WO2014180378A1 - 毫米波定向链路切换方法、实现链路切换设备和存储介质 - Google Patents

毫米波定向链路切换方法、实现链路切换设备和存储介质 Download PDF

Info

Publication number
WO2014180378A1
WO2014180378A1 PCT/CN2014/077899 CN2014077899W WO2014180378A1 WO 2014180378 A1 WO2014180378 A1 WO 2014180378A1 CN 2014077899 W CN2014077899 W CN 2014077899W WO 2014180378 A1 WO2014180378 A1 WO 2014180378A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
quality
data packet
backup
feedback data
Prior art date
Application number
PCT/CN2014/077899
Other languages
English (en)
French (fr)
Inventor
王谦
郭阳
禹忠
支周
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14795157.8A priority Critical patent/EP3068170B1/en
Priority to JP2016528230A priority patent/JP6139032B2/ja
Publication of WO2014180378A1 publication Critical patent/WO2014180378A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/03Reselecting a link using a direct mode connection
    • H04W36/033Reselecting a link using a direct mode connection in pre-organised networks

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method for switching a MIMO-directional link, implementing a link switching device, and a storage medium. Background technique
  • Millimeter wave directional wireless communication technology is a wireless communication technology with high transmission bandwidth and gigabit transmission rate.
  • the propagation beam In the typical 60 GHz or 45 GHz frequency band, the propagation beam is very narrow and poorly penetrating for obstacles, exhibiting luminosity, and thus the direct link between the MIMO-oriented wireless communication source device and the sink device is hindered.
  • the propagation beam cannot be diffracted, and the link quality is seriously degraded.
  • the solution is to find and determine a suitable relay device R with millimeter wave directional transmission function between the source device S and the sink device D, and establish a relay link (S-R). - D), the data sent by the source device is forwarded to the sink device.
  • the relay device usually needs to be determined before the formal data transmission is performed by the source device S and the sink device D, and a direct link is established between the three devices through signaling interaction and beamforming, and the process is also It is called the Relay Link Setup (RLS) process.
  • RLS Relay Link Setup
  • the RLS should be completed before the formal data transmission.
  • the purpose is to quickly switch the transmission link to the relay when the direct link (SD) of the source device S and the sink device D is interrupted or the quality is degraded during the data transmission.
  • Link (S-R-D) and vice versa.
  • the communication method of the MIMO wave directional relay link generally includes: immediately switching to another link when the source device S does not receive the acknowledgment frame (ACK) of the current link transmission data; or, on the two links Upper (S-D and S-R-D) periodically transmit data alternately; or, simultaneously transmit data on both links to reduce the risk of data loss.
  • Embodiments of the present invention are directed to providing a millimeter wave directional link switching method, a device for implementing link switching, and a storage medium, which overcomes the communication process of the existing millimeter wave directional relay link without performing link quality of the transmission link.
  • Trade-offs, link switching is not flexible, and it is easy to cause waste of resources.
  • a first aspect of the embodiments of the present invention provides a method for switching a millimeter wave directional link, where the method performed on the sink device side includes:
  • the feedback data packet is a judgment basis for whether the source device performs the active/standby link switching.
  • the quality of the primary link is evaluated according to the data packet sent by the primary link: detecting a performance indicator of the primary link according to the data packet sent by the primary link, based on the Performance indicators assess the quality of the primary link.
  • the evaluating result of the quality of the primary link is encapsulated into a feedback data packet and sent to the source device through the standby link: when the set condition is met, the evaluation result of the quality of the primary link is encapsulated into The feedback packet is sent to the source device through the standby link;
  • the set condition is: the evaluation result of the quality of the primary link is lower than the set decision threshold, or the accumulated time from the end of the evaluation of the quality of the primary link reaches the set time threshold.
  • the feedback data packet further includes test data for detecting a transmission link.
  • the second aspect of the embodiments of the present invention provides a method for switching a MIMO wave directional link, the method comprising:
  • the quality of the alternate link is evaluated according to the feedback data packet sent by the standby link: detecting a performance indicator of the standby link according to the feedback data packet sent by the standby link, based on the performance indicator The shield of the alternate link is evaluated.
  • the evaluation result based on the quality of the backup link quality and the evaluation result of the quality of the primary link in the feedback data packet determines whether the active/standby link switching is performed: when the evaluation result of the backup link quality is better than the feedback data When the evaluation results of the primary link quality in the packet are performed, the active/standby link is switched.
  • the active/standby link switching is performed.
  • a third aspect of the embodiments of the present invention provides a sink device for implementing millimeter wave directional link switching, where the sink device includes:
  • the primary link quality assessment module is configured to evaluate the quality of the primary link according to the data packet sent through the primary link;
  • a sending decision module configured to encapsulate the evaluation result of the quality of the primary link into a feedback data packet and send the signal to the source device through the standby link;
  • the feedback data packet provides a determination basis for the source device to provide whether to perform active/standby link switching.
  • the primary link quality assessment module is configured to detect a performance indicator of the primary link according to the data packet sent by the primary link, and evaluate the quality of the primary link based on the performance indicator.
  • the sending decision module is configured to encapsulate the evaluation result of the main link quality into a feedback data packet and send it to the source device through the standby link when the set condition is met;
  • the condition that satisfies the setting is: the evaluation result of the quality of the primary link is lower than the set decision threshold, or the accumulated time from the end of the evaluation of the quality of the primary link reaches the set time. Inter-threshold.
  • the feedback data packet further includes test data for detecting a transmission link.
  • a fourth aspect of the embodiments of the present invention provides a source device for implementing millimeter wave directional link switching, where the source device includes:
  • An alternate link quality assessment module configured to evaluate the quality of the alternate link based on feedback packets sent over the alternate link
  • the handover decision module is configured to determine whether to perform the active/standby link switching based on the evaluation result of the backup link quality and the evaluation result of the quality of the primary link in the feedback data packet.
  • the standby link quality evaluation module is configured to detect a performance indicator of the standby link according to the feedback data packet sent by the standby link, and evaluate the quality of the standby link based on the performance indicator.
  • the handover decision module is configured to: when the evaluation result of the backup link quality is better than the evaluation result of the primary link quality in the feedback data packet, or when the evaluation result of the backup link quality is better than the feedback data When the evaluation result of the quality of the primary link in the packet reaches a certain level, the active/standby link is switched.
  • the feedback data packet further includes test data for detecting a transmission link.
  • a fifth aspect of the present invention provides a computer storage medium, wherein the computer storage medium is stored with computer executable instructions, and the computer executable instructions are used to perform the method according to any one of the embodiments of the present invention.
  • a sixth aspect of the present invention provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used in the method of any one of the second aspects of the embodiments of the present invention.
  • the present invention has at least the following advantages:
  • the method for switching a MIMO wave directional link may perform a link between a direct link and a relay link between the source device and the sink device.
  • the evaluation of the quality determines whether to switch the current transmission link based on the evaluation result.
  • the embodiment of the present invention is a handover operation performed after balancing the link quality, and the link switching process is also flexible compared with the prior art, and can be reduced at the same time. The resources are wasted and the reliability of the transmission is guaranteed.
  • FIG. 1 is a schematic diagram of an existing glutinous wave directional relay link system
  • FIG. 2 is a flowchart of steps performed by a sink device in a millimeter wave directional link switching method according to a first embodiment of the present invention
  • FIG. 3 is a schematic diagram of a preferred frame format of a feedback data packet according to a first embodiment of the present invention
  • FIG. 4 is a flowchart of a step of performing a source device side in a method for switching a MIMO wave directional link according to a first embodiment of the present invention
  • FIG. 5 is a schematic diagram of a composition of a sink device for implementing millimeter wave directional link switching according to a second embodiment of the present invention
  • FIG. 6 is a schematic diagram of a composition of a source device for implementing millimeter wave directional link switching according to a third embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a MIMO-directional directional relay link system provided by an application example of the present invention
  • FIG. 8 is a flowchart of a link switching method of a millimeter-wave directional relay link system provided by an application example of the present invention
  • FIG. 9 is a schematic diagram of timings of switching an S-D link to an S-R-D link according to an application example of the present invention.
  • FIG. 10 is a schematic diagram of timings of switching an S-R-D link to an S-D link according to an application example of the present invention.
  • FIG. 11 is a schematic structural diagram of an apparatus for implementing the method according to an embodiment of the present invention. detailed description
  • a millimeter-wave directional link switching method includes the following specific steps: 1. The steps performed on the sink device side, as shown in FIG. 2, include:
  • Step A1 evaluating the shield of the primary link according to the data packet sent by the primary link; specifically, detecting the performance index of the primary link according to the data packet sent by the primary link, based on the The performance indicators evaluate the quality of the primary link.
  • the packet contains at least one of the following: a data frame, a control frame, and a management frame.
  • the performance index of the transmission link can be detected according to the frame header of the MIMO band frame and the information of the valid data portion, and the performance indicator can be all parameters that can be used to measure the link quality, such as: Noise ratio, bit error rate and frame error rate, etc., so it is not detailed here.
  • the quality evaluation result of the primary link is obtained based on the specific value of the performance indicator. For example, the quality evaluation result of the primary link can be determined only based on the error rate, and the error rate and other parameters can be comprehensively determined. .
  • step A2 the evaluation result of the quality of the primary link is encapsulated into a feedback data packet and sent to the source device through the backup link, so that the source device determines whether to perform the active/standby link switching based on the feedback data packet.
  • the optimal solution is: when the set condition is met, the evaluation result of the primary link quality is encapsulated into a feedback data packet and sent to the source device through the standby link; the feedback data packet
  • the method includes: a control frame for carrying a link quality assessment result, but the embodiment of the present invention does not exclude other types of frames that can be used in the feedback data packet, and is used to carry the link quality assessment result.
  • the feedback data packet further includes: test data for detecting a transmission link, The frame format of the feedback packet is shown in Figure 3, which in turn contains the frame header, the link quality evaluation result, and the test data.
  • the set conditions include: the evaluation result of the quality of the primary link is lower than the set decision threshold, or the accumulated time from the end of the evaluation of the quality of the primary link reaches the set time threshold.
  • the steps performed on the source device side, as shown in Figure 4, include:
  • Step B1 evaluating the quality of the standby link according to the feedback data packet sent by the standby link;
  • the performance indicator of the standby link is detected according to the feedback data packet sent by the standby link, and the quality of the standby link is evaluated based on the performance indicator.
  • Step B2 Determine whether to perform the active/standby link switching based on the evaluation result of the backup link quality and the evaluation result of the quality of the primary link in the feedback data packet.
  • the active/standby link is switched, that is, the active link and the standby link perform role conversion, and still serve as the primary and backup links.
  • the degree of this advantage can be set as needed.
  • the backup chain When the path is a relay link, more considerations such as resource consumption can be added for the link switching condition. For example, if the evaluation result of the quality of the backup link is better than the degree of the primary link, a threshold is set, and the active/standby is performed only when the evaluation result of the backup link quality is better than the level of the primary link reaches the set threshold. Link switching can reduce resource consumption as much as possible, making a compromise between resource consumption and guaranteed transmission quality.
  • the second embodiment of the present invention is based on the directional link switching party in the first embodiment.
  • the method of the present invention is to provide a sink device for implementing millimeter-wave directional link switching, and establish a direct-link and a relay link between the source device and the sink device, as shown in FIG. 5,
  • the sink device includes:
  • the primary link quality assessment module 101 is configured to evaluate the quality of the primary link according to the data packet sent through the primary link;
  • the primary link quality assessment module 101 is configured to detect a performance indicator of the primary link according to the data packet sent by the primary link, and evaluate the quality of the primary link based on the performance indicator.
  • the packet contains at least one of the following: a data frame, a control frame, and a management frame.
  • the performance index of the transmission link can be detected according to the frame header of the MIMO band frame and the information of the valid data portion, and the performance indicator can be all parameters that can be used to measure the link quality, such as: Noise ratio, bit error rate and frame error rate, etc., so it is not detailed here.
  • the quality evaluation result of the primary link is obtained based on the specific value of the performance indicator. For example, the quality evaluation result of the primary link can be determined only based on the error rate, and the error rate and other parameters can be comprehensively determined. .
  • the sending decision module 102 is configured to encapsulate the evaluation result of the quality of the primary link into a feedback data packet and send it to the source device through the standby link, so that the source device determines whether to perform the active/standby link based on the feedback data packet. Switch.
  • the sending decision module 102 is configured to, when the set condition is met, encapsulate the evaluation result of the quality of the primary link into a feedback data packet and send it to the source device through the standby link;
  • the set conditions include: the evaluation result of the quality of the primary link is lower than the set decision threshold, and the accumulation time from the end of the evaluation of the quality of the primary link reaches at least one of the set time thresholds. .
  • the feedback data packet specifically includes: a control frame used to bear the link quality assessment result, but the present invention does not exclude that other types of frames can be used in the feedback data packet for carrying the link quality.
  • the amount of evaluation results are included in the feedback data packet.
  • the feedback data packet further includes test data for detecting a transmission link.
  • the subsequent source device may detect the performance index of the transmission link according to the test data and the information of the frame header, or may directly detect the transmission link according to the frame header of the control frame and the information of the valid data portion in the feedback data packet. Performance.
  • the frame format of the feedback packet is shown in Figure 3, which in turn contains the frame header, the link quality evaluation result, and the test data.
  • the third embodiment of the present invention is based on the directional link switching method in the first embodiment, and introduces a source device for implementing MIMO-directional link switching, where the source device and the second embodiment Each of the sink devices establishes a direct link and a relay link that are mutually active and standby.
  • the source device includes:
  • an alternate link quality assessment module 201 configured to evaluate the quality of the alternate link based on the feedback packet sent over the alternate link
  • the backup link quality assessment module 201 is configured to detect a performance indicator of the standby link according to the feedback packet sent by the standby link, and evaluate the quality of the standby link based on the performance indicator.
  • the feedback data packet specifically includes: a control frame for carrying a link quality assessment result, but the present invention does not exclude that other types of frames can be used in the feedback data packet for carrying the link quality assessment result.
  • the feedback data packet further includes test data for detecting a transmission link.
  • the backup link quality evaluation module 201 may detect the performance index of the transmission link according to the test data and the information of the frame header, or may directly detect the transmission according to the frame header of the control frame and the information of the valid data part in the feedback data packet. Performance metrics for the link.
  • the handover decision module 202 is configured to determine whether to perform the active/standby link switching based on the evaluation result of the backup link quality and the evaluation result of the primary link quality in the feedback data packet.
  • the handover decision module 202 is configured to: when the evaluation result of the backup link quality is better than the evaluation result of the primary link quality in the feedback data packet, or when the quality of the backup link is evaluated The result is better than the evaluation result of the quality of the primary link in the feedback data packet and reaches a certain level, and the active/standby link is switched. The degree of this superiority can be set as needed.
  • the backup chain When the path is a relay link, more considerations such as resource consumption can be added for the link switching condition. For example, the evaluation result of the backup link quality is set to a threshold due to the degree of the primary link, and the active/standby chain is performed only when the evaluation result of the backup link quality is superior to the extent of the primary link reaching the set threshold. Road switching, which can reduce resource consumption as much as possible, makes a compromise between resource consumption and guaranteed transmission quality.
  • the application example of the present invention is based on the ⁇ directional relay link system shown in FIG. 7, the system includes a source device S, a sink device D, and a relay device R, wherein the source device S has at least a directional orientation Antenna, alternate link quality assessment module and handover decision module:
  • the MIMO wave directional antenna is used for directional reception and transmission of millimeter wave band data packets, at least one of which includes: data frame, control frame, management frame, etc.;
  • the quality assessment module is used to evaluate the quality of the alternate link, and can evaluate the quality of the link transmitting the data packet according to the received millimeter wave band data packet; the handover decision module compares the current primary link quality with the quality of the backup link.
  • the sink device D has at least a millimeter directional antenna, a primary link quality assessment module, and a transmission decision module: the MIMO wave directional antenna is used for directional reception and transmission of the nanometer band data packet, at least one of which includes: data frame, control Frame, management frame, etc.; the primary link quality evaluation module is used to evaluate the link quality, and can evaluate the quality of the link transmitting the data packet according to the error rate, signal to noise ratio, etc. of the received millimeter wave band data packet; The decision module is used to decide whether the primary link will be used.
  • the quality evaluation result is encapsulated and sent.
  • the setting decision threshold is a certain link quality evaluation value.
  • the decision threshold may also be set as a cumulative time value after being evaluated by the main link quality evaluation module. When the accumulation time is reached, the evaluation result is encapsulated into a frame and sent to the source device.
  • the relay device has at least a metre-wave directional antenna for directional reception and forwarding of millimeter-wave band data packets from a source device or a sink device.
  • the source device S, the sink device D, and the relay device R have established a direct link and a relay link between the signaling device and the beamforming before the formal data transmission, so that the data transmission process is performed.
  • the fast switching process can be guaranteed.
  • the established link includes: a forward link SD of the source device to the sink device; a reverse link DS of the sink device to the source device; a forward link SRD of the source device via the relay device to the sink device;
  • the sink device passes the relay device to the reverse link DRS of the source device.
  • the link switching method of the millimeter wave directional relay link system of the application example of the present invention is as shown in FIG. 8. According to the link of the source device transmitting data to the sink device in the current communication period, there are two cases:
  • the sink device evaluates the SD link quality by using the primary link quality assessment module according to the received S-D link data frame, and the sending decision module determines whether the first decision threshold is reached according to the SD link quality assessment result, for example:
  • the link quality evaluation module gives the result lower than the first decision threshold, or when the duration after the evaluation by the primary link quality assessment module exceeds a certain time accumulation threshold, the evaluation result is immediately encapsulated into an SD link quality report frame. (ie, the control frame carrying the SD link quality assessment result) is sent to the source device through the D-R-S link. It is noted that when the S-D link quality report frame is transmitted after the evaluation reaches the time accumulation threshold, the source device can obtain the S-D link quality in each communication cycle, but this also consumes more. of Resources.
  • the SD link quality report frame may further include a test data, the test segment
  • the data can be transmitted in the same modulation and coding mechanism as the data frame received by the sink device.
  • the source device receiving the report frame can evaluate the D-R-S link quality based on the test data.
  • the source device receives the SD link quality report frame. Since the frame is received through the D-R-S link, the standby link quality evaluation module of the source device can evaluate the D-R-S link quality according to the frame. Then, the quality of the obtained DR-S link is evaluated and sent to the handover decision module in parallel with the quality of the S-D link indicated in the report frame. Due to the link reciprocity, the D-R-S link quality is approximately equivalent to S. - R-D link shield, so the handover decision module determines whether to switch the current S-D link to the S-R-D link according to the link quality of the SD link and the DRS link.
  • the sink device evaluates the S-R-D link quality by using the primary link shield evaluation module according to the received SRD link data frame, and the sending decision module determines whether the second decision threshold is reached according to the SRD link quality assessment result. For example: when the link quality assessment module gives a result lower than the second decision threshold (ie, the second decision threshold may be the same as the first decision threshold described in the first case), or when the primary link quality assessment module When the duration of the evaluation exceeds a certain time accumulation threshold, the evaluation result is encapsulated into an SRD link quality report frame and sent to the source device through the DS link.
  • the S-D link and the S-R-D link are both unblocked, communication using the SD link is generally less resource consuming than using the SRD link, so the current link is S-R-D.
  • the time cumulative value can be used as a decision method to make S-R-D
  • the link shield report frame can be periodically sent to the source device, so that once the DS link is clear, the source device has the opportunity to immediately switch to the SD link without having to wait until the SRD link quality is degraded.
  • the SRD link quality report frame may also include a piece of test data, and the source device receiving the report frame may evaluate the DS link quality based on the test data.
  • the source device receives the SRD link quality report frame. Since the frame is received through the DS link, the link quality evaluation module of the source device can evaluate the DS link quality according to the frame, and then the obtained DS link quality is evaluated. And the SRD link quality indicated in the report frame is sent to the handover decision module. Due to link reciprocity, the DS link quality is approximately equivalent to the S-D link quality. Therefore, the handover decision module is based on the SRD link and the DS chain. The quality of the link of the road determines whether to switch the current SRD link to the SD link.
  • the link switching condition is simply set so that the D-S link quality is better than the S-R-D link quality, then when the D-S link quality is better than the S-R-D link quality, the handover is performed. It should be noted that since the communication using the S-D link generally consumes less resources than the S-R-D link communication, when the D-S link quality is superior to the S-R-D link quality, the handover can be performed immediately.
  • Figure 9 is a timing diagram of the S-D link switching to the SRD link. The durations of the corresponding processing flows in the communication process between the source device and the sink device are respectively shown. This figure depicts the quality of the SD link only for the sink device.
  • the source device performs DRS link quality measurement, decision, and link switching according to the report frame.
  • Figure 10 is a timing diagram of the SRD link switching to the SD link, showing the duration of the corresponding processing flow in the communication process between the source device and the sink device. This figure depicts the cumulative value of the usage time of the sink device as the decision threshold period.
  • the source device In the case of transmitting a DRS link quality report frame, the source device sequentially performs DS link quality measurement, decision, and link switching according to the report frame.
  • the millimeter wave directional link switching method and the source device and the sink device for implementing link switching in the embodiment of the present invention may directly connect a link and a relay link between the source device and the sink device.
  • the present invention is a switching operation performed after balancing the link quality, and the link switching process is also flexible compared with the prior art, and Reduce resource waste and ensure the reliability of transmission.
  • the embodiment of the present invention further describes a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute any of the steps A1 and A2 of the first embodiment. Method; specifically as described in 2.
  • the embodiment of the present invention further describes another computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the method described in step B1 and step B2 in the first embodiment. , specifically as shown in 4.
  • the above computer storage medium may be an optical disk, a USB flash drive, a DVD or a magnetic tape, etc., and is preferably a non-transitory storage medium.
  • the embodiment of the present invention further provides an apparatus for implementing the first embodiment and the second embodiment of the present invention.
  • the apparatus includes a processor 302, a storage medium 304, and at least one external communication interface 301.
  • the processor 302, the storage medium 304, and the external communication interface 301 are all connected by a bus 303.
  • the processor 302 can be a processing component such as a microprocessor, a central processing unit, a digital signal processor, or a programmable logic array.
  • Computer-executable instructions are stored on the storage medium 304; the processor 302 executing the computer-executable instructions stored in the storage medium 304 can implement any one of the following two solutions.
  • the evaluation result of the quality of the primary link is encapsulated into a feedback data packet and sent to the source device through the standby link.
  • the feedback data packet is a judgment basis for whether the source device performs the active/standby link switching.
  • Option II Evaluating the quality of the alternate link according to the feedback data packet sent from the standby link; determining whether to perform the active/standby link based on the evaluation result of the backup link quality and the evaluation result of the quality of the primary link in the feedback data packet Switch.
  • FIG. 11 may be part of the sink device in the second embodiment, or may be part of the source device in the third embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种毫米波定向链路切换方法、实现链路切换设备及存储介质,该方法在信源设备和信宿设备之间分别建立互为主备的直连链路和中继链路,在信宿设备侧执行如下步骤:根据经主用链路发来的数据包对主用链路的质量进行评估;将主用链路质量的评估结果封装成反馈数据包并通过备用链路发给信源设备。该方法在信源设备侧执行如下步骤:根据经备用链路发来的反馈数据包对备用链路的质量进行评估;基于备用链路质量的评估结果以及反馈数据包中的主用链路质量的评估结果,判断是否进行主备链路切换。本发明是在对链路质量进行权衡之后再做出的切换操作,链路切换过程也较现有技术灵活,同时可以减少资源浪费且保证传输的可靠性。

Description

亳米波定向链路切换方法、 实现链路切换设备和存储介质 技术领域
本发明涉及无线通信领域, 尤其涉及一种亳米波定向链路切换方法、 实现链路切换设备和存储介质。 背景技术
毫米波定向无线通信技术是一种传输带宽高、 传输速率达到吉比特级 的无线通信技术。 在典型的 60GHz或 45GHz频段, 其传播波束非常窄且对 于障碍物的穿透性差, 表现出似光性, 因而当亳米波定向无线通信信源设 备与信宿设备之间的直接链路受到障碍物遮挡时, 传播波束无法绕射, 而 造成链路质量严重下降。 如图 1 所示, 对此的解决措施是在信源设备 S和 信宿设备 D之间寻找并确定一个合适的具备毫米波定向传输功能的中继设 备 R, 建立中继链路(S- R- D ), 使信源设备发送的数据经其转发至信宿设 备。 该中继设备 通常需在信源设备 S和信宿设备 D进行正式数据传输之 前确定, 并通过信令交互和波束赋形使所述三个设备两两之间建立直接链 路, 此过程亦被称为中继链路建立 (Relay Link Setup, 简称 RLS )过程。
RLS 应当在进行正式的数据传输之前完成, 目的是在数据传输过程中, 当 信源设备 S和信宿设备 D的直接链路 ( S-D )中断或质量下降时,传输链路 能够快速切换至中继链路(S- R- D ), 反之亦然。 当前, 亳米波定向中继链 路的通信方法一般有: 在信源设备 S 未收到当前链路传输数据的确认帧 ( ACK )时, 立即切换至另一条; 或者, 在两条链路上( S- D和 S- R- D )周 期性交替传输数据; 或者, 同时在两条链路上传输数据, 以降低数据丢包 的风险。 这些方法并未对传输链路的链路质量有所权衡, 也不够灵活, 易 造成资源浪费。 发明内容
本发明实施例期望提供一种毫米波定向链路切换方法、 实现链路切换 的设备及存储介质, 克服现有的毫米波定向中继链路的通信过程未对传输 链路的链路质量进行权衡、 链路切换不灵活、 且易造成资源浪费的缺陷。
本发明实施例第一方面提供一种毫米波定向链路切换方法 , 该方法在 信宿设备侧执行的步骤包括:
根据经主用链路发来的数据包对主用链路的质量进行评估;
将主用链路质量的评估结果封装成反馈数据包并通过备用链路发给信 源设备;
所述反馈数据包为所述信源设备是否进行主备链路切换的判断依据。 优选地, 所述根据经主用链路发来的数据包对主用链路的质量进行评 估为: 根据经主用链路发来的数据包检测主用链路的性能指标, 基于所述 性能指标对主用链路的质量进行评估。
优选地, 所述将主用链路质量的评估结果封装成反馈数据包并通过备 用链路发给信源设备为: 当满足设定的条件时, 将主用链路质量的评估结 果封装成反馈数据包并通过备用链路发给信源设备;
所述设定的条件为: 主用链路质量的评估结果低于设定的决策阈值, 或者 , 从对主用链路的质量的评估结束开始的累积时间达到设定的时间阈 值。
优选地, 所述反馈数据包还包括用于检测传输链路的测试数据。
优选地, 本发明实施例第二方面提供一种亳米波定向链路切换方法, 该方法包括:
根据经备用链路发来的反馈数据包对备用链路的质量进行评估; 基于备用链路质量的评估结果以及反馈数据包中的主用链路质量的评 估结果, 判断是否进行主备链路切换。 优选地, 所述根据经备用链路发来的反馈数据包对备用链路的质量进 行评估为: 根据经备用链路发来的反馈数据包检测备用链路的性能指标 , 基于所述性能指标对备用链路的盾量进行评估。
优选地, 所述基于备用链路质量的评估结果以及反馈数据包中的主用 链路质量的评估结果, 判断是否进行主备链路切换为: 当备用链路质量的 评估结果优于反馈数据包中的主用链路质量的评估结果时, 进行主备链路 切换;
或者,
当备用链路质量的评估结果优于反馈数据包中的主用链路质量的评估 结果且达到一定程度时, 进行主备链路切换。
本发明实施例第三方面提供一种实现毫米波定向链路切换的信宿设 备, 该信宿设备包括:
主用链路质量评估模块, 配置为根据经主用链路发来的数据包对主用 链路的质量进行评估;
发送决策模块 , 配置为将主用链路质量的评估结果封装成反馈数据包 并通过备用链路发给信源设备;
所述反馈数据包为所述信源设备提供是否进行主备链路切换的判断依 据。
优选地, 所述主用链路质量评估模块, 配置为根据经主用链路发来的 数据包检测主用链路的性能指标, 基于所述性能指标对主用链路的质量进 行评估。
优选地, 所述发送决策模块, 配置为当满足设定的条件时, 将主用链 路质量的评估结果封装成反馈数据包并通过备用链路发给信源设备;
所述满足设定的条件为: 主用链路质量的评估结果低于设定的决策阈 值, 或者, 从对主用链路的质量的评估结束开始的累积时间达到设定的时 间阈值。
优选地, 所述反馈数据包还包括用于检测传输链路的测试数据。
本发明实施例第四方面提供一种实现毫米波定向链路切换的信源设 备, 该信源设备包括:
备用链路质量评估模块, 配置为根据经备用链路发来的反馈数据包对 备用链路的质量进行评估;
切换决策模块 , 配置为基于备用链路质量的评估结果以及反馈数据包 中的主用链路质量的评估结果 , 判断是否进行主备链路切换。
优选地, 所述备用链路质量评估模块, 配置为根据经备用链路发来的 反馈数据包检测备用链路的性能指标, 基于所述性能指标对备用链路的质 量进行评估。
优选地, 所述切换决策模块, 配置为当备用链路质量的评估结果优于 反馈数据包中的主用链路质量的评估结果时, 或者, 当备用链路质量的评 估结果优于反馈数据包中的主用链路质量的评估结果且达到一定程度时, 进行主备链路切换。
优选地, 所述反馈数据包还包括用于检测传输链路的测试数据。
本发明第五方面提供一种计算机存储介质, 所述计算机存储介盾中存 储有计算机可执行指令, 所述计算机可执行指令用于执行本发明实施例第 一方面任一项所述的方法。
本发明第六方面提供一种计算机存储介质 , 所述计算机存储介质中存 储有计算机可执行指令, 所述计算机可执行指令用于本发明实施例第二方 面任一项所述的方法。
采用上述技术方案, 本发明至少具有下列优点:
本发明实施例所述亳米波定向链路切换方法、 实现链路切换设备及存 储介质 , 可以对信源设备与信宿设备之间的直连链路和中继链路进行链路 质量的评估, 基于评估结果决定是否切换当前的传输链路, 本发明实施例 是在对链路质量进行权衡之后再做出的切换操作 , 链路切换过程也较现有 技术灵活, 同时可以减少资源浪费且保证传输的可靠性。 附图说明
图 1 为现有的亳米波定向中继链路系统示意图;
图 2为本发明第一实施例提供的毫米波定向链路切换方法中信宿设备 侧执行步骤的流程图;
图 3为本发明第一实施例提供的反馈数据包优选的帧格式示意图; 图 4为本发明第一实施例提供的亳米波定向链路切换方法中信源设备 侧执行步骤的流程图;
图 5 为本发明第二实施例提供的实现毫米波定向链路切换的信宿设备 组成示意图;
图 6 为本发明第三实施例提供的实现毫米波定向链路切换的信源设备 组成示意图。
图 7 为本发明应用实例提供的亳米波定向中继链路系统示意图; 图 8 为本发明应用实例提供的毫米波定向中继链路系统的链路切换方 法流程图;
图 9 为本发明应用实例提供的 S-D链路切换至 S-R-D链路的时序情况 示意图;
图 10 为本发明应用实例提供的 S-R-D链路切换至 S-D链路的时序情 况示意图;
图 1 1为本发明实施例提供的一种用于实现本发明实施例所述方法的装 置结构示意图。 具体实施方式
以下结合附图对本发明的优选实施例进行详细说明, 应当理解, 以下 所说明的优选实施例仅用于说明和解释本发明 , 并不用于限定本发明。
本发明第一实施例 , 在信源设备和信宿设备之间分别建立有互为主备 的直连链路和中继链路, 正常通信状态下, 信源设备通过主用链路向信宿 设备发送数据包。 一种毫米波定向链路切换方法, 包括以下具体步骤: 一、 在信宿设备侧执行的步骤, 如图 2所示, 包括:
步骤 A1 , 根据经主用链路发来的数据包对主用链路的盾量进行评估; 具体的, 根据经主用链路发来的数据包检测主用链路的性能指标, 基 于所述性能指标对主用链路的质量进行评估。 该数据包中至少包含以下之 一: 数据帧、 控制帧、 以及管理帧。
本领域公知的 , 可以根据亳米波频段帧的帧头以及有效数据部分的信 息, 检测出传输链路的性能指标, 该性能指标可以是所有能够用来测量链 路质量的参量, 比如: 信噪比、 误码率和误帧率等, 故此处不详述。 后续 再基于该性能指标的具体数值得到主用链路的质量评估结果, 比如: 可以 只基于误码率来确定主用链路的质量评估结果, 也可以综合考虑误码率及 其他参量来确定。
步驟 A2, 将主用链路质量的评估结果封装成反馈数据包并通过备用链 路发给信源设备 , 使信源设备基于该反馈数据包判断是否进行主备链路切 换。
具体的, 在步骤 A2中, 最佳方案是: 当满足设定的条件时, 将主用链 路质量的评估结果封装成反馈数据包并通过备用链路发给信源设备; 该反 馈数据包中具体包括: 用于承载链路质量评估结果的控制帧, 但是本发明 实施例也不排除反馈数据包中可以采用其他类型的帧, 用于承载链路质量 评估结果。 优选的, 该反馈数据包还包括: 用于检测传输链路的测试数据, 反馈数据包的帧格式如图 3 所示, 依次包含帧头、 链路质量评估结果以及 该测试数据。
该设定的条件包括: 主用链路质量的评估结果低于设定的决策阈值, 或者 , 从对主用链路的质量的评估结束开始的累积时间达到设定的时间阈 值。
二、 在信源设备侧执行的步骤, 如图 4所示, 包括:
步骤 B1 , 根据经备用链路发来的反馈数据包对备用链路的质量进行评 估;
具体的 , 根据经备用链路发来的反馈数据包检测备用链路的性能指标, 基于所述性能指标对备用链路的质量进行评估。
步驟 B2, 基于备用链路质量的评估结果以及反馈数据包中的主用链路 质量的评估结果, 判断是否进行主备链路切换。
具体的, 当备用链路质量的评估结果优于反馈数据包中的主用链路质 量的评估结果时, 或者, 当备用链路质量的评估结果优于反馈数据包中的 主用链路质量的评估结果且达到一定程度时, 进行主备链路切换, 即主用 链路与备用链路进行角色转换, 仍然互为主备链路。 该优于的程度可以根 据需要设定。
需要说明的是, 由于使用中继链路进行通信通常会比直连链路直接通 信有更多的资源消耗, 在更为复杂的设计中, 当主用链路为直连链路, 而 备用链路为中继链路时, 可以为链路切换条件加入更多的考虑因素, 如资 源消耗等。 比如, 对备用链路质量的评估结果优于主用链路的程度设定一 个阈值 , 只有当备用链路质量的评估结果优于主用链路的程度达到该设定 的阈值才进行主备链路切换, 能够尽可能的减少资源的消耗, 在资源消耗 与保证传输质量之间做一个折中。
本发明第二实施例, 本实施例是基于第一实施例中的定向链路切换方 法, 介绍一种实现毫米波定向链路切换的信宿设备, 在信源设备和该信宿 设备之间分别建立互为主备的直连链路和中继链路, 如图 5 所示, 该信宿 设备包括:
1 )主用链路质量评估模块 101 , 配置为根据经主用链路发来的数据包 对主用链路的质量进行评估;
具体的, 主用链路质量评估模块 101 , 配置为根据经主用链路发来的数 据包检测主用链路的性能指标, 基于所述性能指标对主用链路的质量进行 评估。 该数据包中至少包含以下之一: 数据帧、 控制帧、 以及管理帧。
本领域公知的, 可以根据亳米波频段帧的帧头以及有效数据部分的信 息, 检测出传输链路的性能指标, 该性能指标可以是所有能够用来测量链 路质量的参量, 比如: 信噪比、 误码率和误帧率等, 故此处不详述。 后续 再基于该性能指标的具体数值得到主用链路的质量评估结果, 比如: 可以 只基于误码率来确定主用链路的质量评估结果, 也可以综合考虑误码率及 其他参量来确定。
2 )发送决策模块 102 , 配置为将主用链路质量的评估结果封装成反馈 数据包并通过备用链路发给信源设备, 使信源设备基于该反馈数据包判断 是否进行主备链路切换。
具体的,优选方案是,发送决策模块 102,配置为当满足设定的条件时, 将主用链路质量的评估结果封装成反馈数据包并通过备用链路发给信源设 备;
该设定的条件包括: 主用链路质量的评估结果低于设定的决策阈值, 及从对主用链路的质量的评估结束开始的累积时间达到设定的时间阈值的 至少其中之一。
该反馈数据包中具体包括: 用于承栽链路质量评估结果的控制帧, 但 是本发明也不排除反馈数据包中可以采用其他类型的帧, 用于承载链路质 量评估结果。
优选的, 该反馈数据包还包括用于检测传输链路的测试数据。 后续信 源设备可以根据该测试数据配合帧头的信息检测出传输链路的性能指标, 或者也可以直接根据反馈数据包中控制帧的帧头以及有效数据部分的信 息, 检测出传输链路的性能指标。
反馈数据包的帧格式如图 3 所示, 依次包含帧头、 链路质量评估结果 以及该测试数据。
本发明第三实施例, 本实施例是基于第一实施例中的定向链路切换方 法, 介绍一种实现亳米波定向链路切换的信源设备, 在该信源设备和第二 实施例所述的信宿设备之间分别建立互为主备的直连链路和中继链路, 如 图 6所示, 该信源设备包括:
1 )备用链路质量评估模块 201 , 配置为根据经备用链路发来的反馈数 据包对备用链路的质量进行评估;
具体的,备用链路质量评估模块 201 , 配置为根据经备用链路发来的反 馈数据包检测备用链路的性能指标, 基于所述性能指标对备用链路的质量 进行评估。 该反馈数据包中具体包括: 用于承载链路质量评估结果的控制 帧, 但是本发明也不排除反馈数据包中可以采用其他类型的帧, 用于承载 链路质量评估结果。 优选的, 该反馈数据包还包括用于检测传输链路的测 试数据。 备用链路质量评估模块 201 可以根据该测试数据配合帧头的信息 检测出传输链路的性能指标, 或者也可以直接根据反馈数据包中控制帧的 帧头以及有效数据部分的信息, 检测出传输链路的性能指标。
2 )切换决策模块 202, 配置为基于备用链路质量的评估结果以及反馈 数据包中的主用链路质量的评估结果, 判断是否进行主备链路切换。
具体的, 切换决策模块 202, 配置为当备用链路质量的评估结果优于反 馈数据包中的主用链路质量的评估结果时, 或者, 当备用链路质量的评估 结果优于反馈数据包中的主用链路质量的评估结果且达到一定程度时, 进 行主备链路切换。 该优于的程度可以根据需要设定。
需要说明的是, 由于使用中继链路进行通信通常会比直连链路直接通 信有更多的资源消耗, 在更为复杂的设计中, 当主用链路为直连链路, 而 备用链路为中继链路时, 可以为链路切换条件加入更多的考虑因素, 如资 源消耗等。 比如, 对于备用链路质量的评估结果由于主用链路的程度设定 一个阈值, 只有当备用链路质量的评估结果优于主用链路的程度达到该设 定的阈值才进行主备链路切换, 能够尽可能的减少资源的消耗, 在资源消 耗与保证传输质量之间做一个折中。
基于上述实施例, 介绍一个本发明的应用实例。
本发明应用实例是基于如图 7所示的亳米波定向中继链路系统, 该系 统包含信源设备 S、 信宿设备 D以及中继设备 R, 其中, 信源设备 S至少 具备亳米定向天线、 备用链路质量评估模块和切换决策模块: 亳米波定向 天线用于定向接收和发送毫米波频段数据包, 其中至少包含以下之一: 数 据帧、 控制帧、 管理帧等; 备用链路质量评估模块用于评估备用链路质量, 能够依据所接收毫米波频段数据包, 评估传输该数据包的链路的质量; 切 换决策模块比较当前主用链路质量和备用链路质量优劣 , 决定是否切换当 前主用链路至备用链路, 例如当备用链路质量优于当前主用链路质量时, 进行切换。 若当前链路为信源设备 S和信宿设备 D的直接链路, 则二者之 间经中继设备 R的中继链路为备用链路, 反之亦然。
信宿设备 D至少具备毫米定向天线、 主用链路质量评估模块和发送决 策模块: 亳米波定向天线用于定向接收和发送亳米波频段数据包, 其中至 少包含以下之一: 数据帧、 控制帧、 管理帧等; 主用链路质量评估模块用 于评估链路质量, 能够依据所接收毫米波频段数据包的误码率、 信噪比等, 评估传输该数据包的链路的质量; 发送决策模块用于决策是否将主用链路 质量评估结果封装成帧并发送 , 例如设置决策阈值为某一链路质量评估值 , 当主用链路质量评估模块给出结果低于该值时 , 立即将评估结果封装成帧 发送给信源设备, 也可以将决策阈值设置为主用链路质量评估模块进行评 估后的某一段累积时间值, 当达到该累积时间时, 即刻将评估结果封装成 帧发送给信源设备。
中继设备 至少具备亳米波定向天线, 用于定向接收和转发来自信源 设备或信宿设备的毫米波频段数据包。
上述信源设备 S、 信宿设备 D和中继设备 R, 在进行正式数据传输之 前已经通过信令交互和波束赋形在其之间建立了直接链路和中继链路, 这 样在数据传输过程中, 能够保证链路切换过程的快速性。 所建立的链路包 括:信源设备至信宿设备的前向链路 S-D;信宿设备至信源设备的反向链路 D-S; 信源设备经中继设备至信宿设备的前向链路 S-R-D; 信宿设备经中继 设备至信源设备的反向链路 D-R-S。
本发明应用实例的毫米波定向中继链路系统的链路切换方法, 其流程 如图 8所示, 依据当前通信周期内信源设备向信宿设备传输数据的链路, 分为两种情况:
第一种情况, 当前链路为 S- D时:
信宿设备依据接收的 S- D链路数据帧, 用主用链路质量评估模块评估 S-D链路质量, 发送决策模块依据 S-D链路质量评估结果, 判断其是否达 第一决策阈值, 例如: 当主用链路质量评估模块给出结果低于第一决策阈 值, 或者当主用链路质量评估模块进行评估后的持续时间超过某一个时间 累积阈值时, 立即将评估结果封装成 S-D链路质量报告帧 (即承载了 S-D 链路质量评估结果的控制帧 )通过 D- R- S链路发送给信源设备。 注意到, 当采用评估后达到时间累积阈值就发送 S- D链路质量报告帧时, 可以使信 源设备在每个通信周期都能够获得 S- D链路质量, 但这样也会消耗更多的 资源。 值得注意的是, 为使信源设备的链路质量评估模块能够更准确的依 据所述链路质量报告帧评估链路质量, S-D链路质量报告帧中还可以包含一 段测试数据, 该段测试数据可以按照与信宿设备接收的数据帧相同的调制 编码机制发送。 接收该报告帧的信源设备可以基于该测试数据评估 D- R- S 链路质量。
信源设备接收 S-D链路质量报告帧 , 由于该帧是通过 D- R- S链路接收 的, 因而信源设备的备用链路质量评估模块可以依据该帧评估 D- R- S链路 质量, 后将评估所得 D-R- S链路质量与报告帧中指示的 S- D链路质量一并 发给切换决策模块, 由于链路互易性, D- R- S链路质量近似等效于 S- R- D 链路盾量, 因此切换决策模块依据 S-D链路和 D-R-S链路的链路质量优劣 判断是否切换当前 S- D链路至 S- R- D链路。 例如: 简单设置链路切换条件 为 D- R- S链路质量优于 S- D链路质量, 那么当 D-R-S链路质量优于 S- D链 路质量时, 则进行切换。 需要说明的是, 由于使用 S-R-D链路进行通信通 常会比 S-D链路直接通信有更多的资源消耗, 在更为复杂的设计中, 可以 为所述的链路切换条件加入更多的考虑因素, 如资源消耗等。
第二种情况 , 当前链路为 S- R- D时:
信宿设备依据接收的 S-R-D链路数据帧, 用主用链路盾量评估模块评 估 S- R- D链路质量, 发送决策模块依据 S-R-D链路质量评估结果, 判断其 是否达第二决策阈值, 例如: 当链路质量评估模块给出结果低于第二决策 阈值(即第二决策阈值与第一种情况中记载的第一决策阈值可以相同也可 以不同), 或者当主用链路质量评估模块进行评估后的持续时间超过某一个 时间累积阈值时, 即刻将评估结果封装成 S-R-D链路质量报告帧通过 D-S 链路发送给信源设备。 注意到, 当 S- D链路与 S- R- D链路均畅通时, 使用 S-D链路进行通信通常比使用 S-R-D链路的资源消耗小, 因此在当前链路 为 S- R- D的情况下, 可使用所述的时间累积值作为决策方式, 以使 S- R- D 链路盾量报告帧能够周期性的发送给信源设备, 这样, 一旦 D-S链路畅通, 信源设备便有机会立即切换至 S-D链路, 而不必等到 S-R-D链路质量下降 时才进行切换。 此外, S-R-D链路质量报告帧也可以包含一段测试数据,接 收该报告帧的信源设备可以基于该测试数据评估 D-S链路质量。
信源设备接收 S-R-D链路质量报告帧 , 由于该帧是通过 D-S链路接收 的, 因而信源设备的链路质量评估模块可以依据该帧评估 D-S链路质量, 后将评估所得 D-S链路质量与报告帧中指示的 S-R-D链路质量一并发给切 换决策模块, 由于链路互易性, D-S链路质量近似等效于 S- D链路质量, 因此切换决策模块依据 S-R-D链路和 D-S链路的链路质量优劣判断是否切 换当前 S-R-D链路至 S-D链路。 例如简单设置链路切换条件为 D-S链路质 量优于 S-R-D链路质量, 那么当 D-S链路质量优于 S-R-D链路质量时, 则 进行切换。 需要说明的是, 由于使用 S- D链路进行通信通常比 S-R- D链路 通信的资源消耗小, 因此当 D- S链路质量优于 S-R- D链路质量时, 可以立 刻进行切换。
图 9为 S- D链路切换至 S-R-D链路的时序情况示意图, 分别给出了信 源设备和信宿设备通信过程中相应处理流程的持续时间, 此图描绘了信宿 设备仅当 S-D链路质量低于某个链路质量阀值时才发送 S-D链路质量报告 帧的情况, 信源设备依据该报告帧依次完成 D-R-S链路质量测量、 决策和 链路切换。
图 10为 S-R-D链路切换至 S-D链路的时序情况示意图,分别给出了信 源设备和信宿设备通信过程中相应处理流程的持续时间 , 此图描绘了信宿 设备使用时间累积值作为决策阈值周期性发送 D-R-S链路质量报告帧的情 况, 信源设备依据该报告帧依次完成 D-S链路质量测量、 决策和链路切换。
本发明实施例的所述毫米波定向链路切换方法及实现链路切换的信源 设备和信宿设备, 可以对信源设备与信宿设备之间的直连链路和中继链路 进行链路质量的评估, 基于评估结果决定是否切换当前的传输链路, 本发 明是在对链路质量进行权衡之后再做出的切换操作, 链路切换过程也较现 有技术灵活, 同时可以减少资源浪费且保证传输的可靠性。
本发明实施例还记载了一种计算机存储介质, 所述计算机存储介质中 存储有计算机可执行指令, 所述计算机可执行指令用于执行第一实施例任 一步骤 A 1和步骤 A2所述的方法; 具体如 2所述的方法。
本发明实施例还记载了另一种计算机存储介质 , 所述计算机存储介质 中存储有计算机可执行指令, 所述计算机可执行指令用于执行第一实施例 中步骤 B1和步骤 B2所述的方法, 具体如 4所示。
上述计算机存储介质可为光盘、 U盘、 DVD或磁带等, 优选为非瞬间 存储介质。
本发明实施例还提供了一个用于实现本发明第一实施例和第二实施例 的装置, 如图 11所示, 所述装置包括处理器 302、 存储介质 304以及至少 一个外部通信接口 301 ; 所述处理器 302、 存储介质 304以及外部通信接口 301均通过总线 303连接。 所述处理器 302可为微处理器、 中央处理器、 数 字信号处理器或可编程逻辑阵列等具有处理功能的电子元器件。
所述存储介质 304上存储有计算机可执行指令; 所述处理器 302执行 所述存储介质 304 中存储的所述计算机可执行指令可实现以下两个方案中 的任意一个。
方案一:
根据经主用链路发来的数据包对主用链路的质量进行评估;
将主用链路质量的评估结果封装成反馈数据包并通过备用链路发给信 源设备; 其中, 所述反馈数据包为所述信源设备是否进行主备链路切换的 判断依据
方案二: 根据经备用链路发来的反馈数据包对备用链路的质量进行评估; 基于备用链路质量的评估结果以及反馈数据包中的主用链路质量的评 估结果, 判断是否进行主备链路切换。
具体的图 11中所述的结构可为第二实施例中所述信宿设备的一部分, 也可为第三实施例中所述信源设备中的一部分。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。 凡按照本发明原理所作的修改, 都应当理解为落入本发明的保护 范围。

Claims

权利要求书
1、 一种毫米波定向链路切换方法, 该方法包括:
根据经主用链路发来的数据包对主用链路的质量进行评估;
将主用链路质量的评估结果封装成反馈数据包并通过备用链路发给信 源设备;
所述反馈数据包为所述信源设备是否进行主备链路切换的判断依据。
2、 根据权利要求 I所述的毫米波定向链路切换方法, 其中, 所述根据经主用链路发来的数据包对主用链路的质量进行评估为: 根据经主用链路发来的数据包检测主用链路的性能指标, 基于所述性 能指标对主用链路的质量进行评估。
3、 根据权利要求 I所述的毫米波定向链路切换方法, 其中, 所述将主用链路质量的评估结果封装成反馈数据包并通过备用链路发 给信源设备为: 当满足设定的条件时, 将主用链路质量的评估结果封装成 反馈数据包并通过备用链路发给信源设备;
所述满足设定的条件为: 主用链路质量的评估结果低于设定的决策阈 值, 或者, 从对主用链路的质量的评估结束开始的累积时间达到设定的时 间阈值。
4、 根据权利要求 1所述的毫米波定向链路切换方法, 其中, 所述反馈 数据包还包括用于检测传输链路的测试数据。
5、 一种亳米波定向链路切换方法, 该方法包括:
根据经备用链路发来的反馈数据包对备用链路的质量进行评估; 基于备用链路质量的评估结果以及反馈数据包中的主用链路质量的评 估结果, 判断是否进行主备链路切换。
6、 根据权利要求 5所述的, 其中, 所述根据经备用链路发来的反馈数据包对备用链路的质量进行评估 为: 根据经备用链路发来的反馈数据包检测备用链路的性能指标, 基于所 述性能指标对备用链路的质量进行评估。
7、 根据权利要求 5所述的, 其中, 所述基于备用链路质量的评估结果 以及反馈数据包中的主用链路质量的评估结果, 判断是否进行主备链路切 换为:
当备用链路质量的评估结果优于反馈数据包中的主用链路质量的评估 结果时, 进行主备链路切换;
或者,
当备用链路质量的评估结果优于反馈数据包中的主用链路质量的评估 结果且达到一定程度时, 进行主备链路切换。
8、 一种实现毫米波定向链路切换的信宿设备, 该信宿设备包括: 主用链路质量评估模块, 配置为根据经主用链路发来的数据包对主用 链路的质量进行评估;
发送决策模块 , 配置为将主用链路质量的评估结果封装成反馈数据包 并通过备用链路发给信源设备;
所述反馈数据包为所述信源设备提供是否进行主备链路切换的判断依 据。
9、根据权利要求 8所述的实现亳米波定向链路切换的信宿设备,其中, 所述主用链路质量评估模块配置为 , 根据经主用链路发来的数据包检 测主用链路的性能指标, 基于所述性能指标对主用链路的质量进行评估。
10、 根据权利要求 8所述的实现亳米波定向链路切换的信宿设备, 其 中,
所述发送决策模块配置为: 当满足设定的条件时, 将主用链路质量的 评估结果封装成反馈数据包并通过备用链路发给信源设备; 所述设定的条件为: 主用链路质量的评估结果低于设定的决策阈值, 或者 , 从对主用链路的质量的评估结束开始的累积时间达到设定的时间阈 值。
11、 根据权利要求 8 所述的实现亳米波定向链路切换的信宿设备, 其 中, 所述反馈数据包还包括用于检测传输链路的测试数据。
12、 一种实现毫米波定向链路切换的信源设备, 该信源设备包括: 备用链路质量评估模块, 配置为根据经备用链路发来的反馈数据包对 备用链路的质量进行评估;
切换决策模块, 配置为基于备用链路质量的评估结果以及反馈数据包 中的主用链路质量的评估结果 , 判断是否进行主备链路切换。
13、 根据权利要求 12所述的实现毫米波定向链路切换的信源设备, 其 中,
所述备用链路质量评估模块, 配置为根据经备用链路发来的反馈数据 包检测备用链路的性能指标, 基于所述性能指标对备用链路的质量进行评 估。
14、 根据权利要求 12所述的实现毫米波定向链路切换的信源设备, 其 中,
所述切换决策模块, 配置为当备用链路质量的评估结果优于反馈数据 包中的主用链路质量的评估结果时, 或者, 当备用链路质量的评估结果优 于反馈数据包中的主用链路质量的评估结果且达到一定程度时 , 进行主备 链路切换。
15、 根据权利要求 12所述的实现亳米波定向链路切换的信源设备, 其 中, 所述反馈数据包还包括用于检测传输链路的测试数据。
16、 一种计算机存储介质, 所述计算机存储介质中存储有计算机可执 行指令, 所述计算机可执行指令用于执行权利要求 1至 4任一项所述的方 法。
17、 一种计算机存储介质, 所述计算机存储介质中存储有计算机可执 行指令, 所述计算机可执行指令用于执行权利要求 6至 7任一项所述的方 法。
PCT/CN2014/077899 2013-11-06 2014-05-20 毫米波定向链路切换方法、实现链路切换设备和存储介质 WO2014180378A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14795157.8A EP3068170B1 (en) 2013-11-06 2014-05-20 Millimeter wave directional link switchover method, link switchover implementation device
JP2016528230A JP6139032B2 (ja) 2013-11-06 2014-05-20 ミリ波指向性リンク切替方法、リンク切替を実現する機器および記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310544247.5 2013-11-06
CN201310544247.5A CN104640167A (zh) 2013-11-06 2013-11-06 一种毫米波定向链路切换方法及实现链路切换的设备

Publications (1)

Publication Number Publication Date
WO2014180378A1 true WO2014180378A1 (zh) 2014-11-13

Family

ID=51866760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077899 WO2014180378A1 (zh) 2013-11-06 2014-05-20 毫米波定向链路切换方法、实现链路切换设备和存储介质

Country Status (4)

Country Link
EP (1) EP3068170B1 (zh)
JP (1) JP6139032B2 (zh)
CN (1) CN104640167A (zh)
WO (1) WO2014180378A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10645755B2 (en) 2017-07-03 2020-05-05 Ricoh Company, Ltd. Communication system, communication device, and communication control method
CN114142917A (zh) * 2022-01-14 2022-03-04 中国人民解放军61096部队 卫星信道选择方法及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919949A (zh) * 2016-10-10 2018-04-17 中兴通讯股份有限公司 一种中继通信方法和装置
CN108282251B (zh) * 2017-01-06 2021-03-16 腾讯科技(深圳)有限公司 一种链路调整方法、装置及服务器
CN111836329B (zh) * 2019-04-19 2022-04-22 Oppo广东移动通信有限公司 数据传输方法及相关装置
CN110611589B (zh) * 2019-09-02 2020-10-02 珠海格力电器股份有限公司 区域控制系统的控制方法及装置、空调系统
WO2023050182A1 (en) * 2021-09-29 2023-04-06 Lenovo (Beijing) Limited Method and apparatus for wireless communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159669A (zh) * 2007-10-09 2008-04-09 华为技术有限公司 一种业务流量切换方法及装置
CN101777997A (zh) * 2010-01-21 2010-07-14 中兴通讯股份有限公司 一种实现网络链路流量切换的方法和系统
CN102984743A (zh) * 2012-12-13 2013-03-20 迈普通信技术股份有限公司 主备链路切换方法及无线路由设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2219356T3 (es) * 1999-07-07 2004-12-01 Samsung Electronics Co., Ltd. Aparato para asignacion de canales y procedimiento para canal comun de paquetes en un sistema de acceso multiple por distribucion de codigo (amrc) de banda ancha.
US20060068719A1 (en) * 2004-09-28 2006-03-30 Armond Hairapetian System and method for optimizing a directional communication link
JP4356727B2 (ja) * 2006-09-29 2009-11-04 沖電気工業株式会社 経路管理システム、経路管理方法及び経路管理プログラム
US20110261750A1 (en) * 2008-12-25 2011-10-27 Kyocera Corporation Radio terminal, relay device, and radio communication method
EP2282575A1 (en) * 2009-08-04 2011-02-09 Panasonic Corporation Channel quality reporting in a mobile communications system
CN105721022B (zh) * 2010-03-05 2020-05-12 韩国电子通信研究院 宽频带近距离无线通信装置及方法
JP5637975B2 (ja) * 2011-12-02 2014-12-10 アラクサラネットワークス株式会社 ネットワークシステムおよび通信装置
GB2499849B (en) * 2012-03-02 2014-03-05 Broadcom Corp Data transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159669A (zh) * 2007-10-09 2008-04-09 华为技术有限公司 一种业务流量切换方法及装置
CN101777997A (zh) * 2010-01-21 2010-07-14 中兴通讯股份有限公司 一种实现网络链路流量切换的方法和系统
CN102984743A (zh) * 2012-12-13 2013-03-20 迈普通信技术股份有限公司 主备链路切换方法及无线路由设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10645755B2 (en) 2017-07-03 2020-05-05 Ricoh Company, Ltd. Communication system, communication device, and communication control method
CN114142917A (zh) * 2022-01-14 2022-03-04 中国人民解放军61096部队 卫星信道选择方法及装置
CN114142917B (zh) * 2022-01-14 2024-03-19 中国人民解放军61096部队 卫星信道选择方法及装置

Also Published As

Publication number Publication date
JP6139032B2 (ja) 2017-05-31
JP2016535954A (ja) 2016-11-17
EP3068170A4 (en) 2016-10-26
EP3068170B1 (en) 2019-12-04
CN104640167A (zh) 2015-05-20
EP3068170A1 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
WO2014180378A1 (zh) 毫米波定向链路切换方法、实现链路切换设备和存储介质
US10292063B2 (en) Method, user equipment, base station, and system for enhancing reliability of wireless communication
JP2023100858A5 (zh)
US9130834B2 (en) Method and device for monitoring backbone inter base-station communication
US20160226785A1 (en) Device-initiated codec rate change during a voice call
US11700662B2 (en) Apparatus and method for mobility management
US11522803B2 (en) Method and apparatus for handling packet delay budget division and quality of service monitoring in a communication system
JP2016517188A5 (ja) デバイスツーデバイス通信の使用方法及び無線通信システム
US11889337B2 (en) Data transmission method and data transmission apparatus
WO2019029749A1 (zh) 信息上报的触发方法和装置、信号的选择方法和装置
EP3005774B1 (en) Establishing cooperating clusters in cellular communications systems
EP2605604B1 (en) Terminal and method for processing concurrent CS and PS services
JP6474007B2 (ja) 基地局および協調送信方式選択方法
JP2017529012A (ja) 参照信号受信品質の報告の方法及び装置
JP2010517380A (ja) チャネル・フェード中に送信を継続するためのシステムと方法
WO2018177224A1 (zh) 一种上行传输方法和装置
CN103067937B (zh) 状态信息处理方法与系统
KR101527826B1 (ko) 데이터 전송 방법, 장치, 및 시스템
KR20190011898A (ko) 무선 통신 시스템에서 단말, 기지국 및 이의 통신 방법
US11064404B2 (en) Handover method for wireless data transmission system
JP2011097155A (ja) 無線通信システム、および無線通信システムの制御方法
US20130142047A1 (en) Channel Quality Aware Transport Flow Compensation
WO2019146185A1 (ja) 中継装置、端末装置、制御方法、及びプログラム
EP3888305A1 (en) Differential latency measurement
US9326214B1 (en) Managing a handover of a wireless device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14795157

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016528230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014795157

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014795157

Country of ref document: EP