WO2014181644A1 - ユーザ端末、無線基地局及び無線通信方法 - Google Patents

ユーザ端末、無線基地局及び無線通信方法 Download PDF

Info

Publication number
WO2014181644A1
WO2014181644A1 PCT/JP2014/060604 JP2014060604W WO2014181644A1 WO 2014181644 A1 WO2014181644 A1 WO 2014181644A1 JP 2014060604 W JP2014060604 W JP 2014060604W WO 2014181644 A1 WO2014181644 A1 WO 2014181644A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
radio base
user terminal
signal
cell
Prior art date
Application number
PCT/JP2014/060604
Other languages
English (en)
French (fr)
Inventor
一樹 武田
真平 安川
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US14/889,378 priority Critical patent/US10057023B2/en
Priority to CN201480025976.2A priority patent/CN105191470B/zh
Priority to EP14794530.7A priority patent/EP2996420A4/en
Priority to AU2014263736A priority patent/AU2014263736B2/en
Publication of WO2014181644A1 publication Critical patent/WO2014181644A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a user terminal, a radio base station, and a radio communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • FRA Full Radio Access
  • 4G Long Term Evolution
  • a wireless communication system also called a HetNet (Heterogeneous Network) in which small cells (including picocells, femtocells, etc.) having a relatively small coverage with a radius of several meters to several tens of meters are arranged in a macrocell is considered.
  • HetNet Heterogeneous Network
  • a scenario using the same frequency band in both the macro cell and the small cell for example, also referred to as “co-channel”
  • a scenario using different frequency bands in the macro cell and the small cell for example, “ Separate frequency ”
  • a relatively low frequency band for example, 0.8 GHz or 2 GHz
  • a relatively high frequency band for example, 3.5 GHz or 10 GHz
  • the system band of the LTE-A system includes at least one component carrier (CC: Component Carrier) having the system band of the LTE system as a unit. Collecting a plurality of component carriers (cells) to increase the bandwidth is called carrier aggregation (CA).
  • CC Component Carrier
  • a coordinated multipoint (CoMP) transmission / reception technique is introduced as a technique for realizing inter-cell orthogonalization.
  • CoMP coordinated multipoint
  • a plurality of cells perform transmission / reception signal processing in cooperation with one or a plurality of user terminals UE.
  • simultaneous transmission of multiple cells to which precoding is applied, cooperative scheduling / beamforming, and the like are being studied.
  • Application of these CoMP transmission / reception techniques is expected to improve the throughput characteristics of the user terminal UE located particularly at the cell edge.
  • CA carrier aggregation
  • CoMP coordinated transmission
  • a feedback signal such as a delivery confirmation signal (HARQ) transmitted from the user terminal is assigned to an uplink control channel (PUCCH) of a predetermined cell when there is no uplink data transmission instruction (UL grant).
  • PUCCH uplink control channel
  • CA and CoMP should be applied between a macro base station (MeNB) that forms a macro cell and a small base station (SeNB) that forms a small cell.
  • MeNB macro base station
  • SeNB small base station
  • Inter-eNB CoMP / CA is assumed. That is, the macro base station and the small base station perform scheduling independently based on feedback signals (delivery confirmation signals and channel quality information (CSI)) fed back from user terminals under their control.
  • CSI channel quality information
  • a user terminal may transmit a feedback signal directly to each radio base station as much as possible in order to perform appropriate scheduling in each radio base station. desirable.
  • Rel. In the feedback mechanism up to 10/11, when there is no uplink data signal transmission instruction (UL grant), the feedback signal of the SCell (for example, small cell) is fed back by the uplink control channel of the PCell (for example, macro cell). That is, with the conventional feedback mechanism, it is difficult to separately transmit feedback information to a plurality of radio base stations.
  • An object of the present invention is to provide a user terminal, a radio base station, and a radio communication method.
  • a user terminal includes a first radio base station that forms a first cell, a reception unit that receives downlink signals from a second radio base station that forms a second cell, and each radio base station A generator for generating a feedback signal for a downlink signal from the first radio base station, and an uplink control channel of the first cell according to the presence or absence of UL grant, and / or a feedback signal for the downlink signal from the first radio base station
  • An allocation controller that allocates an uplink shared channel and allocates a feedback signal for a downlink signal from the second radio base station to the uplink shared channel of the first cell or the second cell regardless of the presence or absence of the UL grant; It is characterized by having.
  • uplink feedback can be appropriately performed even when CA or CoMP is applied between a plurality of radio base stations (Inter-eNB CoMP / CA).
  • HetNet It is a conceptual diagram of HetNet. It is a conceptual diagram of intra-radio base station CoMP / CA and inter-radio base station CoMP / CA. It is a figure which shows an example of the allocation method of the feedback signal in an uplink. It is a figure which shows an example of the allocation method of the feedback signal in an uplink. Rel. It is a figure which shows the feedback method in 10/11. Rel. It is a figure which shows the feedback method (at the time of UL grant detection mistake) in 10/11. It is a figure which shows the feedback method (example of examination) when setting PUCCH to SCell. It is a figure which shows an example of the feedback method of this Embodiment.
  • FIG. 1 is a conceptual diagram of HetNet. 1A shows a case where the same frequency band is used for the macro cell and the small cell, and FIG. 1B shows a case where different frequency bands are used for the macro cell and the small cell.
  • HetNet is a radio communication system in which at least a part of a macro cell M and a small cell S are geographically overlapped.
  • HetNet includes a radio base station that forms a macro cell M (hereinafter referred to as a macro base station), a radio base station that forms a small cell S (hereinafter referred to as a small base station), a macro base station and a small base station, It is comprised including the user terminal UE which communicates.
  • carriers in the same frequency band such as 800 MHz and 2 GHz can be applied.
  • a carrier having a relatively low frequency band such as 800 MHz or 2 GHz is used.
  • a carrier having a relatively high frequency band such as 3.5 GHz is used.
  • the small cell S and the macro cell M have different frequencies.
  • a scenario (Separate frequency) is being studied.
  • the macro base station (MeNB) and the small base station (SeNB) are connected by backhaul and exchange information with each other.
  • the connection between the macro base station and the small base station may be performed by a wired connection such as an optical fiber (Optical fiber) or a non-optical fiber (X2 interface), or a wireless connection.
  • Optical fiber optical fiber
  • X2 interface non-optical fiber
  • the delay time cannot be ignored in the transmission / reception of information between the macro base station and the small base station.
  • the transmission delay of the backhaul is 0 msec, but depending on the backhaul environment, the maximum transmission delay may be several tens of msec.
  • CA carrier aggregation
  • CoMP coordinated transmission
  • the user terminal in order to support CA and CoMP between different radio base stations, it is necessary to perform scheduling appropriately at each radio base station.
  • a feedback signal in the uplink.
  • the feedback signal include an acknowledgment signal (ACK / NACK) indicating whether or not downlink data (PDSCH signal) can be decoded, channel quality information (CSI) measured using a downlink reference signal (CSI-RS), and the like.
  • LTE Long Term Evolution
  • PUSCH uplink shared channel
  • the user terminal uses a PUSCH resource allocated by the UL grant to provide a feedback signal. Is transmitted (see FIG. 3).
  • the user terminal transmits a feedback signal using the uplink control channel (PUCCH) (see FIG. 3). That is, when transmitting uplink data, the user terminal transmits a feedback signal together with uplink data using PUSCH, and when not transmitting uplink data, the user terminal transmits a feedback signal using PUCCH.
  • PUCCH uplink control channel
  • a feedback signal (delivery confirmation signal, CSI, etc.) is used using the PUCCH of the PCell. Is transmitted (see FIG. 5A).
  • the feedback signal is transmitted together with the uplink data using the PUSCH of the cell in which the UL grant is detected.
  • the user terminal performs feedback using the PUell of the PCell (see FIG. 5B), and when the UL grant is detected by the SCell, the user terminal performs feedback using the PUell of the SCell. (See FIG. 5C).
  • feedback is performed using the PUSCH of the PCell.
  • the user terminal for which simultaneous transmission of PUCCH and PUSCH is set does not detect the UL grant, it transmits a feedback signal using the PUCCH of the PCell (see FIG. 5A above).
  • the UL grant is detected, feedback is performed using PUCCH and / or PUSCH of PCell. That is, even when the UL grant is detected, a part of the feedback signal (acknowledgment confirmation signal (ACK / NACK)) is transmitted using the PUCCH (at the same time as the PUSCH assigned by the UL grant).
  • ACK / NACK acknowledgement confirmation signal
  • the simultaneous transmission of PUCCH and PUSCH is appropriately set by the radio base station according to the capability (performance) of each user terminal.
  • a user terminal that does not perform simultaneous transmission of PUCCH and PUSCH performs single carrier transmission regardless of the presence or absence of UL grant, and can be configured with an inexpensive RF circuit.
  • a redundant PUCCH can detect a signal with a high probability that it is more resistant to interference and thermal noise than a PUSCH. Therefore, a user terminal that transmits PUCCH and PUSCH simultaneously transmits a feedback signal using the PUCCH. Thus, feedback accuracy can be improved.
  • each user terminal can simultaneously transmit PUCCH and PUSCH is notified to the radio base station as capability information (UE capability) of the user terminal.
  • the radio base station appropriately sets application of simultaneous transmission of PUCCH and PUSCH based on the capability of each user terminal, and instructs each user terminal by higher layer signaling (for example, RRC signaling).
  • the feedback signal of the SCell (eg, small cell) is fed back on the PUCCH of the PCell (eg, macro cell).
  • the PUCCH of the PCell eg, macro cell.
  • scheduling at each radio base station is performed in units of 1 ms (1 subframe), and thus when the delay cannot be ignored in the backhaul between different base stations, the throughput decreases due to the delay between the radio base stations. There is a fear.
  • the capacity of the PCell PUCCH may be insufficient depending on the communication environment.
  • the UL grant of the PCell cannot be transmitted at the same timing. This is because when a PCell UL grant is detected, the user terminal performs feedback on the PCell PUSCH.
  • the present inventors have focused on the above-mentioned problems and have come up with the idea of feeding back the feedback signal to the SCell using the PUSCH regardless of the presence or absence of the UL grant.
  • the present inventors when applying CA between a macro base station and a small base station, the present inventors have a small number of connected user terminals in a small cell (SCell) compared to a macro cell (PCell), and have a sufficient resource capacity. It was found that the feedback signal for the SCell is performed using the PUSCH of the SCell regardless of the presence or absence of the UL grant.
  • the present inventors have conceived a new PUSCH resource allocation method when performing feedback signals for SCells using PUSCH regardless of the presence or absence of UL grant. Specifically, PUSCH resource allocation is changed according to the presence or absence of UL grant in SCell. For example, when the user terminal does not detect UL grant, PUSCH resource allocation is performed using downlink control information (DL assignment).
  • DL assignment downlink control information
  • CoMP and / or CA Inter-eNB CoMP / CA
  • PCell PCell
  • SCell SCell
  • FIG. 8 shows an example of an uplink feedback method when CA is applied between the first base station and the second base station.
  • FIG. 8 illustrates a case where the first base station forms a macro cell (PCell) and the second base station forms a small cell (SCell).
  • FIG. 8A corresponds to the case where the UL grant is not included in the PCell and SCell downlink signals
  • FIG. 8B corresponds to the case where the UL grant is included only in the PCell downlink signal
  • 8C corresponds to the case where UL grant is included only in the downlink signal of SCell.
  • the user terminal feeds back a feedback signal for the downlink signal of PCell using the uplink control channel (PUCCH) of PCell.
  • the user terminal feeds back a feedback signal for the downlink signal of the SCell using the uplink shared channel (PUSCH) of the SCell.
  • the PUSCH resource to which the SCell feedback signal is allocated can be instructed by higher layer signaling or the like from a radio base station (for example, a macro base station).
  • the user terminal feeds back a feedback signal for the PCell downlink signal using the PCell PUSCH.
  • a feedback signal for the downlink signal of the SCell is fed back using the PUSCH of the SCell.
  • the PUSCH resource to which the SCell feedback signal is allocated can be instructed by higher layer signaling or the like from a radio base station (for example, a macro base station).
  • the user terminal feeds back a feedback signal for the PCell downlink signal using the PCell PUCCH.
  • a feedback signal for the downlink signal of the SCell is fed back using the PUSCH of the SCell.
  • the PUSCH resource to which the SCell feedback signal is allocated can be indicated by the UL grant.
  • the feedback method shown in FIG. 8 is also applied to the case where CoMP between radio base stations is applied, or the case where CA between radio base stations is applied only to the downlink (when only the PCell is set for the uplink). (FIGS. 9A-9C).
  • the user terminal feeds back a feedback signal for the PCell using the PUCCH of the PCell.
  • the user terminal feeds back a feedback signal for the SCell using the PUSCH of the PCell (see FIG. 9B).
  • the user terminal feeds back a feedback signal for the PCell using the PUCCH of the PCell.
  • the user terminal feeds back a feedback signal for the SCell using the PUSCH of the PCell (see FIG. 9C).
  • LTE In uplink signal transmission power control.
  • transmission power is controlled independently by PUCCH and PUSCH, and transmission power is also controlled independently between PCell and SCell. Therefore, as shown in FIG. 9 above, by assigning a feedback signal for SCell to a PUSCH resource, LTE.
  • the 10/11 transmission power control mechanism can be used as it is.
  • the user terminal located in the vicinity of the second base station when the UL grant is not included in the downlink signals of the PCell and SCell (see FIG. 8A above), the PUCCH of the PCell and the SCell
  • the transmission power of each PUSCH can be controlled (see FIG. 10A).
  • the transmission power of PUCCH and PUSCH can be controlled independently (FIGS. 10B and 10C). reference).
  • the user terminal is close to any one of the radio base stations (for example, a small base station), and the propagation loss (path loss) between the plurality of radio base stations is increased. Even if they are different, it is possible to perform feedback by setting an appropriate transmission power.
  • the radio base stations for example, a small base station
  • the feedback method of the present embodiment when the feedback method of the present embodiment is applied in the CA between radio base stations, a CC (cell) to be fed back and a feedback channel to be used will be described with reference to FIG. 11 and FIG. 11 and 12, the feedback method of the present embodiment (proposed example), the conventional feedback method, and the feedback method using the SCell's PUCCH shown in FIG. 7 (study example) are compared. It is described as.
  • FIG. 11 shows a case in which both the examination example and the proposed example are extended from the “no simultaneous transmission” of the conventional method, and transmission can be performed with as few simultaneous transmissions as possible. As a result, it is possible to reduce the burden on the RF circuit of the user terminal and improve the power efficiency.
  • FIG. 12 shows a case where both the examination example and the proposal example are extended from the conventional method “with simultaneous transmission”.
  • the examination example of Example 2 shows a case where feedback is performed on the PCell and SCell as much as possible on the PUCCH, that is, even on the SCell, feedback is performed on the PUCCH.
  • the proposed method of Example 2 shows a case where PUCCH is performed as much as possible for PCell feedback.
  • SCell performs feedback on PUSCH regardless of the presence or absence of UL grant.
  • the quality of the feedback signal can be ensured by performing feedback using the PUCCH as much as possible in the PCell (for example, macro cell) that should maintain the connection.
  • the user terminal when performing feedback to the second base station (small base station) as in the case of CA between the radio base stations, feeds back using PUSCH, and feeds back the radio base station. Is determined based on higher layer signaling or downlink control information (DL assignment) notified from the radio base station.
  • DL assignment downlink control information
  • the user terminal transmits the feedback for the macro base station in advance by PUCCH, and the feedback for the small base station is transmitted by the PUSCH resource notified in advance by an upper layer such as RRC signaling.
  • the PUSCH resource notified in advance by an upper layer such as RRC signaling.
  • the user terminal when the user terminal detects a downlink control signal (DL assignment) that notifies the scheduling information of the downlink shared channel (PDSCH), it feeds back a delivery confirmation signal. Therefore, the user terminal can also determine the radio base station to be fed back based on the DL assignment.
  • the user terminal can determine a radio base station to be fed back based on the bits included in the received DL assignment.
  • a user terminal notifies a radio base station (for example, a macro base station) about the capability (UE Capability) of the user terminal (step 11).
  • the radio base station can determine whether or not the user terminal can simultaneously transmit, and whether or not the feedback method in the present embodiment can be applied.
  • the radio base station receives a report on communication quality from the user terminal and measures the received power of the signal transmitted by the user terminal (step 12).
  • the first base station and the second base station receive reception quality information such as downlink reception power and reception quality (RSRP, RSRQ) report information and channel state (CSI) report information from the user terminal.
  • the first base station and the second base station measure uplink sounding reference signal (SRS), random access (PRACH) reception power, and the like.
  • SRS uplink sounding reference signal
  • PRACH random access
  • the first base station and the second base station share information received between the radio base stations via the backhaul (step 13).
  • each radio base station shares traffic information in its own cell and user terminal information to be connected with other radio base stations via the backhaul.
  • a radio base station for example, a macro base station
  • a radio base station for example, a macro base station performs CoMP / CA setting (Configure).
  • CoMP / CA setting Configure
  • the first base station sets up inter-radio base station CoMP / CA for the user terminal (step 14).
  • the first base station notifies control information for the user terminal to communicate with the second base station (small base station) via higher layer signaling (for example, RRC signaling) (step 15).
  • Step 14 and step 15 may be performed simultaneously.
  • the control information notified to the user terminal includes Configuration for receiving a signal from the second base station and PUSCH resource information used when transmitting a feedback signal to the second radio base station.
  • control information notified to the user terminal may include information instructing feedback rules (application of the existing feedback method or application of the feedback method of the present embodiment) in the uplink of the SCell.
  • feedback rules application of the existing feedback method or application of the feedback method of the present embodiment
  • the feedback method applied for every user terminal can be controlled.
  • the notification of CoMP / CA between radio base stations and the notification of the feedback rule selection instruction may be performed individually for each user terminal, or may be performed in common for all user terminals in the cell.
  • each radio base station transmits a downlink signal to the user terminal (step 16).
  • the user terminal transmits a control channel (PDCCH, extended PDCCH (EPDCCH)) transmitted from the first base station and the second base station based on control information received from a radio base station (for example, the first base station). To monitor. Then, the user terminal feeds back a feedback signal (delivery confirmation signal, CSI, etc.) for the received downlink signal to each radio base station (step 17).
  • a control channel PDCCH, extended PDCCH (EPDCCH)
  • the user terminal to which the feedback method of the present embodiment is applied feeds back a feedback signal for the downlink signal from the first radio base station using PUCCH or PUSCH of PCell. Specifically, the user terminal sends a feedback signal to the PUSCH resource allocated by the UL grant only when uplink data to be transmitted to the first base station is allocated (when the UL grant is detected). Including the transmission (see FIG. 8B above). Otherwise, the user terminal performs feedback using the PUCCH resource of the PCell (see FIGS. 8A and 8C above).
  • the user terminal feeds back a feedback signal for the downlink signal from the second radio base station using PUSCH regardless of the presence or absence of the UL grant. Specifically, when the uplink data to be transmitted is not allocated to the second base station (when the UL grant is not detected), the user terminal performs feedback using the PUSCH resource notified from the higher layer. (See FIG. 8B above). Only when the UL grant is detected, the user terminal transmits the PUSCH resource allocated by the UL grant including the feedback signal (see FIG. 8C above).
  • the Rel by feeding back the feedback signal to the SCell using the PUSCH regardless of the presence or absence of the UL grant, the Rel.
  • the transmission pattern of simultaneous transmission / non-simultaneous transmission of PUCCH and PUSCH specified by 10/11 can be supported.
  • the feedback mechanism can be applied to CoMP between radio base stations and CA between radio base stations only in downlink, and transmission power is controlled independently between PUCCH and PUSCH, and between PCell and SCell (existing transmission power control). Use the mechanism).
  • the PUSCH resource used for feedback to the second radio base station varies depending on whether or not the UL grant is detected. For example, when the user terminal detects the UL grant, it feeds back with the uplink data using the uplink data transmission resource (PUSCH resource) specified by the UL grant. On the other hand, when the user terminal does not detect the UL grant, a feedback signal is transmitted using a feedback resource (PUSCH) set in an upper layer.
  • the user terminal may fail to detect the UL grant. For this reason, the second radio base station cannot allocate the PUSCH resource for feedback designated in the higher layer to other user terminals. If the PUSCH resource for feedback is also allocated to another user terminal, when the user terminal fails to detect the UL grant, it is transmitted simultaneously using the same PUSCH resource as the other user terminal. As a result, a PUSCH collision occurs between different user terminals, and as a result, the number of retransmissions may increase, resulting in a decrease in throughput.
  • the PUSCH resource for feedback specified in the upper layer is not allocated to other user terminals in order to suppress the collision of PUSCH, PUSCH scheduling is restricted, and resource utilization efficiency can be sufficiently achieved. Disappear.
  • the present inventors detect downlink control information (DL assignment) instructing the user terminal to receive downlink PDSCH before feedback in a delivery confirmation signal (ACK / NACK) that may be fed back frequently.
  • the downlink control information is used for PUSCH resource allocation / instruction.
  • the present inventors have found that, in the downlink control information, when a new feedback method is applied, a bit that is no longer used in DL assignment from the second radio base station is used for PUSCH resource indication.
  • bits that are no longer used in DL assignment include ARI and ARO (2 bits each) used to indicate a PUCCH resource used for feedback.
  • ARI is Rel. This is an ACK / NACK resource identifier (A / N resource indicator) introduced in 10 and is used to specify a PUCCH corresponding to an SCell when CA is applied (FDD). For example, the ACK / NACK feedback for the PDSCH data indicated by the DL assignment detected in the downlink of the PCell is performed using the PUCCH resource that is implicitly determined by the control channel element (CCE) number to which the DL assignment is mapped. .
  • CCE control channel element
  • ACK / NACK feedback for the PDSCH data indicated by the DL assignment detected in the downlink of the SCell is performed using the PUCCH resource indicated by the combination of the upper layer and the ARI (2 bits).
  • the radio base station notifies four PUCCH resource candidates by RRC signaling, and designates a specific PUCCH resource from the four PUCCH resource candidates by an ARI included in downlink control information.
  • ARO is Rel. 11 and included in the DL assignment of the enhanced downlink control channel (EPDCCH), and used as an offset for shifting the PUCCH resource.
  • the ACK / NACK feedback for the DL assignment detected by the EPDCCH and the PDSCH data indicated by the DL assignment is the addition of the extended control channel element (ECCE) number to which the DL assignment is mapped and the offset value represented by the ARO. This is performed using the indicated PUCCH resource.
  • ECCE extended control channel element
  • a PUSCH resource instruction for the user terminal a plurality of PUSCH resource candidates to be used for feedback to the second radio base station may be set, and the PUSCH resource to be actually used for feedback may be designated by a bit included in the DL assignment. Is possible. As the bits included in the DL assignment, the ARI and ARO (2 bits each) can be used.
  • FIGS. 14A and 14B show an example in which four PUSCH resource candidates are notified to the user terminal via higher layer signaling (for example, RRC signaling), and PUSCH resources to be used are indicated by 2 bits of DL assignment.
  • the user terminal assigns a feedback signal to RB # 10 of PUSCH when the bit value is “00”.
  • the user terminal sets the PUSCH RB # 14 when the bit value is "01”, the RB # 20 of the PUSCH when the bit value is "10”, and the RB # 22 of PUSCH when the bit value is "11". Are respectively assigned feedback signals.
  • uplink data is scheduled with UL grant, and feedback information is scheduled with DL assignment.
  • the PUSCH scheduling can be flexibly performed in the second radio base station by instructing a specific PUSCH resource with a combination of a plurality of PUSCH candidates indicated in the higher layer and bits indicated in the downlink control information. It can be carried out. Further, an increase in overhead can be suppressed by using unused ARI and ARO (2 bits each) as bits included in the DL assignment.
  • a specific PUSCH resource is assigned using the configuration, state, and resource of the control channel corresponding to the DL assignment. You may be notified.
  • the PUSCH resource may be determined based on which control channel the DL assignment is detected among a plurality of control channels (PDCCH or EPDCCH) monitored by the user terminal.
  • the PUSCH resource may be notified to the user terminal using the number of assigned DLassignment resources (CCE aggregation level) in the control channel.
  • CCE aggregation level the number of assigned DLassignment resources in the control channel.
  • the user terminal May be notified of PUSCH resources. Thereby, it is possible to increase PUSCH resource candidates without increasing overhead.
  • the PUSCH RB number is shown as a feedback resource for performing dynamic scheduling, but is not limited thereto, and an RB groove number, CC number, or the like may be designated. Thereby, a flexible resource instruction
  • a PUCCH resource number may be included as a feedback resource for dynamic scheduling. As a result, flexible resource instruction is possible.
  • the plurality of PUSCH resource candidates may be defined in advance as predetermined resources. Since the SCell has a smaller number of user terminals to be connected than the PCell, the amount of signaling such as RRC can be reduced by fixing the resource without making it variable.
  • a specific PUSCH resource is selected from a plurality of PUSCH resource candidates defined in advance using bits such as ARI / ARO.
  • a user terminal may perform RB hopping of PUSCH between slots, when performing feedback using PUSCH, without detecting UL grant.
  • the hopping pattern the same pattern as the PUCCH hopping pattern in the PCell, or a pattern determined by the upper layer and DL assignment bits (for example, ARI or ARO) can be applied. By performing feedback using a plurality of frequencies different between slots, a frequency diversity effect can be obtained.
  • the user terminal may perform transmission power control different from the case of detecting the UL grant. For example, the user terminal controls the transmission power of the PUSCH using different power control parameters depending on whether or not the UL grant is detected. For example, when only a feedback signal is transmitted (when UL grant is not detected), the PUSCH transmission power is set high. Thereby, the reception quality of PUSCH can be improved when only a feedback signal is transmitted.
  • the user terminal may transmit the feedback signal including channel state information (CSI). That is, the user terminal transmits periodic or aperiodic CSI (Periodic / Aperiodic CSI) simultaneously when performing ACK / NACK feedback. Further, the channel state information (CSI) may always be transmitted simultaneously with the acknowledgment signal (ACK / NACK) signal, or may be selectively transmitted at a predetermined timing. When transmitting at a predetermined timing, downlink control information (for example, unused bits of DL assignment) can be used as a CSI feedback trigger.
  • CSI channel state information
  • the allocated PUSCH resource can be effectively used by including the CSI. Further, it is possible to improve the scheduling accuracy by transmitting the delivery confirmation signal and the channel state information at the same time.
  • radio base stations two radio base stations are described.
  • the present embodiment can also be applied to combinations of three or more radio base stations.
  • CoMP between radio base stations there are cases where three radio transmission points TP1, TP2, and TP3 are operated by different radio base stations.
  • inter-radio base station CA there are cases where different radio base stations operate the three cells PCell, SCell1, and SCell2.
  • the present embodiment can be applied to a case where CoMP / CA in a radio base station (Intra-eNB) and between radio base stations (Inter-eNB) are combined.
  • CoMP there are cases where two transmission points TP1 and TP2 are operated by a first base station, and one transmission point TP3 is operated by a second base station.
  • CA there is a case where two cells PCell and SCell are operated by a first base station, and one cell SCell2 is operated by a second base station.
  • FIG. 15 is a schematic configuration diagram of the radio communication system according to the present embodiment.
  • the wireless communication system shown in FIG. 15 is a system including, for example, an LTE system or SUPER 3G.
  • carrier aggregation (CA) in which a plurality of basic frequency blocks (component carriers) having the system bandwidth of the LTE system as one unit can be applied.
  • this wireless communication system may be called IMT-Advanced, or may be called 4G, FRA (Future Radio Access).
  • a radio communication system 1 shown in FIG. 15 includes a radio base station 11 that forms a macro cell C1, and radio base stations 12a and 12b that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. .
  • the user terminal 20 is arrange
  • the user terminal 20 can connect to both the radio base station 11 and the radio base station 12 (dual connectivity). Further, CoMP / CA is applied between the radio base station 11 and the radio base station 12.
  • Communication between the user terminal 20 and the radio base station 11 is performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band (for example, 3.5 GHz) and a wide bandwidth may be used between the user terminal 20 and the radio base station 12, or between the user base 20 and the radio base station 11.
  • the same carrier may be used.
  • a new carrier type (NCT) may be used as a carrier type between the user terminal 20 and the radio base station 12.
  • the wireless base station 11 and the wireless base station 12 (or between the wireless base stations 12) are wired (Optical fiber, X2 interface, etc.) or wirelessly connected.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each radio base station 12 may be connected to a higher station apparatus via the radio base station 11.
  • RNC radio network controller
  • MME mobility management entity
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be referred to as an eNodeB, a macro base station, a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and may be called a small base station, a pico base station, a femto base station, a Home eNodeB, a micro base station, a transmission / reception point, or the like.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the downlink communication channel includes a PDSCH (Physical Downlink Shared Channel) shared by each user terminal 20 and a downlink L1 / L2 control channel (PDCCH, PCFICH, PHICH, extended PDCCH).
  • PDSCH and PUSCH scheduling information and the like are transmitted by PDCCH (Physical Downlink Control Channel).
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH (Physical Control Format Indicator Channel).
  • the HARQ ACK / NACK for PUSCH is transmitted by PHICH (Physical Hybrid-ARQ Indicator Channel).
  • scheduling information of PDSCH and PUSCH may be transmitted by the extended PDCCH (EPDCCH). This EPDCCH is frequency division multiplexed with PDSCH (downlink shared data channel).
  • the uplink communication channel includes a PUSCH (Physical Uplink Shared Channel) as an uplink data channel shared by each user terminal 20 and a PUCCH (Physical Uplink Control Channel) as an uplink control channel.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • User data and higher control information are transmitted by this PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • ACK / NACK and the like are transmitted by PUCCH.
  • FIG. 16 is an overall configuration diagram of the radio base station 10 (including the radio base stations 11 and 12) according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101 for MIMO transmission, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Yes.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • the baseband signal processing unit 104 performs PDCP layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, and precoding processing are performed and transferred to each transceiver 103.
  • RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, and precoding processing are performed and transferred to each transceiver 103.
  • HARQ transmission processing scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, and precoding processing are performed and transferred to each transceiver 103.
  • IFFT Inverse Fast Fourier Transform
  • the baseband signal processing unit 104 notifies the user terminal 20 of control information for communication in the cell by higher layer signaling (RRC signaling, broadcast signal, etc.).
  • the information for communication in the cell includes, for example, system bandwidth in uplink or downlink, resource information for feedback, and the like.
  • Each transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band.
  • the amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmission / reception antenna 101.
  • radio frequency signals received by the respective transmission / reception antennas 101 are amplified by the amplifier units 102 and frequency-converted by the respective transmission / reception units 103. It is converted into a baseband signal and input to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs FFT processing, IDFT processing, error correction decoding, MAC retransmission control reception processing, RLC layer, and PDCP layer reception processing on user data included in the input baseband signal.
  • the data is transferred to the higher station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, status management of the radio base station 10, and radio resource management.
  • FIG. 17 is a main functional configuration diagram of the baseband signal processing unit 104 included in the radio base station 10 according to the present embodiment.
  • the baseband signal processing unit 104 included in the radio base station 10 includes a control unit 301, a downlink control signal generation unit 302, a downlink data signal generation unit 303, a mapping unit 304, and a demapping unit. 305, a channel estimation unit 306, an uplink control signal decoding unit 307, an uplink data signal decoding unit 308, and a determination unit 309 are included.
  • the control unit 301 controls scheduling of downlink user data transmitted on the PDSCH, downlink control information transmitted on the PDCCH and / or extended PDCCH (EPDCCH), downlink reference signals, and the like.
  • the control unit 301 also performs control (allocation control) of uplink data transmitted on the PUSCH, uplink control information transmitted on the PUCCH or PUSCH, and uplink reference signal scheduling.
  • Information related to allocation control of uplink signals is notified to user terminals using downlink control signals (DCI).
  • control unit 301 controls allocation of radio resources to the downlink signal and the uplink signal based on the instruction information from the higher station apparatus 30 and the feedback information from each user terminal 20. That is, the control unit 301 has a function as a scheduler.
  • the control unit 301 determines a PUSCH resource for assigning a feedback signal to the SCell (small cell).
  • the information on the PUSCH resource determined by the control unit 301 may be included in the downlink control signal generated by the downlink control signal generation unit 302, or the downlink data signal generation unit 303 generates higher layer signaling. It may be included in the data signal.
  • information on PUSCH resource allocation is specified by ARI and ARO bits in downlink control information (DL assignment), and is notified to the user terminal.
  • the downlink control signal generation unit 302 generates a downlink control signal (PDCCH signal and / or EPDCCH signal) whose assignment has been determined by the control unit 301. Specifically, the downlink control signal generation unit 302 generates a DL assignment for notifying downlink signal allocation information and a UL grant for notifying uplink signal allocation information, based on an instruction from the control unit 301.
  • a downlink control signal (PDCCH signal and / or EPDCCH signal) whose assignment has been determined by the control unit 301. Specifically, the downlink control signal generation unit 302 generates a DL assignment for notifying downlink signal allocation information and a UL grant for notifying uplink signal allocation information, based on an instruction from the control unit 301.
  • the downlink data signal generation unit 303 generates a downlink data signal (PDSCH signal) whose allocation to resources is determined by the control unit 301.
  • the data signal generated by the downlink data signal generation unit 303 is subjected to an encoding process and a modulation process according to an encoding rate and a modulation scheme determined based on CSI from each user terminal 20 or the like.
  • the mapping unit 304 allocates the downlink control signal generated by the downlink control signal generation unit 302 and the downlink data signal generated by the downlink data signal generation unit 303 to radio resources. Control.
  • the demapping unit 305 demaps the uplink signal transmitted from the user terminal and separates the uplink signal.
  • Channel estimation section 306 estimates the channel state from the reference signal included in the received signal separated by demapping section 305, and outputs the estimated channel state to uplink control signal decoding section 307 and uplink data signal decoding section 308.
  • the uplink control signal decoding unit 307 decodes a feedback signal (such as a delivery confirmation signal) transmitted on the uplink control channel (PUCCH) and outputs the decoded signal to the control unit 301.
  • Uplink data signal decoding section 308 decodes the uplink data signal transmitted on the uplink shared channel (PUSCH), and outputs the decoded signal to determination section 309. Based on the decoding result of uplink data signal decoding section 308, determination section 309 performs retransmission control determination (ACK / NACK) and outputs the result to control section 301.
  • FIG. 18 is an overall configuration diagram of the user terminal 20 according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit (reception unit) 203, a baseband signal processing unit 204, and an application unit 205.
  • radio frequency signals received by a plurality of transmission / reception antennas 201 are each amplified by an amplifier unit 202, converted in frequency by a transmission / reception unit 203, and converted into a baseband signal.
  • the baseband signal is subjected to FFT processing, error correction decoding, retransmission control reception processing, and the like by the baseband signal processing unit 204.
  • downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • transmission processing for retransmission control H-ARQ (Hybrid ARQ)
  • channel coding precoding
  • DFT processing IFFT processing
  • the like are performed and transferred to each transmission / reception unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band.
  • the amplifier unit 202 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmitting / receiving antenna 201.
  • FIG. 19 is a main functional configuration diagram of the baseband signal processing unit 204 included in the user terminal 20.
  • the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, an uplink control signal generation unit 402, an uplink data signal generation unit 403, a mapping unit 404 (allocation unit),
  • the demapping unit 405 includes a channel estimation unit 406, a downlink control signal decoding unit 407, a downlink data signal decoding unit 408, and a determination unit 409.
  • the control unit 401 controls generation of an uplink control signal (feedback signal) and an uplink data signal based on a downlink control signal (UL grant, DL assignment) transmitted from the radio base station and a retransmission control determination result.
  • the downlink control signal is output from the downlink control signal decoding unit 407, and the retransmission control determination result is output from the determination unit 409.
  • control unit 401 instructs the mapping unit 404 to allocate uplink control signals (feedback signals) and uplink data signals to radio resources based on downlink control signals (UL grant, DL assignment) transmitted from the radio base station. To do.
  • the uplink control signal generation unit 402 generates an uplink control signal (feedback signal such as a delivery confirmation signal or channel state information (CSI)) based on an instruction from the control unit 401. Further, the uplink data signal generation unit 403 generates an uplink data signal based on an instruction from the control unit 401. Note that the control unit 401 instructs the uplink data signal generation unit 403 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station.
  • CSI channel state information
  • the mapping unit 404 (allocation unit) controls allocation of uplink control signals (feedback signals) and uplink data signals to radio resources based on instructions from the control unit 401. For example, the mapping unit 404 assigns a feedback signal to the channel of the proposed example shown in FIGS. 11 and 12 according to the CC (cell) to be fed back.
  • the mapping section 404 assigns a feedback signal for the downlink signal from the radio base station 11 (macro base station) to the PUCCH or PUSCH of the PCell.
  • the mapping unit 404 detects the UL grant from the downlink signal from the macro base station, the mapping unit 404 assigns the feedback signal to the PUSCH resource of the PCell assigned by the UL grant (see FIG. 8B above).
  • the mapping part 404 allocates a feedback signal to the PUCCH resource of PCell (refer said FIG. 8A and 8C).
  • the mapping unit 404 assigns a feedback signal for the downlink signal from the radio base station 12 (small base station) to the PUSCH regardless of the presence or absence of the UL grant. Specifically, when the UL grant is not detected from the downlink signal from the small base station, the mapping unit 404 allocates a feedback signal to the PUSCH resource notified from the higher layer and / or the DL assignment (FIG. 8B above). reference). Further, when the mapping unit 404 detects the UL grant, the mapping unit 404 allocates a feedback signal to the PUSCH resource allocated by the UL grant (see FIG. 8C above). As described above, the mapping unit 404 of the user terminal 20 assigns the feedback signal for the SCell to the PUSCH regardless of the presence or absence of the UL grant.
  • the demapping unit 405 demaps the downlink signal transmitted from the radio base station 10 and separates the downlink signal.
  • Channel estimation section 406 estimates the channel state from the reference signal included in the received signal separated by demapping section 405, and outputs the estimated channel state to downlink control signal decoding section 407 and downlink data signal decoding section 408.
  • the downlink control signal decoding unit 407 decodes the downlink control signal (UL grant, DL assignment) transmitted through the downlink control channel (PDSCH) and outputs scheduling information (allocation information to uplink resources) to the control unit 401.
  • Downlink data signal decoding section 408 decodes the downlink data signal transmitted on the downlink shared channel (PDSCH), and outputs the decoded signal to determination section 409. Based on the decoding result of downlink data signal decoding section 308, determination section 409 performs retransmission control determination (ACK / NACK) and outputs the result to control section 401.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 複数の無線基地局間でCAやCoMPを適用する場合(Inter-eNB CoMP/CA)であっても、上りリンクにおけるフィードバックを適切に行うこと。第1のセルを形成する第1の無線基地局及び第2のセルを形成する第2の無線基地局からの下りリンク信号を受信する受信部と、各無線基地局からの下りリンク信号に対するフィードバック信号を生成する生成部と、第1の無線基地局からの下りリンク信号に対するフィードバック信号を、ULグラントの有無に応じて第1のセルの上り制御チャネル及び/又は上り共有チャネルに割当て、第2の無線基地局からの下りリンク信号に対するフィードバック信号を、ULグラントの有無に関わらず第1のセル又は第2のセルの上り共有チャネルに割当てる割当て制御部と、をユーザ端末に設ける。

Description

ユーザ端末、無線基地局及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末、無線基地局及び無線通信方法に関する。
 LTE(Long Term Evolution)やLTEの後継システム(例えば、LTEアドバンスト(LTE-A)、FRA(Future Radio Access)、4Gともいう)では、半径数百メートルから数キロメートル程度の相対的に大きいカバレッジを有するマクロセル内に、半径数メートルから数十メートル程度の相対的に小さいカバレッジ有するスモールセル(ピコセル、フェムトセル等を含む)が配置される無線通信システム(HetNet(Heterogeneous Network)ともいう)が検討されている(例えば、非特許文献1)。
 かかる無線通信システムでは、マクロセルとスモールセルとの双方で同一の周波数帯を用いるシナリオ(例えば、「co-channel」ともいう)や、マクロセルとスモールセルとで異なる周波数帯を用いるシナリオ(例えば、「separate frequency」ともいう)が検討されている。後者のシナリオでは、マクロセルにおいて相対的に低い周波数帯(例えば、0.8GHzや2GHz)を用い、スモールセルにおいて相対的に高い周波数帯(例えば、3.5GHzや10GHz)を用いることも検討されている。
 また、LTE-Aシステム(Rel.10/11)のシステム帯域は、LTEシステムのシステム帯域を一単位とする少なくとも1つのコンポーネントキャリア(CC:Component Carrier)を含んでいる。複数のコンポーネントキャリア(セル)を集めて広帯域化することをキャリアアグリゲーション(CA:Carrier Aggregation)という。
 さらに、LTE-Aシステムでは、セル間直交化を実現するための技術として協調マルチポイント(CoMP:Coordinated multipoint)送受信技術が導入されている。このCoMP送受信では、1つあるいは複数のユーザ端末UEに対して複数のセルが協調して送受信の信号処理を行う。例えば、下りリンクでは、プリコーディングを適用する複数セル同時送信、協調スケジューリング/ビームフォーミングなどが検討されている。これらのCoMP送受信技術の適用により、特にセル端に位置するユーザ端末UEのスループット特性の改善が期待される。
 上述したように、Rel.10/11で導入されたキャリアアグリゲーション(CA)と協調送信(CoMP)では、複数のCC又は複数の送受信ポイントを、1つの無線基地局(eNB)に実装されたスケジューラで集中制御することを前提としている。この場合、ユーザ端末から送信される送達確認信号(HARQ)等のフィードバック信号は、上りデータの送信指示(ULグラント)がない場合には、所定セルの上り制御チャネル(PUCCH)に割当てられる。
 一方で、将来の無線通信システム(例えば、Rel.12以降)では、マクロセルを形成するマクロ基地局(MeNB)と、スモールセルを形成するスモール基地局(SeNB)間でCAやCoMPを適用すること(Inter-eNB CoMP/CA)が想定される。つまり、マクロ基地局とスモール基地局は、それぞれ配下のユーザ端末からフィードバックされるフィードバック信号(送達確認信号やチャネル品質情報(CSI))に基づいて独立してスケジューリングを行う。
 したがって、無線基地局間CoMP/CA(Inter-eNB CoMP/CA)では、各無線基地局で適切にスケジューリングを行うために、ユーザ端末はフィードバック信号を出来るだけ各無線基地局に直接送信することが望ましい。しかし、Rel.10/11までのフィードバックメカニズムでは、上りデータ信号の送信指示(ULグラント)がない場合、SCell(例えば、スモールセル)のフィードバック信号はPCell(例えば、マクロセル)の上り制御チャネルでフィードバックされる。つまり、従来のフィードバックメカニズムでは、複数の無線基地局に対して別々にフィードバック情報を送信することが困難となる。
 本発明は、かかる点に鑑みてなされたものであり、複数の無線基地局間でCAやCoMPを適用する場合(Inter-eNB CoMP/CA)であっても、上りリンクにおけるフィードバックを適切に行うことができるユーザ端末、無線基地局及び無線通信方法を提供することを目的とする。
 本発明のユーザ端末は、第1のセルを形成する第1の無線基地局及び第2のセルを形成する第2の無線基地局からの下りリンク信号を受信する受信部と、各無線基地局からの下りリンク信号に対するフィードバック信号を生成する生成部と、前記第1の無線基地局からの下りリンク信号に対するフィードバック信号を、ULグラントの有無に応じて第1のセルの上り制御チャネル及び/又は上り共有チャネルに割当て、前記第2の無線基地局からの下りリンク信号に対するフィードバック信号を、ULグラントの有無に関わらず第1のセル又は第2のセルの上り共有チャネルに割当てる割当て制御部と、を有することを特徴とする。
 本発明によれば、複数の無線基地局間でCAやCoMPを適用する場合(Inter-eNB CoMP/CA)であっても、上りリンクにおけるフィードバックを適切に行うことができる。
HetNetの概念図である。 無線基地局内CoMP/CAと、無線基地局間CoMP/CAの概念図である。 上りリンクにおけるフィードバック信号の割当て方法の一例を示す図である。 上りリンクにおけるフィードバック信号の割当て方法の一例を示す図である。 Rel.10/11におけるフィードバック方法を示す図である。 Rel.10/11におけるフィードバック方法(ULグラント検出ミス時)を示す図である。 SCellにPUCCHを設定する場合のフィードバック方法(検討例)を示す図である。 本実施の形態のフィードバック方法の一例を示す図である。 本実施の形態のフィードバック方法の他の一例を示す図である。 本実施の形態のフィードバック方法を適用する場合の送信電力制御の一例を示す図である。 本実施の形態のフィードバック方法を適用する場合にフィードバックに利用するチャネルの一例(例1)を示す図である。 本実施の形態のフィードバック方法を適用する場合にフィードバックに利用するチャネルの他の一例(例2)を示す図である。 本実施の形態のフィードバック方法を適用する場合の無線通信の動作手順の一例を示すシーケンス図である。 本実施の形態のフィードバック方法を適用する場合のPUSCHリソースの通知方法の一例を示す図である。 本実施の形態に係る無線通信システムの一例を示す概略図である。 本実施の形態に係る無線基地局の全体構成の説明図である。 本実施の形態に係る無線基地局の機能構成の説明図である。 本実施の形態に係るユーザ端末の全体構成の説明図である。 本実施の形態に係るユーザ端末の機能構成の説明図である。
 図1は、HetNetの概念図である。なお、図1Aはマクロセルとスモールセルとで同一の周波数帯を用いた場合を示し、図1Bはマクロセルとスモールセルとで異なる周波数帯を用いた場合を示している。
 図1に示すように、HetNetは、マクロセルMとスモールセルSの少なくとも一部が地理的に重複して配置される無線通信システムである。また、HetNetは、マクロセルMを形成する無線基地局(以下、マクロ基地局という)と、スモールセルSを形成する無線基地局(以下、スモール基地局という)と、マクロ基地局とスモール基地局と通信するユーザ端末UEとを含んで構成される。
 図1Aに示す場合、マクロセルMとスモールセルSにおいて、例えば、800MHzや2GHz等の同一の周波数帯のキャリアを適用することができる。一方で、図1Bに示す場合、マクロセルMでは、例えば、800MHzや2GHzなど、相対的に低い周波数帯のキャリアが用いられる。一方、複数のスモールセルSでは、例えば、3.5GHzなど、相対的に高い周波数帯のキャリアが用いられる。
 このように、LTE-A(Rel.12以降)の無線通信システムでは、スモールセルSとマクロセルMが同一周波数を適用するシナリオ(co-channel)に加えて、スモールセルSとマクロセルMが異なる周波数を適用するシナリオ(Separate frequency)が検討されている。
 また、スモールセルとマクロセルが異なる無線基地局で運用される場合、マクロ基地局(MeNB)とスモール基地局(SeNB)は、バックホールで接続されて相互に情報のやり取りを行う。マクロ基地局とスモール基地局間の接続は、光ファイバ(Optical fiber)や非光ファイバ(X2インターフェース)等の有線接続や、無線接続で行うことが考えられる。なお、マクロ基地局とスモール基地局間の接続を光ファイバ以外の回線(例えば、X2インターフェース)で行う場合には、マクロ基地局とスモール基地局間の情報の送受信において遅延時間が無視できなくなる。理想的には、バックホールの伝達遅延は0msecであるが、バックホールの環境によっては最大で伝達遅延が数10msecとなる場合がある。
 ところで、Rel.10/11で導入されたキャリアアグリゲーション(CA)と協調送信(CoMP)では、上述したように複数のCC又は複数の送受信ポイントを、1つの無線基地局に実装されたスケジューラで集中制御することを前提としている(図2A参照)。一方で、将来の無線通信システム(Rel.12以降)では、遅延の無視できないバックホールで接続された異なる無線基地局間におけるCAやCoMPをサポートする必要がある(図2B参照)。
 このように、異なる無線基地局間におけるCAやCoMPをサポートするためには、各無線基地局で適切にスケジューリングを行う必要がある。各無線基地局でユーザ端末に送信する下りデータを下り共有チャネル(PDSCH)に適切にスケジューリングするためには、上りリンクでユーザ端末がフィードバック信号を適切に送信することが必要となる。フィードバック信号としては、下りデータ(PDSCH信号)の復号可否を示す送達確認信号(ACK/NACK)や、下り参照信号(CSI-RS)を用いて測定したチャネル品質情報(CSI)等がある。
 LTE(Rel.8)では、上り共有チャネル(PUSCH)で上りデータ送信を指示する制御信号(ULグラント)が検出された場合、ユーザ端末はULグラントで割当てられたPUSCHのリソースを用いてフィードバック信号の送信を行う(図3参照)。一方で、ULグラントが検出されない場合、ユーザ端末は上り制御チャネル(PUCCH)を用いてフィードバック信号を送信する(図3参照)。つまり、ユーザ端末は、上りデータを送信する場合には、PUSCHを利用して上りデータと共にフィードバック信号を送信し、上りデータを送信しない場合には、PUCCHを利用してフィードバック信号を送信する。
 異なる無線基地局間でCAやCoMPを適用する場合、各無線基地局で適切にスケジューリングを行うために、ユーザ端末はフィードバック信号を出来るだけ各無線基地局に直接送信することが望ましい(図4A~4C参照)。しかし、Rel.10/11までのフィードバックメカニズムでは、CAを適用する際に、フィードバック信号を複数の無線基地局に対して別々に送信することが困難となる。以下に、Rel.10/11においてキャリアアグリゲーション(CA)を行う場合のフィードバック方法について図面を参照して説明する。なお、以下の説明では、上下リンクとも、1つのプライマリセル(PCell)と、1つ又は複数のセカンダリセル(SCell)がある場合を想定する。
 上り制御チャネル(PUCCH)と上り共有チャネル(PUSCH)の同時送信が設定されていないユーザ端末は、ULグラントを検出しなかった場合、PCellのPUCCHを用いてフィードバック信号(送達確認信号、CSI等)を送信する(図5A参照)。一方で、ULグラントを検出した場合には、ULグラントを検出したセルのPUSCHを用いてフィードバック信号を上りデータと一緒に送信する。具体的に、ユーザ端末は、PCellでULグラントを検出した場合にはPCellのPUSCHを用いてフィードバックを行い(図5B参照)、SCellでULグラントを検出した場合にはSCellのPUSCHを用いてフィードバックを行う(図5C参照)。なお、複数のセルで同時にULグラントを検出した場合には、PCellのPUSCHを用いてフィードバックを行う。
 PUCCHとPUSCHの同時送信が設定されているユーザ端末は、ULグラントを検出しなかった場合、PCellのPUCCHを用いてフィードバック信号を送信する(上記図5A参照)。一方で、ULグラントを検出した場合には、PCellのPUCCH及び/又はPUSCHでフィードバックを行う。つまり、ULグラントを検出した場合であっても、一部のフィードバック信号(送達確認信号(ACK/NACK))をPUCCHを用いて(ULグラントで割当てられたPUSCHと同時に)送信する。
 なお、PUCCHとPUSCHの同時送信は、各ユーザ端末の能力(性能)に応じて無線基地局が適宜設定する。PUCCHとPUSCHの同時送信を行わないユーザ端末は、ULグラントの有無に関わらずシングルキャリア送信を行うため安価なRF回路で構成することができる。一方で、PUSCHと比較して冗長なPUCCHでは干渉や熱雑音に強く高い確率で信号を検出できるため、PUCCHとPUSCHの同時送信を行うユーザ端末は、PUCCHを利用してフィードバック信号を送信することによりフィードバック精度を向上することができる。
 なお、各ユーザ端末がPUCCHとPUSCHの同時送信が可能であるか否かは、ユーザ端末の能力情報(UE Capability)として無線基地局に通知される。無線基地局は、各ユーザ端末の能力に基づいてPUCCHとPUSCHの同時送信の適用を適宜設定し、各ユーザ端末に対して上位レイヤシグナリング(例えば、RRCシグナリング)で指示する。
 このように、Rel.10/11までのフィードバックメカニズムでは、ULグラントがない場合、SCell(例えば、スモールセル)のフィードバック信号はPCell(例えば、マクロセル)のPUCCHでフィードバックされる。通常、各無線基地局におけるスケジューリングは1ms(1サブフレーム)単位で行われるため、異なる基地局間のバックホールで遅延が無視できない場合には、無線基地局間の遅延の影響によりスループットが低下するおそれがある。また、SCellのフィードバック信号を全てPCellのPUCCHに割当てる場合、通信環境によってはPCellのPUCCHの容量が不足するおそれもある。
 そのため、フィードバック信号を各下りCC(セル)に対応する上りCCでフィードバックするために、ULグラントを送信して当該上りCCに対してPUSCHを割当てることが考えられる。例えば、ユーザ端末にフィードバック信号をSCellでフィードバックさせるために、上りデータが無い場合があってもSCellのULグラントを送信してPUSCHリソースを割当てることが考えられる。
 しかし、このようにSCellの下りリンク信号でULグラントを送信してSCellのPUSCHリソースを用いてフィードバックを行う場合、同じタイミングでPCellのULグラントを送信できなくなる。これは、PCellのULグラントを検出した場合には、ユーザ端末がPCellのPUSCHでフィードバックを行うためである。
 また、ユーザ端末がULグラントを検出できない場合(検出ミスの場合)には、PUSCHを用いてフィードバックすることができず、意図しないCC(セル)のPUCCHでフィードバックされるおそれがある。例えば、上記図5B、5Cにおいて、ユーザ端末がULグラントを検出できない場合には、フィードバック信号がPCellの上り制御チャネル(PUCCH)でフィードバックされてしまう(図6A~6C参照)。
 このように、SCellのULグラントを利用して、フィードバック信号をSCellのPUSCHを利用してフィードバックさせると、PCellのULグラント送信が制限される問題や、ULグラント検出ミスの際に適切にフィードバックできない問題が生じる。一方で、このような問題を解決するために、SCellにおいてもPCellと同様に、上りリンクでPUCCHを利用することが考えられる。つまり、ULグラントを検出しない場合、ユーザ端末は各セル個別のフィードバック信号をそれぞれ各セルのPUCCHで送信する(図7A参照)。そして、ULグラントを検出した場合、ユーザ端末は各セル個別のフィードバック信号をそれぞれ各セルのPUSCHで送信することが考えられる(図7B、7C参照)。
 図7に示すフィードバック方法を適用することにより、セル個別のフィードバックは実現することが可能となる。しかし、ユーザ端末は別々にフィードバックする全ての上りCCにおいてPUCCHで送信できることが必要となるため、ユーザ端末の回路構成が複雑となりコストが増大する問題がある。また、無線基地局間CoMP(Inter-eNB CoMP)の場合や、下りリンクのみ無線基地局間CA(Inter-eNB CA)の場合(上りリンクは1CCでCAを行わない場合)には、上りリンクにおいてSCellが存在しないため、別の解決方法が新たに必要となる。その結果、更なる技術の実装が必要となってしまう。
 そこで、本発明者等は、上記問題点に着目して、SCellに対するフィードバック信号を、ULグラントの有無に関わらずPUSCHを用いてフィードバックすることを着想した。特に本発明者等は、マクロ基地局とスモール基地局間でCAを適用する場合に、スモールセル(SCell)ではマクロセル(PCell)と比較して接続ユーザ端末数が少なくリソース容量に余裕がある点に着目し、SCellに対するフィードバック信号をULグラントの有無に関わらずSCellのPUSCHを用いて行うことを見出した。
 また、本発明者等は、SCellに対するフィードバック信号を、ULグラントの有無に関わらずPUSCHを用いて行う際に、新たなPUSCHリソース割当て方法を着想した。具体的には、SCellでULグラントの有無に応じてPUSCHのリソース割当てを変更し、例えば、ユーザ端末がULグラントを検出しない場合に、下り制御情報(DL assignment)を利用してPUSCHリソースの割当てを行うことを着想した。
 以下に、本実施の形態について添付図面を参照して詳細に説明する。なお、以下の説明では、マクロ基地局とスモール基地局間のCoMP及び/又はCA(Inter-eNB CoMP/CA)を例に挙げて説明するが、本実施の形態はこれに限られず異なる無線基地局間の制御であれば適用することができる。また、以下の説明では、マクロセルをPCell、スモールセルをSCellとして説明するが、本実施の形態はこれに限られない。
(第1の態様)
 図8は、第1の基地局と第2の基地局間でCAを適用する場合において、上りリンクのフィードバック方法の一例について示している。なお、図8では、第1の基地局がマクロセル(PCell)を形成し、第2の基地局がスモールセル(SCell)を形成する場合を示している。具体的に、図8AはPCell及びSCellの下りリンク信号にULグラントが含まれていない場合に相当し、図8BはPCellの下りリンク信号のみにULグラントが含まれている場合に相当し、図8CはSCellの下りリンク信号のみにULグラントが含まれている場合に相当する。
 図8Aに示すように、PCell及びSCellの下りリンク信号にULグラントが含まれていない場合、ユーザ端末はPCellの下りリンク信号に対するフィードバック信号をPCellの上り制御チャネル(PUCCH)を用いてフィードバックする。一方で、ユーザ端末はSCellの下りリンク信号に対するフィードバック信号をSCellの上り共有チャネル(PUSCH)を用いてフィードバックする。この場合、SCellのフィードバック信号を割当てるPUSCHリソースは、無線基地局(例えば、マクロ基地局)から上位レイヤシグナリング等で指示することができる。
 図8Bに示すように、PCellの下りリンク信号のみにULグラントが含まれている場合、ユーザ端末はPCellの下りリンク信号に対するフィードバック信号をPCellのPUSCHを用いてフィードバックする。また、SCellの下りリンク信号に対するフィードバック信号をSCellのPUSCHを用いてフィードバックする。この場合、SCellのフィードバック信号を割当てるPUSCHリソースは、無線基地局(例えば、マクロ基地局)から上位レイヤシグナリング等で指示することができる。
 図8Cに示すように、SCellの下りリンク信号のみにULグラントが含まれている場合、ユーザ端末はPCellの下りリンク信号に対するフィードバック信号をPCellのPUCCHを用いてフィードバックする。また、SCellの下りリンク信号に対するフィードバック信号をSCellのPUSCHを用いてフィードバックする。この場合、SCellのフィードバック信号を割当てるPUSCHリソースは、ULグラントで指示することができる。
 このように、SCellの下りリンク信号に対するフィードバック情報を、ULグラントの有無に関わらずPUSCHを利用してフィードバックすることにより、Rel.10/11における上り同時送信・非同時送信で全ての送信パターンをサポートすることができる。これにより、ユーザ端末に対してRel.10/11までの回路を利用することができるため、ユーザ端末の製造コストを抑制することが可能となる。また、ユーザ端末がSCellからのULグラントを検出できなかった場合(検出ミスの場合)であっても、SCellに対するフィードバック信号をSCellに直接フィードバックすることができる。
 また、上記図8で示したフィードバック方法は、無線基地局間CoMPを適用する場合や、下りリンクのみ無線基地局間CAを適用する場合(上りリンクはPCellのみ設定される場合)にも適用することができる(図9A~9C)。
 例えば、第1の基地局と第2の基地局が同一の周波数で運用される場合、ユーザ端末は、PCellに対するフィードバック信号をPCellのPUCCHを用いてフィードバックする。一方で、ユーザ端末は、SCellに対するフィードバック信号をPCellのPUSCHを用いてフィードバックする(図9B参照)。
 また、第1の基地局と第2の基地局が異なる周波数で運用される場合においても、ユーザ端末は、PCellに対するフィードバック信号をPCellのPUCCHを用いてフィードバックする。一方で、ユーザ端末は、SCellに対するフィードバック信号をPCellのPUSCHを用いてフィードバックする(図9C参照)。
 上記図7で示したように、SCellに対してもPUCCHを設定する方法では、無線基地局間CoMPや下りリンクのみ無線基地局間CAを適用する場合に異なるフィードバック方法を新たに適用する必要があった。しかし、上記図9で示すフィードバック方法では、基地局間CoMPや下りリンクのみ基地局間CAを適用する場合であっても、同様のフィードバックメカニズムを適用することができる。
 上りリンク信号の送信電力制御においてLTE.10/11では、PUCCHとPUSCHとで独立に送信電力を制御すると共に、PCellとSCell間でも独立に送信電力を制御する。したがって、上記図9で示すように、SCellに対するフィードバック信号をPUSCHリソースに割当てることにより、LTE.10/11の送信電力制御の仕組みをそのまま利用することができる。
 例えば、第2の基地局(スモール基地局)の近傍に位置するユーザ端末は、PCell及びSCellの下りリンク信号にULグラントが含まれていない場合(上記図8A参照)、PCellのPUCCHと、SCellのPUSCHの送信電力をそれぞれ制御することができる(図10A参照)。同様に、無線基地局間CoMPを適用する場合や、下りリンクのみ無線基地局間CAを適用する場合においても、PUCCHとPUSCHの送信電力をそれぞれ独立して制御することができる(図10B、10C参照)。
 このように、本実施の形態のフィードバック方法を用いることにより、ユーザ端末がいずれかの無線基地局(例えば、スモール基地局)に近く、複数の無線基地局との間で伝播損失(パスロス)が異なる場合であっても、適切な送信電力を設定してフィードバックを行うことが可能となる。
 ここで、無線基地局間CAで本実施の形態のフィードバック方法を適用する場合に、フィードバックを行いたいCC(セル)と、利用するフィードバック用チャネルについて図11、図12を参照して説明する。なお、図11、図12では、本実施の形態のフィードバック方法(提案例)と、従来のフィードバック方法と、上記図7に示したSCellのPUCCHを利用するフィードバック方法(検討例)と、を比較して記載している。
 なお、図11(例1)と図12(例2)との違いは、提案法において、PCellとSCellから同時にULグラントがある場合に、PCellのPUCCH利用の有無に関する点である。具体的に、図11(例1)は、検討例、提案例ともに従来法の「同時送信なし」から拡張した場合を示しており、出来るだけ少ない同時送信数で送信を行うことができる。これにより、ユーザ端末のRF回路の負担を低減して電力効率を向上することが可能となる。
 また、図12(例2)は、検討例、提案例ともに従来法の「同時送信あり」から拡張した場合を示している。例2の検討例では、フィードバックをPCell及びSCellともに出来るだけPUCCHで行う、つまりSCellであってもPUCCHでフィードバックする場合を示している。また、例2の提案法では、PCellのフィードバックを出来るだけPUCCHを行う場合を示している。一方で、SCellはULグラントの有無に関わらずPUSCHでフィードバックを行う。このように、接続を維持すべきPCell(例えば、マクロセル)において出来るだけPUCCHを利用してフィードバックを行うことにより、フィードバック信号の品質を確保することができる。
<無線基地局間CoMP>
 無線基地局間CoMPでは、無線基地局間が同一周波数で運用されるため、PCell、SCellの区別は無い。したがって、無線基地局間CAのように異なる基地局に対して別々にフィードバックを行うためには、単一のCell内でフィードバックリソース(PUCCH又はPUSCH)を変える必要がある。すなわちユーザ端末は、受信した下りリンク信号に対するフィードバック先の無線基地局を判別し、いずれの基地局から下りデータが送信されたかに応じて、送達確認信号(ACK/NACK)のフィードバックリソースを変えなければならない。ところが上述したように、無線基地局間CoMPでは無線基地局間が同一周波数で運用されるため、ユーザ端末は、無線基地局間CAのようにフィードバック先を容易に判断することが困難となる。
 そこで、本実施の形態においてユーザ端末は、無線基地局間CAの場合と同様に第2の基地局(スモール基地局)に対するフィードバックを行う場合にはPUSCHによりフィードバックするものとし、フィードバックする無線基地局を、無線基地局から通知される上位レイヤシグナリング又は下り制御情報(DL assignment)に基づいて決定する。
 例えば、ユーザ端末は、あらかじめマクロ基地局に対するフィードバックはPUCCHで送信し、スモール基地局に対するフィードバックは、あらかじめRRCシグナリング等の上位レイヤで通知されたPUSCHリソースで送信する。このようにすることで、無線基地局間CoMPを行う複数の無線基地局に対して異なるリソースを用いて別々にフィードバックを行うことができる。また、例えば2つの無線基地局に同時にフィードバックする場合であっても、同一CC内でのPUCCHとPUSCHの同時送信になるため、Rel.10/11で既に導入された上り回線の同時送信の回路構成で実現できるため、コストの増加を抑制できるというメリットがある。
 また、ユーザ端末は、下り共有チャネル(PDSCH)のスケジューリング情報を通知する下り制御信号(DL assignment)を検出したときに、送達確認信号のフィードバックを行う。したがって、ユーザ端末は、DL assignmentに基づいて、フィードバックする無線基地局を判断することも可能である。つまり、上位レイヤから無線基地局間CoMPが設定されたユーザ端末は、受信したDL assignmentに対応する制御チャネルの種類(PDCCH又は拡張PDCCH)や設定(例えば制御信号フォーマット(DCI format)、Aggregation levelなど)に基づいてフィードバックする無線基地局を判断することができる。又は、ユーザ端末は、受信したDL assignmentに含まれるビットに基づいてフィードバックすべき無線基地局を判断することができる。
<フィードバック動作>
 次に、異なる無線基地局間でCoMP/CAを適用する場合のユーザ端末と無線基地局との通信方法の動作手順の一例について図13を参照して説明する。なお、ここでは、図13Aに示すように、第1の基地局(マクロ基地局)と第2の基地局(スモール基地局)と、第1の基地局及び第2の基地局に接続するユーザ端末を例に挙げて説明する。
 まず、ユーザ端末は、当該ユーザ端末の能力(UE Capability)について無線基地局(例えば、マクロ基地局)に通知する(ステップ11)。これにより、無線基地局はユーザ端末が同時送信可能であるか否か、本実施の形態におけるフィードバック方法を適用できるか否かを判断することができる。
 また、無線基地局は、ユーザ端末から通信品質に関する報告を受信すると共に、ユーザ端末が送信した信号の受信電力を測定する(ステップ12)。例えば、第1の基地局及び第2の基地局は、下り受信電力や受信品質(RSRP、RSRQ)の報告情報や、チャネル状態(CSI)報告情報等の受信品質情報をユーザ端末から受信する。また、第1の基地局及び第2の基地局は、上りサウンディング参照信号(SRS)やランダムアクセス(PRACH)の受信電力等を測定する。これにより、第1の基地局及び第2の基地局は、各ユーザ端末のチャネル状態や、位置(ユーザ端末がいずれの無線基地局が運用するセル(又は送信ポイント)に近いかどうか)を判断することができる。
 次に、第1の基地局及び第2の基地局は、各無線基地局間で受信した情報についてバックホールを介して共有する(ステップ13)。例えば、各無線基地局は、自セル内のトラフィック情報や接続するユーザ端末情報についてバックホールを介して他の無線基地局と共有する。これにより、無線基地局(例えば、マクロ基地局)は、各ユーザ端末に対する無線基地局間CoMP/CAの適用有無を判断することができる。
 各ユーザ端末の状況に基づいて、無線基地局(例えば、マクロ基地局)はCoMP/CAの設定(Configure)を行う。ここでは、第1の基地局が、ユーザ端末に対して、無線基地局間CoMP/CAを設定する場合を想定する(ステップ14)。
 この場合、第1の基地局は、ユーザ端末が第2の基地局(スモール基地局)と通信を行うための制御情報を上位レイヤシグナリング(例えば、RRCシグナリング)を介して通知する(ステップ15)。なお、ステップ14とステップ15は同時に行ってもよい。ユーザ端末に通知する制御情報としては、第2の基地局からの信号を受信するためのConfigurationや、第2の無線基地局へフィードバック信号を送信する際に利用するPUSCHリソース情報が含まれる。
 また、ユーザ端末に通知する制御情報としては、SCellの上りリンクにおけるフィードバックルール(既存のフィードバック方法の適用又は本実施の形態のフィードバック方法の適用)を指示する情報を含めてもよい。これにより、無線基地局間CoMP/CAを適用する場合であっても、ユーザ端末毎に適用するフィードバック方法を制御することができる。その結果、例えば、スモールセル(SCell)のPUSCHのトラフィックが多い場合には従来のフィードバック方法をそのまま適用する等、通信環境に応じて柔軟にフィードバック方法を制御することが可能となる。また、無線基地局間CoMP/CAの通知やフィードバックルールの選択指示の通知は、ユーザ端末毎に個別に行ってもよいし、セル内の全ユーザ端末に共通に行ってもよい。
 そして、各無線基地局は、ユーザ端末に対して下りリンク信号を送信する(ステップ16)。ユーザ端末は、無線基地局(例えば、第1の基地局)から受信した制御情報に基づいて、第1の基地局及び第2の基地局が送信する制御チャネル(PDCCH、拡張PDCCH(EPDCCH))をモニタリングする。そして、ユーザ端末は、受信した下りリンク信号に対するフィードバック信号(送達確認信号、CSI等)を各無線基地局にフィードバックする(ステップ17)。
 本実施の形態のフィードバック方法を適用するユーザ端末は、第1の無線基地局からの下りリンク信号に対するフィードバック信号を、PCellのPUCCH又はPUSCHを利用してフィードバックする。具体的には、ユーザ端末は、第1の基地局に対して送信すべき上りデータが割当てられた場合(ULグラントを検出した場合)に限り、ULグラントで割当てられたPUSCHリソースにフィードバック信号を含めて送信する(上記図8B参照)。それ以外は、ユーザ端末は、PCellのPUCCHリソースを用いてフィードバックを行う(上記図8A、8C参照)。
 また、ユーザ端末は、第2の無線基地局からの下りリンク信号に対するフィードバック信号を、ULグラントの有無に関わらずPUSCHを用いてフィードバックする。具体的に、ユーザ端末は、第2の基地局に対して送信すべき上りデータが割当てられない場合(ULグラントを検出しなかった場合)、上位レイヤから通知されたPUSCHリソースを利用してフィードバックを行う(上記図8B参照)。ユーザ端末は、ULグラントを検出した場合に限り、ULグラントで割当てられたPUSCHリソースにフィードバック信号を含めて送信する(上記図8C参照)。
 このように、SCellに対するフィードバック信号をULグラントの有無に関わらずPUSCHを用いてフィードバックすることにより、Rel.10/11で規定されたPUCCHとPUSCHの同時送信・非同時送信の送信パターンをサポートすることができる。また、無線基地局間CoMPや、下りのみ無線基地局間CAにおいてもフィードバックメカニズムを適用できると共に、PUCCHとPUSCH間、及びPCellとSCell間において送信電力を独立して制御(既存の送信電力制御の仕組みを利用)することができる。
(第2の態様)
 第2の態様では、上記第1の態様においてSCellの下りリンク信号に対するフィードバック信号の割当てを行うPUSCHリソースの設定・通知方法について説明する。
 第1の態様において、第2の無線基地局(スモール基地局)へのフィードバックに利用するPUSCHリソースは、ULグラントの検出有無によって変化する。例えば、ユーザ端末がULグラントを検出した場合、ULグラントで指定された上りデータ送信リソース(PUSCHリソース)を利用して上りデータと共にフィードバックする。一方で、ユーザ端末がULグラントを検出しなかった場合には、上位レイヤで設定されたフィードバック用リソース(PUSCH)を利用してフィードバック信号を送信する。
 ところで、上記図6に示したように、ユーザ端末はULグラントの検出を失敗する可能性がある。このため、第2の無線基地局では上位レイヤで指定したフィードバック用のPUSCHリソースを他のユーザ端末に割当てることができない。仮に、フィードバック用のPUSCHリソースを他のユーザ端末にも割当てると、当該ユーザ端末がULグラントの検出を失敗したときに、他のユーザ端末と同一のPUSCHリソースを用いて同時に送信することとなる。その結果、異なるユーザ端末間でPUSCHの衝突が発生し、結果的に再送回数が増加することによりスループットが低下するおそれがある。
 一方で、PUSCHの衝突を抑制するため、上位レイヤで指定したフィードバック用のPUSCHリソースを他のユーザ端末に割当てない場合には、PUSCHスケジューリングが制約され、リソースの利用効率を十分に図ることができなくなる。
 そこで、本発明者等は、高い頻度でフィードバックされる可能性がある送達確認信号(ACK/NACK)において、ユーザ端末がフィードバック前に下りPDSCHの受信を指示する下り制御情報(DL assignment)を検出することに着目し、当該下り制御情報をPUSCHリソース割当て・指示に利用することを見出した。さらに、本発明者等は、下り制御情報の中で、新たなフィードバック方法を適用する場合に、第2の無線基地局からのDL assignmentで使用されなくなるビットをPUSCHリソース指示に用いることを見出した。DL assignmentで使用されなくなるビットとしては、フィードバックに使用するPUCCHリソースの指示に用いられていたARIやARO(各2ビット)等が挙げられる。
 ARIは、Rel.10で導入されたACK/NACKリソース識別子(A/N resource indicator)であり、CA適用時(FDD)にSCellに対応するPUCCHを指定するために利用される。例えば、PCellの下りリンクで検出したDL assignmentが指示するPDSCHデータに対するACK/NACKフィードバックは、DL assignmentがマッピングされた制御チャネル要素(CCE)番号で黙示的(Implicit)に定まるPUCCHリソースを用いて行う。
 一方で、SCellの下りリンクで検出したDL assignmentが指示するPDSCHデータに対するACK/NACKフィードバックは、上位レイヤとARI(2ビット)の組合せで指示されるPUCCHリソースを用いて行う。なお、無線基地局は、4つのPUCCHリソース候補をRRCシグナリングで通知し、当該4つのPUCCHリソース候補から特定のPUCCHリソースを下り制御情報に含まれるARIで指定する。
 AROは、Rel.11で導入され、拡張下り制御チャネル(EPDCCH)のDL assignmentに含まれ、PUCCHリソースをずらすためのオフセットとして使用される。具体的に、EPDCCHで検出したDL assignmentと当該DL assignmentが指示するPDSCHデータに対するACK/NACKフィードバックは、DL assignmentがマッピングされた拡張制御チャネル要素(ECCE)番号と、AROが表すオフセット値の足し算で指示されるPUCCHリソースを用いて行う。
 本実施の形態では、DL assignmentに含まれるARIやARO等に利用されるビットフィールドを用いて、SCellに対するフィードバック信号のフィードバックに利用するPUSCHリソースをユーザ端末に指示することができる。これにより、新たなフィードバック方法において利用しなくなったARIやAROのビットを、PUSCHリソース指示に再利用することができるため、無線リソースの有効活用を図ることができる。また、RRCシグナリングを用いてユーザ端末毎に固定のPUSCHリソースを割当てることが不要となるため、リソースの利用効率を向上することができる。
 また、ユーザ端末に対するPUSCHリソース指示として、第2の無線基地局へのフィードバックに利用するPUSCHリソース候補を複数設定し、実際にフィードバックに使用するPUSCHリソースをDL assignmentに含まれるビットで指定することも可能である。DL assignmentに含まれるビットとしては、上記ARIやARO(各2ビット)を利用することができる。
 図14A、14Bは、上位レイヤシグナリング(例えば、RRCシグナリング)を介して、ユーザ端末に4つのPUSCHリソース候補を通知すると共に、使用するPUSCHリソースをDL assignmentの2ビットで指示する一例を示している。図14Aでは、ユーザ端末は、ビット値が“00”の時にPUSCHのRB#10にフィードバック信号を割当てる。同様に、ユーザ端末は、ビット値が“01”の時にPUSCHのRB#14に、ビット値が“10”の時にPUSCHのRB#20に、ビット値が“11”の時にPUSCHのRB#22に対してフィードバック信号をそれぞれ割当てる。
 この場合、上りデータはULグラントでスケジューリングされ、フィードバック情報はDL assignmentでスケジューリングされる。このように、上位レイヤで指示される複数のPUSCH候補と、下り制御情報で指示されるビットの組み合わせで特定のPUSCHリソースを指示することにより、第2の無線基地局においてPUSCHのスケジューリングを柔軟に行うことができる。また、DL assignmentに含まれるビットとして、未使用となるARIやARO(各2ビット)を利用することによりオーバーヘッドの増大を抑制することができる。
 なお、本実施の形態では、DL assignmentのビット(例えば、ARIやARO)に加えて(又は代えて)、DL assignmentに対応する制御チャネルのConfigurationや状態、リソースを利用して特定のPUSCHリソースを通知してもよい。例えば、ユーザ端末がモニタリングする複数の制御チャネル(PDCCH又はEPDCCH)のうち、DL assignmentがいずれの制御チャネルで検出されたかに基づいて、PUSCHリソースを判断してもよい。
 あるいは、制御チャネル内におけるDLassignmentの割当てリソース数(CCEアグリゲーションレベル)を利用して、ユーザ端末にPUSCHリソースを通知してもよい。あるいは、DL assignmentのマッピング方法(制御チャネル内に連続するリソースへの局所マッピング(Localized送信)であるか、又は非連続のリソースへの分散マッピング(Distributed送信)であるか)に基づいて、ユーザ端末にPUSCHリソースを通知してもよい。これにより、オーバーヘッドを増加させずに、PUSCHリソース候補を増加することが可能となる。
 なお、上記説明では、動的スケジューリングを行うフィードバック用リソースとして、PUSCHのRB番号を示したが、これに限られず、RBグルーブ番号やCC番号等を指定してもよい。これにより、柔軟なリソース指示が可能となる。
 さらに、動的スケジューリングするフィードバック用リソースとして、PUCCHリソース番号を含めてもよい。その結果、柔軟なリソース指示が可能となる。
 あるいは、上記複数のPUSCHリソース候補は、所定のリソースとしてあらかじめ定義してもよい。SCellは、PCellと比較して接続するユーザ端末数が少ないため、リソースを可変にせず固定とすることにより、RRC等のシグナリング量を低減することができる。この場合、あらかじめ定義された複数のPUSCHリソース候補の中から、ARI/ARO等のビットを利用して特定のPUSCHリソースを選択する。
(変形例)
 本実施の形態において、ユーザ端末は、ULグラントを検出せずにPUSCHを利用してフィードバックを行う場合に、スロット間でPUSCHのRBホッピングを行ってもよい。ホッピングパターンは、PCellにおけるPUCCHのホッピングパターンと同じパターン、又は上位レイヤとDL assignmentのビット(例えば、ARIやARO)で定まるパターンを適用することができる。スロット間で異なる複数の周波数を利用してフィードバックを行うことにより、周波数ダイバーシチ効果を得ることができる。
 また、ユーザ端末は、ULグラントを検出せずにPUSCHを利用してフィードバックを行う場合に、ULグラントを検出する場合とは異なる送信電力制御を行ってもよい。例えば、ユーザ端末は、ULグラントの検出有無に応じて、異なる電力制御パラメータを用いてPUSCHの送信電力を制御する。例えば、フィードバック信号のみを送信する場合(ULグラントを検出しない場合)にPUSCHの送信電力を高く設定する。これにより、フィードバック信号のみを送信する場合にPUSCHの受信品質を向上することができる。
 また、ユーザ端末は、ULグラントを検出せずにPUSCHを利用してフィードバックを行う場合に、フィードバック信号にチャネル状態情報(CSI)を含めて送信してもよい。つまり、ユーザ端末は、ACK/NACKフィードバックを行う場合に、周期的又は非周期的CSI(Periodic/Aperiodic CSI)を同時に送信する。また、チャネル状態情報(CSI)は、常に送達確認信号(ACK/NACK)信号と同時に送信してもよいし、所定のタイミングで選択的に送信してもよい。所定のタイミングで送信する場合には、下り制御情報(例えば、DL assignmentの未使用ビット)をCSIフィードバック用トリガとして利用することができる。
 このように、PUSCHを利用して送達確認信号をフィードバックする際にCSIを含めることにより、割当てられたPUSCHリソースを有効利用することができる。また、送達確認信号とチャネル状態情報を同時に送信することによりスケジューリング精度を向上することも可能となる。
 なお、上記説明では、無線基地局を2つとして説明したが、本実施の形態は3つ以上の無線基地局の組合せについても適用することができる。例えば、無線基地局間CoMPにおいて、3つの送信ポイントTP1、TP2、TP3をそれぞれ異なる無線基地局が運用する場合が挙げられる。また、無線基地局間CAにおいて、3つのセルPCell、SCell1、SCell2をそれぞれ異なる無線基地局が運用する場合が挙げられる。
 また、本実施の形態は、無線基地局内(Intra-eNB)と無線基地局間(Inter-eNB)のCoMP/CAが組合わされている場合にも適用することができる。例えば、CoMPにおいて2つの送信ポイントTP1、TP2を第1の基地局が運用し、1つの送信ポイントTP3を第2の基地局が運用する場合が挙げられる。また、CAにおいて、2つのセルPCellとSCellを第1の基地局が運用し、1つのセルSCell2を第2の基地局が運用する場合が挙げられる。
(無線通信システムの構成)
 以下、本実施の形態に係る無線通信システムの一例について、詳細に説明する。
 図15は、本実施の形態に係る無線通信システムの概略構成図である。なお、図15に示す無線通信システムは、例えば、LTEシステム或いは、SUPER 3Gが包含されるシステムである。この無線通信システムでは、LTEシステムのシステム帯域幅を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)が適用することができる。また、この無線通信システムは、IMT-Advancedと呼ばれても良いし、4G、FRA(Future Radio Access)と呼ばれても良い。
 図15に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a及び12bとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続すること(dual connectivity)ができる。また、無線基地局11と無線基地局12間でCoMP/CAが適用される。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrier等と呼ばれる)を用いて通信が行なわれる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz等)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。ユーザ端末20と無線基地局12間のキャリアタイプとしてニューキャリアタイプ(NCT)を利用してもよい。無線基地局11と無線基地局12(又は、無線基地局12間)は、有線接続(Optical fiber、X2インターフェース等)又は無線接続されている。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)等が含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、eNodeB、マクロ基地局、送受信ポイントなどと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、ピコ基地局、フェムト基地局、Home eNodeB、マイクロ基地局、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでよい。
 無線通信システムにおいては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が適用され、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。
 ここで、図15に示す無線通信システムで用いられる通信チャネルについて説明する。下りリンクの通信チャネルは、各ユーザ端末20で共有されるPDSCH(Physical Downlink Shared Channel)と、下りL1/L2制御チャネル(PDCCH、PCFICH、PHICH、拡張PDCCH)とを有する。PDSCHにより、ユーザデータ及び上位制御情報が伝送される。PDCCH(Physical Downlink Control Channel)により、PDSCHおよびPUSCHのスケジューリング情報等が伝送される。PCFICH(Physical Control Format Indicator Channel)により、PDCCHに用いるOFDMシンボル数が伝送される。PHICH(Physical Hybrid-ARQ Indicator Channel)により、PUSCHに対するHARQのACK/NACKが伝送される。また、拡張PDCCH(EPDCCH)により、PDSCH及びPUSCHのスケジューリング情報等が伝送されてもよい。このEPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重される。
 上りリンクの通信チャネルは、各ユーザ端末20で共有される上りデータチャネルとしてのPUSCH(Physical Uplink Shared Channel)と、上りリンクの制御チャネルであるPUCCH(Physical Uplink Control Channel)とを有する。このPUSCHにより、ユーザデータや上位制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、ACK/NACK等が伝送される。
 図16は、本実施の形態に係る無線基地局10(無線基地局11及び12を含む)の全体構成図である。無線基地局10は、MIMO伝送のための複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、PDCPレイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、例えば、HARQの送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理が行われて各送受信部103に転送される。また、下りリンクの制御チャネルの信号に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われて、各送受信部103に転送される。
 また、ベースバンド信号処理部104は、上位レイヤシグナリング(RRCシグナリング、報知信号等)により、ユーザ端末20に対して、当該セルにおける通信のための制御情報を通知する。当該セルにおける通信のための情報には、例えば、上りリンク又は下りリンクにおけるシステム帯域幅、フィードバック用のリソース情報等が含まれる。各送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換する。アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101により送信する。
 一方、上りリンクによりユーザ端末20から無線基地局10に送信されるデータについては、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅され、各送受信部103で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、入力されたベースバンド信号に含まれるユーザデータに対して、FFT処理、IDFT処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放等の呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 図17は、本実施の形態に係る無線基地局10が有するベースバンド信号処理部104の主な機能構成図である。図17に示すように、無線基地局10が有するベースバンド信号処理部104は、制御部301と、下り制御信号生成部302と、下りデータ信号生成部303と、マッピング部304と、デマッピング部305と、チャネル推定部306と、上り制御信号復号部307と、上りデータ信号復号部308と、判定部309と、を少なくとも含んで構成されている。
 制御部301は、PDSCHで送信される下りユーザデータ、PDCCH及び/又は拡張PDCCH(EPDCCH)で伝送される下り制御情報、下り参照信号等のスケジューリングを制御する。また、制御部301は、PUSCHで伝送される上りデータ、PUCCH又はPUSCHで伝送される上り制御情報、上り参照信号のスケジューリングの制御(割当て制御)も行う。上りリンク信号(上り制御信号、上りユーザデータ)の割当て制御に関する情報は、下り制御信号(DCI)を用いてユーザ端末に通知される。
 具体的に、制御部301は、上位局装置30からの指示情報や各ユーザ端末20からのフィードバック情報に基づいて、下りリンク信号及び上りリンク信号に対する無線リソースの割り当てを制御する。つまり、制御部301は、スケジューラとしての機能を有している。また、ユーザ端末が上述した本実施の形態のフィードバック方法を適用する場合、制御部301は、SCell(スモールセル)に対するフィードバック信号の割当てを行うPUSCHリソースを決定する。
 なお、制御部301で決定されたPUSCHリソースに関する情報は、下り制御信号生成部302で生成される下り制御信号に含めてもよいし、上位レイヤシグナリングとして下りデータ信号生成部303で生成される下りデータ信号に含めてもよい。例えば、PUSCHリソースの割当てに関する情報は、下り制御情報(DL assignment)におけるARIやAROのビットで規定されてユーザ端末に通知される。
 下り制御信号生成部302は、制御部301により割当てが決定された下り制御信号(PDCCH信号及び/又はEPDCCH信号)を生成する。具体的に、下り制御信号生成部302は、制御部301からの指示に基づいて、下りリンク信号の割当て情報を通知するDL assignmentと、上りリンク信号の割当て情報を通知するUL grantを生成する。
 下りデータ信号生成部303は、制御部301によりリソースへの割当てが決定された下りデータ信号(PDSCH信号)を生成する。下りデータ信号生成部303により生成されるデータ信号には、各ユーザ端末20からのCSI等に基づいて決定された符号化率、変調方式に従って符号化処理、変調処理が行われる。
 マッピング部304は、制御部301からの指示に基づいて、下り制御信号生成部302で生成された下り制御信号と、下りデータ信号生成部303で生成された下りデータ信号の無線リソースへの割当てを制御する。
 デマッピング部305は、ユーザ端末から送信された上りリンク信号をデマッピングして、上りリンク信号を分離する。チャネル推定部306は、デマッピング部305で分離された受信信号に含まれる参照信号からチャネル状態を推定し、推定したチャネル状態を上り制御信号復号部307、上りデータ信号復号部308に出力する。
 上り制御信号復号部307は、上り制御チャネル(PUCCH)で送信されたフィードバック信号(送達確認信号等)を復号し、制御部301へ出力する。上りデータ信号復号部308は、上り共有チャネル(PUSCH)で送信された上りデータ信号を復号し、判定部309へ出力する。判定部309は、上りデータ信号復号部308の復号結果に基づいて、再送制御判定(ACK/NACK)を行うと共に結果を制御部301に出力する。
 図18は、本実施の形態に係るユーザ端末20の全体構成図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部(受信部)203と、ベースバンド信号処理部204と、アプリケーション部205とを備えている。
 下りリンクのデータについては、複数の送受信アンテナ201で受信された無線周波数信号がそれぞれアンプ部202で増幅され、送受信部203で周波数変換されてベースバンド信号に変換される。このベースバンド信号は、ベースバンド信号処理部204でFFT処理や、誤り訂正復号、再送制御の受信処理等がなされる。この下りリンクのデータの内、下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理等を行う。また、下りリンクのデータの内、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御(H-ARQ (Hybrid ARQ))の送信処理や、チャネル符号化、プリコーディング、DFT処理、IFFT処理等が行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部202は、周波数変換された無線周波数信号を増幅して送受信アンテナ201により送信する。
 図19は、ユーザ端末20が有するベースバンド信号処理部204の主な機能構成図である。図19に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、上り制御信号生成部402と、上りデータ信号生成部403と、マッピング部404(割当て部)と、デマッピング部405と、チャネル推定部406と、下り制御信号復号部407と、下りデータ信号復号部408と、判定部409と、を少なくとも含んで構成されている。
 制御部401は、無線基地局から送信された下り制御信号(UL grant、DL assignment)や再送制御判定結果に基づいて、上り制御信号(フィードバック信号)や上りデータ信号の生成を制御する。下り制御信号は下り制御信号復号部407から出力され、再送制御判定結果は、判定部409から出力される。
 また、制御部401は、無線基地局から送信された下り制御信号(UL grant、DL assignment)に基づいて、無線リソースに対する上り制御信号(フィードバック信号)と上りデータ信号の割当てについてマッピング部404に指示する。
 上り制御信号生成部402は、制御部401からの指示に基づいて上り制御信号(送達確認信号やチャネル状態情報(CSI)等のフィードバック信号)を生成する。また、上りデータ信号生成部403は、制御部401からの指示に基づいて上りデータ信号を生成する。なお、制御部401は、無線基地局から通知される下り制御信号にULグラントが含まれている場合に、上りデータ信号生成部403に上りデータ信号の生成を指示する。
 マッピング部404(割当て部)は、制御部401からの指示に基づいて、上り制御信号(フィードバック信号)と上りデータ信号の無線リソースへの割当てを制御する。例えば、マッピング部404は、フィードバックしたいCC(セル)に応じて上記図11、図12で示した提案例のチャネルに対してフィードバック信号の割当てを行う。
 例えば、ユーザ端末が本実施の形態のフィードバック方法を適用する場合、マッピング部404は、無線基地局11(マクロ基地局)からの下りリンク信号に対するフィードバック信号を、PCellのPUCCH又はPUSCHに割当てる。具体的に、マッピング部404は、マクロ基地局からの下りリンク信号からULグラントを検出した場合に、ULグラントで割当てられたPCellのPUSCHリソースにフィードバック信号を割当てる(上記図8B参照)。それ以外は、マッピング部404は、PCellのPUCCHリソースにフィードバック信号を割当てる(上記図8A、8C参照)。
 また、マッピング部404は、無線基地局12(スモール基地局)からの下りリンク信号に対するフィードバック信号を、ULグラントの有無に関わらずPUSCHに割当てる。具体的に、マッピング部404は、スモール基地局からの下りリンク信号からULグラントを検出しなかった場合に、上位レイヤ及び/又はDL assignmentから通知されたPUSCHリソースにフィードバック信号を割当てる(上記図8B参照)。また、マッピング部404は、ULグラントを検出した場合には、ULグラントで割当てられたPUSCHリソースにフィードバック信号を割当てる(上記図8C参照)。このように、ユーザ端末20のマッピング部404は、SCellに対するフィードバック信号をULグラントの有無に関わらずPUSCHに割当てを行う。
 デマッピング部405は、無線基地局10から送信された下りリンク信号をデマッピングして、下りリンク信号を分離する。チャネル推定部406は、デマッピング部405で分離された受信信号に含まれる参照信号からチャネル状態を推定し、推定したチャネル状態を下り制御信号復号部407、下りデータ信号復号部408に出力する。
 下り制御信号復号部407は、下り制御チャネル(PDSCH)で送信された下り制御信号(UL grant、DL assignment)を復号し、スケジューリング情報(上りリソースへの割当て情報)を制御部401へ出力する。下りデータ信号復号部408は、下り共有チャネル(PDSCH)で送信された下りデータ信号を復号し、判定部409へ出力する。判定部409は、下りデータ信号復号部308の復号結果に基づいて、再送制御判定(ACK/NACK)を行うと共に結果を制御部401に出力する。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。例えば、上述した複数の態様を適宜組み合わせて適用することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2013年5月9日出願の特願2013-099280に基づく。この内容は、全てここに含めておく。
 

Claims (10)

  1.  第1のセルを形成する第1の無線基地局及び第2のセルを形成する第2の無線基地局からの下りリンク信号を受信する受信部と、
     各無線基地局からの下りリンク信号に対するフィードバック信号を生成する生成部と、
     前記第1の無線基地局からの下りリンク信号に対するフィードバック信号を、ULグラントの有無に応じて第1のセルの上り制御チャネル及び/又は上り共有チャネルに割当て、前記第2の無線基地局からの下りリンク信号に対するフィードバック信号を、ULグラントの有無に関わらず第1のセル又は第2のセルの上り共有チャネルに割当てる割当て制御部と、を有することを特徴とするユーザ端末。
  2.  前記第1の無線基地局と前記第2の無線基地局間において上下リンクでキャリアアグリゲーションが適用される場合に、前記割当て制御部は、前記第2の無線基地局からの下りリンク信号に対するフィードバック信号を前記第2のセルの上り共有チャネルに割当てることを特徴とする請求項1に記載のユーザ端末。
  3.  前記第1の無線基地局と前記第2の無線基地局間で協調送信が適用される場合、又は前記第1の無線基地局と前記第2の無線基地局間で下りリンクのみキャリアアグリゲーションが適用される場合に、前記割当て制御部は、前記第2の無線基地局からの下りリンク信号に対するフィードバック信号を前記第1のセルの上り共有チャネルに割当てることを特徴とする請求項1に記載のユーザ端末。
  4.  前記第1のセルがプライマリセルであり、前記第2のセルがセカンダリセルであることを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記割当て制御部は、前記第2の無線基地局からの下りリンク信号からULグラントを検出しなかった場合に、前記第2の無線基地局からの下りリンク信号に対するフィードバック信号を、上位レイヤシグナリングで通知される上り共有チャネルリソースに割当てることを特徴とする請求項1に記載のユーザ端末。
  6.  前記割当て制御部は、前記第2の無線基地局からの下りリンク信号からULグラントを検出しなかった場合に、前記第2の無線基地局からの下りリンク信号に対するフィードバック信号を、DL assignmentに含まれるビットで指示される上り共有チャネルリソースに割当てることを特徴とする請求項1に記載のユーザ端末。
  7.  前記DL assignmentに含まれるビットが、ARI又はARQのビットフィールドに割当てられたビットであることを特徴とする請求項6に記載のユーザ端末。
  8.  前記割当て制御部は、前記第2の無線基地局からの下りリンク信号からULグラントを検出しなかった場合に、前記第2の無線基地局からの下りリンク信号に対するフィードバック信号を、あらかじめ設定された複数の上り共有チャネルリソース候補の中からDL assignmentに含まれるビットで指示される特定の上り共有チャネルリソースに割当てることを特徴とする請求項1に記載のユーザ端末。
  9.  複数の無線基地局と接続可能なユーザ端末と通信を行う無線基地局であって、
     ユーザ端末に下りリンク信号を送信する送信部と、
     ユーザ端末から送信されるフィードバック信号を受信する受信部と、
     ユーザ端末がフィードバック信号を割当てるリソースを制御する制御部と、を有し、
     前記制御部は、ユーザ端末がULグラントを検出しない場合に、フィードバック信号を割当てるための上り共有チャネルリソースを決定し、前記送信部は前記上り共有チャネルリソースに関する情報をユーザ端末に通知することを特徴とする無線基地局。
  10.  第1のセルを形成する第1の無線基地局及び第2のセルを形成する第2の無線基地局を含む複数の無線基地局と、前記複数の無線基地局と通信を行うユーザ端末と、の無線通信方法であって、
     前記ユーザ端末が、前記第1の無線基地局及び前記第2の無線基地局からの下りリンク信号を受信する工程と、各無線基地局からの下りリンク信号に対するフィードバック信号を生成する工程と、前記第1の無線基地局からの下りリンク信号に対するフィードバック信号を、ULグラントの有無に応じて第1のセルの上り制御チャネル及び/又は上り共有チャネルに割当て、前記第2の無線基地局からの下りリンク信号に対するフィードバック信号を、ULグラントの有無に関わらず第1のセル又は第2のセルの上り共有チャネルに割当てる工程と、を有することを特徴とする無線通信方法。
     
PCT/JP2014/060604 2013-05-09 2014-04-14 ユーザ端末、無線基地局及び無線通信方法 WO2014181644A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/889,378 US10057023B2 (en) 2013-05-09 2014-04-14 User terminal, radio base station and radio communication method
CN201480025976.2A CN105191470B (zh) 2013-05-09 2014-04-14 用户终端、无线基站以及无线通信方法
EP14794530.7A EP2996420A4 (en) 2013-05-09 2014-04-14 USER UNIT, WIRELESS BASE STATION AND WIRELESS COMMUNICATION PROCESS
AU2014263736A AU2014263736B2 (en) 2013-05-09 2014-04-14 User terminal, radio base station and radio communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013099280A JP6289818B2 (ja) 2013-05-09 2013-05-09 ユーザ端末及び無線通信方法
JP2013-099280 2013-05-09

Publications (1)

Publication Number Publication Date
WO2014181644A1 true WO2014181644A1 (ja) 2014-11-13

Family

ID=51867126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060604 WO2014181644A1 (ja) 2013-05-09 2014-04-14 ユーザ端末、無線基地局及び無線通信方法

Country Status (6)

Country Link
US (1) US10057023B2 (ja)
EP (1) EP2996420A4 (ja)
JP (1) JP6289818B2 (ja)
CN (1) CN105191470B (ja)
AU (1) AU2014263736B2 (ja)
WO (1) WO2014181644A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180084540A1 (en) * 2015-04-02 2018-03-22 Ntt Docomo, Inc. User terminal, radio base station and radio communication method
US10455611B2 (en) * 2015-09-16 2019-10-22 Lg Electronics Inc. Method for transceiving data in wireless communication system and apparatus for same
US9941948B2 (en) * 2016-03-31 2018-04-10 Lg Electronics Inc. Method of reporting channel state and apparatus therefor
WO2017195815A1 (ja) * 2016-05-12 2017-11-16 シャープ株式会社 基地局装置、端末装置およびその通信方法
JP2018026703A (ja) 2016-08-10 2018-02-15 ソニー株式会社 通信装置、通信方法及び記録媒体
CN108093479A (zh) * 2016-11-23 2018-05-29 普天信息技术有限公司 一种提升lte系统上行速率的方法
WO2018225231A1 (ja) 2017-06-08 2018-12-13 株式会社Nttドコモ ユーザ端末及び無線通信方法
US20190021084A1 (en) * 2017-07-12 2019-01-17 Futurewei Technologies, Inc. System And Method For Backhaul and Access In Beamformed Communications Systems
BR112019026510A2 (pt) * 2017-08-10 2020-07-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. método de transmissão de dados, dispositivo de rede e dispositivo terminal
US11737099B2 (en) * 2021-01-29 2023-08-22 Qualcomm Incorporated PUCCH and PCI configuration for small cell base station

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029181A (ja) * 2010-07-27 2012-02-09 Ntt Docomo Inc 無線通信装置及び無線通信方法
JP2012129761A (ja) * 2010-12-15 2012-07-05 Sharp Corp 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101457688B1 (ko) * 2007-10-04 2014-11-12 엘지전자 주식회사 제어채널의 수신오류를 검출하는 데이터 전송방법
US8249010B2 (en) * 2008-11-05 2012-08-21 Huawei Technologies Co., Ltd. Method and apparatus for feeding back and receiving acknowledgement information of semi-persistent scheduling data packets
CN101499882B (zh) * 2008-11-05 2011-05-04 华为技术有限公司 半静态调度数据包的应答信息的反馈、接收方法及其装置
JP2010279009A (ja) * 2009-04-27 2010-12-09 Ntt Docomo Inc 移動端末装置及び無線通信方法
US8848643B2 (en) * 2010-01-08 2014-09-30 Lg Electronics Inc. Method and apparatus for transmitting uplink control information in wireless communication system for supporting multi-carriers
US8422429B2 (en) * 2010-05-04 2013-04-16 Samsung Electronics Co., Ltd. Method and system for indicating the transmission mode for uplink control information
CN102934384A (zh) * 2010-06-07 2013-02-13 Lg电子株式会社 在无线通信系统中发送控制信息的方法和设备
US9762372B2 (en) * 2010-06-15 2017-09-12 Texas Instruments Incorporated CSI reporting on PUSCH for carrier aggregation
CN101989898A (zh) * 2010-11-15 2011-03-23 中兴通讯股份有限公司 应答消息的发送方法和装置
WO2012067459A2 (ko) * 2010-11-18 2012-05-24 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
KR101165643B1 (ko) * 2010-12-20 2012-07-17 엘지전자 주식회사 Ack/nack 전송방법 및 사용자기기와, ack/nack 수신방법 및 기지국
CN102170339B (zh) * 2011-04-29 2014-04-09 电信科学技术研究院 Ack/nack反馈信息的传输方法和设备
JP5285117B2 (ja) * 2011-05-02 2013-09-11 株式会社エヌ・ティ・ティ・ドコモ ユーザ端末、無線基地局装置、無線通信システム及び無線通信方法
JP2013005367A (ja) * 2011-06-21 2013-01-07 Sharp Corp 移動通信システム、基地局装置、移動局装置および通信方法
EP2730137B1 (en) * 2011-07-05 2022-11-09 HMD Global Oy Method and apparatus for resource aggregation in wireless communications
US9363820B2 (en) * 2011-08-11 2016-06-07 Industrial Technology Research Institute Method of uplink control information transmission
CN102355339B (zh) * 2011-08-12 2017-09-26 中兴通讯股份有限公司 一种反馈信息的发送方法及终端
KR101839808B1 (ko) * 2011-08-24 2018-04-26 삼성전자주식회사 이동 단말기 및 그 통신방법, 기지국 컨트롤 장치 및 그 컨트롤 방법, 및 그것을 이용하는 다중 협력 송수신 시스템 및 그 방법
KR102263020B1 (ko) * 2011-09-30 2021-06-09 인터디지탈 패튼 홀딩스, 인크 무선 통신의 다중점 송신
WO2013141594A1 (ko) * 2012-03-22 2013-09-26 엘지전자 주식회사 Ack/nack 신호 전송 또는 수신 방법
EP2983427B1 (en) * 2012-03-23 2018-02-28 MediaTek Inc. Methods for physical layer multi-point carrier aggregation and multi-point feedback configuration
JP5497095B2 (ja) * 2012-03-30 2014-05-21 シャープ株式会社 移動局装置、通信システム、通信方法および集積回路
WO2013155705A1 (en) * 2012-04-20 2013-10-24 Renesas Mobile Corporation Resource allocation in different tdd configurations with cross carrier scheduling
SG10201608339UA (en) * 2012-04-22 2016-11-29 Elta Systems Ltd Apparatus and methods for moving relay interference mitigation in mobile e.g. cellular communication networks
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
CN104823389A (zh) * 2012-11-29 2015-08-05 Lg电子株式会社 在无线通信系统中发送对接收的应答的方法和设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029181A (ja) * 2010-07-27 2012-02-09 Ntt Docomo Inc 無線通信装置及び無線通信方法
JP2012129761A (ja) * 2010-12-15 2012-07-05 Sharp Corp 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP: "E-UTRA Further Advancements for E-UTRA Physical Layer Aspects", 3GPP TR 36.814, 2010
LG ELECTRONICS: "UCI TRANSMISSION FOR SIMULTANEOUS PUCCH/PUSCH CONFIGURATION", 3GPP G-RAN WG1#64, R1-110847, 21 February 2011 (2011-02-21), pages 1 - 4, XP050490618 *
POTEVIO: "UCI Multiplexing for Simultaneous PUSCH/PUCCH", 3GPP TSG-RAN WG1#63B, R1-110360, 11 January 2011 (2011-01-11), pages 1 - 3, XP050490207 *
See also references of EP2996420A4

Also Published As

Publication number Publication date
US10057023B2 (en) 2018-08-21
EP2996420A4 (en) 2016-12-21
CN105191470B (zh) 2019-08-23
EP2996420A1 (en) 2016-03-16
US20160127090A1 (en) 2016-05-05
AU2014263736B2 (en) 2017-08-03
CN105191470A (zh) 2015-12-23
JP6289818B2 (ja) 2018-03-07
JP2014220678A (ja) 2014-11-20
AU2014263736A1 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
US10389497B2 (en) User terminal and radio base station
JP6289818B2 (ja) ユーザ端末及び無線通信方法
US20190007187A1 (en) User terminal, base station and radio communication method
WO2016006449A1 (ja) 無線基地局、ユーザ端末及び無線通信方法
JP2018152922A (ja) ユーザ端末及び無線通信方法
WO2018147346A1 (ja) ユーザ端末及び無線通信方法
CN107432014B (zh) 用户终端、无线基站以及无线通信方法
JP6216592B2 (ja) ユーザ端末、基地局及び送信制御方法
JP6698519B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
WO2017130992A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6161347B2 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2016121915A1 (ja) ユーザ端末、無線基地局、無線通信システム及び無線通信方法
JP2017127004A (ja) ユーザ端末、無線基地局及び無線通信方法
WO2014181626A1 (ja) ユーザ端末、無線基地局および無線通信方法
WO2017150448A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP2018019416A (ja) ユーザ端末、基地局及び送信制御方法
WO2016017357A1 (ja) 無線基地局、ユーザ端末及び無線通信方法
JP2017200222A (ja) ユーザ端末、無線基地局および無線通信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480025976.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794530

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14889378

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014794530

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014263736

Country of ref document: AU

Date of ref document: 20140414

Kind code of ref document: A