WO2014183423A1 - 信道信息反馈的方法和设备 - Google Patents

信道信息反馈的方法和设备 Download PDF

Info

Publication number
WO2014183423A1
WO2014183423A1 PCT/CN2013/088709 CN2013088709W WO2014183423A1 WO 2014183423 A1 WO2014183423 A1 WO 2014183423A1 CN 2013088709 W CN2013088709 W CN 2013088709W WO 2014183423 A1 WO2014183423 A1 WO 2014183423A1
Authority
WO
WIPO (PCT)
Prior art keywords
beamformer
channel
information
beam receiver
indication information
Prior art date
Application number
PCT/CN2013/088709
Other languages
English (en)
French (fr)
Inventor
杨讯
罗毅
李靖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES13884902T priority Critical patent/ES2903152T3/es
Priority to EP21197990.1A priority patent/EP3989451A1/en
Priority to EP13884902.1A priority patent/EP2963840B1/en
Priority to JP2016513200A priority patent/JP6205667B2/ja
Publication of WO2014183423A1 publication Critical patent/WO2014183423A1/zh
Priority to US14/942,912 priority patent/US10469148B2/en
Priority to US16/586,439 priority patent/US20200052762A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content

Definitions

  • the present application claims priority to Chinese Patent Application filed on May 16, 2013, the Chinese Patent Office, the application number is 201310181047.8, and the invention is entitled “Channel Information Feedback Method and Apparatus”. This is incorporated herein by reference.
  • the present invention relates to the field of wireless communication technologies, and in particular, to a method and device for channel information feedback.
  • a multi-input and multi-output system refers to constructing multi-dimensional spatial resources by using multiple antennas in a wireless communication system, and these multi-dimensional spatial resources form multiple parallel paths to transmit multiple Road signal to increase the data transmission rate. If the transmitting end of the signal can know the channel information from the transmitting end to the receiving end, the transmitting end can pass beamforming.
  • Beamforming, BF for short technology enhances the signal-to-noise ratio of the channel, thereby improving the signal reception performance at the receiving end.
  • the receiving end may feed back the channel information to the transmitting end.
  • the transmitting end may be a beamformer (Beamformer), and the receiving end may be a beam receiver (beamf ormee); the beamformer usually has only one, which sends an empty data packet.
  • Beamformer Beamformer
  • Beamf ormee beam receiver
  • the beamformer usually has only one, which sends an empty data packet.
  • the present invention provides a method and device for channel information feedback to implement channel feedback of multiple transmitting ends.
  • a method for channel information feedback including:
  • the beamformer transmits a channel measurement frame to the beam receiver
  • the beamformer receives channel feedback information from the beam receiver or other beamformer, the channel feedback information is obtained by the beam receiver according to the channel measurement frame, and the channel feedback information includes: Channel information associated with the beamformer, and channel information associated with the other beamformers;
  • the channel information includes: channel information fed back by the beam receiver of the basic service group, and channel information fed back by the beam receiver of the basic service group.
  • the beamformer is a main beamformer; before the beamformer receives channel feedback information from the beam receiver or other beamformer, The method includes: the beamformer transmitting sequence indication information, so that the other beamformers transmit channel measurement frames for acquiring the channel information according to an order specified by the sequence indication information.
  • the sequence indication information specifies an order, specifically indicating that the other beamformers are locally executed by the previous beamformer The channel measurement frame is not sent until after the feedback process.
  • the sequence indicates the sequence specified by the information, specifically, indicating that the other beamformer performs the sending in the previous beamformer. After the channel measurement frame, the channel measurement frame is started to be transmitted.
  • a fourth possible implementation after the beamformer sends the sequence indication information, before the channel feedback information is obtained, The beamformer transmits a data packet transmission end identifier, and the data packet transmission end identifier is used to notify the beam receiver that the other beamformers have transmitted the channel measurement frame.
  • the sequence indication information is carried by the beamformer
  • the channel is measured in a frame.
  • the beamformer is a sub-beamformer; before the beamformer receives channel feedback information from the beam receiver or other beamformer, The method includes: the beamformer receiving first sequence indication information, and transmitting a channel measurement frame to the beam receiver according to an order specified by the first sequence indication information.
  • the beamformer receiving the first sequence indication information including: the beamformer receiving another beamformer The first sequence indication information; or, the beamformer acquires the first sequence indication information carried in the channel information that the beam receiver feeds back to another beamformer.
  • the beamformer sends a channel measurement frame to the beam receiver according to an order specified by the first sequence indication information
  • the method includes: the beamformer starts transmitting the channel measurement frame after the previous beamformer in the time domain performs the local feedback process.
  • the beamformer sends a channel measurement frame to the beam receiver according to the sequence specified by the first sequence indication information, The method includes: the beamformer starts transmitting the channel measurement frame after the previous beamformer in the time domain performs the transmission of the channel measurement frame.
  • the method when the beamformer sends the channel measurement frame, the method further includes: if the beamformer Determining, according to the first sequence indication information, that it is the last data packet indicated in the first sequence indication information, sending a data packet sending end identifier to the beam receiver, where the data packet sending end identifier is used for Notifying the beam receiver that all beamformers transmit channel measurement frames are all over.
  • the beamformer is from the beam receiver or other beamformer
  • the method further includes: the beamformer transmitting frequency indication information to the beam receiver, so that the beam receiver feeds back the channel information on a frequency indicated by the frequency indication information.
  • a method for channel information feedback including:
  • the beam receiver receives the channel measurement frame sent by the beamformer
  • the beam receiver performs channel estimation according to the channel measurement frame to obtain channel feedback information, and sends the channel feedback information to the beamformer;
  • the channel feedback information includes: channel information associated with a beamformer of the basic service group, and channel information associated with a beamformer across the basic service group.
  • the method further includes: sending, by the beam receiver, the beamformer
  • the sequence indication information is such that the beamformer transmits the channel measurement frame in accordance with the order specified by the sequence indication information.
  • the method before the beam receiver sends the channel feedback information to the beamformer, the method further includes: the beam receiver determining the received channel measurement The frame is the last beamformer indicated in the sequence indication information.
  • the beam receiver determines that the received channel measurement frame is the last beamformer indicated in the sequence indication information
  • the method includes: the beam receiver corresponding to the received channel measurement frame
  • the beamformer identifier is compared with the sequence indication information to determine that the beamformer is the last beamformer; or the beam receiver determines that the beamformer is the last according to the received packet transmission end identifier
  • the packet transmission end identifier is used to notify the beam receiver that all beamformers have transmitted the channel measurement frame.
  • the beam receiver sends the channel feedback information to the beamformer
  • the method includes: the beam receiver transmitting channel feedback information to the main beamformer; or the beam receiver transmitting channel feedback information to a beamformer transmitting the channel measurement frame.
  • the method before the beam receiver sends the channel feedback information to the beamformer, the method further includes: the beam receiver receiving the beam Frequency indication information transmitted by the shaper; the beam receiver feeds back the channel information on a frequency indicated by the frequency indication information.
  • the beam receiver sends the channel feedback information to the beamformer
  • the method includes: the beam receiver transmitting, to the beamformer of the basic service group, first channel information in the channel feedback information, where the first channel information is channel information related to a beamformer of the basic service group. After the indefinite time interval, the beam receiver feeds back second channel information in the channel feedback information, where the second channel information is channel information related to a beamformer across a basic service group, where The two channel information is fed back to the beamformer of the present basic service group or the beamformer across the basic service group.
  • a beamformer comprising:
  • An information sending unit configured to send a channel measurement frame to the beam receiver
  • An information acquiring unit configured to receive channel feedback information from the beam receiver or another beamformer, where the channel feedback information is obtained by the beam receiver according to the channel measurement frame; the channel feedback information includes : channel information associated with the beamformer, and channel information associated with the other beamformers; The channel information includes: channel information fed back by a beam receiver of the basic service group, and channel information fed back by a beam receiver of the basic service group.
  • the beamformer is a main beamformer; the beamformer further includes: a sequence indication unit, configured to send sequence indication information, so that the other The beamformer transmits a channel measurement frame for acquiring the channel information in accordance with an order specified by the sequence indication information.
  • the sequence indicating information sent by the sequence indication unit is specified by an order, specifically indicating that the other beam former is in front
  • a beamformer begins transmitting the channel measurement frame after performing a local feedback flow.
  • the sequence indicating information sent by the sequence indication unit is in a specified order, specifically indicating that the other beam former is in front
  • the channel measurement frame is started to be transmitted.
  • the method further includes: an end indication unit, configured to send a data packet sending end identifier, where the data packet sending end identifier is used to notify the The beamformer described that the other beamformers have all transmitted the channel measurement frame.
  • the sequence indication unit specifically, the sequence indication information Carrying in the channel measurement frame transmitted by the beamformer.
  • the beamformer is a sub-beamformer; the beamformer further includes: an indication receiving unit, configured to receive the first sequence indication information; And a unit, configured to send a channel measurement frame to the beam receiver according to an order specified by the first sequence indication information.
  • the indication receiving unit is specifically configured to receive the first sequence indication information sent by another beamformer; or acquire the first part carried in the channel information that is sent by the beam receiver to another beamformer A sequence of instructions.
  • the method further includes: an indication sending unit, configured, when the data packet sending unit sends a channel measurement frame to the beam receiver And transmitting, to the beam receiver, second order indication information, where the second sequence indication information includes at least an order in which the other beamformers after the beamformer transmit the channel measurement frame.
  • the data packet sending unit is specifically configured to: after the previous beamformer in the time domain performs the local feedback process The transmission of the channel measurement frame begins.
  • the data packet sending unit is specifically configured to perform the sending the channel measurement by using a previous beamformer in the time domain. After the frame, the channel measurement frame is started to be transmitted.
  • the method further includes: an end notification unit, configured to determine, according to the first sequence indication information, that the first And sequentially transmitting, to the beam receiver, a data packet transmission end identifier, where the data packet transmission end identifier is used to notify the beam receiver that all beamformers transmit the channel measurement frame. Both ends.
  • the method further includes: a frequency indication unit, configured to send to the beam receiver
  • the frequency indication information is such that the beam receiver feeds back the channel information on a frequency indicated by the frequency indication information.
  • a beam receiver including:
  • An information receiving unit configured to receive a channel measurement frame sent by the beamformer
  • An information sending unit configured to perform channel estimation according to the channel measurement frame to obtain channel feedback Information, and transmitting the channel feedback information to the beamformer;
  • the channel feedback information includes: channel information related to a beamformer of the basic service group, and a beamformer related to a basic service group Channel information.
  • the method further includes: a sequence indication unit, configured to send sequence indication information to the beamformer, so that the beamformer specifies the information according to the sequence indication information
  • the channel measurement frame is transmitted sequentially.
  • the method further includes: an ending determining unit, configured to determine, before the information sending unit sends channel feedback information to the beamformer
  • the resulting channel measurement frame is the last beamformer indicated in the sequence indication information.
  • the ending determining unit is configured to: identify a beamformer identifier corresponding to the received channel measurement frame, and the sequence indication information Comparing, determining that the beamformer is the last beamformer; or determining that the beamformer is the last beamformer according to the received packet transmission end identifier, and the data packet transmission end identifier is used for notification
  • the beam receivers all of the beamformers have already transmitted the channel measurement frames.
  • the information sending unit is specifically configured to send channel feedback information to the main beamformer;
  • the beamformer of the channel measurement frame transmits channel feedback information.
  • the method further includes: an indication receiving unit, configured to receive frequency indication information sent by the beamformer; Specifically, the channel information is fed back on the frequency indicated by the frequency indication information.
  • the information sending unit is specifically configured to send the channel to a beamformer of the basic service group.
  • First channel information in the feedback information the first channel information is related to the base The beamformer-related channel information of the service group; after the unequal time interval, the beam receiver feeds back the second channel information in the channel feedback information, where the second channel information is related to the cross-basic service group Beamformer related channel information, the second channel information being fed back to the beamformer of the basic service group or the beamformer across the basic service group.
  • the method and device for channel information feedback provided by the present invention obtain channel feedback information, and the channel feedback information includes: channel information related to the beamformer and channel information related to other beamformers, and implements multiple transmitters. Channel feedback.
  • FIG. 1 is a schematic flowchart 1 of a method for channel information feedback according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart 2 of a method for channel information feedback according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a NDPR format in another embodiment of a method for channel information feedback according to the present invention
  • FIG. 5 is a schematic flowchart of still another embodiment of a method for channel information feedback according to the present invention
  • FIG. 7 is a schematic flowchart of still another embodiment of a method for channel information feedback according to the present invention
  • FIG. 1 is a schematic flowchart 1 of a method for channel information feedback according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart 2 of a method for channel information feedback according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a NDPR format in another embodiment of a method for channel information feedback according to the present invention
  • FIG. 5 is a schematic flowchart of still another embodiment
  • FIG. 8 is a schematic flowchart of still another embodiment of a method for channel information feedback according to the present invention
  • 9 is a schematic flowchart of still another embodiment of a method for channel information feedback according to the present invention
  • FIG. 10 is a schematic flowchart of still another embodiment of a method for channel information feedback according to the present invention
  • 12 is a schematic structural view of an embodiment of a beamformer according to the present invention
  • FIG. 13 is a schematic structural view of another embodiment of a beamformer according to the present invention.
  • FIG. 14 is a schematic structural view of still another embodiment of a beamformer according to the present invention.
  • FIG. 15 is a schematic structural view of still another embodiment of a beamformer according to the present invention.
  • 16 is a schematic structural diagram of an embodiment of a beam receiver according to the present invention
  • 17 is a schematic diagram showing the physical structure of an embodiment of a beamformer according to the present invention
  • FIG. 18 is a schematic diagram of the physical structure of an embodiment of a beam receiver according to the present invention.
  • the method for channel information feedback in the embodiment of the present invention is applicable to a case where there are multiple senders, for example, the transmitter is a beamformer, the receiver is a beam receiver, and the number of beamformers is at least two. At this time, the at least two beamformers may need to acquire channel information between each and the beam receiver. At this time, the channel feedback may be performed according to the method of channel information feedback in the embodiment of the present invention.
  • BSS Basic service Set
  • BFer 1 and BFer 2 two beamformers
  • BFee 1 and BFee 2 two beam receivers
  • BSS basic service set
  • BFee 1 and BFee 2 two beam receivers
  • BSS basic service set
  • BFee 1 and BFee 2 Associated with BFer 2 to form another BSS
  • BERS 1 beam receiver of BFer 1 BERS 1 beam receiver of BFer 1
  • BFee 2 can be called BFer 1 cross-BSS beam receiver
  • BFer 1 can be called the BSS beamformer of BFee 1
  • BFer 2 can be called BFee 1 cross-BSS beamformer.
  • the method of channel feedback is described by taking the above two beamformers (BFer 1 and BFer 2 ) and two beam receivers (BFee 1 and BFee 2 ) as examples.
  • the specific implementation is not limited thereto.
  • the number of beamformers at the transmitting end and the number of beam receivers at the receiving end may be more than two.
  • the method for channel information feedback in the embodiment of the present invention is also applicable.
  • the channel feedback information obtained by the beamformer includes: channel information related to the beamformer itself, and channel information related to other beamformers; the channel information includes: For its BSS beam receiver feedback Channel information, and channel information fed back by the beam receiver of the BSS. And, the beam receiver receives the channel feedback information directly from the beam receiver, or receives from other beamformers.
  • the channel feedback information received by BFer 1 includes: channel information related to BFer 1 itself, and channel information related to BFer 2 .
  • the related channel information described herein includes: channel information fed back with a beam receiver (ie, BFee 1 ) belonging to the BSS of BBF 1 (the channel information is BFer 1 and BFee 1) Channel information corresponding to the channel between the channel; and channel information fed back to the beam receiver (ie, BFee 2) of the BCS 1 (the channel information is channel information corresponding to the channel between BFer 1 and BFee 2).
  • the related channel information described herein includes: channel information fed back with a beam receiver (ie, BFee 2) belonging to the BBS of BBF 2 (the channel information is BFer 2 and BFee) Channel information corresponding to the channel between 2); and channel information fed back with the beam receiver (ie, BFee 1) belonging to the BSS 2 (the channel information is channel information corresponding to the channel between BFer 2 and BFee 1) .
  • FIG. 1 is a schematic flowchart 1 of a method for channel information feedback according to an embodiment of the present invention.
  • BFer 1 is a primary beamformer (Pr imary Beamformer)
  • BFer 2 is a secondary beamformer
  • both BFer 1 and BFer 2 need to acquire channel information with each beam receiver (BFee 1 and BFee 2), and both need to transmit NDP for channel estimation by the receiver.
  • the two beamformers BFer 1 and BFer 2 transmit NDP in sequence, and the sequence of NDP transmission is controlled by the main beam former BFer 1.
  • FIG. 2 is a schematic flowchart 2 of a method for channel information feedback according to an embodiment of the present invention.
  • the method for channel information feedback in this embodiment includes:
  • BFer 1 sends NDPA and NDP
  • the NDP Announcement (NDPA Announcement, NDPA) and NDP can usually be received by both BFee 1 and BFee 2, and the indication in NDPA needs to be based on the next NDP.
  • a beam receiver that measures a channel and feeds back channel information may include a beam receiver BFee 1 of its own BSS for BFer 1 and a beam receiver BFee 2 across the BSS.
  • BFee 1 After receiving the NDPA and NDP sent by BFer 1, BFee 1 knows that BFer 1 needs the BFee 1 feedback channel information according to the indication of NDPA, and then BFee 1 obtains channel information according to the NDP estimation channel.
  • the BFee 1 may send the channel information to the BFer 1 after receiving the fixed time of the NDP, for example, the fixed time is a short frame interval (Short Inter-frame Space, referred to as S IFS ) or a PCF frame interval (PCF Inter-frame Space). , referred to as: PIFS).
  • S IFS Short Inter-frame Space
  • PCF Inter-frame Space PCF Inter-frame Space
  • BFer 1 sends BF-Pol 1 frame to BFee 2;
  • the BFer 1 After receiving the channel information fed back by the BFee 1 of the BSS, the BFer 1 determines whether the received channel information is correct. If it is correct, continue to send the BF-Pol l frame to the next beam receiver, such as BFee 2; if the judgment result is part or all of the channel information error, send the BF-Pol l frame to BFer 1 if time permits. To regain the wrong part.
  • the BFee 2 estimates the channel according to the NDP and feeds back the channel information to the BFer 1;
  • BFee 2 according to the indication in the NDPA sent by the previously received BFer 1, knows that it also feeds back channel information to BFer 1, then BFee 2 also obtains channel information according to the NDP estimation channel, and receives the first time from the channel information. After the Poll frame of BFer 1, the channel information is sent to BFer 1. Similarly, if the BFee 2 continues to receive the Po l l frame from the BFer 1, the corresponding channel information is retransmitted according to the indication content of the Pol l frame.
  • BFer 1 has performed its corresponding local feedback process (ie, BFer 1, s Phase ), and the local feedback process includes: BFer 1 acquires channel information fed back by its BSS beam receiver BFee 1 and beam across BSS Channel information fed back by the receiver BFee 2.
  • the local feedback process is only the channel information fed back by the beam receiver of the BSS.
  • BFer 1 s Phase, that is, in the order of sending NDP, it is BFer. 1 is sent first and then sent after BFer 2.
  • the BFer 1 of the present embodiment is a main beamformer, and the order in which the two beamformers BFer 1 and BFer 2 transmit NDP is controlled by BFer 1.
  • BFer 1 may control the sequence: BFer 1 may carry sequence indication information in at least one of the foregoing NDPA, NDP or BF-Poll frames; the sequence indication information is used to cause other beamformers to follow the indication
  • the information is specified in the order in which the NDP is sent.
  • the order indicated by the sequence indication information is "BFer 1 - BFer 2" (the embodiment of the present invention does not limit the specific setting form of the sequence indication information), and then the BFer 1 transmits the BFer 2 first.
  • the sequential indication information carried by the BFer 1 in the NDPA, NDP or BF-Pol l frame can be received by other beamformers, and the other beamformers can be executed in the specified order.
  • each beamformer cannot receive information from each other, for example, BFer 2 cannot receive the NDPA, NDP or BF-Pol l frame sent by BFer 1, then BFer 2 cannot know the sequence indication information carried in it.
  • a beam receiver such as BFee 1 and BFee 2 may be configured to carry the above sequence when feeding back channel information.
  • BFee 1 carries the sequence indication information when feedback channel information is transmitted in 202, so that BFer 2 can receive the beam receiver from the beam receiver.
  • the above sequence indication information is obtained in the feedback.
  • each beamformer can be set to transmit NDPA, NDP or BF-Pol l frames.
  • the indication information is carried, and the indication information may be received by another beamformer or received by the beam receiver and carried in the feedback information. Specifically, then see BFer V s Phase:
  • BFer 2 sends NDPA and NDP
  • the BFer 2 may be a sequence indication information transmitted by another beamformer (the other beamformer is, for example, a main beamformer, or a beamformer before the BFer 2 in the time domain) Or, the sequence indicator information carried by the receiving beam receiver when feeding back channel information to another beamformer, which can make the BFer 2 know which of the beamformers is in the order in which the NDP is transmitted. BFer 2 can indicate the order according to the order In the order specified by the information, NDPA and NDP are sent.
  • BFer 2 when transmitting NDPA and NDP, may indicate, in NDPA, a beam receiver of the BSS that needs to measure the channel according to the next NDP, and may also send NDPA, NDP, and BF-Po ll frames in the BFer 2 At least one of the carrying sequence indication information. If the sequence indication information received by the BFer 2 is referred to as the first sequence indication information, and the sequence indication information sent by the BFer 2 is referred to as the second sequence indication information, the first sequence indication information and the second sequence indication information They may be the same or different, for example including at least the order of other beamformers that transmit NDP after BFer 2 in the time domain.
  • the sequence of the embodiment indicates the order specified by the information, specifically indicating that the other beamformers start transmitting the NDP after the previous beamformer performs the local feedback flow.
  • BFer 2 sends NDP after BFer 1 has completed BFer s Phase.
  • BFee 2 feeds back channel information to BFer 1;
  • the channel information that the BFee 2 feeds back to the BFer 1 is obtained by estimating the channel after receiving the NDPA and the NDP sent by the BFer 2, and is the channel information corresponding to the channel between the BFee 2 and the BFer 2; In the following embodiments, the channel information of all the beam receivers is fed back to the main beamformer BFer 1 .
  • the way in which the receivers use BFer 1 as the feedback destination address is only an alternative.
  • BFer 1 sends a BF-Pol l frame to BFee 1;
  • the main beamformer BFer 1 is also responsible for determining whether all the channel information is correct, and if the error is BFer 1 to the wrong one. Part of the BF-Pol l frame requires the associated beam receiver to retransmit. If judged correctly, the BFer 1 will continue to send the BF-Pol l frame to the next beam receiver, BFee 1 ⁇ 2.
  • BFee 1 feeds back channel information to BFer 1.
  • BFer 1 has received channel information fed back by all beam receivers.
  • the channel information associated with BFer 2 e.g., channel information received in 206 and 208 may also be transmitted to BFer 2, and the specific transmission may be determined according to the actual transmission mode.
  • the NDPA+NDP is sent by the beamformer as an example, but in actual implementation, the beamformer only needs to transmit the channel for the beam receiver.
  • the estimated channel measurement frame is ok, and the channel measurement frame is not limited to NDPA+NDP.
  • the beam receiver may pass the preamble of the frame or Pilots are used to estimate and obtain channel information and feed back channel information to the beam receiver.
  • the signaling indication may be added in a data frame or a management frame (including the form of NDPA+NDP) sent by the beamformer for channel estimation, so as to make the non-essential basic service set
  • the beam receiver receives and effectively listens for signals from beamformers of other basic service sets. After the beam receiver receives the frame, although the source of the frame is not the BSS, the beam receiver still reads the frame completely and calculates the channel information according to the preamble or pilot of the frame.
  • a specific way may be to add a bi t in the leading SIG field to indicate that the frame needs to be read by the STA across the BSS.
  • Such indication information can be carried not only in the SIG domain, but also through the phase rotation of the SIG domain or the bit of the service domain or the frame control b i t.
  • this embodiment is described by taking two beam receivers as an example. Therefore, to obtain channel information fed back by the two beam receivers, a BF-Po ll frame needs to be transmitted, but the number of beam receivers is not limited in the specific implementation. The number may also be one; for example, if the scene is two BFers and one BFee, then neither of the two BFers need to send BF-Pol to the BFee to obtain channel information.
  • FIG. 3 is a schematic flowchart of another embodiment of a method for channel information feedback according to the present invention.
  • This embodiment only describes differences between the foregoing embodiments, and other similar steps will not be described in detail.
  • the main difference between this embodiment and the above embodiment is that the main beam former
  • the sequence indication information controlled by BFer 1 specifically indicates that the other beamformers start to transmit NDP after the previous beamformer performs the transmission of the NDP, that is, each beamformer completes the NDP in the NDP Phase stage shown in FIG.
  • the transmission, and then the start of the feedback of the beam receiver feedback is not unified, as in the above embodiment, each beamformer performs its own feedback flow.
  • the sequence indication information sent by the BFer 1 in this embodiment may be carried in the NDPA or may be carried in an empty data packet request (NDP Reques t, hereinafter referred to as NDPR), for example, by NDPR,
  • NDPR empty data packet request
  • the sequence indication information transmitted by BFer 1 can be received by other secondary beamformers such as BFer 2, and NDPA and NDP are transmitted in the order specified by the indication information.
  • FIG. 4 is a schematic diagram of an NDPR format in another embodiment of a method for channel information feedback according to the present invention. It can be multiplexed with the NDPA format to indicate the sequence of subsequent beamformers.
  • STA Info is information about the beamformer, such as the AID is the identifier of the beamformer, and the Nc Index is the reserved bit.
  • the beam receiver it is determined whether the front NDP Phase is completed, and whether the beam receiver can start to perform the Feedback Phase; the manner of the judgment, optionally, the beam receiver can be based on the previously received NDPA or NDPR
  • the indicated sequence indication information compares the beamformer identifier of the currently transmitted NDP, determines whether the beamformer is the last beamformer indicated in the sequence indication information; or may be, according to the data packet transmission end identifier sent by the beamformer To determine if the continuous transmission of each beamformer is over (either the main beamformer transmission or the secondary beamformer transmission).
  • the beam receiver BFee 2 has previously received the sequence indication information sent by the BFer 1, and the indication information includes the identifiers of the beamformers and their order; when the BFee 2 receives the NDPA and NDP sent by the BFer 2, Carrying the BFer 2 logo, BFee 2 is based on By comparing the identifier with the sequence indication information, it can be determined that the current BFD 2 transmitting the NDP is already the last beamformer, and therefore, the BFee 2 can start to perform feedback of the channel information.
  • the main beamformer BFer 1 can receive the NDP transmitted by the other sub-beamformers, that is, it can know whether other beamformers have performed the process of transmitting the NDP; when the BFer 1 knows that the BFer 2 has After transmitting the NDPA and the NDP, the BFer 1 may send a data packet end identifier, where the data packet end identifier is, for example, an empty indication NDPR, to notify the beam receiver that all beamformers have transmitted the null data packet, and receive The device can start to feed back.
  • the data packet end identifier is, for example, an empty indication NDPR
  • the sequence indication information sent by the main beamformer BFer 1 can be received by the BFer 2, and the BFer 2 can determine that it is the last data packet indicated in the sequence indication information according to the sequence indication, then the BFer 2
  • the packet end identifier may be sent at the same time as or after the NDPA and the NDP are sent, for notifying the beam receiver that all the beamformers are transmitting the null data packet, and the channel information may be started.
  • the beamformer sets indication information in the respective channel measurement frames sent to indicate whether the current channel measurement frame needs to be immediately received by the beam receiver.
  • T means that the response of the beam receiver is not required immediately
  • '0 which means that the channel measurement frame is the last channel measurement frame, and then it is desired to obtain the response of the corresponding beam receiver.
  • '0' in the channel measurement frame also corresponds to a packet transmission end identifier.
  • the mode shown in FIG. 3 may be executed by default when receiving the sequence indication information sent by the BFer 1. Alternatively, it may be determined according to a certain feature or identifier that the sequential manner of each beamformer shown in FIG. 3 is continuously transmitted instead of the sequential manner shown in FIG. 1, for example, the sequence indication information is carried in the NDPR, the beam The receiver determines, according to the carrying position of the sequence indication information, that is, the NDPR, that the method shown in FIG. 3 is adopted, that is, the channel information is not immediately fed back, but the NDPA and NDP transmitted by other beamformers that follow are continued, until all the beams are received. The molder sends the end.
  • a sequence type identifier may also be carried.
  • the order indicated by the bit “0" indicates that the sequence indication information is in the manner shown in FIG. 1, and the bit "1" indicates that the sequence indication information indicates The order is Figure 3. The way shown.
  • the beam receiver of this embodiment needs to save the previously estimated channel information before performing the Feedback Phase. For example, before the feedback, the BFee 2 saves the channel information corresponding to the channel between the BFee 2 and the BFer 1, and the BFee 2 Channel information corresponding to the channel between the BFer 2.
  • the channel information transmitted by the beam receiver to the beamformer associated with itself includes the channel information obtained by the NDP estimation sent by all beamformers received by the beam receiver, such as BF Repor ts shown in FIG. (BFer 1 and BFer 2), that is, channel information between BFee 2 and BFer 1 described above, and channel information between BFee 2 and BFer 2.
  • the specific form of sending may be in the form of frame aggregation, or continuous multi-frame feedback.
  • this embodiment does not limit the order of feedback of channel information by each beam receiver in the Feedback Phase.
  • FIG. 3 shows that BFee 2 first feeds back channel information to BFer 1 , and after BFer 1 transmits BF-Pol 1 frame.
  • BFee 1 re-feedback channel information to BFer 1; alternatively, BFee 1 may feed back channel information to BFer 1 , and BFee 2 feeds back channel information to BFer 1 after receiving BF-Pol 1 frame.
  • FIG. 5 is a schematic flowchart diagram of still another embodiment of a method for channel information feedback according to the present invention.
  • each beam receiver when the channel information is fed back, each beam receiver is sent at intervals in the time domain, such as shown in FIG. BFee 1 first feeds back channel information to BFer 1 , and BFee 2 feeds back channel information to BFer 1.
  • each beam receiver can simultaneously feed back channel information, which is to distinguish the feedback of different beam receivers from the frequency domain.
  • the main beam former BFer 1 may transmit frequency indication information to the beam receiver before the channel feedback information is acquired, so that the beam receiver feeds back the channel information on the frequency indicated by the frequency indication information.
  • BFer 1 transmits BF-Pol 1 frames to multiple beam receivers on different frequency channels (for example, ⁇ and f 2 ) (this is equivalent to BFer 1 to indicate frequency indication information fl or F2 is sent to the beam receiver).
  • Beam connection After receiving the BF-Pol l frame, the receiver feeds back all the channel information of the beam receiver to the beamformer BFer 1 on the corresponding frequency channel.
  • Orthogonal Frequency Division Multiple Access can be implemented by using Orthogonal Frequency Division Multiple Access (OFDMA): BFer 1 uses OFDMA to transmit different BF-Pol 1 frames in multiple frequency bands, corresponding beams. The receiver simultaneously feeds back channel information to BFer 1 using the uplink OFDMA.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • BFer 1 may also use OFDM to transmit BF-Pol 1 frames, but may carry frequency indication information in the BF-Pol l frame, where the frequency indication information indicates which frequency bands the beam receiver can feed back channel information.
  • the beam receiver feeds back the channel information on the frequency indicated by the frequency indication information.
  • FIG. 6 is a schematic flowchart of still another embodiment of the method for channel information feedback according to the present invention.
  • FIG. 7 is a schematic flowchart of still another embodiment of a method for channel information feedback according to the present invention.
  • the beam receiver sends back channel information to the main beamformer BFer 1 as an example.
  • each beamformer obtains channel information related to the beamformer from the beam receiver, that is, obtains channel feedback of the beam receiver associated with itself, and then shares the acquisition through the shared channel between the beamformers.
  • the channel information that is, the channel information related to other beamformers is obtained from other beamformers.
  • BFer 1 and BFer 2 each perform their own feedback flow to obtain channel information related to themselves. Taking BFer 1 as an example, the BFer 1 obtains the channel information fed back by BFee 1 and the channel fed back by BFee 2. Information, obtained in a similar way to Figure 1, will not be detailed.
  • BFee 1 or BFee 2 after receiving a DFPA and NDP transmitted by a beamformer such as BFer 1, the channel information corresponding to the channel between the beamformers and the beamformer is fed back to the beamformer.
  • each beamformer can share the channel information acquired by itself to other beamformers through physical channels or logical channels.
  • BFer 2 can transmit its own acquired channel information to BFer 1 through the shared channel.
  • each beamformer pair The error of the feedback channel information received by each is responsible, that is, for the part that needs to be retransmitted, it is the beamformer responsible for interrogating the beam receiver associated with itself.
  • the main beamformer and the secondary beamformer may be divided, and the main beamformer controls the sending order of the two beamformers; for example,
  • the main beamformer BFer 1 carries the sequence indication information when transmitting the NDPA and the NDP, and the beam receiver may also carry the sequence indication information in the feedback frame of the channel information, so that the other beamformers send in the order specified by the indication information. NDPA and NDP.
  • BFer 1 and BFer 2 shown in FIG. 7 it is also possible to perform the inter-day J-sequence, that is, BFer 1 and BFer 2 respectively acquire relevant channel information independently, without dividing the main beamformer and the second. Beamformer.
  • each of the beamformers in the above embodiments sequentially controls the transmission of NDPA and
  • FIG. 8 is a schematic flowchart of still another embodiment of a method for channel information feedback according to the present invention, which is an improvement of FIG. 3, and BFee 2 compares itself with BFer 1 and BFer 2 respectively.
  • the channel information is sent to the BFer 2 of its own BSS, and the BFee 1 transmits its own measured channel information corresponding to BFer 1 and BFer 2 to the BFer 1 of its own BSS;
  • FIG. 9 is a method for channel information feedback of the present invention.
  • the BFer 1 sends a BF-Pol l frame to the BFee 1 on the frequency channel fl, and the BFee 1 transmits its own measured channel information corresponding to BFer 1 and BFer 2 to its own BSS.
  • BFer 2 transmits BF-Po ll frames to BFee 2 on frequency channel f 2 , and BFee 2 transmits its own measured channel information corresponding to BFer 1 and BFer 2 to BFer 2 of its own BSS.
  • the beamformer acquires a part of the channel feedback information from the beam receiver, and acquires another part of the channel feedback information from the other beamformers, a part of the The other part is more flexible.
  • BFer 1 obtains a portion of the channel feedback information from the beam receiver (including BFee 1 and BFee 2) (ie, channel information fed back by BFee 1 and feedback from BFee 2) Channel information), obtaining another part of the channel feedback information from other beamformers (ie, BFer 2) (ie, B Fee 1 in FIG. 7 and channel information fed back by BFee 2 to BFer 2), ie, beamformer slave beam receiver Part of the acquisition is related to itself and is the channel between the beam receiver and itself.
  • a part of the channel feedback information obtained by the BFer 2 from the beam receiver BFee 2 (BF Repaor ts (BFer 1 and BFer 2)) is not all related to BFer 2 itself, and only BFee 2 and The channel information of the channel between BFer 2 is related to BFer 2, and the channel information of the channel between BFee 2 and BFer 1 is related to BFer 1.
  • Figure 9 is the same.
  • FIG. 10 is a schematic flowchart of still another embodiment of a method for channel information feedback according to the present invention.
  • this embodiment not only does the time for each beamformer to transmit NDPA and NDP, but no time sequence between the beamformers, and , and the time for each beam receiver to feedback channel information is no longer constrained.
  • each beamformer and its beam receiver of the BSS are implemented according to an existing channel feedback procedure, and after transmitting NDPA and NDP, channel information fed back by the beam receiver of the BSS is received.
  • channel information fed back by the beam receiver of the BSS is received.
  • BFee 1 feeds back the channel information of BFer 1.
  • the other part of the channel information such as the channel information that BFee 1 feeds back to BFer 2
  • the indefinite time interval here means that the beam receiver can flexibly use the channel idle time to feed back the channel information of the beamformer to make better use of time.
  • the beam receiver feeds back the estimated channel information of the beamformer of the adjacent BSS to the beamformer.
  • BFee 1 feeds back the estimated channel information with BFer 2 to BFer 2.
  • the beamformer can also flexibly utilize the BF-Poll frame to interrogate the beam receiver to obtain channel information across the beamformer.
  • FIG. 11 is a schematic flowchart of still another embodiment of a method for channel information feedback according to the present invention.
  • the beam receiver may also feed back the channel information of the beamformer of the neighboring BSS to the beam of the BSS.
  • the former for example, BFee 1 feeds back the estimated channel information with BFer 2 to BFer 1. It can be seen from the above FIG. 10 and FIG. 11 that the beam receiver can be separately fed back in time when feeding back the channel feedback information to the beamformer; for example, the beam receiver is directed to the present
  • a beamformer of the BSS transmits first channel information in the channel feedback information, the first channel information is channel information related to a beamformer of the BSS; and after an indefinite time interval, the beam receiver feedbacks
  • the second channel information in the channel feedback information the second channel information is channel information related to a beamformer across the BSS, and the second channel information is fed back to the beamformer of the BSS or across the BSS Beamformer.
  • the indefinite time interval here may be that the beam receiver transmits using the channel idle time.
  • Each of the above embodiments is an optional channel information feedback method. These methods can also be applied to other wireless communication systems that acquire channel usage rights based on a competitive method.
  • the present embodiment provides a beamformer that can perform the method of channel information feedback in any of the embodiments of the present invention.
  • the beamformer includes a data packet transmitting unit and a information acquiring unit, wherein the data packet transmitting unit is configured to send a channel measurement frame to the beam receiver; the information acquiring unit is configured to receive channel feedback from the beam receiver or other beamformers Information, the channel feedback information is obtained by the beam receiver according to the channel measurement frame, and the channel feedback information includes: channel information related to the beamformer, and other beamformer related channels.
  • the channel information includes: channel information fed back by the beam receiver of the basic service group, and channel information fed back by the beam receiver of the basic service group.
  • the beamformer can be either a primary beamformer or a secondary beamformer, or it can be any beamformer that does not distinguish between primary and secondary.
  • FIG. 12 is a schematic structural diagram of an embodiment of a beamformer according to the present invention.
  • the beamformer is, for example, a main beamformer, as shown in FIG. 12, and may include: an information acquiring unit 1201, a sequence indicating unit 1202;
  • the information obtaining unit 1201 is configured to acquire channel feedback information, where the channel feedback information includes: channel information related to the beamformer, and channel information related to other beamformers; a sequence indication unit 1202, configured to send Ordering information to make the other The beamformer transmits a channel measurement frame for acquiring channel information in accordance with the order specified by the sequence indication information.
  • the order indication unit 1202 sends the sequence instruction information to specify the sequence, specifically, instructing the other beamformers to start transmitting the channel measurement frame after the previous beamformer performs the local feedback process.
  • the order indicating unit 1202 sends the sequence instruction information to specify an order, specifically, instructing the other beamformers to start transmitting the channel measurement after the previous beamformer performs the transmission of the channel measurement frame. frame.
  • the sequence indication unit 1202 may specifically carry the sequence indication information in a channel measurement frame sent by the beamformer, where the channel measurement frame is, for example, at least one of the following: beamforming polling BF-Po ll frame , null packet declaration, null packet and null packet request, or data frame or management frame with channel measurement function (the channel estimation sequence is the same as the number of antennas or larger than the number of antennas, or the number of rich pilots).
  • the channel estimation sequence is the same as the number of antennas or larger than the number of antennas, or the number of rich pilots.
  • the information acquiring unit 1201 is specifically configured to receive the channel feedback information from the beam receiver.
  • FIG. 13 is a schematic structural diagram of another embodiment of a beamformer according to the present invention.
  • the sequence indicating unit 1202 sends the sequence indicating information
  • the sequence is specified, specifically indicating that the other beamformers are executed in the previous beamformer.
  • the beamformer may further include: an end indication unit 1203, configured to send a data packet end identifier, where the data packet end identifier is used to notify the The beamformer described that the other beamformers have all transmitted the channel measurement frame.
  • FIG. 14 is a schematic structural diagram of still another embodiment of a beamformer according to the present invention.
  • the beamformer is, for example, a sub-beamformer.
  • the method may include: an information acquiring unit 1201, an indication receiving unit 1204, and a data packet sending unit. 1205; Among them,
  • the information obtaining unit 1201 is configured to acquire channel feedback information, where the channel feedback information includes: channel information related to the beamformer, and channel information related to other beamformers;
  • the indication receiving unit 1204 is configured to receive the first sequence indication information;
  • the data packet sending unit 1205 is configured to send a channel measurement frame to the beam receiver according to the sequence specified by the first sequence indication information.
  • the indication receiving unit 1204 is specifically configured to receive the first sequence indication information sent by another beamformer; or acquire the channel information that is sent by the beam receiver to another beamformer.
  • the first sequence of instructions indicates information.
  • the method further includes: an indication sending unit 1206, configured to: when the data packet sending unit sends a channel measurement frame to the beam receiver, send second sequence indication information to the beam receiver, where the second The sequence indication information includes at least an order in which the other beamformers after the beamformer transmit the data packets.
  • the data packet sending unit 1205 is specifically configured to start sending the channel measurement frame after the previous beam shaper in the time domain performs the local feedback process.
  • the data packet sending unit 1205 is specifically configured to start sending the channel measurement frame after the previous beam shaper in the time domain performs the transmission of the channel measurement frame.
  • the method further includes: an ending notification unit 1207, configured to send data to the beam receiver after determining, according to the first sequence indication information, that the self is the last data packet indicated in the first sequence indication information
  • the packet transmission end identifier is used to notify the beam receiver that all beamformers transmit the channel measurement frame to end.
  • a beamformer may further include: a frequency indicating unit 1208, configured to send frequency indication information to the beam receiver, so that the beam receiver is in the frequency indication The channel information is fed back on the frequency indicated by the information.
  • a frequency indicating unit 1208 can also be included in the beamformer shown in Figs. 12 and 13.
  • the information acquiring unit 1201 is specifically configured to acquire a part of the channel feedback information from the beam receiver, from the other beamformers. Obtaining another portion of the channel feedback information.
  • the information acquiring unit 1201 is configured to acquire the channel from the beam receiver.
  • the part of the feedback information is specifically channel information for receiving the beam receiver feedback of the basic service group; and the other part is different from the channel information fed back by the beam receiver of the basic service group by an indefinite time interval.
  • FIG. 16 is a schematic structural diagram of an embodiment of a beam receiver according to the present invention.
  • the beam receiver may include: an information receiving unit 1605 and an information sending unit 1601, where the information receiving unit 1605 is configured to receive a beamformer.
  • the channel feedback information includes: The beamformer-related channel information of the basic service group, and the channel information associated with the beamformer across the basic service group.
  • the method further includes: a sequence indication unit 1602, configured to send sequence indication information to the beamformer, so that the beamformer sends a channel measurement frame according to the sequence specified by the sequence indication information.
  • a sequence indication unit 1602 configured to send sequence indication information to the beamformer, so that the beamformer sends a channel measurement frame according to the sequence specified by the sequence indication information.
  • the method further includes: an ending determining unit 1603, configured to determine, before the information sending unit sends channel feedback information to the beamformer, that the received channel measurement frame is the last beam indicated in the sequence indication information Molding machine.
  • the ending determining unit 1603 is configured to compare the beamformer identifier corresponding to the received channel measurement frame with the sequence indication information, and determine that the beamformer is the last beamformer; or, according to The received packet transmission end identifier determines that the beamformer is the last beamformer, and the packet transmission end identifier is used to notify the beam receiver that all beamformers have transmitted the channel measurement frame.
  • the information sending unit 1601 is specifically configured to send channel feedback information to the main beamformer; or send channel feedback information to a beamformer that transmits a channel measurement frame.
  • the method further includes: an indication receiving unit 1604, specifically configured to receive frequency indication information sent by the beamformer; the information sending unit 1601 is specifically configured to use the frequency index The channel information is fed back on the frequency indicated by the information.
  • the information sending unit 1601 is specifically configured to send, to the beamformer of the basic service group, first channel information in the channel feedback information, where the first channel information is a beam with the basic service group. a profiler-related channel information; after an indefinite time interval, the beam receiver feeds back second channel information in the channel feedback information, the second channel information being related to a beamformer across a basic service group Channel information, the second channel information is fed back to the beamformer of the basic service group or the beamformer across the basic service group.
  • the beamformer includes a transmitter 1701, a receiver 1702, a memory 1703, and a transmitter 1701, a receiving 1702, and a memory 1703, respectively.
  • the beam authenticizer may include a common component such as an antenna, a baseband processing component, a medium-frequency processing component, and an input/output device.
  • the embodiment of the present invention does not impose any limitation here.
  • the memory 1703 stores a set of program codes
  • the processor 1704 is configured to call the program code stored in the memory 1703 to perform the following operations:
  • a channel measurement frame is transmitted to the beam receiver through the transmitter 1701, and channel feedback information is received from the beam receiver or other beamformer through the receiver 1702, the channel feedback information being measured by the beam receiver according to the channel Performing channel estimation on the frame;
  • the channel feedback information includes: channel information related to the beamformer, and channel information related to other beamformers;
  • the channel information includes: beam receiver feedback of the basic service group Channel information, and channel information fed back by the beam receiver of the basic service group.
  • the beamformer can be a primary beamformer or a secondary beamformer, or it can be any beamformer that does not distinguish between primary and secondary.
  • the processor 1704 can transmit sequence indication information to cause the other beamformers to transmit channel measurement frames for acquiring channel information according to the order specified by the sequence indication information.
  • the sequence indicates the order in which the information is specified, specifically indicating that the other beamformers begin transmitting channel measurement frames after the previous beamformer has performed the local feedback flow.
  • the sequence indicates the order specified by the information, specifically indicating that the other beamformer starts transmitting the channel measurement frame after the previous beamformer performs the transmission of the channel measurement frame.
  • the processor 1704 can receive the first sequence indication information, and send the channel measurement frame to the beam receiver according to the sequence specified by the first sequence indication information. For example, it is specifically configured to receive the first sequence indication information sent by another beamformer; or obtain the first sequence indication information carried in the channel information that the beam receiver feeds back to another beamformer.
  • the processor 1704 sends second sequence indication information to the beam receiver, where the second sequence indication information includes at least a beamformer.
  • the subsequent beamformers send the sequence of the data packets.
  • the processor 1704 may determine, according to the first sequence indication information, that it is the last data packet indicated in the first sequence indication information, and send a data packet end identifier to the beam receiver.
  • the data packet transmission end identifier is used to notify the beam receiver that all beamformers transmit the channel measurement frame to end.
  • FIG. 18 is a schematic diagram of the physical structure of an embodiment of a beam receiver according to the present invention.
  • the beam receiver includes a transmitter 1801, a receiver 1802, a memory 1803, and a transmitter 1801, a receiving 1802, and a memory 1803, respectively.
  • the beam authenticizer may include a common component such as an antenna, a baseband processing component, a medium-frequency processing component, and an input/output device.
  • the embodiment of the present invention does not impose any limitation here.
  • a set of program codes is stored in the memory 1803, and the processor 1804 is configured to call the save
  • the program code stored in the storage 1803 is used to perform the following operations:
  • the feedback information includes: channel information associated with the beamformer of the basic service group, and channel information associated with the beamformer across the basic service group.
  • the processor 1804 can send sequence indication information to the beamformer to cause the beamformer to transmit a channel measurement frame according to the sequence specified by the sequence indication information.
  • the processor 1804 determines that the received channel measurement frame is the last beamformer indicated in the sequence indication information. For example, the processor 1804 compares the beamformer identifier corresponding to the received channel measurement frame with the sequence indication information, and determines that the beamformer is the last beamformer; or, according to the received packet transmission end The identification determines that the beamformer is the last beamformer, and the data packet transmission end identifier is used to notify the beam receiver that all beamformers have transmitted the channel measurement frame.
  • the processor 1804 receives the frequency indication information sent by the beamformer, and feeds back the channel information on the frequency indicated by the frequency indication information.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the above-described method embodiments; and the foregoing storage medium includes: various media that can store program codes, such as ROM, RAM, disk or optical disk.

Abstract

本发明提供一种信道信息反馈的方法和设备,其中方法包括:波束成型器获取信道反馈信息,所述信道反馈信息包括:与所述波束成型器相关的信道信息、以及其他波束成型器相关的信道信息;所述信道信息包括:本基本服务组的波束接收器反馈的信道信息、以及跨基本服务组的波束接收器反馈的信道信息。本发明实现了多发送端的信道反馈。

Description

信道信息反馈的方法和设备 本申请要求于 2013 年 05 月 16 日提交中国专利局、 申请号为 201310181047.8、发明名称为 "信道信息反馈的方法和设备"的中国专利申请 的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及无线通讯技术领域, 具体涉及一种信道信息反馈的方法和 设备。
背景技术 多入多出系统 ( Mul t iple Input Mul t iple Output , 简称: MIMO )在 无线通信系统中是指利用多天线构建多维的空间资源, 这些多维空间资源 形成多个并行通路, 以传送多路信号来提升数据的传输速率。 如果信号的 发送端可以知道发送端到接收端的信道信息, 则发送端可以通过波束成形
( Beamforming , 简称: BF )技术增强该信道的信噪比, 从而提升接收端的 信号接收性能。 当前使发送端获得信道信息的方法有多种, 例如可以是, 由接收端反馈信道信息至发送端。
现有技术中, 发送端可以是波束成型器(Beamformer ), 接收端可以是 波束接收器( Beamf ormee ); 该波束成型器通常只有一个, 其发送空数据包
( Nul l Data Packet , 简称: NDP )给波束接收器, 波束接收器根据该 NDP 估计与波束成型器之间的信道, 并将得到的信道信息反馈给波束成型器。 随着网络整体吞吐量需求的急剧增长, 从多个发送端的角度来增加吞吐量 成为一个重要趋势, 即波束成型器的数量将发展为多个。 但是, 当前尚没 有支持多个波束成型器场景下的信道反馈机制。 发明内容 本发明提供一种信道信息反馈的方法和设备, 以实现多发送端的信道 反馈。
第一方面, 提供一种信道信息反馈的方法, 包括:
波束成型器向波束接收器发送信道测量帧;
所述波束成型器从所述波束接收器或者其他波束成型器接收信道反馈 信息 , 所述信道反馈信息是所述波束接收器根据所述信道测量帧进行信道 估计得到; 所述信道反馈信息包括: 与所述波束成型器相关的信道信息、 以及所述其他波束成型器相关的信道信息;
所述信道信息包括: 本基本服务组的波束接收器反馈的信道信息、 以 及跨基本服务组的波束接收器反馈的信道信息。
结合第一方面, 在第一种可能的实现方式中, 所述波束成型器是主波 束成型器; 在所述波束成型器从所述波束接收器或者其他波束成型器接收 信道反馈信息之前, 还包括: 所述波束成型器发送顺序指示信息, 以使得 所述其他波束成型器根据所述顺序指示信息规定的顺序发送用于获取所述 信道信息的信道测量帧。
结合第一方面的第一种可能的实现方式, 在第二种可能的实现方式 中, 所述顺序指示信息规定的顺序, 具体是指示所述其他波束成型器在前 一个波束成型器执行完本地反馈流程之后才开始发送所述信道测量帧。
结合第一方面的第一种可能的实现方式, 在第三种可能的实现方式 中, 所述顺序指示信息规定的顺序, 具体是指示所述其他波束成型器在前 一个波束成型器执行完发送所述信道测量帧之后, 开始发送所述信道测量 帧。
结合第一方面的第三种可能的实现方式,在第四种可能的实现方式中, 在所述波束成型器发送顺序指示信息之后, 获取信道反馈信息之前, 还包 括: 所述波束成型器发送数据包发送结束标识, 所述数据包发送结束标识 用于通知所述波束接收器所述其他波束成型器都已经发送所述信道测量 帧。
结合第一方面的第二种可能的实现方式至第四种可能的实现方式中 的任一种, 在第五种可能的实现方式中, 所述顺序指示信息携带在所述波 束成型器发送的所述信道测量帧中。
结合第一方面, 在第六种可能的实现方式中, 所述波束成型器是次波 束成型器; 在所述波束成型器从所述波束接收器或者其他波束成型器接收 信道反馈信息之前, 还包括: 所述波束成型器接收第一顺序指示信息, 并 根据所述第一顺序指示信息规定的顺序向所述波束接收器发送信道测量 帧。
结合第一方面的第六种可能的实现方式, 在第七种可能的实现方式 中, 所述波束成型器接收第一顺序指示信息, 包括: 所述波束成型器接收 另一个波束成型器发送的所述第一顺序指示信息; 或者, 所述波束成型器 获取所述波束接收器反馈给另一个波束成型器的信道信息中携带的所述第 一顺序指示信息。
结合第一方面的第六种可能的实现方式, 在第八种可能的实现方式 中, 所述波束成型器根据所述第一顺序指示信息规定的顺序向所述波束接 收器发送信道测量帧, 包括: 所述波束成型器在时域上的前一个波束成型 器执行完本地反馈流程之后才开始发送所述信道测量帧。
结合第一方面的第六种可能的实现方式, 在第九种可能的实现方式 中, 所述波束成型器根据所述第一顺序指示信息规定的顺序向所述波束接 收器发送信道测量帧, 包括: 所述波束成型器在时域上的前一个波束成型 器执行完发送所述信道测量帧之后 , 开始发送所述信道测量帧。
结合第一方面的第九种可能的实现方式, 在第十种可能的实现方式 中, 所述波束成型器发送所述信道测量帧时, 还包括: 若所述波束成型器 根据所述第一顺序指示信息, 确定自己是所述第一顺序指示信息中指示的 最后一个数据包, 则向所述波束接收器发送数据包发送结束标识, 所述数 据包发送结束标识用于通知所述波束接收器所有波束成型器发送信道测量 帧均结束。
结合第一方面至第一方面的第十种可能的实现方式中的任一种,在第 十一种可能的实现方式中, 在所述波束成型器从所述波束接收器或者其他 波束成型器接收信道反馈信息之前, 还包括: 所述波束成型器向所述波束 接收器发送频率指示信息, 以使得所述波束接收器在所述频率指示信息指 示的频率上反馈所述信道信息。
第二方面, 提供一种信道信息反馈的方法, 包括:
波束接收器接收波束成型器发送的信道测量帧;
所述波束接收器根据所述信道测量帧进行信道估计得到信道反馈信 息, 并将所述信道反馈信息发送至所述波束成型器;
所述信道反馈信息包括: 与本基本服务组的波束成型器相关的信道信 息、 以及与跨基本服务组的波束成型器相关的信道信息。
结合第二方面, 在第一种可能的实现方式中, 所述波束接收器将所述 信道反馈信息发送至所述波束成型器时, 还包括: 所述波束接收器向所述 波束成型器发送顺序指示信息, 以使得所述波束成型器根据所述顺序指示 信息规定的顺序发送信道测量帧。
结合第二方面的第一种可能的实现方式, 在第二种可能的实现方式中, 波束接收器向波束成型器发送信道反馈信息之前, 还包括: 所述波束接收 器确定接收到的信道测量帧是顺序指示信息中指示的最后一个波束成型 器。
结合第二方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述波束接收器确定接收到的信道测量帧是所述顺序指示信息中指示的最 后一个波束成型器, 包括: 所述波束接收器将接收到的信道测量帧对应的 波束成型器标识与所述顺序指示信息相比较, 确定所述波束成型器是最后 一个波束成型器; 或者, 所述波束接收器根据接收到的数据包发送结束标 识确定所述波束成型器是最后一个波束成型器, 所述数据包发送结束标识 用于通知所述波束接收器所有波束成型器已经均发送所述信道测量帧。
结合第二方面至第二方面的第三种可能的实现方式中的任一种, 在第 四种可能的实现方式中, 所述波束接收器将所述信道反馈信息发送至所述 波束成型器, 包括: 所述波束接收器向主波束成型器发送信道反馈信息; 或者, 所述波束接收器向发送信道测量帧的波束成型器发送信道反馈信息。
结合第二方面的第四种可能的实现方式, 在第五种可能的实现方式中, 所述波束接收器向波束成型器发送信道反馈信息之前, 还包括: 所述波束 接收器接收所述波束成型器发送的频率指示信息; 所述波束接收器在所述 频率指示信息指示的频率上反馈所述信道信息。
结合第二方面至第二方面的第三种可能的实现方式中的任一种, 在第 六种可能的实现方式中, 所述波束接收器将所述信道反馈信息发送至所述 波束成型器, 包括: 所述波束接收器向本基本服务组的波束成型器发送所 述信道反馈信息中的第一信道信息, 所述第一信道信息是与本基本服务组 的波束成型器相关的信道信息; 在经过不定时间间隔后, 所述波束接收器 反馈所述信道反馈信息中的第二信道信息, 所述第二信道信息是与跨基本 服务组的波束成型器相关的信道信息 , 所述第二信道信息反馈至所述本基 本服务组的波束成型器或者所述跨基本服务组的波束成型器。
第三方面, 提供一种波束成型器, 包括:
信息发送单元, 用于向波束接收器发送信道测量帧;
信息获取单元, 用于从所述波束接收器或者其他波束成型器接收信道 反馈信息 , 所述信道反馈信息是所述波束接收器根据所述信道测量帧进行 信道估计得到; 所述信道反馈信息包括: 与所述波束成型器相关的信道信 息、 以及所述其他波束成型器相关的信道信息; 所述信道信息包括: 本基本服务组的波束接收器反馈的信道信息、 以 及跨基本服务组的波束接收器反馈的信道信息。
结合第三方面, 在第一种可能的实现方式中, 所述波束成型器是主波 束成型器; 所述波束成型器还包括: 顺序指示单元, 用于发送顺序指示信 息, 以使得所述其他波束成型器根据所述顺序指示信息规定的顺序发送用 于获取所述信道信息的信道测量帧。
结合第三方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述顺序指示单元发送的所述顺序指示信息规定的顺序, 具体是指示所述 其他波束成型器在前一个波束成型器执行完本地反馈流程之后才开始发送 所述信道测量帧。
结合第三方面的第一种可能的实现方式, 在第三种可能的实现方式中, 所述顺序指示单元发送的所述顺序指示信息规定的顺序, 具体是指示所述 其他波束成型器在前一个波束成型器执行完发送所述信道测量帧之后, 开 始发送所述信道测量帧。
结合第三方面的第三种可能的实现方式, 在第四种可能的实现方式中, 还包括: 结束指示单元, 用于发送数据包发送结束标识, 所述数据包发送 结束标识用于通知所述波束接收器所述其他波束成型器已经均发送所述信 道测量帧。
结合第三方面的第二种可能的实现方式至第四种可能的实现方式中的 任一种, 在第五种可能的实现方式中, 所述顺序指示单元, 具体是将所述 顺序指示信息携带在所述波束成型器发送的所述信道测量帧中。
结合第三方面, 在第六种可能的实现方式中, 所述波束成型器是次波 束成型器; 所述波束成型器还包括: 指示接收单元, 用于接收第一顺序指 示信息; 数据包发送单元, 用于根据所述第一顺序指示信息规定的顺序向 所述波束接收器发送信道测量帧。
结合第三方面的第六种可能的实现方式, 在第七种可能的实现方式中, 所述指示接收单元, 具体是用于接收另一个波束成型器发送的所述第一顺 序指示信息; 或者, 获取所述波束接收器反馈给另一个波束成型器的信道 信息中携带的所述第一顺序指示信息。
结合第三方面的第七种可能的实现方式, 在第八种可能的实现方式中, 还包括: 指示发送单元, 用于在所述数据包发送单元向所述波束接收器发 送信道测量帧时, 向所述波束接收器发送第二顺序指示信息, 所述第二顺 序指示信息至少包括所述波束成型器之后的其他波束成型器发送所述信道 测量帧的顺序。
结合第三方面的第六种可能的实现方式, 在第九种可能的实现方式中, 所述数据包发送单元, 具体用于在时域上的前一个波束成型器执行完本地 反馈流程之后才开始发送所述信道测量帧。
结合第三方面的第六种可能的实现方式, 在第十种可能的实现方式中, 所述数据包发送单元, 具体用于在时域上的前一个波束成型器执行完发送 所述信道测量帧之后, 开始发送所述信道测量帧。
结合第三方面的第十种可能的实现方式, 在第十一种可能的实现方式 中, 还包括: 结束通知单元, 用于在根据所述第一顺序指示信息, 确定自 己是所述第一顺序指示信息中指示的最后一个数据包, 则向所述波束接收 器发送数据包发送结束标识, 所述数据包发送结束标识用于通知所述波束 接收器所有波束成型器发送所述信道测量帧均结束。
结合第三方面至第三方面的第十一种可能的实现方式中的任一种, 在 第十二种可能的实现方式中, 还包括: 频率指示单元, 用于向所述波束接 收器发送频率指示信息, 以使得所述波束接收器在所述频率指示信息指示 的频率上反馈所述信道信息。
第四方面, 提供一种波束接收器, 包括:
信息接收单元, 用于接收波束成型器发送的信道测量帧;
信息发送单元, 用于根据所述信道测量帧进行信道估计得到信道反馈 信息, 并将所述信道反馈信息发送至所述波束成型器; 所述信道反馈信息 包括: 与本基本服务组的波束成型器相关的信道信息、 以及与跨基本服务 组的波束成型器相关的信道信息。
结合第四方面, 在第一种可能的实现方式中, 还包括: 顺序指示单元, 用于向所述波束成型器发送顺序指示信息, 以使得所述波束成型器根据所 述顺序指示信息规定的顺序发送信道测量帧。
结合第四方面的第一种可能的实现方式, 在第二种可能的实现方式中, 还包括: 结束确定单元, 用于在所述信息发送单元向波束成型器发送信道 反馈信息之前, 确定接收到的信道测量帧是所述顺序指示信息中指示的最 后一个波束成型器。
结合第四方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述结束确定单元, 用于将接收到的信道测量帧对应的波束成型器标识与 所述顺序指示信息相比较, 确定所述波束成型器是最后一个波束成型器; 或者, 根据接收到的数据包发送结束标识确定所述波束成型器是最后一个 波束成型器, 所述数据包发送结束标识用于通知所述波束接收器所有波束 成型器已经均发送所述信道测量帧。
结合第四方面至第四方面的第三种可能的实现方式, 在第四种可能的 实现方式中, 所述信息发送单元, 具体用于向主波束成型器发送信道反馈 信息; 或者, 向发送信道测量帧的波束成型器发送信道反馈信息。
结合第四方面的第四种可能的实现方式, 在第五种可能的实现方式中, 还包括: 指示接收单元, 具体用于接收所述波束成型器发送的频率指示信 息; 所述信息发送单元, 具体用于在所述频率指示信息指示的频率上反馈 所述信道信息。
结合第四方面至第四方面的第三种可能的实现方式, 在第六种可能的 实现方式中, 所述信息发送单元, 具体是用于向本基本服务组的波束成型 器发送所述信道反馈信息中的第一信道信息, 所述第一信道信息是与本基 本服务组的波束成型器相关的信道信息; 在经过不定时间间隔后, 所述波 束接收器反馈所述信道反馈信息中的第二信道信息, 所述第二信道信息是 与跨基本服务组的波束成型器相关的信道信息 , 所述第二信道信息反馈至 所述本基本服务组的波束成型器或者所述跨基本服务组的波束成型器。
本发明提供的信道信息反馈的方法和设备通过获取信道反馈信息, 所 述信道反馈信息包括: 与所述波束成型器相关的信道信息、 以及其他波束 成型器相关的信道信息, 实现了多发送端的信道反馈。
附图说明 图 1为本发明信道信息反馈的方法一实施例的流程示意图一; 图 2为本发明信道信息反馈的方法一实施例的流程示意图二; 图 3为本发明信道信息反馈的方法另一实施例的流程示意图; 图 4为本发明信道信息反馈的方法另一实施例中的 NDPR格式示意图; 图 5为本发明信道信息反馈的方法又一实施例的流程示意图; 图 6为本发明信道信息反馈的方法又一实施例的流程示意图; 图 7为本发明信道信息反馈的方法又一实施例的流程示意图; 图 8为本发明信道信息反馈的方法又一实施例的流程示意图; 图 9为本发明信道信息反馈的方法又一实施例的流程示意图; 图 10为本发明信道信息反馈的方法又一实施例的流程示意图; 图 11为本发明信道信息反馈的方法又一实施例的流程示意图; 图 12为本发明波束成型器一实施例的结构示意图;
图 1 3为本发明波束成型器另一实施例的结构示意图;
图 14为本发明波束成型器又一实施例的结构示意图;
图 15为本发明波束成型器又一实施例的结构示意图;
图 16为本发明波束接收器实施例的结构示意图; 图 17为本发明波束成型器实施例的实体结构示意图;
图 18为本发明波束接收器实施例的实体结构示意图。
具体实施方式 本发明实施例的信道信息反馈的方法适用于具有多个发送端的情况, 比如, 该发送端是波束成型器, 接收端是波束接收器, 并且波束成型器的 数量是至少两个, 此时该至少两个波束成型器可能都需要获取各自与波束 接收器之间的信道信息, 此时就可以按照本发明实施例的信道信息反馈的 方法来执行信道反馈。
其中, 在存在多个波束成型器时, 可能存在多个基本服务组 (Bas i c Serv i ce Set , 简称: BSS )。 例如, 假设存在两个波束成型器(分别是 BFer 1和 BFer 2 )和两个波束接收器(分别是 BFee 1和 BFee 2 ) , 可以是将 BFee 1关联到 BFer 1组成一个 BSS , 将 BFee 2关联到 BFer 2组成另一个 BSS; 对于 BFer 1来说, BFee 1可以称为 BFer 1的本 BSS的波束接收器, BFee 2可以称为 BFer 1的跨 BSS的波束接收器; 同理, 对于 BFee 1来说, BFer 1可以称为 BFee 1的本 BSS的波束成型器, BFer 2可以称为 BFee 1 的跨 BSS的波束成型器。
在如下的本发明各实施例中,以上述的两个波束成型器(BFer 1和 BFer 2 )和两个波束接收器(BFee 1 和 BFee 2 ) 为例, 来对信道反馈的方法进 行说明, 但是具体实施中并不局限于此, 比如发送端的波束成型器和接收 端的波束接收器的数量均可以多于两个, 本发明实施例的信道信息反馈的 方法同样适用。
本发明各实施例中, 波束成型器所获得的信道反馈信息, 包括: 与该 波束成型器自己相关的信道信息、 以及其他波束成型器相关的信道信息; 所述的信道信息包括: 对于波束成型器来说, 其本 BSS 的波束接收器反馈 的信道信息、 以及跨 BSS 的波束接收器反馈的信道信息。 并且, 波束接收 器接收该信道反馈信息是从波束接收器直接接收, 或者是从其他波束成型 器接收。 以上述的例子说明, 比如, BFer 1接收的信道反馈信息, 包括: 与 BFer 1 自己相关的信道信息、 以及 BFer 2相关的信道信息。
在与 BFer 1 自己相关的信道信息中,这里所述的相关的信道信息包括: 与 BFer 1属于本 BSS的波束接收器(即 BFee 1 )反馈的信道信息 (该信道 信息是 BFer 1与 BFee 1之间的信道对应的信道信息) ; 以及与 BFer 1属 于跨 BSS的波束接收器(即 BFee 2 )反馈的信道信息 (该信道信息是 BFer 1与 BFee 2之间的信道对应的信道信息) 。
同理, 在 BFer 2相关的信道信息中, 这里所述的相关的信道信息包括: 与 BFer 2属于本 BSS的波束接收器(即 BFee 2 )反馈的信道信息 (该信道 信息是 BFer 2与 BFee 2之间的信道对应的信道信息) ; 以及与 BFer 2属 于跨 BSS的波束接收器(即 BFee 1 )反馈的信道信息 (该信道信息是 BFer 2与 BFee 1之间的信道对应的信道信息) 。
图 1 为本发明信道信息反馈的方法一实施例的流程示意图一, 如图 1 所示, 本实施例中, BFer 1是主波束成型器(Pr imary Beamformer ) , BFer 2是次波束成型器 ( Secondary Beamformer ) ; 在本实施例中, BFer 1 和 BFer 2都需要获取与各波束接收器(BFee 1和 BFee 2 )之间的信道信息, 都需要发送用于接收器进行信道估计的 NDP, 这两个波束成型器 BFer 1和 BFer 2发送 NDP是有顺序控制的, 该 NDP发送的顺序则是由主波束成型器 BFer 1来控制。
图 2为本发明信道信息反馈的方法一实施例的流程示意图二,结合图 1 和图 2所示, 本实施例的信道信息反馈的方法包括:
201、 BFer 1发送 NDPA和 NDP;
其中, 该空数据包声明 ( NDP Announcement , 简称: NDPA )和 NDP通 常可以被 BFee 1和 BFee 2都接收到, NDPA中指示需要根据接下来的 NDP 测量信道并反馈信道信息的波束接收器, 例如可以包括对于 BFer 1来说其 本 BSS的波束接收器 BFee 1、 以及跨 BSS的波束接收器 BFee 2。
202、 BFee 1根据 NDP估计信道并向 BFer 1反馈信道信息;
其中, BFee 1在接收到 BFer 1发送的 NDPA和 NDP后, 根据 NDPA的指 示得知 BFer 1需要该 BFee 1反馈信道信息, 则 BFee 1根据 NDP估计信道 得到信道信息。 BFee 1可以在接收到 NDP固定时间后, 向 BFer 1发送该信 道信息, 例如该固定时间是短帧间隔 (Shor t Inter-frame Space , 简称: S IFS )或者 PCF帧间隔 (PCF Inter-frame Space, 简称: PIFS ) 的时间长 度。
203、 BFer 1发送 BF-Pol 1帧给 BFee 2;
其中, BFer 1在接收到本 BSS的 BFee 1反馈的信道信息后, 将判断该 接收的信道信息是否正确。 如果正确, 则继续发送 BF-Pol l 帧给下一个波 束接收器, 例如 BFee 2; 如果判断结果是信道信息部分或全部错误, 则在 时间允许的情况下发送 BF-Pol l帧给 BFer 1 , 以重新获取错误的部分。
204、 BFee 2根据 NDP估计信道并向 BFer 1反馈信道信息;
其中, BFee 2根据之前接收的 BFer 1发送的 NDPA中的指示, 得知其 也要向 BFer 1反馈信道信息, 则 BFee 2也会根据 NDP估计信道得到信道 信息, 并在第一次接收到来自 BFer 1的 Pol l帧后, 向 BFer 1发送信道信 息。 同理,如果 BFee 2后续继续收到来自 BFer 1的 Po l l帧,则按照该 Pol l 帧的指示内容重传对应的信道信息。
至此, BFer 1已经执行完其对应的本地反馈流程(即 BFer 1, s Phase ) , 该本地反馈流程包括: BFer 1获取其本 BSS的波束接收器 BFee 1反馈的信 道信息、 以及跨 BSS的波束接收器 BFee 2反馈的信道信息。 当然, 具体实 施中, 如果只有一个 BFee , 则所述的本地反馈流程只是本 BSS的波束接收 器反馈的信道信息。
接下来将继续执行 BFer 2, s Phase, 即在发送 NDP的顺序上, 是 BFer 1先发送而 BFer 2后发送的。 如前边所说明过的, 本实施例的 BFer 1是主 波束成型器, 由 BFer 1控制这两个波束成型器 BFer 1和 BFer 2发送 NDP 的顺序。 具体的, BFer 1可以这样控制该顺序: BFer 1可以在上述的 NDPA、 NDP或者 BF-Po l l帧中的至少一个携带顺序指示信息;该顺序指示信息是用 于使得其他波束成型器根据该指示信息规定的顺序发送 NDP 的。 例如, 该 顺序指示信息规定的顺序是 "BFer 1—— BFer 2" (本发明实施例并不限 制顺序指示信息的具体设置形式) , 则据此 BFer 1先发送 BFer 2后发送。
可选的, 上述的 BFer 1在 NDPA、 NDP或者 BF-Pol l帧中携带的顺序指 示信息, 可以被其他的波束成型器接收到, 其他波束成型器就可以按照规 定的顺序执行。 当各波束成型器间不能相互接收到信息时, 比如 BFer 2不 能接收到 BFer 1发送的 NDPA、 NDP或者 BF-Pol l帧, 那么 BFer 2不能获 知到其中携带的顺序指示信息,这种情况下,可以设定波束接收器例如 BFee 1和 BFee 2在反馈信道信息时携带上上述的顺序, 例如, BFee 1在 202中 反馈信道信息时携带上顺序指示信息, 使得 BFer 2能够从该波束接收器的 反馈中获得上述顺序指示信息。
可选的, 当有更多数量的波束成型器时, 为进一步保证各波束成型器 都能接收到顺序指示信息, 可以设定每个波束成型器在发送 NDPA、 NDP或 BF-Pol l帧时, 都携带上该指示信息, 该指示信息可以被其他的波束成型器 接收,或者被波束接收器接收并携带在反馈信息中。具体的,接着参见 BFer V s Phase:
205、 BFer 2发送 NDPA和 NDP;
其中, 如上所述的, BFer 2可以是接收另一个波束成型器发送的顺序 指示信息(该另一个波束成型器例如是主波束成型器、或者时域上在该 BFer 2之前的波束成型器), 或者接收波束接收器在向另一个波束成型器反馈信 道信息时携带的顺序指示信息, 这两种方式可以使得 BFer 2知道自己的发 送 NDP的顺序是排在哪个波束成型器之后。 BFer 2可以根据该顺序指示信 息规定的顺序, 发送 NDPA和 NDP。
可选的, BFer 2在发送 NDPA和 NDP时, 可以在 NDPA中指示需要根据 接下来的 NDP测量信道的本 BSS 的波束接收器, 还可以在 BFer 2发送的 NDPA, NDP和 BF-Po l l 帧中的至少一个携带顺序指示信息。 其中, 如果将 BFer 2接收到的上述顺序指示信息称为第一顺序指示信息, 将 BFer 2发送 的顺序指示信息称为第二顺序指示信息, 则该第一顺序指示信息和第二顺 序指示信息可以相同也可以不同, 例如至少包括从时域上在 BFer 2之后发 送 NDP的其他波束成型器的顺序。
由图 1 可以看到, 本实施例的顺序指示信息规定的顺序, 具体是指示 其他波束成型器在前一个波束成型器执行完本地反馈流程之后才开始发送 NDP。 例如, BFer 2就是在 BFer 1执行完 BFer s Phase之后才发送 NDP。
206、 BFee 2向 BFer 1反馈信道信息;
其中, 该 BFee 2向 BFer 1反馈的信道信息, 是 BFee 2在接收到 BFer 2发送的 NDPA和 NDP后估计信道得到的, 是 BFee 2与 BFer 2之间的信道 对应的信道信息; 本实施例中, 是设计所有的波束接收器反馈的信道信息 都反馈至主波束成型器 BFer 1 , 当然具体实施中, 还可以有其他反馈方式, 在后续的实施例中也将说明, 本实施例的波束接收器均以 BFer 1为反馈目 的地址的方式只是一种可选的方式。
207、 BFer 1向 BFee 1发送 BF-Pol l帧;
其中,在本实施例的波束接收器均以 BFer 1为反馈目的地址的方式中, 也由主波束成型器 BFer 1负责对该所有的信道信息判断是否正确, 如果错 误则由 BFer 1对错误的部分用 BF-Pol l帧要求相关的波束接收器重传。 如 果判断正确则该 BFer 1将继续发送 BF-Pol l帧给下一个波束接收器即 BFee 1„
208、 BFee 1向 BFer 1反馈信道信息。
至此, BFer 1已经接收到了所有波束接收器反馈的信道信息。后续 BFer 1也可以将其接收的与 BFer 2相关的信道信息 (例如在 206和 208中接收 的信道信息)发送至 BFer 2 , 是否发送具体可以根据实际采用的传输方式 决定。
需要说明的是, 在本实施例中以及后续的本发明其他实施例中, 均是 以波束成型器发送 NDPA+NDP为例, 但是实际实施中, 波束成型器只要发送 用于波束接收器进行信道估计的信道测量帧即可, 而该信道测量帧不限于 NDPA+NDP , 例如还可以是用于信道估计的普通数据帧或者管理帧等, 波束 接收器可以通过这种帧的前导(Preamble )或者导频(P i lot )来估计和获 得信道信息 , 并将信道信息反馈至波束接收器。
进一步的, 作为一个可选特征, 可以在波束成型器发送的用于信道估 计的数据帧或者管理帧 (也包括 NDPA+NDP的形式) 中增加信令指示, 目的 是令非本基本服务集的波束接收器接收并有效侦听来自其他基本服务集的 波束成型器的信号。 波束接收器在收到该帧后, 尽管该帧来源并非本 BSS , 但波束接收器仍然会完整的读取该帧, 并根据该帧的前导或者导频计算信 道信息。 一种具体的方式可以是在前导的 SIG域中增加一个 bi t , 指示该帧 需要跨 BSS的 STA读取。 这样的指示信息不仅可以在 SIG域中, 也可以通 过 SIG域的相位旋转或者服务域的 bi t或者帧控制的 b i t等位置携带该信 息。
此外, 本实施例是以两个波束接收器为例来描述, 所以要获取这两个 波束接收器反馈的信道信息需要发送 BF-Po l l 帧, 但具体实施中并不限制 波束接收器的数量, 其数量也可能是一个; 例如, 如果场景是两个 BFer , 一个 BFee, 那么这两个 BFer都不需要发送 BF-Pol l给 BFee来获取信道信 息。
图 3 为本发明信道信息反馈的方法另一实施例的流程示意图, 本实施 例仅对与上述实施例相比的区别点进行描述, 其他相似的步骤将不再详述。 如图 3 所示, 本实施例与上述实施例相比, 主要区别在于, 主波束成型器 BFer 1 所控制的顺序指示信息, 具体是指示其他波束成型器在前一个波束 成型器执行完发送 NDP之后就开始发送 NDP ,即各个波束成型器均在图 3所 示的 NDP Phase阶段全部完成 NDP的发送, 然后再统一开始波束接收器反 馈的 Feedback Pha se , 而不是如上述实施例那样每个波束成型器都执行完 各自的反馈流程。
可选的, 本实施例的 BFer 1 发送的顺序指示信息, 可以携带在 NDPA 中或者也可以携带在空数据包请求(NDP Reques t , 简称: NDPR ) 中, 例如 由 NDPR来指示接下来还需要发送 NDPA和 NDP的次波束成型器以及这些波 束成型器的顺序。 BFer 1发送的顺序指示信息可以被其他的次波束成型器 例如 BFer 2接收到, 并根据该指示信息规定的顺序发送 NDPA和 NDP。
一种可选的 NDPA的格式参见图 4 , 图 4为本发明信道信息反馈的方法 另一实施例中的 NDPR格式示意图。 其可以复用 NDPA的格式, 用于指示后 续的波束成型器的顺序。 如图 4所示, Type Index可以用于指示类型, 例 ip , 可以设定 Type lndex=0 , 表示为 NDPA; :¾口果 Type Index=l , 表示为 NDPR; 反过来指示也可以。 当该帧指示为 NDPR时, STA Info则是波束成型 器的相关信息, 比如 AID是波束成型器的标识, Nc Index为预留位等。
对于波束接收器来说, 其要判断前边的 NDP Phase是否执行完毕, 波 束接收器是否可以开始执行 Feedback Phase; 该判断的方式, 可选的, 波 束接收器可以根据之前已经接收到的 NDPA或 NDPR指示的顺序指示信息比 较当前发送 NDP 的波束成型器标识, 判断该波束成型器是否是顺序指示信 息中指示的最后一个波束成型器; 或者也可以是, 根据波束成型器发送的 数据包发送结束标识来确定各波束成型器的连续发送是否结束(可以是主 波束成型器发送或者次波束成型器发送) 。
例如, 波束接收器 BFee 2在之前已经接收到了 BFer 1发送的顺序指 示信息, 该指示信息中包括各波束成型器的标识及其顺序; 当 BFee 2接收 到 BFer 2发送的 NDPA和 NDP时, 其中携带有 BFer 2的标识, BFee 2根据 该标识与顺序指示信息比较, 就可以确定当前发送 NDP的 BFer 2已经是最 后一个波束成型器, 因此, BFee 2就可以开始执行信道信息的反馈。
又例如, 在主波束成型器 BFer 1可以接收到其他次波束成型器发送的 NDP的情况,即其可以得知其他波束成型器是否已经执行了发送 NDP的流程; 当 BFer 1得知 BFer 2已经发送完 NDPA和 NDP后, BFer 1可以发送数据包 发送结束标识, 该数据包发送结束标识例如是空指示的 NDPR, 来通知波束 接收器所有的波束成型器已经均发送所述空数据包, 接收器可以开始反馈。
再例如, 主波束成型器 BFer 1 发送的顺序指示信息, 能够被 BFer 2 接收到, 则 BFer 2根据该顺序指示信息是可以确定自己是顺序指示信息中 指示的最后一个数据包的, 则 BFer 2可以在发送 NDPA和 NDP的同时或之 后, 发送数据包结束标识, 用于通知波束接收器所有波束成型器发送所述 空数据包均结束, 可以开始反馈信道信息。
再例如, 波束成型器在各自发送的信道测量帧中设置指示信息, 用于 指示当前的信道测量帧是否需要立即得到波束接收器的响应。 比如设置为 T 的情况代表不需要立即得到波束接收器的响应, ' 0, 代表此信道测 量帧是最后一个信道测量帧, 其后希望得到对应的波束接收器的响应。 这 种情况下, 所述的信道测量帧中的 '0, 也相当于一种数据包发送结束标识。
进一步的, 对于波束接收器来说, 可以是默认在接收到 BFer 1发送的 顺序指示信息时, 就执行图 3 所示的方式。 或者, 也可以是根据某种特征 或者标识来确定采用图 3 所示的各波束成型器连续发送的顺序方式而不是 图 1所示的顺序方式, 例如, 将顺序指示信息携带在 NDPR中, 波束接收器 根据顺序指示信息的携带位置即 NDPR来确定是采用图 3所示方式, 即不立 刻反馈信道信息, 而是继续接收紧随其后的其他波束成型器发送的 NDPA和 NDP , 直至所有波束成型器发送结束。 或者, 也可以在携带顺序指示信息之 外, 还携带一个顺序类型标识, 比如采用比特 "0" 表示顺序指示信息指示 的顺序是图 1所示的方式, 比特 " 1 " 表示顺序指示信息指示的顺序是图 3 所示的方式。
本实施例的波束接收器在执行 Feedback Phase之前, 需要保存之前已 经估计好的信道信息, 比如, BFee 2在反馈之前, 保存了 BFee 2与 BFer 1 之间的信道对应的信道信息、 以及 BFee 2与 BFer 2之间的信道对应的信 道信息。 波束接收器向与自己相关联的波束成型器发送的信道信息, 包括 了该波束接收器所接收到的所有波束成型器发送的 NDP估计得到的信道信 息, 例如图 3中所示的 BF Repor t s (BFer 1和 BFer 2) , 即上述的 BFee 2 与 BFer 1之间的信道信息、 以及 BFee 2与 BFer 2之间的信道信息。 发送 的具体形式可以采用帧聚合(aggregat ion ) 的形式, 或者也可以采用连续 的多帧反馈。
此外, 本实施例并不限制在 Feedback Phase中的各波束接收器反馈信 道信息的顺序, 例如图 3所示的是 BFee 2先反馈信道信息给 BFer 1 , 在 BFer 1发送 BF-Pol 1帧后, BFee 1再反馈信道信息给 BFer 1 ; 或者, 也可 以是 BFee 1先反馈信道信息给 BFer 1 , BFee 2在接收到 BF-Pol 1帧后再 反馈信道信息给 BFer 1。 或者, 也可以灵活采用其他方式来设置波束接收 器的反馈顺序。
图 5 为本发明信道信息反馈的方法又一实施例的流程示意图, 在上述 的实施例中, 在反馈信道信息时, 各波束接收器都是在时域上间隔发送, 比如图 1中所示的, BFee 1先反馈信道信息给 BFer 1 , BFee 2后反馈信道 信息给 BFer 1。 在本实施例中, 各波束接收器可以同时反馈信道信息, 是 从频域上来区分不同波束接收器的反馈。
如图 5所示, 主波束成型器 BFer 1在获取信道反馈信息之前, 可以向 波束接收器发送频率指示信息, 以使得波束接收器在所述频率指示信息指 示的频率上反馈信道信息。 例如, BFer 1在 NDP Phase结束后, 在不同的 频率信道上(例如 Π和 f 2 )向多个波束接收器分别发送 BF-Pol 1帧(此时 就相当于 BFer 1将频率指示信息 f l或 f2发送给波束接收器) 。 而波束接 收器在接收到该 BF-Pol l 帧后, 分别在对应的频率信道上将本波束接收器 所有的信道信息反馈给波束成型器 BFer 1。 具体可以利用正交频分多址 ( Or thogona l Frequency Divi s ion Mul t iple Acces s , 简称: OFDMA ) 实 现: BFer 1利用 OFDMA在多个频段上发送不同的 BF-Pol 1帧, 对应的波束 接收器利用上行的 OFDMA同时向 BFer 1反馈信道信息。
可选的, BFer 1也可以不利用 OFDMA来发送 BF-Pol 1帧, 但是可以在 BF-Pol l帧中携带频率指示信息,该频率指示信息指示波束接收器可以各自 在哪些频段上反馈信道信息给 BFer 1 , 波束接收器在所述频率指示信息指 示的频率上反馈信道信息, 参见图 6 , 图 6为本发明信道信息反馈的方法又 一实施例的流程示意图。
图 7 为本发明信道信息反馈的方法又一实施例的流程示意图, 在上面 的各实施例中, 均是以波束接收器向主波束成型器 BFer 1反馈信道信息为 例, 在具体实施中, 也可以是各波束成型器从波束接收器获取与该波束成 型器相关的信道信息, 即分别获取与自己相关的波束接收器的信道反馈, 然后通过各波束成型器之间的共享信道来共享获取的信道信息, 即从其他 波束成型器获取其他波束成型器相关的信道信息。
如图 7所示, BFer 1和 BFer 2各自执行自己的反馈流程, 分别获取与 自己相关的信道信息; 以 BFer 1为例, 该 BFer 1获取 BFee 1反馈的信道 信息、 以及 BFee 2反馈的信道信息, 获取方式类似图 1 , 不再详述。 对于 BFee 1或者 BFee 2来说, 其在接收到某个波束成型器例如 BFer 1发送的 NDPA和 NDP后, 就会向该波束成型器反馈与该波束成型器之间的信道对应 的信道信息。
各波束成型器获得信道信息后, 可以将自己获取的信道信息通过物理 信道或者逻辑信道共享给其他的波束成型器, 例如, BFer 2将自己获取的 信道信息可以通过共享信道传输给 BFer 1。
在这种各波束成型器各自获取信道信息的情况下, 由各波束成型器对 各自接收的反馈信道信息的错误负责, 也即, 对于需要重传的部分, 是由 各波束成型器负责询问与自己相关的波束接收器。
可选的, 图 Ί所示的 BFer 1和 BFer 2之间, 可以是分为主波束成型 器和次波束成型器, 并由主波束成型器控制这两个波束成型器的发送顺序; 例如, 主波束成型器 BFer 1在发送 NDPA和 NDP时携带顺序指示信息, 波 束接收器也可以在信道信息的反馈帧中携带所述顺序指示信息, 以使得其 他波束成型器根据该指示信息规定的顺序发送 NDPA和 NDP。 或者, 图 7所 示的 BFer 1和 BFer 2之间, 也可以是不分日于间 J侦序的, 即 BFer 1和 BFer 2各自独立获取相关的信道信息, 不划分主波束成型器和次波束成型器。
同理, 上述各实施例中的各波束成型器之间按照顺序控制发送 NDPA和
NDP的情况下, 也可以是各波束成型器分别获取各自相关的信道信息, 而不 是所有信道信息全部反馈至主波束成型器。 例如, 参见图 8和图 9 , 图 8为 本发明信道信息反馈的方法又一实施例的流程示意图, 是对图 3 的改进, BFee 2将自己测得的分别与 BFer 1和 BFer 2对应的信道信息均发送至其 本 BSS的 BFer 2 , BFee 1将自己测得的分别与 BFer 1和 BFer 2对应的信 道信息均发送至其本 BSS的 BFer 1 ; 图 9为本发明信道信息反馈的方法又 一实施例的流程示意图, BFer 1在频率信道 f l上向 BFee 1发送 BF-Pol l 帧, BFee 1将自己测得的分别与 BFer 1和 BFer 2对应的信道信息均发送 至其本 BSS的 BFer 1 ; BFer 2在频率信道 f 2上向 BFee 2发送 BF-Po l l帧, BFee 2将自己测得的分别与 BFer 1和 BFer 2对应的信道信息均发送至其 本 BSS的 BFer 2。
由图 7一图 9也可以看到, 波束成型器从波束接收器获取所述信道反馈 信息的一部分, 从所述其他波束成型器获取所述信道反馈信息的另一部分, 这里所述的一部分和另一部分是比较灵活的。
例如, 在图 7中, BFer 1从波束接收器(包括 BFee 1和 BFee 2 )获 取信道反馈信息的一部分(即 BFee 1反馈的信道信息以及 BFee 2反馈的 信道信息) , 从其他波束成型器(即 BFer 2 )获取信道反馈信息的另一部 分(即图 7中的 B Fee 1和 BFee 2向 BFer 2反馈的信道信息) , 即波束 成型器从波束接收器获取的一部分是与自己相关的, 是波束接收器与自己 之间的信道的。
又例如, 在图 8中, BFer 2从波束接收器 BFee 2获取的信道反馈信息 的一部分 ( BF Repaor t s (BFer 1和 BFer 2) )就不全是与 BFer 2 自己相关 的, 其中只有 BFee 2与 BFer 2之间的信道的信道信息是与 BFer 2相关, 而 BFee 2与 BFer 1之间的信道的信道信息是与 BFer 1相关的。 图 9同理。
图 10为本发明信道信息反馈的方法又一实施例的流程示意图, 本实施 例中, 不仅不再约束各波束成型器发送 NDPA和 NDP的时间, 即各波束成型 器之间没有时间顺序, 并且, 也不再约束各波束接收器反馈信道信息的时 间。
如图 1 0所示, 每一个波束成型器与其本 BSS的波束接收器之间按照现 有的信道反馈流程实现, 在发送 NDPA和 NDP之后就会接收本 BSS的波束接 收器反馈的信道信息, 例如 BFee 1反馈给 BFer 1 的信道信息。 而另一部 分信道信息, 例如 BFee 1反馈给 BFer 2的信道信息, 就可以间隔不定时 间间隔后发送。 这里的不定时间间隔指的是, 波束接收器可以灵活的利用 信道空闲的时间将跨波束成型器的信道信息反馈出去, 以更好有效的利用 时间。 在图 10中, 波束接收器将估计到的相邻 BSS的波束成型器的信道信 息反馈给该波束成型器, 例如, BFee 1将估计到的与 BFer 2之间的信道信 息反馈给 BFer 2。
可选的, 波束成型器也可以灵活的利用 BF-Po l l 帧, 询问波束接收器 以获得跨波束成型器的信道信息。 例如, 参见图 11 , 图 1 1为本发明信道信 息反馈的方法又一实施例的流程示意图, 波束接收器将估计到的相邻 BSS 的波束成型器的信道信息也可以反馈给本 BSS的波束成型器, 例如, BFee 1 将估计到的与 BFer 2之间的信道信息反馈给 BFer 1。 由上述的图 10和图 11 可以看到, 波束接收器在向波束成型器反馈信 道反馈信息时, 从时间上来说可以是分开反馈的; 比如, 波束接收器向本
BSS的波束成型器发送所述信道反馈信息中的第一信道信息,所述第一信道 信息是与本 BSS的波束成型器相关的信道信息; 而在经过不定时间间隔后, 波束接收器反馈所述信道反馈信息中的第二信道信息, 所述第二信道信息 是与跨 BSS 的波束成型器相关的信道信息, 所述第二信道信息反馈至所述 本 BSS的波束成型器或者跨 BSS的波束成型器。 这里的不定时间间隔可以 是波束接收器利用信道空闲的时间发送的。
上述的各实施例均是可选的信道信息反馈的方法, 这些方法也可以应 用到其他基于竟争方式获取信道使用权的无线通信系统。
本实施例提供一种波束成型器, 该波束成型器可以执行本发明任意实 施例的信道信息反馈的方法。 该波束成型器包括数据包发送单元和信息获 取单元, 其中的数据包发送单元用于向波束接收器发送信道测量帧; 信息 获取单元用于从所述波束接收器或者其他波束成型器接收信道反馈信息, 所述信道反馈信息是所述波束接收器根据所述信道测量帧进行信道估计得 到; 所述信道反馈信息包括: 与所述波束成型器相关的信道信息、 以及其 他波束成型器相关的信道信息; 所述信道信息包括: 本基本服务组的波束 接收器反馈的信道信息、 以及跨基本服务组的波束接收器反馈的信道信息。 该波束成型器可以是主波束成型器或者是次波束成型器, 或者也可以是不 区分主次的任一波束成型器。
图 12为本发明波束成型器一实施例的结构示意图, 该波束成型器例如 是主波束成型器, 如图 12所示, 可以包括: 信息获取单元 1201、 顺序指示 单元 1202 ;
其中, 信息获取单元 1201 , 用于获取信道反馈信息, 所述信道反馈信 息包括: 与所述波束成型器相关的信道信息、 以及其他波束成型器相关的 信道信息; 顺序指示单元 1202 , 用于发送顺序指示信息, 以使得所述其他 波束成型器根据所述顺序指示信息规定的顺序发送用于获取信道信息的信 道测量帧。
进一步的, 顺序指示单元 1202 ,发送的所述顺序指示信息规定的顺序, 具体是指示所述其他波束成型器在前一个波束成型器执行完本地反馈流程 之后才开始发送信道测量帧。
进一步的, 顺序指示单元 1202 ,发送的所述顺序指示信息规定的顺序, 具体是指示所述其他波束成型器在前一个波束成型器执行完发送所述信道 测量帧之后, 开始发送所述信道测量帧。
例如, 顺序指示单元 1202 , 具体可以将所述顺序指示信息携带在所述 波束成型器发送的信道测量帧中, 该信道测量帧例如是如下的至少一项: 波束成型轮询 BF-Po l l 帧、 空数据包声明、 空数据包和空数据包请求、 或 者是具有信道测量功能的数据帧或者管理帧 (其信道估计序列与天线数量 相同或者大于天线数量, 或者丰富的导频数量) 。
可选的, 信息获取单元 1201 , 具体用于从所述波束接收器接收所述信 道反馈信息。
图 13为本发明波束成型器另一实施例的结构示意图, 当顺序指示单元 1202 , 发送的所述顺序指示信息规定的顺序, 具体是指示所述其他波束成 型器在前一个波束成型器执行完发送所述信道测量帧之后, 开始发送所述 信道测量帧时, 该波束成型器还可以包括: 结束指示单元 1203 , 用于发送 数据包发送结束标识, 所述数据包发送结束标识用于通知所述波束接收器 所述其他波束成型器已经均发送所述信道测量帧。
图 14为本发明波束成型器又一实施例的结构示意图, 该波束成型器例 如是次波束成型器, 如图 14所示, 可以包括: 信息获取单元 1201、 指示接 收单元 1204和数据包发送单元 1205; 其中,
信息获取单元 1201 , 用于获取信道反馈信息, 所述信道反馈信息包括: 与所述波束成型器相关的信道信息、 以及其他波束成型器相关的信道信息; 指示接收单元 1204 , 用于接收第一顺序指示信息;
数据包发送单元 1205 , 用于根据所述第一顺序指示信息规定的顺序向 所述波束接收器发送信道测量帧。
进一步的, 所述指示接收单元 1204 , 具体是用于接收另一个波束成型 器发送的所述第一顺序指示信息; 或者, 获取所述波束接收器反馈给另一 个波束成型器的信道信息中携带的所述第一顺序指示信息。
进一步的, 还可以包括: 指示发送单元 1206 , 用于在所述数据包发送 单元向所述波束接收器发送信道测量帧时, 向所述波束接收器发送第二顺 序指示信息, 所述第二顺序指示信息至少包括所述波束成型器之后的其他 波束成型器发送所述数据包的顺序。
进一步的, 所述数据包发送单元 1205 , 具体用于在时域上的前一个波 束成型器执行完本地反馈流程之后才开始发送所述信道测量帧。
进一步的, 所述数据包发送单元 1205 , 具体用于在时域上的前一个波 束成型器执行完发送所述信道测量帧之后, 开始发送所述信道测量帧。
进一步的, 还包括: 结束通知单元 1207 , 用于在根据所述第一顺序指 示信息, 确定自己是所述第一顺序指示信息中指示的最后一个数据包, 则 向所述波束接收器发送数据包发送结束标识, 所述数据包发送结束标识用 于通知所述波束接收器所有波束成型器发送所述信道测量帧均结束。
图 15为本发明波束成型器又一实施例的结构示意图, 还可以包括: 频 率指示单元 1208 , 用于向所述波束接收器发送频率指示信息, 以使得所述 波束接收器在所述频率指示信息指示的频率上反馈所述信道信息。 当然, 在图 12和图 1 3所示的波束成型器中也可以包括该频率指示单元 1208。
可选的,在上述图 12一图 15的波束成型器中,所述信息获取单元 1201 , 具体是用于从所述波束接收器获取所述信道反馈信息的一部分, 从所述其 他波束成型器获取所述信道反馈信息的另一部分。
可选的, 所述信息获取单元 1201 , 在从所述波束接收器获取所述信道 反馈信息的一部分, 具体是用于接收本基本服务组的波束接收器反馈的信 道信息; 所述另一部分与所述本基本服务组的波束接收器反馈的信道信息 , 间隔不定时间间隔。
本实施例提供一种波束接收器, 该波束接收器可以执行本发明任意实 施例的信道信息反馈的方法。 图 16为本发明波束接收器实施例的结构示意 图, 如图 16所示, 该波束接收器可以包括: 信息接收单元 1605和信息发 送单元 1601 , 其中,信息接收单元 1605用于接收波束成型器发送的信道测 量帧; 信息发送单元 1601 , 用于根据所述信道测量帧进行信道估计得到信 道反馈信息, 并将所述信道反馈信息发送至所述波束成型器; 所述信道反 馈信息包括: 与本基本服务组的波束成型器相关的信道信息、 以及与跨基 本服务组的波束成型器相关的信道信息。
可选的, 还可以包括: 顺序指示单元 1602 , 用于向所述波束成型器发 送顺序指示信息, 以使得所述波束成型器根据所述顺序指示信息规定的顺 序发送信道测量帧。
可选的, 还可以包括: 结束确定单元 1603 , 用于在所述信息发送单元 向波束成型器发送信道反馈信息之前, 确定接收到的信道测量帧是所述顺 序指示信息中指示的最后一个波束成型器。
进一步的, 所述结束确定单元 1603 , 用于将接收到的信道测量帧对应 的波束成型器标识与所述顺序指示信息相比较, 确定所述波束成型器是最 后一个波束成型器; 或者, 根据接收到的数据包发送结束标识确定所述波 束成型器是最后一个波束成型器, 所述数据包发送结束标识用于通知所述 波束接收器所有波束成型器已经均发送所述信道测量帧。
进一步的, 所述信息发送单元 1601 , 具体用于向主波束成型器发送信 道反馈信息; 或者, 向发送信道测量帧的波束成型器发送信道反馈信息。
进一步的, 还包括: 指示接收单元 1604 , 具体用于接收所述波束成型 器发送的频率指示信息; 所述信息发送单元 1601 , 具体用于在所述频率指 示信息指示的频率上反馈所述信道信息。
进一步的, 所述信息发送单元 1601 , 具体是用于向本基本服务组的波 束成型器发送所述信道反馈信息中的第一信道信息, 所述第一信道信息是 与本基本服务组的波束成型器相关的信道信息; 在经过不定时间间隔后, 所述波束接收器反馈所述信道反馈信息中的第二信道信息, 所述第二信道 信息是与跨基本服务组的波束成型器相关的信道信息, 所述第二信道信息 反馈至所述本基本服务组的波束成型器或者所述跨基本服务组的波束成型 器。
需要说明的是, 在上述图 12—图 14所示的波束成型器中, 仅示出了图 中所示的单元, 但并不限制该波束成型器只包括这些单元, 当然也可以包 括其他的单元。
图 17为本发明波束成型器实施例的实体结构示意图, 如图 17所示, 该波束成型器包括发射机 1701、 接收机 1702、 存储器 1703以及分别与发 射机 1701、 接收 1702机和存储器 1703连接的处理器 1704。 当然, 波束诚 信器可以包括天线、 基带处理部件、 中射频处理部件、 输入输出装置等通 用部件, 本发明实施例在此不做任何限制。
其中, 存储器 1703 中存储一组程序代码, 且处理器 1704用于调用存 储器 1703中存储的程序代码, 用于执行以下操作:
通过发射机 1701 向波束接收器发送信道测量帧, 并通过接收机 1702 从所述波束接收器或者其他波束成型器接收信道反馈信息, 所述信道反馈 信息是所述波束接收器根据所述信道测量帧进行信道估计得到; 所述信道 反馈信息包括: 与所述波束成型器相关的信道信息、 以及其他波束成型器 相关的信道信息; 所述信道信息包括: 本基本服务组的波束接收器反馈的 信道信息、 以及跨基本服务组的波束接收器反馈的信道信息。 该波束成型 器可以是主波束成型器或者是次波束成型器, 或者也可以是不区分主次的 任一波束成型器。 进一步的, 处理器 1704可以发送顺序指示信息, 以使得所述其他波束 成型器根据所述顺序指示信息规定的顺序发送用于获取信道信息的信道测 量帧。 例如, 该顺序指示信息规定的顺序, 具体是指示所述其他波束成型 器在前一个波束成型器执行完本地反馈流程之后才开始发送信道测量帧。 又例如, 该顺序指示信息规定的顺序, 具体是指示所述其他波束成型器在 前一个波束成型器执行完发送所述信道测量帧之后, 开始发送所述信道测 量帧。
进一步的, 处理器 1704可以接收第一顺序指示信息; 根据所述第一顺 序指示信息规定的顺序向所述波束接收器发送信道测量帧。 例如, 具体是 用于接收另一个波束成型器发送的所述第一顺序指示信息; 或者, 获取所 述波束接收器反馈给另一个波束成型器的信道信息中携带的第一顺序指示 信息。
进一步的, 处理器 1704在所述数据包发送单元向所述波束接收器发送 信道测量帧时, 向所述波束接收器发送第二顺序指示信息, 所述第二顺序 指示信息至少包括波束成型器之后的其他波束成型器发送所述数据包的顺 序。
进一步的, 处理器 1704可以在根据所述第一顺序指示信息, 确定自己 是所述第一顺序指示信息中指示的最后一个数据包, 则向所述波束接收器 发送数据包发送结束标识, 所述数据包发送结束标识用于通知所述波束接 收器所有波束成型器发送所述信道测量帧均结束。
图 18为本发明波束接收器实施例的实体结构示意图, 如图 18所示, 该波束接收器包括发射机 1801、 接收机 1802、 存储器 1803以及分别与发 射机 1801、 接收 1802机和存储器 1803连接的处理器 1804。 当然, 波束诚 信器可以包括天线、 基带处理部件、 中射频处理部件、 输入输出装置等通 用部件, 本发明实施例在此不做任何限制。
其中, 存储器 1803 中存储一组程序代码, 且处理器 1804用于调用存 储器 1803中存储的程序代码, 用于执行以下操作:
通过接收机 1802接收波束成型器发送的信道测量帧, 根据所述信道测 量帧进行信道估计得到信道反馈信息; 并通过发射机 1801将所述信道反馈 信息发送至所述波束成型器; 所述信道反馈信息包括: 与本基本服务组的 波束成型器相关的信道信息、 以及与跨基本服务组的波束成型器相关的信 道信息。
进一步的, 处理器 1804可以向所述波束成型器发送顺序指示信息, 以 使得所述波束成型器根据所述顺序指示信息规定的顺序发送信道测量帧。
进一步的, 处理器 1804在向波束成型器发送信道反馈信息之前, 确定 接收到的信道测量帧是所述顺序指示信息中指示的最后一个波束成型器。 例如, 处理器 1804将接收到的信道测量帧对应的波束成型器标识与所述顺 序指示信息相比较, 确定所述波束成型器是最后一个波束成型器; 或者, 根据接收到的数据包发送结束标识确定所述波束成型器是最后一个波束成 型器, 所述数据包发送结束标识用于通知所述波束接收器所有波束成型器 已经均发送所述信道测量帧。
进一步的, 处理器 1804接收所述波束成型器发送的频率指示信息; 在 所述频率指示信息指示的频率上反馈所述信道信息。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分 步骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算 机可读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的步 骤; 而前述的存储介质包括: R0M、 RAM, 磁碟或者光盘等各种可以存储程 序代码的介质。

Claims

权利要求
1、 一种信道信息反馈的方法, 其特征在于, 包括:
波束成型器向波束接收器发送信道测量帧;
所述波束成型器从所述波束接收器或者其他波束成型器接收信道反馈 信息 , 所述信道反馈信息是所述波束接收器根据所述信道测量帧进行信道 估计得到; 所述信道反馈信息包括: 与所述波束成型器相关的信道信息、 以及所述其他波束成型器相关的信道信息;
所述信道信息包括: 本基本服务组的波束接收器反馈的信道信息、 以 及跨基本服务组的波束接收器反馈的信道信息。
2、 根据权利要求 1所述的方法, 其特征在于, 所述波束成型器是主波 束成型器; 在所述波束成型器从所述波束接收器或者其他波束成型器接收 信道反馈信息之前, 还包括:
所述波束成型器发送顺序指示信息, 以使得所述其他波束成型器根据 所述顺序指示信息规定的顺序发送用于获取所述信道信息的信道测量帧。
3、 根据权利要求 2所述的方法, 其特征在于, 所述顺序指示信息规定 的顺序, 具体是指示所述其他波束成型器在前一个波束成型器执行完本地 反馈流程之后才开始发送所述信道测量帧。
4、 根据权利要求 2所述的方法, 其特征在于, 所述顺序指示信息规定 的顺序, 具体是指示所述其他波束成型器在前一个波束成型器执行完发送 所述信道测量帧之后, 开始发送所述信道测量帧。
5、 根据权利要求 4所述的方法, 其特征在于, 在所述波束成型器发送 顺序指示信息之后, 获取信道反馈信息之前, 还包括:
所述波束成型器发送数据包发送结束标识, 所述数据包发送结束标识 用于通知所述波束接收器所述其他波束成型器都已经发送所述信道测量 帧。
6、 根据权利要求 3 ~ 5任一所述的方法, 其特征在于, 所述顺序指示信息携带在所述波束成型器发送的所述信道测量帧中。
7、 根据权利要求 1所述的方法, 其特征在于, 所述波束成型器是次波 束成型器; 在所述波束成型器从所述波束接收器或者其他波束成型器接收 信道反馈信息之前, 还包括:
所述波束成型器接收第一顺序指示信息, 并根据所述第一顺序指示信 息规定的顺序向所述波束接收器发送信道测量帧。
8、 根据权利要求 7所述的方法, 其特征在于, 所述波束成型器接收第 一顺序指示信息, 包括:
所述波束成型器接收另一个波束成型器发送的所述第一顺序指示信 息;
或者 , 所述波束成型器获取所述波束接收器反馈给另一个波束成型器 的信道信息中携带的所述第一顺序指示信息。
9、 根据权利要求 7所述的方法, 其特征在于, 所述波束成型器根据所 述第一顺序指示信息规定的顺序向所述波束接收器发送信道测量帧, 包括: 所述波束成型器在时域上的前一个波束成型器执行完本地反馈流程之 后才开始发送所述信道测量帧。
10、 根据权利要求 7 所述的方法, 其特征在于, 所述波束成型器根据 所述第一顺序指示信息规定的顺序向所述波束接收器发送信道测量帧, 包 括:
所述波束成型器在时域上的前一个波束成型器执行完发送所述信道测 量帧之后, 开始发送所述信道测量帧。
11、 根据权利要求 10所述的方法, 其特征在于, 所述波束成型器发送 所述信道测量帧时, 还包括:
若所述波束成型器根据所述第一顺序指示信息, 确定自己是所述第一 顺序指示信息中指示的最后一个数据包, 则向所述波束接收器发送数据包 发送结束标识, 所述数据包发送结束标识用于通知所述波束接收器所有波 束成型器发送所述信道测量帧均结束。
12、 根据权利要求 1 ~ 1 1 任一所述的方法, 其特征在于, 在所述波束 成型器从所述波束接收器或者其他波束成型器接收信道反馈信息之前, 还 包括:
所述波束成型器向所述波束接收器发送频率指示信息, 以使得所述波 束接收器在所述频率指示信息指示的频率上反馈所述信道信息。
1 3、 一种信道信息反馈的方法, 其特征在于, 包括:
波束接收器接收波束成型器发送的信道测量帧;
所述波束接收器根据所述信道测量帧进行信道估计得到信道反馈信 息, 并将所述信道反馈信息发送至所述波束成型器;
所述信道反馈信息包括: 与本基本服务组的波束成型器相关的信道信 息、 以及与跨基本服务组的波束成型器相关的信道信息。
14、 根据权利要求 1 3所述的方法, 其特征在于, 所述波束接收器将所 述信道反馈信息发送至所述波束成型器时, 还包括:
所述波束接收器向所述波束成型器发送顺序指示信息 , 以使得所述波 束成型器根据所述顺序指示信息规定的顺序发送信道测量帧。
15、 根据权利要求 14所述的方法, 其特征在于, 所述波束接收器向波 束成型器发送信道反馈信息之前, 还包括:
所述波束接收器确定接收到的信道测量帧是所述顺序指示信息中指示 的最后一个波束成型器。
16、 根据权利要求 15所述的方法, 其特征在于, 所述波束接收器确定 接收到的信道测量帧是所述顺序指示信息中指示的最后一个波束成型器, 包括:
所述波束接收器将接收到的信道测量帧对应的波束成型器标识与所述 顺序指示信息相比较, 确定所述波束成型器是最后一个波束成型器;
或者, 所述波束接收器根据接收到的数据包发送结束标识确定所述波 束成型器是最后一个波束成型器, 所述数据包发送结束标识用于通知所述 波束接收器所有波束成型器已经均发送所述信道测量帧。
17、 根据权利要求 1 3 ~ 16任一所述的方法, 其特征在于, 所述波束接 收器将所述信道反馈信息发送至所述波束成型器, 包括:
所述波束接收器向主波束成型器发送信道反馈信息; 或者,
所述波束接收器向发送信道测量帧的波束成型器发送信道反馈信息。
18、 根据权利要求 17所述的方法, 其特征在于, 所述波束接收器向波 束成型器发送信道反馈信息之前, 还包括:
所述波束接收器接收所述波束成型器发送的频率指示信息;
所述波束接收器在所述频率指示信息指示的频率上反馈所述信道信 息。
19、 根据权利要求 1 3 ~ 16任一所述的方法, 其特征在于, 所述波束接 收器将所述信道反馈信息发送至所述波束成型器, 包括:
所述波束接收器向本基本服务组的波束成型器发送所述信道反馈信息 中的第一信道信息, 所述第一信道信息是与本基本服务组的波束成型器相 关的信道信息;
在经过不定时间间隔后, 所述波束接收器反馈所述信道反馈信息中的 第二信道信息, 所述第二信道信息是与跨基本服务组的波束成型器相关的 信道信息, 所述第二信道信息反馈至所述本基本服务组的波束成型器或者 所述跨基本服务组的波束成型器。
20、 一种波束成型器, 其特征在于, 包括:
数据包发送单元, 用于向波束接收器发送信道测量帧;
信息获取单元, 用于从所述波束接收器或者其他波束成型器接收信道 反馈信息 , 所述信道反馈信息是所述波束接收器根据所述信道测量帧进行 信道估计得到; 所述信道反馈信息包括: 与所述波束成型器相关的信道信 息、 以及所述其他波束成型器相关的信道信息; 所述信道信息包括: 本基本服务组的波束接收器反馈的信道信息、 以 及跨基本服务组的波束接收器反馈的信道信息。
21、 根据权利要求 20所述的波束成型器, 其特征在于, 所述波束成型 器是主波束成型器; 所述波束成型器还包括:
顺序指示单元, 用于发送顺序指示信息, 以使得所述其他波束成型器 根据所述顺序指示信息规定的顺序发送用于获取所述信道信息的信道测量 帧。
22、 根据权利要求 21所述的波束成型器, 其特征在于,
所述顺序指示单元发送的所述顺序指示信息规定的顺序, 具体是指示 所述其他波束成型器在前一个波束成型器执行完本地反馈流程之后才开始 发送所述信道测量帧。
23、 根据权利要求 21所述的波束成型器, 其特征在于,
所述顺序指示单元发送的所述顺序指示信息规定的顺序, 具体是指示 所述其他波束成型器在前一个波束成型器执行完发送所述信道测量帧之 后, 开始发送所述信道测量帧。
24、 根据权利要求 23所述的波束成型器, 其特征在于, 还包括: 结束指示单元, 用于发送数据包发送结束标识, 所述数据包发送结束 标识用于通知所述波束接收器所述其他波束成型器已经均发送所述信道测 量帧。
25、 根据权利要求 22 ~ 24任一所述的波束成型器, 其特征在于, 所述顺序指示单元, 具体是将所述顺序指示信息携带在所述波束成型 器发送的所述信道测量帧中。
26、 根据权利要求 20所述的波束成型器, 其特征在于, 所述波束成型 器是次波束成型器; 所述波束成型器还包括:
指示接收单元, 用于接收第一顺序指示信息;
所述数据包发送单元, 用于根据所述第一顺序指示信息规定的顺序向 所述波束接收器发送信道测量帧。
27、 根据权利要求 26所述的波束成型器, 其特征在于,
所述指示接收单元, 具体是用于接收另一个波束成型器发送的所述第 一顺序指示信息; 或者, 获取所述波束接收器反馈给另一个波束成型器的 信道信息中携带的所述第一顺序指示信息。
28、 根据权利要求 27所述的波束成型器, 其特征在于, 还包括: 指示发送单元, 用于在所述数据包发送单元向所述波束接收器发送信 道测量帧时, 向所述波束接收器发送第二顺序指示信息, 所述第二顺序指 示信息至少包括所述波束成型器之后的其他波束成型器发送所述信道测量 帧的顺序。
29、 根据权利要求 26所述的波束成型器, 其特征在于,
所述数据包发送单元, 具体用于在时域上的前一个波束成型器执行完 本地反馈流程之后才开始发送所述信道测量帧。
30、 根据权利要求 26所述的波束成型器, 其特征在于,
所述数据包发送单元, 具体用于在时域上的前一个波束成型器执行完 发送所述信道测量帧之后, 开始发送所述信道测量帧。
31、 根据权利要求 30所述的波束成型器, 其特征在于, 还包括: 结束通知单元, 用于在根据所述第一顺序指示信息, 确定自己是所述 第一顺序指示信息中指示的最后一个数据包, 则向所述波束接收器发送数 据包发送结束标识, 所述数据包发送结束标识用于通知所述波束接收器所 有波束成型器发送所述信道测量帧均结束。
32、 根据权利要求 20 ~ 31任一所述的波束成型器, 其特征在于, 还包 括:
频率指示单元, 用于向所述波束接收器发送频率指示信息, 以使得所 述波束接收器在所述频率指示信息指示的频率上反馈所述信道信息。
33、 一种波束接收器, 其特征在于, 包括: 信息接收单元, 用于接收波束成型器发送的信道测量帧; 信息发送单元, 用于根据所述信道测量帧进行信道估计得到信道反馈 信息, 并将所述信道反馈信息发送至所述波束成型器; 所述信道反馈信息 包括: 与本基本服务组的波束成型器相关的信道信息、 以及与跨基本服务 组的波束成型器相关的信道信息。
34、 根据权利要求 33所述的波束接收器, 其特征在于, 还包括: 顺序指示单元, 用于向所述波束成型器发送顺序指示信息, 以使得所 述波束成型器根据所述顺序指示信息规定的顺序发送信道测量帧。
35、 根据权利要求 34所述的波束接收器, 其特征在于, 还包括: 结束确定单元, 用于在所述信息发送单元向波束成型器发送信道反馈 信息之前, 确定接收到的信道测量帧是所述顺序指示信息中指示的最后一 个波束成型器。
36、 根据权利要求 35所述的波束接收器, 其特征在于,
所述结束确定单元, 用于将接收到的信道测量帧对应的波束成型器标 识与所述顺序指示信息相比较, 确定所述波束成型器是最后一个波束成型 器; 或者, 根据接收到的数据包发送结束标识确定所述波束成型器是最后 一个波束成型器, 所述数据包发送结束标识用于通知所述波束接收器所有 波束成型器已经均发送所述信道测量帧。
37、 根据权利要求 33 ~ 36任一所述的波束接收器, 其特征在于, 所述信息发送单元, 具体用于向主波束成型器发送信道反馈信息; 或 者 , 向发送信道测量帧的波束成型器发送信道反馈信息。
38、 根据权利要求 37所述的波束接收器, 其特征在于, 还包括: 指示接收单元, 具体用于接收所述波束成型器发送的频率指示信息; 所述信息发送单元, 具体用于在所述频率指示信息指示的频率上反馈 所述信道信息。
39、 根据权利要求 33 ~ 36任一所述的波束接收器, 其特征在于, 所述信息发送单元, 具体是用于向本基本服务组的波束成型器发送所 述信道反馈信息中的第一信道信息, 所述第一信道信息是与本基本服务组 的波束成型器相关的信道信息; 在经过不定时间间隔后, 所述波束接收器 反馈所述信道反馈信息中的第二信道信息, 所述第二信道信息是与跨基本 服务组的波束成型器相关的信道信息, 所述第二信道信息反馈至所述本基 本服务组的波束成型器或者所述跨基本服务组的波束成型器。
PCT/CN2013/088709 2013-05-16 2013-12-06 信道信息反馈的方法和设备 WO2014183423A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES13884902T ES2903152T3 (es) 2013-05-16 2013-12-06 Procedimiento y dispositivo para la retroalimentación de información de un canal
EP21197990.1A EP3989451A1 (en) 2013-05-16 2013-12-06 Method and device for channel information feedback
EP13884902.1A EP2963840B1 (en) 2013-05-16 2013-12-06 Feedback method and device for channel information
JP2016513200A JP6205667B2 (ja) 2013-05-16 2013-12-06 チャンネル情報フィードバックのための方法および装置
US14/942,912 US10469148B2 (en) 2013-05-16 2015-11-16 Method and device for channel information feedback
US16/586,439 US20200052762A1 (en) 2013-05-16 2019-09-27 Method and device for channel information feedback

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310181047.8 2013-05-16
CN201310181047.8A CN104168050B (zh) 2013-05-16 2013-05-16 信道信息反馈的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/942,912 Continuation US10469148B2 (en) 2013-05-16 2015-11-16 Method and device for channel information feedback

Publications (1)

Publication Number Publication Date
WO2014183423A1 true WO2014183423A1 (zh) 2014-11-20

Family

ID=51897639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088709 WO2014183423A1 (zh) 2013-05-16 2013-12-06 信道信息反馈的方法和设备

Country Status (6)

Country Link
US (2) US10469148B2 (zh)
EP (2) EP3989451A1 (zh)
JP (1) JP6205667B2 (zh)
CN (1) CN104168050B (zh)
ES (1) ES2903152T3 (zh)
WO (1) WO2014183423A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016138778A1 (zh) * 2015-03-04 2016-09-09 华为技术有限公司 传输信道状态信息的方法和装置
JP2018538723A (ja) * 2015-11-03 2018-12-27 クアルコム,インコーポレイテッド ビームフォーミング報告構造

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6261455B2 (ja) * 2014-06-13 2018-01-17 パナソニック株式会社 通信制御局装置、通信端末装置及び通信制御方法
CN105450560B (zh) * 2014-08-14 2019-02-12 华为技术有限公司 一种信道反馈传输的方法
EP3269062B1 (en) * 2015-03-10 2020-08-05 Coriant Oy Methods and devices for managing transfer of data frames
BR112018000068A2 (zh) 2015-07-02 2018-09-11 Huawei Technologies Co., Ltd. A method for transmitting channel state information, an access point and a station
US10897285B2 (en) 2017-02-15 2021-01-19 Qualcomm Incorporated Distributed multi-user (MU) wireless communication
US10673652B2 (en) 2017-03-02 2020-06-02 Futurewei Technologies, Inc. System and method for providing explicit feedback in the uplink
US10420109B2 (en) * 2017-04-13 2019-09-17 Futurewei Technologies, Inc. System and method for providing explicit feedback in communications systems with multi-point connectivity
CN110719599A (zh) * 2018-07-11 2020-01-21 华为技术有限公司 多接入点ap协作传输方法、相关装置及系统
US11336340B2 (en) * 2019-08-28 2022-05-17 Semiconductor Components Industries, Llc Beamforming performance optimization
CN112702128B (zh) * 2019-10-23 2023-05-12 中兴通讯股份有限公司 信道测量方法、第一设备、第二设备及计算机可读介质
US11336349B2 (en) * 2020-05-13 2022-05-17 Semiconductor Components Industries, Llc Steering matrix derivation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120263126A1 (en) * 2011-04-13 2012-10-18 Electronics And Telecommunications Research Institute Apparatus and method for transmitting/receiving data in communication system
CN102811119A (zh) * 2011-06-01 2012-12-05 华为技术有限公司 传输信道信息的方法、设备和系统
CN103037427A (zh) * 2011-09-30 2013-04-10 中兴通讯股份有限公司 一种适用于cb模式多点协作的传输方法、终端及基站

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1766806B1 (en) * 2004-06-22 2017-11-01 Apple Inc. Closed loop mimo systems and methods
KR101568291B1 (ko) 2009-07-10 2015-11-20 삼성전자주식회사 단말기 및 기지국, 및 단말기의 동작방법
JP2013502182A (ja) * 2009-08-14 2013-01-17 リサーチ イン モーション リミテッド ダウンリンク多地点協調(CoMP)伝送のためのフレーム構造および制御信号伝達
US8873525B2 (en) * 2009-12-02 2014-10-28 Marvell World Trade Ltd Method and apparatus for sounding multiple stations
US8923219B2 (en) * 2010-02-17 2014-12-30 Qualcomm Incorporated Method and apparatus for supporting adaptive channel state information feedback rate in multi-user communication systems
US8750887B2 (en) * 2010-07-16 2014-06-10 Texas Instruments Incorporated Multi-cell signaling of channel state information-reference signal and physical downlink shared channel muting
CN102448073B (zh) * 2010-09-30 2016-03-30 株式会社日立制作所 混合型中继节点、基站以及混合型中继方法
WO2012093794A2 (en) * 2011-01-03 2012-07-12 Lg Electronics Inc. Channel sounding method in wireless local area network system and apparatus for supporting the same
CN102447539A (zh) * 2011-01-30 2012-05-09 北京新岸线无线技术有限公司 一种用于实现多输入多输出的方法和设备
DK2724587T3 (en) * 2011-06-24 2018-05-28 Interdigital Patent Holdings Inc METHOD AND APPARATUS FOR SUPPORTING BROADBAND AND MULTIPLE BANDWIDE TRANSMISSION PROTOCOLS
US9479300B2 (en) * 2011-10-11 2016-10-25 Lg Electronics Inc. Feedback method in coordinated multi-point communication system and apparatus thereof
MX2015005166A (es) * 2012-10-26 2016-02-09 Interdigital Patent Holdings Metodos de la capa fisica para multiples puntos de acceso uniformes de una red wlan.
US9107229B2 (en) * 2012-12-03 2015-08-11 Nokia Technologies Oy Method, apparatus, and computer program product for signaling for sectorized beam operation in wireless networks
JP6437923B2 (ja) * 2013-01-11 2018-12-12 インターデイジタル パテント ホールディングス インコーポレイテッド Wlanオーバラッピング基本サービスセットのネットワーク内での通信のための方法および装置
JP2016524377A (ja) * 2013-05-03 2016-08-12 インターデイジタル パテント ホールディングス インコーポレイテッド WiFiセクタ化MAC強化のための方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120263126A1 (en) * 2011-04-13 2012-10-18 Electronics And Telecommunications Research Institute Apparatus and method for transmitting/receiving data in communication system
CN102811119A (zh) * 2011-06-01 2012-12-05 华为技术有限公司 传输信道信息的方法、设备和系统
CN103037427A (zh) * 2011-09-30 2013-04-10 中兴通讯股份有限公司 一种适用于cb模式多点协作的传输方法、终端及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2963840A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016138778A1 (zh) * 2015-03-04 2016-09-09 华为技术有限公司 传输信道状态信息的方法和装置
JP2018538723A (ja) * 2015-11-03 2018-12-27 クアルコム,インコーポレイテッド ビームフォーミング報告構造

Also Published As

Publication number Publication date
CN104168050B (zh) 2019-07-19
JP2016524380A (ja) 2016-08-12
JP6205667B2 (ja) 2017-10-04
EP2963840A4 (en) 2016-03-02
EP2963840A1 (en) 2016-01-06
EP2963840B1 (en) 2021-10-27
US10469148B2 (en) 2019-11-05
US20160072569A1 (en) 2016-03-10
US20200052762A1 (en) 2020-02-13
EP3989451A1 (en) 2022-04-27
CN104168050A (zh) 2014-11-26
ES2903152T3 (es) 2022-03-31

Similar Documents

Publication Publication Date Title
WO2014183423A1 (zh) 信道信息反馈的方法和设备
CN113196817B (zh) 在通信网络中进行定位测量的波束管理方法和设备
US10547364B2 (en) Quasi co-location for beamforming
US9468037B2 (en) Robust transmission on downlink discontinuous transmission carrier
US20170311311A1 (en) Method for CSI Feedback
US20160105817A1 (en) Method for csi feedback
WO2013086954A1 (zh) 信道状态信息的获取方法及装置
WO2011050727A1 (zh) 实现信道测量的方法及装置
JP2019506084A (ja) ユーザ装置及び無線通信方法
US11109251B2 (en) Method and apparatus for channel state information reporting
CN109547072B (zh) 信道探测的方法、通信设备和计算机可读存储介质
CN110582960A (zh) 用户设备和信道状态信息(csi)获取方法
WO2015154283A1 (zh) 一种报告信道状态信息的方法、用户设备和基站
WO2013004128A1 (zh) 一种配置参考信号的方法、UE及eNB
WO2013119382A1 (en) Gain normalization correction of pmi and cqi feedback for base station with antenna array
WO2014019517A1 (zh) 传输参考信号的方法、用户设备和网络侧设备
WO2013064111A1 (zh) 信道质量测量方法和设备
WO2014012509A1 (zh) 信道质量指示信息上报及确定方法和设备
WO2012122912A1 (zh) 一种解调导频物理资源块绑定解调的方法及系统
JP6952769B2 (ja) ダウンリンク制御チャネルと非周期的なチャネル状態情報リファレンス信号との間の衝突回避
CN107342840B (zh) 准共位置类型的处理方法及装置
CN114651468A (zh) 一种参考信号测量方法、资源指示方法及装置
WO2022163266A1 (ja) 通信装置、及び通信方法
JP7197488B2 (ja) ユーザ端末、無線通信方法、基地局及び通信システム
WO2023148704A1 (en) Csi-rs reception for high mobility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884902

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013884902

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016513200

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE