WO2014183477A1 - 摩擦发电机的制造方法及摩擦发电机 - Google Patents

摩擦发电机的制造方法及摩擦发电机 Download PDF

Info

Publication number
WO2014183477A1
WO2014183477A1 PCT/CN2014/070579 CN2014070579W WO2014183477A1 WO 2014183477 A1 WO2014183477 A1 WO 2014183477A1 CN 2014070579 W CN2014070579 W CN 2014070579W WO 2014183477 A1 WO2014183477 A1 WO 2014183477A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
layer
electrode layer
slurry
coating
Prior art date
Application number
PCT/CN2014/070579
Other languages
English (en)
French (fr)
Inventor
徐传毅
赵豪
邓杨
刘军锋
Original Assignee
纳米新能源(唐山)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳米新能源(唐山)有限责任公司 filed Critical 纳米新能源(唐山)有限责任公司
Publication of WO2014183477A1 publication Critical patent/WO2014183477A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators

Definitions

  • the present invention relates to the field of nanotechnology, and in particular to a method of manufacturing a friction generator and a friction generator produced. Background technique
  • Nanotechnology-based energy harvesting and conversion devices due to their unique self-generating and self-driven properties, can play a key role in the manufacture and driving of self-powered nanodevices and nanosystem devices.
  • generators generate charge, separate positive and negative charges to create a potential difference, and drive the movement of free electrons by the potential difference, which is based on electromagnetic, piezoelectric, thermoelectric, and even electrostatic effects.
  • triboelectric and electrostatic phenomena are a very common phenomenon. Because they are difficult to collect and use, they are often a form of energy that people ignore. If a new method can be used to collect the electrical energy generated by friction or use this method to convert irregular kinetic energy in daily life into usable electrical energy, it will have an important impact on people's daily life.
  • micro-electrostatic generators have been successfully developed and are widely used in the field of micro-electromechanical (MEMS).
  • MEMS micro-electromechanical
  • the design of miniature electrostatic generators is based primarily on inorganic silicon materials, and the fabrication of devices requires complex processes and precise operations. The preparation of the entire device requires large equipment and special production conditions, and the cost is too high, which is not conducive to the commercialization and common application of the generator.
  • the technical problem solved by the present invention is to solve the defects of the prior art, and to provide a method for manufacturing a friction generator to realize a friction generator by a single process.
  • the present invention provides a method of manufacturing a friction generator, including Includes:
  • drying and solidifying drying and solidifying the substrate coated with the slurry to obtain a polymer film layer-substrate layer laminate
  • heating imprinting 3) heating and embossing of the polymer film layer-substrate layer laminate obtained in the drying and curing step to obtain a polymer film layer-substrate layer laminate having a micro/nano concavo-convex structure; as well as
  • the polymer film layer-substrate layer laminate obtained by the heating imprinting step is made into a friction generator, the friction generator includes a first electrode layer laminated, the first polymer polymer insulation layer And the second electrode layer; or the friction generator includes a first electrode layer, a first polymer insulating layer, a second polymer insulating layer and a second electrode layer; or the frictional power generation
  • the machine includes a first electrode layer disposed in a stack, a first polymer insulating layer, an intervening electrode layer, a second polymer insulating layer and a second electrode layer; or the friction generator includes a first electrode disposed in a stack a layer, a first polymer insulating layer, an intermediate film layer, a second polymer insulating layer and a second electrode layer; the first electrode layer together with the first polymer insulating layer, and/or the second electrode
  • the layer and the second polymer polymer insulating layer are composed of 4) a polymer film layer-base material layer laminate obtained by heating
  • the polymer material is polydidecylsiloxane; the polymer material and the curing agent are uniformly mixed and dissolved in an organic solvent to prepare a slurry, and the organic solvent is N-hexane, cyclohexane, toluene, diphenylbenzene, ethyl acetate or butyl acetate.
  • the mass ratio of the solid (mixture) to the organic solvent in the slurry is 1:20.
  • the curing agent used is a vulcanizing agent, such as commercially available Dow Corning 184.
  • the curing temperature is 60-120 °C.
  • the polymer material is a phenol resin, an epoxy resin or a melamine furfural resin, and a curing agent is added to the polymer material to prepare a slurry.
  • a curing agent is added to the polymer material to prepare a slurry.
  • the polymer film layer formed by the process of the present invention is also required to have the property of triboelectric charging.
  • conventional phenol resins can be applied to the present invention, including phenol resins and furfural resins.
  • phenol resins and furfural resins Those skilled in the art will readily be able to select a suitable curing agent based on the selected polymeric material.
  • the curing agent may be an alicyclic polyamine, a tertiary amine, an imidazole, and a boron trifluoride complex.
  • the curing temperature is 60-120 °C.
  • Epoxy resins (including glycidyl ethers, glycidyl esters, glycidylamines, aliphatic epoxy compounds, alicyclic epoxy compounds) can also be used in the present invention.
  • the curing agent is a polythiol type, a polyisocyanate type, an aliphatic polyamine, an alicyclic polyamine, a low molecular polyamide, a modified aromatic amine, an alicyclic polyamine, a tertiary amine, an imidazole, and a boron trifluoride system.
  • Compound, etc., curing temperature is 50-100 °C.
  • the polymer material may also be a melamine acetal resin, and the curing agent is an ASA curing agent, and the curing temperature is 120-150 °C.
  • the substrate coated with the slurry is subjected to heat treatment to make the polymer material have a kinematic viscosity of 80-99 CST at 25 ° C, and solidify to form a polymer film layer-substrate layer laminate.
  • the polymer material is polyethylene, polypropylene, polystyrene, polydecyl methacrylate, polyvinyl chloride, nylon, polycarbonate, polyurethane or polyparaphenylene Acidic ethylene glycol ester;
  • the polymer material is dissolved in an organic solvent to form a slurry, and the organic solvent is 2-methoxyethanol, chloroform, 1,1,2-trichloroethylene, 1, 2 - 2 Ethoxyethane, 1 , 2, 3 , 4 - tetrahydronaphthalene, 2-ethoxyethanol, sulfolane, pyrimidine, decylamide, n-hexane, chlorobenzene, dioxane, acetonitrile, dichloroanthracene Alkane, vinyl glycol, N, N-dimercaptoamide, toluene, N, N-dimercaptoacetamide, mercaptocyclo
  • the slurry is applied by a coater.
  • the coating machine comprises a frame, a scraper disposed on the frame, a coating roller, a back roller and a slurry container; wherein the coating roller and the back roller are arranged in parallel in the same row and rotate in the same direction,
  • the slurry container is connected to the coating roller; the blade is disposed above the coating roller to leave a gap with the surface of the coating roller; the substrate runs around the back roller.
  • the coater is commercially available, for example, a TB-800 type silicone oil coater.
  • the foregoing method 2) in the coating step, by adjusting the coating blade of the coater and the coating roller of the coater
  • the gap of the wheel adjusts the amount of slurry transported from the slurry holder to the coating roller.
  • the coating roller speed of the coater is 10-120 m/min
  • the rotation speed of the back roller of the coater is 10-120 m/min
  • the embossing process is performed by using a embossing machine, and the surface of the embossing roll of the embossing machine is provided with a micro-nano uneven structure.
  • the polymer film layer-substrate layer laminate obtained by the 3) drying and curing step is heat-treated at 60-220 ° C by a heating device. .
  • the surface of the platen roller has a temperature of 60-220 ° C, and the polymer film layer-substrate layer laminate obtained by the 3) drying and curing step is simultaneously heated and embossed. deal with.
  • the imprint temperature is preferably 60 to 120 °C.
  • the embossing temperature is 80-120 ° C; when polypropylene, the embossing temperature is 140-160 ° C; when polystyrene, the embossing temperature is 140-160 ° C;
  • the embossing temperature is 80-120 °C; for polyvinyl chloride and nylon, the embossing temperature is 80-100 °C; for polycarbonate, the embossing temperature is 120-140 °C;
  • the embossing temperature is 140-170 ° C; when polyethylene terephthalate is used, the embossing temperature is 150-220 ° C.
  • the invention provides a friction generator made by any of the above methods.
  • the present invention provides a method of manufacturing a friction generator, comprising:
  • the polymer film layer obtained by the separation step is made into a friction generator, the friction generator includes a first electrode layer, a first polymer insulation layer, and a second electrode layer; Or the friction generator includes a first electrode layer, a first polymer insulating layer, a second polymer insulating layer and a second electrode layer; or the friction generator includes a first layer An electrode layer, a first polymer insulating layer, an intervening electrode layer, a second polymer insulating layer and a second electrode layer; or the friction generator comprises a first electrode layer stacked, the first polymer polymerization An insulating layer, an intermediate film layer, a second polymer insulating layer and a second electrode layer; a first polymer insulating layer, and/or a second polymer insul
  • the polymer material is a polydithiosiloxane; the polymer material and the curing agent are mixed and then dissolved in an organic solvent to prepare a slurry, and the organic solvent is prepared. It is n-hexane, cyclohexane, toluene, diphenylbenzene, ethyl acetate or butyl acetate. Preferred solid in the slurry
  • the mass ratio of (mixture) to organic solvent is 1:20.
  • the curing agent used is a vulcanizing agent, such as commercially available Dow Corning 184.
  • the curing temperature is 60-120 °C.
  • the polymer material is a phenol resin, an epoxy resin, or a melamine acetal resin, and a curing agent is added to the polymer material to prepare a slurry.
  • a curing agent is added to the polymer material to prepare a slurry.
  • the polymer film layer formed by the present invention is used as a first polymer polymer insulating layer and/or a second polymer polymer insulating layer and/or an intermediate film layer as a friction generator, that is, the high formed by the present invention
  • the molecular thin film layer can be used as any one or more of the first high molecular polymer insulating layer, the second high molecular polymer insulating layer and the intermediate thin film layer. For example, it is only used as the first polymer insulating layer, the second polymer insulating layer and any one of the intermediate film layers; and is used as the first polymer insulating layer and the second polymer.
  • the polymer insulating layer, or both serves as the first polymer insulating layer and the intermediate film layer; it is also possible to simultaneously serve as the first polymer insulating layer, the second polymer insulating layer and the intermediate film layer.
  • the polymer polymer insulating layer and the electrode layer, or the polymer polymer insulating layer rub each other to generate an electrostatic charge, thereby causing a potential difference between the electrodes. Therefore, after the process of the present invention, the formed polymer film layer also needs to be able to Frictional electrification performance.
  • conventional phenol resins can be applied to the present invention, including phenolic resin, furfural resin.
  • Those skilled in the art will readily be able to select a suitable curing agent based on the selected polymeric material.
  • the curing agent may be an alicyclic polyamine, a tertiary amine, an imidazole, and a boron trifluoride complex. Curing temperature is
  • Epoxy resins (including glycidyl ethers, glycidyl esters, glycidylamines, aliphatic epoxy compounds, alicyclic epoxy compounds) can also be used in the present invention.
  • the curing agent is a polythiol type, a polyisocyanate type, an aliphatic polyamine, an alicyclic polyamine, a low molecular polyamide, a modified aromatic amine, an alicyclic polyamine, a tertiary amine, an imidazole, and a boron trifluoride system.
  • Compound, etc., curing temperature is 50-100 °C.
  • the polymer material may also be a melamine acetal resin, and the curing agent is an ASA curing agent, and the curing temperature is 120-150 °C.
  • the substrate coated with the slurry is subjected to heat treatment so that the polymer material has a kinematic viscosity at 25 °C of 100 CST or more, and is cured to form a polymer film layer-substrate layer laminate.
  • the polymer material is polyethylene, polypropylene, polystyrene, polydecyl methacrylate, polyvinyl chloride, nylon, polycarbonate, polyurethane or polyparaphenylene Acidic ethylene glycol ester;
  • the polymer material is dissolved in an organic solvent to form a slurry, and the organic solvent is 2-methoxyethanol, chloroform, 1,1,2-trichloroethylene, 1, 2 - 2 Ethoxyethane, 1 , 2, 3 , 4 - tetrahydronaphthalene, 2-ethoxyethanol, sulfolane, pyrimidine, decylamide, n-hexane, chlorobenzene, dioxane, acetonitrile, dichloroanthracene Alkane, vinyl glycol, N, N-dimercaptoamide, toluene, N, N-dimercaptoacetamide, mercaptocyclo
  • the slurry is applied by a coater.
  • the coating machine comprises a frame, a scraper disposed on the frame, a coating roller, a back roller and a slurry container; wherein the coating roller and the back roller are arranged in parallel in the same row and rotate in the same direction,
  • the slurry container is connected to the coating roller; the blade is disposed above the coating roller to leave a gap with the surface of the coating roller; the substrate runs around the back roller.
  • the coater is commercially available, for example, a TB-800 type silicone oil coater.
  • the amount of slurry transported from the slurry container to the coating roller is adjusted by adjusting the gap between the doctor blade of the coater and the coating roller of the coater.
  • the coating roller rotation speed of the coating machine is 10-120 m/min
  • the back roller rotation speed of the coating machine is 10-120 m/min.
  • the present invention provides a friction generator which is produced by any of the above methods.
  • the manufacturing method of the friction generator of the present invention With the manufacturing method of the friction generator of the present invention, the preparation process can be completed, and the obtained uneven structure has a uniform pitch and size, so that the obtained friction generator has stable performance.
  • the present invention encapsulates the complex process of the prior Si stencil making process and changes the size of the Si wafer to the size of the product. It is a practical new micro-nanostructure industrial production process.
  • 1 is a flow chart showing the manufacturing process of the friction generator of the present invention.
  • FIG 2 is a schematic view of a coating process of the present invention.
  • FIG. 3 is a schematic view of a hot stamping process of the present invention.
  • Figure 4 is a schematic view showing the micro-nano uneven structure on the platen roller of the present invention.
  • Fig. 5 is a schematic structural view of a friction generator of the present invention.
  • Figure 6 is a schematic view showing the structure of another friction generator of the present invention.
  • Figure 7 is a schematic view showing the structure of another friction generator of the present invention.
  • Figure 8 is a schematic view showing the structure of another friction generator of the present invention.
  • FIG. 9 is a flow chart showing a manufacturing process of another friction generator according to the present invention.
  • Figure 10 is a plan view of a substrate with a micro-nano-convex structure.
  • Figure 11 is a schematic cross-sectional view of a substrate with a micro/nano relief structure.
  • Figure 12 is a schematic view of the coating-separation process of the present invention. detailed description
  • the invention proposes a manufacturing method of a friction generator, in order to realize a friction hair by a single process Motor.
  • a flow chart of a manufacturing process of a friction generator As shown in FIG. 1, a flow chart of a manufacturing process of a friction generator. The method includes:
  • the high-molecular polymer insulating layer and the electrode layer or the high-molecular polymer insulating layer rub against each other to generate an electrostatic charge, thereby causing a potential difference between the electrodes. Therefore, it is necessary to have the property of triboelectric charging only by the polymer film layer formed by the process of the present invention.
  • a polymer material that can be used is a polydithiosiloxane.
  • the polydithiosiloxane is uniformly mixed with a curing agent, dissolved in an organic solvent, and uniformly stirred to form a slurry.
  • the organic solvent is n-hexane, cyclohexane, toluene, diphenylbenzene, ethyl acetate. Or butyl acetate, the preferred mass ratio of solid (mixture) to organic solvent in the slurry is 1:20.
  • the curing agent is a straightening agent, for example, commercially available Dow Corning 184, in which the weight ratio of the polymer material to the curing agent is 5:1 to 20:1, preferably 10:1.
  • the curing temperature is 60-120 °C. Preferably, heating can be accompanied by agitation.
  • the polymer material which can be used may also be a phenol resin, an epoxy resin or a melamine furfural resin. These polymer materials are liquid in nature, and do not require the use of an organic solvent. Only the curing agent is added to the polymer material, and the weight ratio of the polymer material to the curing agent is 5:1 to 20:1, preferably 10:1. .
  • Phenolic resins can be used in the present invention, including phenolic resins and furfural resins. Those skilled in the art will readily be able to select a suitable curing agent based on the selected polymeric material.
  • the curing agent may be an alicyclic polyamine, a tertiary amine, an imidazole, and a boron trifluoride complex.
  • the curing temperature is 60-120 °C.
  • Epoxy resins (including glycidyl ethers, glycidyl esters, glycidylamines, aliphatic epoxy compounds, alicyclic epoxy compounds) can also be used in the present invention.
  • the curing agent is a polythiol type, a polyisocyanate type, an aliphatic polyamine, an alicyclic polyamine, a low molecular polyamide, a modified aromatic amine, an alicyclic polyamine, a tertiary amine, an imidazole, and a boron trifluoride system.
  • Compound, etc., curing temperature is 50-100 °C.
  • the polymer material may also be a melamine acetal resin, and the curing agent is an ASA curing agent, and the curing temperature is 120-150 °C.
  • the polymer material that can be used may also be polyethylene, polypropylene, polystyrene, decyl acrylate, polyvinyl chloride, nylon, polycarbonate, polyurethane or polyethylene terephthalate;
  • the above polymer material is dissolved in an organic solvent to prepare a slurry, and the organic solvent is 2-methoxyethanol, chloroform, 1,1,2-trichloroethylene, 1,2-dimethoxyethane , 1, 2, 3, 4 - tetrahydronaphthalene, 2-ethoxyethanol, sulfolane, pyrimidine, decylamide, n-hexane, chlorobenzene, dioxane, acetonitrile, dichlorodecane, vinyl Glycol, N, N-dimercaptoamide, indole, N, N-dimercaptoacetamide, mercaptocyclohexane, 1 , 2 -dichloroethene, diter
  • the slurry is preferably coated with a coater.
  • the coater includes a frame (not shown), a blade 1 disposed on the frame, a coating roller 2, a back roller 3, and a slurry container 4.
  • the coating roller 2 and the back roller 3 are arranged in parallel in the same row and rotate in the same direction, and the slurry container 4 is connected to the coating roller 2; the blade 1 is disposed above the coating roller 2, leaving the surface of the coating roller There is a gap; the substrate 5 runs around the back roller 3.
  • the coating roller 2 rotates, the slurry 6 is transported from the slurry container 4 to the coating roller 2, and then the back roller 3 is rotated to transport the slurry 6 onto the substrate 5 to achieve uniform coating.
  • the coater is commercially available, for example, a TB-800 type silicone oil coater.
  • the amount of the slurry 6 transported from the slurry container 4 to the coating roller 2 can be adjusted.
  • the coating roller rotation speed is 10-120 m/min and the back roller rotation speed is 10-120 m/min, so that the thickness of the polymer film layer obtained after the subsequent step is 50 ⁇ m or less.
  • the substrate acts as an electrode of a friction generator in this embodiment, so that the material used is electrically conductive, such as a metal or an alloy, wherein the metal may be gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium. , tin, iron, manganese, phase, tungsten or vanadium; alloys may be aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium Alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy. Or a polymer material coated with the above metal or alloy, such as polyethylene terephthalate (PET) plated with a metal or alloy.
  • PET polyethylene terephthalate
  • the substrate coated with the slurry is subjected to heat treatment to cause the polymer material to move at 25 ° C.
  • the viscosity is 80-99 CST, and the polymer film layer-base material layer laminate is cured.
  • the appropriate curing temperature should be chosen. For example, polydidecyl siloxane, curing temperature is 60-120 ° C; phenol resin, curing temperature is 60-120 ° C; epoxy resin, curing temperature is 50-100 ° C; melamine resin, The curing temperature is 120-150 °C.
  • the polymer material used is polyethylene, polypropylene, polystyrene, polydecyl methacrylate, polyvinyl chloride, nylon, polycarbonate, polyurethane or polyethylene terephthalate, dry curing
  • the temperature is 60-120 ° C and the drying time is 2-4 hours.
  • the embossing process is performed using an embossing machine.
  • the embossing machine is obtained by modifying an embossing roll of a commercially available embossing press, for example, by modifying a TB-800 type silicone oil coater.
  • the embossing machine includes two embossing rolls 7 arranged side by side, and the embossing roll 7 has a micro-nano uneven structure (as shown in Fig. 4).
  • the micro/nano-convex structure on the surface of the polymer film layer is a nano-concave structure having a protrusion height of 50 nm to 300 nm.
  • the micro-nano-convex structure may be a square protrusion, a strip-shaped protrusion, and a quadrangular pyramid-shaped protrusion, as needed. Accordingly, in order to obtain a laminate having the above-described micro/nano-convex structure, the platen roller 7 has a corresponding micro-nano-concave structure.
  • the heating step and the embossing step can be performed simultaneously or in steps. As shown in FIG. 3, in one embodiment, before the embossing process, the polymer film layer-substrate layer laminate obtained by the 3) drying and curing step is performed by the heating device 8 at 60-220 °C. Heat treatment.
  • the heating device is a commercially available heating device conventionally used for heating a polymer material.
  • the embossing roller is heated so that the surface of the embossing roller has a temperature of 60-220 ° C, and the polymer film layer-substrate layer laminate obtained by the drying and curing step is passed through the conveyor belt from the two The embossing roller 7 passes between the gaps, simultaneously performs heating and embossing, and then cools down, and then The laminate was taken off.
  • the imprint temperature is preferably 60 to 120 °C.
  • the embossing temperature is 80-120 ° C; when polypropylene, the embossing temperature is 140-160 ° C; when polystyrene, the embossing temperature is 140-160 ° C;
  • the embossing temperature is 80-120 °C; for polyvinyl chloride and nylon, the embossing temperature is 80-100 °C; for polycarbonate, the embossing temperature is 120-140 °C;
  • the embossing temperature is 140-170 ° C; when polyethylene terephthalate is used, the embossing temperature is 150-220 ° C.
  • the friction generator includes a first electrode layer 11, a first polymer polymer insulating layer 12, and a second electrode layer 13, which are laminated.
  • the first electrode layer 11 and the first polymer polymer insulating layer 12 are composed of 4) a polymer film layer-substrate layer laminate obtained by heating the imprinting step, and the surface of the first polymer polymer insulating layer 12 is provided.
  • the micro/nano concave-convex structure 17 produced by the above-described heat embossing.
  • the material used for the second electrode layer may be a metal or an alloy, wherein the metal may be gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; the alloy may be aluminum Alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, tungsten alloys, molybdenum alloys, niobium alloys or Niobium alloy.
  • the metal may be gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium
  • the alloy may be aluminum Alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys,
  • the polymer film layer-substrate layer laminate obtained by the hot stamping step is cut into a desired size, and then the polymer film layer faces the second electrode layer 13, and the laminate and the layer are The two electrode layers 13 are stacked, and a friction surface is formed between the polymer film layer and the second electrode layer 13.
  • the first electrode layer 11 and the second electrode layer 13 are current and voltage output terminals, for example, lead wires are drawn on the surfaces of the first electrode layer 11 and the second electrode layer 13, respectively.
  • the friction generator includes a first electrode layer 11, a first polymer insulating layer 12, a second polymer insulating layer 14, and a second electrode layer 13, which are stacked.
  • the layer-substrate layer laminate is formed with the surface of the first polymer polymer insulating layer 12 and/or the second polymer polymer insulating layer 14
  • the micro/nano concave-convex structure 17 produced by the above-described heat embossing (the micro/nano concave-convex structure 17 on the second polymer insulating layer 14 is not shown).
  • the first polymer polymer insulating layer and the second polymer polymer insulating layer may not simultaneously adopt the above-described laminated body structure of the present invention, and in this case, the material for the polymer polymer insulating layer of the laminated body structure of the present invention is not used.
  • polyimide film aniline resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose Acetate film, polyethylene adipate film, poly(phenylene terephthalate film), regenerated sponge film, cellulose sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene Butadiene copolymer film, rayon film, polydecyl acrylate film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film, furfural Phenol polycondensate film, neoprene film, butadiene propylene copolymer film, natural rubber film, polyacrylonitrile film, acrylonitrile vinyl chloride And any of a thin film of polyethylene Bisphenol carbonates.
  • first polymer polymer insulating layer or the second polymer polymer insulating layer does not employ the above-described laminated body structure of the present invention, it is required to be insulated in the first polymer polymer insulating layer or the second polymer polymer layer.
  • An electrode layer is disposed on one side of the layer, and the material of the electrode layer may be selected from the group consisting of indium tin oxide, graphene, silver nanowire film, metal or alloy; wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper , titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; alloys are aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium Alloy, niobium alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
  • the polymer film layer-substrate layer laminate obtained by the hot stamping step is cut into a desired size, and then the polymer film layers are disposed opposite to each other, and a friction surface is formed between the two polymer film layers.
  • the first electrode layer 11 and the second electrode layer 13 are current and voltage output terminals.
  • the materials used for the oppositely disposed polymer film layers are different.
  • the friction generator further includes an intermediate film layer 15 on the basis of the structure of FIG. 6, that is, the friction generator includes a first electrode layer 11 stacked, a first polymer insulating layer 12, and an intermediate film.
  • the first electrode layer 11 and the first polymer insulating layer 12 together, and/or the second polymer insulating layer 14 and the second electrode layer 13 are obtained by heating the imprinting step.
  • Layer-substrate layer In the stacked body, the surface of the first polymer insulating layer 12 and/or the second polymer insulating layer 14 is provided with a micro/nano-convex structure (not shown) produced by the above-described heat imprinting. Specific first electrode layer
  • the first polymer polymer insulating layer 12, the second polymer polymer insulating layer 14, and the second electrode layer 13 are made of the same material and arrangement as the friction generator shown in Fig. 6, and will not be described herein.
  • the material used for the intermediate film layer 15 may be selected from the group consisting of a polyimide film, an aniline furfural resin film, a polyacetal film, an ethyl cellulose film, a polyamide film, a melamine furfural film, and a polyethylene glycol succinate film.
  • the material used for the intermediate film layer 15 is different from that of the first polymer polymer insulating layer and the second polymer polymer insulating layer.
  • the polymer film layer-substrate layer laminate obtained by the hot stamping step is cut into a desired size, and then an intermediate film layer 15 is disposed between the two polymer film layers, and the two polymers are The film layers respectively form a frictional surface with the intermediate film layer 15.
  • the first electrode layer 11 and the second electrode layer 13 are current and voltage output terminals.
  • the friction generator further includes an intervening electrode layer 16 on the basis of the structure of FIG. 6, that is, the friction generator includes a first electrode layer 11 stacked, and a first polymer insulating layer.
  • first electrode layer 11 and the first polymer insulating layer 12 together, and/or the second polymer insulating layer 14 and the second electrode layer 13 are obtained by heating the imprinting step.
  • the layer-substrate layer laminate is formed, and the surface of the first polymer polymer insulating layer 12 and/or the second polymer polymer insulating layer 14 has a micro/nano uneven structure (not shown) produced by the above-described heat imprinting.
  • Specific materials and arrangement of the first electrode layer 11, the first polymer insulating layer 12, the second polymer insulating layer 14, and the second electrode layer 13 are the same as those of the friction generator shown in FIG. Let me repeat.
  • the material used for the intervening electrode layer 16 is a metal or an alloy, wherein the metal is gold, silver, platinum, palladium, aluminum, Nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; alloys are aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin Alloy, cadmium alloy, niobium alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
  • the polymer film layer-substrate layer laminate obtained by the hot stamping step is cut into a desired size, and then an intervening electrode layer 16 is disposed between the two polymer film layers, and the two polymers are The film layers respectively form a frictional surface with the intervening electrode layer 16.
  • the first electrode layer 11 and the second electrode layer 13 are one output of the friction generator voltage and current; the intervening electrode layer 16 is the other output of the friction generator voltage and current.
  • the friction generator of the above structure is packaged to obtain a finished friction generator.
  • the friction generator is packaged with a plastic film to obtain a finished friction generator.
  • the method comprises: 1) Ingredient: preparing a slurry of a polymer material.
  • the polymer film layer formed in the subsequent process of the present invention is a first polymer polymer insulating layer and/or a second polymer polymer insulating layer and/or an intermediate film layer used as a friction generator.
  • the electrostatic film is generated between the polymer film layer and the electrode layer or the polymer film layer to generate an electrostatic charge, thereby causing a potential difference between the electrodes. Therefore, the film layer formed by the process of the present invention is also required to have the property of triboelectric charging.
  • a polymer material that can be used is a polydithiosiloxane.
  • the polydithiosiloxane is uniformly mixed with a curing agent, dissolved in an organic solvent, and uniformly stirred to form a slurry.
  • the organic solvent is n-hexane, cyclohexane, toluene, diphenylbenzene, ethyl acetate. Or butyl acetate, the preferred mass ratio of solid (mixture) to organic solvent in the slurry is 1:20.
  • heating can be accompanied by agitation.
  • the curing agent is a vulcanizing agent, for example, commercially available Dow Corning 184, in which the weight ratio of the polymer material to the curing agent is 5:1 to 20:1, preferably 10:1.
  • the curing temperature is 60-120 °C.
  • the polymer material which can be used may also be a phenol resin, an epoxy resin or a melamine furfural resin. These polymer materials are liquid in nature, and do not require the use of an organic solvent. Only the curing agent is added to the polymer material.
  • the weight ratio of the polymer material to the curing agent is 5:1 to 20:1, preferably 10:
  • phenolic resins can be used in the present invention, including phenol resins and furfural resins. Skill It is easy for the field technician to select a suitable curing agent based on the selected polymer material.
  • the curing agent may be an alicyclic polyamine, a tertiary amine, an imidazole, and a boron trifluoride complex.
  • the curing temperature is 60-120 °C.
  • Epoxy resins (including glycidyl ethers, glycidyl esters, glycidylamines, aliphatic epoxy compounds, alicyclic epoxy compounds) can also be used in the present invention.
  • the curing agent is a polythiol type, a polyisocyanate type, an aliphatic polyamine, an alicyclic polyamine, a low molecular polyamide, a modified aromatic amine, an alicyclic polyamine, a tertiary amine, an imidazole, and a boron trifluoride system.
  • Compound, etc., curing temperature is 50-100 °C.
  • the polymer material may also be a melamine acetal resin, and the curing agent is an ASA curing agent, and the curing temperature is 120-150 °C.
  • the polymer material that can be used may also be polyethylene, polypropylene, polystyrene, decyl acrylate, polyvinyl chloride, nylon, polycarbonate, polyurethane or polyethylene terephthalate;
  • the polymer material is dissolved in an organic solvent and is formulated into a slurry.
  • the organic solvent is 2-methoxyethanol, chloroform, 1,1,2-trichloroethylene, 1,2-dimethoxyethane, 1 , 2, 3 , 4 - tetrahydronaphthalene, 2-ethoxyethanol, sulfolane, pyrimidine, decylamide, n-hexane, chlorobenzene, dioxane, acetonitrile, dichlorodecane, vinyl ethylene Alcohol, N, N-dimercaptoamide, toluene, N, N-dimercaptoacetamide, mercaptocyclohexane, 1,2-dichloroethene, dinonylbenzene, decyl alcohol, cyclohexane Or N-decylpyrrolidone.
  • the slurry is preferably coated with a coater.
  • the coater includes a frame (not shown), a blade 1 disposed on the frame, a coating roller 2, a back roller 3, and a slurry container 4.
  • the coating roller 2 and the back roller 3 are arranged in parallel in the same row and rotate in the same direction, and the slurry container 4 is connected to the coating roller 2; the blade 1 is disposed above the coating roller 2, and remains on the surface of the coating roller There is a gap; the substrate 5 runs around the back roller 3.
  • the coating roller 2 is rotated, the slurry 6 is transported from the slurry container 4 to the coating roller 2, and then the back roller 3 is rotated to transport the slurry 6 onto the substrate 5 to achieve uniform coating.
  • the coater is commercially available, for example, a TB-800 type silicone oil coater.
  • the amount of the slurry 6 transported from the slurry container 4 to the coating roller 2 can be adjusted.
  • the coating roller rotation speed is 10-120 m/min
  • the back roller rotation speed is 10-120 m/min
  • the gap between the scraper and the coating roller is about 150 ⁇ m, so that the subsequent steps are performed.
  • the thickness of the polymer film layer obtained after that is 50 ⁇ m or less.
  • the substrate with the micro-nano concave-convex structure is as shown in Figs. 10 and 11, and a flexible metal material (for example, an A1 sheet or a Cu sheet, preferably a 100 ⁇ m thick A1 sheet or a Cu sheet) may be used, and micro-nano is processed on one side surface thereof.
  • the micro/nano relief structure may be a square protrusion, a strip protrusion, and a quadrangular pyramid protrusion.
  • the substrate coated with the slurry is subjected to heat treatment so that the polymer material has a kinematic viscosity at 25 ° C of 100 CST or more, and is cured to form a polymer film layer-base material layer laminate.
  • curing temperature is 60-120 ° C; phenol resin, curing temperature is 60-120 ° C; epoxy resin, curing temperature is 50-100 ° C; melamine furfural resin , curing temperature is 120-150
  • the polymer material used is polyethylene, polypropylene, polystyrene, polydecyl methacrylate, polyvinyl chloride, nylon, polycarbonate, polyurethane or polyethylene terephthalate, dry curing
  • the temperature is 60-120 ° C and the drying time is 2-4 hours.
  • the separating apparatus includes a separating roller 9A and a collecting roller 9B, and the separating of the polymer film layer and the substrate layer by the separation roller 9A, and then rotating by the collecting roller 9B, the separated polymer The film layer is collected onto the collecting roller 9B.
  • the separated polymer film layer is a polymer film layer having a micro/nano uneven structure.
  • the micro/nano-convex structure on the surface of the polymer film layer is a nano-concave structure having a protrusion height of 50 nm to 300 nm.
  • the micro-nano-convex structure may be a square protrusion, a strip-shaped protrusion, and a quadrangular pyramid-shaped protrusion, as needed. Accordingly, in order to obtain a polymer film layer having the above-described micro/nano-convex structure, the substrate 5 has a corresponding nano-concave structure.
  • Fig. 12 which also uses a plurality of conveying rollers 9C, The feed roller 9C, the substrate 5 is recycled.
  • the substrate 5 functions as a conveyor belt and a mold.
  • the friction generator obtained in the assembly step has the same structure as in Figs. 5 to 8.
  • the difference is that the polymer film layer without the electrode layer is obtained in the embodiment. Therefore, it is necessary to provide an electrode layer on the surface of the polymer film layer without the micro/nano uneven structure, for example, using a magnetron sputtering metal material or directly pasting. The method of metal foil.
  • the friction generator includes a first electrode layer 11, a first polymer polymer insulating layer 12, and a second electrode layer 13, which are laminated.
  • the first polymer insulating layer 12 is composed of 4) a polymer film layer obtained by the separation step.
  • the surface of the first polymer insulating layer 12 is provided with a micro/nano concave-convex structure 17 produced by the above-described processing.
  • the material used for the first electrode layer may be indium tin oxide, graphene, silver nanowire film, metal or alloy, wherein the metal may be gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron. , manganese, phase, tungsten or vanadium; alloys may be aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys , gallium alloy, tungsten alloy, molybdenum alloy, milling alloy or niobium alloy.
  • the material used for the second electrode layer may be a metal or an alloy, wherein the metal may be gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; the alloy may be aluminum Alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, tungsten alloys, molybdenum alloys, niobium alloys or Niobium alloy.
  • the metal may be gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium
  • the alloy may be aluminum Alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys,
  • the first electrode layer 11 is disposed on the surface of the polymer film obtained by the separation step without the micro-nano uneven structure, and then cut into a desired size, and laminated according to the polymer film layer facing the second electrode layer 13. It is provided that a friction surface is formed between the polymer film layer and the second electrode layer 13.
  • the first electrode layer 11 and the second electrode layer 13 are current and voltage output terminals, for example, lead wires are drawn on the surfaces of the first electrode layer 11 and the second electrode layer 13, respectively.
  • the friction generator includes a first electrode layer 11, a first polymer insulating layer 12, a second polymer insulating layer 14, and a second electrode layer 13, which are stacked.
  • the first polymer insulating layer 12 and/or the second polymer insulating layer 14 are composed of 4) a polymer film layer obtained in the separation step.
  • First polymer insulating layer 12 and/or second polymer insulation The surface of the layer 14 is provided with a micro/nano concave-convex structure 17 produced by the above-described processing technique (the micro/nano concave-convex structure 17 on the second polymer insulating layer 14 is not shown).
  • the first polymer polymer insulating layer and the second polymer polymer insulating layer may not simultaneously adopt the polymer film layer of the present invention as described above, and the polymer polymer insulating layer of the polymer film layer of the present invention is not used at this time.
  • the material used may be selected from the group consisting of a polyimide film, an aniline resin film, a polyacetal film, an ethyl cellulose film, a polyamide film, a melamine furfural film, a polyethylene glycol succinate film, a cellulose film, Cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate film), regenerated sponge film, cellulose sponge film, polyurethane elastomer film, styrene propylene copolymer film, Styrene butadiene copolymer film, rayon film, polydecyl methacrylate film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film, Furfural phenol polycondensate film, neoprene film, butadiene propylene copolymer film, natural rubber film, polyacrylonitrile film, acrylonitrile chloride Any one
  • the material used for the electrode layer may be selected from the group consisting of indium tin oxide, graphene, silver nanowire film, metal or alloy; wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, Manganese, phase, tungsten or vanadium; alloys are aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium Alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
  • the first electrode layer 11 or the second electrode layer 13 is disposed on the surface of the polymer film obtained by the separation step without the micro-nano-convex structure, and is cut into a desired size, and then the polymer film layer is relatively disposed. , a friction surface is formed between the two polymer film layers.
  • the first electrode layer 11 and the second electrode layer 13 are current and voltage output terminals.
  • the materials used for the oppositely disposed polymer film layers are different.
  • the friction generator further includes an intermediate film layer 15 on the basis of the structure of FIG. 6, that is, the friction generator includes a first electrode layer 11 stacked, a first polymer insulating layer 12, and an intermediate film.
  • the first polymer polymer insulating layer 12 and/or the second polymer polymer insulating layer 14 and/or the intermediate film layer 15 are composed of 4) a polymer film layer obtained by the separating step, and the first polymer polymer insulating layer 12 And / or the first
  • the surface of the second high molecular polymer insulating layer 14 and/or the intermediate film layer 15 is provided with a micro/nano concave-convex structure (not shown) produced by the above-described processing.
  • Specific materials and arrangement of the first electrode layer 11, the first polymer insulating layer 12, the second polymer insulating layer 14, and the second electrode layer 13 are as shown in FIG. 6 obtained by the process shown in FIG.
  • the friction generator is the same and will not be described here.
  • the intermediate film layer 15 may not simultaneously use the polymer film layer of the present invention as described above, and the material for the intermediate film layer 15 not using the polymer film layer of the present invention may be selected from the group consisting of a polyimide film and an aniline furfural resin.
  • the first electrode layer 11 or the second electrode layer 13 is disposed on the surface of the polymer film obtained by the separation step without the micro-nano-convex structure, and is cut into a desired size, and then in two polymer films.
  • An intermediate film layer 15 is disposed between the layers, and the two polymer film layers respectively form a friction surface with the intermediate film layer 15.
  • the first electrode layer 11 and the second electrode layer 13 are current and voltage output terminals.
  • the friction generator further includes an intervening electrode layer 16 on the basis of the structure of FIG. 6, that is, the friction generator includes a first electrode layer 11 stacked, a first polymer insulating layer 12, and an intervening electrode.
  • the first polymer insulating layer 12 and/or the second polymer insulating layer 14 are composed of 4) a polymer film layer obtained by a heating imprinting step, the first polymer insulating layer 12 and/or the second highest
  • the surface of the molecular polymer insulating layer 14 has a micro/nano concave-convex structure (not shown) produced by the above-described processing.
  • first electrode layer 11 Specific materials and arrangement of the first electrode layer 11, the first polymer insulating layer 12, the second polymer insulating layer 14, and the second electrode layer 13 are as shown in FIG. 6 obtained by the process shown in FIG. Friction
  • the generators are the same and will not be described here.
  • the material used for the intervening electrode layer 16 is a metal or an alloy, wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; the alloy is an aluminum alloy, titanium Alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, tungsten alloys, molybdenum alloys, niobium alloys or niobium alloys.
  • the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium
  • the alloy is an aluminum alloy, titanium Alloys, magnesium alloys, niobium alloys, copper alloys, alloys,
  • the first electrode layer 11 or the second electrode layer 13 is disposed on the surface of the polymer film obtained by the separation step without the micro-nano-convex structure, and is cut into a desired size, and then in two polymer films.
  • An intervening electrode layer 16 is disposed between the layers, and the two polymer film layers respectively form a frictional surface with the intervening electrode layer 16.
  • the first electrode layer 11 and the second electrode layer 13 are one output of the friction generator voltage and current; the intervening electrode layer 16 is the other output of the friction generator voltage and current.
  • the friction generator of the above structure is packaged to obtain a finished friction generator.
  • the friction generator is packaged with a plastic film to obtain a finished friction generator.
  • the friction generator of the present embodiment has a size of 3 cm x 3 cm and a total thickness of about 2.5 mm.
  • the friction generator first electrode layer 11, the first polymer insulating layer 12, and the second electrode layer 13, and the first polymer polymer insulating layer 12 has a micro/nano concave-convex structure 17 on its surface.
  • the first electrode layer 11 and the second electrode layer 13 serve as outputs of the voltage and current of the friction generator.
  • the preparation method of the friction generator will be described in detail below.
  • Coating was carried out in the manner shown in Fig. 2, and the slurry was uniformly coated on 100 um aluminized PET.
  • the coating roller speed is 50 m/min
  • the back roller speed is 50 m/min
  • the gap between the scraper and the coated roller is 150 um.
  • Heat embossing Heating and embossing are performed as shown in Fig. 3. First, the polymer film layer-substrate layer laminate obtained by the 3) drying and curing step is heated by a heating device at 80 ° C to be softened, and then the softened laminate is transferred to the platen roller by a conveyor belt. It passes between the gaps of the two embossing rolls, performs the embossing process, and then lowers the temperature, and then removes the laminated body. The thickness of the polymer film layer in the obtained laminated body is 50 um, and the surface of the micro-nano convex structure is convex. The height is 150 nm.
  • the friction generator sample 1# exhibits a typical open circuit characteristic in the measurement of I-V (current-voltage).
  • the stepping motor with periodic oscillation (0.33 Hz and 0.13% deformation) caused the friction generator sample 1# to undergo periodic bending and release, and the maximum output voltage and current signal of the friction generator sample 1# reached 100V and 6-, respectively. 8 ⁇ .
  • Example 2
  • the friction generator of the present embodiment has a size of 3 cm x 3 cm and a total thickness of about 2.5 mm.
  • the friction generator first electrode layer 11, the first polymer insulating layer 12, and the second electrode layer 13, and the first polymer polymer insulating layer 12 has a micro/nano concave-convex structure 17 on its surface.
  • the first electrode layer 11 and the second electrode layer 13 serve as outputs of the voltage and current of the friction generator.
  • the preparation method of the friction generator will be described in detail below. 1) Ingredients: A polymer material linear phenol resin (polyphenol condensation with phenol) and a curing agent triethanolamine were uniformly mixed at a weight ratio of 10:1 to obtain a slurry.
  • Coating was carried out in the manner shown in Fig. 2, and the slurry was uniformly coated on 100 um aluminized PET.
  • the coating roller speed is 50 m/min
  • the back roller speed is 50 m/min
  • the gap between the scraper and the coated roller is 150 um.
  • Heat embossing Heating and embossing are performed as shown in Fig. 3. First, the polymer film layer-substrate layer laminate obtained by the 3) drying and curing step is heated by a heating device at 80 ° C to be softened, and then the softened laminate is transferred to the platen roller by a conveyor belt. It passes between the gaps of the two embossing rolls, performs the embossing process, and then lowers the temperature, and then removes the laminated body. The thickness of the polymer film layer in the obtained laminated body is 50 um, and the surface of the micro-nano convex structure is convex. The height is 150 nm.
  • the friction generator sample 2# exhibits a typical open circuit characteristic in the measurement of I-V (current-voltage).
  • a stepper motor with periodic oscillations (0.33 Hz and 0.13% deformation) caused the bending and release of the friction generator sample 2# cycle, and the maximum output voltage and current signals of the friction generator sample 2# reached 60 V and 4 ⁇ , respectively.
  • Example 3
  • the friction generator of the present embodiment has a size of 3 cm x 3 cm and a total thickness of about 2.5 mm.
  • the friction generator first electrode layer 11, the first polymer insulating layer 12, and the second electrode layer 13, and the first polymer polymer insulating layer 12 has a micro/nano concave-convex structure 17 on its surface.
  • the first electrode layer 11 and the second electrode layer 13 serve as outputs of the voltage and current of the friction generator. Detailed below A method of preparing the friction generator will be described.
  • Coating was carried out in the manner shown in Fig. 2, and the slurry was uniformly coated on 100 um aluminized PET.
  • the coating roller speed is 50 m/min
  • the back roller speed is 50 m/min
  • the gap between the scraper and the coated roller is 150 um.
  • Heat embossing Heating and embossing are performed as shown in Fig. 3. First, the polymer film layer-substrate layer laminate obtained by the 3) drying and curing step is subjected to heat treatment at 80 ° C to be softened by heat treatment, and then the softened laminate is transferred to the platen roller by a conveyor belt. It passes between the gaps of the two embossing rolls, performs the embossing process, and then lowers the temperature, and then removes the laminated body. The thickness of the polymer film layer in the obtained laminated body is 50 um, and the surface of the micro-nano convex structure is convex. The height is 150 nm.
  • the friction generator sample 3# exhibits a typical open circuit characteristic in the measurement of I-V (current-voltage).
  • the stepping motor with periodic oscillation (0.33 Hz and 0.13% deformation) causes the friction generator sample 3# to undergo periodic bending and release, and the maximum output voltage and current signal of the friction generator sample 3# reached 60V and 3-, respectively. 4 ⁇ .
  • Example 4
  • the friction generator of the present embodiment has a size of 3 cm x 3 cm and a total thickness of about 2.5 mm.
  • the friction generator first electrode layer 11, the first polymer insulating layer 12, and the second electrode layer 13, and the first polymer polymer insulating layer 12 has a micro/nano concave-convex structure 17 on its surface.
  • First electricity The pole layer 11 and the second electrode layer 13 serve as outputs of the voltage and current of the friction generator. The preparation method of the friction generator will be described in detail below.
  • Coating was carried out in the manner shown in Fig. 2, and the slurry was uniformly coated on 100 um aluminized PET.
  • the coating roller speed is 50 m/min
  • the back roller speed is 50 m/min
  • the gap between the scraper and the coated roller is 150 um.
  • Heat embossing Heating and embossing are performed as shown in Fig. 3. First, the polymer film layer-substrate layer laminate obtained by the 3) drying and curing step is subjected to heat treatment at 100 ° C to maintain softening, and then the softened laminate is transferred to the platen roller by a conveyor belt. It passes between the gaps of the two embossing rolls, performs the embossing process, and then lowers the temperature, and then removes the laminated body. The thickness of the polymer film layer in the obtained laminated body is 50 um, and the surface of the micro-nano convex structure is convex. The height is 150 nm.
  • the friction generator sample 4# exhibits a typical open circuit characteristic in the measurement of I-V (current-voltage).
  • the stepping motor with periodic oscillation (0.33 Hz and 0.13% deformation) causes the friction generator sample 4# to undergo periodic bending and release, and the maximum output voltage and current signal of the friction generator sample 4# reached 50V and 2-, respectively. 4 ⁇ .
  • Example 5
  • the friction generator of the present embodiment has a size of 3 cm x 3 cm and a total thickness of about 2.5 mm.
  • the friction generator first electrode layer 11, the first polymer insulating layer 12, and the second The electrode layer 13 and the first polymer polymer insulating layer 12 have a micro/nano concave-convex structure 17 on their surfaces.
  • the first electrode layer 11 and the second electrode layer 13 serve as outputs of the voltage and current of the friction generator.
  • the preparation method of the friction generator will be described in detail below.
  • Coating was carried out in the manner shown in Fig. 2, and the slurry was uniformly coated on 100 um aluminized PET.
  • the coating roller speed is 50 m/min
  • the back roller speed is 50 m/min
  • the gap between the scraper and the coated roller is 150 um.
  • Heat embossing Heating and embossing are performed as shown in Fig. 3. First, the polymer film layer-substrate layer laminate obtained by the 3) drying and curing step is subjected to heat treatment to soften at 100 ° C by a heating device, and then the softened laminate is transferred to the platen roller by a conveyor belt. The film is passed between the gaps of the two embossing rolls, the embossing process is performed, and then the temperature is lowered, and the laminate is removed.
  • the thickness of the polymer film layer in the obtained laminate is 50 um, and the micro-nano concave-convex structure is provided on the surface thereof.
  • the height of the bump is 150 nm.
  • the friction generator sample 5# exhibits a typical open circuit characteristic in the measurement of I-V (current-voltage).
  • the stepping motor with periodic oscillation (0.33 Hz and 0.13% deformation) causes the friction generator sample 5# to undergo periodic bending and release, and the maximum output voltage and current signal of the friction generator sample 5# reached 50V and 2-, respectively. 4 ⁇ .
  • Example 6
  • the friction generator of the present embodiment has a size of 3 cm x 3 cm and a total thickness of about 2.5 mm. about.
  • the friction generator first electrode layer 11, the first polymer insulating layer 12, and the second electrode layer 13, and the first polymer polymer insulating layer 12 has a micro/nano concave-convex structure 17 on its surface.
  • the first electrode layer 11 and the second electrode layer 13 serve as outputs of the voltage and current of the friction generator.
  • the preparation method of the friction generator will be described in detail below.
  • Coating was carried out in the manner shown in Fig. 2, and the slurry was uniformly coated on an aluminum foil having a micro-nano convex structure.
  • the coating roller speed is 50 m/min
  • the back roller speed is 50 m/min
  • the gap between the scraper and the coating roller is 150 ⁇ m.
  • Separation was carried out in the manner shown in Fig. 12.
  • the high molecular weight film layer and the substrate layer are separated by the rotation of the separation roller 9A, and then the separated polymer film layer is collected by the collecting roller 9B to be collected onto the collecting roller 9B.
  • the substrate 5 is recycled by the transfer roller 9C.
  • the polymer film obtained by the separation step is a surface-attached aluminum foil to which the micro-nano uneven structure is not provided as the first electrode layer 11, and then cut into a desired size.
  • the polymer film layer is laminated on the second electrode layer 13 to form a lead wire on the surfaces of the first electrode layer 11 and the second electrode layer 13, respectively, and the friction generator is packaged by a plastic film to obtain a friction generator sample 6#.
  • the friction generator sample 6# exhibits a typical open circuit characteristic in the measurement of I-V (current-voltage).
  • the stepping motor with periodic oscillation (0.33 Hz and 0.13% deformation) causes the friction generator sample 6# to undergo periodic bending and release, and the maximum output voltage and current signal of the friction generator sample 6# reached 100V and 6-, respectively. 8 ⁇ .
  • the friction generator can be conveniently manufactured by using the friction generator manufacturing method provided by the invention, and the manufacturing process is simple, and the cost is low; in addition, the friction generator manufactured has various structures, which can meet various requirements, and the application range wide.

Landscapes

  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

摩擦发电机的制造方法及摩擦发电机。该方法包括:1)配料:准备高分子材料的浆料;2)涂布:将所述浆料均匀地涂布在平板基材上;3)干燥固化:对涂布有浆料的基材进行干燥固化处理,获得高分子薄膜层-基材层层叠体;4)加热压印:对3)干燥固化步骤所得高分子薄膜层-基材层层叠体进行加热以及凹凸压印处理,获得带有微纳凹凸结构的高分子薄膜层-基材层层叠体;以及5)组装:根据4)加热压印步骤得到的高分子薄膜层-基材层层叠体制成摩擦发电机。本发明提供的摩擦发电机的制造方法可以方便地制造出摩擦发电机,且制造过程简单,成本低。

Description

摩擦发电机的制造方法及摩擦发电机
技术领域
本发明涉及纳米技术领域, 尤其涉及一种摩擦发电机的制造方法及制得 的摩擦发电机。 背景技术
采用纳米技术的能量收集和转换装置, 由于其独特的自发电和自驱动性 质, 能在制造和驱动自供电纳米器件和纳米系统装置中起到关键性的作用。
通常来讲, 发电机具有生成电荷, 将正负电荷分隔产生电势差, 并由电 势差驱动自由电子移动的作用, 它以电磁、 压电、 热电、 甚至静电效应为基 础。 在我们日常生活中, 摩擦电和静电现象是一种非常普遍的现象, 由于很 难被收集和利用, 往往是被人们所忽略的一种能源形式。 如果能够通过一种 新的方法收集摩擦产生的电能或者利用该方法将日常生活中不规则的动能转 换成能够利用的电能, 将对人们的日常生活产生重要影响。
截止到目前为止,微型静电发电机已被研制成功,并且在微机电( MEMS ) 领域得到广泛应用。 但是, 微型静电发电机的设计主要以无机硅材料为基础, 并且器件的制造需要复杂的工艺和精密的操作。 整个装置的制备需要大型的 仪器设备和特殊的生产条件, 造价成本过高, 不利于发电机的商业化和曰常 应用。
因此, 如何制造摩擦发电机, 尤其是如何以筒单的工艺制造出摩擦发电 机是目前一个急需解决的技术问题。 发明内容
本发明解决的技术问题是针对现有技术的缺陷, 提出一种摩擦发电机的 制造方法, 以实现以筒单的工艺制造出摩擦发电机。
根据本发明的一个方面, 本发明提供了一种摩擦发电机的制造方法, 包 括:
1 ) 配料: 准备高分子材料的浆料;
2 )涂布: 将所述浆料均勾地涂布在平板基材上;
3 )干燥固化: 对涂布有浆料的基材进行干燥固化处理, 获得高分子薄膜 层-基材层层叠体;
4 )加热压印: 对 3 )干燥固化步骤所得高分子薄膜层 -基材层层叠体进行 加热以及凹凸压印处理, 获得带有微纳凹凸结构的高分子薄膜层 -基材层层叠 体; 以及
5 )组装: 根据 4 )加热压印步骤得到的高分子薄膜层 -基材层层叠体制成 摩擦发电机, 所述摩擦发电机包括层叠设置的第一电极层, 第一高分子聚合 物绝缘层, 和第二电极层; 或者所述摩擦发电机包括层叠设置的第一电极层, 第一高分子聚合物绝缘层, 第二高分子聚合物绝缘层和第二电极层; 或者所 述摩擦发电机包括层叠设置的第一电极层, 第一高分子聚合物绝缘层, 居间 电极层, 第二高分子聚合物绝缘层和第二电极层; 或者所述摩擦发电机包括 层叠设置的第一电极层, 第一高分子聚合物绝缘层, 居间薄膜层, 第二高分 子聚合物绝缘层和第二电极层;第一电极层和第一高分子聚合物绝缘层一起, 和 /或第二电极层和第二高分子聚合物绝缘层一起, 由 4 )加热压印步骤所得 高分子薄膜层-基材层层叠体构成。
前述的方法, 1 )配料步骤中, 所述高分子材料是聚二曱基硅氧烷; 将高 分子材料与固化剂混合均匀后溶于有机溶剂中, 配成浆料, 所述有机溶剂是 正己烷、 环己烷、 曱苯、 二曱苯、 乙酸乙酯或乙酸丁酯。 优选的, 浆料中固 体(混合物) 与有机溶剂的质量比为 1 : 20。 所用固化剂为硫化剂, 例如市 购道康宁 184。 固化温度为 60-120 °C。
前述的方法, 1 )配料步骤中, 所述高分子材料是酚醛树脂, 环氧树脂或 三聚氰氨曱醛树脂, 将固化剂加入到所述高分子材料中, 配成浆料。 这些高 分子材料本身是液态的, 不需要使用有机溶剂, 仅将固化剂添加到高分子材 料中即可。
本发明摩擦发电机中高分子聚合物绝缘层与电极层之间, 或者高分子聚 合物绝缘层之间相互摩擦产生静电荷, 从而导致电极之间出现电势差。 因此, 经过本发明工艺处理后形成的高分子薄膜层, 也需要能够具备摩擦起电的性 能。 例如, 常规酚 树脂均可以应用于本发明, 包括苯酚 树脂、 曱醛树脂。 本领域技术人员容易根据所选高分子材料选择适用的固化剂。 固化剂可为脂 环族多胺、 叔胺、 咪唑类以及三氟化硼络合物。 固化温度为 60-120 °C。
环氧树脂 (包括缩水甘油醚类、 缩水甘油酯类、 缩水甘油胺类、 脂肪族 环氧化合物、 脂环族环氧化合物)也可以应用于本发明。 固化剂为聚硫醇型、 多异氰酸酯型、 脂肪族多胺、 脂环族多胺、 低分子聚酰胺、 改性芳胺、 脂环 族多胺、 叔胺、 咪唑类以及三氟化硼络合物等, 固化温度为 50-100 °C。
高分子材料还可以是三聚氰氨曱醛树脂, 固化剂为 ASA固化剂, 固化温 度为 120-150°C。
前述的方法, 3 )干燥固化步骤中, 对涂布有浆料的基材进行加热处理, 使得高分子材料 25 °C运动粘度为 80-99CST, 固化形成高分子薄膜层-基材层 层叠体。
前述的方法, 1 )配料步骤中, 所述高分子材料是聚乙烯、 聚丙烯、 聚苯 乙烯、 聚曱基丙烯酸曱酯、 聚氯乙烯、 尼龙、 聚碳酸酯、 聚氨酯或聚对苯二 曱酸乙二醇酯; 将高分子材料溶于有机溶剂中, 配成浆料, 所述有机溶剂是 2—曱氧基乙醇、 氯仿、 1 , 1 , 2 —三氯乙烯、 1 , 2 —二曱氧基乙烷、 1 , 2, 3 , 4 -四氢化萘、 2 -乙氧基乙醇、 环丁砜、 嘧啶、 曱酰胺、 正己烷、 氯苯、 二 氧杂环己烷、 乙腈、 二氯曱烷、 乙烯基乙二醇、 N, N -二曱基曱酰胺、 曱苯、 N, N -二曱基乙酰胺、 曱基环己烷、 1 , 2 -二氯乙婦、 二曱苯、 曱醇、 环己 烷或 N -曱基吡咯烷酮。
前述的方法, 2 )涂布步骤中, 采用涂布机对浆料进行涂布。
所述涂布机包括机架, 设置于机架上的刮刀, 涂布辊轮, 背辊轮以及浆 料容纳器; 其中, 涂布辊轮和背辊轮同排平行设置且同向转动, 浆料容纳器 与涂布辊轮连接; 刮刀设于涂布辊轮上方, 与涂布辊轮表面留有间隙; 基材 绕背辊轮运行。 该涂布机可以市购得到, 例如 TB-800型硅油涂布机。
前述的方法, 2 )涂布步骤中, 通过调整涂布机的刮刀与涂布机的涂布辊 轮的间隙, 调节浆料从浆料容纳器运送到涂布辊轮的量。
前述的方法, 2 )涂布步骤中, 涂布机的涂布辊轮转速是 10-120m/min, 涂布机的背辊轮转速是 10-120m/min。
前述的方法, 4 )加热压印步骤中, 采用压印机进行凹凸压印处理, 所述 压印机的压印辊表面带有微纳凹凸结构。
前述的方法, 4 )加热压印步骤中, 进行凹凸压印处理前, 采用加热装置 在 60-220°C , 将 3 )干燥固化步骤所得的高分子薄膜层-基材层层叠体进行加 热处理。
前述的方法, 4 )加热压印步骤中,压印辊表面具有 60-220°C的温度, 对 3 )干燥固化步骤所得的高分子薄膜层-基材层层叠体同时进行加热和凹凸压 印处理。
当高分子材料是聚二曱基硅氧烷, 酚 树脂, 环氧树脂, 三聚氰氨曱醛 树脂时, 优选压印温度为 60-120°C。
当高分子材料是聚乙烯时, 压印温度为 80-120°C ; 聚丙烯时, 压印温度 为 140-160°C ; 聚苯乙烯时, 压印温度为 140-160°C ; 聚曱基丙烯酸曱酯时, 压印温度为 80-120 °C ; 聚氯乙烯和尼龙时, 压印温度为 80-100 °C ; 聚碳酸酯 时, 压印温度为 120-140°C ; 聚氨酯时, 压印温度为 140-170°C ; 聚对苯二曱 酸乙二醇酯时, 压印温度为 150-220°C。
根据本发明的另一个方面, 本发明提供了一种摩擦发电机, 由上述任一 种方法制成。
根据本发明的又一个方面, 本发明提供了一种摩擦发电机的制造方法, 包括:
1 ) 配料: 准备高分子材料浆料;
2 )涂布: 将所述浆料均勾地涂布在带有微纳 凸结构的基材上; 3 )干燥固化: 对涂布有浆料的基材进行干燥固化处理, 获得高分子薄膜 层-基材层层叠体;
4 )分离: 将 3 )干燥固化步骤所得高分子薄膜层-基材层层叠体的高分子 薄膜层和基材层进行分离, 得到带有微纳凹凸结构的高分子薄膜层; 以及 5 )组装: 根据 4 )分离步骤得到的高分子薄膜层制成摩擦发电机, 所述 摩擦发电机包括层叠设置的第一电极层, 第一高分子聚合物绝缘层, 和第二 电极层; 或者所述摩擦发电机包括层叠设置的第一电极层, 第一高分子聚合 物绝缘层, 第二高分子聚合物绝缘层和第二电极层; 或者所述摩擦发电机包 括层叠设置的第一电极层, 第一高分子聚合物绝缘层, 居间电极层, 第二高 分子聚合物绝缘层和第二电极层; 或者所述摩擦发电机包括层叠设置的第一 电极层, 第一高分子聚合物绝缘层, 居间薄膜层, 第二高分子聚合物绝缘层 和第二电极层; 第一高分子聚合物绝缘层, 和 /或第二高分子聚合物绝缘层, 和 /或居间薄膜层由 4 )分离步骤所得高分子薄膜层构成。
前述的方法, 1 )配料步骤中, 所述高分子材料是聚二曱基硅氧烷; 将高 分子材料与固化剂混合均勾后溶于有机溶剂中, 配成浆料, 所述有机溶剂是 正己烷、 环己烷、 曱苯、 二曱苯、 乙酸乙酯或乙酸丁酯。 优选的浆料中固体
(混合物)与有机溶剂的质量比为 1 : 20。 所用固化剂为硫化剂, 例如市购 道康宁 184。 固化温度为 60- 120 °C。
前述的方法, 1 ) 配料步骤中, 所述高分子材料是酚 树脂, 环氧树脂, 或三聚氰氨曱醛树脂, 将固化剂加入到所述高分子材料中, 配成浆料。 这些 高分子材料是液态的, 不需要使用有机溶剂, 仅将固化剂添加到高分子材料 中即可。
本发明形成的高分子薄膜层是用作摩擦发电机的第一高分子聚合物绝缘 层和 /或第二高分子聚合物绝缘层和 /或居间薄膜层, 也就是说, 本发明形成的 高分子薄膜层可以用作第一高分子聚合物绝缘层, 第二高分子聚合物绝缘层 和居间薄膜层中的任意一层或多层。 举例而言, 仅用作第一高分子聚合物绝 缘层, 第二高分子聚合物绝缘层和居间薄膜层中的任意一层; 同时用作第一 高分子聚合物绝缘层和第二高分子聚合物绝缘层, 或同时用作第一高分子聚 合物绝缘层和居间薄膜层; 也有可能同时用作第一高分子聚合物绝缘层, 第 二高分子聚合物绝缘层和居间薄膜层。 高分子聚合物绝缘层与电极层之间, 或者高分子聚合物绝缘层之间相互摩擦产生静电荷, 从而导致电极之间出现 电势差。 因此, 经过本发明工艺处理后, 形成的高分子薄膜层, 也需要能够 摩擦起电的性能。 例如, 常规酚 树脂均可以应用于本发明, 包括苯酚醛树 月旨、 曱醛树脂。 本领域技术人员容易根据所选高分子材料选择适用的固化剂。 固化剂可为脂环族多胺、 叔胺、 咪唑类以及三氟化硼络合物。 固化温度为
60-120°C。
环氧树脂 (包括缩水甘油醚类、 缩水甘油酯类、 缩水甘油胺类、 脂肪族 环氧化合物、 脂环族环氧化合物)也可以应用于本发明。 固化剂为聚硫醇型、 多异氰酸酯型、 脂肪族多胺、 脂环族多胺、 低分子聚酰胺、 改性芳胺、 脂环 族多胺、 叔胺、 咪唑类以及三氟化硼络合物等, 固化温度为 50-100 °C。
高分子材料还可以是三聚氰氨曱醛树脂, 固化剂为 ASA固化剂, 固化温 度为 120-150°C。
前述的方法, 3 )干燥固化步骤中, 对涂布有浆料的基材进行加热处理, 使得高分子材料 25 °C运动粘度为 100CST以上, 固化形成高分子薄膜层 -基材 层层叠体。
前述的方法, 1 )配料步骤中, 所述高分子材料是聚乙烯、 聚丙烯、 聚苯 乙烯、 聚曱基丙烯酸曱酯、 聚氯乙烯、 尼龙、 聚碳酸酯、 聚氨酯或聚对苯二 曱酸乙二醇酯; 将高分子材料溶于有机溶剂中, 配成浆料, 所述有机溶剂是 2—曱氧基乙醇、 氯仿、 1 , 1 , 2 —三氯乙烯、 1 , 2 —二曱氧基乙烷、 1 , 2, 3 , 4 -四氢化萘、 2 -乙氧基乙醇、 环丁砜、 嘧啶、 曱酰胺、 正己烷、 氯苯、 二 氧杂环己烷、 乙腈、 二氯曱烷、 乙烯基乙二醇、 N, N -二曱基曱酰胺、 曱苯、 N, N -二曱基乙酰胺、 曱基环己烷、 1 , 2 -二氯乙婦、 二曱苯、 曱醇、 环己 烷或 N -曱基吡咯烷酮。
前述的方法, 2 )涂布步骤中, 采用涂布机对浆料进行涂布。
所述涂布机包括机架, 设置于机架上的刮刀, 涂布辊轮, 背辊轮以及浆 料容纳器; 其中, 涂布辊轮和背辊轮同排平行设置且同向转动, 浆料容纳器 与涂布辊轮连接; 刮刀设于涂布辊轮上方, 与涂布辊轮表面留有间隙; 基材 绕背辊轮运行。 该涂布机可以市购得到, 例如 TB-800型硅油涂布机。
前述的方法, 2 )涂布步骤中, 通过调整涂布机的刮刀与涂布机的涂布辊 轮的间隙, 调节浆料从浆料容纳器运送到涂布辊轮的量。 前述的方法, 2 )涂布步骤中, 涂布机的涂布辊轮转速是 10-120m/min, 涂布机的背辊轮转速是 10-120m/min。
根据本发明的再一个方面, 本发明提供了一种摩擦发电机, 由上述任一 种方法制成。
采用本发明的技术方案, 至少具有如下有益效果: 利用本发明摩擦发电 机的制造方法, 可以筒化制备过程, 得到的凹凸结构间距、 大小均匀, 从而 所得摩擦发电机性能稳定。 另外, 本发明筒化了先前的 Si模版制作工艺的复 杂过程, 以及改变了 Si片大小对产品大小的限制, 是一种实用的新型微纳结 构产业化生产工艺。 附图说明
图 1为本发明摩擦发电机的制造工艺流程图。
图 2为本发明涂布工艺示意图。
图 3为本发明加热压印工艺示意图。
图 4为本发明压印辊上的微纳凹凸结构示意图。
图 5为本发明摩擦发电机的结构示意图。
图 6为本发明另一种摩擦发电机的结构示意图。
图 7为本发明另一种摩擦发电机的结构示意图。
图 8为本发明另一种摩擦发电机的结构示意图。
图 9为本发明另一种摩擦发电机的制造工艺流程图。
图 10为带有微纳 凸结构的基材的平面示意图。
图 11为带有微纳凹凸结构的基材的剖面示意图。
图 12为本发明涂布 -分离工艺示意图。 具体实施方式
为充分了解本发明之目的、 特征及功效, 借由下述具体的实施方式, 对 本发明做详细说明,但本发明并不仅仅限于此。
本发明提出摩擦发电机的制造方法, 以实现以筒单的工艺制造出摩擦发 电机。
如图 1所示, 一种摩擦发电机的制造工艺流程图。 该方法包括:
1 ) 配料: 准备高分子材料的浆料。
本发明摩擦发电机中高分子聚合物绝缘层与电极层之间, 或者高分子聚 合物绝缘层之间相互摩擦产生静电荷, 从而导致电极之间出现电势差。 因此, 只经过本发明工艺处理后形成的高分子薄膜层, 也需要能够具备摩擦起电的 性能。
可以使用的高分子材料是聚二曱基硅氧烷。 将聚二曱基硅氧烷与固化剂 混合均匀后溶于有机溶剂中, 搅拌均匀, 配成浆料, 所述有机溶剂是正己烷、 环己烷、 曱苯、 二曱苯、 乙酸乙酯或乙酸丁酯, 优选的浆料中固体(混合物) 与有机溶剂的质量比为 1 : 20。 固化剂为直化剂, 例如市购道康宁 184, 此时 高分子材料与固化剂的重量比为 5: 1到 20: 1 , 优选 10: 1。 固化温度为 60-120 °C。 优选的, 在搅拌过程中可以伴随加热。
可以使用的高分子材料还可以是酚醛树脂, 环氧树脂或三聚氰氨曱醛树 脂。 这些高分子材料本身是液态的, 不需要使用有机溶剂, 仅将固化剂添加 到高分子材料中即可, 高分子材料与固化剂的重量比为 5: 1到 20: 1 ,优选 10: 1。
酚醛树脂均可以应用于本发明, 包括苯酚醛树脂、 曱醛树脂。 本领域技 术人员容易根据所选高分子材料选择适用的固化剂。 固化剂可为脂环族多胺、 叔胺、 咪唑类以及三氟化硼络合物。 固化温度为 60-120 °C。
环氧树脂 (包括缩水甘油醚类、 缩水甘油酯类、 缩水甘油胺类、 脂肪族 环氧化合物、 脂环族环氧化合物)也可以应用于本发明。 固化剂为聚硫醇型、 多异氰酸酯型、 脂肪族多胺、 脂环族多胺、 低分子聚酰胺、 改性芳胺、 脂环 族多胺、 叔胺、 咪唑类以及三氟化硼络合物等, 固化温度为 50-100 °C。
高分子材料还可以是三聚氰氨曱醛树脂, 固化剂为 ASA固化剂, 固化温 度为 120-150°C。
可以使用的高分子材料还可以是聚乙烯、 聚丙烯、 聚苯乙烯、 聚曱基丙 烯酸曱酯、 聚氯乙烯、 尼龙、 聚碳酸酯、 聚氨酯或聚对苯二曱酸乙二醇酯; 将上述高分子材料溶于有机溶剂中, 配成浆料, 所述有机溶剂是 2 -曱氧基 乙醇、 氯仿、 1 , 1 , 2 -三氯乙烯、 1 , 2 -二曱氧基乙烷、 1 , 2, 3 , 4 -四氢 化萘、 2 -乙氧基乙醇、 环丁砜、 嘧啶、 曱酰胺、 正己烷、 氯苯、 二氧杂环己 烷、 乙腈、 二氯曱烷、 乙烯基乙二醇、 N, N -二曱基曱酰胺、 曱苯、 N, N -二曱基乙酰胺、 曱基环己烷、 1 , 2 -二氯乙婦、 二曱苯、 曱醇、 环己烷或 N -曱基吡咯烷酮。
2 )涂布: 将所述浆料均勾地涂布在平板基材上。
在该步骤中, 优选采用涂布机对浆料进行涂布。 具体的, 如图 2所示, 涂布机包括机架(图未示), 设置于机架上的刮刀 1 , 涂布辊轮 2, 背辊轮 3 以及浆料容纳器 4。 涂布辊轮 2和背辊轮 3 同排平行设置且同向转动, 浆料 容纳器 4与涂布辊轮 2连接; 刮刀 1设于涂布辊轮 2上方, 与涂布辊轮表面 留有间隙; 基材 5绕背辊轮 3运行。 涂布辊轮 2转动, 将浆料 6从浆料容纳 器 4运送到涂布辊轮 2, 然后背辊轮 3转动, 将浆料 6运送到基材 5上, 实 现均匀性涂布。 该涂布机可以市购得到, 例如 TB-800型硅油涂布机。
该涂布步骤中, 通过调整刮刀 1与涂布辊轮 2的间隙, 可以调节浆料 6 从浆料容纳器 4运送到涂布辊轮 2的量。
该涂布步骤中, 优选涂布辊轮转速是 10-120m/min , 背辊轮转速是 10-120m/min,从而使得经后续步骤后所得高分子薄膜层的厚度为 50um以下。
基材在该实施方式中充当摩擦发电机的电极的作用, 因此所用材料是导 电性的, 例如金属或合金, 其中金属可以是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金可以是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋 合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。 或者镀有上述 金属或合金的高分子材料, 例如镀有金属或合金的聚对苯二曱酸乙二醇酯 ( PET )。
3 )干燥固化: 对涂布有浆料的基材进行干燥固化处理, 获得高分子薄膜 层-基材层层叠体。
该步骤中对涂布有浆料的基材进行加热处理, 使得高分子材料 25°C运动 粘度为 80-99CST, 固化形成高分子薄膜层-基材层层叠体。 根据选择的高分 子材料类型和固化剂类型, 应当选择适当的固化温度。 例如聚二曱基硅氧烷, 固化温度为 60-120 °C ; 酚 树脂, 固化温度为 60-120 °C ; 环氧树脂, 固化温 度为 50-100°C ; 三聚氰氨曱 树脂, 固化温度为 120-150°C。
当使用的高分子材料是聚乙烯、 聚丙烯、 聚苯乙烯、 聚曱基丙烯酸曱酯、 聚氯乙烯、 尼龙、 聚碳酸酯、 聚氨酯或聚对苯二曱酸乙二醇酯, 干燥固化的 温度为 60-120°C , 干燥时间为 2-4小时。
4 )加热压印: 对高分子薄膜层 -基材层层叠体进行加热以及凹凸压印处 理, 获得带有微纳凹凸结构的高分子薄膜层-基材层层叠体。
在该步骤中, 采用压印机进行凹凸压印处理。 该压印机是对市购压印机 的压印辊改进而得到的, 例如对 TB-800型硅油涂布机进行改进而得到。如图 3所示, 压印机包括上下并排设置的两个压印辊 7, 该压印辊 7表面带有微纳 凹凸结构(如图 4所示)。 3 )干燥固化步骤所得高分子薄膜层-基材层层叠体 结构的高分子薄膜层-基材层层叠体。 优选的, 高分子薄膜层表面的微纳凹凸 结构是凸起高度 50nm-300nm的纳米凹凸结构。
根据需要, 微纳凹凸结构可以是正方形凸起, 条形凸起, 四棱锥形凸起。 相应的, 为了得到具有上述形状微纳凹凸结构的层叠体, 压印辊 7具有相应 的微纳凹凸结构。
在该步骤中, 需要对固化形成的高分子薄膜层 -基材层层叠体保持软化, 才能获得需要的微纳凹凸结构。 加热步骤与凹凸压印步骤可以同时进行, 也 可以分步骤进行。 如图 3所示, 在一个具体实施方式中, 进行凹凸压印处理 前, 采用加热装置 8在 60-220 °C , 将 3 )干燥固化步骤所得的高分子薄膜层- 基材层层叠体进行加热处理。 该加热装置为市售常规用于加热高分子材料的 加热装置。
在另一个具体实施方式中, 加热压印辊, 使得压印辊表面具有 60-220 °C 的温度, 通过传送带, 使 3 )干燥固化步骤所得高分子薄膜层-基材层层叠体 从两个压印辊 7间隙间通过, 同时进行加热和凹凸压印处理, 然后降温, 再 将该层叠体取下。
当高分子材料是聚二曱基硅氧烷, 酚 树脂, 环氧树脂, 三聚氰氨曱醛 树脂时, 优选压印温度为 60-120°C。
当高分子材料是聚乙烯时, 压印温度为 80-120°C ; 聚丙烯时, 压印温度 为 140-160°C ; 聚苯乙烯时, 压印温度为 140-160°C ; 聚曱基丙烯酸曱酯时, 压印温度为 80-120 °C ; 聚氯乙烯和尼龙时, 压印温度为 80-100 °C ; 聚碳酸酯 时, 压印温度为 120-140°C ; 聚氨酯时, 压印温度为 140-170°C ; 聚对苯二曱 酸乙二醇酯时, 压印温度为 150-220°C。
5 )组装: 根据 4 )加热压印步骤得到的高分子薄膜层 -基材层层叠体制成 摩擦发电机。
如图 5所示, 摩擦发电机包括层叠设置的第一电极层 11 , 第一高分子聚 合物绝缘层 12, 和第二电极层 13。 第一电极层 11和第一高分子聚合物绝缘 层 12—起, 由 4 )加热压印步骤所得高分子薄膜层-基材层层叠体构成, 第一 高分子聚合物绝缘层 12表面带有由上述加热压印产生的微纳凹凸结构 17。
第二电极层所用材料可以是金属或合金, 其中金属可以是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金可以是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡 合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合 金。 在一个具体实施方式中, 将 4 )加热压印步骤所得高分子薄膜层-基材层 层叠体裁剪成需要的尺寸, 然后使高分子薄膜层面向第二电极层 13 , 将上述 层叠体与第二电极层 13层叠设置, 高分子薄膜层与第二电极层 13之间构成 摩擦面。 第一电极层 11和第二电极层 13为电流、 电压输出端, 例如分别在 第一电极层 11和第二电极层 13表面引出导线。
如图 6所示, 摩擦发电机包括层叠设置的第一电极层 11 , 第一高分子聚 合物绝缘层 12, 第二高分子聚合物绝缘层 14和第二电极层 13。 第一电极层 11和第一高分子聚合物绝缘层 12—起,和 /或第二高分子聚合物绝缘层 14和 第二电极层 13—起, 由 4 )加热压印步骤所得高分子薄膜层-基材层层叠体构 成, 第一高分子聚合物绝缘层 12和 /或第二高分子聚合物绝缘层 14表面带有 由上述加热压印产生的微纳凹凸结构 17 (图中未示出第二高分子聚合物绝缘 层 14上的微纳凹凸结构 17 )。
第一高分子聚合物绝缘层和第二高分子聚合物绝缘层可以不同时采用本 发明的如上所述的层叠体结构, 此时不采用本发明层叠体结构的高分子聚合 物绝缘层所用材料可以选自聚酰亚胺薄膜、 苯胺曱 树脂薄膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇酯薄膜、 聚邻苯二曱酸二 烯丙酯薄膜、 再生海绵薄膜、 纤维素海绵薄膜、 聚氨酯弹性体薄膜、 苯乙烯 丙烯共聚物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚曱基丙烯酸 曱酯薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二醇酯薄膜、 聚 乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶薄膜、 丁二烯丙烯共聚 物薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物薄膜和聚乙烯 丙二酚碳酸盐中的任意一种。 在第一高分子聚合物绝缘层或第二高分子聚合 物绝缘层不采用本发明的如上所述的层叠体结构时, 需要在第一高分子聚合 物绝缘层或第二高分子聚合物绝缘层的一侧表面设置电极层, 电极层所用材 料可以选自铟锡氧化物、 石墨烯、 银纳米线膜、 金属或合金; 其中, 金属是 金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是 铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅 合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合 金或钽合金。 在一个具体实施方式中, 将 4 )加热压印步骤所得高分子薄膜 层-基材层层叠体裁剪成需要的尺寸, 然后高分子薄膜层相对设置, 两高分子 薄膜层之间形成摩擦面。 第一电极层 11和第二电极层 13为电流、 电压输出 端。 优选的, 相对设置的高分子薄膜层所用材料不同。
如图 7所示, 摩擦发电机在图 6结构的基础上, 进一步包括居间薄膜层 15 , 即摩擦发电机包括层叠设置的第一电极层 11 , 第一高分子聚合物绝缘层 12 , 居间薄膜层 15 , 第二高分子聚合物绝缘层 14和第二电极层 13。 第一电 极层 11和第一高分子聚合物绝缘层 12—起, 和 /或第二高分子聚合物绝缘层 14和第二电极层 13—起, 由 4 )加热压印步骤所得高分子薄膜层-基材层层 叠体构成, 第一高分子聚合物绝缘层 12和 /或第二高分子聚合物绝缘层 14表 面带有由上述加热压印产生的微纳凹凸结构 (图未示)。 具体的第一电极层
11、 第一高分子聚合物绝缘层 12、 第二高分子聚合物绝缘层 14、 第二电极层 13所用材料与设置情况与图 6所示摩擦发电机相同, 这里不再赘述。
居间薄膜层 15所用材料可以选自聚酰亚胺薄膜、 苯胺曱醛树脂薄膜、 聚 曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁 二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇酯薄膜、 聚 邻苯二曱酸二烯丙酯薄膜、 再生海绵薄膜、 纤维素海绵薄膜、 聚氨酯弹性体 薄膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚曱基丙烯酸曱酯薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二 醇酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶薄膜、 丁 二烯丙烯共聚物薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物 薄膜和聚乙烯丙二酚碳酸盐中的任意一种。 优选的, 居间薄膜层 15所用材料 与第一高分子聚合物绝缘层和第二高分子聚合物绝缘层所用材料不同。
在一个具体实施方式中, 将 4 )加热压印步骤所得高分子薄膜层-基材层 层叠体裁剪成需要的尺寸,然后在两个高分子薄膜层之间设置居间薄膜层 15 , 两高分子薄膜层分别与居间薄膜层 15形成摩擦面。 第一电极层 11和第二电 极层 13为电流、 电压输出端。
如图 8所示, 摩擦发电机在图 6结构的基础上, 进一步包括居间电极层 16, 即摩擦发电机包括层叠设置的第一电极层 11 , 第一高分子聚合物绝缘层
12 , 居间电极层 16, 第二高分子聚合物绝缘层 14和第二电极层 13。 第一电 极层 11和第一高分子聚合物绝缘层 12—起, 和 /或第二高分子聚合物绝缘层 14和第二电极层 13—起, 由 4 )加热压印步骤所得高分子薄膜层-基材层层 叠体构成, 第一高分子聚合物绝缘层 12和 /或第二高分子聚合物绝缘层 14表 面带有由上述加热压印产生的微纳凹凸结构 (图未示)。 具体的第一电极层 11、 第一高分子聚合物绝缘层 12、 第二高分子聚合物绝缘层 14、 第二电极层 13所用材料与设置情况与图 6所示摩擦发电机相同, 这里不再赘述。
居间电极层 16所用材料是金属或合金, 其中金属是金、银、铂、钯、铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合 金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。
在一个具体实施方式中, 将 4 )加热压印步骤所得高分子薄膜层-基材层 层叠体裁剪成需要的尺寸,然后在两个高分子薄膜层之间设置居间电极层 16, 两高分子薄膜层分别与居间电极层 16形成摩擦面。 第一电极层 11和第二电 极层 13为摩擦发电机电压和电流的一个输出端; 所述居间电极层 16为摩擦 发电机电压和电流的另一个输出端。
将上述结构的摩擦发电机进行封装, 得到摩擦发电机成品。 优选的, 采 用塑料胶膜对上述摩擦发电机封装, 得到摩擦发电机成品。
如图 9所示, 另一种摩擦发电机的制造工艺流程图。 该方法包括: 1 ) 配料: 准备高分子材料的浆料。
本发明后续工序形成的高分子薄膜层是用作摩擦发电机的第一高分子聚 合物绝缘层和 /或第二高分子聚合物绝缘层和 /或居间薄膜层。高分子薄膜层与 电极层之间, 或者高分子薄膜层之间相互摩擦产生静电荷, 从而导致电极之 间出现电势差。 因此, 经过本发明工艺处理后形成的薄膜层, 也需要能够具 备摩擦起电的性能。
可以使用的高分子材料是聚二曱基硅氧烷。 将聚二曱基硅氧烷与固化剂 混合均匀后溶于有机溶剂中, 搅拌均匀, 配成浆料, 所述有机溶剂是正己烷、 环己烷、 曱苯、 二曱苯、 乙酸乙酯或乙酸丁酯, 优选的浆料中固体(混合物) 与有机溶剂的质量比为 1 : 20。 优选的, 在搅拌过程中可以伴随加热。 固化 剂为硫化剂, 例如市购道康宁 184, 此时高分子材料与固化剂的重量比为 5: 1 到 20: 1 , 优选 10: 1。 固化温度为 60- 120 °C。
可以使用的高分子材料还可以是酚醛树脂, 环氧树脂或三聚氰氨曱醛树 脂。 这些高分子材料本身是液态的, 不需要使用有机溶剂, 仅将固化剂添加 到高分子材料中即可, 高分子材料与固化剂的重量比为 5: 1到 20: 1 ,优选 10:
1。
常规酚醛树脂均可以应用于本发明, 包括苯酚 树脂、 曱醛树脂。 本领 域技术人员容易根据所选高分子材料选择适用的固化剂。 固化剂可为脂环族 多胺、 叔胺、 咪唑类以及三氟化硼络合物。 固化温度为 60-120°C。
环氧树脂 (包括缩水甘油醚类、 缩水甘油酯类、 缩水甘油胺类、 脂肪族 环氧化合物、 脂环族环氧化合物)也可以应用于本发明。 固化剂为聚硫醇型、 多异氰酸酯型、 脂肪族多胺、 脂环族多胺、 低分子聚酰胺、 改性芳胺、 脂环 族多胺、 叔胺、 咪唑类以及三氟化硼络合物等, 固化温度为 50-100 °C。
高分子材料还可以是三聚氰氨曱醛树脂, 固化剂为 ASA固化剂, 固化温 度为 120-150°C。
可以使用的高分子材料还可以是聚乙烯、 聚丙烯、 聚苯乙烯、 聚曱基丙 烯酸曱酯、 聚氯乙烯、 尼龙、 聚碳酸酯、 聚氨酯或聚对苯二曱酸乙二醇酯; 将上述高分子材料溶于有机溶剂中, 配成浆料, 所述有机溶剂是 2 -曱氧基 乙醇、 氯仿、 1 , 1 , 2 -三氯乙烯、 1 , 2 -二曱氧基乙烷、 1 , 2, 3 , 4 -四氢 化萘、 2 -乙氧基乙醇、 环丁砜、 嘧啶、 曱酰胺、 正己烷、 氯苯、 二氧杂环己 烷、 乙腈、 二氯曱烷、 乙烯基乙二醇、 N, N -二曱基曱酰胺、 曱苯、 N, N -二曱基乙酰胺、 曱基环己烷、 1 , 2 -二氯乙婦、 二曱苯、 曱醇、 环己烷或 N -曱基吡咯烷酮。
2 )涂布: 将所述浆料均勾地涂布在带有微纳 凸结构的基材上。
在该步骤中, 优选采用涂布机对浆料进行涂布。 具体的, 如图 2和图 12 所示, 涂布机包括机架(图未示), 设置于机架上的刮刀 1 , 涂布辊轮 2, 背 辊轮 3以及浆料容纳器 4。 涂布辊轮 2和背辊轮 3同排平行设置且同向转动, 浆料容纳器 4与涂布辊轮 2连接; 刮刀 1设于涂布辊轮 2上方, 与涂布辊轮 表面留有间隙; 基材 5绕背辊轮 3运行。 涂布辊轮 2转动, 将浆料 6从浆料 容纳器 4运送到涂布辊轮 2, 然后背辊轮 3转动, 将浆料 6运送到基材 5上, 实现均匀性涂布。 该涂布机可以市购得到, 例如 TB-800型硅油涂布机。
该涂布步骤中, 通过调整刮刀 1与涂布辊轮 2的间隙, 可以调节浆料 6 从浆料容纳器 4运送到涂布辊轮 2的量。
该涂布步骤中, 优选涂布辊轮转速是 10-120m/min , 背辊轮转速是 10-120m/min, 刮刀与涂布辊轮的间隙是 150um左右, 从而使得经后续步骤 后所得高分子薄膜层的厚度为 50um以下。
带有微纳凹凸结构的基材如图 10和 11所示,可以采用柔性金属材质(例 如 A1片或 Cu片, 优选 lOOum厚 A1片或 Cu片), 在其一侧表面上加工有微 纳凹凸结构。 该微纳凹凸结构可以是正方形凸起, 条形凸起, 四棱锥形凸起。
3 )干燥固化: 对涂布有浆料的基材进行干燥固化处理, 获得高分子薄膜 层-基材层层叠体。
该步骤中对涂布有浆料的基材进行加热处理, 使得高分子材料 25 °C运动 粘度为 100CST以上, 固化形成高分子薄膜层-基材层层叠体。
根据选择的高分子材料类型和固化剂类型, 应当选择适当的固化温度。 例如聚二曱基硅氧烷, 固化温度为 60-120 °C ; 酚 树脂, 固化温度为 60-120 °C ;环氧树脂,固化温度为 50-100°C ;三聚氰氨曱醛树脂,固化温度为 120-150
°c。
当使用的高分子材料是聚乙烯、 聚丙烯、 聚苯乙烯、 聚曱基丙烯酸曱酯、 聚氯乙烯、 尼龙、 聚碳酸酯、 聚氨酯或聚对苯二曱酸乙二醇酯, 干燥固化的 温度为 60-120 °C , 干燥时间为 2-4小时。
4 )分离: 将 3 )干燥固化步骤所得高分子薄膜层-基材层层叠体的高分子 薄膜层和基材层进行分离, 得到带有微纳 凸结构的高分子薄膜层。
优选的, 如图 12所示, 分离设备包括分离辊 9A和收集辊 9B, 通过分离 辊 9A转动, 将高分子薄膜层和基材层进行分离, 然后通过收集辊 9B转动, 将分离的高分子薄膜层收集到收集辊 9B上。该分离的高分子薄膜层为带有微 纳凹凸结构的高分子薄膜层。
优选的, 高分子薄膜层表面的微纳凹凸结构是凸起高度 50nm-300nm的 纳米凹凸结构。
根据需要, 微纳凹凸结构可以是正方形凸起, 条形凸起, 四棱锥形凸起。 相应的, 为了得到具有上述形状微纳凹凸结构的高分子薄膜层, 基材 5具有 相应的 纳凹凸结构。
该实施方式中, 虽然不循环使用基材也已经得到了所需摩擦发电机, 然 而优选的方案如图 12所示, 该实施方式还使用了多个传送辊轮 9C, 通过传 送辊轮 9C, 基材 5循环使用。 基材 5起到传送带和模具的作用。
5 )组装: 根据 4 )分离步骤得到的高分子薄膜层制成摩擦发电机。
5 )组装步骤所得摩擦发电机具有图 5至图 8相同的结构。 不同处在于, 本实施方式所得为不带电极层的高分子薄膜层, 因此需要在高分子薄膜层的 不带微纳凹凸结构的表面设置电极层, 例如采用磁控溅射金属材料或者直接 粘贴金属箔的方法。
如图 5所示, 摩擦发电机包括层叠设置的第一电极层 11 , 第一高分子聚 合物绝缘层 12, 和第二电极层 13。 第一高分子聚合物绝缘层 12由 4 )分离 步骤所得高分子薄膜层构成。第一高分子聚合物绝缘层 12表面带有由上述加 工工艺产生的微纳凹凸结构 17。
第一电极层所用材料可以是铟锡氧化物、 石墨烯、 银纳米线膜、 金属或 合金, 其中金属可以是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金可以是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合 金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铣合金或钽合金。 第二电极层所用材料可以是金属或合金, 其中金属可以是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金可以是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨 合金、 钼合金、 铌合金或钽合金。
在一个具体实施方式中, 在 4 )分离步骤所得高分子薄膜未设置微纳凹 凸结构的表面设置第一电极层 11 , 然后裁剪成需要的尺寸, 按照高分子薄膜 层面向第二电极层 13层叠设置, 高分子薄膜层与第二电极层 13之间构成摩 擦面。 第一电极层 11和第二电极层 13为电流、 电压输出端, 例如分别在第 一电极层 11和第二电极层 13表面引出导线。
如图 6所示, 摩擦发电机包括层叠设置的第一电极层 11 , 第一高分子聚 合物绝缘层 12, 第二高分子聚合物绝缘层 14和第二电极层 13。 第一高分子 聚合物绝缘层 12和 /或第二高分子聚合物绝缘层 14, 由 4 )分离步骤所得高 分子薄膜层构成。 第一高分子聚合物绝缘层 12 和 /或第二高分子聚合物绝缘 层 14表面带有由上述加工工艺产生的微纳凹凸结构 17 (图中未示出第二高 分子聚合物绝缘层 14上的微纳凹凸结构 17 )。
第一高分子聚合物绝缘层和第二高分子聚合物绝缘层可以不同时采用本 发明的如上所述的高分子薄膜层, 此时不采用本发明高分子薄膜层的高分子 聚合物绝缘层所用材料可以选自聚酰亚胺薄膜、 苯胺曱 树脂薄膜、 聚曱醛 薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸 酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇酯薄膜、 聚邻苯 二曱酸二烯丙酯薄膜、 再生海绵薄膜、 纤维素海绵薄膜、 聚氨酯弹性体薄膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚曱基 丙烯酸曱酯薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二醇酯薄 膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶薄膜、 丁二烯丙 烯共聚物薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物薄膜和 聚乙烯丙二酚碳酸盐中的任意一种。
电极层所用材料可以选自铟锡氧化物、 石墨烯、 银纳米线膜、 金属或合 金; 其中, 金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合 金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。
在一个具体实施方式中, 在 4 )分离步骤所得高分子薄膜未设置微纳凹 凸结构的表面设置第一电极层 11 或第二电极层 13 , 裁剪成需要的尺寸, 然 后高分子薄膜层相对设置, 两高分子薄膜层之间形成摩擦面。 第一电极层 11 和第二电极层 13为电流、 电压输出端。 优选的, 相对设置的高分子薄膜层所 用材料不同。
如图 7所示, 摩擦发电机在图 6结构的基础上, 进一步包括居间薄膜层 15 , 即摩擦发电机包括层叠设置的第一电极层 11 , 第一高分子聚合物绝缘层 12 , 居间薄膜层 15 , 第二高分子聚合物绝缘层 14和第二电极层 13。 第一高 分子聚合物绝缘层 12和 /或第二高分子聚合物绝缘层 14和 /或居间薄膜层 15 , 由 4 )分离步骤所得高分子薄膜层构成, 第一高分子聚合物绝缘层 12和 /或第 二高分子聚合物绝缘层 14和 /或居间薄膜层 15表面带有由上述加工工艺产生 的微纳凹凸结构 (图未示)。 具体的第一电极层 11、 第一高分子聚合物绝缘 层 12、 第二高分子聚合物绝缘层 14、 第二电极层 13所用材料与设置情况与 图 9所示工艺所得的图 6所示摩擦发电机相同, 这里不再赘述。
居间薄膜层 15可以不同时采用本发明的如上所述的高分子薄膜层,此时 不采用本发明高分子薄膜层的居间薄膜层 15 所用材料可以选自聚酰亚胺薄 膜、 苯胺曱醛树脂薄膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚 氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇酯薄膜、 聚邻苯二曱酸二烯丙酯薄膜、 再生海绵薄膜、 纤维 素海绵薄膜、 聚氨酯弹性体薄膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共 聚物薄膜、 人造纤维薄膜、 聚曱基丙烯酸曱酯薄膜、 聚乙烯醇薄膜、 聚异丁 烯薄膜、 聚对苯二曱酸乙二醇酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚 物薄膜、 氯丁橡胶薄膜、 丁二烯丙烯共聚物薄膜、 天然橡胶薄膜、 聚丙烯腈 薄膜、 丙烯腈氯乙烯共聚物薄膜和聚乙烯丙二酚碳酸盐中的任意一种。 优选 的,居间薄膜层 15所用材料与第一高分子聚合物绝缘层和第二高分子聚合物 绝缘层所用材料不同。
在一个具体实施方式中, 在 4 )分离步骤所得高分子薄膜未设置微纳凹 凸结构的表面设置第一电极层 11 或第二电极层 13 , 裁剪成需要的尺寸, 然 后在两个高分子薄膜层之间设置居间薄膜层 15 , 两高分子薄膜层分别与居间 薄膜层 15形成摩擦面。第一电极层 11和第二电极层 13为电流、电压输出端。
如图 8所示, 摩擦发电机在图 6结构的基础上, 进一步包括居间电极层 16, 即摩擦发电机包括层叠设置的第一电极层 11 , 第一高分子聚合物绝缘层 12 , 居间电极层 16, 第二高分子聚合物绝缘层 14和第二电极层 13。 第一高 分子聚合物绝缘层 12和 /或第二高分子聚合物绝缘层 14由 4 )加热压印步骤 所得高分子薄膜层构成, 第一高分子聚合物绝缘层 12和 /或第二高分子聚合 物绝缘层 14表面带有由上述加工工艺产生的微纳凹凸结构 (图未示)。 具体 的第一电极层 11、 第一高分子聚合物绝缘层 12、 第二高分子聚合物绝缘层 14、第二电极层 13所用材料与设置情况与图 9所示工艺所得的图 6所示摩擦 发电机相同, 这里不再赘述。
居间电极层 16所用材料是金属或合金, 其中金属是金、银、铂、钯、铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合 金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。
在一个具体实施方式中, 在 4 )分离步骤所得高分子薄膜未设置微纳凹 凸结构的表面设置第一电极层 11 或第二电极层 13 , 裁剪成需要的尺寸, 然 后在两个高分子薄膜层之间设置居间电极层 16, 两高分子薄膜层分别与居间 电极层 16形成摩擦面。第一电极层 11和第二电极层 13为摩擦发电机电压和 电流的一个输出端;所述居间电极层 16为摩擦发电机电压和电流的另一个输 出端。
将上述结构的摩擦发电机进行封装, 得到摩擦发电机成品。 优选的, 采 用塑料胶膜对上述摩擦发电机封装, 得到摩擦发电机成品。
当本发明的摩擦发电机的各层向下弯曲时, 由于存在的微纳凹凸结构, 摩擦发电机中的摩擦层表面相互摩擦产生静电荷, 静电荷的产生会使电极之 间的电容发生改变, 从而导致电极之间出现电势差。 由于电极之间电势差的 存在, 自由电子将通过外电路由电势低的一侧流向电势高的一侧, 从而在外 电路中形成电流。 当理解的是, 这不应被理解为对本发明权利要求范围的限制。
实施例 1
如图 5所示,本实施例摩擦发电机尺寸为 3cmx3cm,总厚度大约是 2.5mm 左右。 该摩擦发电机第一电极层 11、 第一高分子聚合物绝缘层 12 以及第二 电极层 13 , 第一高分子聚合物绝缘层 12表面带有微纳凹凸结构 17。 第一电 极层 11和第二电极层 13作为摩擦发电机的电压和电流的输出端。 下面详细 说明该摩擦发电机的制备方法。
1 )配料: 将高分子材料聚二曱基硅氧烷与固化剂道康宁 184按照重量比 为 10: 1混合均匀, 然后溶于有机溶剂正己烷, 加热到 80°C并搅拌均匀, 得 到浆料。
2 )涂布: 按照图 2所示方式涂布, 将所述浆料均匀地涂布在 100 um镀 铝 PET上。 涂布辊轮转速是 50 m/min, 背辊轮转速是 50 m/min, 刮刀与涂布 棍轮的间隙是 150um。
3 )干燥固化: 对涂布有浆料的基材在 80°C干燥至高分子材料 25 °C运动 粘度为 90CST, 固化形成高分子薄膜层-基材层层叠体。
4 )加热压印: 按照图 3所示方式进行加热以及凹凸压印处理。 首先, 采 用加热装置在 80 °C , 将 3 )干燥固化步骤所得的高分子薄膜层-基材层层叠体 进行加热处理保持软化, 然后通过传送带, 将软化的层叠体传送到压印辊, 使其从两个压印辊的间隙间通过, 实施凹凸压印处理, 然后降温, 再将该层 叠体取下, 所得层叠体中高分子薄膜层厚度为 50um, 其表面设有的微纳凹凸 结构凸起高度为 150nm。
5 )组装: 采用铝箔作为第二电极层 13 , 将 4 )加热压印步骤所得高分子 薄膜层-基材层层叠体裁剪成需要的尺寸, 然后与高分子薄膜层面向第二电极 层 13 , 将上述层叠体与第二电极层 13层叠设置, 分别在第一电极层 11和第 二电极层 13表面引出导线, 采用塑料胶膜对摩擦发电机封装, 得到摩擦发电 机样品 1#。
摩擦发电机样品 1#在 I-V (电流 -电压 )的测量中表现出典型的开路特征。 使用周期振荡 (0.33Hz和 0.13%的形变) 的步进电机使摩擦发电机样品 1#发 生周期的弯曲和释放, 摩擦发电机样品 1#的最大输出电压和电流信号分别达 到了 100V和 6-8μΑ。 实施例 2
如图 5所示,本实施例摩擦发电机尺寸为 3cmx3cm,总厚度大约是 2.5mm 左右。 该摩擦发电机第一电极层 11、 第一高分子聚合物绝缘层 12 以及第二 电极层 13 , 第一高分子聚合物绝缘层 12表面带有微纳凹凸结构 17。 第一电 极层 11和第二电极层 13作为摩擦发电机的电压和电流的输出端。 下面详细 说明该摩擦发电机的制备方法。 1 )配料: 将高分子材料直线型酚 树脂(苯酚与曱醛缩聚)与固化剂三 乙醇胺按照重量比为 10: 1混合均匀, 得到浆料。
2 )涂布: 按照图 2所示方式涂布, 将所述浆料均匀地涂布在 100 um镀 铝 PET上。 涂布辊轮转速是 50 m/min, 背辊轮转速是 50 m/min, 刮刀与涂布 棍轮的间隙是 150um。
3 )干燥固化: 对涂布有浆料的基材在 80°C干燥至高分子材料 25 °C运动 粘度为 80CST, 固化形成高分子薄膜层-基材层层叠体。
4 )加热压印: 按照图 3所示方式进行加热以及凹凸压印处理。 首先, 采 用加热装置在 80 °C , 将 3 )干燥固化步骤所得的高分子薄膜层-基材层层叠体 进行加热处理保持软化, 然后通过传送带, 将软化的层叠体传送到压印辊, 使其从两个压印辊的间隙间通过, 实施凹凸压印处理, 然后降温, 再将该层 叠体取下, 所得层叠体中高分子薄膜层厚度为 50um, 其表面设有的微纳凹凸 结构凸起高度为 150nm。
5 )组装: 采用铝箔作为第二电极层 13 , 将 4 )加热压印步骤所得高分子 薄膜层-基材层层叠体裁剪成需要的尺寸, 然后与高分子薄膜层面向第二电极 层 13 , 将上述层叠体与第二电极层 13层叠设置, 分别在第一电极层 11和第 二电极层 13表面引出导线, 采用塑料胶膜对摩擦发电机封装, 得到摩擦发电 机样品 2#。
摩擦发电机样品 2#在 I-V (电流 -电压 )的测量中表现出典型的开路特征。 使用周期振荡 (0.33Hz和 0.13%的形变) 的步进电机使摩擦发电机样品 2#发 生周期的弯曲和释放, 摩擦发电机样品 2#的最大输出电压和电流信号分别达 到了 60V和 4μΑ。 实施例 3
如图 5所示,本实施例摩擦发电机尺寸为 3cmx3cm,总厚度大约是 2.5mm 左右。 该摩擦发电机第一电极层 11、 第一高分子聚合物绝缘层 12 以及第二 电极层 13 , 第一高分子聚合物绝缘层 12表面带有微纳凹凸结构 17。 第一电 极层 11和第二电极层 13作为摩擦发电机的电压和电流的输出端。 下面详细 说明该摩擦发电机的制备方法。
1 ) 配料: 将高分子材料双酚 A环氧树脂与四曱基胍固化剂按照重量比 为 10: 1混合均匀, 得到浆料。
2 )涂布: 按照图 2所示方式涂布, 将所述浆料均匀地涂布在 100 um镀 铝 PET上。 涂布辊轮转速是 50 m/min, 背辊轮转速是 50 m/min, 刮刀与涂布 棍轮的间隙是 150um。
3 )干燥固化: 对涂布有浆料的基材在 80°C干燥至高分子材料 25 °C运动 粘度为 99CST, 固化形成高分子薄膜层-基材层层叠体。
4 )加热压印: 按照图 3所示方式进行加热以及凹凸压印处理。 首先, 采 用加热装置在 80°C , 将 3 )干燥固化步骤所得的高分子薄膜层-基材层层叠体 进行加热处理保持软化, 然后通过传送带, 将软化的层叠体传送到压印辊, 使其从两个压印辊的间隙间通过, 实施凹凸压印处理, 然后降温, 再将该层 叠体取下, 所得层叠体中高分子薄膜层厚度为 50um, 其表面设有的微纳凹凸 结构凸起高度为 150nm。
5 )组装: 采用铝箔作为第二电极层 13 , 将 4 )加热压印步骤所得高分子 薄膜层-基材层层叠体裁剪成需要的尺寸, 然后与高分子薄膜层面向第二电极 层 13 , 将上述层叠体与第二电极层 13层叠设置, 分别在第一电极层 11和第 二电极层 13表面引出导线, 采用塑料胶膜对摩擦发电机封装, 得到摩擦发电 机样品 3#。
摩擦发电机样品 3#在 I-V (电流 -电压)的测量中表现出典型的开路特征。 使用周期振荡 (0.33Hz和 0.13%的形变) 的步进电机使摩擦发电机样品 3#发 生周期的弯曲和释放, 摩擦发电机样品 3#的最大输出电压和电流信号分别达 到了 60V和 3-4μΑ。 实施例 4
如图 5所示,本实施例摩擦发电机尺寸为 3cmx3cm,总厚度大约是 2.5mm 左右。 该摩擦发电机第一电极层 11、 第一高分子聚合物绝缘层 12 以及第二 电极层 13 , 第一高分子聚合物绝缘层 12表面带有微纳凹凸结构 17。 第一电 极层 11和第二电极层 13作为摩擦发电机的电压和电流的输出端。 下面详细 说明该摩擦发电机的制备方法。
1 ) 配料: 将高分子材料三聚氰氨曱 树脂与 ASA固化剂按照重量比为 10: 1混合均匀, 得到浆料。
2 )涂布: 按照图 2所示方式涂布, 将所述浆料均匀地涂布在 100 um镀 铝 PET上。 涂布辊轮转速是 50 m/min, 背辊轮转速是 50 m/min, 刮刀与涂布 棍轮的间隙是 150um。
3 )干燥固化: 对涂布有浆料的基材在 100°C干燥至高分子材料 25 °C运动 粘度为 90CST, 固化形成高分子薄膜层-基材层层叠体。
4 )加热压印: 按照图 3所示方式进行加热以及凹凸压印处理。 首先, 采 用加热装置在 100°C , 将 3 )干燥固化步骤所得的高分子薄膜层 -基材层层叠 体进行加热处理保持软化, 然后通过传送带, 将软化的层叠体传送到压印辊, 使其从两个压印辊的间隙间通过, 实施凹凸压印处理, 然后降温, 再将该层 叠体取下, 所得层叠体中高分子薄膜层厚度为 50um, 其表面设有的微纳凹凸 结构凸起高度为 150nm。
5 )组装: 采用铝箔作为第二电极层 13 , 将 4 )加热压印步骤所得高分子 薄膜层-基材层层叠体裁剪成需要的尺寸, 然后与高分子薄膜层面向第二电极 层 13 , 将上述层叠体与第二电极层 13层叠设置, 分别在第一电极层 11和第 二电极层 13表面引出导线, 采用塑料胶膜对摩擦发电机封装, 得到摩擦发电 机样品 4#。
摩擦发电机样品 4#在 I-V (电流 -电压 )的测量中表现出典型的开路特征。 使用周期振荡 (0.33Hz和 0.13%的形变) 的步进电机使摩擦发电机样品 4#发 生周期的弯曲和释放, 摩擦发电机样品 4#的最大输出电压和电流信号分别达 到了 50V和 2-4μΑ。 实施例 5
如图 5所示,本实施例摩擦发电机尺寸为 3cmx3cm,总厚度大约是 2.5mm 左右。 该摩擦发电机第一电极层 11、 第一高分子聚合物绝缘层 12 以及第二 电极层 13 , 第一高分子聚合物绝缘层 12表面带有微纳凹凸结构 17。 第一电 极层 11和第二电极层 13作为摩擦发电机的电压和电流的输出端。 下面详细 说明该摩擦发电机的制备方法。
1 ) 配料: 将高分子材料聚曱基丙烯酸曱酯溶于有机溶剂氯仿, 加热到 80°C并搅拌均匀, 得到浆料。
2 )涂布: 按照图 2所示方式涂布, 将所述浆料均匀地涂布在 100 um镀 铝 PET上。 涂布辊轮转速是 50 m/min, 背辊轮转速是 50 m/min, 刮刀与涂布 棍轮的间隙是 150um。
3 )干燥固化: 对涂布有浆料的基材在 80°C干燥 3 小时至完全固化, 形 成高分子薄膜层-基材层层叠体。
4 )加热压印: 按照图 3所示方式进行加热以及凹凸压印处理。 首先, 采 用加热装置在 100°C , 将 3 )干燥固化步骤所得的高分子薄膜层 -基材层层叠 体进行加热处理至软化, 然后通过传送带, 将软化后的层叠体传送到压印辊, 使其从两个压印辊的间隙间通过, 实施凹凸压印处理, 然后降温, 再将该层 叠体取下, 所得层叠体中高分子薄膜层厚度为 50um, 其表面设有的微纳凹凸 结构凸起高度为 150nm。
5 )组装: 采用铝箔作为第二电极层 13 , 将 4 )加热压印步骤所得高分子 薄膜层-基材层层叠体裁剪成需要的尺寸, 然后与高分子薄膜层面向第二电极 层 13 , 将上述层叠体与第二电极层 13层叠设置, 分别在第一电极层 11和第 二电极层 13表面引出导线, 采用塑料胶膜对摩擦发电机封装, 得到摩擦发电 机样品 5#。
摩擦发电机样品 5#在 I-V (电流 -电压 )的测量中表现出典型的开路特征。 使用周期振荡 (0.33Hz和 0.13%的形变) 的步进电机使摩擦发电机样品 5#发 生周期的弯曲和释放, 摩擦发电机样品 5#的最大输出电压和电流信号分别达 到了 50V和 2-4μΑ。 实施例 6
如图 5所示,本实施例摩擦发电机尺寸为 3cmx3cm,总厚度大约是 2.5mm 左右。 该摩擦发电机第一电极层 11、 第一高分子聚合物绝缘层 12 以及第二 电极层 13 , 第一高分子聚合物绝缘层 12表面带有微纳凹凸结构 17。 第一电 极层 11和第二电极层 13作为摩擦发电机的电压和电流的输出端。 下面详细 说明该摩擦发电机的制备方法。
1 )配料: 将高分子材料聚二曱基硅氧烷与固化剂道康宁 184按照重量比 为 10: 1混合均匀, 然后溶于有机溶剂正己烷, 加热到 80°C并搅拌均匀, 得 到浆料。
2 )涂布: 按照图 2所示方式涂布, 将所述浆料均匀地涂布在带有微纳 凸结构的铝箔上。 涂布辊轮转速是 50 m/min, 背辊轮转速是 50 m/min, 刮刀 与涂布辊轮的间隙是 150um。
3 )干燥固化: 对涂布有浆料的基材在 80°C干燥至高分子材料 25°C运动 粘度为 102CST, 形成高分子薄膜层-基材层层叠体。
4 )分离: 按照图 12所示方式进行分离。 通过分离辊 9A转动, 将高分 子薄膜层和基材层进行分离, 然后通过收集辊 9B转动,将分离的高分子薄膜 层收集到收集辊 9B上。 通过传送辊轮 9C, 基材 5循环使用。
5 )组装: 采用铝箔作为第二电极层 13。 在 4 )分离步骤所得高分子薄膜 未设置微纳凹凸结构的表面粘贴铝箔作为第一电极层 11 , 然后裁剪成需要的 尺寸。 按照高分子薄膜层面向第二电极层 13 层叠设置, 分别在第一电极层 11 和第二电极层 13表面引出导线, 采用塑料胶膜对摩擦发电机封装, 得到 摩擦发电机样品 6#。
摩擦发电机样品 6#在 I-V (电流 -电压 )的测量中表现出典型的开路特征。 使用周期振荡 (0.33Hz和 0.13%的形变) 的步进电机使摩擦发电机样品 6#发 生周期的弯曲和释放, 摩擦发电机样品 6#的最大输出电压和电流信号分别达 到了 100V和 6-8μΑ。
采用本发明提供的摩擦发电机的制造方法可以方便地制造出摩擦发电 机, 且制造过程筒单, 成本低; 另外, 制造出的摩擦发电机具有多种结构, 可满足多种需求, 应用范围广。
最后, 需要注意的是: 以上列举的仅是本发明的具体实施例子, 当然本 领域的技术人员可以对本发明进行改动和变型, 倘若这些修改和变型属于本 发明权利要求及其等同技术的范围之内, 均应认为是本发明的保护范围。

Claims

权 利 要 求 书
1. 一种摩擦发电机的制造方法, 包括:
1 ) 配料: 准备高分子材料的浆料;
2 )涂布: 将所述浆料均勾地涂布在平板基材上;
3 )干燥固化: 对涂布有浆料的基材进行干燥固化处理, 获得高分子薄膜 层-基材层层叠体;
4 )加热压印: 对 3 )干燥固化步骤所得高分子薄膜层 -基材层层叠体进行 加热以及凹凸压印处理, 获得带有微纳凹凸结构的高分子薄膜层 -基材层层叠 体; 以及
5 )组装: 根据 4 )加热压印步骤得到的高分子薄膜层 -基材层层叠体制成 摩擦发电机,
所述摩擦发电机包括层叠设置的第一电极层,第一高分子聚合物绝缘层, 和第二电极层; 或者所述摩擦发电机包括层叠设置的第一电极层, 第一高分 子聚合物绝缘层, 第二高分子聚合物绝缘层和第二电极层; 或者所述摩擦发 电机包括层叠设置的第一电极层, 第一高分子聚合物绝缘层, 居间电极层, 第二高分子聚合物绝缘层和第二电极层; 或者所述摩擦发电机包括层叠设置 的第一电极层, 第一高分子聚合物绝缘层, 居间薄膜层, 第二高分子聚合物 绝缘层和第二电极层;
其中, 第一电极层和第一高分子聚合物绝缘层一起, 和 /或第二电极层和 第二高分子聚合物绝缘层一起, 由 4 )加热压印步骤所得高分子薄膜层 -基材 层层叠体构成。
2. 根据权利要求 1 所述的摩擦发电机的制造方法, 其特征在于, 1 ) 配 料步骤中, 所述高分子材料是聚二曱基硅氧烷; 将高分子材料与固化剂混合 均匀后溶于有机溶剂中, 配成浆料, 所述有机溶剂是正己烷、 环己烷、 曱苯、 二曱苯、 乙酸乙酯或乙酸丁酯。
3. 根据权利要求 1 所述的摩擦发电机的制造方法, 其特征在于, 1 ) 配 料步骤中, 所述高分子材料是酚 树脂, 环氧树脂或三聚氰氨曱 树脂, 将 固化剂加入到所述高分子材料中, 配成浆料。
4. 根据权利要求 2或 3所述的摩擦发电机的制造方法, 其特征在于, 3) 干燥固化步骤中, 对涂布有浆料的基材进行加热处理, 使得高分子材料 25°C 运动粘度为 80-99CST, 固化形成高分子薄膜层-基材层层叠体。
5. 根据权利要求 1 所述的摩擦发电机的制造方法, 其特征在于, 1) 配 料步骤中, 所述高分子材料是聚乙烯、 聚丙烯、 聚苯乙烯、 聚曱基丙烯酸曱 酯、 聚氯乙烯、 尼龙、 聚碳酸酯、 聚氨酯或聚对苯二曱酸乙二醇酯; 将高分 子材料溶于有机溶剂中, 配成浆料, 所述有机溶剂是 2-曱氧基乙醇、 氯仿、 1, 1, 2-三氯乙烯、 1, 2-二曱氧基乙烷、 1, 2, 3, 4-四氢化蔡、 2-乙 氧基乙醇、 环丁砜、 嘧啶、 曱酰胺、 正己烷、 氯苯、 二氧杂环己烷、 乙腈、 二氯曱烷、 乙烯基乙二醇、 N, N -二曱基曱酰胺、 曱苯、 N, N -二曱基乙 酰胺、 曱基环己烷、 1, 2-二氯乙婦、 二曱苯、 曱醇、 环己烷或 N-曱基吡 咯烷酮。
6. 根据权利要求 1-5任一项所述的摩擦发电机的制造方法,其特征在于, 2)涂布步骤中, 采用涂布机对浆料进行涂布。
7. 根据权利要求 6所述的摩擦发电机的制造方法, 其特征在于, 2)涂 布步骤中, 通过调整涂布机的刮刀与涂布机的涂布辊轮的间隙, 调节浆料从 浆料容纳器运送到涂布辊轮的量。
8. 根据权利要求 7所述的摩擦发电机的制造方法, 其特征在于, 2)涂 布步骤中, 涂布机的涂布辊轮转速是 10-120m/min, 涂布机的背辊轮转速是
10-120m/min。
9. 根据权利要求 1-8任一项所述的摩擦发电机的制造方法,其特征在于, 4)加热压印步骤中, 采用压印机进行凹凸压印处理, 所述压印机的压印辊表 面带有微纳凹凸结构。
10. 根据权利要求 9 所述的摩擦发电机的制造方法, 其特征在于, 4) 加热压印步骤中, 进行凹凸压印处理前, 采用加热装置在 60-220°C, 将 3) 干燥固化步骤所得的高分子薄膜层-基材层层叠体进行加热处理。
11. 根据权利要求 9所述的摩擦发电机的制造方法, 其特征在于, 4)加 热压印步骤中, 压印辊表面具有 60-220 °C的温度, 对 3 )干燥固化步骤所得 的高分子薄膜层 -基材层层叠体同时进行加热和凹凸压印处理。
12. 一种摩擦发电机, 由权利要求 1-11任一项所述方法制成。
13. 一种摩擦发电机的制造方法, 包括:
1 ) 配料: 准备高分子材料的浆料;
2 )涂布: 将所述浆料均勾地涂布在带有微纳 凸结构的基材上;
3 )干燥固化: 对涂布有浆料的基材进行干燥固化处理, 获得高分子薄膜 层-基材层层叠体;
4 )分离: 将 3 )干燥固化步骤所得高分子薄膜层-基材层层叠体的高分子 薄膜层和基材层进行分离, 得到带有微纳凹凸结构的高分子薄膜层; 以及
5 )组装: 根据 4 )分离步骤得到的高分子薄膜层制成摩擦发电机, 所述摩擦发电机包括层叠设置的第一电极层,第一高分子聚合物绝缘层, 和第二电极层; 或者所述摩擦发电机包括层叠设置的第一电极层, 第一高分 子聚合物绝缘层, 第二高分子聚合物绝缘层和第二电极层; 或者所述摩擦发 电机包括层叠设置的第一电极层, 第一高分子聚合物绝缘层, 居间电极层, 第二高分子聚合物绝缘层和第二电极层; 或者所述摩擦发电机包括层叠设置 的第一电极层, 第一高分子聚合物绝缘层, 居间薄膜层, 第二高分子聚合物 绝缘层和第二电极层;
其中, 第一高分子聚合物绝缘层, 和 /或第二高分子聚合物绝缘层, 和 / 或居间薄膜层由 4 )分离步骤所得高分子薄膜层构成。
14. 根据权利要求 13 所述的摩擦发电机的制造方法, 其特征在于, 1 ) 配料步骤中, 所述高分子材料是聚二曱基硅氧烷; 将高分子材料与固化剂混 合均勾后溶于有机溶剂中, 配成浆料, 所述有机溶剂是正己烷、 环己烷、 曱 苯、 二曱苯、 乙酸乙酯或乙酸丁酯。
15. 根据权利要求 13 所述的摩擦发电机的制造方法, 其特征在于, 1 ) 配料步骤中, 所述高分子材料是酚 树脂, 环氧树脂, 或三聚氰氨曱 树脂, 将固化剂加入到所述高分子材料中, 配成浆料。
16. 根据权利要求 14或 15所述的摩擦发电机的制造方法, 其特征在于, 3)干燥固化步骤中, 对涂布有浆料的基材进行加热处理, 使得高分子材料 25°C运动粘度为 100CST以上, 固化形成高分子薄膜层-基材层层叠体。
17. 根据权利要求 13 所述的摩擦发电机的制造方法, 其特征在于, 1) 配料步骤中, 所述高分子材料是聚乙烯、 聚丙烯、 聚苯乙烯、 聚曱基丙烯酸 曱酯、 聚氯乙烯、 尼龙、 聚碳酸酯、 聚氨酯或聚对苯二曱酸乙二醇酯; 将高 分子材料溶于有机溶剂中, 配成浆料, 所述有机溶剂是 2-曱氧基乙醇、 氯 仿、 1, 1, 2-三氯乙烯、 1, 2-二曱氧基乙烷、 1, 2, 3, 4-四氢化蔡、 2 -乙氧基乙醇、 环丁砜、 嘧啶、 曱酰胺、 正己烷、 氯苯、 二氧杂环己烷、 乙 腈、 二氯曱烷、 乙烯基乙二醇、 N, N -二曱基曱酰胺、 曱苯、 N, N -二曱 基乙酰胺、 曱基环己烷、 1, 2-二氯乙婦、 二曱苯、 曱醇、 环己烷或 N-曱 基吡咯烷酮。
18. 根据权利要求 13-17任一项所述的摩擦发电机的制造方法,其特征在 于, 2)涂布步骤中, 采用涂布机对浆料进行涂布。
19. 根据权利要求 18 所述的摩擦发电机的制造方法, 其特征在于, 2) 涂布步骤中, 通过调整涂布机的刮刀与涂布机的涂布辊轮的间隙, 调节浆料 从浆料容纳器运送到涂布辊轮的量。
20. 根据权利要求 19 所述的摩擦发电机的制造方法, 其特征在于, 2) 涂布步骤中,涂布机的涂布辊轮转速是 10-120m/min,涂布机的背辊轮转速是 10-120m/min。
21. —种摩擦发电机, 由权利要求 13-20任一项所述方法制成。
PCT/CN2014/070579 2013-05-16 2014-01-14 摩擦发电机的制造方法及摩擦发电机 WO2014183477A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310181848.4 2013-05-16
CN201310181848.4A CN104167949B (zh) 2013-05-16 2013-05-16 摩擦发电机的制造方法及摩擦发电机

Publications (1)

Publication Number Publication Date
WO2014183477A1 true WO2014183477A1 (zh) 2014-11-20

Family

ID=51897653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070579 WO2014183477A1 (zh) 2013-05-16 2014-01-14 摩擦发电机的制造方法及摩擦发电机

Country Status (2)

Country Link
CN (1) CN104167949B (zh)
WO (1) WO2014183477A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110328922A (zh) * 2019-06-27 2019-10-15 东华大学 一种具有吸湿排汗功能的摩擦发电纺织品及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108696173A (zh) * 2018-03-05 2018-10-23 纳智源科技(唐山)有限责任公司 具有复合薄膜电极的摩擦发电机、制备方法及发电鞋
CN108847779B (zh) * 2018-06-20 2020-12-11 合肥工业大学 一种光驱动柔性摩擦纳米发电机及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101909858A (zh) * 2008-03-24 2010-12-08 夏普株式会社 纳米压印薄膜的制造方法、显示装置以及液晶显示装置
CN101943859A (zh) * 2010-07-13 2011-01-12 苏州苏大维格光电科技股份有限公司 一种卷对卷紫外纳米压印装置及方法
WO2011066535A1 (en) * 2009-11-30 2011-06-03 Pinkerton Joseph F Piezoelectric energy conversion assemblies
CN102709464A (zh) * 2012-05-23 2012-10-03 国家纳米科学中心 一种氧化锌纳米发电机及其制造方法
CN202679272U (zh) * 2012-07-20 2013-01-16 纳米新能源(唐山)有限责任公司 压电和摩擦电混合薄膜纳米发电机
CN202818150U (zh) * 2012-09-20 2013-03-20 纳米新能源(唐山)有限责任公司 纳米摩擦发电机
CN202856656U (zh) * 2012-05-15 2013-04-03 纳米新能源(唐山)有限责任公司 一种摩擦发电机以及摩擦发电机机组
CN103107737A (zh) * 2013-01-23 2013-05-15 北京大学 压电摩擦复合式微纳发电机及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348617A (ja) * 2005-06-17 2006-12-28 Noda Corp 建築用下地材の製造方法
KR101343415B1 (ko) * 2011-05-31 2013-12-20 국방과학연구소 다층 폴리우레탄 구조물 및 이의 제조방법
TW201310081A (zh) * 2011-08-25 2013-03-01 Nat Univ Tsing Hua 微奈米複合結構及其製作方法
CN102909900A (zh) * 2012-10-26 2013-02-06 西安交通大学 一种填充环氧树脂基阻尼材料的波纹结构夹层板及其制备方法
CN202904631U (zh) * 2012-11-12 2013-04-24 纳米新能源(唐山)有限责任公司 一种与电子阅读器通信的电子标签

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101909858A (zh) * 2008-03-24 2010-12-08 夏普株式会社 纳米压印薄膜的制造方法、显示装置以及液晶显示装置
WO2011066535A1 (en) * 2009-11-30 2011-06-03 Pinkerton Joseph F Piezoelectric energy conversion assemblies
CN101943859A (zh) * 2010-07-13 2011-01-12 苏州苏大维格光电科技股份有限公司 一种卷对卷紫外纳米压印装置及方法
CN202856656U (zh) * 2012-05-15 2013-04-03 纳米新能源(唐山)有限责任公司 一种摩擦发电机以及摩擦发电机机组
CN102709464A (zh) * 2012-05-23 2012-10-03 国家纳米科学中心 一种氧化锌纳米发电机及其制造方法
CN202679272U (zh) * 2012-07-20 2013-01-16 纳米新能源(唐山)有限责任公司 压电和摩擦电混合薄膜纳米发电机
CN202818150U (zh) * 2012-09-20 2013-03-20 纳米新能源(唐山)有限责任公司 纳米摩擦发电机
CN103107737A (zh) * 2013-01-23 2013-05-15 北京大学 压电摩擦复合式微纳发电机及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110328922A (zh) * 2019-06-27 2019-10-15 东华大学 一种具有吸湿排汗功能的摩擦发电纺织品及其制备方法
CN110328922B (zh) * 2019-06-27 2021-08-31 东华大学 一种具有吸湿排汗功能的摩擦发电纺织品及其制备方法

Also Published As

Publication number Publication date
CN104167949B (zh) 2016-03-23
CN104167949A (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
Nurmakanov et al. Structural and chemical modifications towards high-performance of triboelectric nanogenerators
WO2014044077A1 (zh) 多层高功率纳米摩擦发电机
Zhang et al. High-performance triboelectric nanogenerator with double-surface shape-complementary microstructures prepared by using simple sandpaper templates
US9812993B2 (en) Single electrode triboelectric generator
US9178446B2 (en) Triboelectric generator
Shin et al. Fabrication of PDMS‐based triboelectric nanogenerator for self‐sustained power source application
WO2013170651A1 (zh) 一种摩擦发电机及摩擦发电机组
CN110995050B (zh) 放电摩擦发电机
WO2015024392A1 (zh) 发电效果改善的摩擦发电机及其制备方法
TWI445183B (zh) 肖特基二極體及其製備方法
JP7254092B2 (ja) 摩擦電気発電素子及びその製造方法
WO2015109720A1 (zh) 一种基于压电聚合物微结构阵列的俘能器制造方法
CN203301397U (zh) 摩擦发电机
CN202949379U (zh) 高功率纳米摩擦发电机
CN103856096B (zh) 高功率纳米摩擦发电机及其制备方法
WO2013142552A1 (en) Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices
TW201436311A (zh) 金屬化介電膜之方法
WO2013181952A1 (zh) 压电和摩擦电混合纳米发电机
WO2014183477A1 (zh) 摩擦发电机的制造方法及摩擦发电机
Jing et al. A flexible semitransparent dual-electrode hydrogel based triboelectric nanogenerator with tough interfacial bonding and high energy output
WO2014005434A1 (zh) 一种磁场驱动的纳米摩擦发电机
CN104340950B (zh) 具有微纳结构的薄膜制备方法及采用该薄膜的摩擦发电机
CN108847779B (zh) 一种光驱动柔性摩擦纳米发电机及其制备方法
KR102052907B1 (ko) 하이브리드 방식의 전력발전소자 및 이의 제조방법
CN113421778A (zh) 一种柔性微型超级电容器及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14798564

Country of ref document: EP

Kind code of ref document: A1