WO2014182091A1 - 공기 청정 기능이 구비된 온풍기 - Google Patents

공기 청정 기능이 구비된 온풍기 Download PDF

Info

Publication number
WO2014182091A1
WO2014182091A1 PCT/KR2014/004103 KR2014004103W WO2014182091A1 WO 2014182091 A1 WO2014182091 A1 WO 2014182091A1 KR 2014004103 W KR2014004103 W KR 2014004103W WO 2014182091 A1 WO2014182091 A1 WO 2014182091A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heater
heating
catalyst
housing
Prior art date
Application number
PCT/KR2014/004103
Other languages
English (en)
French (fr)
Inventor
김명수
이재영
임현철
고창우
이춘걸
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140054248A external-priority patent/KR101631251B1/ko
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Priority to CN201480030273.9A priority Critical patent/CN105247294A/zh
Publication of WO2014182091A1 publication Critical patent/WO2014182091A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0411Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between for domestic or space-heating systems
    • F24H3/0417Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between for domestic or space-heating systems portable or mobile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0052Details for air heaters
    • F24H9/0057Guiding means
    • F24H9/0063Guiding means in air channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1854Arrangement or mounting of grates or heating means for air heaters
    • F24H9/1863Arrangement or mounting of electric heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/105Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being corrugated elements extending around the tubular elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/93Toxic compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H2250/00Electrical heat generating means
    • F24H2250/02Resistances

Definitions

  • the present invention relates to a warm air fan, and more particularly to a warm air fan equipped with an air cleaning function.
  • Air purifiers are known in various ways, such as filter type, electrostatic precipitating type, complex type, anion purifying type and water filter type, but most of the known air purifiers are not deodorized well if air purged well, and are well deodorized if deodorized well. Problems that can not be avoided, and troublesome to clean or replace the filter frequently.
  • Korean Patent Laid-Open Publication No. 2001-97924 includes a duct opened so that the external air inlet, the outlet, and the clean air supply port communicate with each other; A damper installed at the inlet side of the duct to selectively seal the inlet; A filtration filter installed at the inlet side of the duct to remove dust from the air introduced therein; A catalyst member for decomposing and converting harmful components in the inlet air filtered by the filtration filter into harmless components; A catalytic combustion air purifying apparatus is provided at a boundary between an outlet of a duct and a clean air supply port, and has a control damper for selectively blocking and opening and closing the passage.
  • the air purifier drives a fan to suck harmful gas from the interior of the duct for 1 to 1 week to pass through the catalyst member, thereby adsorbing the harmful gas to the catalyst of the catalyst member, and the damper and control damper
  • the heating system is operated by heating heater to decompose harmful gas passing through the catalyst layer into harmless gas, and then open the damper and control damper to purify the purified air. Ejected indoors or outdoors.
  • Such an air purifying apparatus has an independent heater at the front end of the catalyst member and operates a heater to supply heated hot air to the catalyst member to indirectly heat the catalyst to activate the catalyst, thereby causing a slow reaction speed and low catalytic reaction efficiency.
  • the conventional air purifier has a structure in which the heater and the catalytic reactor are separately configured so that the capacity control of the heater is impossible, and thus the air purifier is difficult to apply for heating and at the same time.
  • the present invention has been made in view of the above, it is possible to form a heater and a catalytic reactor integrally, the structure is simple and can be miniaturized, air cleaning function that can simultaneously perform the air purification, sterilization, deodorization and heating functions Its purpose is to provide a warmer equipped with this.
  • Another object of the present invention is a heater and an air purifier having an air cleaning function that is composed of an integral unit of the catalytic converter and the air cleaner to reduce the amount of catalyst used because the reaction rate is faster and the catalytic reaction efficiency is higher than the hot air heating type of the heater is separated In providing.
  • Still another object of the present invention is to provide a hot air blower having an air cleaning function capable of controlling the capacity of the heater according to the temperature at the time of use for heating, since the heater and the catalytic reactor are integrally configured.
  • Another object of the present invention is to produce a sheet-like heater material of a metal sheet material having a high heat resistance and high resistivity in a strip shape to produce a multi-stage or corrugated molding to produce a cylindrical or square shape, using the surface heater heater surface
  • the present invention provides an air blower having an air cleaning function that can be easily manufactured by forming an insulating layer and a catalyst in the catalyst reactor.
  • Yet another object of the present invention is a structure in which a catalyst is coated on a heater surface of a surface heating element structure having a large surface area in which heat is generated, thereby transferring heat required for a catalytic reaction in a direct conduction manner and separating the heater and the catalyst carrier.
  • a catalyst is coated on a heater surface of a surface heating element structure having a large surface area in which heat is generated, thereby transferring heat required for a catalytic reaction in a direct conduction manner and separating the heater and the catalyst carrier.
  • Compared with the present invention provides an air blower equipped with an air cleaning function that can increase the thermal efficiency.
  • Still another object of the present invention is to provide a hot air heater having an air cleaning function with an air-free clean heater that does not generate pollutants because it uses an electric heating method using a thin metal plate as a heater material.
  • Still another object of the present invention is to provide a warm air heater having an air cleaning function, in which a heater and a catalytic reactor are integrally designed and designed in various shapes such as a cylindrical rectangle.
  • the air intake module for sucking air; A heating module for heating the air sucked from the air intake module; And a catalyst coated on the surface of the substrate formed to have a plurality of hollow cells to activate the catalyst by the heat of the heated air to burn and decompose harmful gases and organic substances contained in the introduced air to purify the air.
  • a hot air fan having an air cleaning function, characterized in that it comprises a catalyst carrier and a catalytic reaction module comprising a discharge port for discharging the warm air of the purified air.
  • the air intake module, the heating module and the catalytic reaction module may be integrally modularized into one case and embedded therein.
  • the air suction module may be provided with an inlet through which air is introduced, and a suction fan may be provided to smoothly introduce air into the inlet.
  • the heating module is provided with a heater for heating the air introduced from the air intake module to a predetermined temperature, wherein the heater is disposed in a horizontal direction in the direction of the air in the air intake module and spaced apart at predetermined intervals It may be composed of one of a surface heater, a heating wire, a sheath heater.
  • the present invention includes a lower case to which the air intake module, the heating module and the catalytic reaction module is fixed; And it may be configured to include an upper case coupled to the lower case.
  • the present invention may be formed by bent in the lower case a guide for guiding the discharge direction of the purified hot air discharged from the catalytic reaction module in the upward or lateral direction of the hot air fan.
  • a handle may be installed on the upper side of the upper case to move the user by the grip.
  • the present invention is provided with an air inlet on the upper surface of the upper case to receive the air from the upper side, the discharge port is provided on the side of the upper case and the lower case coupled to discharge the warm air to the side Can be prepared.
  • the substrate of the catalyst carrier has a structure in which a plate and a wave plate are stacked to be wound in a spiral shape or arranged concentrically, and the plurality of hollow cells are formed by a structural combination of the plate and the wave plate. It can be defined as.
  • the catalyst carrier may be located inside a cylindrical housing made of an insulating material. At this time, the housing may be configured in a shape that gradually decreases in width from one side to the other side.
  • the air intake module for sucking air; And a catalyst coated on the surface of the substrate formed to have a plurality of hollow cells to activate the catalyst by the heat of the heated air to burn and decompose harmful gases and organic substances contained in the introduced air to purify the air.
  • the catalyst carrier comprises a heating and catalytic reaction module which is integrally formed with a heater for heating the air sucked from the air intake module and includes a heating port for discharging the warm air of the purified air. Provided with a warm air fan.
  • the substrate of the catalyst carrier may be a heater.
  • the heating and catalytic reaction module includes a heater having a winding portion wound to have a space therein and a pair of power terminals extending in a straight line from both sides thereof, and a catalyst inserted into an inner circumference of the heater winding portion.
  • An inner catalyst carrier having a plurality of coated hollow cells formed in a longitudinal direction
  • an outer catalyst carrier having a plurality of hollow cells coated on a surface in a length direction coupled to an outer circumferential portion of the heater winding portion
  • an exhaust gas to be treated It may include a housing that is provided with the inlet to be introduced and the outlet for the discharged treated exhaust gas near the both ends and the carrier assembly in which the inner and outer catalyst carriers are assembled inside and outside the heater winding.
  • the catalyst carrier is housed in a housing of a cube or cube having an open top or one side, and the catalyst carrier is formed by arranging stacks of plates and wave plates in multiple stages inside the housing, and each end of the stack Connecting both ends to a terminal terminal by connecting in series or in parallel; And arranging the wave plates in multiple stages inside the housing, and connecting both ends of the wave plates to the terminal terminals; And arranging the flat plates in multiple stages using a plurality of rod-shaped spacers inside the housing, and connecting the flat ends to the terminal terminals.
  • the inlet for inhaling outside air, the first passage and the second passage through which the air sucked from the inlet passes, the air passing through the first passage and the second passage A third flow path for discharging the air, which is discharged from the third flow path, to the outside;
  • a heating unit installed in the first passage and heating the air sucked from the suction port, and having a plurality of hollow cells coated with a catalyst on a surface thereof to activate the catalyst by heat of the heated air.
  • a heating and catalytic reaction module comprising a catalytic reaction unit for purifying the air by burning and decomposing harmful gas and organic substances contained in the air and discharging the warm air of the purified air to the third channel. Provide a warmer.
  • the present invention by simplifying and modularizing the structure of the air purifying and heating means, it can be carried by miniaturization of the warm air fan, and can be easily moved to intensively purify the air in the area where harmful air is concentrated. At the same time, the hot air can be discharged to perform heating.
  • the heated air introduced into the open area on one side of the housing is reflected at the inner wall of the housing, the width of the housing being narrowed, thereby improving the reaction of the catalyst coated on the catalyst carrier, thereby further increasing the purification efficiency.
  • the electric heating method using the metal thin plate as a heater material since it can be implemented as a pollution-free clean heater that does not substantially generate pollutants.
  • the heater and the catalyst carrier can be directly in contact with a large area, thereby improving the heating efficiency of the catalyst carrier. As a result, the amount of electric energy consumed for heating the incoming exhaust gas and the catalyst carrier is reduced.
  • the heater and the catalyst carrier can be integrally formed, the reaction rate is faster than the hot air heating type, the structure can be miniaturized, and the structure can be changed into various structures.
  • the present invention can perform the air purification, sterilization, deodorization and heating functions at the same time, so it is not necessary to purchase a plurality of individual devices can reduce the cost.
  • the present invention a part of the inhaled air is purged in one flow path, the remaining inhaled air is passed through the other flow path, and then the purified high-temperature air and the unpurified low-temperature air are discharged to the outside.
  • the present invention has the advantage of being able to discharge the purified air to which the wet steam is added.
  • FIG. 1 is a conceptual perspective view of a warm air heater having an air cleaning function according to a first embodiment of the present invention
  • Figure 2 is a perspective view of the upper case peeled off in the warm air heater having an air cleaning function according to a first embodiment of the present invention
  • FIG. 3 is a perspective view of the upper case assembled to the warmer of FIG.
  • FIG. 4 is a schematic plan view showing the structure of a catalyst carrier applied to the present invention.
  • FIG. 6 is a schematic structural diagram showing a cross-sectional structure of a catalytic reactor according to the present invention
  • FIG. 7 is a conceptual perspective view of a warm air heater having an air cleaning function according to a second embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing the configuration of an example of a heating and catalytic reaction module applied to a second embodiment of the present invention.
  • 9a to 9c is a side view, a front view and a perspective view showing a state in which the heater and the catalyst carrier is coupled in the heating and catalytic reaction module of FIG.
  • FIG. 10 is a view for explaining a method for assembling a heater and a catalyst carrier in the heating and catalytic reaction module of FIG.
  • FIG. 11 is a cross-sectional view showing the configuration of another example of the heating and catalytic reaction module applied to the second embodiment of the present invention.
  • FIG. 12 is a front view showing the configuration of another example of the heating and catalytic reaction module applied to the second embodiment of the present invention.
  • FIG. 13 is a cross-sectional view showing the configuration of a further example of the heating and catalytic reaction module applied to the second embodiment of the present invention.
  • FIG. 14A to 14C are schematic cross-sectional views showing the construction of another additional example of the heating and catalytic reaction module applied to the second embodiment of the present invention.
  • 15A and 15B are conceptual cross-sectional views of a warm air fan equipped with an air cleaning function according to a third embodiment of the present invention.
  • the present invention provides an air intake module 350 for sucking air, a heating module 360 for heating air sucked from the air intake module 350, and a substrate having a plurality of hollow cells.
  • the catalyst is coated on the surface to activate the catalyst by the heat of the heated air to burn and decompose harmful gases and organic substances contained in the inflowing air to purify the air, and the catalyst carrier to discharge the warm air of the purified air.
  • a catalytic reaction module 380 is included.
  • the air intake module 350, the heating module 360, and the catalytic reaction module 380 may be integrally modularized and integrated in one case, and the air sucked from the air intake module 350 may be heated. In order to be heated in the), and a series of operations to be purified and discharged in the catalytic reaction module 380 can be performed separately, assembled or modularized separately.
  • the air intake module 350 is provided with an inlet 351 through which air is introduced, and includes a suction means (not shown) such as a suction fan for forcibly inhaling air to smoothly inflow air into the inlet 351. do.
  • a suction means such as a suction fan for forcibly inhaling air to smoothly inflow air into the inlet 351. do.
  • the heating module 360 is provided with a heater for heating the air introduced from the air intake module 350 to a predetermined temperature, and the heater is disposed horizontally in a direction in which air flows in the air intake module 350 and the predetermined It may be one of a plurality of planar heaters, hot wires, sheath heaters spaced apart.
  • the air introduced from the air intake module 350 is heated while flowing between the plurality of surface heaters and flows out into the catalytic reaction module.
  • a metal sheet material having high heat resistance and high resistivity may be processed into a strip shape and laminated in multiple stages or formed by a corrugation molding to produce a cylindrical or square shape, which may be used as a planar heater.
  • the catalytic reaction module 380 passes through the air heated in the heating module 360, activates the catalyst by the heat of the heated air, and burns and decomposes harmful gases and organic substances contained in the introduced air.
  • the catalyst is coated on the surface of the substrate shaped to have a plurality of hollow cells so that when the heated air passes through the plurality of hollow cells, the catalyst is activated. Further, since the purified air is heated, the air is discharged to the outside of the warm air fan through the outlet 391 provided in the catalytic reaction module 380 as the warm air, thereby increasing the temperature around the warm air fan.
  • the outlet 391 is shown in cross-sectional shape in Figure 1, but is applicable in a variety of shapes.
  • the inlet of the air intake module 350 and the outlet 391 of the catalytic reaction module 380 is a mesh-shaped filter or for the purpose of preventing foreign substances or children to put their hands into the housing Lattice frames 330 and 390 may be installed.
  • the air intake module 350, the heating module 360, and the catalytic reaction module 380 may be fixed to the lower case 320, and a fastening means for fixing the same may be applied to various applications.
  • a guide 321 for guiding the discharge direction of the purified hot air discharged from the catalytic reaction module 380 in the upward or lateral direction of the hot air fan may be bent and formed in the lower case 320.
  • the upper case 310 is coupled to the lower case 320, and the combined upper case 310 has an inlet and a catalytic reaction module 380 inside the lower case 320. ) Is built in, to prevent foreign matter from entering the outside and to be protected from external shocks.
  • An upper flow path corresponding to an inlet of the air intake module 350 and an outlet of the catalytic reaction module 380 is formed in the upper case 310, and a user grips and moves on an upper surface of the upper case 310.
  • the handle 301 can be installed.
  • an air inlet is provided on the upper surface of the upper case 310 to receive air from the upper surface of the warm air heater having the air cleaning function according to the present invention, and the upper case to discharge the warm air purified to the side (
  • the outlet is provided on the side coupled to the 310 and the lower case 320.
  • the warm air heater 300 having the air cleaning function according to the present invention can be miniaturized and portable and can be easily moved to a place where local harmful air such as a narrow space, a smoking space is concentrated, or a place desired by a user. It can move freely to perform air purification and warm air discharge.
  • the catalyst carrier 137 embedded in the catalytic reaction module is a substrate formed to include a plurality of hollow cells 136.
  • the flat plate 132 and the wave plate 133 are stacked and wound in a spiral shape.
  • the substrate may be embodied in a concentrically or concentrically arranged structure, and the plurality of hollow cells 136 are defined as a space created by the structural coupling of the plate 132 and the wave plate 133. At this time, the surface of the substrate is coated with a catalyst.
  • the catalyst carrier 137 may be located inside a cylindrical housing (not shown) made of an insulating material.
  • the housing is hollow and has a cylindrical shape in which one side and the other side are open.
  • the air heated in the heating module flows into an open area of one side of the housing, and the air purified from the catalyst carrier 137 is an open area of the other side of the housing. Is discharged.
  • the width of the housing may be gradually reduced from the open area on one side of the housing to the open area on the other side of the housing. That is, the heated air introduced into the open area on one side of the housing is reflected at the inner wall of the housing, which narrows the width of the housing, thereby improving the reaction of the catalyst coated on the catalyst carrier 37, thereby further increasing the purification efficiency. will be.
  • the catalyst carrier 137 uses a structure in which the flat plate 132 and the wave plate 133 are stacked, but the catalyst carrier 137 may be used in a structure using only the wave plate 133 alone.
  • the housing is cylindrical, the catalyst carrier 137 is accommodated in the housing in a circular shape, and when the housing is in the shape of a square cylinder, the catalyst carrier 137 is accommodated in the housing in a square shape.
  • a plurality of hollows as shown in FIG. 5 form a fluid movement passage in the longitudinal direction of the cylinder or the square cylinder.
  • a honeycomb structure with a shaped cell 136 is formed.
  • the plurality of hollow cells 136 may be formed in one of various shapes such as a wave shape, a hemispherical shape, a triangle shape, and a rectangle shape.
  • the catalyst carrier 137 increases the surface area on which the catalyst 43 is coated on the surface of the substrate 41 and at the same time, has a ceramic composition to have electrical insulation by using the substrate 41 as a heater.
  • a base coat 42 is formed. The surface of the base coat 42 is coated by selecting or combining an oxidation or reduction catalyst 43.
  • the base coat 42 for example, ceramics such as alumina (Al 2 O 3 ), zirconia (ZrO 3 ), ceria (CeO 2 ), titanium (TiO 2 ), and the like may be formed. will be.
  • the material which can be used as the base material 41 is, for example, nickel (Ni), nickel alloys, FeCrAl, FeCrAl alloy containing a predetermined amount of Ni, Fe-Cal alloy or Fe- synthesized in the ratio of Fe-15Cr-5Al.
  • a metal thin plate made of a heat resistant material such as 20 Cr-5Al-REM (rare earth metal) (including about 1% of REM (Y, Hf, Zr)) can be used.
  • the base 41 is preferably made of a FeCrAl-based heat-resistant alloy sheet having a thickness of 20 ⁇ 100 ⁇ m.
  • the catalyst 43 coated on the surface of the base coat 42 at least one of platinum, cobalt, nickel, palladium, copper, manganese and nano silver is used.
  • an oxidation catalyst such as platinum or palladium may be used or a reduction catalyst such as platinum / rhodium or rhodium may be used, depending on which material contained in the air is to be treated, and a combination thereof may be used.
  • the catalyst 43 for example, at 200 ⁇ 600 °C catalytic activity temperature of organic substances contained in harmful substances such as carbon, carbon monoxide (CO), nitrogen oxides (NOx) or odor gas It serves to induce complete combustion or decomposition at relatively low temperatures.
  • the substrate 41 of the catalyst carrier 137 may be used as a heater, and the surfaces of the flat plate 132 and the wave plate 133 may be used. Since a base coat 42 serving as an insulating layer is formed on the substrate, a short-circuit phenomenon does not occur even when power is applied to use the substrate 41 of the catalyst carrier 137 as a heater.
  • the plate 132 and the wave plate 133 which comprise the catalyst carrier 137 like FIG. 4 can also be used as a heater.
  • a warm air heater according to another embodiment of the present invention includes an air intake module 350 for sucking air and a heat of air heated by a catalyst coated on a surface of a substrate having a plurality of hollow cells.
  • the catalyst carrier for purifying the air by burning and decomposing harmful gas and organic matter contained in the air introduced by activating the catalyst is formed integrally with a heater for heating the air sucked in the air intake module 350 and purifying And a heating and catalytic reaction module 370 including an outlet 391 for discharging warm air of the air.
  • the heating and catalytic reaction module 370 may be assembled by integrally modularizing the heater and the catalyst carrier to further reduce the size of the hot air blower, and may employ a structure using the substrate of the catalyst carrier as the heater, the plate and the wave plate constituting the catalyst carrier.
  • the catalyst carrier includes a heater or may be implemented in a structure according to various embodiments described below.
  • the warm air heater having the air cleaning function of the present invention may be installed in indoors, public places, industrial facilities, and the like to maintain the temperature of the room at a predetermined temperature as well as an air cleaning field for purifying, sterilizing, and deodorizing the air.
  • the warmer of the present invention is an electric heating method using a thin metal plate as a heater material
  • the hot air blower functions as a pollution-free clean heater that does not substantially generate pollutants.
  • a place where a bad smell of volatile organic compounds such as an office, a painting facility, a gas station, a gas station, a laundry, a print shop, and the like, which are adjacent to a factory and a factory where various waste gases are always discharged, a restaurant, an indoor entertainment facility, a basement Places where cigarette smoke, odors, germs, dust, etc.
  • VOC volatile organic compounds
  • the air purifier of the present invention is installed in an incinerator near a city where combustion is performed, the air purification, sterilization, and deodorization are simultaneously performed by burning various harmful gases, bacteria, odors, and dust.
  • FIG. 8 is a cross-sectional view showing the configuration of an example of the heating and catalytic reaction module applied to the second embodiment of the present invention
  • Figures 9a to 9c is a view showing a heater and catalyst carrier is coupled in the heating and catalytic reaction module of FIG. Side, front and perspective views
  • FIG. 10 is a view for explaining a method of assembling a heater and a catalyst carrier in the heating and catalytic reaction module of FIG. 8.
  • the heating and catalytic reaction module applied in the second embodiment of the present invention comprises a housing 10, a heater 20, and a catalyst carrier 30.
  • the housing 10 is provided with a cylindrical space for accommodating the heater 20 and the catalyst carrier 30 therein.
  • an inlet 11 through which exhaust gas flows is disposed on one side, and an outlet for discharging the indoor exhaust gas which deodorizes the odor of the exhaust gas introduced while passing through the catalyst carrier 30 on the other side. 12 is disposed.
  • the inlet 11 and the outlet 12 may be discharged after the exhaust gas flowing into the inlet 11 passes through the catalyst carrier 30 disposed inside the housing 10. It is disposed at both ends of the inlet side and the outlet side of the catalyst carrier 30 accommodated in, preferably, when the housing 10 is disposed vertically inlet 11 is disposed on the lower side, the outlet 12 is disposed on the upper side Is placed.
  • the housing 10 is preferably made of a cylindrical shape, and upper and lower caps 22 and 23 are press-fitted to upper and lower ends, respectively, and both power terminals 15, Through-holes 22a and 23a for drawing out 16, respectively, are formed.
  • the heater 20 has a winding portion 20a wound in a coil shape having an internal space in the middle by using a sheath heater having a heating element built into the metal tube as a heating element, and the coil shape is preferably cylindrical. .
  • the winding shape of the winding portion 20a does not necessarily need to be cylindrical, and may be, for example, formed into a cross section such as a triangle or a square, or may have a cross section of a truncated conical shape in which the internal space is gradually reduced toward the outlet. It can also be wound up in a form. This form is not particularly limited, and it is natural that any form can be modified as long as a predetermined internal space can be formed in the heater 20.
  • the winding portion 20a may be formed in a cylindrical shape in consideration of the fact that the inner catalyst carrier 31 and the outer catalyst carrier 32 coupled to the inside and the outside of the winding unit 20a are formed in a winding manner. Do.
  • the heater 20 and the carriers 31 and 32 are manufactured in the shape of the winding portion 20a in the shape of a square cylinder and when the inner catalyst carrier 31 and the outer catalyst carrier 32 are molded into shapes corresponding thereto. The contact area between them can be maximized.
  • the sheath heater puts a filament at the center of various sheaths and inserts high purity magnesium powder or aluminum oxide powder having high thermal insulation and good thermal conductivity therebetween, and compresses the sheath outer diameter to a high pressure. Because it is integrated, the temperature difference between the inner heating wire and the sheath is sufficiently lowered, and there is no fear of disconnection and heating wire due to aging or shock of the heating wire by oxidation. In addition, since the sheath heater has a structure in which both ends of the filament are connected to one side and the other power terminal 15 and 16, respectively, manufacturing cost is low and durability has excellent advantages.
  • the heating element material of the heater 20 it is also possible to use other types of heaters having an equivalent function in addition to the sheath heater.
  • Power supply to the heater 20 is applied between the one side and the other power terminal (15, 16) extending in the axial direction from the winding portion (20a), screw terminal, flat terminal or lug terminal (Lug terminal) to both terminals Can be used.
  • the heater 20 may be configured using a single-terminal cartridge heater in which a pair of power terminals 15 and 16 connected to the heating wire are disposed on one side.
  • the heater 20 having the cylindrical winding portion 20a will be described as an example.
  • the catalyst carrier 30 includes an inner catalyst carrier 31 and an outer catalyst carrier 32. That is, the inner catalyst carrier 31 is a cylindrical catalyst carrier disposed inside the cylindrical winding 20a in the heater 20, and the outer catalyst carrier 32 is outside the winding 20a of the heater 20. It is a cylindrical catalyst carrier disposed to surround the. To this end, the inner catalyst carrier 31 is formed to have an outer diameter equal to or smaller than the inner diameter of the winding portion 20a so as to be inserted into the winding portion 20a of the heater 20.
  • the outer catalyst carrier 32 is formed in a cylindrical shape so as to surround the heater 20 including the inner catalyst carrier 31 from the outside, it is preferable to allow the heater 20 to be inserted therein.
  • the outer catalyst carrier 32 is formed to have an inner diameter equal to or slightly larger than the outer diameter of the heater 20 winding portion 20a.
  • the inner catalyst carrier 31 is composed of a plurality of cells (30a) of the honeycomb form, so that the fluid movement passage in the longitudinal direction of the cylinder can be formed.
  • the outer catalyst carrier 32 is preferably composed of a plurality of honeycomb-shaped cells 30a in which a fluid movement passage is formed in the longitudinal direction of the cylinder.
  • the catalyst carriers 31 and 32 use, for example, a material coated with platinum, cobalt, nickel, palladium or nano silver as a catalyst metal in a FeCrAl-based heat-resistant alloy sheet having a thickness of 20 to 100 ⁇ m, and the flat plate 30b.
  • the welding is made for each contact portion contacted by the corrugated wave plate 30c) to form a cylindrical or cylindrical shape, and each cell 30a has a honeycomb structure.
  • the catalyst carriers 31 and 32 have a catalytic activity temperature of, for example, 200 to 600 ° C., depending on the type of catalyst metal.
  • the cells 30a of the catalyst carriers 31 and 32 may be hemispherical or triangular according to the shape of the wave plate 30c.
  • the inner catalyst carrier 31 and the outer catalyst carrier 32 may have various forms as well as the honeycomb form described above.
  • FeCrAl-based alloy material a Fecaloy alloy or Fe-20Cr-5Al-REM (rare earth metal) synthesized at a ratio of Fe-15Cr-5Al is used, including about 1% of REM (Y, Hf, Zr). It is preferable.
  • the catalyst carriers 31 and 32 may have a plurality of hollow cells made of ceramics having a different honeycomb structure and may have a rectangular or circular shape.
  • the heater 20 and the catalyst carrier 30 can be directly in contact with a large area, and thus the catalyst carrier ( The heat transfer efficiency for 30) and the reaction efficiency of the catalyst are good.
  • a high capacity heater of 350 to 450 W is conventionally used, it is possible to use a low capacity heater of 150 W or less in the present invention.
  • the winding portion 20a of the heater 20 is inserted and formed in the middle of the catalyst carrier 30, it is possible to minimize the size of the carrier converter for exhaust gas purification. As a result, in the structure in which the winding part of the heater is disposed outside the catalyst carrier 30 in the related art, the length of the heater can be greatly reduced to 110 mm in the present invention.
  • a heater 20 formed of a sheath heater is wound in a cylindrical shape to produce a winding portion 20a and a heater 20 in which linear power supply terminals 15 and 16 are extended at both ends thereof.
  • each cell 30a has a honeycomb structure, for example.
  • the inner catalyst carrier 31 is prepared by processing into a cylindrical shape having a diameter substantially the same as the inner diameter of the heater 20 winding part 20a, and is the same as the outer diameter of the heater 20 winding part 20a.
  • the outer catalyst carrier 32 is prepared by processing into a cylindrical shape having an inner diameter and having the same outer diameter as the inner diameter of the housing 10 of the exhaust gas purification carrier converter into which the heater 20 is to be inserted.
  • the inner catalyst carrier 31 is inserted into the heater 20 winding unit 20a and the heater 20 is disposed outside the winding unit 20a.
  • the outer catalyst carrier 32 By fitting the outer catalyst carrier 32, the assembly of the heater 20 and the catalyst carrier 30 as shown on the right side of FIG. 10 is completed.
  • the contact portions between the inner and outer catalyst carriers 31 and 32 and the windings 20a of the heater 20 are integrated by vacuum brazing, or separately brazed to form and then assembled and completed.
  • the carrier assembly 34 in which the catalyst carrier 30 and the heater 20 are assembled, is inserted into the housing 10, whereby fixing by brazing is performed between the carrier assembly 34 and the housing 10.
  • the heater 20 is formed through the through holes 22a and 23a of the upper and lower caps 22 and 23, respectively.
  • the two power terminals 15 and 16 are drawn out, respectively, to achieve sealing.
  • the heating and catalytic reaction module applied to the second embodiment of the present invention may be assembled by simple assembly of each component, and the assembled heating and catalytic reaction rate may be miniaturized to be applied to various designs. There is an advantage.
  • heat is transferred from the heater to the carrier (support), thereby maximizing thermal efficiency and minimizing power consumption, thereby minimizing the exhaust gas temperature, thereby minimizing the operation of the suction motor for introducing outside air, thereby reducing maintenance costs.
  • the carrier support
  • FIG 11 is a cross-sectional view showing the configuration of another example of the heating and catalytic reaction module applied to the second embodiment of the present invention
  • Figure 12 is a view showing the configuration of another example of the heating and catalytic reaction module applied to the second embodiment of the present invention Front view.
  • the heating and catalytic reaction module shown in FIGS. 11 and 12 has a structure similar to that of the heating and catalytic reaction module shown in FIG. 8, and therefore the same components are assigned the same reference numerals, and detailed descriptions thereof are omitted. .
  • the heating and catalytic reaction modules shown in FIGS. 11 and 12 are each provided with a distributor 37 at the inlet side of the housing 10 into which the exhaust gas is introduced, respectively. There is a difference.
  • the distributor 37 evenly distributes the exhaust gas (that is, the reaction gas) introduced into the housing 10 so that the exhaust gas more uniformly passes through all the cells of the catalyst carrier 30 positioned at the rear end, and the oxidation reaction with the catalyst.
  • the structure of the passageway is improved so that this can be achieved.
  • the distributor 37 has a honeycomb structure in which a plurality of cells are formed in a honeycomb structure so as to form a flow path in the longitudinal direction of the housing in the same way as the catalyst carrier 30 in the rear stage, but the surface of each cell is coated or uncoated with a catalyst. Anything can be used.
  • the distributor 37 may be a plurality of cells of the honeycomb structure is set in the range of 50 ⁇ 1200 cpsi (cell per square inch), the length may be set in the range of 1 ⁇ 100mm.
  • the connecting part 20b connected to the power supply terminal 16 from the winding part 20a of the heater 20 has a linear filament that generates heat at a relatively low temperature instead of a coiled filament in which the high temperature heat is generated inside the sheath heater. . Therefore, when the catalyst is not coated on the distributor 37, the connection part 20b that generates heat at a low temperature is set to be coupled with the distributor 37 to minimize the high temperature heat generation of the heater at a low thermal efficiency. It was.
  • the coupling structure of the catalyst carrier 30 and the heater 20 is the same as the heating and catalytic reaction modules illustrated in FIG. 8, and thus description thereof will be omitted.
  • the carrier assembly 34 instead of the brazing fixing method employed in the heating and catalytic reaction module illustrated in FIG. 8 when the carrier assembly 34 is assembled into the housing 10. It is joined by the detachable coupling structure.
  • the coupling structures of the catalyst carrier 30 and the heater 20 are identical to each other between the heating and catalytic reaction modules shown in FIGS. 11 and 12, and only the support structure of the catalyst carrier 30 described later is different.
  • the groove is formed by caulking the outer circumferential portion of the housing 10 so that the annular protrusion 10a protrudes from the inner circumference of the housing 10 corresponding to the lower end of the catalyst carrier 30.
  • the carrier assembly 34 assembled in the housing 10 cannot be moved downward in the direction of gravity action.
  • an insulating sheet such as a ceramic sheet or a mat is formed between the carrier assembly 34 and the housing 10.
  • the carrier assembly 34 assembled in the housing 10 is moved downward in the direction of gravity action for the detachable coupling between the carrier assembly 34 and the housing 10.
  • Many small hemispherical protrusions 10b are formed in the inner circumference of the housing 10 in order to block them from being made.
  • the insulating sheet may be inserted and assembled to maintain and insulate the heater 20 in the assembled position.
  • the assembly of the carrier assembly 34 can be easily made in the housing, and when the replacement of the carrier assembly is required, the disassembly for replacement from the housing 10 can be easily performed.
  • the structure of assembling the carrier assembly 34 to the housing 10 in a detachable manner may be applied to the heating and catalytic reaction modules illustrated in FIG. 8 in the same manner.
  • . 13 may be applied in the same manner to support the catalyst carrier of the heating and catalytic reaction module applied to the second embodiment of the present invention.
  • FIG. 13 is a cross-sectional view showing the configuration of a further example of the heating and catalytic reaction module applied to the second embodiment of the present invention.
  • the catalyst carrier 38 is formed of a cylindrical body of a catalyst-coated carrier on the surface of each cell, and the heater 36 is formed of a cylindrical winding portion 36a and a straight portion 36b. consist of.
  • the cylindrical winding 36a of the heater 36 is disposed at the inlet side of the housing 10, and the straight portions 36b of the heater are sequentially arranged at intervals of the distributor 37 ) And the central portion of the catalyst carrier 38.
  • both power terminals 15 and 16 extending from the heater 20 are drawn out through the upper and lower caps 22 and 23, respectively.
  • the heater 36 has its straight portion 36b inserted into and fixed to the center portion of the catalyst carrier 38 so that direct heating to the catalyst carrier 38 is achieved, and the cylinder 36 is disposed at the inlet side of the housing 10. Indirect heating by the winding part 36a is performed.
  • the distributor 37 evenly distributes the exhaust gas (that is, the reaction gas) introduced into the housing 10 so that the exhaust gas more uniformly passes through all the cells of the catalyst carrier 38 positioned at the rear end, and the oxidation reaction with the catalyst.
  • the path can be set so as to be uniform, and the reaction efficiency can be improved.
  • FIG. 14A to 14C are schematic cross-sectional views showing the construction of another additional example of the heating and catalytic reaction module applied to the second embodiment of the present invention.
  • the heating and catalytic reaction module 130 may be implemented by accommodating the catalyst carrier in the reactor housing 131 of a cube or cube having an open top or one side as shown in FIGS. 14A to 14C.
  • the plate 132 and the wave plate 133 are multistage inside the rectangular reactor housing 131 as shown in FIG. 14A.
  • the wave carrier 133 is arranged in multiple stages inside the rectangular reactor housing 131, as shown in FIG. 35a, 35b) can be configured. In this case, it is preferable that the multi-stacked contact points between the wave plate 133 and the wave plate 133 are welded using a filler metal.
  • the plate 132 is multi-stage inside the rectangular reactor housing 131 using a plurality of rod-shaped spacers 38, as shown in FIG. 14C. It can arrange and comprise both ends to the terminal terminal 35a, 35b.
  • the catalyst carriers 37b-37d are formed by using the flat plate 132, the wave plate 133, and the laminate of the flat plate 132 and the wave plate 133.
  • the flat plate 132 may be formed into a plurality of strips and then interconnected to each other, and may be modified into other shapes.
  • 15A and 15B are conceptual cross-sectional views of a warm air fan equipped with an air cleaning function according to a third embodiment of the present invention.
  • the third embodiment of the present invention diverges the aspirated air into two flow paths to purify a portion of the sucked air in the heating and catalytic reaction module 540 installed in one flow path, and the remaining inhaled air is heated and catalyzed.
  • the reaction module 540 is configured to pass through another flow path that is not installed, and then mixes the purified hot air with the unpurified low temperature air to discharge them to the outside.
  • the warm air heater 500 having the air cleaning function according to the third embodiment of the present invention has an inlet 510 for sucking outside air and air sucked through the inlet 510.
  • a heating unit installed in the first passage 520 and heating the air sucked from the suction port 510, and having a plurality of hollow cells coated with a catalyst on a surface thereof, by the heat of the heated air.
  • Heating and catalytic reaction module consisting of a catalytic reaction unit for activating a catalyst to purify and decompose harmful gases and organic substances contained in the air to purify the air, and discharge the warm air of the purified air to the third passage 550 ( 540).
  • the heating unit and the catalytic reaction unit of the heating and catalytic reaction module 540 may perform the functions of the heating module and the catalytic reaction module described above, and may be configured as a structure thereof.
  • a fan 570 may be installed between the third passage 550 and the outlet 560 to smoothly discharge the air.
  • the third flow path 550 accelerates the flow rate of the air passing through the first flow path 520, changes the traveling direction of the air, and passes the air through the first flow path 520 and the second flow path 530.
  • Joining promotion guide 580 can be further installed to facilitate the joining of the.
  • the joining promotion guide 580 is located at the center of the discharge area of the first flow path 520 and preferably has a rounded tip.
  • the air discharged from the first flow path 520 exits into a narrow space between the joining promotion guide 580 and the first flow path 520 discharge area, so that the flow velocity is increased, and the air flows out of the first flow path 520.
  • the advancing direction is changed to promote confluence with the air discharged from the second passage 530.
  • the joining promotion guide 580 may be provided with a humidifying member 590 for humidifying air flowing in the third flow path.
  • the warm air heater 500 having an air cleaning function may further include a humidifier for generating wet steam which is water vapor, and the humidifying member 590 supplies wet steam from the humidifier. Water vapor in the air flowing through the third flow path.
  • the warm air heater having the air cleaning function according to the third embodiment of the present invention purifies a part of the inhaled air and discharges the remaining inhaled air by mixing with the purified air, thereby minimizing energy required for purification. It is possible to lower the temperature of the discharged air, thereby providing comfort to the user.
  • the present invention provides a hot air blower having an air cleaning function, which is simple to form and miniaturized by integrally forming a heater and a catalytic reactor, and can simultaneously perform air purification, sterilization, deodorization, and heating functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geometry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

본 발명은 공기 청정 기능이 구비된 온풍기에 관한 것으로, 공기 정화와 히팅 수단의 구조를 단순화시켜 모듈화함으로써, 온풍기를 소형화시킬 수 있으므로 휴대가 가능하고, 이동을 자유롭게 할 수 있어 좁은 공간, 흡연 공간과 같은 국부적으로 유해한 공기가 밀집되어 있는 장소, 사용자가 원하는 장소로 자유롭게 이동시켜 공기 정화 및 온풍 배출을 수행할 수 있는 공기 청정 기능이 구비된 온풍기에 관한 것이다.

Description

공기 청정 기능이 구비된 온풍기
본 발명은 온풍기에 관한 것이며, 보다 구체적으로는 공기 청정 기능이 구비된 온풍기에 관한 것이다.
최근 환경오염에 대한 규제가 강화됨에 따라 전기 온풍기가 많이 사용되고 있으며, 공기 청정기 또한 사용이 늘고 있다.
공기 청정기는 필터식, 전기 집진식, 복합식, 음이온 정화식 및 워터 필터식 등 다양한 방식이 알려져 있으나, 종래 알려진 대부분의 공기 청정기는, 공기정화를 잘 시키면 탈취가 잘 안되고, 탈취가 잘 되면 공기정화가 잘 안 되는 문제점과, 필터를 자주 청소 또는 교체해주어야 하는 번거로운 문제점 등을 내포하고 있다.
한편, 공개특허공보 제2001-97924호에는 외부공기 인입구와 배출구 및 청정공기공급구가 서로 연통되게 트여진 덕트와; 상기 덕트의 인입구측에 설치되어 그 입구를 선택적으로 밀폐시키는 댐퍼와; 상기 덕트의 인입구측에 설치되어 인입되는 공기의 먼지를 제거하는 여과필터와; 이 여과필터에 의해 1차 여과된 인입공기중 유해성분을 무해성분으로 분해 전환시키는 촉매부재와; 상기 덕트의 배출구 및 청정공기공급구 사이 경계에 설치되어 그 통로를 선택적으로 차단 및 개폐시키는 제어댐퍼를 구비한 촉매연소 공기정화장치가 개시되어 있다.
상기 공기정화장치는 팬을 구동하여 1일 내지 1주일 동안 실내의 유해가스를 덕트 내부로 흡입하여 촉매부재를 통과시킴에 의해 유해가스를 촉매부재의 촉매에 흡착시키고, 댐퍼와 제어댐퍼로 덕트의 인입구와 배출구 및 청정공기공급구를 밀폐시킨 후, 가열히터를 구동시켜서 시스템을 가열시킴에 의해 촉매층을 통과하는 유해가스를 무해가스로 분해시키며, 그 후 댐퍼와 제어댐퍼를 개방하여 정화된 공기를 실내 또는 실외로 배출하고 있다.
이러한 공기정화장치는 촉매부재의 전단에 독립된 히터를 구비하고 히터를 작동시켜 가열된 열풍을 촉매부재로 공급하여 촉매를 활성화시키는 간접 가열식이므로 반응속도가 느리고 촉매 반응 효율이 낮은 문제가 있다.
또한, 공기정화장치를 작동시에는 미리 1일 내지 1주일 동안 실내의 유해가스를 덕트 내부로 흡입하여 촉매부재의 촉매에 흡착시키고, 댐퍼와 제어댐퍼로 덕트의 인입구와 배출구 및 청정공기공급구를 밀폐시킨 후, 가열히터를 구동시켜서 시스템을 가열시킴에 의해 촉매층을 통과하는 유해가스를 무해가스로 분해시키는 방식이므로 처리시간이 매우 긴 문제가 있다.
더욱이, 종래의 공기정화장치는 히터와 촉매 반응기가 별개로 구성되므로 히터의 용량 제어가 불가능하여 공기 정화와 동시에 난방용으로 적용하기 어려운 구조이다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 히터와 촉매 반응기를 일체로 형성하여 구조가 간단하고 소형화가 가능하며, 공기 정화, 살균, 탈취 및 난방 기능을 동시에 수행할 수 있는 공기 청정 기능이 구비된 온풍기를 제공하는데 그 목적이 있다.
본 발명의 다른 목적은 공기정화기의 히터와 촉매 반응기가 일체로 구성되어 히터가 분리된 열풍 가열식에 비하여 반응속도가 빠르고 촉매 반응 효율이 높아 촉매의 사용량을 줄일 수 있는 공기 청정 기능이 구비된 온풍기를 제공함에 있다.
본 발명의 또 다른 목적은 히터와 촉매 반응기가 일체로 구성되므로 히터의 용량 제어가 가능하여 난방용으로 사용시에 온도에 따라 용량을 가감할 수 있는 공기 청정 기능이 구비된 온풍기를 제공함에 있다.
본 발명의 또 다른 목적은 면상 히터 재료로서 내열성과 비저항이 큰 금속 박판재료를 스트립 형상으로 가공하여 이를 다단으로 적층하거나 코루게이션 성형하여 원통 또는 사각형상으로 제작하며, 이를 면상 히터로 이용하여 히터 표면에 절연층과 촉매를 형성하여 촉매 반응기를 제작함에 의해 제작이 용이하게 이루어질 수 있는 공기 청정 기능이 구비된 온풍기를 제공함에 있다.
본 발명의 또 다른 목적은 발열이 이루어지는 표면적이 넓은 면상발열체 구조의 히터 표면에 촉매를 코팅한 구조이므로 히터 역할과 함께 촉매반응에 필요한 열을 직접 전도방식으로 전달하여 히터와 촉매 담체가 분리된 구조와 비교하여 열효율을 높일 수 있는 공기 청정 기능이 구비된 온풍기를 제공함에 있다.
본 발명의 또 다른 목적은 금속 박판을 히터 재료로 사용하는 전기 히팅 방식이므로 공해물질을 발생하지 않는 무공해 클린 히터를 구비한 공기 청정 기능이 구비된 온풍기를 제공함에 있다.
본 발명의 또 다른 목적은 히터와 촉매 반응기가 일체로 구성되어 원통형 사각형 등의 다양한 형상으로 설계할 수 있는 공기 청정 기능이 구비된 온풍기를 제공함에 있다.
이와 같은 목적을 달성하기 위한, 본 발명의 일 실시예에 따르면, 공기를 흡입하는 공기 흡입 모듈; 상기 공기 흡입 모듈에서 흡입된 공기를 히팅시키는 히팅 모듈; 및 다수의 중공형 셀을 구비하도록 성형된 기재의 표면에 촉매가 코팅되어 히팅된 공기의 열에 의해 상기 촉매를 활성화시켜 유입되는 공기에 함유된 유해가스와 유기물을 연소 및 분해시켜 상기 공기를 정화시키는 촉매 담체와, 정화된 공기의 온풍을 배출하는 배출구를 포함하는 촉매 반응 모듈을 포함하는 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기를 제공한다.
상기 공기 흡입 모듈, 상기 히팅 모듈 및 상기 촉매 반응 모듈은 하나의 케이스에 일체로 모듈화되어 내장될 수 있다.
또한, 상기 공기 흡입 모듈에는 공기가 유입되는 유입구가 마련되고, 상기 유입구로 공기가 원활하게 유입되도록 하기 위한 흡입팬이 구비될 수 있다.
상기 히팅 모듈에는 상기 공기 흡입 모듈에서 유입된 공기를 소정의 온도로 히팅하기 위한 히터가 설치되며, 상기 히터는 공기 흡입 모듈에서 공기가 진행하는 방향에 수평하게 배치되고 소정의 간격으로 이격된 다수의 면상 히터, 열선, 시즈(sheath) 히터 중 하나로 구성될 수 있다.
또한, 본 발명은 상기 공기 흡입 모듈, 상기 히팅 모듈 및 상기 촉매 반응 모듈이 고정되는 하부 케이스; 및 상기 하부 케이스에 결합되는 상부 케이스를 포함하여 구성될 수 있다.
또한, 본 발명은 상기 촉매 반응 모듈에서 배출되는 정화된 온풍의 배출 방향을 온풍기의 상방향 또는 측방향으로 가이드하기 위한 가이드가 상기 하부 케이스에서 절곡되어 형성될 수 있다.
상기 상부 케이스 상측면에는 사용자가 그립(Grip)하여 이동할 수 있는 손잡이가 설치될 수 있다.
또한, 본 발명은 상측면으로부터 공기를 유입받도록, 상기 상부 케이스의 상면에 공기 유입구가 마련되어 있고, 측면으로 정화된 온풍을 배출할 수 있도록, 상기 상부 케이스와 상기 하부 케이스가 결합된 측면에 배출구가 마련될 수 있다.
상기 촉매 담체의 기재는 평판과 파판을 적층하여 스파이럴 형상으로 권취하거나 또는 동심원상으로 배치된 구조로 구현되어 있고, 상기 다수의 중공형 셀은 상기 평판과 상기 파판의 구조적인 결합에 의해 생성된 공간으로 정의될 수 있다.
상기 촉매 담체는 절연재료로 이루어진 통형상의 하우징 내부에 위치 될 수 있다. 이 때, 상기 하우징은 일측에서 타측으로 갈수록 폭이 점차적으로 감소하는 형상으로 구성될 수 있다.
본 발명의 다른 실시예에 따르면, 공기를 흡입하는 공기 흡입 모듈; 및 다수의 중공형 셀을 구비하도록 성형된 기재의 표면에 촉매가 코팅되어 히팅된 공기의 열에 의해 상기 촉매를 활성화시켜 유입되는 공기에 함유된 유해가스와 유기물을 연소 및 분해시켜 상기 공기를 정화시키는 촉매 담체가, 상기 공기 흡입 모듈에서 흡입된 공기를 히팅시키는 히터와 일체로 형성되어 있고 정화된 공기의 온풍을 배출하는 배출구를 포함하는 히팅 및 촉매 반응 모듈을 포함하는 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기를 제공한다.
상기 촉매 담체의 기재가 히터일 수 있다.
상기 히팅 및 촉매 반응 모듈은 내부에 공간을 갖도록 권선된 권선부와 이로부터 양측으로 직선형태로 연장된 한 쌍의 전원단자를 구비한 히터와, 상기 히터 권선부의 내주부에 삽입되며 표면에 촉매가 코팅된 다수의 중공형 셀이 길이방향으로 형성된 내측 촉매 담체와, 상기 히터 권선부의 외주부에 결합되며 표면에 촉매가 코팅된 다수의 중공형 셀이 길이방향으로 형성된 외측 촉매 담체와, 피처리 배기가스가 도입되는 유입구와 처리된 배기가스가 배출되는 유출구를 양측단 근처에 구비하고 히터 권선부의 내/외부에 내측 및 외측 촉매 담체가 조립된 담체 조립체가 내부에 조립되는 하우징을 포함할 수 있다.
상기 촉매 담체는 상단 또는 일측면이 개방된 직육면체 또는 정육면체의 하우징에 수납되어 있고, 상기 촉매 담체는 상기 하우징의 내부에 다단으로 평판 및 파판의 적층체를 배열하여 구성하고, 상기 적층체의 각단을 직렬 또는 병렬 방식으로 연결하여 양측 단부를 터미널 단자에 연결하여 구성하는 것; 상기 하우징의 내부에 다단으로 파판을 배열하여 구성하고, 상기 파판의 양측 단부를 터미널 단자에 연결하여 구성하는 것; 및 상기 하우징의 내부에 평판을 다수의 봉 형상 스페이서를 이용하여 다단으로 배열하여 구성하고, 상기 평판을 양측 단부를 터미널 단자에 연결하여 구성하는 것 중 하나로 구현할 수 있다.
본 발명의 또 다른 실시예에 따르면, 외부 공기를 흡입하는 흡입구, 상기 흡입구에서 흡입된 공기가 통과하는 제1유로 및 제2유로, 상기 제1유로 및 제2유로를 통과한 공기를 합류(合流)시키는 제3유로, 상기 제3유로에서 합류된 공기를 외부로 배출시키는 배출구가 구비된 케이스; 및 상기 제1유로에 설치되고, 상기 흡입구에서 흡입된 공기를 히팅시키는 히팅부와, 표면에 촉매가 코팅된 다수의 중공형 셀을 구비하고 상기 히팅된 공기의 열에 의해 상기 촉매를 활성화시켜 상기 공기에 함유된 유해가스와 유기물을 연소 및 분해시켜 상기 공기를 정화시키고, 정화된 공기의 온풍을 상기 제3유로로 배출하는 촉매 반응부로 이루어진 히팅 및 촉매 반응 모듈;을 포함하는 공기 청정 기능이 구비된 온풍기를 제공한다.
상기한 바와 같이, 본 발명에서는 공기 정화와 히팅 수단의 구조를 단순화시켜 모듈화함으로써, 온풍기의 소형화로 휴대할 수 있으며, 이동을 쉽게 할 수 있어 유해한 공기가 밀집된 영역에서 집중적으로 공기를 정화시킬 수 있음과 동시에 온풍을 배출하여 난방을 수행할 수 있다.
본 발명에서는 하우징 일측의 개방된 영역으로 유입된 히팅된 공기가 하우징의 폭이 좁아지는 하우징 내측벽에서 반사되어 촉매 담체에 코팅된 촉매의 반응을 향상시켜, 정화 효율을 더 증가시킬 수 있다.
본 발명에서는 금속 박판을 히터 재료로 사용하는 전기 히팅 방식이므로 실질적으로 공해물질을 발생하지 않는 무공해 클린 히터로 구현할 수 있다.
본 발명에서는 히터와 촉매 담체가 넓은 면적으로 직접 접촉할 수 있게 되어 촉매 담체에 대한 가열 효율이 향상된다. 결과적으로는 유입되는 배기가스 및 촉매 담체를 가열하기 위한 전기 에너지 소모량이 적어지게 된다.
본 발명에서는 히터와 촉매 담체를 일체로 구성할 수 있으므로 열풍 가열식에 비하여 반응속도가 빠르고, 구조면에서 소형화가 가능하며, 다양한 구조로 변경 가능한 이점이 있다.
또한, 본 발명에서는 공기 정화, 살균, 탈취 및 난방 기능을 동시에 수행할 수 있어 복수개의 개별 장치를 구입하지 않아도 되므로 원가를 절감시킬 수 있다.
아울러, 본 발명에서는 흡입된 공기의 일부를 하나의 유로에서 정화시키고, 나머지 흡입된 공기를 다른 하나의 유로로 통과시킨 다음, 정화된 고온의 공기와 정화되지 않은 저온의 공기를 혼합하여 외부로 배출시킴으로써, 정화에 필요한 에너지를 최소화시킬 수 있고, 배출되는 공기의 온도를 낮추어 사용자에게 쾌적성을 부여할 수 있는 효과가 있다.
게다가, 본 발명에서는 습증기가 부가된 정화된 공기를 배출할 수 있는 장점이 있다.
도 1은 본 발명의 제 1 실시예에 따른 공기 청정 기능이 구비된 온풍기의 개념적인 사시도,
도 2은 본 발명의 제 1 실시예에 따른 공기 청정 기능이 구비된 온풍기에서 상부 케이스가 벗겨진 상태의 사시도,
도 3은 도 2의 온풍기에 상부 케이스를 조립한 상태의 사시도,
도 4는 본 발명에 적용된 촉매 담체의 구조를 나타낸 개략 평면도,
도 5는 본 발명에 적용된 촉매 담체의 세부 구조도,
도 6은 본 발명에 따른 촉매 반응기의 단면 구조를 나타낸 개략 구성도,
도 7은 본 발명의 제 2 실시예에 따른 공기 청정 기능이 구비된 온풍기의 개념적인 사시도,
도 8은 본 발명의 제 2 실시예에 적용된 히팅 및 촉매 반응 모듈의 일례의 구성을 나타낸 단면도,
도 9a 내지 도 9c는 도 8의 히팅 및 촉매 반응 모듈에서 히터와 촉매 담체가 결합된 모습을 나타낸 측면도, 정면도 및 사시도,
도 10은 도 8의 히팅 및 촉매 반응 모듈에서 히터와 촉매 담체를 조립하는 방법을 설명하기 위한 도면
도 11은 본 발명의 제 2 실시예에 적용된 히팅 및 촉매 반응 모듈의 다른 예의 구성을 나타낸 단면도,
도 12는 본 발명의 제 2 실시예에 적용된 히팅 및 촉매 반응 모듈의 또 다른 예의 구성을 나타낸 정면도,
도 13에는 본 발명의 제 2 실시예에 적용된 히팅 및 촉매 반응 모듈의 추가 예의 구성을 나타낸 단면도,
도 14a 내지 도 14c는 본 발명의 제 2 실시예에 적용된 히팅 및 촉매 반응 모듈의 다른 추가 예의 구성을 나타낸 개략 단면도,
도 15a 및 도 15b는 본 발명의 제 3 실시예에 따른 공기 청정 기능이 구비된 온풍기의 개념적인 단면도이다.
이하, 도면을 참조하여 본 발명을 더욱 상세하게 설명한다.
도 1을 참고하면, 본 발명은 공기를 흡입하는 공기 흡입 모듈(350)과, 공기 흡입 모듈(350)에서 흡입된 공기를 히팅시키는 히팅 모듈(360), 다수의 중공형 셀이 구비된 기재의 표면에 촉매가 코팅되어 히팅된 공기의 열에 의해 상기 촉매를 활성화시켜 유입되는 공기에 함유된 유해가스와 유기물을 연소 및 분해시켜 상기 공기를 정화시키는 촉매 담체와 정화된 공기의 온풍을 배출하는 배출구를 포함하는 촉매 반응 모듈(380)을 포함한다.
공기 흡입 모듈(350), 히팅 모듈(360)과, 촉매 반응 모듈(380)은 하나의 케이스에 일체로 모듈화되어 내장되어 있을 수 있고, 공기 흡입 모듈(350)에서 흡입된 공기가 히팅 모듈(360)에서 히팅되고, 촉매 반응 모듈(380)에서 정화되어 배출되는 일련의 동작이 공기 누설 없이 수행될 수 있도록, 각각 별도로 제작되어 조립 또는 모듈화될 수 있다.
공기 흡입 모듈(350)에는 공기가 유입되는 유입구(351)가 마련되어 있고, 이 유입구(351)로 공기의 유입을 원활하게 수행하도록 공기를 강제 흡입하는 흡입팬과 같은 흡입수단(미도시)이 내장된다.
히팅 모듈(360)에는 공기 흡입 모듈(350)에서 유입된 공기를 소정의 온도로 히팅하기 위한 히터가 설치되며, 히터는 공기 흡입 모듈(350)에서 공기가 진행하는 방향에 수평하게 배치되고 소정의 간격으로 이격된 다수의 면상 히터, 열선, 시즈(sheath) 히터 중 하나일 수 있다. 여기서, 공기 흡입 모듈(350)에서 유입된 공기는 다수의 면상 히터 사이로 진행하면서 히팅되어 촉매 반응 모듈로 유출된다.
예컨대, 면상 히터 재료로서 내열성과 비저항이 큰 금속 박판재료를 스트립 형상으로 가공하여 이를 다단으로 적층하거나 코루게이션 성형하여 원통 또는 사각형상으로 제작하며, 이를 면상 히터로 이용할 수 있다.
촉매 반응 모듈(380)은 히팅 모듈(360)에서 히팅된 공기가 통과되며, 이 히팅된 공기의 열에 의해 촉매를 활성화시켜 유입되는 공기에 함유된 유해가스와 유기물을 연소 및 분해시켜 정화하게 된다. 촉매는 다수의 중공형 셀을 구비하도록 성형된 기재의 표면에 촉매가 코팅되어 있어 히팅된 공기가 다수의 중공형 셀을 통과할 때, 촉매는 활성화된다. 그리고, 정화된 공기는 히팅 상태이므로 온풍으로써 촉매 반응 모듈(380)에 마련된 배출구(391)를 통하여 온풍기 외부로 배출되어 온풍기 주변의 온도를 높일 수 있는 것이다. 배출구(391)는 단면 형상은 도 1에서 사각형으로 도시되어 있지만, 다양한 형상으로 적용가능하다.
도 2를 참고하면, 공기 흡입 모듈(350)의 유입구 및 촉매 반응 모듈(380)의 배출구(391)에는 이물질이나 어린이가 함부로 하우징 내부로 손을 집어넣는 것을 방지하기 위한 용도로 메쉬 형상의 필터나 격자 프레임(330,390)이 설치될 수 있다.
공기 흡입 모듈(350), 히팅 모듈(360)과, 촉매 반응 모듈(380)은 하부 케이스(320)에 고정될 수 있으며, 이를 고정시키는 체결 수단도 다양하게 응용하여 적용할 수 있다.
촉매 반응 모듈(380)에서 배출되는 정화된 온풍의 배출 방향을 온풍기의 상방향 또는 측방향으로 가이드하기 위한 가이드(321)가 하부 케이스(320)에서 절곡되어 형성될 수 있다.
도 3을 참고하면, 상부 케이스(310)는 하부 케이스(320)에 결합되어, 결합된 상부 케이스(310)는 하부 케이스(320) 내부에 공기 흡입 모듈(350)의 유입구 및 촉매 반응 모듈(380)이 내장되어, 외부로부터 이물의 유입을 방지하고, 외부 충격으로부터 보호를 받는다.
상부 케이스(310)에는 공기 흡입 모듈(350)의 유입구 및 촉매 반응 모듈(380)의 배출구에 대응되는 공기 유통로가 형성되어 있고, 상부 케이스(310) 상측면에는 사용자가 그립(Grip)하여 이동할 수 있는 손잡이(301)가 설치되어 있다.
그리고, 본 발명에 따른 공기 청정 기능이 구비된 온풍기는 상측면으로부터 공기를 유입받도록, 상부 케이스(310)의 상면에 공기 유입구가 마련되어 있고, 측면으로 정화된 온풍을 배출할 수 있도록, 상부 케이스(310)와 하부 케이스(320)에 결합된 측면에 배출구가 마련되어 있다.
따라서, 본 발명에 따른 공기 청정 기능이 구비된 온풍기(300)는 소형화되어 휴대할 수 있고, 이동이 용이하여 좁은 공간, 흡연 공간과 같은 국부적으로 유해한 공기가 밀집되어 있는 장소, 사용자가 원하는 장소로 자유롭게 이동시켜 공기 정화 및 온풍 배출을 수행할 수 있는 것이다.
도 4를 참고하면, 촉매 반응 모듈에 내장된 촉매 담체(137)는 다수의 중공형 셀(136)을 구비하도록 성형된 기재로, 평판(132)과 파판(133)을 적층하여 스파이럴 형상으로 권취하거나 또는 동심원상으로 배치된 구조로 기재를 구현할 수 있고, 다수의 중공형 셀(136)은 평판(132)과 파판(133)의 구조적인 결합에 의해 생성된 공간으로 정의된다. 이때, 기재의 표면에는 촉매가 코팅되어 있다. 그리고, 촉매 담체(137)는 절연재료로 이루어진 원통형상의 하우징(미도시) 내부에 위치될 수 있다.
하우징은 내부가 중공상태이고 일측과 타측이 개방된 원통형상으로, 히팅 모듈에서 히팅된 공기는 하우징 일측의 개방된 영역으로 유입되고, 촉매 담체(137)에서 정화된 공기는 하우징 타측의 개방된 영역으로 배출된다.
하우징 일측의 개방된 영역에서 하우징 타측의 개방된 영역으로 갈수록 점차적으로 하우징의 폭이 감소하도록 설계할 수 있다. 즉, 하우징 일측의 개방된 영역으로 유입된 히팅된 공기가 하우징의 폭이 좁아지는 하우징 내측벽에서 반사되어 촉매 담체(37)에 코팅된 촉매의 반응을 향상시켜, 정화 효율을 더 증가시킬 수 있는 것이다.
상기한 도 4는 촉매 담체(137)가 평판(132)과 파판(133)이 적층된 구조를 사용한 것이나, 촉매 담체(137)는 파판(133)만을 단독으로 사용하는 구조로 사용할 수 있다. 하우징이 원통형상인 경우, 촉매 담체(137)가 원형으로 하우징에 수납되고, 하우징이 사각통 형상인 경우 촉매 담체(137)가 사각형으로 하우징에 수납된다.
상기와 같이 평판(132)과 파판(133)의 적층체 또는 파판(133) 단독으로 이루어진 촉매 담체가 하우징에 수납되면 원통 또는 사각통의 길이 방향으로 유체 이동 통로를 이루는 도 5와 같은 다수의 중공형 셀(136)을 구비하는 허니콤 구조가 형성된다.
상기 다수의 중공형 셀(136)은 파형, 반구형, 삼각형, 사각형 등의 다양한 형태 중의 하나로 이루어지게 된다.
상기 촉매 담체(137)는 도 6에 도시된 바와 같이 기재(41)의 표면에 촉매(43)가 코팅되는 표면적을 증가시킴과 동시에 기재(41)를 히터로 사용함에 따른 전기 절연성을 갖도록 세라믹 조성으로 이루어진 베이스 코트(42)를 형성한다. 상기 베이스 코트(42)의 표면에는 산화 또는 환원 촉매(43)를 선택하거나 또는 조합하여 코팅한다.
상기 베이스 코트(42)에 사용 가능한 재료로는 예를 들어, 알루미나(Al2O3), 지르코니아(ZrO3), 세리아(CeO2), 티탄니아(TiO2) 등과 같은 세라믹을 형성할 수 있는 것이다.
또한, 상기 기재(41)로 사용 가능한 재료는 예를 들어, 니켈(Ni), 니켈 합금, FeCrAl, Ni을 소정량 함유하는 FeCrAl 합금, Fe-15Cr-5Al 비율로 합성된 페칼로이 합금 또는 Fe-20Cr-5Al-REM(희토류 금속)(여기서, REM(Y, Hf, Zr) 1% 정도 포함) 등의 내열성 재료로 이루어진 금속 박판 등을 사용할 수 있다.
이 경우 상기 기재(41)로는 20~100μm 두께를 갖는 FeCrAl계 내열성 합금박판으로 이루어진 것이 바람직하다.
베이스 코트(42)의 표면에 코팅되는 촉매(43)로는 백금, 코발트, 니켈, 팔라듐, 구리, 망간 및 나노 실버중 적어도 하나를 사용한다. 이 경우, 공기 중에 포함된 어떤 물질을 처리할 것 인가에 따라 백금, 팔라듐 같은 산화 촉매를 사용하거나 백금/로듐, 로듐 같은 환원 촉매를 사용하며, 이를 조합하여 사용하는 것도 가능하다.
상기한 촉매(43)는 촉매 금속의 종류에 따라 예를 들어, 200~600℃의 촉매활성온도에서 카본, 일산화탄소(CO), 질소산화물(NOx) 등의 유해물질이나 악취가스에 포함된 유기물을 상대적으로 낮은 온도에서 완전 연소시키거나 분해시키도록 유도하는 역할을 한다.
한편, 후술된 히팅 모듈과 촉매 반응 모듈이 일체로 형성된 히팅 및 촉매 반응 모듈에서는 촉매 담체(137)의 기재(41)를 히터로서 이용할 수 있으며, 이때, 평판(132) 및 파판(133)의 표면에 절연층 역할을 하는 베이스 코트(42)가 형성되어 있기 때문에 촉매 담체(137)의 기재(41)를 히터로서 이용하기 위하여 전원을 인가할지라도 단락(short-circuit) 현상은 발생되지 않는다.
아울러, 도 4와 같은 촉매 담체(137)를 구성하는 평판(132)과 파판(133)을 히터로서 이용할 수도 있다.
도 7을 참고하면, 본 발명의 다른 실시예에 의한 온풍기는, 공기를 흡입하는 공기 흡입 모듈(350)과, 다수의 중공형 셀을 구비된 기재의 표면에 촉매가 코팅되어 히팅된 공기의 열에 의해 상기 촉매를 활성화시켜 유입되는 공기에 함유된 유해가스와 유기물을 연소 및 분해시켜 상기 공기를 정화시키는 촉매 담체가 공기 흡입 모듈(350)에서 흡입된 공기를 히팅시키는 히터와 일체로 형성되어 있고 정화된 공기의 온풍을 배출하는 배출구(391)를 포함하는 히팅 및 촉매 반응 모듈(370)을 포함한다.
히팅 및 촉매 반응 모듈(370)은 히터와 촉매 담체를 일체로 모듈화하여 조립되어 온풍기를 더 소형화시킬 수 있으며, 전술된 촉매 담체의 기재를 히터로 이용하는 구조, 촉매 담체를 구성하는 평판과 파판을 히터로서 이용하는 구조와 같이, 촉매 담체에 히터가 포함되어 있거나 또는 후술된 다양한 실시예에 의한 구조로 구현할 수 있다.
이와 같이, 본 발명의 공기 청정 기능이 구비된 온풍기는 실내, 공공장소, 산업시설 등에 설치되어 공기를 정화, 살균, 탈취시키는 공기 청정 분야는 물론 실내의 온도를 소정 온도로 유지시킬 수 있다.
그리고, 본 발명의 온풍기는 금속 박판을 히터 재료로 사용하는 전기 히팅 방식이므로 실질적으로 공해물질을 발생하지 않는 무공해 클린 히터로서 작용을 한다.
본 발명에서는 각종 폐가스가 항상 배출되는 공장 및 공장에 인접해 있는 사무실, 도장시설, 저유소, 주유소, 세탁소, 인쇄소 등 휘발성 유기화합물(VOC)의 냄새가 심하게 발생하는 장소, 음식점, 실내위락업소, 지하놀이장소 등의 담배연기, 냄새, 세균, 먼지 등이 심하게 발생하는 장소, 지하철역, 버스, 기차역대합실, 병원, 학교 등의 악취, 먼지, 세균, 배기가스 등으로 채워진 공공장소, 산업폐기물이나 생활폐기물을 연소시켜 처리하는 도시부근의 소각장 등에 본 발명의 공기 정화기가 설치되는 경우 각종 유해가스, 세균, 악취, 먼지 등을 가리지 않고 연소시킴에 의해 한번에 공기 정화, 살균, 탈취가 동시에 이루어지게 된다.
도 8은 본 발명의 제 2 실시예에 적용된 히팅 및 촉매 반응 모듈의 일례의 구성을 나타낸 단면도, 도 9a 내지 도 9c는 도 8의 히팅 및 촉매 반응 모듈에서 히터와 촉매 담체가 결합된 모습을 나타낸 측면도, 정면도 및 사시도, 도 10은 도 8의 히팅 및 촉매 반응 모듈에서 히터와 촉매 담체를 조립하는 방법을 설명하기 위한 도면이다.
본 발명의 제 2 실시예에 적용된 히팅 및 촉매 반응 모듈은 하우징(10)과, 히터(20)와, 촉매 담체(30)를 포함하여 이루어진다.
상기 하우징(10)에는 내부에 히터(20)와 촉매 담체(30)를 수용할 수 있는 원통형 공간이 마련된다. 또한, 하우징(10)에는, 일측에 배기가스가 유입되는 유입구(11)가 배치되며, 타측에는 촉매 담체(30)를 거치면서 유입된 배기가스의 악취를 탈취한 실내 배기가스를 배출하기 위한 유출구(12)가 배치된다.
이러한 유입구(11) 및 유출구(12)는, 유입구(11)로 유입되는 배출 가스가 하우징(10)의 내부에 배치된 촉매 담체(30)를 반드시 통과한 후 배출될 수 있도록, 하우징(10)에 수용된 촉매 담체(30)의 유입측 및 유출측의 양단에 각각 배치되며, 바람직하게는 하우징(10)이 수직으로 배치될 때 하측에 유입구(11)가 배치되고, 상측에 유출구(12)가 배치된다.
또한, 하우징(10)은 바람직하게는 원통형으로 이루어지고, 상측 및 하측 단부에는 각각 상부 및 하부 캡(22,23)이 압입 결합되어 있으며, 그의 중앙에는 히터(20)의 양 전원단자(15,16)를 각각 인출하기 위한 관통구멍(22a,23a)이 형성되어 있다.
이 경우, 필요에 따라서 하우징(10)의 상부 및 하부 캡(22,23)을 사용하지 않고 후속 처리장치로 연결되는 개방된 구조를 가질 수 있다.
히터(20)는, 금속관 내부에 발열체가 내장된 시즈(sheath) 히터를 발열체로 사용하여 중간에 내부 공간을 갖는 코일 형태로 권선된 권선부(20a)를 구비하며, 코일 형태는 원통형이 바람직하다.
그러나, 권선부(20a)의 권선 형태는 반드시 원통형일 필요는 없으며, 예를 들어, 삼각형 또는 사각형 등의 단면을 이루거나, 또한 유출구를 향하여 점진적으로 내부 공간이 축소되는 원뿔대 형상의 단면을 갖도록 다양한 형태로 권취될 수도 있다. 이러한 형태는 특별히 한정되는 것이 아니며, 히터(20)에 소정의 내부 공간을 형성할 수 있으면 어떠한 형태로도 변형할 수 있음은 당연하다.
상기 권선부(20a)의 형태는 권선부(20a)의 내부 및 외부에 결합되는 내측 촉매 담체(31)와 외측 촉매 담체(32)가 권선방식으로 성형되는 점을 고려할 때 원통 형상으로 이루어지는 것이 바람직하다.
그러나, 내측 촉매 담체(31)와 외측 촉매 담체(32)가 금속 박막으로 이루어지는 경우 원통형상으로 권선되어 제작될지라도 어느 정도의 탄성적 변형이 이루어질 수 있다. 따라서, 상기 권선부(20a)의 형태를 사각통 형상으로 제작하고 내측 촉매 담체(31)와 외측 촉매 담체(32)를 이에 대응하는 형상으로 성형하는 경우 히터(20)와 담체(31,32) 사이의 접촉 면적을 극대화시킬 수 있다.
상기 시즈(sheath)히터는 각종 시즈(sheath)의 중심에 필라멘트를 넣고 그 사이에 고온 절연도가 높고 열전도가 양호한 고순도의 마그네슘 분말이나 산화 알루미늄 분말을 집어넣은 후 시즈(sheath) 외경을 고압으로 압축하여 일체화 하므로 내부 전열선과 시즈(sheath)와의 온도차를 충분히 낮추며 산화에 의한 전열선의 노화나 충격에 의한 단선 및 전열선이 편심될 염려가 없다. 또한, 시즈히터는 필라멘트의 양단부가 일측 및 타측 전원단자(15,16)에 각각 연결된 구조를 가지므로 제조단가가 저렴하며 내구수명이 우수한 장점을 가진다.
또한, 히터(20)의 발열체 재료는 시즈 히터 이외에 이와 동등한 기능을 갖는 다른 종류의 히터를 사용하는 것도 가능하다.
히터(20)에 대한 전원공급은 권선부(20a)로부터 축방향으로 연장된 일측 및 타측 전원단자(15,16) 사이에 인가되며, 양 단자에 나사단자나 평단자 또는 러그단자(Lug terminal)를 사용할 수 있다.
또한, 히터(20)는 전열선과 연결된 한쌍의 전원단자(15,16)가 일측에 배치된 편단자 형태의 카트리지(cartridge) 히터를 사용하여 구성되는 것도 가능하다.
이하의 설명에서 원통 형태의 권선부(20a)를 갖는 히터(20)를 예를 들어, 설명한다.
상기 촉매 담체(30)는 내측 촉매 담체(31)와 외측 촉매 담체(32)를 포함한다. 즉, 내측 촉매 담체(31)는 히터(20)에서 원통형 권선부(20a)의 내측에 배치되는 원기둥 형태의 촉매 담체이며, 외측 촉매 담체(32)는 히터(20) 권선부(20a)의 외측을 둘러싸도록 배치되는 원통 형태의 촉매 담체이다. 이를 위하여, 내측 촉매 담체(31)는, 히터(20)의 권선부(20a) 내측으로 삽입될 수 있도록 권선부(20a)의 내측 지름과 같거나 작은 외측 지름을 갖도록 형성된다.
한편, 외측 촉매 담체(32)는 내측 촉매 담체(31)를 포함하는 히터(20)를 외부에서 둘러쌀 수 있도록 원통 형태로 형성되고, 그 내부로 히터(20)가 삽입되도록 하는 것이 바람직하다. 이를 위하여, 외측 촉매 담체(32)는, 히터(20) 권선부(20a)의 외측 지름과 같거나 다소 큰 내측 지름을 갖도록 형성된다.
또한, 내측 촉매 담체(31)는 허니콤 형태의 다수의 셀(30a)로 이루어지며, 원기둥의 길이 방향으로 유체 이동 통로가 형성될 수 있도록 한다. 또한, 외측 촉매 담체(32)는 원통의 길이 방향으로 유체 이동 통로가 형성된 허니콤 형태의 다수의 셀(30a)로 이루어지는 것이 바람직하다.
상기 촉매 담체(31,32)는 예를 들어, 20~100㎛ 두께를 갖는 FeCrAl계 내열성 합금 박판에 촉매금속으로서 백금, 코발트, 니켈, 팔라듐 또는 나노 실버를 코팅한 재료를 사용하며, 평판(30b)에 코로게이션 처리된 파판(30c)이 접촉하는 접촉부마다 용접이 이루어진 것을 권선하여 원기둥 또는 원통 형태로 성형하여 각 셀(30a)이 허니콤 구조를 이루고 있다.
상기 촉매 담체(31,32)는 촉매금속의 종류에 따라 예를 들어 200~600℃로 촉매활성온도가 설정된다. 상기 촉매 담체(31,32)의 셀(30a)은 파판(30c)의 형상에 따라 반구형 또는 삼각형으로 이루어질 수 있다. 여기에서, 내측 촉매 담체(31) 및 외측 촉매 담체(32)는 상술한 허니콤 형태뿐만 아니라, 다양한 형태를 가질 수 있다.
상기 FeCrAl계 합금 재료로는 Fe-15Cr-5Al 비율로 합성된 페칼로이 합금 또는 Fe-20Cr-5Al-REM(희토류 금속)(여기서, REM(Y, Hf, Zr) 1% 정도 포함)을 사용하는 것이 바람직하다.
또한, 상기 촉매 담체(31,32)는 다른 허니콤 구조로서 세라믹으로 이루어진 다수의 중공형 셀이 사각형 또는 원형으로 이루어질 수 있다.
이와 같이 구성되는 본 발명의 제 2 실시예에 적용된 히팅 및 촉매 반응 모듈에 의하면, 히터(20)와 촉매 담체(30)가 넓은 면적으로 직접 접촉할 수 있게 되어, 히터(20)로부터 촉매 담체(30)에 대한 열전달 효율과 촉매의 반응 효율이 좋게 된다. 그 결과 종래에는 350 내지 450W의 고 용량 히터를 사용하였으나, 본 발명에서는 150W 이하의 저 용량 히터를 사용하는 것이 가능하게 되었다.
또한, 결과적으로는 최소한의 에너지로 적정한 온도로 촉매 담체(30)를 가열하여 배기가스를 처리하게 되므로 하우징(10)의 유출구(12)로 배출되는 배기가스의 전체 에너지 또한 낮아지게 된다. 이에 따라 배기가스의 온도를 낮추기 위한 외기 도입용 석션모터의 구동을 최소화할 수 있게 된다.
또한, 히터(20)의 권선부(20a)가 촉매 담체(30)의 중간에 삽입되어 형성하므로, 배기가스 정화용 담체 컨버터의 크기를 최소화하는 것이 가능해진다. 그 결과 종래에 히터의 권선부가 촉매 담체(30) 외부에 배치된 구조에서는 190mm의 길이를 가졌으나, 본 발명에서는 110mm로 길이를 대폭 축소하는 것이 가능하게 되었다.
다음은, 상술한 바와 같은 배기가스 정화용 담체 컨버터를 제조하는 과정에 대하여 도 10을 참조하여 설명한다.
먼저, 시즈 히터로 이루어진 발열체를 원통 형태로 권취하여 권선부(20a)와 그의 양단부에 직선형태의 전원단자(15,16)가 연장 형성된 히터(20)를 제작한다.
또한, 촉매 담체(30)에서, 상기 내측 촉매 담체(31)는 내열성 합금 박판에 촉매금속을 코팅한 재료를 사용하여, 평판(30b)에 코로게이션 처리된 파판(30c)을 접촉부마다 브레이징(또는, 확산접합)한 것을 권선하여 원기둥 형태로 성형하고, 상기 외측 촉매 담체(32)는 평판(30b)에 코로게이션 처리된 파판(30c)을 접촉부마다 브레이징(또는, 확산접합)한 것을 권선하여 원통 형태로 성형하여, 각 셀(30a)이 예를 들어, 허니콤 구조를 이루고 있다.
즉, 히터(20) 권선부(20a)의 내측 지름과 거의 동일한 지름을 갖는 원기둥 형태로 가공하여 내측 촉매 담체(31)를 준비하고, 또한 히터(20) 권선부(20a)의 외측 지름과 동일한 내측 지름을 갖고 동시에 이 히터(20)가 삽입될 배기가스 정화용 담체 컨버터의 하우징(10)의 내부 지름과 동일한 외측 지름을 갖는 원통 형태로 가공하여 외측 촉매 담체(32)를 준비한다.
도 10의 좌측에 도시된 바와 같이 각각의 부품이 준비되면, 히터(20) 권선부(20a)의 내측에 내측 촉매 담체(31)를 삽입하고, 히터(20) 권선부(20a)의 외측에 외측 촉매 담체(32)를 끼움으로써 도 10의 우측에 도시된 바와 같은 히터(20)와 촉매 담체(30)의 조립을 완성한다.
그 후 내측 및 외측 촉매 담체(31,32)와 히터(20)의 권선부(20a) 사이의 접촉부분을 진공 브레이징하여 일체화시키거나, 따로 브레이징하여 제작한 후 조립하여 완성시킨다. 이 경우 브레이징 방법 대신에 확산접합 방식을 사용하는 것도 가능하다.
이어서, 촉매 담체(30)와 히터(20)가 조립된 담체 조립체(34)를 하우징(10)에 삽입하여, 담체 조립체(34)와 하우징(10) 사이에 브레이징에 의한 고정이 이루어진다.
그 후, 하우징(10)의 상측 및 하측 단부에 각각 상부 및 하부 캡(22,23)을 압입 결합시키면, 상부 및 하부 캡(22,23)의 관통구멍(22a,23a)으로 히터(20)의 양 전원단자(15,16)가 각각 인출되면서 실링이 이루어진다.
상기한 바와 같이 본 발명의 제 2 실시예에 적용된 히팅 및 촉매 반응 모듈은 각 부품들의 단순 조립에 의해 조립이 이루어질 수 있고, 조립된 히팅 및 촉매 반응 모율은 소형화가 가능하여 다양한 디자인으로 응용이 가능한 이점이 있다.
또한, 상기한 바와 같이 히터로부터 열이 담체(지지체)로 전달되어 열효율 극대화와 전력 사용량의 최소화를 실현함에 따라 배기가스 온도의 최소화를 도모하여 외기 도입용 석션 모터의 가동을 최소화하여 유지비용의 절감을 도모할 수 있다.
도 11은 본 발명의 제 2 실시예에 적용된 히팅 및 촉매 반응 모듈의 다른 예의 구성을 나타낸 단면도이고, 도 12는 본 발명의 제 2 실시예에 적용된 히팅 및 촉매 반응 모듈의 또 다른 예의 구성을 나타낸 정면도이다.
도 11 및 도 12에 도시된 히팅 및 촉매 반응 모듈은 도 8에 도시된 히팅 및 촉매 반응 모듈과 유사한 구조를 가지고 있으며, 따라서 동일한 구성소자에 대하여는 동일한 부재번호를 부여하고 이에 대하여는 상세한 설명을 생략하였다.
도 11 및 도 12에 도시된 히팅 및 촉매 반응 모듈은 각각 배기가스가 도입되는 하우징(10)의 입구측에 디스트리뷰터(37)가 추가로 구비되어 있다는 점에서 도 8에 도시된 히팅 및 촉매 반응 모듈과 차이가 있다.
상기 디스트리뷰터(37)는 하우징(10) 내부로 도입된 배기가스(즉, 반응가스)를 고르게 분산시켜서 배기가스가 후단에 위치한 촉매 담체(30)의 모든 셀을 보다 균일하게 통과하면서 촉매와 산화반응이 이루어질 수 있도록 통과유로를 개선한 구조이다.
상기한 디스트리뷰터(37)는 후단의 촉매 담체(30)와 동일하게 하우징의 길이방향으로 유로를 형성하도록 다수의 셀이 하니콤 구조로 형성하나, 각 셀의 표면에는 촉매가 코팅되거나 또는 코팅되지 않은 것 모두 사용할 수 있다.
이 경우, 상기 디스트리뷰터(37)는 하니콤 구조로 이루어진 다수의 셀이 50~1200cpsi(cell per square inch) 범위로 설정되고, 길이는 1~100mm 범위로 설정될 수 있다.
히터(20) 권선부(20a)로부터 전원단자(16)로 연결되는 연결부(20b)는 시즈히터 내부의 고온발열이 이루어지는 코일형 필라멘트 대신에 상대적으로 낮은 온도로 발열이 이루어지는 선형 필라멘트가 배치되어 있다. 따라서, 디스트리뷰터(37)에 촉매가 코팅되어 있지 않은 경우는 낮은 온도로 발열되는 연결부(20b)가 디스트리뷰터(37)와 결합되도록 설정함에 의해 열효율이 낮은 부분에서 히터의 고온발열이 이루어지는 것을 최소한으로 억제하였다.
상기 도 11 및 도 12에 도시된 히팅 및 촉매 반응 모듈에서 촉매 담체(30)와 히터(20)의 결합구조는 도 8에 도시된 히팅 및 촉매 반응 모듈과 동일하므로 이에 대하여는 설명을 생략한다.
한편, 상기 도 11 및 도 12에 도시된 히팅 및 촉매 반응 모듈에서는 담체 조립체(34)를 하우징(10) 내부에 조립할 때 도 8에 도시된 히팅 및 촉매 반응 모듈에서 채용하고 있는 브레이징 고정방식 대신에 착탈 가능한 결합 구조로 결합이 되어 있다. 상기 도 11 및 도 12에 도시된 히팅 및 촉매 반응 모듈 사이에 촉매 담체(30)와 히터(20)의 결합구조는 서로 동일하고 단지 후술하는 촉매 담체(30)의 지지구조만 차이가 있다.
즉, 촉매 담체(30)의 하단에 대응하는 하우징(10)의 내주부에 환형 돌기(10a)가 돌출되도록 하우징(10)의 외주부를 코킹(caulking)처리하여 요홈을 형성한다. 이 경우, 하우징(10)에 조립된 담체 조립체(34)는 중력작용 방향인 하방향으로 이동이 이루어질 수 없게 된다.
또한, 촉매 담체(30)와 히터(20)가 조립된 담체 조립체(34)를 하우징(10)에 삽입하여 조립할 때 담체 조립체(34)와 하우징(10) 사이에 세라믹 시트 또는 매트와 같은 절연시트를 삽입하여 조립함에 의해 히터(20)가 하우징 내부에 조립된 위치의 유지와 단열이 이루어지도록 한다.
도 12에 도시된 히팅 및 촉매 반응 모듈에서는 담체 조립체(34)와 하우징(10) 사이에 착탈 가능한 결합을 위하여 하우징(10)에 조립된 담체 조립체(34)가 중력작용 방향인 하방향으로 이동이 이루어지는 것을 차단하기 위하여 하우징(10)의 내주부에 소형의 반구형 돌기(10b)가 다수 형성되어 있다.
또한, 담체 조립체(34)를 하우징(10)에 삽입하여 조립할 때 절연시트를 삽입하여 조립함에 의해 히터(20)가 하우징 내부에 조립된 위치의 유지와 단열이 이루어질 수 있다.
이에 따라 제2 실시예에서는 하우징 내부에 담체 조립체(34)의 조립이 쉽게 이루어질 수 있으며, 또한 담체 조립체의 교체가 요구될 때 하우징(10)으로부터 교체를 위한 분해가 쉽게 이루어질 수 있게 된다.
상기 도 11 및 도 12에 도시된 히팅 및 촉매 반응 모듈에서 담체 조립체(34)를 착탈 가능하게 하우징(10)에 조립하는 구조는 도 8에 도시된 히팅 및 촉매 반응 모듈에도 같은 방식으로 적용될 수 있다. 또한, 후술하는 도 13에는 본 발명의 제 2 실시예에 적용된 히팅 및 촉매 반응 모듈의 촉매 담체를 지지할 때에도 같은 방식으로 적용될 수 있다.
도 13에는 본 발명의 제 2 실시예에 적용된 히팅 및 촉매 반응 모듈의 추가 예의 구성을 나타낸 단면도가 도시되어 있다.
이 히팅 및 촉매 반응 모듈에서 촉매 담체(38)는 각 셀의 표면에 촉매가 코팅된 담체가 원기둥 형태의 단일체로 이루어지고, 히터(36)는 원통형 권선부(36a)와 직선부(36b)로 이루어져 있다.
또한, 이 히팅 및 촉매 반응 모듈에서 히터(36)의 원통형 권선부(36a)는 하우징(10)의 입구측에 배치되고, 히터의 직선부(36b)는 간격을 두고 순차적으로 배치된 디스트리뷰터(37)와 촉매 담체(38)의 중앙부에 결합되어 있다.
더욱이, 히터(20)로부터 연장된 양 전원단자(15,16)는 상부 및 하부 캡(22,23)을 통하여 각각 외부로 인출된다.
따라서, 히터(36)는 그의 직선부(36b)가 상기 촉매 담체(38)의 중앙부에 삽입 고정되어 촉매 담체(38)에 대한 직접가열이 이루어지며, 하우징(10)의 입구측에 배치된 원통형 권선부(36a)에 의한 간접가열이 이루어지고 있다.
상기 디스트리뷰터(37)는 하우징(10) 내부로 도입된 배기가스(즉, 반응가스)를 고르게 분산시켜서 배기가스가 후단에 위치한 촉매 담체(38)의 모든 셀을 보다 균일하게 통과하면서 촉매와 산화반응이 균일하게 이루어지도록 경로를 설정하여 반응효율의 향상을 도모할 수 있다.
도 14a 내지 도 14c는 본 발명의 제 2 실시예에 적용된 히팅 및 촉매 반응 모듈의 다른 추가 예의 구성을 나타낸 개략 단면도이다.
이 히팅 및 촉매 반응 모듈(130)은 촉매 담체를 도 14a 내지 도 14c에 도시된 바와 같이 상단 또는 일측면이 개방된 직육면체 또는 정육면체의 반응기 하우징(131)에 수납함에 의해 구현될 수 있다.
우선, 촉매 담체(37b)가 평판(132) 및 파판(133)의 적층체를 사용하는 경우 도 14a에 도시된 바와 같이 사각형 반응기 하우징(131)의 내부에 다단으로 평판(132) 및 파판(133)의 적층체를 배열하여 구성하고, 적층체의 각단을 직렬 또는 병렬 방식으로 연결하여 양측 단부를 터미널 단자(35a,35b)에 연결하여 구성할 수 있다.
또한, 촉매 담체(37c)가 파판(133)만을 사용하는 경우 도 14b에 도시된 바와 같이 사각형 반응기 하우징(131)의 내부에 다단으로 파판(133)을 배열하여 구성하고, 양측 단부를 터미널 단자(35a,35b)에 연결하여 구성할 수 있다. 이 경우 다단 적층되어 파판(133)과 파판(133) 사이의 상호 접촉되는 접촉점은 필러메탈을 사용하여 용접되는 것이 바람직하다.
더욱이, 촉매 담체(37d)가 평판(132)만을 사용하는 경우 도 14c에 도시된 바와 같이 사각형 반응기 하우징(131)의 내부에 평판(132)을 다수의 봉 형상 스페이서(38)를 이용하여 다단으로 배열하여 구성하고, 양측 단부를 터미널 단자(35a,35b)에 연결하여 구성할 수 있다.
상기 도 14a 내지 도 14c에 도시된 바와 같이, 평판(132), 파판(133), 및 평판(132)과 파판(133)의 적층체를 사용하여 촉매 담체(37b-37d)를 구성하는 것을 예시하였으나, 평판(132)을 다수의 스트립 형태로 성형한 후 이를 상호 연결하여 구성할 수 있고, 다른 형태로 변형하는 것도 가능하다.
도 15a 및 도 15b는 본 발명의 제 3 실시예에 따른 공기 청정 기능이 구비된 온풍기의 개념적인 단면도이다.
본 발명의 제 3 실시예는 흡입된 공기를 2개의 유로로 분기시켜, 흡입된 공기의 일부를 하나의 유로에 설치된 히팅 및 촉매 반응 모듈(540)에서 정화시키고, 나머지 흡입된 공기를 히팅 및 촉매 반응 모듈(540)이 설치되지 않은 다른 하나의 유로로 통과시킨 다음, 정화된 고온의 공기와 정화되지 않은 저온의 공기를 혼합하여 외부로 배출시키기 위한 구조이다.
즉, 도 15a를 참고하면, 본 발명의 제 3 실시예에 따른 공기 청정 기능이 구비된 온풍기(500)는 외부 공기를 흡입하는 흡입구(510), 상기 흡입구(510)에서 흡입된 공기가 통과하는 제1유로(520) 및 제2유로(530), 상기 제1유로(520) 및 제2유로(530)를 통과한 공기를 합류(合流)시키는 제3유로(550), 상기 제3유로(550)에서 합류된 공기를 외부로 배출시키는 배출구(560)를 포함하여 구비된 케이스(501); 및 상기 제1유로(520)에 설치되고, 상기 흡입구(510)에서 흡입된 공기를 히팅시키는 히팅부와, 표면에 촉매가 코팅된 다수의 중공형 셀을 구비하고 상기 히팅된 공기의 열에 의해 상기 촉매를 활성화시켜 상기 공기에 함유된 유해가스와 유기물을 연소 및 분해시켜 상기 공기를 정화시키고, 정화된 공기의 온풍을 상기 제3유로(550)로 배출하는 촉매 반응부로 이루어진 히팅 및 촉매 반응 모듈(540);을 포함하여 구성된다.
여기서, 히팅 및 촉매 반응 모듈(540)의 히팅부 및 촉매 반응부는 전술된 히팅 모듈과 촉매 반응 모듈의 기능을 수행하고, 그 구조로 구성할 수 있다.
본 발명에서는, 제3유로(550)와 배출구(560) 사이에는 공기의 배출을 원활하게 진행시키기 위한 팬(570)이 설치될 수 있다.
그리고, 제3유로(550)에는 제1유로(520)를 통과한 공기의 유속을 빠르게 하고, 공기의 진행 방향을 변경시켜, 제1유로(520) 및 제2유로(530)를 통과한 공기의 합류를 촉진시킬 수 있는 합류 촉진 가이드(580)가 더 설치될 수 있다.
이 합류 촉진 가이드(580)는 도 15a와 같이, 제1유로(520)의 배출영역의 중앙부에 위치되고, 둥근 선단부를 갖는 것이 바람직하다.
즉, 제1유로(520)에서 배출되는 공기는 합류 촉진 가이드(580)와 제1유로(520) 배출 영역 사이의 좁은 공간으로 빠져나가 유속이 빨라지고, 합류 촉진 가이드(580)의 둥근 선단부에 부딪혀서 진행 방향이 변경되어 제2유로(530)에서 배출되는 공기와의 합류가 촉진되는 것이다.
또한, 도 15b에 도시된 바와 같이, 합류 촉진 가이드(580)에는 제3유로에 흐르는 공기를 가습하는 가습부재(590)가 설치되어 있을 수 있다.
여기서, 본 발명의 제 3 실시예에 따른 공기 청정 기능이 구비된 온풍기(500)는 수증기인 습증기를 발생시키는 가습장치를 더 포함할 수 있고, 이 가습부재(590)는 가습장치로부터 습증기를 공급받아, 제3유로에 흐르는 공기에 습증기를 분무한다.
이와 같이, 본 발명의 제 3 실시예에 따른 공기 청정 기능이 구비된 온풍기는 흡입된 공기의 일부를 정화시키고, 흡입된 공기의 나머지를 정화된 공기와 혼합하여 배출함으로써, 정화에 필요한 에너지를 최소화시킬 수 있고, 배출되는 공기의 온도를 낮추어 사용자에게 쾌적성을 부여할 수 있게 된다.
또한, 이 실시예에서는 정화된 공기가 배출되기 전에 습증기를 부가하여 가습되고 정화된 공기를 배출할 수 있는 장치를 제공할 수 있다.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.
본 발명은 히터와 촉매 반응기를 일체로 형성하여 구조가 간단하고 소형화가 가능하며, 공기 정화, 살균, 탈취 및 난방 기능을 동시에 수행할 수 있는 공기 청정 기능이 구비된 온풍기를 제공한다.

Claims (20)

  1. 공기를 흡입하는 공기 흡입 모듈;
    상기 공기 흡입 모듈에서 흡입된 공기를 히팅시키는 히팅 모듈; 및
    다수의 중공형 셀을 구비하도록 성형된 기재의 표면에 촉매가 코팅되어 히팅된 공기의 열에 의해 상기 촉매를 활성화시켜 유입되는 공기에 함유된 유해가스와 유기물을 연소 및 분해시켜 상기 공기를 정화시키는 촉매 담체와, 정화된 공기의 온풍을 배출하는 배출구를 포함하는 촉매 반응 모듈;을 포함하는 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기.
  2. 제1항에 있어서, 상기 공기 흡입 모듈, 상기 히팅 모듈과, 상기 촉매 반응 모듈은 하나의 케이스에 일체로 모듈화되어 내장되어 있는 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기.
  3. 제1항에 있어서, 상기 공기 흡입 모듈에는 공기가 유입되는 유입구가 마련되고, 상기 유입구로 공기가 원활하게 유입되도록 하기 위한 흡입팬이 구비된 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기.
  4. 제1항에 있어서, 상기 히팅 모듈은 상기 공기 흡입 모듈에서 유입된 공기를 가열하기 위한 히터를 포함하며, 상기 히터는 공기 흡입 모듈에서 공기가 진행하는 방향으로 배치되는 면상 히터, 열선, 시즈(sheath) 히터 중 하나인 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기.
  5. 제1항에 있어서, 상기 공기 흡입 모듈, 상기 히팅 모듈과, 상기 촉매 반응 모듈이 고정되는 하부 케이스; 및 상기 하부 케이스에 결합되는 상부 케이스를 더 포함하는 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기.
  6. 제5항에 있어서, 상기 촉매 반응 모듈에서 배출되는 정화된 온풍의 배출 방향을 온풍기의 상방향 또는 측방향으로 가이드하기 위한 가이드가 상기 하부 케이스에서 절곡되어 형성되어 있는 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기.
  7. 제5항에 있어서, 상기 상부 케이스 상측면에는 사용자가 그립(Grip)하여 이동할 수 있는 손잡이가 설치되어 있는 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기.
  8. 제5항에 있어서, 상측면으로부터 공기를 유입받도록, 상기 상부 케이스의 상면에 공기 유입구가 마련되어 있고, 측면으로 정화된 온풍을 배출할 수 있도록, 상기 상부 케이스와 상기 하부 케이스가 결합된 측면에 배출구가 마련되어 있는 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기.
  9. 제1항에 있어서, 상기 촉매 담체의 기재는 평판과 파판을 적층하여 스파이럴 형상으로 권취하거나 또는 동심원상으로 배치된 구조로 구현되어 있고, 상기 다수의 중공형 셀은 상기 평판과 상기 파판의 구조적인 결합에 의해 생성된 공간으로 정의되는 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기.
  10. 제1항에 있어서, 상기 촉매 담체는 절연재료로 이루어진 통형상의 하우징 내부에 위치 있는 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기.
  11. 제10항에 있어서, 상기 하우징 일측의 개방된 영역에서 하우징 타측의 개방된 영역으로 갈수록 점차적으로 하우징의 폭이 감소하는 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기.
  12. 공기를 흡입하는 공기 흡입 모듈; 및
    상기 다수의 중공형 셀을 구비하도록 성형된 기재의 표면에 촉매가 코팅되어 히팅된 공기의 열에 의해 상기 촉매를 활성화시켜 유입되는 공기에 함유된 유해가스와 유기물을 연소 및 분해시켜 상기 공기를 정화시키는 촉매 담체가, 상기 공기 흡입 모듈에서 흡입된 공기를 히팅시키는 히터와 일체로 형성되어 있고, 정화된 공기의 온풍을 배출하는 배출구를 포함하는 히팅 및 촉매 반응 모듈;을 포함하는 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기.
  13. 제12항에 있어서, 상기 촉매 담체의 기재가 히터인 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기.
  14. 제12항에 있어서, 상기 히팅 및 촉매 반응 모듈은,
    공간을 갖도록 권선된 권선부와 이로부터 양측으로 연장된 전원단자를 구비한 히터와, 상기 권선부에 삽입되며 표면에 촉매가 코팅된 다수의 중공형 셀이 길이방향으로 형성된 내측 촉매 담체와, 상기 히터 권선부에 결합되며 표면에 촉매가 코팅된 다수의 중공형 셀이 길이방향으로 형성된 외측 촉매 담체와, 피처리 배기가스가 도입되는 유입구와 처리된 배기가스가 배출되는 유출구를 구비하고 히터 권선부의 내/외부에 내측 및 외측 촉매 담체가 조립된 담체 조립체가 내부에 조립되는 하우징을 포함하는 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기.
  15. 제14항에 있어서, 상기 하우징 일측의 개방된 영역에서 하우징 타측의 개방된 영역으로 갈수록 점차적으로 하우징의 폭이 감소하는 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기.
  16. 제14항에 있어서, 상기 촉매 담체는 상기 하우징의 내부에 다단으로 평판 및 파판의 적층체를 배열하여 구성하고, 상기 적층체의 각단을 직렬 또는 병렬 방식으로 연결하여 양측 단부를 터미널 단자에 연결하여 구성하는 것; 상기 하우징의 내부에 다단으로 파판을 배열하여 구성하고, 상기 파판의 양측 단부를 터미널 단자에 연결하여 구성하는 것; 및 상기 하우징의 내부에 평판을 다수의 봉 형상 스페이서를 이용하여 다단으로 배열하여 구성하고, 상기 평판을 양측 단부를 터미널 단자에 연결하여 구성하는 것 중 하나로 구현하는 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기.
  17. 외부 공기를 흡입하는 흡입구, 상기 흡입구에서 흡입된 공기가 통과하는 제1유로 및 제2유로, 상기 제1유로 및 제2유로를 통과한 공기를 합류(合流)시키는 제3유로, 상기 제3유로에서 합류된 공기를 외부로 배출시키는 배출구가 구비된 케이스; 및
    상기 제1유로에 설치되고, 상기 흡입구에서 흡입된 공기를 히팅시키는 히팅부와, 표면에 촉매가 코팅된 다수의 중공형 셀을 구비하고 상기 히팅된 공기의 열에 의해 상기 촉매를 활성화시켜 상기 공기에 함유된 유해가스와 유기물을 연소 및 분해시켜 상기 공기를 정화시키고, 정화된 공기의 온풍을 상기 제3유로로 배출하는 촉매 반응부로 이루어진 히팅 및 촉매 반응 모듈;을 포함하는 공기 청정 기능이 구비된 온풍기.
  18. 제17항에 있어서, 상기 제3유로와 상기 배출구 사이에 설치된 팬을 더 포함하는 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기.
  19. 제17항에 있어서, 상기 제1유로의 배출영역의 중앙부에 위치되고, 둥근 선단부를 갖고, 상기 제1유로 및 상기 제2유로를 통과한 공기의 합류를 촉진시킬 수 있는 합류 촉진 가이드를 더 포함하는 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기.
  20. 제19항에 있어서, 상기 합류 촉진 가이드에 설치되며, 상기 제3유로에 흐르는 공기를 가습하는 가습부재를 더 포함하는 것을 특징으로 하는 공기 청정 기능이 구비된 온풍기.
PCT/KR2014/004103 2013-05-08 2014-05-08 공기 청정 기능이 구비된 온풍기 WO2014182091A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480030273.9A CN105247294A (zh) 2013-05-08 2014-05-08 具有空气净化功能的热风机

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130052123 2013-05-08
KR10-2013-0052123 2013-05-08
KR1020140054248A KR101631251B1 (ko) 2013-05-08 2014-05-07 공기 청정 기능이 구비된 온풍기
KR10-2014-0054248 2014-05-07

Publications (1)

Publication Number Publication Date
WO2014182091A1 true WO2014182091A1 (ko) 2014-11-13

Family

ID=51867492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004103 WO2014182091A1 (ko) 2013-05-08 2014-05-08 공기 청정 기능이 구비된 온풍기

Country Status (1)

Country Link
WO (1) WO2014182091A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545000A (ja) * 1991-08-19 1993-02-23 Mitsubishi Electric Home Appliance Co Ltd 電気温風機
JPH07139813A (ja) * 1993-11-15 1995-06-02 Matsushita Electric Ind Co Ltd 空気清浄機能付き電気温風機
JP2000257960A (ja) * 1999-03-08 2000-09-22 Matsushita Electric Ind Co Ltd 蓄熱式電気温風機
KR20100020130A (ko) * 2008-08-12 2010-02-22 주식회사 아모그린텍 배기가스 정화용 담체 컨버터 및 그 제조방법
KR20100085482A (ko) * 2009-01-20 2010-07-29 조장옥 전기온풍기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545000A (ja) * 1991-08-19 1993-02-23 Mitsubishi Electric Home Appliance Co Ltd 電気温風機
JPH07139813A (ja) * 1993-11-15 1995-06-02 Matsushita Electric Ind Co Ltd 空気清浄機能付き電気温風機
JP2000257960A (ja) * 1999-03-08 2000-09-22 Matsushita Electric Ind Co Ltd 蓄熱式電気温風機
KR20100020130A (ko) * 2008-08-12 2010-02-22 주식회사 아모그린텍 배기가스 정화용 담체 컨버터 및 그 제조방법
KR20100085482A (ko) * 2009-01-20 2010-07-29 조장옥 전기온풍기

Similar Documents

Publication Publication Date Title
KR101134648B1 (ko) 히터 일체형 촉매 반응기와 그의 제조방법 및 이를 이용한 난방 기능을 갖는 공기 청정기
WO2020001068A1 (zh) 空气净化器
KR0135434B1 (ko) 대기중의 휘발성 유기 화합물 제거 장치
KR101631251B1 (ko) 공기 청정 기능이 구비된 온풍기
KR20110133773A (ko) 유해가스 제거장치
JP2008055404A (ja) 空気処理装置
WO2014182091A1 (ko) 공기 청정 기능이 구비된 온풍기
KR100881862B1 (ko) 공기정화용 반응 유니트 및 이를 이용한 공기정화기
CN213362785U (zh) 一种干式热场光触媒空气处理装置
KR20100035465A (ko) 예열기능을 갖는 공기정화시스템
KR20100020130A (ko) 배기가스 정화용 담체 컨버터 및 그 제조방법
JP6373035B2 (ja) ガス処理装置
WO2020027468A1 (ko) 다기능 실내 공기조화기
JP3055469B2 (ja) 燃焼暖房装置
KR100462505B1 (ko) 세라믹 박판을 사용한 판대판형 플라즈마 반응기 및 그제조 방법
WO2023022442A1 (ko) 백금 촉매 필터를 포함하는 공기 정화 장치
WO2018097404A1 (ko) 실내농축연소기
JPH11309341A (ja) 触媒構造体及び触媒構造体を備える空気調和機
WO2022030682A1 (ko) 유해가스 제거용 촉매 모듈, 그 제조 방법, 이를 포함하는 유해가스 제거용 촉매 시스템, 잔류 오존 제거용 촉매 모듈을 포함하는 유해물 제거장치, 그 제조 방법, 및 이를 포함하는 유해물 제거 시스템
KR102063954B1 (ko) 직접 연소에 의한 축열 촉매 모듈형 산화 시스템
KR20190000735U (ko) 정화 기능을 갖는 후드 시스템
WO2023163306A1 (ko) 발열 담체 모듈 조립체 및 이를 포함하는 히터 시스템과, 유해가스 처리 시스템과, 미세입자 처리 시스템
CN219596232U (zh) 室内烟雾净化装置及理疗机
CN219607297U (zh) 室内烟雾净化装置的热解组件及理疗机
CN210410157U (zh) 一种工业废气处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794143

Country of ref document: EP

Kind code of ref document: A1