubishi Electric Corp Suction device for vacuum cleaner, and vacuum cleaner
JP2009195968A (en) * 2008-02-25 2009-09-03 Mitsubishi Electric Corp Laser scribing apparatus
GB2469729A (en) * 2009-04-23 2010-10-27 Samsung Kwangju Electronics Co Nozzle assembly
JP2013030665A (en) * 2011-07-29 2013-02-07 Sharp Corp Photoelectric conversion device module, manufacturing method of the same, and photoelectric conversion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019051517A (en) * 2018-12-04 2019-04-04 バンドー化学株式会社 Cleaning device
JP2020037110A (en) * 2018-12-04 2020-03-12 バンドー化学株式会社 Cleaning device

Also Published As

Publication number Publication date
JPWO2014184971A1 (en) 2017-02-23
TWI514610B (en) 2015-12-21
JP6091610B2 (en) 2017-03-08
WO2014184876A1 (en) 2014-11-20
TW201507188A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
JP6091610B2 (en) Foreign matter removing apparatus and method for manufacturing solar cell using the same
JP5537101B2 (en) Crystalline silicon solar cell
WO2008001430A1 (en) Screen printing machine and solar battery cell
US7906365B2 (en) Method of manufacturing solar cell panel
JP5813204B2 (en) Manufacturing method of solar cell
JP2004235274A (en) Polycrystalline silicon substrate and method of roughing its surface
JP2012049424A (en) Solar cell and method of manufacturing the same
JPWO2016152228A1 (en) Method for producing crystalline silicon substrate for solar cell, method for producing crystalline silicon-based solar cell, and method for producing crystalline silicon-based solar cell module
Chen et al. Improved front side metallization for silicon solar cells by direct printing
JP2015185808A (en) Photoelectric conversion device and manufacturing method therefor
JP2011228529A (en) Solar battery cell and manufacturing method thereof
JP5153750B2 (en) Substrate surface treatment device, solar cell manufacturing device
JP2010118473A (en) Solar cell and method of manufacturing same
JP2011181620A (en) Crystal silicon-based solar cell
KR102597824B1 (en) Glass substrate for display and method of manufacturing the same
JP5861552B2 (en) Manufacturing method of solar cell
JP2005016906A (en) Baking furnace and method of manufacturing solar cell element using the same
US9537026B2 (en) Method for manufacturing solar-power-generator substrate and apparatus for manufacturing solar-power-generator substrate
JP5927028B2 (en) Photoelectric conversion device
JP2010040922A (en) Method of manufacturing photoelectric conversion device
JP2009076840A (en) Method of manufacturing photoelectric conversion device
JP5534933B2 (en) Method for manufacturing solar cell element
KR101533244B1 (en) Method and apparatus for manufacturing of thin film type solar cell
JP2014167979A (en) Process of manufacturing solar cell
JP2007180067A (en) Manufacturing method of solar battery element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015516877

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884812

Country of ref document: EP

Kind code of ref document: A1