WO2014178404A1 - Glass film laminate, and production method for electronic device - Google Patents

Glass film laminate, and production method for electronic device Download PDF

Info

Publication number
WO2014178404A1
WO2014178404A1 PCT/JP2014/062001 JP2014062001W WO2014178404A1 WO 2014178404 A1 WO2014178404 A1 WO 2014178404A1 JP 2014062001 W JP2014062001 W JP 2014062001W WO 2014178404 A1 WO2014178404 A1 WO 2014178404A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass film
glass
support
mating surface
film
Prior art date
Application number
PCT/JP2014/062001
Other languages
French (fr)
Japanese (ja)
Inventor
尚利 稲山
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2014178404A1 publication Critical patent/WO2014178404A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation

Definitions

  • the present invention relates to flat panel displays such as liquid crystal displays and organic EL displays, solar cells, lithium ion batteries, digital signage, touch panels, electronic paper, glass substrates for devices such as mobile phones and smartphones, and organic EL lighting and mobile phones.
  • the present invention relates to a method for producing film-like glass used for a cover glass of a device such as a smartphone or a pharmaceutical package, and a glass film laminate in which a glass film is supported by a supporting glass.
  • flat panel displays such as a liquid crystal display, a plasma display, an organic EL display and a field emission display have become popular in recent years.
  • These flat panel displays are required to be thinner.
  • organic EL displays are required to be easily carried by folding or winding, and to be usable not only on flat surfaces but also on curved surfaces.
  • it is not limited to a display that can be used not only on a flat surface but also on a curved surface.
  • the surface of an object having a curved surface such as a car body surface, a roof of a building, a pillar, or an outer wall. If a solar cell can be formed or organic EL illumination can be formed, the application will be expanded. Therefore, the substrate and cover glass used in these devices are required to be further thinned and highly flexible.
  • Organic EL element materials such as a light emitting layer and an electron transport layer (Alq3) used for an organic EL display are deteriorated by contact with a gas such as oxygen or water vapor. Accordingly, since a high gas barrier property is required for a substrate used in an organic EL display, it is expected to use a glass substrate. However, unlike the resin film, the glass used for the substrate is weak in tensile stress and thus has low flexibility. When the glass substrate is bent, an excessive tensile stress is applied to the glass substrate surface, resulting in breakage. In order to impart flexibility to the glass substrate, it is necessary to make the glass substrate ultra thin, and a glass film or glass roll having a thickness of 200 ⁇ m or less as described in Patent Document 1 has been proposed.
  • the glass substrate used for electronic devices such as flat panel displays and solar cells is subjected to various processing related to electronic device manufacturing such as processing and cleaning.
  • processing and cleaning various processing related to electronic device manufacturing
  • glass is a brittle material, so it is damaged by a slight stress change, and handling is difficult when performing various electronic device manufacturing related processes described above. There is a problem that it is difficult.
  • a glass film having a thickness of 200 ⁇ m or less is rich in flexibility, it is difficult to perform positioning when performing processing, and there is a problem that displacement or the like occurs during patterning.
  • Patent Document 2 proposes a glass film laminate in which a glass film is laminated on a support glass as a support. According to this, even if a glass film having no strength or rigidity is used alone, the supporting glass has high rigidity, so that the entire glass film laminate can be easily positioned during processing. Moreover, in patent document 2, it is supposed that it can peel from a support glass immediately, without damaging a glass film after completion
  • Patent Document 3 the glass film is exposed so that the corner portion of the glass film is exposed at a peeling start portion formed by cutting out a part of the supporting glass as a support in a concave shape.
  • a glass film laminate laminated on a supporting glass has been proposed. Thereby, since the corner part of a glass film can be easily hold
  • Patent Document 3 has a problem that the strength of the supporting glass is insufficient in the vicinity of the peeling start portion because the concave peeling start portion is provided in the vicinity of the end portion of the supporting glass as a support.
  • the support glass is damaged when a positioning pin or the like hits an end near the peeling start portion of the support glass at the time of manufacturing-related processing of the electronic device.
  • the problem that support glass breaks from a peeling start part by the thermal shock at the time of temperature rise also arises.
  • the present invention can easily peel the glass film from the support while preventing breakage of the support during manufacturing-related processing and damage of the glass film when peeling the glass film from the support.
  • the problem is to do.
  • the present invention devised to solve the above problems is a glass film laminate in which a mating surface of a support and a mating surface of a glass film are brought into surface contact with each other, and at least a part of an edge of the glass film A thick part is provided on the surface, and the thick part is brought into contact with the mating surface of the support.
  • the glass film can be easily peeled off from the support starting from the thick part of the glass film. Therefore, it is not necessary to provide a concave peeling start portion that causes a decrease in strength near the end of the support. Also, since the thick part of the glass film is the starting point of peeling, excessive force is less likely to act on the part relatively thinner than the thick part of the glass film at the time of peeling, preventing the glass film from being damaged. it can.
  • the support protrudes from the glass film.
  • a separation region is formed in which the mating surface of the glass film and the mating surface of the support are separated from each other in the vicinity of the contact portion with the mating surface of the thick-walled support.
  • the glass film can be easily peeled from the support by gradually widening the separation region.
  • a thin metal member such as a resin sheet or a razor
  • the peeling jig can be easily inserted into the separating area. Can be easily spread.
  • the thick portion is provided on at least one side of the polygonal glass film, and the thick portion and the mating surface of the support are in line contact.
  • the above-described peeling jig can be easily inserted into the separation region when the glass film is peeled off.
  • the supporting glass and the glass film are more preferably similar.
  • the polygonal glass film is preferably rectangular.
  • the thick portion protrudes from the mating surface of the glass film to the support side by 0.1 to 20 ⁇ m.
  • the width in the direction along the mating surface of the support in the separated region is preferably 0.1 to 5 mm.
  • the thick portion is preferably formed by laser cutting of a glass film.
  • the thick part can be easily formed.
  • dross that is scattered and removed at the time of cutting may adhere to the laser cutting portion and its vicinity.
  • the adhesive force between the thick portion and the vicinity of the thick portion and the support is reduced, and the glass film can be more easily peeled from the support.
  • the thick portion may be provided on two adjacent sides of the glass film.
  • the glass film can be peeled from the support starting from two adjacent sides of the glass film. Moreover, there also exists an advantage that it becomes easy to peel a glass film from a support
  • the thick part may be provided on two opposing sides of the glass film.
  • the glass film can be peeled from the support starting from the two opposing sides of the glass film.
  • the thick portion may be provided on all sides of the glass film.
  • the glass film can be peeled from the support starting from all sides of the glass film.
  • the mating surface of the support is composed of glass or an inorganic thin film formed on the glass surface, and the surface roughness Ra of the mating surface of the glass film and the mating surface of the support is 2.0 nm, respectively.
  • the following is preferable.
  • the glass film mating surface and the support mating surface can be brought into close contact with each other without using an adhesive.
  • the glass film is preferably formed by an overflow down draw method, a slot down draw method, or a float method.
  • the thickness of the glass film may be 300 ⁇ m or less.
  • the thickness of the glass film is 300 ⁇ m or less, breakage such as cracking and chipping is likely to occur, but according to the present invention, even such a thin glass film can be easily generated without causing breakage. It can peel from a support body.
  • the present invention is an electronic device manufacturing method for manufacturing an electronic device including a processed glass film subjected to manufacturing-related processing, wherein at least a part of the glass film is laser-processed.
  • the first step of forming the thick part on the edge of the glass film by fusing, and the thick part in contact with the mating surface of the support the mating surface of the glass film is placed on the mating surface of the support.
  • the second step of making a glass film laminate by making surface contact the third step of carrying out the manufacturing related process on the glass film side of the glass film laminate, and the thick part after the manufacturing related process
  • a fourth step of peeling the treated glass film from the support is
  • the treated glass film can be easily peeled from the supporting glass starting from the thick portion of the treated glass film that has undergone manufacturing-related processing. Therefore, it is not necessary to provide a concave peeling start portion that causes a decrease in strength in the vicinity of the end portion of the supporting glass.
  • the thick part of the treated glass film becomes the starting point of peeling, excessive force is less likely to act on the relatively thin part than the thick part of the treated glass film, and the treated glass film is damaged. Can be prevented. Therefore, the processed glass film which comprises an electronic device can be manufactured easily and cheaply.
  • a fifth step of removing the thick part from the treated glass film may be further included after the fourth step.
  • the glass film can be easily peeled off from the support starting from the thick part of the glass film, the support is damaged during the manufacturing-related processing, or the glass film is peeled off from the support. It is possible to prevent the glass film from being damaged.
  • the glass film laminated body 1 which concerns on this embodiment makes the mating surface (lower surface) 22 of the glass film 2 surface-contact with the mating surface (upper surface) 31 of the support glass 3 as a support body. Laminated.
  • a thick portion 21 having a thickness larger than the thickness t of the glass film 2 is formed on the edge 20 of the glass film 2.
  • the thick portion 21 may be formed on a part of the edge 20 of the glass film 2 or may be formed on the entire edge 20 of the glass film 2.
  • the thick part 21 may be provided in the corner
  • the thick part 21 may be provided in orientation flat (only orientation flat and another site
  • the thick portion 21 may be formed on only one side of the rectangular glass film 2, but may be provided on two adjacent sides, two opposing sides, or all four sides.
  • the contact location 13 of the thick part 21 of the glass film 2 and the mating surface 31 of the supporting glass 3, the mating surface 22 of the glass film 2, and the mating surface of the supporting glass 3 Between the contact surface 11 with 31, a separation region 12 in which the mating surface 22 of the glass film 2 and the mating surface 31 of the supporting glass 3 are separated from each other is formed.
  • the contact surface 11 can be separated from the support glass 3 by separating the contact area 11 by gradually widening the separation region 12, and the glass film 2 can be easily peeled off.
  • the peeling jig can be easily inserted into the separation region 12. can do.
  • the separation region 12 is a space surrounded by the mating surface 22 of the glass film 2, the mating surface 31 of the support glass 3, and the outer surface 211 of the thick portion 21.
  • the width w (distance between the contact portion 13 and the contact surface 11) in the direction along the mating surface 31 of the support glass 3 in the separation region 12 is preferably 0.01 to 10 mm, and preferably 0.1 to 5 mm. More preferably, the thickness is 1 to 4 mm. Thereby, it is possible to appropriately produce the separation region 12 while ensuring a wide contact surface 11 between the glass film 2 and the support glass 3. Note that the separation region 12 may not be formed.
  • the support glass 3 protrudes from the glass film 2. Thereby, it can prevent that the glass film 2 breaks because the edge 20 of the glass film 2 collides with the positioning pin etc. which are not shown in figure.
  • the protruding amount of the supporting glass 3 from the glass film 2 is preferably 0.5 to 30 mm, and more preferably 0.5 to 5 mm. By reducing the amount of protrusion of the supporting glass 3, the effective surface of the glass film 2 can be secured more widely.
  • the supporting glass 12 protrudes from the glass film 11 on all four sides, and at least a portion where the thick portion 21 is formed on the end side 20 of the glass film 2. It is preferable that the supporting glass 3 protrudes from the glass film 2. The supporting glass 3 does not have to protrude from the glass film 2.
  • the surface roughness Ra of the mating surface 22 of the glass film 2 and the mating surface 31 of the support glass 3 is preferably 2.0 nm or less. Thereby, the mating surface 22 of the glass film 2 and the mating surface 31 of the support glass 3 can be laminated
  • the surface roughness Ra of the mating surface 22 of the glass film 2 and the mating surface 31 of the supporting glass 3 is preferably 1.0 nm or less, more preferably 0.5 nm or less, and 0.2 nm or less. Most preferred.
  • the protrusion amount p of the thick portion 21 from the mating surface 22 of the glass film 2 to the support glass 3 side is preferably 0.1 to 100 ⁇ m, more preferably 0.1 to 20 ⁇ m, and 1 to 10 ⁇ m. Most preferably. Thereby, the separation area
  • the thick portion 21 is preferably formed in a circular shape in cross section. Thereby, the contact location 13 of the thick part 21 and the mating surface 31 of the support glass 3 can be made into line contact.
  • the glass film 2 can be more easily peeled from the support glass 3 by setting the contact portion 13 between the thick portion 21 and the mating surface 31 of the support glass 3 as line contact.
  • the thick portion 21 is not limited to a circular shape in cross section, and the thick portion 21 may be formed in a polygonal shape in cross section.
  • the contact portion 13 between the thick portion 21 and the mating surface 31 of the support glass 3 is not limited to the line contact, and by forming a part of the thick portion 21 in a planar shape, It is good also considering the contact location 13 with the mating surface 31 of the support glass 3 as surface contact. Further, the thick portion 21 and the mating surface 31 of the support glass 3 are in point contact at a plurality of contact points 13, and the plurality of contact points are formed in a (pseudo) line shape. May be.
  • the glass film 2 for example, silicate glass or silica glass is used, preferably borosilicate glass is used, and most preferably non-alkali glass is used. If the glass film 2 contains an alkali component, cations are dropped on the surface, so-called soda blowing phenomenon occurs, and the structure becomes rough. In this case, if the glass film 2 is used while being curved, there is a possibility that the glass film 2 may be broken from a portion that has become rough due to deterioration over time.
  • the alkali-free glass is a glass that does not substantially contain an alkali component (alkali metal oxide), and specifically, a glass having an alkali component of 3000 ppm or less.
  • the content of the alkali component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.
  • the thickness of the glass film 2 is preferably 300 ⁇ m or less, more preferably 5 ⁇ m to 200 ⁇ m, and most preferably 5 ⁇ m to 100 ⁇ m. Thereby, the thickness of the glass film 2 can be made thinner and appropriate flexibility can be imparted, and handling properties are difficult, and problems such as positioning errors and bending during patterning are likely to occur. On the other hand, processing related to electronic device manufacturing can be easily performed by using the supporting glass 3 described later. If the thickness of the glass film 2 is less than 5 ⁇ m, the strength of the glass film 2 tends to be insufficient, and the glass film 2 may be difficult to peel from the support glass 3.
  • the support glass 3 for example, silicate glass, silica glass, borosilicate glass, alkali-free glass, etc. are used in the same manner as the glass film 2.
  • the supporting glass 3 it is preferable to use a glass having a difference in thermal expansion coefficient at 30 to 380 ° C. with respect to the glass film 2 within 5 ⁇ 10 ⁇ 7 / ° C.
  • the supporting glass 3 and the glass film 2 are most preferably glass having the same composition.
  • the thickness of the support glass 3 is preferably 400 ⁇ m or more. When the thickness of the supporting glass 3 is less than 400 ⁇ m, there is a possibility that a problem may occur in terms of strength when the supporting glass 3 is handled alone.
  • the thickness of the supporting glass 3 is preferably 400 ⁇ m to 700 ⁇ m, and most preferably 500 ⁇ m to 700 ⁇ m. As a result, the glass film 2 can be reliably supported, and breakage of the glass film 2 that can occur when the glass film 2 is peeled from the support glass 3 can be effectively suppressed.
  • the thickness of the support glass 3 may be less than 400 ⁇ m (for example, 300 ⁇ m or the like, the same thickness as the glass film 2). .
  • the glass film 2 is preferably formed by an overflow down draw method, a slot down draw method, or a float method.
  • thick ear portions may be formed at both ends of the glass ribbon that is the original material, but the ear portions are used as the thick portion 21. can do. Thereby, it becomes possible to omit the post-process for producing the thick portion 21.
  • the thick portion 21 may be newly formed on the edge of the glass film 2 after the ear portion is removed.
  • the overflow down draw method is a molding method in which both sides of the glass plate do not come into contact with the molded member at the time of molding, and both surfaces (translucent surface) of the obtained glass plate are not easily scratched and need not be polished. High surface quality can be obtained.
  • the glass ribbon immediately after the cross section in the forming furnace 4 flows down from the lower end portion 42 of the wedge-shaped formed body 41. G is stretched downward while the shrinkage in the width direction is restricted by the cooling roller 43, and becomes thin to a predetermined thickness.
  • the glass ribbon G having reached the predetermined thickness is gradually cooled in a slow cooling furnace (annealer), and the thermal distortion of the glass ribbon G is removed.
  • the cooled glass ribbon G is cut
  • the mating surface 22 made of the glass surface of the glass film 2 and the mating surface 31 made of the glass surface of the supporting glass 3 are brought into direct surface contact with each other, and both are laminated.
  • a support formed by forming a resin layer such as a silicone resin, EVA, PVB, acrylic, or an optical transparent adhesive on the surface of the support glass 3 may be used as the mating surface 31.
  • an inorganic oxide thin film such as ITO or ZrO 2 , SiN, TiN, CrN, TiAlN, AlCrN or the like is formed on the surface of the supporting glass 3 or the surface of the glass film 2.
  • the mating surfaces 22 and 31 may be used.
  • the surface roughness Ra of the mating surface 31 after the formation of the inorganic thin film is 2.0 nm or less, 1.0 nm or less, 0.5 nm or less, 0.2 nm or less, respectively. Is preferable in this order.
  • FIG. 3 is a view showing a modification of the glass film used in the embodiment of the present invention.
  • the thick portion 21 has a substantially columnar shape formed along the end side of the glass film 2, and the bulge is repeated substantially periodically along the end side in the columnar portion. It has a portion 21a and a constricted portion 21b. Thereby, the contact location 13 of the thick part 21 and the support glass 3 can be made into point contact, and the glass film 2 can be peeled from the support glass 3 more easily.
  • the thick part 21 described in the above embodiment may be formed by laser fusing the glass film 2.
  • the thick part 21 By cutting the glass film 2 by laser cutting, the thick part 21 can be easily formed at the end of the glass film 2, and dross generated at the time of laser cutting is outside the thick part 21 and the vicinity of the thick part 21.
  • the adhesive force between the thick portion 21 and the mating surface 31 of the supporting glass 3 is reduced, and the thick portion 21 can be used as a starting point for peeling the glass film 2 more favorably.
  • FIG. 4 is a perspective view showing a laser fusing device used when the thick portion 21 is produced.
  • the laser fusing device 5 includes a conveyor belt 51 that loads and conveys the glass film 2 in a flat position, a laser irradiator 52 that irradiates the glass film 2 being conveyed with a laser L, and a laser.
  • the assist gas injector 53 that injects the assist gas A to the L irradiation unit is configured as a main element.
  • a pair of conveyor belts 51 are provided across the planned cutting line X extending to the glass film 2, and the pair of conveyor belts 51 are respectively wound around a driving roller and a driven roller (not shown). And by the rotational drive of both rollers, the conveyor belt 51 becomes a structure which can move along the T direction shown in the figure parallel to the cutting projected line X.
  • the laser irradiator 52 is fixedly installed at a fixed position so that a planned cutting line X extending parallel to the transport direction ⁇ passes through the glass film 2 below the vertical direction, and is oscillated from a laser oscillator (not shown).
  • the laser L is condensed and irradiated along the planned cutting line X from above.
  • a carbon dioxide (CO 2 ) laser (wavelength 10.6 ⁇ m) is used as the laser L.
  • the assist gas injector 53 is fixed and installed at a fixed position in the same manner as the laser irradiator 52, and is inclined with respect to the front and back surfaces of the glass film 2 so as to be directed to the irradiation part of the laser L. .
  • the assist gas injector 53 is connected to an air compressor (for example, an air compressor) (not shown).
  • the assist gas injector 53 injects air compressed by the air compressor as an assist gas A onto the laser L irradiation unit.
  • the glass melted by the heat of L is configured to be scattered and removed by the pressure.
  • the laser fusing device 5 conveys the glass film 2 loaded on the conveyor belt 51 in the same direction by moving the conveyor belt 51 in the T direction. Then, the laser L is irradiated from the laser irradiator 52 along the planned cutting line X to the glass film 2 being conveyed, the glass is melted by the laser heat, and the molten glass is discharged from the assist gas injector 53. It is scattered and removed by the pressure of the injected assist gas A. Thereby, the fusing part M is advanced to the glass film 2 along the planned cutting line X, and the glass film 2 is cut.
  • the irradiation output of the laser irradiator 52 By appropriately selecting the irradiation output of the laser irradiator 52, the beam mode in the irradiation part of the laser light L, the injection pressure of the assist gas A, the conveying speed of the conveyor belt 51, the edge 20 of the glass film 2 after laser fusing.
  • the shape and thickness of the thick portion 21 formed on the substrate can be adjusted as appropriate.
  • the method for producing the thick portion 21 by laser cutting the glass film has been described.
  • the method for producing the thick portion 21 is not limited to laser fusing, and flames such as flammable gas and heating wires are used.
  • the thick portion 21 may be produced with the surface tension, or after partially heating and melting a part of the glass film, After the glass film is pulled and broken at the melted portion, the thick portion 21 may be produced by the surface tension generated on the fracture surface.
  • FIG. 5 is a view showing a flowchart of a method for manufacturing an electronic device according to an embodiment of the present invention.
  • the electronic device manufacturing method according to the present embodiment includes a first step S1 for forming a thick portion 21 on the edge 20 of the glass film 2 by laser fusing the glass film 2, and
  • the glass film laminate 1 is formed by laminating the mating surface 22 of the glass film 2 on the mating surface 31 of the support glass 3 while bringing the thick portion 21 into contact with the mating surface 31 of the support glass 3.
  • the second step S2 to be manufactured the third step S3 for performing manufacturing-related processing on the glass film 2 side of the glass film laminate 1, and the manufacturing-related processing from the support glass 3 starting from the thick portion 21 after the manufacturing-related processing 4th process S4 which peels the processed glass film to which the process was given.
  • 1st process S1 is a process of forming the thick part 21 in the glass film 2 edge 20 by laser-cutting the glass film 2.
  • 2nd process S2 is the process of laminating
  • FIG. The method for laminating the glass film 2 on the supporting glass 3 is not particularly limited, and the glass film 2 can be laminated on the supporting glass 3 using a known laminating machine.
  • the third step S3 is a step of performing manufacturing-related processing on the glass film 2 side of the glass film laminate 1.
  • Manufacturing-related processing performed on the glass film 2 side is processing related to electronic device manufacturing, for example, film formation processing by a sputtering method, sealing processing for sealing elements, sintering processing of glass frit, etc. Can be mentioned.
  • film formation processing such as an antireflection film and a transmission prevention film by a sputtering method or the like can be given.
  • the manufacturing-related process in the third step S3 may be configured by a single processing unit, or may be configured by a plurality of identical or different processing units. Moreover, a manufacturing related process with heating may be included in part, and a manufacturing related process without heating such as a cleaning process may be included.
  • an element is formed on the glass film 2 of the glass film laminated body 1 produced at the 2nd process, and the element formed on the glass film 2 with the cover glass which is not illustrated is sealed.
  • the support glass may be laminated
  • the fourth step S4 is a step of peeling the treated glass film from the support glass 3.
  • a peeling jig (not shown) may be used. By using the peeling jig, the peeling jig can be smoothly inserted into the separation region 12, and by continuing to insert the peeling jig, the separation region 12 can be expanded.
  • a fluid containing water a gas having a high relative humidity of water, a gas containing water mist, or liquid water itself
  • the glass film laminated body 1 and the electronic device with support glass mentioned above may be immersed in water. When immersed in water, ultrasonic waves may be applied.
  • the shape of the peeling jig may be a thread-like member, but it is preferable to use a member having a small thickness and a wide width in the peeling progress direction, such as a sheet shape, a band shape, a plate shape or a strip shape.
  • the thickness of the peeling jig is preferably 0.01 mm to 1 mm, and more preferably 0.1 mm to 0.5 mm.
  • the width of the peeling jig 6 depends on the area of the glass film laminate 1 to be peeled, but is preferably wider than at least the glass film laminate 1 in the peeling progress direction.
  • the material of the peeling jig can be a rigid metal such as aluminum or stainless steel, but it is preferable to use a flexible resin film such as polyethylene or acrylic, and a hydrophobic film such as a fluorine film.
  • the resin sheet is more preferable.
  • the treated glass film is adsorbed by a pad or the like, and the treated glass film is peeled from the support glass 3 by operating the pad in a direction in which the pad is separated from the support glass 3.
  • a method may be used.
  • the first step S1 to the fourth step S4 it is possible to obtain a glass film that has undergone manufacturing-related processing, and the film can be appropriately incorporated into an electronic device or the like.
  • an electronic device sealed with a film-like glass can be manufactured by directly manufacturing a liquid crystal panel or an organic EL panel in the third step S3.
  • the film-like glass manufacturing method according to the present embodiment may further include a fifth step S5 as shown in FIG.
  • 5th process S5 is a process of removing the thick part 21 from a processed glass film.
  • a method for removing the thick portion 21 from the treated glass film various methods can be used as described below. For example, (1) after forming a scribe line on the planned cutting line along the thick portion 21 on the treated glass film using a diamond tip or the like, the thick portion is cut by applying a bending stress. (2) An initial crack is formed on the planned cutting line, and the initial crack is developed on the planned cutting line by using thermal stress generated by spraying the coolant after laser irradiation.
  • the manufactured glass film is easy to be incorporated into an electronic device or the like because the thick portion 21 is removed. Further, as described above, the thick portion 21 may be removed after the electronic device directly sealed with the glass film is manufactured.
  • Non-alkali glass (OA-10G, thermal expansion coefficient at 30 to 380 ° C .: 38 ⁇ 10 ⁇ 7 / ° C.) manufactured by Nippon Electric Glass Co., Ltd. was used as the supporting glass and the glass film.
  • Support glass and glass film were produced by the overflow downdraw method.
  • a rectangular transparent glass having a length of 100 mm, a width of 100 mm, and a thickness of 100 ⁇ m was prepared as a glass film. The four sides of the glass film were cut into 100 mm squares by laser cutting.
  • the conditions for laser fusing were as follows: the conveyance speed of the glass film was 20 mm / second, the laser pulse cycle was 1000 ⁇ s, the pulse width was 120 ⁇ s, the laser output was 9.9 W, and the laser beam diameter was 150 ⁇ m. Assist air was sprayed at 60 l / min horizontally from the direction perpendicular to the glass film traveling direction. Simultaneously with laser fusing, an annealing laser was irradiated at an output of 39 W. After laser fusing, a thick part of 105 ⁇ m was formed on the edge of the glass film.
  • region was formed in the edge side of a glass film was obtained.
  • Comparative example As a comparative example, when a glass film having all four sides cut by laser cleaving was laminated on a support glass and peeling of the glass film was attempted, there was a case where peeling of the glass film became difficult, Some glass films were damaged.
  • the present invention can be suitably used for glass substrates used in flat panel displays such as liquid crystal displays and organic EL displays, devices such as solar cells, and cover glasses for organic EL lighting.

Landscapes

  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

 A glass film laminate (1) obtained by laminating a glass film (2) onto support glass (3), wherein the support glass (3) extends beyond the glass film (2), and a thick section (21) is provided in at least a part of the edge (20) of the glass film (2). The glass film (2) is peeled away from the support glass (3) with the thick section (21) serving as the starting point.

Description

ガラスフィルム積層体および電子デバイスの製造方法Glass film laminate and method for producing electronic device
 本発明は、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイや、太陽電池、リチウムイオン電池、デジタルサイネージ、タッチパネル、電子ペーパー、携帯電話やスマートフォン等のデバイスのガラス基板、及び有機EL照明や携帯電話、スマートフォン等のデバイスのカバーガラスや医薬品パッケージ等に使用されるフィルム状ガラスの製造方法、及び支持ガラスによってガラスフィルムを支持したガラスフィルム積層体に関する。 The present invention relates to flat panel displays such as liquid crystal displays and organic EL displays, solar cells, lithium ion batteries, digital signage, touch panels, electronic paper, glass substrates for devices such as mobile phones and smartphones, and organic EL lighting and mobile phones. The present invention relates to a method for producing film-like glass used for a cover glass of a device such as a smartphone or a pharmaceutical package, and a glass film laminate in which a glass film is supported by a supporting glass.
 省スペース化の観点から、従来普及していたCRT型ディスプレイに替わり、近年は液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ等のフラットパネルディスプレイが普及している。これらのフラットパネルディスプレイにおいては、さらなる薄型化が要請される。特に有機ELディスプレイには、折りたたみや巻き取ることによって持ち運びを容易にすると共に、平面だけでなく曲面にも使用可能とすることが求められている。また、平面だけでなく曲面にも使用可能とすることが求められているのはディスプレイには限られず、例えば、自動車の車体表面や建築物の屋根、柱や外壁等、曲面を有する物体の表面に太陽電池を形成したり、有機EL照明を形成したりすることができれば、その用途が広がることとなる。従って、これらデバイスに使用される基板やカバーガラスには、更なる薄板化と高い可撓性が要求される。 From the viewpoint of space saving, instead of the CRT type display which has been widely used in the past, flat panel displays such as a liquid crystal display, a plasma display, an organic EL display and a field emission display have become popular in recent years. These flat panel displays are required to be thinner. In particular, organic EL displays are required to be easily carried by folding or winding, and to be usable not only on flat surfaces but also on curved surfaces. In addition, it is not limited to a display that can be used not only on a flat surface but also on a curved surface. For example, the surface of an object having a curved surface, such as a car body surface, a roof of a building, a pillar, or an outer wall. If a solar cell can be formed or organic EL illumination can be formed, the application will be expanded. Therefore, the substrate and cover glass used in these devices are required to be further thinned and highly flexible.
 有機ELディスプレイに使用される発光層や電子輸送層(Alq3)をはじめとした有機EL素子材料は、酸素や水蒸気等の気体が接触することにより劣化する。従って有機ELディスプレイに使用される基板には高いガスバリア性が求められるため、ガラス基板を使用することが期待されている。しかしながら、基板に使用されるガラスは、樹脂フィルムと異なり引っ張り応力に弱いため可撓性が低く、ガラス基板を曲げることによりガラス基板表面に過度な引っ張り応力がかけられると破損に至る。ガラス基板に可撓性を付与するためにはガラス基板の超薄板化を行う必要があり、特許文献1に記載されているような厚み200μm以下のガラスフィルムやガラスロールが提案されている。 Organic EL element materials such as a light emitting layer and an electron transport layer (Alq3) used for an organic EL display are deteriorated by contact with a gas such as oxygen or water vapor. Accordingly, since a high gas barrier property is required for a substrate used in an organic EL display, it is expected to use a glass substrate. However, unlike the resin film, the glass used for the substrate is weak in tensile stress and thus has low flexibility. When the glass substrate is bent, an excessive tensile stress is applied to the glass substrate surface, resulting in breakage. In order to impart flexibility to the glass substrate, it is necessary to make the glass substrate ultra thin, and a glass film or glass roll having a thickness of 200 μm or less as described in Patent Document 1 has been proposed.
 フラットパネルディスプレイや太陽電池等の電子デバイスに使用されるガラス基板には、加工処理や洗浄処理等、様々な電子デバイス製造関連の処理がなされる。ところが、これら電子デバイスに使用されるガラス基板のフィルム化を行うと、ガラスは脆性材料であるため多少の応力変化により破損に至り、上述した各種電子デバイス製造関連処理を行う際に、取り扱いが大変困難であるという問題がある。加えて、厚み200μm以下のガラスフィルムは可撓性に富むため、処理を行う際に位置決めを行い難く、パターンニング時にずれ等が生じるという問題もある。 The glass substrate used for electronic devices such as flat panel displays and solar cells is subjected to various processing related to electronic device manufacturing such as processing and cleaning. However, when a glass substrate used in these electronic devices is made into a film, glass is a brittle material, so it is damaged by a slight stress change, and handling is difficult when performing various electronic device manufacturing related processes described above. There is a problem that it is difficult. In addition, since a glass film having a thickness of 200 μm or less is rich in flexibility, it is difficult to perform positioning when performing processing, and there is a problem that displacement or the like occurs during patterning.
 ガラスフィルムの取り扱い性を向上させるために、特許文献2では、支持体としての支持ガラスの上にガラスフィルムを積層させたガラスフィルム積層体が提案されている。これによれば、単体では強度や剛性のないガラスフィルムを用いても、支持ガラスの剛性が高いため、処理の際にガラスフィルム積層体全体として位置決めが容易となる。また、特許文献2では、工程終了後にガラスフィルムを破損することなくすみやかに支持ガラスから剥離することが可能であるとされている。ガラスフィルム積層体の厚みを従来のガラス基板の厚みと同一とすれば、従来のガラス基板用液晶表示素子製造ラインを共用して、液晶表示素子を製造することも可能となる。 In order to improve the handleability of the glass film, Patent Document 2 proposes a glass film laminate in which a glass film is laminated on a support glass as a support. According to this, even if a glass film having no strength or rigidity is used alone, the supporting glass has high rigidity, so that the entire glass film laminate can be easily positioned during processing. Moreover, in patent document 2, it is supposed that it can peel from a support glass immediately, without damaging a glass film after completion | finish of a process. If the thickness of the glass film laminate is the same as that of a conventional glass substrate, a liquid crystal display element can be manufactured by sharing a conventional liquid crystal display element manufacturing line for glass substrates.
 特許文献2に記載されたガラスフィルム積層体では、最終的に電子デバイス等に使用するため、支持ガラスからガラス基板を剥離する必要がある。この際に、一般的には、ガラスフィルムのコーナー部からガラスフィルムの剥離を開始する。しかしながら、特許文献2に記載のガラスフィルム積層体は、ガラスフィルムの全ての面が支持ガラスと接触している。このため、支持ガラスとガラスフィルムとの接着力が強固な場合については、ガラスフィルムのコーナー部を把持し難く、ガラスフィルムの剥離の際にガラスフィルムのコーナー部に破損や欠け等が生じ易くなるという問題がある。 In the glass film laminate described in Patent Document 2, it is necessary to peel the glass substrate from the supporting glass in order to be finally used for an electronic device or the like. At this time, generally, peeling of the glass film is started from the corner portion of the glass film. However, in the glass film laminate described in Patent Document 2, all surfaces of the glass film are in contact with the supporting glass. For this reason, when the adhesive force between the supporting glass and the glass film is strong, it is difficult to grip the corner of the glass film, and the glass film is easily damaged or chipped when the glass film is peeled off. There is a problem.
 この問題を解決するために、特許文献3では、支持体としての支持ガラス上の一部を凹状に切り欠いて形成された剥離開始部で、ガラスフィルムのコーナー部が露出するようにガラスフィルムを支持ガラス上に積層したガラスフィルム積層体が提案されている。これにより、ガラスフィルムの剥離の際には、ガラスフィルムのコーナー部を容易に把持することができるため、支持ガラスからガラスフィルムを容易に剥離することができる。 In order to solve this problem, in Patent Document 3, the glass film is exposed so that the corner portion of the glass film is exposed at a peeling start portion formed by cutting out a part of the supporting glass as a support in a concave shape. A glass film laminate laminated on a supporting glass has been proposed. Thereby, since the corner part of a glass film can be easily hold | gripped in the case of peeling of a glass film, a glass film can be easily peeled from support glass.
特開2010-132531号公報JP 2010-132531 A 特開2011-183792号公報JP 2011-183792 A 特開2012-030404号公報JP 2012-030404 A
 しかしながら、特許文献3では、支持体としての支持ガラスの端部近傍に凹状の剥離開始部を設けているため、剥離開始部近辺では支持ガラスの強度が不足するという問題がある。例えば、電子デバイスの製造関連処理時に、支持ガラスの剥離開始部付近の端部に位置決めピン等が打突すること等により、支持ガラスが破損するという問題が生じる。また、ガラスフィルム積層体が、加熱を伴う電子デバイスの製造関連処理を経る場合に、昇温時に熱衝撃により、剥離開始部を起点として、支持ガラスが破損するという問題も生じる。 However, Patent Document 3 has a problem that the strength of the supporting glass is insufficient in the vicinity of the peeling start portion because the concave peeling start portion is provided in the vicinity of the end portion of the supporting glass as a support. For example, there is a problem that the support glass is damaged when a positioning pin or the like hits an end near the peeling start portion of the support glass at the time of manufacturing-related processing of the electronic device. Moreover, when a glass film laminated body passes through manufacture related process of the electronic device accompanied by a heating, the problem that support glass breaks from a peeling start part by the thermal shock at the time of temperature rise also arises.
 以上の実情に鑑み、本発明は、製造関連処理時の支持体の破損や、支持体からガラスフィルムを剥離する際のガラスフィルムの破損を防止しつつ、支持体からガラスフィルムを容易に剥離可能とすることを課題とする。 In view of the above circumstances, the present invention can easily peel the glass film from the support while preventing breakage of the support during manufacturing-related processing and damage of the glass film when peeling the glass film from the support. The problem is to do.
 上記課題を解決するために創案された本発明は、支持体の合わせ面とガラスフィルムの合わせ面とを面接触させて積層したガラスフィルム積層体であって、ガラスフィルムの端辺の少なくとも一部に肉厚部を設け、肉厚部を支持体の合わせ面に接触させたことを特徴とする。 The present invention devised to solve the above problems is a glass film laminate in which a mating surface of a support and a mating surface of a glass film are brought into surface contact with each other, and at least a part of an edge of the glass film A thick part is provided on the surface, and the thick part is brought into contact with the mating surface of the support.
 このような構成によれば、ガラスフィルムの肉厚部を起点として、支持体からガラスフィルムを容易に剥離することができる。そのため、支持体の端部近傍に強度低下の原因となる凹状の剥離開始部を設けずに済む。また、ガラスフィルムの肉厚部が剥離起点となるので、剥離時にガラスフィルムの肉厚部よりも相対的に薄い部分に過度な力が作用しにくくなり、ガラスフィルムが破損するのを防ぐことができる。 According to such a configuration, the glass film can be easily peeled off from the support starting from the thick part of the glass film. Therefore, it is not necessary to provide a concave peeling start portion that causes a decrease in strength near the end of the support. Also, since the thick part of the glass film is the starting point of peeling, excessive force is less likely to act on the part relatively thinner than the thick part of the glass film at the time of peeling, preventing the glass film from being damaged. it can.
 上記の構成において、支持体が、ガラスフィルムから食み出していることが好ましい。 In the above configuration, it is preferable that the support protrudes from the glass film.
 このようにすれば、製品となるガラスフィルムに他部材が直接接触するのを防ぐことができる。 In this way, it is possible to prevent other members from coming into direct contact with the glass film that is the product.
 上記の構成において、肉厚部の支持体の合わせ面との接触箇所近傍に、ガラスフィルムの合わせ面と支持体の合わせ面とが互いに離間した離間領域が形成されていることが好ましい。 In the above configuration, it is preferable that a separation region is formed in which the mating surface of the glass film and the mating surface of the support are separated from each other in the vicinity of the contact portion with the mating surface of the thick-walled support.
 このようにすれば、離間領域を徐々に広げていくことで、ガラスフィルムを支持体から容易に剥離することができる。ここで、支持体からガラスフィルムを剥離する際に、剥離治具として樹脂シートや剃刀のような薄肉の金属部材を使用すれば、剥離治具を離間領域に容易に挿入できるため、離間領域を簡単に広げることができる。 In this way, the glass film can be easily peeled from the support by gradually widening the separation region. Here, when peeling the glass film from the support, if a thin metal member such as a resin sheet or a razor is used as a peeling jig, the peeling jig can be easily inserted into the separating area. Can be easily spread.
 上記の構成において、肉厚部が、多角形状のガラスフィルムの少なくとも1辺に設けられており、肉厚部と支持体の合わせ面とが、線接触していることが好ましい。 In the above configuration, it is preferable that the thick portion is provided on at least one side of the polygonal glass film, and the thick portion and the mating surface of the support are in line contact.
 このようにすれば、ガラスフィルムの1辺に沿って離間領域が形成されるため、ガラスフィルムの剥離時に、上述の剥離治具を離間領域により挿入しやすくなる。なお、支持ガラスとガラスフィルムとは相似形であることがより好ましい。 In this way, since the separation region is formed along one side of the glass film, the above-described peeling jig can be easily inserted into the separation region when the glass film is peeled off. The supporting glass and the glass film are more preferably similar.
 上記の構成において、多角形状のガラスフィルムが、矩形状であることが好ましい。 In the above configuration, the polygonal glass film is preferably rectangular.
 このようにすれば、種々の電子デバイスに対して汎用性の高い基板を製造することができる。 In this way, a highly versatile substrate can be manufactured for various electronic devices.
 上記の構成において、肉厚部が、ガラスフィルムの合わせ面から支持体側に0.1~20μm突出していることが好ましい。 In the above configuration, it is preferable that the thick portion protrudes from the mating surface of the glass film to the support side by 0.1 to 20 μm.
 このようにすれば、離間領域を適切に作製することが可能となる。 In this way, it is possible to appropriately produce the separation region.
 上記の構成において、前記離間領域の支持体の合わせ面に沿う方向の幅が、0.1~5mmであることが好ましい。 In the above configuration, the width in the direction along the mating surface of the support in the separated region is preferably 0.1 to 5 mm.
 このようにすれば、ガラスフィルムと支持体との接触面を広く確保しつつ、ガラスフィルムの剥離の際に起点となる離間領域を適切に作製することが可能となる。 In this way, it is possible to appropriately produce a separation region that becomes a starting point when the glass film is peeled off while ensuring a wide contact surface between the glass film and the support.
 上記の構成において、肉厚部は、ガラスフィルムをレーザー溶断することで形成されていることが好ましい。 In the above configuration, the thick portion is preferably formed by laser cutting of a glass film.
 このようにすれば、容易に肉厚部を形成することができる。また、ガラスフィルムをレーザー溶断した場合には、レーザー溶断箇所およびその近傍には溶断時に飛散除去させたドロスが付着することがある。このようにドロスが付着していると、肉厚部および肉厚部近傍と支持体との接着力が低下し、ガラスフィルムを支持体から更に容易に剥離させることが可能となる。 In this way, the thick part can be easily formed. In addition, when the glass film is cut by laser, dross that is scattered and removed at the time of cutting may adhere to the laser cutting portion and its vicinity. When dross adheres in this way, the adhesive force between the thick portion and the vicinity of the thick portion and the support is reduced, and the glass film can be more easily peeled from the support.
 上記の構成において、肉厚部は、ガラスフィルムの隣り合う2辺に設けられていてもよい。 In the above configuration, the thick portion may be provided on two adjacent sides of the glass film.
 このようにすれば、ガラスフィルムの隣り合う2辺を起点として、支持体からガラスフィルムを剥離することができる。また、肉厚部が隣り合う2辺が交わる角部を起点として、支持体からガラスフィルムを剥離し易くなるという利点もある。 In this way, the glass film can be peeled from the support starting from two adjacent sides of the glass film. Moreover, there also exists an advantage that it becomes easy to peel a glass film from a support | substrate from the corner | angular part where two sides where a thick part adjoins intersects.
 上記の構成において、肉厚部は、ガラスフィルムの対向する2辺に設けられていてもよい。 In the above configuration, the thick part may be provided on two opposing sides of the glass film.
 このようにすれば、ガラスフィルムの対向する2辺を起点として、支持体からガラスフィルムを剥離することができる。 In this way, the glass film can be peeled from the support starting from the two opposing sides of the glass film.
 上記の構成において、肉厚部は、ガラスフィルムのすべての辺に設けられていてもよい。 In the above configuration, the thick portion may be provided on all sides of the glass film.
 このようにすれば、ガラスフィルムのすべての辺を起点として、支持体からガラスフィルムを剥離することができる。 In this way, the glass film can be peeled from the support starting from all sides of the glass film.
 上記の構成において、支持体の合わせ面が、ガラス又はガラス表面に形成された無機薄膜で構成されており、ガラスフィルムの合わせ面と支持体の合わせ面の表面粗さRaが、それぞれ2.0nm以下であることが好ましい。 In the above configuration, the mating surface of the support is composed of glass or an inorganic thin film formed on the glass surface, and the surface roughness Ra of the mating surface of the glass film and the mating surface of the support is 2.0 nm, respectively. The following is preferable.
 このようにすれば、ガラスフィルムの合わせ面と支持体の合わせ面とを、互いに接着剤を使用することなく密着させることが可能となる。 In this way, the glass film mating surface and the support mating surface can be brought into close contact with each other without using an adhesive.
 上記の構成において、ガラスフィルムが、オーバーフローダウンドロー法、スロットダウンドロー法、又はフロート法によって成形されていることが好ましい。 In the above configuration, the glass film is preferably formed by an overflow down draw method, a slot down draw method, or a float method.
 このようにすれば、ガラスフィルムを効率的に作製することができる。また、これらの成形法を使用すると、ガラスフィルム成形時に、ガラスリボンの両端部に肉厚の耳部が形成されることがあるが、当該耳部を肉厚部とすることも可能である。これにより、肉厚部を作製する後工程を省略することが可能となる。 In this way, a glass film can be produced efficiently. In addition, when these molding methods are used, thick ears may be formed at both ends of the glass ribbon at the time of molding the glass film, but the ears can be made thick. Thereby, it becomes possible to omit the post-process which produces a thick part.
 上記の構成において、ガラスフィルムの厚みは、300μm以下であってもよい。 In the above configuration, the thickness of the glass film may be 300 μm or less.
 すなわち、ガラスフィルムの厚みが300μm以下となると、割れや欠け等の破損が発生し易くなるが、本発明によれば、このような薄いガラスフィルムであっても、破損を生じさせることなく容易に支持体から剥離することができる。 That is, when the thickness of the glass film is 300 μm or less, breakage such as cracking and chipping is likely to occur, but according to the present invention, even such a thin glass film can be easily generated without causing breakage. It can peel from a support body.
 上記課題を解決するために創案された本発明は、製造関連処理が施された処理済みガラスフィルムを備えた電子デバイスを製造する電子デバイスの製造方法であって、ガラスフィルムの少なくとも一部をレーザー溶断することでガラスフィルムの端辺に肉厚部を形成する第1の工程と、支持体の合わせ面に肉厚部を接触させた状態で、支持体の合わせ面にガラスフィルムの合わせ面を面接触させて積層し、ガラスフィルム積層体を作製する第2の工程と、ガラスフィルム積層体のガラスフィルム側に製造関連処理を行う第3の工程と、製造関連処理後に、肉厚部を起点として支持体から処理済みガラスフィルムを剥離する第4の工程とを有することを特徴とする。 In order to solve the above-mentioned problems, the present invention is an electronic device manufacturing method for manufacturing an electronic device including a processed glass film subjected to manufacturing-related processing, wherein at least a part of the glass film is laser-processed. In the first step of forming the thick part on the edge of the glass film by fusing, and the thick part in contact with the mating surface of the support, the mating surface of the glass film is placed on the mating surface of the support The second step of making a glass film laminate by making surface contact, the third step of carrying out the manufacturing related process on the glass film side of the glass film laminate, and the thick part after the manufacturing related process And a fourth step of peeling the treated glass film from the support.
 このような構成によれば、製造関連処理が施された処理済みガラスフィルムの肉厚部を起点として、処理済みガラスフィルムを支持ガラスから容易に剥離することができる。そのため、支持ガラスの端部近傍に強度低下の原因となる凹状の剥離開始部を設けずに済む。また、処理済みガラスフィルムの肉厚部が剥離起点となるので、処理済みガラスフィルムの肉厚部よりも相対的に薄い部分に過度な力が作用しにくくなり、処理済みガラスフィルムが破損するのを防ぐことができる。したがって、電子デバイスを構成する処理済みガラスフィルムを容易かつ安価に製造することができる。 According to such a configuration, the treated glass film can be easily peeled from the supporting glass starting from the thick portion of the treated glass film that has undergone manufacturing-related processing. Therefore, it is not necessary to provide a concave peeling start portion that causes a decrease in strength in the vicinity of the end portion of the supporting glass. In addition, since the thick part of the treated glass film becomes the starting point of peeling, excessive force is less likely to act on the relatively thin part than the thick part of the treated glass film, and the treated glass film is damaged. Can be prevented. Therefore, the processed glass film which comprises an electronic device can be manufactured easily and cheaply.
 上記の構成において、第4の工程後に、処理済ガラスフィルムから肉厚部を除去する第5の工程を更に有していてもよい。 In the above configuration, a fifth step of removing the thick part from the treated glass film may be further included after the fourth step.
 このようにすれば、処理済みガラスフィルムの端辺に形成されている肉厚部が除去されるので、得られた処理済みガラスフィルムを電子デバイスに組み込み易くなる。 In this way, the thick part formed on the edge of the treated glass film is removed, so that the obtained treated glass film can be easily incorporated into an electronic device.
 以上のように発明によれば、ガラスフィルムの肉厚部を起点として、支持体からガラスフィルムを容易に剥離できるため、製造関連処理時に支持体が破損したり、支持体からガラスフィルムを剥離する際にガラスフィルムが破損したりする事態を防止することができる。 As described above, according to the invention, since the glass film can be easily peeled off from the support starting from the thick part of the glass film, the support is damaged during the manufacturing-related processing, or the glass film is peeled off from the support. It is possible to prevent the glass film from being damaged.
本発明の実施形態に係るガラスフィルム積層体の一部拡大断面図である。It is a partially expanded sectional view of the glass film laminated body which concerns on embodiment of this invention. ガラスフィルム及び支持体の製造方法の一例を示した図である。It is the figure which showed an example of the manufacturing method of a glass film and a support body. 本発明の実施形態に使用されるガラスフィルムの変形例を示した図である。It is the figure which showed the modification of the glass film used for embodiment of this invention. 肉厚部を作製する際に使用されるレーザー溶断装置を示す斜視図である。It is a perspective view which shows the laser fusing apparatus used when producing a thick part. 本発明の実施形態に係る電子デバイスの製造方法を示した図である。It is the figure which showed the manufacturing method of the electronic device which concerns on embodiment of this invention. 本発明の実施形態に係る電子デバイスの製造方法の他の例を示した図である。It is the figure which showed the other example of the manufacturing method of the electronic device which concerns on embodiment of this invention.
 以下、本発明に係るガラスフィルム積層体、及び電子デバイスの製造方法の好適な実施形態について、図面を参照しつつ説明する。但し、以下の実施形態は、単なる一例であり、本発明は、以下の実施形態に何ら限定されない。 Hereinafter, preferred embodiments of a glass film laminate and an electronic device manufacturing method according to the present invention will be described with reference to the drawings. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments.
<ガラスフィルム積層体>
 図1に示すように、本実施形態に係るガラスフィルム積層体1は、支持体としての支持ガラス3の合わせ面(上面)31に、ガラスフィルム2の合わせ面(下面)22を面接触させて積層してなる。
<Glass film laminate>
As shown in FIG. 1, the glass film laminated body 1 which concerns on this embodiment makes the mating surface (lower surface) 22 of the glass film 2 surface-contact with the mating surface (upper surface) 31 of the support glass 3 as a support body. Laminated.
 ガラスフィルム2の端辺20には、ガラスフィルム2の厚みtよりも厚みの大きい肉厚部21が形成されている。これにより、ガラスフィルム2の肉厚部21を起点として、支持ガラス3からガラスフィルム2を容易に剥離することができる。肉厚部21は、ガラスフィルム2の端辺20の一部に形成されていてもよく、ガラスフィルム2の端辺20全体に形成されていてもよい。ガラスフィルム2の端辺20の一部に形成する場合、肉厚部21は、隣り合う2辺が交わる角部(角部とその他の部位又は角部のみ)に設けられていてもよい。また、ガラスフィルム2にオリフラが設けられている場合には、肉厚部21は、オリフラ(オリフラとその他の部位又はオリフラのみ)に設けられていてもよい。更に、肉厚部21は、矩形状のガラスフィルム2の1辺のみに形成されていてもよいが、隣り合う2辺や対向する2辺、また、4辺全てに設けられていてもよい。 A thick portion 21 having a thickness larger than the thickness t of the glass film 2 is formed on the edge 20 of the glass film 2. Thereby, the glass film 2 can be easily peeled from the supporting glass 3 starting from the thick portion 21 of the glass film 2. The thick portion 21 may be formed on a part of the edge 20 of the glass film 2 or may be formed on the entire edge 20 of the glass film 2. When forming in a part of edge 20 of the glass film 2, the thick part 21 may be provided in the corner | angular part (only a corner | angular part and another site | part or corner | angular part) where two adjacent sides cross. Moreover, when the orientation flat is provided in the glass film 2, the thick part 21 may be provided in orientation flat (only orientation flat and another site | part or orientation flat). Furthermore, the thick portion 21 may be formed on only one side of the rectangular glass film 2, but may be provided on two adjacent sides, two opposing sides, or all four sides.
 この実施形態では、ガラスフィルム積層体1内において、ガラスフィルム2の肉厚部21と支持ガラス3の合わせ面31との接触箇所13と、ガラスフィルム2の合わせ面22と支持ガラス3の合わせ面31との接触面11の間に、ガラスフィルム2の合わせ面22と支持ガラス3の合わせ面31が互いに離間した離間領域12が形成されている。これにより、支持ガラス3からガラスフィルム2を剥離する際には、離間領域12を徐々に広げていくことで接触面11を離反させ、支持ガラス3からガラスフィルム2を容易に剥離することができる。ここで、支持ガラス3からガラスフィルム2を剥離する際に、図示しない剥離治具として樹脂シートや剃刀のような薄肉の金属部材を使用すれば、当該剥離治具を離間領域12に容易に挿入することができる。 In this embodiment, in the glass film laminated body 1, the contact location 13 of the thick part 21 of the glass film 2 and the mating surface 31 of the supporting glass 3, the mating surface 22 of the glass film 2, and the mating surface of the supporting glass 3 Between the contact surface 11 with 31, a separation region 12 in which the mating surface 22 of the glass film 2 and the mating surface 31 of the supporting glass 3 are separated from each other is formed. Thereby, when peeling the glass film 2 from the support glass 3, the contact surface 11 can be separated from the support glass 3 by separating the contact area 11 by gradually widening the separation region 12, and the glass film 2 can be easily peeled off. . Here, when the glass film 2 is peeled from the support glass 3, if a thin metal member such as a resin sheet or a razor is used as a peeling jig (not shown), the peeling jig can be easily inserted into the separation region 12. can do.
 離間領域12は、ガラスフィルム2の合わせ面22と、支持ガラス3の合わせ面31と、肉厚部21の外表面211とで囲曉された空間である。離間領域12の支持ガラス3の合わせ面31に沿う方向の幅w(接触箇所13と接触面11までの距離)は、0.01~10mmであることが好ましく、0.1~5mmであることがより好ましく、1~4mmであることが、最も好ましい。これにより、ガラスフィルム2と支持ガラス3との接触面11を広く確保しつつ離間領域12を適切に作製することが可能となる。なお、離間領域12は形成されていなくてもよい。 The separation region 12 is a space surrounded by the mating surface 22 of the glass film 2, the mating surface 31 of the support glass 3, and the outer surface 211 of the thick portion 21. The width w (distance between the contact portion 13 and the contact surface 11) in the direction along the mating surface 31 of the support glass 3 in the separation region 12 is preferably 0.01 to 10 mm, and preferably 0.1 to 5 mm. More preferably, the thickness is 1 to 4 mm. Thereby, it is possible to appropriately produce the separation region 12 while ensuring a wide contact surface 11 between the glass film 2 and the support glass 3. Note that the separation region 12 may not be formed.
 この実施形態では、支持ガラス3が、ガラスフィルム2から食み出している。これにより、ガラスフィルム2の端辺20が、図示しない位置決めピン等に打突することで、ガラスフィルム2が破損することを防止することができる。 In this embodiment, the support glass 3 protrudes from the glass film 2. Thereby, it can prevent that the glass film 2 breaks because the edge 20 of the glass film 2 collides with the positioning pin etc. which are not shown in figure.
 支持ガラス3のガラスフィルム2からの食み出し量は、0.5~30mmであることが好ましく、0.5~5mmであることがより好ましい。支持ガラス3の食み出し量を少なくすることで、ガラスフィルム2の有効面をより広く確保することができる。ガラスフィルム積層体1において、4辺全てにおいて、支持ガラス12がガラスフィルム11から食み出していることが好ましく、少なくとも、ガラスフィルム2の端辺20に肉厚部21が形成されている部分については、支持ガラス3がガラスフィルム2よりも食み出していることが好ましい。なお、支持ガラス3は、ガラスフィルム2から食み出していなくてもよい。 The protruding amount of the supporting glass 3 from the glass film 2 is preferably 0.5 to 30 mm, and more preferably 0.5 to 5 mm. By reducing the amount of protrusion of the supporting glass 3, the effective surface of the glass film 2 can be secured more widely. In the glass film laminate 1, it is preferable that the supporting glass 12 protrudes from the glass film 11 on all four sides, and at least a portion where the thick portion 21 is formed on the end side 20 of the glass film 2. It is preferable that the supporting glass 3 protrudes from the glass film 2. The supporting glass 3 does not have to protrude from the glass film 2.
 ガラスフィルム2の合わせ面22及び支持ガラス3の合わせ面31の表面粗さRaは、それぞれ2.0nm以下であることが好ましい。これにより、ガラスフィルム2の合わせ面22と支持ガラス3の合わせ面31とを、接着剤を使用することなく安定して積層させることができる。ガラスフィルム2の合わせ面22及び支持ガラス3の合わせ面31の表面粗さRaは、それぞれ1.0nm以下であることが好ましく、0.5nm以下であることがより好ましく、0.2nm以下であることが最も好ましい。 The surface roughness Ra of the mating surface 22 of the glass film 2 and the mating surface 31 of the support glass 3 is preferably 2.0 nm or less. Thereby, the mating surface 22 of the glass film 2 and the mating surface 31 of the support glass 3 can be laminated | stacked stably, without using an adhesive agent. The surface roughness Ra of the mating surface 22 of the glass film 2 and the mating surface 31 of the supporting glass 3 is preferably 1.0 nm or less, more preferably 0.5 nm or less, and 0.2 nm or less. Most preferred.
 ガラスフィルム2の合わせ面22から支持ガラス3側への肉厚部21の突出量pは、0.1~100μmであることが好ましく、0.1~20μmであることがより好ましく、1~10μmであることが最も好ましい。これにより、離間領域12を適切に作製することができる。また、ガラスフィルム2が、端部で大きく変形することを防止することができる。さらに、ガラスフィルム2の端辺20を切り落とすことなく、種々の電子デバイス等に用いることができる。 The protrusion amount p of the thick portion 21 from the mating surface 22 of the glass film 2 to the support glass 3 side is preferably 0.1 to 100 μm, more preferably 0.1 to 20 μm, and 1 to 10 μm. Most preferably. Thereby, the separation area | region 12 can be produced appropriately. Moreover, it can prevent that the glass film 2 deform | transforms large in an edge part. Furthermore, it can be used for various electronic devices and the like without cutting off the edge 20 of the glass film 2.
 肉厚部21は、断面視円状に形成されていることが好ましい。これにより、肉厚部21と支持ガラス3の合わせ面31との接触箇所13を、線接触とすることができる。肉厚部21と支持ガラス3の合わせ面31との接触箇所13を線接触とすることで、支持ガラス3からガラスフィルム2を、より容易に剥離することができる。肉厚部21は、断面視円状には限定されず、肉厚部21を断面視多角形状等に形成してもよい。また、肉厚部21と支持ガラス3の合わせ面31との接触箇所13は、線接触には限定されず、肉厚部21の一部を平面状に形成することで、肉厚部21と支持ガラス3の合わせ面31との接触箇所13を面接触としてもよい。さらには肉厚部21と支持ガラス3の合わせ面31とが複数の接触箇所13で点接触しており、これらの複数の接触箇所が(擬似的に)線状に形成されている形態であってもよい。 The thick portion 21 is preferably formed in a circular shape in cross section. Thereby, the contact location 13 of the thick part 21 and the mating surface 31 of the support glass 3 can be made into line contact. The glass film 2 can be more easily peeled from the support glass 3 by setting the contact portion 13 between the thick portion 21 and the mating surface 31 of the support glass 3 as line contact. The thick portion 21 is not limited to a circular shape in cross section, and the thick portion 21 may be formed in a polygonal shape in cross section. Further, the contact portion 13 between the thick portion 21 and the mating surface 31 of the support glass 3 is not limited to the line contact, and by forming a part of the thick portion 21 in a planar shape, It is good also considering the contact location 13 with the mating surface 31 of the support glass 3 as surface contact. Further, the thick portion 21 and the mating surface 31 of the support glass 3 are in point contact at a plurality of contact points 13, and the plurality of contact points are formed in a (pseudo) line shape. May be.
 ガラスフィルム2としては、例えば、ケイ酸塩ガラス、シリカガラスが用いられ、好ましくはホウ珪酸ガラスが用いられ、最も好ましくは無アルカリガラスが用いられる。ガラスフィルム2にアルカリ成分が含有されていると、表面において陽イオンの脱落が発生し、いわゆるソーダ吹きの現象が生じ、構造的に粗となる。この場合、ガラスフィルム2を湾曲させて使用していると、経年劣化により粗となった部分から破損する可能性がある。尚、ここで無アルカリガラスとは、アルカリ成分(アルカリ金属酸化物)が実質的に含まれていないガラスのことであって、具体的には、アルカリ成分が3000ppm以下のガラスのことである。本発明でのアルカリ成分の含有量は、好ましくは1000ppm以下であり、より好ましくは500ppm以下であり、最も好ましくは300ppm以下である。 As the glass film 2, for example, silicate glass or silica glass is used, preferably borosilicate glass is used, and most preferably non-alkali glass is used. If the glass film 2 contains an alkali component, cations are dropped on the surface, so-called soda blowing phenomenon occurs, and the structure becomes rough. In this case, if the glass film 2 is used while being curved, there is a possibility that the glass film 2 may be broken from a portion that has become rough due to deterioration over time. Here, the alkali-free glass is a glass that does not substantially contain an alkali component (alkali metal oxide), and specifically, a glass having an alkali component of 3000 ppm or less. The content of the alkali component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.
 ガラスフィルム2の厚みは、好ましくは300μm以下、より好ましくは5μm~200μm、最も好ましくは5μm~100μmである。これによりガラスフィルム2の厚みをより薄くして、適切な可撓性を付与することができるとともに、ハンドリング性が困難で、かつ、位置決めミスやパターニング時の撓み等の問題が生じやすいガラスフィルム2に対して、後述する支持ガラス3を使用することで電子デバイス製造関連処理等を容易に行うことができる。ガラスフィルム2の厚みが5μm未満であると、ガラスフィルム2の強度が不足がちになり、支持ガラス3からガラスフィルム2を剥離しにくくなるおそれがある。 The thickness of the glass film 2 is preferably 300 μm or less, more preferably 5 μm to 200 μm, and most preferably 5 μm to 100 μm. Thereby, the thickness of the glass film 2 can be made thinner and appropriate flexibility can be imparted, and handling properties are difficult, and problems such as positioning errors and bending during patterning are likely to occur. On the other hand, processing related to electronic device manufacturing can be easily performed by using the supporting glass 3 described later. If the thickness of the glass film 2 is less than 5 μm, the strength of the glass film 2 tends to be insufficient, and the glass film 2 may be difficult to peel from the support glass 3.
 支持ガラス3としては、例えば、ガラスフィルム2と同様に、ケイ酸塩ガラス、シリカガラス、ホウ珪酸ガラス、無アルカリガラス等が用いられる。支持ガラス3については、ガラスフィルム2との30~380℃における熱膨張係数の差が、5×10-7/℃以内のガラスを使用することが好ましい。これにより、電子デバイス製造関連処理の際に熱処理を伴ったとしても、膨張率の差による熱反りやガラスフィルム2の割れ等が生じ難く、安定した積層状態を維持できるガラスフィルム積層体1とすることが可能となる。支持ガラス3とガラスフィルム2とは、同一の組成を有するガラスを使用することが最も好ましい。 As the support glass 3, for example, silicate glass, silica glass, borosilicate glass, alkali-free glass, etc. are used in the same manner as the glass film 2. For the supporting glass 3, it is preferable to use a glass having a difference in thermal expansion coefficient at 30 to 380 ° C. with respect to the glass film 2 within 5 × 10 −7 / ° C. As a result, even when heat treatment is involved in the processing related to electronic device manufacturing, thermal warp due to a difference in expansion coefficient, cracking of the glass film 2 and the like hardly occur, and the glass film laminate 1 can maintain a stable laminated state. It becomes possible. The supporting glass 3 and the glass film 2 are most preferably glass having the same composition.
 支持ガラス3の厚みは、400μm以上であることが好ましい。支持ガラス3の厚みが400μm未満であると、支持ガラス3を単体で取り扱う場合に、強度の面で問題が生じるおそれがある。支持ガラス3の厚みは、400μm~700μmであることが好ましく、500μm~700μmであることが最も好ましい。これによりガラスフィルム2を確実に支持することが可能となるとともに、支持ガラス3からガラスフィルム2を剥離する際に生じ得るガラスフィルム2の破損を効果的に抑制することが可能となる。尚、電子デバイス製造関連処理時に、図示しないセッター上に、ガラスフィルム積層体1を載置する場合は、支持ガラス3の厚みは400μm未満(例えば300μm等、ガラスフィルム2と同一の厚み)でもよい。 The thickness of the support glass 3 is preferably 400 μm or more. When the thickness of the supporting glass 3 is less than 400 μm, there is a possibility that a problem may occur in terms of strength when the supporting glass 3 is handled alone. The thickness of the supporting glass 3 is preferably 400 μm to 700 μm, and most preferably 500 μm to 700 μm. As a result, the glass film 2 can be reliably supported, and breakage of the glass film 2 that can occur when the glass film 2 is peeled from the support glass 3 can be effectively suppressed. When the glass film laminate 1 is placed on a setter (not shown) during the electronic device manufacturing related process, the thickness of the support glass 3 may be less than 400 μm (for example, 300 μm or the like, the same thickness as the glass film 2). .
 ガラスフィルム2は、オーバーフローダウンドロー法、スロットダウンドロー法、フロート法によって成形されていることが好ましい。これらの成形法であると、ガラスフィルム2の成形時に、その元材となるガラスリボンの両端部に肉厚の耳部が形成されることがあるが、当該耳部を肉厚部21として利用することができる。これにより、肉厚部21を作製する後工程を省略することが可能となる。もちろん、これらの成形法を使用したとしても、耳部を除去した後のガラスフィルム2の端辺に、新たに肉厚部21を形成してもよい。特に、オーバーフローダウンドロー法は、成形時にガラス板の両面が、成形部材と接触しない成形法であり、得られたガラス板の両面(透光面)には傷が生じ難く、研磨しなくても高い表面品位を得ることができる。 The glass film 2 is preferably formed by an overflow down draw method, a slot down draw method, or a float method. In these molding methods, when the glass film 2 is molded, thick ear portions may be formed at both ends of the glass ribbon that is the original material, but the ear portions are used as the thick portion 21. can do. Thereby, it becomes possible to omit the post-process for producing the thick portion 21. Of course, even if these forming methods are used, the thick portion 21 may be newly formed on the edge of the glass film 2 after the ear portion is removed. In particular, the overflow down draw method is a molding method in which both sides of the glass plate do not come into contact with the molded member at the time of molding, and both surfaces (translucent surface) of the obtained glass plate are not easily scratched and need not be polished. High surface quality can be obtained.
 なお、支持ガラス3の成形方法も、ガラスフィルム2と同様の成形方法が適用できる。 In addition, the shaping | molding method similar to the glass film 2 can be applied also to the shaping | molding method of the support glass 3. FIG.
 ガラスフィルム2及び支持ガラス3をオーバーフローダウンドロー法で成形する場合、図2に示すように、まず、成形炉4内の断面が楔型の成形体41の下端部42から流下した直後のガラスリボンGが、冷却ローラー43によって幅方向の収縮が規制されながら下方へ引き伸ばされて所定の厚みまで薄くなる。次に、前記所定厚みに達したガラスリボンGが徐冷炉(アニーラ)で徐々に冷却され、ガラスリボンGの熱歪が取り除かれる。そして、図外において、冷却されたガラスリボンGが所定寸法に切断され、ガラスフィルム2及び支持ガラス3がそれぞれ成形される。 When the glass film 2 and the supporting glass 3 are formed by the overflow downdraw method, as shown in FIG. 2, first, the glass ribbon immediately after the cross section in the forming furnace 4 flows down from the lower end portion 42 of the wedge-shaped formed body 41. G is stretched downward while the shrinkage in the width direction is restricted by the cooling roller 43, and becomes thin to a predetermined thickness. Next, the glass ribbon G having reached the predetermined thickness is gradually cooled in a slow cooling furnace (annealer), and the thermal distortion of the glass ribbon G is removed. And outside a figure, the cooled glass ribbon G is cut | disconnected by the predetermined dimension, and the glass film 2 and the support glass 3 are shape | molded, respectively.
 なお、図1では、ガラスフィルム2のガラス面からなる合わせ面22と支持ガラス3のガラス面からなる合わせ面31とを直接面接触させて、両者を積層しているが、この形態には限定されない。例えば、支持体として、支持ガラス3の表面にシリコーン樹脂やEVA、PVB、アクリル、光学透明粘着剤等の樹脂層を形成したものを用い、その樹脂層を合わせ面31として利用してもよい。また、ガラスフィルム2の剥離性を向上させるために、支持ガラス3の表面やガラスフィルム2の表面に、ITO、ZrO2等の無機酸化物薄膜や、SiN、TiN、CrN、TiAlN、AlCrN等の窒化膜、Ti等の金属薄膜、ダイヤモンドライクカーボン、TiC、WC等の炭化膜、MgF2等のフッ化膜を形成したり、HMDS等を塗布することによって有機膜を形成したりしたものを、合わせ面22,31として利用してもよい。ガラスフィルム2の表面に無機薄膜を形成する場合については、無機薄膜形成後の合わせ面31の表面粗さRaは、それぞれ2.0nm以下、1.0nm以下、0.5nm以下、0.2nm以下であることがこの順で好ましい。 In FIG. 1, the mating surface 22 made of the glass surface of the glass film 2 and the mating surface 31 made of the glass surface of the supporting glass 3 are brought into direct surface contact with each other, and both are laminated. Not. For example, as the support, a support formed by forming a resin layer such as a silicone resin, EVA, PVB, acrylic, or an optical transparent adhesive on the surface of the support glass 3 may be used as the mating surface 31. Moreover, in order to improve the peelability of the glass film 2, an inorganic oxide thin film such as ITO or ZrO 2 , SiN, TiN, CrN, TiAlN, AlCrN or the like is formed on the surface of the supporting glass 3 or the surface of the glass film 2. A nitride film, a metal thin film such as Ti, a diamond-like carbon, a carbide film such as TiC or WC, a fluoride film such as MgF 2, or an organic film formed by applying HMDS or the like, The mating surfaces 22 and 31 may be used. When an inorganic thin film is formed on the surface of the glass film 2, the surface roughness Ra of the mating surface 31 after the formation of the inorganic thin film is 2.0 nm or less, 1.0 nm or less, 0.5 nm or less, 0.2 nm or less, respectively. Is preferable in this order.
 図3は、本発明の実施形態に使用されるガラスフィルムの変形例を示した図である。同図に示すように、肉厚部21は、ガラスフィルム2の端辺に沿って形成された略円柱状をなし、その円柱状部分に端辺に沿って略周期的に繰り返される、膨出部21aと、くびれ部21bとを有する。これにより、肉厚部21と支持ガラス3との接触箇所13を点接触とすることができ、さらに容易に支持ガラス3からガラスフィルム2を剥離することができる。 FIG. 3 is a view showing a modification of the glass film used in the embodiment of the present invention. As shown in the figure, the thick portion 21 has a substantially columnar shape formed along the end side of the glass film 2, and the bulge is repeated substantially periodically along the end side in the columnar portion. It has a portion 21a and a constricted portion 21b. Thereby, the contact location 13 of the thick part 21 and the support glass 3 can be made into point contact, and the glass film 2 can be peeled from the support glass 3 more easily.
 上記実施形態で説明した肉厚部21は、ガラスフィルム2をレーザー溶断することで形成してもよい。ガラスフィルム2をレーザー溶断することで、ガラスフィルム2の端部に容易に肉厚部21を形成することができるとともに、レーザー溶断時に発生するドロスが肉厚部21および肉厚部21近傍の外表面211に付着することで、肉厚部21と支持ガラス3の合わせ面31との接着力が減少し、より良好に肉厚部21をガラスフィルム2の剥離の起点とすることができる。 The thick part 21 described in the above embodiment may be formed by laser fusing the glass film 2. By cutting the glass film 2 by laser cutting, the thick part 21 can be easily formed at the end of the glass film 2, and dross generated at the time of laser cutting is outside the thick part 21 and the vicinity of the thick part 21. By adhering to the surface 211, the adhesive force between the thick portion 21 and the mating surface 31 of the supporting glass 3 is reduced, and the thick portion 21 can be used as a starting point for peeling the glass film 2 more favorably.
 図4は、肉厚部21を作製する際に使用されるレーザー溶断装置を示す斜視図である。同図に示すように、レーザー溶断装置5は、ガラスフィルム2を平置き姿勢で積載して搬送するコンベアベルト51と、搬送中のガラスフィルム2にレーザーLを照射するレーザー照射器52と、レーザーLの照射部にアシストガスAを噴射するアシストガス噴射器53とを主要な要素として構成される。 FIG. 4 is a perspective view showing a laser fusing device used when the thick portion 21 is produced. As shown in the figure, the laser fusing device 5 includes a conveyor belt 51 that loads and conveys the glass film 2 in a flat position, a laser irradiator 52 that irradiates the glass film 2 being conveyed with a laser L, and a laser. The assist gas injector 53 that injects the assist gas A to the L irradiation unit is configured as a main element.
 コンベアベルト51は、ガラスフィルム2に延びた切断予定線Xを挟んで、一対が設けられると共に、一対のコンベアベルト51は、それぞれ図外の駆動ローラー、及び従動ローラーに巻き掛けられている。そして、両ローラーの回転駆動により、コンベアベルト51が切断予定線Xに平行な、同図に示すT方向に沿って移動可能な構成となっている。 A pair of conveyor belts 51 are provided across the planned cutting line X extending to the glass film 2, and the pair of conveyor belts 51 are respectively wound around a driving roller and a driven roller (not shown). And by the rotational drive of both rollers, the conveyor belt 51 becomes a structure which can move along the T direction shown in the figure parallel to the cutting projected line X.
 レーザー照射器52は、その鉛直下方をガラスフィルム2に搬送方向Тと平行に延びた切断予定線Xが通過するように定位置に固定されて設置されており、図外のレーザー発振器から発振されたレーザーLを集光して、上方から切断予定線Xに沿って照射するように構成されている。なお、本実施形態においては、レーザーLとして炭酸ガス(CO2)レーザー(波長10.6μm)を使用している。 The laser irradiator 52 is fixedly installed at a fixed position so that a planned cutting line X extending parallel to the transport direction Т passes through the glass film 2 below the vertical direction, and is oscillated from a laser oscillator (not shown). The laser L is condensed and irradiated along the planned cutting line X from above. In the present embodiment, a carbon dioxide (CO 2 ) laser (wavelength 10.6 μm) is used as the laser L.
 アシストガス噴射器53は、レーザー照射器52と同様に定位置に固定されて設置されると共に、レーザーLの照射部を指向してガラスフィルム2の表裏面に対し、傾斜した姿勢とされている。このアシストガス噴射器53は、図外の空気圧縮装置(例えば、エアコンプレッサー)と接続されており、空気圧縮装置で圧縮された空気を、アシストガスAとしてレーザーLの照射部に噴射し、レーザーLの熱で溶融したガラスを、その圧力で飛散させて除去するように構成されている。 The assist gas injector 53 is fixed and installed at a fixed position in the same manner as the laser irradiator 52, and is inclined with respect to the front and back surfaces of the glass film 2 so as to be directed to the irradiation part of the laser L. . The assist gas injector 53 is connected to an air compressor (for example, an air compressor) (not shown). The assist gas injector 53 injects air compressed by the air compressor as an assist gas A onto the laser L irradiation unit. The glass melted by the heat of L is configured to be scattered and removed by the pressure.
 以上の構成から、レーザー溶断装置5は、コンベアベルト51のT方向への移動により、コンベアベルト51に積載されたガラスフィルム2を、同方向に搬送する。そして、搬送中のガラスフィルム2に対して、切断予定線Xに沿ってレーザー照射器52からレーザーLを照射し、そのレーザー熱でガラスを溶融させると共に、溶融したガラスをアシストガス噴射器53から噴射されたアシストガスAの圧力により飛散させて除去する。これにより、切断予定線Xに沿ってガラスフィルム2に溶断部Mを進行させ、当該ガラスフィルム2を切断する。レーザー照射器52の照射出力、レーザー光Lの照射部におけるビームモード、アシストガスAの噴射圧力、コンベアベルト51の搬送速度等を適宜選択することで、レーザー溶断後のガラスフィルム2の端辺20に形成される肉厚部21の形状や厚みを適宜調節することができる。 From the above configuration, the laser fusing device 5 conveys the glass film 2 loaded on the conveyor belt 51 in the same direction by moving the conveyor belt 51 in the T direction. Then, the laser L is irradiated from the laser irradiator 52 along the planned cutting line X to the glass film 2 being conveyed, the glass is melted by the laser heat, and the molten glass is discharged from the assist gas injector 53. It is scattered and removed by the pressure of the injected assist gas A. Thereby, the fusing part M is advanced to the glass film 2 along the planned cutting line X, and the glass film 2 is cut. By appropriately selecting the irradiation output of the laser irradiator 52, the beam mode in the irradiation part of the laser light L, the injection pressure of the assist gas A, the conveying speed of the conveyor belt 51, the edge 20 of the glass film 2 after laser fusing. The shape and thickness of the thick portion 21 formed on the substrate can be adjusted as appropriate.
 図4では、ガラスフィルムをレーザー溶断することで肉厚部21を作製する方法について説明したが、肉厚部21の作製方法としてレーザー溶断には限定されず、可燃ガスなどによる火炎や電熱線などによりガラスフィルムの端辺を直接加熱、溶融させた後に、その表面張力で肉厚部21を作製してもよいし、ガラスフィルムの一部の面を部分的に加熱、溶融させた後に、その溶融箇所でガラスフィルムを引っ張り破断させた後、破断面に生じる表面張力で肉厚部21を作製してもよい。 In FIG. 4, the method for producing the thick portion 21 by laser cutting the glass film has been described. However, the method for producing the thick portion 21 is not limited to laser fusing, and flames such as flammable gas and heating wires are used. After directly heating and melting the edge of the glass film, the thick portion 21 may be produced with the surface tension, or after partially heating and melting a part of the glass film, After the glass film is pulled and broken at the melted portion, the thick portion 21 may be produced by the surface tension generated on the fracture surface.
<電子デバイスの製造方法>
 図5は、本発明の実施形態に係る電子デバイスの製造方法のフローチャートを示した図である。同図に示すように、本実施形態に係る電子デバイスの製造方法は、ガラスフィルム2をレーザー溶断することでガラスフィルム2の端辺20に肉厚部21を形成する第1の工程S1と、支持ガラス3の合わせ面31に肉厚部21を接触させた状態で、支持ガラス3の合わせ面31の上にガラスフィルム2の合わせ面22を面接触させて積層してガラスフィルム積層体1を作製する第2の工程S2と、ガラスフィルム積層体1のガラスフィルム2側に製造関連処理を行う第3の工程S3と、製造関連処理後に、肉厚部21を起点として支持ガラス3から製造関連処理が施された処理済ガラスフィルムを剥離する第4の工程S4とを有する。
<Method for manufacturing electronic device>
FIG. 5 is a view showing a flowchart of a method for manufacturing an electronic device according to an embodiment of the present invention. As shown in the figure, the electronic device manufacturing method according to the present embodiment includes a first step S1 for forming a thick portion 21 on the edge 20 of the glass film 2 by laser fusing the glass film 2, and The glass film laminate 1 is formed by laminating the mating surface 22 of the glass film 2 on the mating surface 31 of the support glass 3 while bringing the thick portion 21 into contact with the mating surface 31 of the support glass 3. The second step S2 to be manufactured, the third step S3 for performing manufacturing-related processing on the glass film 2 side of the glass film laminate 1, and the manufacturing-related processing from the support glass 3 starting from the thick portion 21 after the manufacturing-related processing 4th process S4 which peels the processed glass film to which the process was given.
 第1の工程S1は、ガラスフィルム2をレーザー溶断することで、ガラスフィルム2端辺20に肉厚部21を形成する工程である。当該工程については、図4を使用して既に説明を行っているため、ここでの説明は、省略する。 1st process S1 is a process of forming the thick part 21 in the glass film 2 edge 20 by laser-cutting the glass film 2. FIG. Since this process has already been described with reference to FIG. 4, the description thereof is omitted here.
 第2の工程S2は、支持ガラス3上にガラスフィルム2を積層して、ガラスフィルム積層体1を作製する工程である。支持ガラス3上にガラスフィルム2を積層する方法については、特に限定されず、公知のラミネート機械を使用して、支持ガラス3上にガラスフィルム2を積層することができる。 2nd process S2 is the process of laminating | stacking the glass film 2 on the support glass 3, and producing the glass film laminated body 1. FIG. The method for laminating the glass film 2 on the supporting glass 3 is not particularly limited, and the glass film 2 can be laminated on the supporting glass 3 using a known laminating machine.
 第3の工程S3は、ガラスフィルム積層体1のガラスフィルム2側に、製造関連処理を行う工程である。 The third step S3 is a step of performing manufacturing-related processing on the glass film 2 side of the glass film laminate 1.
 ガラスフィルム2側に行われる製造関連処理としては、電子デバイス製造に関する処理であって、例えば、スパッタ法等による成膜処理、素子等を封止する封止処理、ガラスフリットの焼結処理等が挙げられる。また、ガラスフィルム2側に行われる製造関連処理において、スパッタ法等による反射防止膜、透過防止膜等の成膜処理等も挙げられる。 Manufacturing-related processing performed on the glass film 2 side is processing related to electronic device manufacturing, for example, film formation processing by a sputtering method, sealing processing for sealing elements, sintering processing of glass frit, etc. Can be mentioned. In addition, in manufacturing-related processing performed on the glass film 2 side, film formation processing such as an antireflection film and a transmission prevention film by a sputtering method or the like can be given.
 なお、第3の工程S3の製造関連処理は、単一の処理手段で構成されたものであってもよいし、複数の同一の又は異なる処理手段で構成されたものであってもよい。また、一部に加熱を伴う製造関連処理が含まれていてもよく、洗浄処理等の加熱を伴わない製造関連処理が含まれていてもよい。 Note that the manufacturing-related process in the third step S3 may be configured by a single processing unit, or may be configured by a plurality of identical or different processing units. Moreover, a manufacturing related process with heating may be included in part, and a manufacturing related process without heating such as a cleaning process may be included.
 また、第3の工程S3において、第2の工程で作製されたガラスフィルム積層体1のガラスフィルム2上に素子を形成し、図示しないカバーガラスでガラスフィルム2上に形成された素子を封止することで支持ガラス付電子デバイスを作製してもよい。なお、上述のカバーガラスにも支持ガラスが積層されていてもよい。この支持ガラス付きカバーガラスとして、本発明に係るガラスフィルム積層体1を使用してもよい。このように支持ガラス付きカバーガラスを積層する場合、後述する第4の工程S4において、カバーガラスの支持ガラスも剥離するようにしてもよい。 Moreover, in 3rd process S3, an element is formed on the glass film 2 of the glass film laminated body 1 produced at the 2nd process, and the element formed on the glass film 2 with the cover glass which is not illustrated is sealed. By doing so, you may produce an electronic device with support glass. In addition, the support glass may be laminated | stacked also on the above-mentioned cover glass. You may use the glass film laminated body 1 which concerns on this invention as this cover glass with support glass. Thus, when laminating | stacking cover glass with support glass, you may make it also peel the support glass of cover glass in 4th process S4 mentioned later.
 第4の工程S4は、支持ガラス3から処理済ガラスフィルムを剥離する工程である。 The fourth step S4 is a step of peeling the treated glass film from the support glass 3.
 支持ガラス3から処理済ガラスフィルムを剥離する際には、図示しない剥離治具を使用してもよい。剥離治具を使用することで、剥離治具を円滑に離間領域12まで挿入することができ、引き続き剥離治具を挿入し続けることで、離間領域12を広げることができる。支持ガラス3から処理済ガラスフィルムを剥離する際に、離間領域12に水を含んだ流体(水の相対湿度が高いガスや水のミストを含んだガス、もしくは液体の水そのものなど)を供給してもよいし、ガラスフィルム積層体1や上述する支持ガラス付電子デバイスを水中に浸漬してもよい。水中に浸漬した際には、超音波を印加してもよい。 When peeling the treated glass film from the support glass 3, a peeling jig (not shown) may be used. By using the peeling jig, the peeling jig can be smoothly inserted into the separation region 12, and by continuing to insert the peeling jig, the separation region 12 can be expanded. When the treated glass film is peeled off from the support glass 3, a fluid containing water (a gas having a high relative humidity of water, a gas containing water mist, or liquid water itself) is supplied to the separation region 12. Or the glass film laminated body 1 and the electronic device with support glass mentioned above may be immersed in water. When immersed in water, ultrasonic waves may be applied.
 剥離治具の形状は、糸状の部材でもよいが、シート状、帯状、板状、短冊状等、厚みが少なく剥離進行方向に幅広な部材を使用することが好ましい。具体的には、剥離治具の厚みが0.01mm~1mmであることが好ましく、0.1mm~0.5mmであることがより好ましい。これにより、ガラスフィルム2の肉厚部21と支持ガラス3との接触箇所13を円滑に剥離治具が通過することができ、離間領域12に剥離治具を円滑に挿入することができる。剥離治具6の幅は、剥離の対象となるガラスフィルム積層体1の面積にも依存するが、少なくともガラスフィルム積層体1よりも剥離進行方向において幅広であることが好ましい。 The shape of the peeling jig may be a thread-like member, but it is preferable to use a member having a small thickness and a wide width in the peeling progress direction, such as a sheet shape, a band shape, a plate shape or a strip shape. Specifically, the thickness of the peeling jig is preferably 0.01 mm to 1 mm, and more preferably 0.1 mm to 0.5 mm. Thereby, the peeling jig can smoothly pass through the contact portion 13 between the thick portion 21 of the glass film 2 and the support glass 3, and the peeling jig can be smoothly inserted into the separation region 12. The width of the peeling jig 6 depends on the area of the glass film laminate 1 to be peeled, but is preferably wider than at least the glass film laminate 1 in the peeling progress direction.
 剥離治具の材質は、剛性を有するアルミニウム、ステンレス等の金属を使用することが可能であるが、可撓性を有するポリエチレンやアクリル等の樹脂フィルムを使用することが好ましく、フッ素フィルム等の疎水性の樹脂シートであることがより好ましい。 The material of the peeling jig can be a rigid metal such as aluminum or stainless steel, but it is preferable to use a flexible resin film such as polyethylene or acrylic, and a hydrophobic film such as a fluorine film. The resin sheet is more preferable.
 剥離治具を用いない剥離方法としては、例えば処理済みガラスフィルムをパッド等により吸着させ、該パッドを支持ガラス3から離間させる方向に動作させることで、処理済みガラスフィルムを支持ガラス3から剥離させる方法を用いてもよい。 As a peeling method that does not use a peeling jig, for example, the treated glass film is adsorbed by a pad or the like, and the treated glass film is peeled from the support glass 3 by operating the pad in a direction in which the pad is separated from the support glass 3. A method may be used.
 上記第1の工程S1から第4の工程S4を得ることで、製造関連処理が施されたガラスフィルムを得ることができ、適宜電子デバイス等に、当該フィルムを組み込むことができる。加えて、前述の通り、上記第3の工程S3で液晶パネルや有機ELパネルを直接作製することで、フィルム状ガラスで封止された電子デバイスを作製することもできる。 By obtaining the first step S1 to the fourth step S4, it is possible to obtain a glass film that has undergone manufacturing-related processing, and the film can be appropriately incorporated into an electronic device or the like. In addition, as described above, an electronic device sealed with a film-like glass can be manufactured by directly manufacturing a liquid crystal panel or an organic EL panel in the third step S3.
 本実施形態に係るフィルム状ガラスの製造方法は、図6に示す通り、更に第5の工程S5を有していてもよい。 The film-like glass manufacturing method according to the present embodiment may further include a fifth step S5 as shown in FIG.
 第5の工程S5は、処理済ガラスフィルムから肉厚部21を除去する工程である。処理済ガラスフィルムから肉厚部21を除去する方法としては、下記の通り、様々な方法を使用することができる。例えば、(1)処理済ガラスフィルム上の肉厚部21に沿った切断予定線上にダイヤモンドチップ等を使用してスクライブラインを形成した後に、曲げ応力を付与して切断することで、肉厚部21の除去を行うスクライブ割断、(2)初期クラックを切断予定線上に形成し、レーザーの照射後に冷媒を吹き付けることによって生じる熱応力を利用して、初期クラックを切断予定線上に進展させて肉厚部21の除去を行うレーザー割断、(3)切断予定線上に曲げ応力を付与した状態で、処理済ガラスフィルムの切断予定線にダイヤモンドチップ等により初期クラックを形成することで、肉厚部21の切断除去を行う曲げ応力割断などを、適宜使用することができる。もちろん、肉厚部が更に形成されないように、条件設定等を適宜行うことで、レーザー溶断法を使用することもできる。 5th process S5 is a process of removing the thick part 21 from a processed glass film. As a method for removing the thick portion 21 from the treated glass film, various methods can be used as described below. For example, (1) after forming a scribe line on the planned cutting line along the thick portion 21 on the treated glass film using a diamond tip or the like, the thick portion is cut by applying a bending stress. (2) An initial crack is formed on the planned cutting line, and the initial crack is developed on the planned cutting line by using thermal stress generated by spraying the coolant after laser irradiation. Laser cleaving to remove the portion 21, (3) In the state where bending stress is applied on the planned cutting line, an initial crack is formed on the planned cutting line of the treated glass film with a diamond tip or the like, so that the thick portion 21 Bending stress cleaving for cutting and removing can be used as appropriate. Of course, the laser fusing method can also be used by appropriately setting conditions so that the thick portion is not further formed.
 第5の工程S5を有することで、製造された処理済みのガラスフィルムは、肉厚部21が除去されているため、電子デバイス等に組み込み易くなる。また、上述の通り、直接ガラスフィルムで封止された電子デバイスを作製した後に、肉厚部21を除去してもよい。 By having the fifth step S5, the manufactured glass film is easy to be incorporated into an electronic device or the like because the thick portion 21 is removed. Further, as described above, the thick portion 21 may be removed after the electronic device directly sealed with the glass film is manufactured.
 以下、本発明のガラスフィルム積層体を実施例に基づいて詳細に説明するが、本発明は、これらの実施例に限定されるものではない。 Hereinafter, although the glass film laminated body of this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples.
 (実施例)
 支持ガラスとガラスフィルムとして、日本電気硝子株式会社製の無アルカリガラス(OA-10G、30~380℃における熱膨張係数:38×10-7/℃)を使用した。オーバーフローダウンドロー法にて、支持ガラスとガラスフィルムを製造した。支持ガラスとして、縦110mm、横110mm、厚み500μmの矩形状の板ガラスを準備した。ガラスフィルムとして、縦100mm、横100mm、厚み100μmの矩形状の透明なガラスを準備した。ガラスフィルムの4辺をレーザー溶断することで、100mm角に切断した。レーザー溶断の条件は、ガラスフィルムの搬送速度を20mm/秒、レーザーのパルス周期を1000μs、パルス幅を120μsとし、レーザーの出力を9.9W、レーザーのビーム径を150μmとした。ガラスフィルム進行方向と直角方向から水平に60l/分で、アシストエアーを噴射した。レーザー溶断と同時に、アニールレーザーを出力39Wで照射した。レーザー溶断後に、ガラスフィルムの端辺に、105μmの肉厚部が形成された。得られたガラスフィルムを支持ガラス上に積層したところ、ガラスフィルムの端辺に、約2mm離間領域が形成されたガラスフィルム積層体が得られた。このガラスフィルム積層体からガラスフィルムの剥離を試みたところ、良好にガラスフィルムを剥離することができた。
(Example)
Non-alkali glass (OA-10G, thermal expansion coefficient at 30 to 380 ° C .: 38 × 10 −7 / ° C.) manufactured by Nippon Electric Glass Co., Ltd. was used as the supporting glass and the glass film. Support glass and glass film were produced by the overflow downdraw method. A rectangular plate glass having a length of 110 mm, a width of 110 mm, and a thickness of 500 μm was prepared as a supporting glass. A rectangular transparent glass having a length of 100 mm, a width of 100 mm, and a thickness of 100 μm was prepared as a glass film. The four sides of the glass film were cut into 100 mm squares by laser cutting. The conditions for laser fusing were as follows: the conveyance speed of the glass film was 20 mm / second, the laser pulse cycle was 1000 μs, the pulse width was 120 μs, the laser output was 9.9 W, and the laser beam diameter was 150 μm. Assist air was sprayed at 60 l / min horizontally from the direction perpendicular to the glass film traveling direction. Simultaneously with laser fusing, an annealing laser was irradiated at an output of 39 W. After laser fusing, a thick part of 105 μm was formed on the edge of the glass film. When the obtained glass film was laminated | stacked on support glass, the glass film laminated body in which about 2 mm separation area | region was formed in the edge side of a glass film was obtained. When an attempt was made to peel the glass film from the glass film laminate, the glass film could be peeled well.
 (比較例)
 比較例として、4辺全てをレーザー割断で切断したガラスフィルムを支持ガラス上に積層して、ガラスフィルムの剥離を試みたところ、ガラスフィルムの剥離が困難になったものがあり、剥離の途中でガラスフィルムが破損するものがあった。
(Comparative example)
As a comparative example, when a glass film having all four sides cut by laser cleaving was laminated on a support glass and peeling of the glass film was attempted, there was a case where peeling of the glass film became difficult, Some glass films were damaged.
 本発明は、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイや太陽電池等のデバイスに使用されるガラス基板、及び有機EL照明のカバーガラスに好適に使用することができる。 The present invention can be suitably used for glass substrates used in flat panel displays such as liquid crystal displays and organic EL displays, devices such as solar cells, and cover glasses for organic EL lighting.
1  ガラスフィルム積層体
11 接触面
12 離間領域
13 接触箇所
2  ガラスフィルム
20 端辺
21 肉厚部
22 合わせ面
3  支持ガラス
31 合わせ面
4  成形炉
5  レーザー溶断装置
DESCRIPTION OF SYMBOLS 1 Glass film laminated body 11 Contact surface 12 Separation area | region 13 Contact location 2 Glass film 20 End side 21 Thick part 22 Lamination surface 3 Support glass 31 Lamination surface 4 Molding furnace 5 Laser fusing apparatus

Claims (16)

  1.  支持体の合わせ面とガラスフィルムの合わせ面とを面接触させて積層したガラスフィルム積層体であって、
     前記ガラスフィルムの端辺の少なくとも一部に肉厚部を設け、前記肉厚部を前記支持体の合わせ面に接触させたことを特徴とするガラスフィルム積層体。
    A glass film laminate in which the mating surface of the support and the mating surface of the glass film are in surface contact and laminated,
    A glass film laminate, wherein a thick part is provided on at least a part of an edge of the glass film, and the thick part is brought into contact with a mating surface of the support.
  2.  前記支持体が、前記ガラスフィルムから食み出していることを特徴とする請求項1に記載のガラスフィルム積層体。 The glass film laminate according to claim 1, wherein the support protrudes from the glass film.
  3.  前記肉厚部と前記支持体の合わせ面との接触箇所近傍に、前記ガラスフィルムの合わせ面と前記支持体の合わせ面とが互いに離間した離間領域が形成されていることを特徴とする請求項1に記載のガラスフィルム積層体。 The separation region in which the mating surface of the glass film and the mating surface of the support are separated from each other is formed in the vicinity of a contact portion between the thick portion and the mating surface of the support. The glass film laminate according to 1.
  4.  前記肉厚部は、多角形状のガラスフィルムの少なくとも1辺に設けられており、
    前記肉厚部と前記支持体の合わせ面とは、線接触していることを特徴とする請求項1~3のいずれか1項に記載のガラスフィルム積層体。
    The thick part is provided on at least one side of a polygonal glass film,
    The glass film laminate according to any one of claims 1 to 3, wherein the thick portion and the mating surface of the support are in line contact.
  5.  前記多角形状のガラスフィルムは、矩形状であることを特徴とする請求項4に記載のガラスフィルム積層体。 The glass film laminate according to claim 4, wherein the polygonal glass film has a rectangular shape.
  6.  前記肉厚部は、前記ガラスフィルムの合わせ面から前記支持体側に0.1~20μm突出していることを特徴とする請求項1~5のいずれか1項に記載のガラスフィルム積層体。 The glass film laminate according to any one of claims 1 to 5, wherein the thick part protrudes from the mating surface of the glass film to the support side by 0.1 to 20 µm.
  7.  前記離間領域の前記支持体の合わせ面に沿う方向の幅が、0.1~5mmであることを特徴とする請求項1~6のいずれか1項に記載のガラスフィルム積層体。 The glass film laminate according to any one of claims 1 to 6, wherein a width of the separation region in a direction along the mating surface of the support is 0.1 to 5 mm.
  8.  前記肉厚部は、前記ガラスフィルムをレーザー溶断することで形成されていることを特徴とする請求項1~7のいずれか1項に記載のガラスフィルム積層体。 The glass film laminate according to any one of claims 1 to 7, wherein the thick part is formed by laser cutting of the glass film.
  9.  前記肉厚部は、前記ガラスフィルムの隣り合う2辺に設けられていることを特徴とする請求項1~8のいずれか1項に記載のガラスフィルム積層体。 The glass film laminate according to any one of claims 1 to 8, wherein the thick part is provided on two adjacent sides of the glass film.
  10.  前記肉厚部は、前記ガラスフィルムの対向する2辺に設けられていることを特徴とする請求項1~9のいずれか1項に記載のガラスフィルム積層体。 The glass film laminate according to any one of claims 1 to 9, wherein the thick part is provided on two opposing sides of the glass film.
  11.  前記肉厚部は、前記ガラスフィルムのすべての辺に設けられていることを特徴とする請求項1~10のいずれか1項に記載のガラスフィルム積層体。 The glass film laminate according to any one of claims 1 to 10, wherein the thick part is provided on all sides of the glass film.
  12.  前記支持体の合わせ面が、ガラス又はガラス表面に形成された無機薄膜で構成されており、
     前記ガラスフィルムの合わせ面と前記支持体の合わせ面の表面粗さRaが、それぞれ2.0nm以下であることを特徴とする請求項1~11のいずれか1項に記載のガラスフィルム積層体。
    The mating surface of the support is composed of glass or an inorganic thin film formed on the glass surface,
    The glass film laminate according to any one of claims 1 to 11, wherein the surface roughness Ra of the mating surface of the glass film and the mating surface of the support is 2.0 nm or less, respectively.
  13.  前記ガラスフィルムは、オーバーフローダウンドロー法、スロットダウンドロー法、又はフロート法によって成形されていることを特徴とする請求項1~12のいずれか1項に記載のガラスフィルム積層体。 The glass film laminate according to any one of claims 1 to 12, wherein the glass film is formed by an overflow down draw method, a slot down draw method, or a float method.
  14.  前記ガラスフィルムの厚みは、300μm以下であることを特徴とする請求項1~13のいずれか1項に記載のガラスフィルム積層体。 The glass film laminate according to any one of claims 1 to 13, wherein the glass film has a thickness of 300 µm or less.
  15.  製造関連処理が施された処理済みガラスフィルムを備えた電子デバイスを製造する電子デバイスの製造方法であって、
     ガラスフィルムの少なくとも一部をレーザー溶断することで前記ガラスフィルムの端辺に肉厚部を形成する第1の工程と、
     支持体の合わせ面に前記肉厚部を接触させた状態で、前記支持体の合わせ面に前記ガラスフィルムの合わせ面を面接触させて積層し、ガラスフィルム積層体を作製する第2の工程と、
     前記ガラスフィルム積層体の前記ガラスフィルム側に前記製造関連処理を行う第3の工程と、
     前記製造関連処理後に、前記肉厚部を起点として前記支持体から前記処理済みガラスフィルムを剥離する第4の工程とを有することを特徴とする電子デバイスの製造方法。
    An electronic device manufacturing method for manufacturing an electronic device including a processed glass film subjected to manufacturing-related processing,
    A first step of forming a thick portion on the edge of the glass film by laser cutting at least part of the glass film;
    A second step of producing a glass film laminate by laminating the mating surface of the glass film in contact with the mating surface of the support in a state where the thick portion is in contact with the mating surface of the support; ,
    A third step of performing the manufacturing-related process on the glass film side of the glass film laminate;
    And a fourth step of peeling the processed glass film from the support after the manufacturing-related process as a starting point.
  16.  前記第4の工程後に、前記処理済みガラスフィルムから前記肉厚部を除去する第5の工程を有することを特徴とする請求項15に記載の電子デバイスの製造方法。 16. The method of manufacturing an electronic device according to claim 15, further comprising a fifth step of removing the thick portion from the treated glass film after the fourth step.
PCT/JP2014/062001 2013-04-30 2014-04-30 Glass film laminate, and production method for electronic device WO2014178404A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-095353 2013-04-30
JP2013095353 2013-04-30

Publications (1)

Publication Number Publication Date
WO2014178404A1 true WO2014178404A1 (en) 2014-11-06

Family

ID=51843528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062001 WO2014178404A1 (en) 2013-04-30 2014-04-30 Glass film laminate, and production method for electronic device

Country Status (3)

Country Link
JP (1) JP6327580B2 (en)
TW (1) TW201509648A (en)
WO (1) WO2014178404A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112928145A (en) * 2021-01-26 2021-06-08 京东方科技集团股份有限公司 Display panel, display device and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003308019A (en) * 2002-04-17 2003-10-31 Sharp Corp Sticking sheet and body stuck by the sheet
JP2010194874A (en) * 2009-02-25 2010-09-09 Nippon Electric Glass Co Ltd Glass film laminate and glass roll of laminate
WO2011001946A1 (en) * 2009-07-03 2011-01-06 日本電気硝子株式会社 Glass film laminate
JP2013075818A (en) * 2011-09-15 2013-04-25 Nippon Electric Glass Co Ltd Method for cutting thin plate glass and thin plate glass

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2703156B1 (en) * 2010-07-28 2015-01-14 Nippon Electric Glass Co., Ltd. Glass film laminate
JP5585937B2 (en) * 2010-07-28 2014-09-10 日本電気硝子株式会社 Glass film laminate
JP5692513B2 (en) * 2010-12-22 2015-04-01 日本電気硝子株式会社 Glass film laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003308019A (en) * 2002-04-17 2003-10-31 Sharp Corp Sticking sheet and body stuck by the sheet
JP2010194874A (en) * 2009-02-25 2010-09-09 Nippon Electric Glass Co Ltd Glass film laminate and glass roll of laminate
WO2011001946A1 (en) * 2009-07-03 2011-01-06 日本電気硝子株式会社 Glass film laminate
JP2013075818A (en) * 2011-09-15 2013-04-25 Nippon Electric Glass Co Ltd Method for cutting thin plate glass and thin plate glass

Also Published As

Publication number Publication date
JP6327580B2 (en) 2018-05-23
JP2014231222A (en) 2014-12-11
TW201509648A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP5794325B2 (en) Manufacturing method of glass substrate for electronic device and manufacturing method of cover glass for electronic device
JP5720885B2 (en) Glass roll and method for producing glass roll
WO2012014959A1 (en) Glass film laminate
TWI576295B (en) Fabricating method of glass roll and glass roll
JP5783443B2 (en) GLASS ROLL AND GLASS ROLL MANUFACTURING METHOD
US10189736B2 (en) Method of manufacturing a glass roll
JP5692513B2 (en) Glass film laminate
WO2015046490A1 (en) Method for producing film-like glass body, method for manufacturing electronic device, and method for producing glass film laminate
JP2014019597A (en) Method for producing glass film, and glass film laminate
WO2014073455A1 (en) Glass film laminate and method for producing electronic/electric device
KR20160086855A (en) Glass film laminate and liquid crystal panel manufacturing method
JP5585937B2 (en) Glass film laminate
WO2015012268A1 (en) Glass film manufacturing method, and glass film peeling method
KR20160072148A (en) Method for manufacturing glass film laminate, glass film laminate, and method for manufacturing electronic device
JP6350277B2 (en) GLASS FILM MANUFACTURING METHOD AND ELECTRONIC DEVICE MANUFACTURING METHOD
JP6327580B2 (en) Glass film laminate and method for producing electronic device
WO2014133007A1 (en) Method for manufacturing electronic device
JP6327437B2 (en) Manufacturing method of electronic device
WO2014178405A1 (en) Glass film laminate, and production method for electronic device
JP2016060135A (en) Glass film laminate, and production method of electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14791242

Country of ref document: EP

Kind code of ref document: A1