WO2014181454A1 - 回転電機システムまたは風力発電システム - Google Patents

回転電機システムまたは風力発電システム Download PDF

Info

Publication number
WO2014181454A1
WO2014181454A1 PCT/JP2013/063107 JP2013063107W WO2014181454A1 WO 2014181454 A1 WO2014181454 A1 WO 2014181454A1 JP 2013063107 W JP2013063107 W JP 2013063107W WO 2014181454 A1 WO2014181454 A1 WO 2014181454A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical machine
rotating electrical
power
power converter
current
Prior art date
Application number
PCT/JP2013/063107
Other languages
English (en)
French (fr)
Inventor
順弘 楠野
雅寛 堀
守 木村
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2013/063107 priority Critical patent/WO2014181454A1/ja
Priority to JP2015515722A priority patent/JP6134787B2/ja
Priority to EP13884276.0A priority patent/EP2996243A4/en
Priority to TW103112291A priority patent/TWI533592B/zh
Publication of WO2014181454A1 publication Critical patent/WO2014181454A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/38Structural association of synchronous generators with exciting machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/42Arrangements for controlling electric generators for the purpose of obtaining a desired output to obtain desired frequency without varying speed of the generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0272Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor by measures acting on the electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
    • H02K13/003Structural associations of slip-rings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/68Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more dc dynamo-electric motors
    • H02P5/69Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more dc dynamo-electric motors mechanically coupled by gearing

Definitions

  • the present invention relates to a rotating electrical machine system in which a power converter is mounted on a rotor, and relates to a device configuration such as a control device that controls active power and reactive power output from the rotating electrical machine, and a detection device necessary for control. .
  • variable speed operation In recent years, power generation systems that use natural energy, such as wind power generation systems, are rapidly spreading due to energy resource issues and increasing interest in preventing global warming.
  • the energy obtained from the wind constantly varies depending on the wind speed, so the frequency of the generated power that varies depending on the pitch mechanism that makes the blade angle of the windmill variable according to the wind speed and the rotation speed of the windmill. It is devised so that the power generation operation can be carried out efficiently in a wider wind speed region by using a power converter that converts the frequency of the power system.
  • Such operation of the wind power generation system is called variable speed operation.
  • the excitation-type rotating electrical machine system (winding type secondary excitation system) is a power converter with a small capacity of about 30% of the total output power of the wind power generation system. It is widely adopted because it can be operated at a variable speed similar to that of a synchronous rotating electrical machine system that requires a power converter having the same capacity as the generator.
  • the excitation-type rotating electrical machine system has a small power converter and a small amount of electric power to be handled, so there is little generation loss due to power conversion, and highly efficient power generation operation is possible.
  • Patent Document 1 discloses an excitation-type rotating electrical machine system of the same type.
  • the wind power generation system In addition to outputting generated power (active power), the wind power generation system is required to output reactive power to stabilize the voltage of the power system.
  • the reactive power output to the power system can be controlled by a small-capacity power converter via the rotating electrical machine. Therefore, the reactive power is generally output to the power system only by the power converter on the rotating machine side.
  • the power converter on the power system side is controlled not to output reactive power. For this reason, the capacity of the power converter on the power system side is smaller than the capacity of the power converter on the rotating machine side.
  • an object of the present invention is to provide a rotating electrical machine system or a wind power generation system in which a rotating electrical machine that generates electric power to be supplied to an AC power supply is miniaturized.
  • a rotating electrical machine system is provided with a first stator having a first stator winding, a first stator and a gap between the first stator and the first stator.
  • a first rotor having a first rotor winding, a first rotating electric machine for generating electric power to be supplied to an AC power source, a second stator having a second stator winding, and the second And a second rotating electric machine including a second rotor having a second rotor winding, and an AC and a direct current connected to the first rotor winding.
  • a second power converter that is connected to the second rotor winding and is connected to the DC side of the first power converter to switch between DC and AC.
  • the first stator winding and the second stator winding are connected to the AC power source, and the first Distributing active power commands or mechanical torque commands and reactive power commands output from the rotating electrical machine and the second rotating electrical machine to the AC power supply to the first power converter and the second power converter. It is characterized by.
  • a wind power generation system includes the rotating electrical machine system, a blade that rotates by receiving wind, and a shaft that rotates as the blade rotates. It is characterized by rotating.
  • Rotating electrical machine system according to embodiment Schematic connection diagram and detecting apparatus of rotating electrical machine system according to embodiments Control system for rotating electrical machine system according to embodiment Control system for rotating electrical machine system according to embodiment corresponding to alternative of FIG. Control method of excitation-type rotating electrical machine system for comparison Rotating electrical machine system according to another embodiment Further, a rotating electrical machine system according to another embodiment
  • FIG. 1 shows that a rotor (11) of an excitation-type rotating electrical machine is AC-excited by an AC / DC power converter (3) that converts DC power supplied and supplied by the rotary exciter (15) into AC power again. It is a rotating electrical machine system to be operated.
  • the excitation-type rotating electrical machine (20) is the main rotating electrical machine in sending the generated power to the power system side.
  • the exciting rotating electric machine (20) and the rotating exciter (15) are connected to a coaxial shaft 8, and the shaft 8 is connected to a blade side (not shown).
  • the blade rotates by receiving wind, but the shaft 8 also rotates with the rotation.
  • the rotors of the excitation-type rotating electrical machine (20) and the rotary exciter (15) also rotate.
  • the control device (6) of the power converter (3, 4) incorporated in the rotating electrical machine system to which the present invention shown in FIG. 1 is applied is an electrical detector group (21-28) shown in FIG. ) Is used to control the rotating electrical machine system in accordance with the active power command and the reactive power command given from the wind turbine control device (7) which is the host control device.
  • the electrical detector group includes a voltage detector (21) for detecting the voltage V of the power system (1), a current detector (22) for detecting the current Igen on the rotating machine power system side (primary side), and rotation.
  • the current detector (22) or current detector (23) is replaced with a current detector (28) for detecting the current of the power system, and Kirchoff's current law and impedance information between detection points to be detected are provided. It is also possible to substitute for the detected value by the current detector (22) or the current detector (23) by using the correction calculation.
  • the set of the current detector (22) and the current detector (24), or the set of the current detector (23) and the current detector (25) is an excitation-type rotating electrical machine (20) or a rotary exciter ( It is also possible to estimate the other by one of the detected values using the electrical characteristic information of 15) and substitute the estimated value for the detected value.
  • the detected value of the current detector (22) is estimated using the detected value Igen ′ of the current detector (24) and the electrical characteristic information of the excitation type rotating electric machine (20), and the estimated value is substituted for the detected value Igen.
  • the description of the control method using the control block diagram (FIG. 3) all detection values are assumed, and estimation processing and correction processing in the case of using the above-described estimation values are not described in detail. However, it is possible to perform the same control using the estimated value.
  • FIG. 3 shows the detected values by the electric detector groups (21 to 28) and the active power command (P * ) and the reactive power command (Q * ) given from the wind turbine controller (7). Is used to control the rotating electrical machine system (FIG. 1).
  • FIG. 5 shows a control block for controlling a conventional excitation-type rotating electrical machine system as a comparison target. In the control blocks of FIGS. 3 to 5, correction processing and the like that are not involved in effect expression are omitted. Hereinafter, each function of the common control block will be described.
  • the positive phase detector (29) has a frequency of either 50 Hz or 60 Hz, and the AC three-phase (UVW) has a phase delay of 120 degrees with respect to the U phase and the W phase with respect to the V phase.
  • the synchronization signal (Re component) and 90-degree phase advance component (Im component) with respect to the internal signal of 50 Hz or 60 Hz of the positive phase component in the order of 120 degrees phase delay are calculated. Is set in accordance with the AC frequency of the power system (1) to which is connected.
  • the power calculator (30) calculates the active power P and the reactive power Q based on the calculated values V_Re, V_Im and I_Re, I_Im (both Igen and Iexi) of the positive phase detector 29 described above.
  • the phase detector (31) extracts only the phase information V_cos and V_sin from the calculated value of the positive phase detector (29).
  • the rotor phase detector (32) detects the electrical angle phase information gen_cos, gen_sin or exi_cos, exi_sin of the rotor by using the number of pole pairs of the rotating machine and the information rot from the tachometer 27 as inputs.
  • the excitation phase detector (33) detects phase difference information (slip) Sgen_cos, Sgen_exi (or Sexi_cos) from the voltage phase information V_cos, V_sin of the electric power system (1) and the electrical angle phase information gen_cos, gen_sin (or exi_cos, exi_sin) of the rotor. , Sexi_sin).
  • the excitation current detector (34) uses the input phase information Sgen_cos, Sgen_exi (or Sexi_cos, Sexi_sin) and Igen ′ to synchronize the phase information S_cos, S_sin (both gen and exi) with the active current component Id_gen and invalidity.
  • the current component Iq_gen (or Id_exi and Iq_exi) is detected.
  • the DC-AVR calculates an effective current command value (Id * _exi) so that the DC voltage (Vdc) of the smoothing capacitor 5 matches the DC voltage command value (Vdc * ).
  • the ACR is a voltage command value Vd * so that a deviation between the input current command values Id * _gen and Iq * _gen (or Id * _exi and Iq * _exi) and the detected values Id_gen and Iq_gen (or Id_exi and Iq_exi) is minimized .
  • _Gen and Vq * _gen (or Vd * _exi and Vq * _exi) are calculated.
  • the PWM pulse generator (35) converts each power converter based on the input phase information Sgen_cos, Sgen_exi (or Sexi_cos, Sexi_sin) and voltage command values Vd * _gen and Vq * _gen (or Vd * _exi and Vq * _exi).
  • a drive pulse for the semiconductor switching element is generated. Note that although A and B and C and D in FIG. 3 are the same type of control mechanism, in FIG. 5, since the rotary exciter is not used, it is necessary to perform frequency control according to the rotational speed of the rotary exciter. There is no. Therefore, the control mechanism D shown in FIG. 3 becomes unnecessary.
  • the control mechanism B shown in FIG. 3 is also unnecessary. Since the control mechanism B is not required, it is not necessary to compare the reactive power value Qexi flowing to the rotary exciter (15) with the reactive power command value Qexi * that should flow to the rotary exciter (15).
  • the power system side power converter (4) is connected to the voltage (Vdc) of the DC smoothing capacitor (5) of the power converter (2) by DC-AVR. ) Controls the supply and demand of the power system (1) and the active power so that the voltage command value (Vdc * ) matches, and the rotating machine side power converter (3) outputs the effective output from the stator of the excitation-type rotating electrical machine. Control power and reactive power. Since the power system side power converter (4) does not supply and receive reactive power with the power system (1), a fixed value of 0 is input to the reactive current command (Iq * _exi).
  • a command value distributor for distributing the active power command value (P * ) and the reactive power (Q * ) to the rotary exciter (15) and the excitation type rotating electric machine (20). (36) is provided, and the command value distributor (36) includes the power command values (P * , Q * ), the slip signals Sgen and Sexi of the rotating machines (15, 20), and the voltage amplitude of the power system (1).
  • each power command value (Pgen * , Pexi * , Qgen * , Qexi * ) is calculated based on the electrical characteristic information of each rotating machine (15, 20).
  • the effective power (Pexi) received by the rotary exciter (15) is the effective supply and demand of the DC smoothing capacitor (5) controlled by the DC-AVR if the power loss accompanying the operation of the power converter (4) is ignored. Since it is equivalent to electric power, the control method shown in FIG. However, an APR may be provided instead of the DC-AVR, and control equivalent to that of the power converter (3) may be performed.
  • the rotating electrical machine system including the rotary exciter converts each of the active power P and the reactive power Q into power conversion. It is possible to arbitrarily determine how to distribute to the containers 3 and 4.
  • the command value distributor (36) calculates a current value that should flow to each rotating machine (15, 20) from the active power command (P * ) and the reactive power command (Q * ) output to the power system (1). By distributing the power command values (P * , Q * ) so that the current that should flow to the rotating machines (15, 20) is approximately minimized, each rotating machine (15, 20) can withstand a large current in advance. There is no need to design so as to obtain a small size.
  • the command value distributor (36) calculates the current value that should flow to each rotating machine (15, 20) from the active power command (P * ) and the reactive power command (Q * ) output to the power system, and each rotation.
  • the power command values (P * , Q * ) so that the absolute values of the currents that should flow through the machines (15, 20) are approximately equal, only one of the rotating machines (15, 20) is preliminarily provided. There is no need to design to withstand a large current, and it is possible to reduce the size.
  • the command value distributor (36) calculates the current value that should flow to each rotating machine (15, 20) from the active power command (P * ) and the reactive power command (Q * ) output to the power system, and each rotation.
  • Each power command value (P * , Q * ) so that the loss generated in each rotating machine (15, 20) is approximately minimized from the current that should flow to the machine (15, 20) and the electrical characteristics of each rotating machine. Since it is not necessary to design only one of the rotating machines (15, 20) to withstand a large amount of heat in advance, it is possible to reduce the size.
  • the rotating electrical machine system (FIG. 1) according to the present invention since the power converter (2) is mounted on the rotating part, there are electrical components mounted on the rotating system and electrical components mounted on the stationary system.
  • the rotating electrical machine system (FIG. 1) according to the present invention is a system in which maintainability is improved by supplying and supplying electric power to the rotor without using the brush (13) and the slip ring (14) of the excitation-type rotating electrical machine system. .
  • For wiring that does not handle a large amount of power such as control signals even if signal transmission between the stationary system and the rotating system is carried out by a mechanism consisting of a brush and a slip ring, the wear of the brush is small and the maintainability as a system is not impaired .
  • a signal line suitable for realizing the control circuit may be a wiring composed of a brush and a slip ring. Further, as a signal transmission method between the stationary system and the rotating system, a method using non-contact communication such as radio or light can be employed.
  • the long dashed arrow represents a non-contact signal transmission from the stationary system to the rotating system
  • the broken arrow represents a non-contact signal transmission from the rotating system to the stationary system.
  • these signal communication paths have additional processing and equipment necessary for contactless transmission.
  • a virtual solid line E is added so that the distinction between the rotating system and the stationary system is clear. In this way, a circuit for transmitting and receiving non-contact signals is not required on the signal transmission path of the current detection signal that is input to the current control device, and a circuit for transmitting and receiving non-contact signals is unnecessary, and high-speed and high-response current control Can be realized. This makes it easy to deal with events that require high-speed current control, such as power system accidents.
  • the method of dividing the signal path that employs non-contact signal transmission is not limited to that shown in FIG. 3.
  • all the outputs from the detector group mounted on the rotating system are transmitted to the stationary system.
  • only the driving pulse of the semiconductor switching element may be transmitted to the rotating system after calculation according to the control method in the stationary system.
  • a virtual solid line F is added so that the distinction between the rotating system and the stationary system becomes clear.
  • the rotation system and the stationary system are classified into the active power command value (P * ) and the reactive power command value (Q * ) output from the rotating electrical machine system regardless of the signal transmission form as shown in this specification and the drawings. Is not limited to this as long as it has a function of distributing the power to the power converters (3, 4) that control the AC power handled by each rotating machine (15, 20).
  • the rotating electrical machine system according to the present invention is applicable not only to a wind power generation system but also to a power generation system that converts rotational energy into power, such as a hydroelectric power generation system. Furthermore, even in an electric motor system that converts electrical energy into torque as rotational energy, the product of rotational speed and torque is energy, so the torque command is distributed to each rotating machine in the command value distributor described in the above embodiment. By doing so, it is possible to reduce the size of the rotating machine constituting the system.
  • the power converter (3) and the power converter (4) according to the present invention are mounted in a stationary system, and the brush ( 13) and a slip ring (14) for supplying and supplying electric power to the rotor (FIG. 6), and a power converter (3, 4) for one rotating machine and a brush (13) for the other rotating machine.
  • the slip ring (14) also makes it possible to reduce the size of the rotating machine that constitutes the system in the configuration for receiving power (FIG. 7). In this case, it is necessary to provide a tachometer for each rotating electrical machine.
  • the rotor phase detector (32) on the excitation-type rotating electrical machine (20) side and the rotor phase detector (32 on the rotational exciting machine (15) side). ) Is inputted with a different rotational speed.
  • the excitation-type rotating electrical machine (20) detects the active power and reactive power output from the excitation-type rotating electrical machine (20). And a control means for controlling the power calculator (30) on the excitation-type rotating electrical machine side, and the rotational exciter (15) is effective to output from the rotational exciter (15).
  • Rotation exciter side power calculator (30) for detecting electric power and reactive power (corresponding to the rotation exciter detection means) and control means for controlling the rotary exciter side power calculator (30) The reactive power control of the excitation-type rotating electrical machine (20) and the rotary exciter (15) is independent. Therefore, when the reactive current is output to stabilize the voltage of the electric power system (1), there is no fear that the reactive power control methods of the exciting rotating electrical machine (20) and the rotating exciter (15) will be buffered. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

 電力系統等の交流電源に供給する電力を発生させる回転電機を小型化した回転電機システムまたは風力発電システムの提供の為、電力系統等の交流電源に供給する電力を発生させる第1の回転電機及び第2の回転電機から前記交流電源に出力される有効電力指令もしくは機械トルク指令、及び無効電力指令を、第1の回転子巻線に接続されて交流と直流を切り替える第1の電力変換器と、第2の回転子巻線に接続されると共に前記第1の電力変換器の直流側に接続されて直流と交流を切り替える第2の電力変換器とに分配する。

Description

回転電機システムまたは風力発電システム
 本発明は、回転子に電力変換器を実装する回転電機システムに係り、回転電機から出力される有効電力および無効電力を制御する制御装置および制御に必要な検出装置等の機器構成に関するものである。
 近年、エネルギー資源問題や地球温暖化防止への関心の高まりから、風力発電システムと言った自然エネルギーを利用した発電システムが急速に普及している。風力発電システムでは風速に依存して風から得られるエネルギーが絶えず変動するため、風車の翼角度を風速に応じて可変とするピッチ機構や風車の回転速度に依存して変動する発電電力の周波数を電力系統の周波数に変換する電力変換器等を用いて、より広い風速域で効率良く発電運転が実施できるように工夫されている。このような風力発電システムの運転は可変速運転と呼ばれる。
 可変速運転が可能な風力発電システム形態の中で、励磁式の回転電機システム(巻線型2次励磁方式)は、風力発電システムの総出力電力量の30%程度と小容量の電力変換器で、発電機と同容量の電力変換器を必要とする同期型の回転電機システムと同程度の可変速運転が可能なため、広く採用されている。励磁式の回転電機システムは電力変換器が小型でかつ、扱う電力が小容量であるため電力変換に伴う発生損失が少なく、高効率な発電運転が可能である。同種の励磁式の回転電機システムは例えば特許文献1に記載されている。
 また、風力発電システムは、発電電力(有効電力)を出力することに加えて、電力系統の電圧安定化のために無効電力を出力することが求められる。励磁式回転電機システムでは、回転電機を介して小容量の電力変換器で電力系統に出力する無効電力を制御できるため、一般に、回転機側の電力変換器のみで電力系統に無効電力を出力し、電力系統側の電力変換器は無効電力を出力しないように制御される。このため、電力系統側の電力変換器の容量は回転機側の電力変換器の容量と比べてさらに小容量となっている。
特開2008-11607号公報
 しかし、従来の回転電機システムにおける制御方式では、回転電機は電力変換器の片側にのみ設けられているため、無効電力は当該回転電機側からのみ出力される。即ち、当該回転電機に備えられる巻線に流れる電流量が大きくなり、回転電機が大型化する。電力系統等の交流電源に供給する電力を発生させる回転電機が大型化すると、回転電機及び電力変換器を搭載する回転電機システムの大型化等にもつながる。
 そこで本発明では、交流電源に供給する電力を発生させる回転電機を小型化した回転電機システムまたは風力発電システムを提供することを目的とする。
 上記課題を解決するために、本発明に係る回転電機システムは、第1の固定子巻線を有する第1の固定子、及び該第1の固定子と間隙を設けて配置されると共に第1の回転子巻線を有する第1の回転子を備え、交流電源に供給する電力を発生させる第1の回転電機と、第2の固定子巻線を有する第2の固定子、及び該第2の固定子と間隙を設けて配置されると共に第2の回転子巻線を有する第2の回転子を備える第2の回転電機と、前記第1の回転子巻線に接続され、交流と直流を切り替える第1の電力変換器と、前記第2の回転子巻線に接続されると共に前記第1の電力変換器の直流側に接続されて直流と交流を切り替える第2の電力変換器を備え、前記第1の固定子巻線及び前記第2の固定子巻線は前記交流電源に接続され、前記第1の回転電機及び前記第2の回転電機から前記交流電源に出力される有効電力指令もしくは機械トルク指令、及び無効電力指令を、前記第1の電力変換器及び前記第2の電力変換器に分配することを特徴とする。
 また、本発明に係る風力発電システムは上記回転電機システムと、風を受けて回転するブレードと、該ブレードの回転に伴って回転するシャフトを備え、前記各回転電機は該シャフトの回転に伴って回転することを特徴とする。
 本発明によれば、交流電源に供給する電力を発生させる回転電機を小型化した回転電機システムまたは風力発電システムを提供することが可能になる。
実施例に係る回転電機システム 実施例に係る回転電機システムの結線略図および検出装置 実施例に係る回転電機システムの制御方式 図3の代案に相当する実施例に係る回転電機システムの制御方式 比較用の励磁式回転電機システムの制御方式 他の実施例に係る回転電機システム 更に他の実施例に係る回転電機システム
 以下、本発明に係る回転電機システムの実施形態について各図を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し、重複した説明を省略する。尚、下記はあくまでも実施例に過ぎず、発明の実施態様が下記態様に限定されるものではない。
《第1実施形態》
 本実施例に係る回転励磁機(15)は、その固定子巻線(17)が電力系統(1)に電気的に接続され、その回転子にInsulated Gate Bipolar Transistor(IGBT)等の電力用半導体スイッチング素子と還流用整流素子であるダイオード素子が逆並列接続された半導体スイッチングユニットが複数ユニット直列接続および並列接続されることで構成される、一般に2レベル変換器や3レベル変換器等の交直電力変換器(3,4)が実装され、その交流端子が回転子巻線(12,19)に接続され、かつ、その直流端子に平滑コンデンサ(5)が接続される。図1は、励磁式回転電機の回転子(11)が前述の回転励磁機(15)によって需給される直流電力を再び交流電力に変換する交直電力変換器(3)によって交流励磁されることで運転される回転電機システムである。ここで励磁式回転電機(20)は、電力系統側に発電電力を送る上で主たる回転電機となる。
 励磁式回転電機(20)及び回転励磁機(15)は同軸のシャフト8に接続されており、シャフト8は、図示しないブレード側へと接続されている。当該ブレードは風を受けて回転するが、当該回転に伴ってシャフト8も回転する。これにより、励磁式回転電機(20)及び回転励磁機(15)の回転子も回転する。
 前述の図1に示される本発明が適用される回転電機システムに内蔵される電力変換器(3,4)の制御装置(6)は、図2に示される電気的検出器群(21~28)からの入力を用いて、上位制御装置である風車制御装置(7)から与えられる有効電力指令および無効電力指令に従って本回転電機システムを制御する。前記電気的検出器群は、電力系統(1)の電圧Vを検出する電圧検出器(21),回転機電力系統側(1次側)の電流Igenを検出する電流検出器(22),回転励磁機電力系統側(1次側)の電流Iexiを検出する電流検出器(23),回転機電力変換器側(2次側)の電流Igen’を検出する電流検出器(24),回転励磁機電力変換器側の電流Iexi’を検出する電流検出器(25),電力変換器(2)の直流部平滑コンデンサ(5)の電圧Vdcを検出する電圧検出器(26)および回転子の回転速度rotを検出する回転計(27)から構成される。
 尚、電流検出器(22)もしくは電流検出器(23)に代えて電力系統の電流を検出する電流検出器(28)を備え、かつ、キルヒフォッフの電流則および検出したい検出点間におけるインピーダンス情報を用いて補正演算することで、電流検出器(22)もしくは電流検出器(23)による検出値の代用とすることも可能である。
 さらに、電流検出器(22)と電流検出器(24)の組、もしくは、電流検出器(23)と電流検出器(25)の組は、それぞれ励磁式回転電機(20)もしくは回転励磁機(15)の電気的特性情報を用いてどちらか一方の検出値によって他方を推定し、推定値を検出値の代用とすることもできる。たとえば、電流検出器(24)の検出値Igen’と励磁式回転電機(20)の電気的特性情報を用いて電流検出器(22)の検出値を推定し、推定値を検出値Igenの代用として制御しても良い。以下、制御ブロック図(図3)を用いた制御方法の説明においては全て検出値とし、前述の推定値を用いる場合の推定処理や補正処理等については詳述しないものとする。但し、無論推定値を用いても同様の制御を行うことは可能である。
 図3に示す制御ブロック図は、前述の電気的検出器群(21~28)による各検出値および風車制御装置(7)から与えられる有効電力指令(P*)と無効電力指令(Q*)を入力として、回転電機システム(図1)を制御するためのものである。また、比較対象として従来型の励磁式回転電機システムを制御するための制御ブロックを図5に示す。図3~5の制御ブロックにおいて、効果発現に関与しない補正処理等については省略して示すものとする。以下、共通する制御ブロックの各機能について述べる。正相検出器(29)は、50Hzまたは60Hzのどちらか一方の周波数であり、かつ、交流3相(UVW)が、V相がU相に対し120度位相遅れ、W相がV相に対し120度位相遅れの順となる正相成分の50Hzまたは60Hzの内部信号に対する同期信号(Re成分)および90度位相進み成分(Im成分)を算出するものであり、前述の50Hzもしくは60Hzは本システムが接続される電力系統(1)の交流周波数に合わせて設定される。電力算出器(30)は前述の正相検出器29の算出値V_Re,V_Im及びI_Re,I_Im(Igen,Iexiの両方)によって有効電力Pと無効電力Qを算出する。位相検出器(31)は正相検出器(29)の算出値から位相情報V_cos,V_sinのみを抽出する。回転子位相検出器(32)は回転機の極対数と回転計27からの情報rotを入力として回転子の電気角位相情報gen_cos,gen_sinまたはexi_cos,exi_sinを検出する。励磁位相検出器(33)は電力系統(1)の電圧位相情報V_cos,V_sinと回転子の電気角位相情報gen_cos,gen_sin(またはexi_cos,exi_sin)から位相差情報(すべり)Sgen_cos,Sgen_exi(またはSexi_cos,Sexi_sin)を算出する。励磁電流検出器(34)は、入力された位相情報Sgen_cos,Sgen_exi(またはSexi_cos,Sexi_sin)及びIgen‘を用いて位相情報S_cos,S_sin(gen,exiの両方)に同期した有効電流成分Id_gen及び無効電流成分Iq_gen(またはId_exi及びIq_exi)を検出する。DC-AVRは平滑コンデンサ5の直流電圧(Vdc)を直流電圧指令値(Vdc*)に一致させるように有効電流指令値(Id*_exi)を算出する。ACRは入力された電流指令値Id*_gen及びIq*_gen(またはId*_exi及びIq*_exi)と検出値Id_gen及びIq_gen(またはId_exi及びIq_exi)の偏差が最小となるように電圧指令値Vd*_gen及びVq*_gen(またはVd*_exi及びVq*_exi)を算出する。PWMパルス生成器(35)は入力される位相情報Sgen_cos,Sgen_exi(またはSexi_cos,Sexi_sin)および電圧指令値Vd*_gen及びVq*_gen(またはVd*_exi及びVq*_exi)に基づいて各電力変換器の半導体スイッチング素子の駆動パルスを生成する。尚、図3におけるAとB,CとDはそれぞれ同種の制御機構であるが、図5では、回転励磁機を用いていなかったので、回転励磁機の回転速度に応じた周波数制御を行う必要はない。よって、図3内に示すDの制御機構が不要となる。また、回転励磁機が電力変換器の系統側に設けられていないので無効電力制御を行う必要もない。よって、図3内に示すBの制御機構も不要となる。Bの制御機構が不要となるので、回転励磁機(15)に流れている無効電力値Qexiと回転励磁機(15)に流れるべき無効電力指令値Qexi*の比較を行う必要がない。
 図5に示す従来型の励磁式回転電機システムの制御方式では、電力系統側電力変換器(4)が、DC-AVRによって電力変換器(2)の直流部平滑コンデンサ(5)の電圧(Vdc)が電圧指令値(Vdc*)に一致するように電力系統(1)と有効電力の需給を制御し、回転機側電力変換器(3)が、励磁式回転電機の固定子から出力する有効電力および無効電力を制御する。電力系統側電力変換器(4)で電力系統(1)と無効電力の需給はしないため、無効電流指令(Iq*_exi)に固定値の0が入力されていたものである。
 一方、図3に示す本実施例に係る回転電機システム(図1)の制御方式では、回転励磁機(15)からも有効電力更には無効電力を需給するため、前述の従来型の励磁式回転電機システムの制御方式(図5)に加えて、有効電力指令値(P*)および無効電力(Q*)を回転励磁機(15)と励磁式回転電機(20)に分配する指令値分配器(36)が備わり、指令値分配器(36)は、各電力指令値(P*,Q*),各回転機(15,20)のすべり信号Sgen,Sexiおよび電力系統(1)の電圧振幅Vを入力として、各回転機(15,20)の電気的特性情報を基に各電力指令値(Pgen*,Pexi*,Qgen*,Qexi*)を算出する。回転励磁機(15)が受給する有効電力(Pexi)は、電力変換器(4)の動作に伴う電力損失を無視すればDC-AVRで制御される直流部平滑コンデンサ(5)が需給する有効電力と等価となるため、図3に示す制御方式では陽に後段の制御に用いない。しかし、DC-AVRの代わりにAPRを備え、電力変換器(3)と同等の制御を実施しても良い。
 回転励磁機を備える回転電機システムとしては電力系統1に出力する有効電力Pと無効電力Qが上位コントローラによって定められる所望の値に一致する限りにおいては、有効電力Pと無効電力Qを各電力変換器3,4に、如何にして分配するかは任意に定めることが可能となる。
 指令値分配器(36)は電力系統(1)に出力する有効電力指令(P*)と無効電力指令(Q*)から各回転機(15,20)に流れるべき電流値を算出し、各回転機(15,20)に流れるべき電流がおよそ最小になるように、各電力指令値(P*,Q*)を分配することで、各回転機(15,20)を予め大きな電流に耐え得るように設計する必要が無く、小型にすることが可能となる。
 また、指令値分配器(36)は電力系統に出力する有効電力指令(P*)と無効電力指令(Q*)から各回転機(15,20)に流れるべき電流値を算出し、各回転機(15,20)に流れるべき電流の絶対値がおよそ等しくなるように、各電力指令値(P*,Q*)を分配することで、各回転機(15,20)の一方のみを予め大きな電流に耐え得るように設計する必要が無く、小型にすることが可能となる。
 また、指令値分配器(36)は電力系統に出力する有効電力指令(P*)と無効電力指令(Q*)から各回転機(15,20)に流れるべき電流値を算出し、各回転機(15,20)に流れるべき電流と各回転機の電気的特性から各回転機(15,20)で発生する損失がおよそ最小になるように、各電力指令値(P*,Q*)を分配することで、各回転機(15,20)の一方のみを予め大きな発熱に耐え得るように設計する必要が無く、小型にすることが可能となる。
 その他、設計事由に係る項目を最適化するように指令値分配器(36)の内部演算処理を設計することによっても、各回転機(15,20)の小型化が可能となる。
 なお、本発明に係る回転電機システム(図1)は回転部に電力変換装置(2)が実装されるため、回転系に実装される電気部品と静止系に実装される電気部品が存在する。本発明に係る回転電機システム(図1)は、励磁式回転電機システムのブラシ(13)とスリップリング(14)を用いることなく回転子に電力を需給することでメンテナンス性を高めたシステムである。しかし、制御信号のように大きな電力を扱わない配線にはブラシとスリップリングからなる機構によって静止系と回転系の信号伝送を実施しても、ブラシの摩耗は少なくシステムとしてのメンテナンス性は損なわない。従って、図3に示す制御方式において、制御回路を実現する上で適切な信号線をブラシとスリップリングからなる配線としても良い。また、静止系と回転系の信号伝送の方法として無線や光等の非接触通信による方法も採用できる。
 例えば、図3に示す制御方式において、長破線矢印が静止系から回転系への非接触な信号伝送により実現されるものを表し、破線矢印が回転系から静止系への非接触な信号伝送により実現されるものを表す。陽に図示しないが、これらの信号通信経路には、非接触伝送に必要な付加的な処理および機器があるものとする。また、図3では回転系と静止系の区分けが明確になる様に仮想の実線Eを追加している。この様にすることで電流制御装置の入力となる電流検出信号の信号伝達経路に非接触な信号伝送を介さず、非接触な信号を送信及び受信する回路が不要となり、高速高応答な電流制御が実現できる。これにより電力系統の事故など高速な電流制御が求められる事象にも対応が容易となる。
 更に、非接触な信号伝送を採用する信号経路の分け方は図3の限りではなく、例えば図4に示すように、回転系に実装される検出器群からの出力を全て静止系に送信し、静止系で制御方式に従って演算した後、半導体スイッチング素子の駆動パルスのみを回転系に送信しても良い。図4でも回転系と静止系の区分けが明確になる様に仮想の実線Fを追加している。この様にすることで回転系に搭載する制御機構を低減でき、回転に伴う故障リスクの低減を図ることができる。無論、回転系と静止系の区分けは、本明細書及び図面で示す様な信号伝送形態に係らず、回転電機システムが出力する有効電力指令値(P*)および無効電力指令値(Q*)を各回転機(15,20)が扱う交流電力を制御する電力変換器(3,4)に分配する機能を有するものであれば、この限りではない。
 《その他の実施形態》
 本発明に係る回転電機システムは風力発電システムのみならず水力発電システムなど、回転エネルギーを電力変換する発電システムに適用可能である。さらに、電気的エネルギーをトルクとして回転エネルギーに変換する電動機システムにおいても、回転速度とトルクの積がエネルギーであることから、上記実施例で説明した指令値分配器においてトルク指令を各回転機に分配することで同様にシステムを構成する回転機の小型化が可能となる。
 また、システムのメンテナンス性が運用上の課題とならない用途では、本発明に係る電力変換器(3)および電力変換器(4)を静止系に実装し、励磁式回転電機システムと同様にブラシ(13)とスリップリング(14)によって、回転子へ電力を需給する構成(図6)や、一方の回転機に電力変換器(3,4)を実施し、他方の回転機にブラシ(13)とスリップリング(14)によって、電力を受給する構成(図7)においても、同様にシステムを構成する回転機の小型化が可能となる。この場合、回転計は各回転電機毎に設ける必要があり、励磁式回転電機(20)側の回転子位相検出器(32)と、回転励磁機(15)側の回転子位相検出器(32)には異なる回転速度が入力される。
 尚、上記各実施例によれば、励磁式回転電機(20)が、励磁式回転電機(20)の出力する有効電力と無効電力を検出する励磁式回転電機側の電力算出器(30)(励磁式回転電機用の検出手段に相当)及び励磁式回転電機側の電力算出器(30)を制御する制御手段を備え、回転励磁機(15)が、回転励磁機(15)の出力する有効電力と無効電力を検出する回転励磁機側の電力算出器(30)(回転励磁機用の検出手段に相当)及び回転励磁機側の電力算出器(30)を制御する制御手段を備えており、励磁式回転電機(20)と回転励磁機(15)のそれぞれの無効電力の制御が独立している。従って、電力系統(1)の電圧安定化のために無効電流を出力する際に、励磁式回転電機(20)と回転励磁機(15)のそれぞれの無効電力の制御方式が緩衝する恐れもない。
 1         電力系統
 2         電力変換器
 3、4     (個別の)電力変換器
 5         直流部平滑コンデンサ
 6         電力変換器制御装置
 7         風車制御装置
 8         回転軸もしくはシャフト
 9         回転機固定子鉄心
 10        回転機固定子巻線
 11        回転機回転子鉄心
 12        回転機回転子巻線
 13        ブラシ
 14        スリップリング
 15        回転励磁機
 16        回転励磁機固定子鉄心
 17        回転励磁機固定子巻線
 18        回転励磁機回転子鉄心
 19        回転励磁機回転子巻線
 20        励磁式回転電機
 21        電力系統の電圧検出器
 22        回転機電力系統側(1次側)電流検出器
 23        回転励磁機電力系統側(1次側)電流検出器
 24        回転機電力変換器側(2次側)電流検出器
 25        回転励磁機電力変換器側(2次側)電流検出器
 26        直流部平滑コンデンサ電圧検出器
 27        回転計
 28        電力系統の電流検出器
 29        正相検出器
 30        電力算出器
 31        位相振幅算出器
 32        回転子位相検出器
 33        励磁位相算出器
 34        励磁電流検出器
 35        PWMパルス生成器
 36        有効電力指令・無効電力指令分配器
 DC-AVR    直流電圧自動制御装置
 ACR       自動電流制御装置
 APR       自動有効電力制御装置
 AQR       自動無効電力制御装置
 P*        有効電力指令
 Q*        無効電力指令
 Vdc     直流電圧検出値
 Vdc*    直流電圧指令値
 Id        有効電流
 Id*     有効電流指令値
 Iq        無効電流
 Iq*     無効電流指令値
 Vd        電力系統電圧と同相成分
 Vq        電力系統電圧と90度位相進み成分
 V         電力系統電圧

Claims (15)

  1.  第1の固定子巻線を有する第1の固定子、及び該第1の固定子と間隙を設けて配置されると共に第1の回転子巻線を有する第1の回転子を備え、交流電源に供給する電力を発生させる第1の回転電機と、
     第2の固定子巻線を有する第2の固定子、及び該第2の固定子と間隙を設けて配置されると共に第2の回転子巻線を有する第2の回転子を備える第2の回転電機と、
     前記第1の回転子巻線に接続され、交流と直流を切り替える第1の電力変換器と、前記第2の回転子巻線に接続されると共に前記第1の電力変換器の直流側に接続されて直流と交流を切り替える第2の電力変換器を備え、
     前記第1の固定子巻線及び前記第2の固定子巻線は前記交流電源に接続され、
     前記第1の回転電機及び前記第2の回転電機から前記交流電源に出力される有効電力指令もしくは機械トルク指令、及び無効電力指令を、前記第1の電力変換器及び前記第2の電力変換器に分配することを特徴とする回転電機システム。
  2.  請求項1に記載の回転電機システムであって、
     前記第1の回転電機が出力する有効電力と無効電力を検出する第1の検出手段及び当該第1の検出手段を制御する第1の制御手段と、
     前記第2の回転電機が出力する有効電力と無効電力を検出する第2の検出手段及び当該第2の検出手段を制御する第2の制御手段とを備えていることを特徴とする回転電機システム。
  3.  請求項1に記載の回転電機システムであって、
     前記第1の回転電機及び前記第2の回転電機に流れる電流が略最小になる様に、前記第1の回転電機及び前記第2の回転電機から前記交流電源に出力される有効電力指令もしくは機械トルク指令、及び無効電力指令を、前記第1の電力変換器及び前記第2の電力変換器に分配することを特徴とする回転電機システム。
  4.  請求項1に記載の回転電機システムであって、
     前記第1の回転電機及び前記第2の回転電機に流れる電流の絶対値が略等しくなる様に、前記第1の回転電機及び前記第2の回転電機から前記交流電源に出力される有効電力指令もしくは機械トルク指令、及び無効電力指令を、前記第1の電力変換器及び前記第2の電力変換器に分配することを特徴とする回転電機システム。
  5.  請求項1に記載の回転電機システムであって、
     前記第1の回転電機及び前記第2の回転電機で発生する損失が略最小になる様に、前記第1の回転電機及び前記第2の回転電機から前記交流電源に出力される有効電力指令もしくは機械トルク指令、及び無効電力指令を、前記第1の電力変換器及び前記第2の電力変換器に分配することを特徴とする回転電機システム。
  6.  請求項1ないし5のいずれか一つに記載の回転電機システムであって、
     前記第2の回転電機に流れている無効電力値と前記第2の回転電機に流れるべき無効電力指令値の比較を行い、該比較結果に基づき前記第2の電力変換器に無効電力指令が出力されることを特徴とする回転電機システム。
  7.  請求項1ないし6のいずれか一つに記載の回転電機システムであって、
     前記第1の回転電機は励磁式回転電機であり、前記第2の回転電機は回転励磁機であり、
     前記第1の電力変換器及び前記第2の電力変換器の直流接続部の電圧を検出する第1の電圧検出器を備え、
     前記第1の固定子巻線及び前記交流電源を接続する電気経路と、前記第2の固定子巻線及び前記交流電源とを接続する電気経路が接続部で互いに接続され、前記接続部は前記交流電源と電気的に接続されており、
     前記第1の固定子巻線と前記接続部の間に流れる電流を検出する第1の電流検出器と、前記第2の固定子巻線と前記接続部の間に流れる電流を検出する第2の検出器と、前記接続部と前記交流電源の間に流れる電流を検出する第3の電流検出器のうち、少なくとも2つを備え、
     各前記回転電機の回転状態を検出する回転状態検出手段と、前記交流電源の電圧を検出する第2の電圧検出器を備え、
     前記各電圧検出器、前記電流検出器及び前記回転状態検出手段の検出値に基づき、前記第1の電力変換器及び前記第2の電力変換器に出力する指令が作成されることを特徴とする回転電機システム。
  8.  請求項1ないし6のいずれか一つに記載の回転電機システムであって、
     前記第1の回転電機は励磁式回転電機であり、前記第2の回転電機は回転励磁機であり、
     前記第1の電力変換器及び前記第2の電力変換器の直流接続部の電圧を検出する第1の電圧検出器と、
     前記第1の回転子巻線及び前記第1の電力変換器の間に流れる電流を検出する第1の電流検出器と、前記第2の回転子巻線及び前記第2の電力変換器の間に流れる電流を検出する第2の電流検出器と、
     各前記回転電機の回転状態を検出する回転状態検出手段と、前記交流電源の電圧を検出する第2の電圧検出器を備え、
     前記各電圧検出器、前記各電流検出器及び前記回転状態検出手段の検出値に基づき、前記第1の電力変換器及び前記第2の電力変換器に出力する指令が作成されることを特徴とする回転電機システム
  9.  請求項1ないし6のいずれか一つに記載の回転電機システムであって、
     前記第1の回転電機は励磁式回転電機であり、前記第2の回転電機は回転励磁機であり、
     前記第1の電力変換器及び前記第2の電力変換器の直流接続部の電圧を検出する第1の電圧検出器を備え、
     前記第1の固定子巻線と前記交流電源を接続する電気経路と前記第2の固定子巻線と前記交流電源とを接続する電気経路が接続部で互いに接続され、前記接続部は前記交流電源と電気的に接続されており、
     前記第1の固定子巻線及び前記接続部の間に流れる電流を検出する第1の電流検出器と、前記第2の固定子巻線及び前記接続部の間に流れる電流を検出する第2の検出器と、前記接続部及び前記交流電源の間に流れる電流を検出する第3の電流検出器のうち、少なくとも2つを備え、
     前記第1の回転子巻線及び前記第1の電力変換器の間に流れる電流を検出する第4の電流検出器と、前記第2の回転子巻線及び前記第2の電力変換器の間に流れる電流を検出する第5の電流検出器と、
     各前記回転電機の回転状態を検出する回転状態検出手段と、前記交流電源の電圧を検出する第2の電圧検出器を備え、
     前記各電圧検出器、前記各電流検出器及び前記回転状態検出手段の検出値に基づき、前記第1の電力変換器及び前記第2の電力変換器に出力する指令が作成されることを特徴とする回転電機システム。
  10.  請求項7に記載の回転電機システムであって、
     前記第1の固定子巻線と前記接続部の間に流れる電流値から前記第1の回転子巻線と前記第1の電力変換器の間に流れる電流値を推定し、
     前記第2の固定子巻線と前記接続部の間に流れる電流値から前記第2の回転子巻線と前記第2の電力変換器の間に流れる電流値を推定することを特徴とする請求項2の回転電機システム。
  11.  請求項8に記載の回転電機システムであって、
     前記第1の回転子巻線と前記第1の電力変換器の間に流れる電流値から前記第1の固定子巻線に流れる電流値を推定し、
     前記第2の回転子巻線と前記第2の電力変換器の間に流れる電流値から前記第2の固定子巻線に流れる電流値を推定することを特徴とする請求項2の回転電機システム。
  12.  請求項7ないし11のいずれか一つに記載の回転電機システムであって、
     前記電力変換器を制御する制御装置が、少なくともいずれかの前記回転子とともに回転する回転部と、静止部に分割して備えられ、
     前記各電圧検出器、前記各電流検出器及び前記回転状態検出手段は前記回転部に備えられ、
     前記各電圧検出器、前記各電流検出器及び前記回転状態検出手段からの検出値はいずれも前記静止部に備えられる前記制御装置に送信され、前記電力変換器を制御する信号が前記静止部に備えられる前記制御装置から前記回転部に送信されることを特徴とする回転電機システム。
  13.  請求項1ないし11のいずれか一つに記載の回転電機システムであって、
     前記電力変換器を制御する制御装置が、少なくともいずれかの前記回転子とともに回転する回転部と、静止部に分割して備えられ、
     前記回転部に備えられる前記制御装置と前記静止部に備えられる前記制御装置がブラシとスリップリングからなる摺動部を介して制御信号を通信することを特徴とする回転電機システム
  14.  請求項1ないし11のいずれか一つに記載の回転電機システムであって、
     前記電力変換器を制御する制御装置が、少なくともいずれかの前記回転子とともに回転する回転部と、静止部に分割して備えられ、
     前記回転部に備えられる前記制御装置と前記静止部に備えられる前記制御装置が非接触通信方式を介して制御信号を通信することを特徴とする回転電機システム。
  15.  請求項1ないし14のいずれか一つに記載の回転電機システムと、風を受けて回転するブレードと、該ブレードの回転に伴って回転するシャフトを備え、前記各回転電機は該シャフトの回転に伴って回転することを特徴とする風力発電システム。
PCT/JP2013/063107 2013-05-10 2013-05-10 回転電機システムまたは風力発電システム WO2014181454A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/063107 WO2014181454A1 (ja) 2013-05-10 2013-05-10 回転電機システムまたは風力発電システム
JP2015515722A JP6134787B2 (ja) 2013-05-10 2013-05-10 回転電機システムまたは風力発電システム
EP13884276.0A EP2996243A4 (en) 2013-05-10 2013-05-10 Rotating electrical machine system or wind power generation system
TW103112291A TWI533592B (zh) 2013-05-10 2014-04-02 A rotating electrical system or a wind power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/063107 WO2014181454A1 (ja) 2013-05-10 2013-05-10 回転電機システムまたは風力発電システム

Publications (1)

Publication Number Publication Date
WO2014181454A1 true WO2014181454A1 (ja) 2014-11-13

Family

ID=51866955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063107 WO2014181454A1 (ja) 2013-05-10 2013-05-10 回転電機システムまたは風力発電システム

Country Status (4)

Country Link
EP (1) EP2996243A4 (ja)
JP (1) JP6134787B2 (ja)
TW (1) TWI533592B (ja)
WO (1) WO2014181454A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014222992A (ja) * 2013-05-14 2014-11-27 三菱電機株式会社 系統安定化装置、系統安定化方法
JP2017158382A (ja) * 2016-03-04 2017-09-07 株式会社日立製作所 回転電機システムまたは回転電機システムの運転方法
JP2020532270A (ja) * 2017-08-29 2020-11-05 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh 風力タービン内の多相他励同期発電機を制御する方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6923296B2 (ja) * 2016-07-05 2021-08-18 株式会社日立製作所 風力発電設備とその運転方法およびウィンドファーム
CN108281970B (zh) * 2017-12-25 2019-10-25 华中科技大学 一种交流励磁同步调相机及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308349A (ja) * 1999-04-14 2000-11-02 Shibafu Engineering Kk 周波数変換装置
JP2002095288A (ja) * 2000-09-18 2002-03-29 Nishishiba Electric Co Ltd 巻線形誘導機の制御装置
JP2006101633A (ja) * 2004-09-29 2006-04-13 Tokyo Gas Co Ltd エンジン発電装置
JP2008011607A (ja) 2006-06-28 2008-01-17 Hitachi Ltd 可変速風力発電システム
JP2009531011A (ja) * 2006-03-17 2009-08-27 インヘテアム エネルヒイ ソシエダー アニノマ 励磁機及び系統に接続されていない電力変換器を有する可変速風力タービン

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562519B2 (ja) * 1973-09-27 1981-01-20
US5444349A (en) * 1993-05-12 1995-08-22 Sundstrand Corporation Starting control for an electromagnetic machine
SE514818C2 (sv) * 1999-04-30 2001-04-30 Abb Ab Konstantfrekvensmaskin med varierande/varierbart varvtal samt förfarande vid dylik maskin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308349A (ja) * 1999-04-14 2000-11-02 Shibafu Engineering Kk 周波数変換装置
JP2002095288A (ja) * 2000-09-18 2002-03-29 Nishishiba Electric Co Ltd 巻線形誘導機の制御装置
JP2006101633A (ja) * 2004-09-29 2006-04-13 Tokyo Gas Co Ltd エンジン発電装置
JP2009531011A (ja) * 2006-03-17 2009-08-27 インヘテアム エネルヒイ ソシエダー アニノマ 励磁機及び系統に接続されていない電力変換器を有する可変速風力タービン
JP2008011607A (ja) 2006-06-28 2008-01-17 Hitachi Ltd 可変速風力発電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2996243A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014222992A (ja) * 2013-05-14 2014-11-27 三菱電機株式会社 系統安定化装置、系統安定化方法
JP2017158382A (ja) * 2016-03-04 2017-09-07 株式会社日立製作所 回転電機システムまたは回転電機システムの運転方法
JP2020532270A (ja) * 2017-08-29 2020-11-05 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh 風力タービン内の多相他励同期発電機を制御する方法
US11585320B2 (en) 2017-08-29 2023-02-21 Wobben Properties Gmbh Method for controlling a multiphase separately excited synchronous generator in a wind turbine

Also Published As

Publication number Publication date
TWI533592B (zh) 2016-05-11
EP2996243A4 (en) 2017-02-08
JP6134787B2 (ja) 2017-05-24
EP2996243A1 (en) 2016-03-16
JPWO2014181454A1 (ja) 2017-02-23
TW201511462A (zh) 2015-03-16

Similar Documents

Publication Publication Date Title
US10050573B2 (en) Wind power generation system including doubly-fed generator and stator-connected auxiliary converter
US8803348B2 (en) Wind turbine
JP6134787B2 (ja) 回転電機システムまたは風力発電システム
CN106416051B (zh) 电动机驱动装置
WO2015136719A1 (en) Gas Turbine Power Generation System
US10263557B2 (en) Drive system
JP6391447B2 (ja) 回転電機の制御装置及び回転電機の制御方法
JP5117510B2 (ja) 発電機アセンブリ
JP2015509698A (ja) 電気ユニットの使用方法
KR101237123B1 (ko) 단일 외부 전원 공급형 가변속 유도 전동기 및 그 제어 방법
Zagirnyak et al. Fault-tolerant control of an induction motor with broken stator electric circuit
JP2011217574A (ja) 風力発電システム、回転機の制御装置および制御方法
KR101316945B1 (ko) 고정형 교류 또는 직류 전원 입력을 갖는 이중 권선형 전동기 및 그 제어 방법
US9825568B2 (en) Drive system
JP2019201542A (ja) 可変周波数に依存しない速度モーター
JP6490438B2 (ja) 回転電機の制御装置
TWI793311B (zh) 外部調變的與速度無關可變頻率發電機
RU2562811C2 (ru) Электрическая машина и способ приведения в действие такой электрической машины
JP2017192207A (ja) 回転電機システムおよび回転電機システムの制御方法
WO2015186232A1 (ja) 回転電機システムまたは回転電機システムの制御方法
CN104919682B (zh) 包括电源和负载间的电气绝缘的机电致动和/或发电系统
EP2741414B1 (en) System and Method for Optimization of Dual Bridge Doubly Fed Induction Generator (DFIG)
KR102225658B1 (ko) 무효전력 보상을 포함한 회전형 변압기 비동기계통 연계 장치 및 운영 방법
JP6357088B2 (ja) 回転電機及び回転電機の制御装置
KR20140141502A (ko) 모터 제어 장치 및 그것을 구비한 건설 기계

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015515722

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013884276

Country of ref document: EP