WO2015046490A1 - Method for producing film-like glass body, method for manufacturing electronic device, and method for producing glass film laminate - Google Patents

Method for producing film-like glass body, method for manufacturing electronic device, and method for producing glass film laminate Download PDF

Info

Publication number
WO2015046490A1
WO2015046490A1 PCT/JP2014/075816 JP2014075816W WO2015046490A1 WO 2015046490 A1 WO2015046490 A1 WO 2015046490A1 JP 2014075816 W JP2014075816 W JP 2014075816W WO 2015046490 A1 WO2015046490 A1 WO 2015046490A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass film
peeling start
film
film laminate
Prior art date
Application number
PCT/JP2014/075816
Other languages
French (fr)
Japanese (ja)
Inventor
久敏 饗場
隆雄 岡
康夫 山崎
睦 深田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2015046490A1 publication Critical patent/WO2015046490A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to a method for producing a film-like glass and an electronic device, and more particularly to a technique for separating a glass film laminate used for producing an electronic device or the like into a glass film and a supporting glass.
  • flat panel displays such as a liquid crystal display, a plasma display, an organic EL display and a field emission display have become popular in recent years.
  • organic EL displays are required to be easily carried by folding or winding, and to be usable not only on flat surfaces but also on curved surfaces.
  • it is not limited to a display that can be used not only on a flat surface but also on a curved surface.
  • the surface of an object having a curved surface such as a car body surface, a roof of a building, a pillar, or an outer wall. If a solar cell can be formed or organic EL illumination can be formed, the application will be expanded. Therefore, the substrate and cover glass used in these devices are required to be further thinned and highly flexible.
  • Fluorescent materials used in organic EL displays and the like are deteriorated by contact with gases such as oxygen and water vapor. Accordingly, since a high gas barrier property is required for a substrate used in an organic EL display, it is expected to use a glass substrate. However, unlike a resin film, glass used for a substrate is weak in tensile stress and thus has low flexibility. If the glass substrate surface is bent to be subjected to tensile stress, the glass substrate is damaged. In order to impart flexibility to the glass substrate, it is necessary to make the glass substrate ultra-thin, and a glass film or glass roll having a thickness of 200 ⁇ m or less as described in Patent Document 1 below has been proposed. .
  • Glass substrate used for electronic devices such as flat panel displays and solar cells is subjected to various processing related to electronic device manufacturing such as processing and cleaning.
  • processing and cleaning When a glass substrate used in these electronic devices is made into a film, glass is a brittle material, so it is damaged by a slight stress change, and handling is difficult when performing various electronic device manufacturing related processes described above. There is a problem that it is difficult.
  • a glass film having a thickness of 200 ⁇ m or less is rich in flexibility, it is difficult to perform positioning or the like when performing processing, and there is a problem that displacement or the like occurs during patterning.
  • Patent Document 2 proposes a glass film laminate in which a glass film is laminated on a supporting glass. According to this, even if a glass film having no strength or rigidity is used alone, the supporting glass has high rigidity, so that the entire glass film laminate can be easily positioned during processing. Moreover, in following patent document 2, it is supposed that it is possible to peel a glass film from support glass immediately, without damaging a glass film after completion
  • Patent Document 3 proposes a glass film laminate in which a step is formed on a supporting glass and a corner portion or one side of the glass film is separated from the supporting glass. Thereby, in the case of peeling of a glass film, the glass film can be easily peeled from support glass from the location where the glass film is spaced apart from support glass.
  • a film forming process such as a transparent conductive film is performed on the surface of a glass substrate.
  • the present invention has been made in order to solve the above-described problems of the prior art, and an object of the present invention is to make it possible to easily peel a glass film from a supporting glass after manufacturing-related processing such as an electronic device. . Moreover, it aims at producing the glass film laminated body with few bubbles which generate
  • the present invention which was created to solve the above problems, includes a glass film laminate production step of producing a glass film laminate by laminating a glass film on a supporting glass, and a side portion of the glass film laminate.
  • the peeling start part forming step forms the peeling start part by applying a liquid containing a fluorine compound to a side part of the glass film laminate.
  • the said structure WHEREIN The said glass film laminated body has the shape by which the substantially rectangular glass film laminated body was corner-cut, and the said peeling start part formation process is in the at least 1 corner part of the said glass film laminated body, It is preferable to form the peeling start part.
  • the glass film laminate has a substantially rectangular shape, and the peeling start portion forming step forms the peeling start portion on at least one side of the glass film laminate.
  • the said structure WHEREIN The said glass film laminated body is substantially rectangular shape, and the said peeling start part formation process provides the liquid containing a fluorine compound to at least 3 sides among the side parts of the said glass film laminated body, It is preferable that one side in the center is the peeling start portion.
  • the separation distance of the peeling start portion from the glass film end surface is preferably 1 mm or more.
  • the present invention which was created to solve the above problems, includes a glass film laminate production step of producing a glass film laminate by laminating a glass film on a supporting glass, and an electron in the glass film in the glass film laminate.
  • the electronic device with the supporting glass after the start part forming step is started from the peeling start part.
  • the said structure WHEREIN is a cover glass film laminated body by which the cover glass film was laminated
  • the cover glass film further includes a step of producing a cover glass film laminate, and in the peeling start portion forming step, the cover glass film and the carrier glass are partially separated from each other at a side portion of the cover glass film laminate. It is preferable that the method further includes a step of forming a side peeling start portion, and the separation step further includes a step of separating the carrier glass and the cover glass film starting from the cover glass film side peeling start portion.
  • the present invention which was created to solve the above problems, includes a glass film laminate production step of producing a glass film laminate by laminating a glass film on a supporting glass, and a side portion of the glass film laminate. It is related with the manufacturing method of the glass film laminated body which has a peeling start part formation process which forms the peeling start part in which the glass film and the said support glass partly separated.
  • the glass film can be easily peeled off from the supporting glass after processing related to manufacturing of an electronic device or the like. Further, it is possible to produce a glass film laminate with less generation of bubbles at the lamination interface.
  • FIG. 1 It is a schematic diagram which shows the manufacturing method of the film-form glass which concerns on one Embodiment of this invention. It is the figure which showed an example of the glass film laminated body preparation process of this invention. It is the figure which showed an example of the manufacturing method of a glass film and support glass. It is the figure which formed the peeling start part in the side part of a glass film laminated body. It is the figure which showed other embodiment of the peeling start part. It is the figure which formed the peeling start part in the side part of the glass film laminated body which has an adjustment layer. It is the figure which showed an example of the peeling start part formation process (formation method of a peeling start part). It is the figure which showed an example of the peeling process of this invention. It is the figure which showed the manufacturing method of the electronic device which concerns on embodiment of this invention. It is the figure which showed an example of the electronic device with support glass carrier glass. It is the figure which showed an example of the peeling process in embodiment of the manufacturing method of an electronic device.
  • the preferred method for producing a film-like glass comprises a glass film laminate production step for producing a glass film laminate 1 by laminating a glass film 11 on a supporting glass 12, and a glass Manufacturing-related processing steps for forming an element 2 on the glass film 11 of the glass film laminate 1 by performing manufacturing-related processing such as an electronic device on the film 11, and a peeling start portion 3 on the side of the glass film laminate 1
  • the peeling start part formation process which forms, and the peeling process which peels the support glass 12 and the glass film 11 from the peeling start part 3 are provided.
  • FIG. 2 is a diagram showing an example of a glass film laminate manufacturing process according to the present invention.
  • the glass film 11 is made of silicate glass or silica glass, preferably borosilicate glass, aluminosilicate glass, or aluminoborosilicate glass, and most preferably non-alkali glass. If the glass film 11 contains an alkali component, cations are dropped on the surface, so-called soda blowing phenomenon occurs, and the structure becomes rough. In this case, if the glass film 11 is curved and used, there is a possibility that it will be damaged from a portion that has become rough due to deterioration over time.
  • the alkali-free glass is a glass that does not substantially contain an alkali component (alkali metal oxide), and specifically, a glass having an alkali component of 3000 ppm or less.
  • the content of the alkali component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and still more preferably 300 ppm or less.
  • the thickness of the glass film 11 is preferably 300 ⁇ m or less, more preferably 5 ⁇ m to 200 ⁇ m, and most preferably 5 ⁇ m to 100 ⁇ m. Thereby, the thickness of the glass film 11 can be made thinner and appropriate flexibility can be imparted, handling properties are difficult, and problems such as misalignment and bending during patterning are likely to occur. On the other hand, processing related to electronic device manufacturing can be easily performed by using the supporting glass 12 described later. If the thickness of the glass film 11 is less than 5 ⁇ m, the strength of the glass film 11 tends to be insufficient, and the glass film 11 may be difficult to peel from the support glass 12.
  • the support glass 12 is made of silicate glass or silica glass, like the glass film 11, preferably borosilicate glass, aluminosilicate glass, or aluminoborosilicate glass, and most preferably non-alkali glass. .
  • the supporting glass 12 it is preferable to use a glass having a difference in thermal expansion coefficient at 30 to 380 ° C. from the glass film 11 within 5 ⁇ 10 ⁇ 7 / ° C. Thereby, even if heating is involved in the electronic device manufacturing related process, it is difficult to cause thermal warp due to a difference in expansion coefficient, cracking of the glass film 11, and the like, and the glass film laminate 1 can maintain a stable laminated state. It becomes possible.
  • the supporting glass 12 and the glass film 11 are most preferably glass having the same composition.
  • the thickness of the support glass 12 is preferably 300 ⁇ m or more. When the thickness of the supporting glass 12 is less than 300 ⁇ m, there is a possibility that a problem may occur in terms of strength when the supporting glass 12 is handled alone.
  • the thickness of the support glass 12 is preferably 400 ⁇ m to 700 ⁇ m, and most preferably 500 ⁇ m to 700 ⁇ m. Thereby, it becomes possible to support the glass film 11 reliably.
  • the thickness of the support glass 12 is less than 300 ⁇ m (for example, 200 ⁇ m, the same thickness as the glass film 11). But it ’s okay.
  • the glass film 11 and the supporting glass 12 used in the present invention are preferably formed by a down draw method, a float method, a slot down draw method, a roll out method, an up draw method, a redraw method or the like, and an overflow down draw More preferably, it is molded by the method.
  • the overflow downdraw method shown in FIG. 3 is a molding method in which both surfaces of the glass plate do not come into contact with the molded member at the time of molding, and the both surfaces (translucent surface) of the obtained glass plate are hardly scratched and polished. Even if not, high surface quality can be obtained.
  • the glass ribbon G that has reached the predetermined thickness is gradually cooled in a slow cooling furnace (annealer), the thermal distortion of the glass ribbon G is removed, and the glass ribbon G is cut into predetermined dimensions, whereby the glass film 11 and the supporting glass are removed. 12 are molded.
  • the support glass 12 and the glass film 11 have substantially the same size, but it is preferable that the glass film 11 is slightly smaller than the support glass 12 from the viewpoint of protecting the glass film 11.
  • the protruding amount of the supporting glass 12 from the glass film 11 is preferably 0.5 to 30 mm, and more preferably 0.5 to 5 mm.
  • the effective surface of the glass film 11 can be secured more widely.
  • the front surface of the glass film 11 is in contact with the supporting glass 12, so that there is no starting point of peeling of the glass film 11. Therefore, it is difficult to peel the glass film 11 from the support glass 12. Even in such a case, even if the glass film 11 is slightly smaller than the supporting glass 12 by forming the peeling start part 3 in the peeling start part forming step described later, the glass film 11 is suitably peeled off. can do.
  • the surface roughness Ra of the surface (the lower surface 11b of the glass film 11 and the upper surface 12a of the supporting glass 12) of the glass film 11 and the supporting glass 12 that are in contact with each other is 2.0 nm or less.
  • the surface roughness Ra of the lower surface 11b of the glass film 11 and the upper surface 12a of the supporting glass 12 is preferably 1.0 nm or less, more preferably 0.5 nm or less, and preferably 0.2 nm or less. Most preferred.
  • the glass film 11 and the support glass 12 are laminated by direct surface contact.
  • the adhesiveness between the glass film 11 and the support glass 12 and the peelability after the manufacturing-related process are improved.
  • an inorganic oxide thin film such as ITO or a metal thin film such as Ti on the upper surface 12a of the support glass 12 and the lower surface 11b of the glass film 11, acrylic resin, silicone resin, etc.
  • a resin layer or the like may be appropriately formed.
  • the surface roughness Ra of the formed film surface is 2 It is preferably 0.0 nm or less, more preferably 1.0 nm or less, more preferably 0.5 nm or less, and most preferably 0.2 nm or less.
  • the manufacturing related processing step in the present embodiment forms the element 2 on the upper surface 11a (effective surface) of the glass film 11 of the glass film laminated body 1 produced in the glass film laminated body producing step by performing the manufacturing related processing. It is a process to do.
  • a battery element such as a liquid crystal element, an organic EL element, a touch panel element, a solar cell element, a piezoelectric element, a light receiving element, a lithium ion secondary battery, A MEMS element, a semiconductor element, etc. are mentioned.
  • What is formed on the glass film 11 in the manufacturing-related processing steps is not limited to the element 2 as shown in FIG. 1, and is a glass frit sintering process, an antireflection film, an antireflection film, a reflection film, an antifouling process, and the like. It also includes forming a coat or the like.
  • the production-related process in the production-related process is preferably a production-related process involving heating, and examples thereof include a film formation process by a CVD method or sputtering. After the manufacturing-related process with heating, it is particularly difficult to peel off the glass film 11 from the support glass 12. By forming the peeling start part 3 in the peeling start part forming step described later, the glass film can be easily formed from the support glass 12. 11 can be peeled off.
  • the glass film laminate 1 in the present invention is the Since there is no part spaced apart from the support glass 12, these organic materials remain unintentionally at the end (interface between the glass film 11 and the support glass 12) of the glass film laminate 1, and the support glass 12 and the glass film 11 are hardly adhered.
  • a peeling start part formation process is a process of forming the concave peeling start part 3 containing the interface 15 of the glass film 11 and the support glass 12 in the side part 14 of the glass film laminated body 1, Thereby, the glass film 11 and The support glass 12 is partially separated.
  • the peeling start part 3 is formed on at least part of the circumferential direction of the side part 14 of the glass film laminate 1.
  • the peeling start part formation process is performed after the glass film laminate manufacturing process, compared with the case where the peeling start part formation process is performed first, glass powder generated at the time of the peeling start part formation process, etc.
  • the foreign matter such as dust adheres to the upper surface 12 a of the support glass 12, so that foreign matter such as dust can be mixed into the interface 15, and bubbles can be prevented from being generated during the production of the glass film laminate 1. Therefore, the glass film laminated body 1 with few generation
  • FIG. 4 is a diagram in which a peeling start portion 3 in which the glass film 11 and the supporting glass 12 are separated is formed on the side portion 14 of the glass film laminate 1.
  • the peeling start part 3 is an area where the glass film 11 and the supporting glass 12 are separated from each other in the side part 14 of the glass film laminate 1. Specifically, in the side portion 14 of the glass film laminate 1, the peeling start portion 3 is formed by reducing the thickness of the lower surface 11 a side of the glass film 11 and the upper surface 12 a side of the support glass 12. In addition, as for the peeling start part 3, the outer side of the glass film laminated body 1 is open
  • the glass film 11 and the supporting glass 12 can be separated from each other with the glass film laminate 1 as it is.
  • the peeling start part 3 is formed by reducing the thickness of both the glass film 11 and the support glass 12, it is not limited to this, Only one of the glass film 11 and the support glass 12
  • the peeling start part 3 may be formed by reducing the thickness of the film. In particular, it is preferable to reduce only the thickness of the glass film 11 because the supporting glass 12 can be recycled.
  • the separation height h between the glass film 11 and the support glass 12 in the peeling start part 3 is not particularly limited. However, when a peeling member such as a metal blade is used in the peeling step described later, the thickness of the peeling member to be used is used. It is preferable that the thickness is larger than the thickness. Thereby, it can prevent that the quality of the end surface of the glass film 11 deteriorates by a peeling member striking the end surface of the glass film 11.
  • the depth of the peeling start part 3 in the direction from the side part 14 of the glass film laminate 1 inward, that is, the separation distance t from the glass film end surface of the peeling start part 3 is larger than the above-described separation height h. It is preferable. Thereby, when starting peeling with the glass film 11 and the support glass 12, the stress provided to the glass film 11 at the time of peeling start can be reduced.
  • the separation distance t is preferably larger than the thickness of the supporting glass 12 and preferably larger than the total thickness of the glass film laminate 1. Specifically, the separation distance t is preferably 1 mm or more, and more preferably 5 mm or more.
  • the glass film 11 can be easily peeled from the support glass 12 from the peeling start part 3 as a starting point.
  • the separation distance t from the glass film end surface is preferably 20 mm or less, and more preferably 10 mm or less. Thereby, the peeling start part 3 can be formed in a short time.
  • the peeling start part 3 is a V-shaped taper shape in which the distance between the glass film 11 and the support glass 12 gradually decreases inward from the side part 14 of the glass film laminate 1. It is preferable that When the peeling of the glass film 11 from the support glass 12 is started, it is necessary to give a large curvature (a large bending stress). Since the thickness of the tip of the peeling start portion is the smallest, a large curvature is given at the start of peeling. However, the glass film 11 and the supporting glass 12 are not easily damaged.
  • the peeling start part 3 will also fulfill
  • the shape of the peeling start portion 3 is not limited to a V-shaped taper shape, and may be a U-shape as shown in FIG.
  • the peeling start part 3 should just be formed in the corner part of at least one place of the rectangular-shaped glass film laminated body 1 by which the corner cut was carried out. By being formed in one corner part, the glass film 11 can be easily peeled from the support glass 12 starting from the corner part.
  • the peeling start part 3 may be formed on at least one side of the substantially rectangular glass film laminate 1. By being formed on one side, the glass film 11 can be easily peeled from the support glass 12 starting from the side.
  • an inorganic oxide thin film such as ITO or a metal thin film such as Ti on the upper surface 12 a of the support glass 12 or the lower surface 11 b of the glass film 11, such as an acrylic resin or a silicone resin.
  • a resin layer or the like (hereinafter referred to as an adjustment layer 13) can be appropriately formed. In this case, the thickness of the adjustment layer 13 is reduced or a part thereof is removed to form the concave peeling start portion 3 May be.
  • FIG. 7 is a diagram showing an example of a method for forming the peeling start portion 3 in the peeling start portion forming step.
  • the processing liquid 51 is stored in the processing tank 5, and after changing the posture of the glass film laminated body 1 in the vertical direction, the side portion 14 of the glass film laminated body 1 is immersed in the processing liquid 51.
  • immersing the side part 14 of the glass film laminate 1 in the treatment liquid 51 means immersing both the side surface of the glass film 11 and the side surface of the support glass 12 in the treatment liquid 51.
  • the treatment liquid 51 is not particularly limited as long as it is a liquid capable of dissolving glass, but is preferably a liquid containing a fluorine compound.
  • the fluorine compound include hydrofluoric acid, acidic ammonium fluoride, tetrafluoroboric acid, and it is preferable to use hydrofluoric acid.
  • a liquid containing hydrofluoric acid is used.
  • the concentration of the treatment liquid 51 is preferably 10 to 50%, more preferably 15 to 30%. Thereby, the peeling start part 3 can be formed appropriately.
  • the process liquid 51 should be a liquid which can melt
  • an inorganic thin film such as an inorganic oxide thin film (metal oxide thin film) such as ITO or a metal thin film such as Ti
  • hydrochloric acid, sulfuric acid, or the like can be used as the treatment liquid 51.
  • a resin layer such as an acrylic resin or a silicone resin
  • an organic solvent that can dissolve the resin layer can be used as the treatment liquid 51.
  • the immersion time of the side portion 14 of the glass film laminate 1 in the treatment liquid 51 is preferably 5 minutes to 360 minutes, depending on the concentration of the treatment liquid used, but is preferably 10 minutes to 60 minutes. More preferably. Most preferably, it is 20 to 40 minutes. Thereby, the appropriate peeling start part 3 can be formed in a short time.
  • the immersion depth d of the side portion 14 of the glass film laminate 1 into the treatment liquid 51 is as follows. It is preferably 50 mm or less, more preferably 30 mm or less, and most preferably 10 mm or less. Thereby, it can prevent that the upper surface 11a side of the glass film 11 deteriorates with a process liquid. Moreover, you may provide the protective layer by the resin film etc. in the upper surface 11a side of the glass film 11 from a viewpoint which prevents the element 2 formed in the upper surface 11a side of the glass film 11 from deteriorating.
  • the process liquid 51 is directly apply
  • the peeling start portion 3 may be formed by bringing the side portion 14 into contact with a porous body or the like impregnated with the treatment liquid 51.
  • the grinding member etc. which do not illustrate the side part 14 of the glass film laminated body 1 are shown.
  • the peeling start part 3 may be physically formed by using and grinding.
  • the peeling start part 3 is formed using the process liquid 51 shown in FIG. 7, it is preferable to form over at least one side of the rectangular glass film laminate 1 and to form over three sides. It is preferable.
  • the supporting glass 12 and the glass film 11 are peeled from the peeling start portion 3 as a starting point, bending stress is applied to the side surface of the glass film 11. Since the microcracks occurring in are removed, they are difficult to break.
  • the peeling step is a step of separating the glass film laminate 1 after the peeling start portion forming step into the glass film 11 and the supporting glass 12 starting from the peeling start portion 3.
  • FIG. 8 is a diagram showing an example of the peeling process.
  • the glass film peeling apparatus 6 shown in FIG. 8 can peel the glass film 11 from the support glass 12 by giving the force which separates the support glass 12 and the glass film 11.
  • the peeling start part 3 can be used as a starting point for peeling.
  • the fluid 62 When peeling the glass film 11 from the support glass 12, it is preferable to apply the fluid 62 from the nozzle 61 to the interface 15. Thereby, peeling of the glass film 11 from the support glass 12 can be promoted, without making physical contact with the support glass 12 or the glass film 11. Thereby, it is prevented that a damage
  • the fluid 62 air, water, or the like can be preferably used.
  • the glass film 11 is peeled from the supporting glass 12, there is a possibility that peeling electrification may occur.
  • electrostatic discharge breakage may occur, and thus a fluid having a slow current action.
  • Preferably 62 is used. By providing the fluid ejection nozzle with an ionizer function, or blowing high-humidity air or water, the fluid 62 having a slow current action can be obtained.
  • a liquid (for example, water) that is a fluid 62 is sprayed on the interface 15 of the glass film laminate 1 by a method (for example, a water jet method) that is sprayed from the nozzle 61 at a high pressure.
  • a method for example, a water jet method
  • FIG. 8 using the supporting glass holding mechanism 63 and the glass film holding mechanism 64, the glass film 11 of the glass film laminate 1 is fixed by the vacuum suction pads 64a, 64a,. 12 shows a process in which the liquid 62 is sprayed onto the interface 15 and the separation starting portion 3 is used as a starting point while the substrate 12 is pulled by the vacuum suction pads 63a, 63a.
  • the glass film holding mechanism 64 may use a plurality of vacuum suction pads 64a arranged, a plate having a vacuum suction function, or an adhesive resin sheet.
  • a plate-like vacuum suction mechanism because the substrate is easily bent.
  • a vacuum suction pad when it is difficult to fix a flat plate with a plate by forming a device on the glass film 11, it is preferable to use a vacuum suction pad. If there is a concern that the wiring formed on the device surface or the sealing agent of the device may be damaged by the pressure received from the liquid 62 or the contact with the vacuum suction pad, a protective film is applied to the site where damage is to be avoided. It may be pasted. Further, an intrusion prevention layer for the liquid 62 may be provided on the outer periphery of the sealing agent.
  • each support mechanism 63 * 64 of support glass and glass film is used for fixing the support glass 12, the glass film 11 and the like in a flat shape, and used for pulling the glass film 11 and the support glass 12, etc. Since both applications may be used while being switched, a common configuration may be used without making a difference in the configuration of the holding mechanisms 63 and 64.
  • the peeling member When peeling a glass film from the support glass 12, you may use the peeling member which is not shown in figure unlike the form of FIG.
  • the peeling member By having the peeling start part 3, the peeling member can be smoothly inserted into the peeling start part 3, and the glass film 11 can be peeled from the support glass 12 by continuing to insert the peeling member into the interface 15. it can.
  • the glass film laminated body 1 When peeling the glass film 11 from the support glass 12, the glass film laminated body 1 may be immersed in water, and when immersed in water, an ultrasonic wave may be applied.
  • the shape of the peeling member is preferably a sheet-like, belt-like, plate-like, strip-like or the like, which has a small thickness and is wide in the peeling progress direction.
  • the thickness of the peeling member is preferably 0.01 mm to 1 mm, and more preferably 0.1 mm to 0.5 mm. Thereby, a peeling member can be smoothly inserted into the peeling start part 3.
  • the width of the peeling member depends on the area of the glass film laminate 1 to be peeled, but is preferably wider than at least the glass film laminate 1 in the peeling progress direction.
  • the material of the peeling member it is possible to use a rigid metal such as aluminum or stainless steel, but it is preferable to use a flexible resin film such as polyethylene or acrylic, and a hydrophobic film such as a fluororesin film.
  • the resin sheet is more preferable.
  • the film-like glass 110 can be finally manufactured by peeling the support glass 12 from the glass film laminated body 1 by a peeling process.
  • FIG. 9 is a diagram showing an electronic device manufacturing method according to an embodiment of the present invention.
  • the embodiment described in FIG. 9 is different from the above-described embodiment in that the spacer 21 is disposed around the element 2 and is sealed by a cover glass film 71 supported by a carrier glass 72.
  • a cover glass film laminate 7 is formed by laminating a cover glass film 71 on a carrier glass 72.
  • the cover glass film side peeling start part 31 also exists in the side part 73 of the cover glass film laminated body 7 by immersing the electronic device 8 with support glass carrier glass in the process liquid 51 in the vertical direction. It is formed.
  • the cover glass film 71 is the same as the above glass film 11
  • the carrier glass 72 is the same as the above supporting glass 12
  • the cover glass film side peeling start part 31 is the same as the above peeling start part 3.
  • the protective member 22 between the glass film 11 and the cover glass film 71 and on the outer side of the spacer 21 when immersed in the treatment liquid 51.
  • the glass film 11 and the cover glass film 71 outside the spacer 21 may be provided with electrodes and the like, and these electrodes can be prevented from being deteriorated by the treatment liquid 51.
  • the glass film 11 and the cover glass film 71 are outside the spacer 21 with the protective member 22.
  • the glass film laminate 1 and the cover glass film laminate 7 are not bent by the pulling force at the start of peeling, peeling can be started smoothly.
  • the protective member 22 a member that is not eroded by the treatment liquid 51 can be used, and an epoxy resin, an ultraviolet curable resin, or the like can be suitably used. The protective member 22 is finally removed after the support glass 12 and the carrier glass 72 are peeled off.
  • FIG. 11 is a diagram showing an example of a peeling process in the embodiment of the method for manufacturing an electronic device.
  • the support glass 12 is pulled by the support glass holding mechanism 63 and the carrier glass 72 is fixed by the carrier glass holding mechanism 65 to keep the glass film 11 flat, and the interface 15 between the support glass 12 and the glass film 11.
  • the support glass 12 is peeled off by spraying water as the fluid 62 from the nozzle 61.
  • the glass film 11 is fixed to a flat surface by the support glass holding mechanism 63 and the carrier glass 72 is pulled by the carrier glass holding mechanism 65 while the interface between the carrier glass 72 and the cover glass film 71.
  • the carrier glass 72 is peeled off by spraying water as the fluid 62 onto 74.
  • the cover glass film 71 and the carrier glass 72 are also peeled in the same process as the glass film 11 and the supporting glass 12 are peeled. Even when the cover glass film 71 and the carrier glass 72 are peeled off, the carrier glass 72 is peeled off while being pulled.
  • the desired electronic device 81 can be finally manufactured by peeling the support glass 12 and the carrier glass 72 from the electronic device 8 with support glass carrier glass by a peeling process.
  • the carrier glass 72 is peeled after the support glass 12, but the carrier glass 72 may be peeled first.
  • the form which used the cover glass film laminated body 7 as a sealing substrate was demonstrated, it is not limited to this, You may use one glass plate as a sealing substrate. A single resin substrate may be used.
  • a glass film laminate manufacturing process, a manufacturing-related processing process (electronic device manufacturing process), a peeling start part forming process, and a peeling process are continuously performed. Can do.
  • this invention is not limited to the structure performed continuously from a glass film laminated body preparation process to a peeling process,
  • the glass film laminated body 1 manufactured after the glass film laminated body preparation process, or a cover glass film laminated body 7 may be packaged, shipped, and separately subjected to a manufacturing-related processing step (electronic device manufacturing step), a peeling start portion forming step, and a peeling step in an electronic device manufacturing-related processing facility.
  • Example 1 Non-alkali glass (OA-10G, thermal expansion coefficient at 30 to 380 ° C .: 38 ⁇ 10 ⁇ 7 / ° C.) manufactured by Nippon Electric Glass Co., Ltd. is used as the supporting glass, glass film, cover glass film, and carrier glass. did. Manufactured by the overflow downdraw method and used in an unpolished state. A rectangular plate glass having a length of 680 mm, a width of 880 mm, and a thickness of 500 ⁇ m was prepared as a supporting glass and a carrier glass. A rectangular transparent glass having a length of 678 mm, a width of 878 mm, and a thickness of 200 ⁇ m was prepared as a glass film and a cover glass film.
  • OA-10G thermal expansion coefficient at 30 to 380 ° C .: 38 ⁇ 10 ⁇ 7 / ° C.
  • a glass film was laminated on a supporting glass to prepare a glass film laminate.
  • a cover glass film was laminated on a carrier glass to prepare a cover glass film laminate.
  • an organic EL element was formed on the glass film.
  • the formation temperature in forming the organic EL element was 350 °.
  • the organic EL element was sealed with a cover glass film laminate to produce an electronic device with a supporting glass carrier glass.
  • 5 mm (5 mm from the glass film side surface) of the produced electronic device with supporting glass carrier glass was immersed in a hydrofluoric acid aqueous solution having a concentration of 20% for 30 minutes.
  • the three sides of the electronic device with supporting glass carrier glass were similarly immersed in a hydrofluoric acid aqueous solution.
  • the thickness was reduced by 150 ⁇ m in the thickness direction to 50 ⁇ m. Then, after washing with pure water, when the support glass and the carrier glass were peeled from the peeling start portion by the method described in FIG. 11, they were peeled within 10 minutes.
  • Example 2 The same procedure as in Example 1 was performed except that only one side of the electronic device with supporting glass carrier glass was immersed in an aqueous hydrofluoric acid solution. The peeling time between the supporting glass and the carrier glass required about 10 to 20 minutes.
  • Example 3 The same procedure as in Example 1 was performed except that only one corner of the electronic device with supporting glass carrier glass was immersed in a hydrofluoric acid aqueous solution. The peeling time between the support glass and the carrier glass required about 20 to 30 minutes.
  • Example 1 It was the same as Example 1 except that it was not immersed in a hydrofluoric acid solution. In order to peel off the supporting glass and the carrier glass, it took 1 hour or more respectively.
  • the present invention can be suitably used for glass substrates used in flat panel displays such as liquid crystal displays and organic EL displays, devices such as solar cells, and cover glasses for organic EL lighting.

Abstract

This method for producing a film-like glass body (110) comprises: a glass film laminate production step wherein a glass film laminate (1) is produced by laminating a glass film (11) on a supporting glass body (12); a separation initiation part formation step wherein a separation initiation part (3), wherein the glass film (11) and the supporting glass body (12) are partially separated from each other, is formed in a lateral part of the glass film laminate (1); and a separation step wherein the glass film laminate (1) is separated into the glass film (11) and the supporting glass body (12), starting from the separation initiation part (3), after the separation initiation part formation step. It is preferable that a production-related treatment step, wherein the glass film is subjected to a production-related treatment, is carried out between the glass film laminate production step and the separation initiation part formation step.

Description

フィルム状ガラスの製造方法、電子デバイスの製造方法、及びガラスフィルム積層体の製造方法Film glass manufacturing method, electronic device manufacturing method, and glass film laminate manufacturing method
 本発明は、フィルム状ガラス及び電子デバイスの製造方法に関し、より詳しくは、電子デバイス等の製造に際して用いられるガラスフィルム積層体を、ガラスフィルムと支持ガラスとに分離するための技術に関する。 The present invention relates to a method for producing a film-like glass and an electronic device, and more particularly to a technique for separating a glass film laminate used for producing an electronic device or the like into a glass film and a supporting glass.
 省スペース化の観点から、従来普及していたCRT型ディスプレイに替わり、近年は液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ等のフラットパネルディスプレイが普及している。これらのフラットパネルディスプレイにおいては、軽量化のためさらなる薄型化が要請される。特に有機ELディスプレイには、折りたたみや巻き取ることによって持ち運びを容易にすると共に、平面だけでなく曲面にも使用可能とすることが求められている。また、平面だけでなく曲面にも使用可能とすることが求められているのはディスプレイには限られず、例えば、自動車の車体表面や建築物の屋根、柱や外壁等、曲面を有する物体の表面に太陽電池を形成したり、有機EL照明を形成したりすることができれば、その用途が広がることとなる。従って、これらデバイスに使用される基板やカバーガラスには、更なる薄板化と高い可撓性が要求される。 From the viewpoint of space saving, instead of the CRT type display which has been widely used in the past, flat panel displays such as a liquid crystal display, a plasma display, an organic EL display and a field emission display have become popular in recent years. In these flat panel displays, further thinning is required for weight reduction. In particular, organic EL displays are required to be easily carried by folding or winding, and to be usable not only on flat surfaces but also on curved surfaces. In addition, it is not limited to a display that can be used not only on a flat surface but also on a curved surface. For example, the surface of an object having a curved surface, such as a car body surface, a roof of a building, a pillar, or an outer wall. If a solar cell can be formed or organic EL illumination can be formed, the application will be expanded. Therefore, the substrate and cover glass used in these devices are required to be further thinned and highly flexible.
 有機ELディスプレイ等に使用される発光体は、酸素や水蒸気等の気体が接触することにより劣化する。従って有機ELディスプレイに使用される基板には高いガスバリア性が求められるため、ガラス基板を使用することが期待されている。しかしながら、基板に使用されるガラスは、樹脂フィルムと異なり引っ張り応力に弱いため可撓性が低く、ガラス基板を曲げることによりガラス基板表面に引っ張り応力がかけられると破損に至る。ガラス基板に可撓性を付与するためにはガラス基板の超薄板化を行う必要があり、下記特許文献1に記載されているような厚み200μm以下のガラスフィルムやガラスロールが提案されている。 Fluorescent materials used in organic EL displays and the like are deteriorated by contact with gases such as oxygen and water vapor. Accordingly, since a high gas barrier property is required for a substrate used in an organic EL display, it is expected to use a glass substrate. However, unlike a resin film, glass used for a substrate is weak in tensile stress and thus has low flexibility. If the glass substrate surface is bent to be subjected to tensile stress, the glass substrate is damaged. In order to impart flexibility to the glass substrate, it is necessary to make the glass substrate ultra-thin, and a glass film or glass roll having a thickness of 200 μm or less as described in Patent Document 1 below has been proposed. .
 フラットパネルディスプレイや太陽電池等の電子デバイスに使用されるガラス基板には、加工処理や洗浄処理等、様々な電子デバイス製造関連の処理が施される。ところが、これら電子デバイスに使用されるガラス基板のフィルム化を行うと、ガラスは脆性材料であるため多少の応力変化により破損に至り、上述した各種電子デバイス製造関連処理を行う際に、取り扱いが大変困難であるという問題がある。加えて、厚み200μm以下のガラスフィルムは可撓性に富むため、処理を行う際に位置決め等を行い難く、パターンニング時にずれ等が生じるという問題もある。 Glass substrate used for electronic devices such as flat panel displays and solar cells is subjected to various processing related to electronic device manufacturing such as processing and cleaning. However, when a glass substrate used in these electronic devices is made into a film, glass is a brittle material, so it is damaged by a slight stress change, and handling is difficult when performing various electronic device manufacturing related processes described above. There is a problem that it is difficult. In addition, since a glass film having a thickness of 200 μm or less is rich in flexibility, it is difficult to perform positioning or the like when performing processing, and there is a problem that displacement or the like occurs during patterning.
 ガラスフィルムの取り扱い性を向上させるために、下記特許文献2では、支持ガラスの上にガラスフィルムを積層させたガラスフィルム積層体が提案されている。これによれば、単体では強度や剛性のないガラスフィルムを用いても、支持ガラスの剛性が高いため、処理の際にガラスフィルム積層体全体として位置決めが容易となる。また、下記特許文献2では、工程終了後にガラスフィルムを破損することなくすみやかに支持ガラスからガラスフィルムを剥離することが可能であるとされている。 In order to improve the handleability of the glass film, the following Patent Document 2 proposes a glass film laminate in which a glass film is laminated on a supporting glass. According to this, even if a glass film having no strength or rigidity is used alone, the supporting glass has high rigidity, so that the entire glass film laminate can be easily positioned during processing. Moreover, in following patent document 2, it is supposed that it is possible to peel a glass film from support glass immediately, without damaging a glass film after completion | finish of a process.
 下記特許文献2に記載されたようなガラスフィルム積層体では、一般的には、ガラスフィルムのコーナー部からガラスフィルムの剥離を開始する。しかしながら、特許文献2に記載のガラスフィルム積層体は、ガラスフィルムの全ての面が支持ガラスと接触しているため、ガラスフィルムを剥離する際の起点が存在しない。このため、支持ガラスとガラスフィルムとの接着力が強固な場合については、ガラスフィルムのコーナー部を把持し難く、ガラスフィルムの剥離の際にガラスフィルムのコーナー部に破損や欠け等が生じ易くなるという問題がある。 In a glass film laminate as described in Patent Document 2 below, generally, peeling of the glass film starts from the corner of the glass film. However, since all the surfaces of the glass film are in contact with the supporting glass in the glass film laminate described in Patent Document 2, there is no starting point for peeling the glass film. For this reason, when the adhesive force between the supporting glass and the glass film is strong, it is difficult to grip the corner of the glass film, and the glass film is easily damaged or chipped when the glass film is peeled off. There is a problem.
 この問題を解決するために、下記特許文献3では、支持ガラス上に段差を形成し、ガラスフィルムのコーナー部や一辺を支持ガラスから離間させているガラスフィルム積層体が提案されている。これにより、ガラスフィルムの剥離の際には、ガラスフィルムが支持ガラスから離間している箇所を起点として、支持ガラスからガラスフィルムを容易に剥離することができる。 In order to solve this problem, Patent Document 3 below proposes a glass film laminate in which a step is formed on a supporting glass and a corner portion or one side of the glass film is separated from the supporting glass. Thereby, in the case of peeling of a glass film, the glass film can be easily peeled from support glass from the location where the glass film is spaced apart from support glass.
特開2010-132531号公報JP 2010-132531 A 特開2011-183792号公報JP 2011-183792 A 特開2012-131664号公報JP 2012-131664 A
 一般的にディスプレイ等の電子デバイスの製造工程では、ガラス基板表面に透明導電膜等の成膜処理等を行うことから、フォトレジスト等の工程を有することが多い。 Generally, in the manufacturing process of an electronic device such as a display, a film forming process such as a transparent conductive film is performed on the surface of a glass substrate.
 しかしながら、特許文献3に記載されているガラスフィルム積層体では、ガラスフィルムと支持ガラスとの間が離間しているため、ガラスフィルム上に樹脂材料等の塗布を行うと、樹脂が離間部分に回り込むことで、ガラスフィルムと支持ガラスとが強固に固着されてしまうという問題が生じる。ガラスフィルムと支持ガラスとが樹脂材料等によって固着すると、支持ガラスからのガラスフィルムの剥離時に、ガラスフィルムが破損するという問題が生じるおそれがある。また、特許文献3に記載されているガラスフィルム積層体では、段差の作製時にガラス粉やゴミ等が発生するおそれがあり、このようなガラス粉やゴミ等が支持ガラスの上面に残存すると、ガラスフィルム積層時に、気泡の原因となるおそれがある。ガラスフィルム積層体に、このような気泡が存在すると、ガラスフィルムに製造関連処理を行う際に、適切に製造関連処理を行うことが困難となるおそれがある。 However, in the glass film laminate described in Patent Document 3, since the glass film and the supporting glass are separated from each other, when a resin material or the like is applied on the glass film, the resin wraps around the separated portion. Thereby, the problem that a glass film and support glass will adhere firmly will arise. When the glass film and the supporting glass are fixed by a resin material or the like, there is a possibility that the glass film may be damaged when the glass film is peeled from the supporting glass. Moreover, in the glass film laminated body described in patent document 3, there is a possibility that glass powder, dust, or the like may be generated at the time of producing a step, and if such glass powder, dust, etc. remain on the upper surface of the supporting glass, There is a risk of causing bubbles during film lamination. When such air bubbles are present in the glass film laminate, it may be difficult to appropriately perform the manufacturing related process when the manufacturing related process is performed on the glass film.
 本発明は、上述したような従来技術の問題点を解決するためになされたものであって、電子デバイス等の製造関連処理後に支持ガラスからガラスフィルムを容易に剥離可能とすることを目的とする。また、積層界面に発生する気泡が少ないガラスフィルム積層体を作製することを目的とする。 The present invention has been made in order to solve the above-described problems of the prior art, and an object of the present invention is to make it possible to easily peel a glass film from a supporting glass after manufacturing-related processing such as an electronic device. . Moreover, it aims at producing the glass film laminated body with few bubbles which generate | occur | produce in a lamination | stacking interface.
 上記課題を解決するために創案された本発明は、支持ガラス上にガラスフィルムを積層してガラスフィルム積層体を作製するガラスフィルム積層体作製工程と、前記ガラスフィルム積層体の側部に、前記ガラスフィルムと前記支持ガラスとが一部離間した剥離開始部を形成する剥離開始部形成工程と、前記剥離開始部形成工程後に前記ガラスフィルム積層体の前記剥離開始部を起点として、前記ガラスフィルムと前記支持ガラスとに分離する分離工程と、を有するフィルム状ガラスの製造方法に関する。 The present invention, which was created to solve the above problems, includes a glass film laminate production step of producing a glass film laminate by laminating a glass film on a supporting glass, and a side portion of the glass film laminate. A peeling start part forming step for forming a peeling start part in which the glass film and the supporting glass are partially separated from each other, and after the peeling start part forming step, starting from the peeling start part of the glass film laminate, It is related with the manufacturing method of the film-form glass which has the isolation | separation process isolate | separated into the said support glass.
 上記構成において、前記ガラスフィルム積層体作製工程と、前記剥離開始部形成工程との間に、前記ガラスフィルムに製造関連処理を行う製造関連処理工程を有することが好ましい。 In the above configuration, it is preferable to have a manufacturing-related processing step of performing manufacturing-related processing on the glass film between the glass film laminate manufacturing step and the peeling start portion forming step.
 上記構成において、前記剥離開始部形成工程は、前記ガラスフィルム積層体の側部に、フッ素化合物を含有する液体を付与することで、前記剥離開始部を形成することが好ましい。 In the above configuration, it is preferable that the peeling start part forming step forms the peeling start part by applying a liquid containing a fluorine compound to a side part of the glass film laminate.
 上記構成において、前記ガラスフィルム積層体は、略矩形状のガラスフィルム積層体がコーナーカットされた形状を有し、前記剥離開始部形成工程は、前記ガラスフィルム積層体の少なくとも1つのコーナー部に、前記剥離開始部を形成することが好ましい。 The said structure WHEREIN: The said glass film laminated body has the shape by which the substantially rectangular glass film laminated body was corner-cut, and the said peeling start part formation process is in the at least 1 corner part of the said glass film laminated body, It is preferable to form the peeling start part.
 上記構成において、前記ガラスフィルム積層体は、略矩形状であり、前記剥離開始部形成工程は、前記ガラスフィルム積層体の少なくとも1辺に、前記剥離開始部を形成することが好ましい。 In the above configuration, it is preferable that the glass film laminate has a substantially rectangular shape, and the peeling start portion forming step forms the peeling start portion on at least one side of the glass film laminate.
 上記構成において、前記ガラスフィルム積層体は、略矩形状であり、前記剥離開始部形成工程は、前記ガラスフィルム積層体の側部のうち、少なくとも3辺にフッ素化合物を含有する液体を付与し、中央の1辺を前記剥離開始部とすることが好ましい。 The said structure WHEREIN: The said glass film laminated body is substantially rectangular shape, and the said peeling start part formation process provides the liquid containing a fluorine compound to at least 3 sides among the side parts of the said glass film laminated body, It is preferable that one side in the center is the peeling start portion.
 上記構成において、前記ガラスフィルム端面からの前記剥離開始部の離間距離は、1mm以上であることが好ましい。 In the above configuration, the separation distance of the peeling start portion from the glass film end surface is preferably 1 mm or more.
 上記課題を解決するために創案された本発明は、支持ガラス上にガラスフィルムを積層してガラスフィルム積層体を作製するガラスフィルム積層体作製工程と、前記ガラスフィルム積層体における前記ガラスフィルムに電子デバイス製造関連処理を行うことで前記ガラスフィルム積層体の前記ガラスフィルム上に素子を形成し、封止基板で前記素子を封止して支持ガラス付電子デバイスを作製する電子デバイス作製工程と、前記製造関連処理後の前記支持ガラス付電子デバイスにおける前記ガラスフィルム積層体の側部に、前記ガラスフィルムと前記支持ガラスとが一部離間した剥離開始部を形成する剥離開始部形成工程と、前記剥離開始部形成工程後の前記支持ガラス付電子デバイスを、前記剥離開始部を起点として、前記電子デバイスと前記支持ガラスとに分離する分離工程と、を有することを特徴とする電子デバイスの製造方法に関する。 The present invention, which was created to solve the above problems, includes a glass film laminate production step of producing a glass film laminate by laminating a glass film on a supporting glass, and an electron in the glass film in the glass film laminate. An electronic device manufacturing step of forming an element on the glass film of the glass film laminate by performing device manufacturing-related processing, sealing the element with a sealing substrate, and manufacturing an electronic device with a supporting glass; and A peeling start part forming step for forming a peeling start part in which the glass film and the supporting glass are partly separated from each other on the side part of the glass film laminate in the electronic device with supporting glass after manufacturing-related processing, and the peeling The electronic device with the supporting glass after the start part forming step is started from the peeling start part. A separation step of separating the said supporting glass, a method of manufacturing an electronic device, comprising a.
 上記構成において、前記封止基板は、キャリアガラスにカバーガラスフィルムが積層されたカバーガラスフィルム積層体であって、前記ガラスフィルム積層体作製工程において、前記キャリアガラス上に前記カバーガラスフィルムを積層してカバーガラスフィルム積層体を作製する工程をさらに含み、前記剥離開始部形成工程において、前記カバーガラスフィルム積層体の側部に、前記カバーガラスフィルムと前記キャリアガラスとが一部離間したカバーガラスフィルム側剥離開始部を形成する工程をさらに含み、前記分離工程において、前記カバーガラスフィルム側剥離開始部を起点として、前記キャリアガラスと前記カバーガラスフィルムとを分離する工程をさらに含むことが好ましい。 The said structure WHEREIN: The said sealing substrate is a cover glass film laminated body by which the cover glass film was laminated | stacked on carrier glass, Comprising: In the said glass film laminated body preparation process, the said cover glass film is laminated | stacked on the said carrier glass. The cover glass film further includes a step of producing a cover glass film laminate, and in the peeling start portion forming step, the cover glass film and the carrier glass are partially separated from each other at a side portion of the cover glass film laminate. It is preferable that the method further includes a step of forming a side peeling start portion, and the separation step further includes a step of separating the carrier glass and the cover glass film starting from the cover glass film side peeling start portion.
 上記課題を解決するために創案された本発明は、支持ガラス上にガラスフィルムを積層してガラスフィルム積層体を作製するガラスフィルム積層体作製工程と、前記ガラスフィルム積層体の側部に、前記ガラスフィルムと前記支持ガラスとが一部離間した剥離開始部を形成する剥離開始部形成工程と、を有するガラスフィルム積層体の製造方法に関する。 The present invention, which was created to solve the above problems, includes a glass film laminate production step of producing a glass film laminate by laminating a glass film on a supporting glass, and a side portion of the glass film laminate. It is related with the manufacturing method of the glass film laminated body which has a peeling start part formation process which forms the peeling start part in which the glass film and the said support glass partly separated.
 本発明によれば、電子デバイス等の製造関連処理後に、支持ガラスからガラスフィルムを容易に剥離することができる。また、積層界面に気泡の発生が少ないガラスフィルム積層体を作製することができる。 According to the present invention, the glass film can be easily peeled off from the supporting glass after processing related to manufacturing of an electronic device or the like. Further, it is possible to produce a glass film laminate with less generation of bubbles at the lamination interface.
本発明の一実施形態に係るフィルム状ガラスの製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the film-form glass which concerns on one Embodiment of this invention. 本発明のガラスフィルム積層体作製工程の一例を示した図である。It is the figure which showed an example of the glass film laminated body preparation process of this invention. ガラスフィルム及び支持ガラスの製造方法の一例を示した図である。It is the figure which showed an example of the manufacturing method of a glass film and support glass. ガラスフィルム積層体の側部に、剥離開始部を形成した図である。It is the figure which formed the peeling start part in the side part of a glass film laminated body. 剥離開始部の他の実施の形態を示した図である。It is the figure which showed other embodiment of the peeling start part. 調整層を有するガラスフィルム積層体の側部に、剥離開始部を形成した図である。It is the figure which formed the peeling start part in the side part of the glass film laminated body which has an adjustment layer. 剥離開始部形成工程(剥離開始部の形成方法)の一例を示した図である。It is the figure which showed an example of the peeling start part formation process (formation method of a peeling start part). 本発明の剥離工程の一例を示した図である。It is the figure which showed an example of the peeling process of this invention. 本発明の実施形態に係る電子デバイスの製造方法を示した図である。It is the figure which showed the manufacturing method of the electronic device which concerns on embodiment of this invention. 支持ガラスキャリアガラス付電子デバイスの一例を示した図である。It is the figure which showed an example of the electronic device with support glass carrier glass. 電子デバイスの製造方法の実施形態における剥離工程の一例を示した図である。It is the figure which showed an example of the peeling process in embodiment of the manufacturing method of an electronic device.
 以下、本発明に係る電子デバイスの製造方法の好適な実施形態について、図面を参照しつつ説明する。但し、以下の実施形態は、単なる一例であり、本発明は、以下の実施形態に何ら限定されない。 Hereinafter, preferred embodiments of a method for manufacturing an electronic device according to the present invention will be described with reference to the drawings. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments.
 本発明に係る好適なフィルム状ガラスの製造方法は、図1に示すように、支持ガラス12上にガラスフィルム11を積層してガラスフィルム積層体1を作製するガラスフィルム積層体作製工程と、ガラスフィルム11への電子デバイス等の製造関連処理を行うことでガラスフィルム積層体1のガラスフィルム11上に素子2を形成する製造関連処理工程と、ガラスフィルム積層体1の側部に剥離開始部3を形成する剥離開始部形成工程と、剥離開始部3を起点として、支持ガラス12とガラスフィルム11とを剥離する剥離工程とを備えている。 As shown in FIG. 1, the preferred method for producing a film-like glass according to the present invention comprises a glass film laminate production step for producing a glass film laminate 1 by laminating a glass film 11 on a supporting glass 12, and a glass Manufacturing-related processing steps for forming an element 2 on the glass film 11 of the glass film laminate 1 by performing manufacturing-related processing such as an electronic device on the film 11, and a peeling start portion 3 on the side of the glass film laminate 1 The peeling start part formation process which forms, and the peeling process which peels the support glass 12 and the glass film 11 from the peeling start part 3 are provided.
 図2は、本発明に係るガラスフィルム積層体作製工程の一例を示した図である。 FIG. 2 is a diagram showing an example of a glass film laminate manufacturing process according to the present invention.
 ガラスフィルム11は、ケイ酸塩ガラスやシリカガラスが用いられ、好ましくはホウケイ酸ガラス、アルミノケイ酸塩ガラス、アルミノホウケイ酸ガラスが用いられ、最も好ましくは無アルカリガラスが用いられる。ガラスフィルム11にアルカリ成分が含有されていると、表面において陽イオンの脱落が発生し、いわゆるソーダ吹きの現象が生じ、構造的に粗となる。この場合、ガラスフィルム11を湾曲させて使用していると、経年劣化により粗となった部分から破損する可能性がある。尚、ここで無アルカリガラスとは、アルカリ成分(アルカリ金属酸化物)が実質的に含まれていないガラスのことであって、具体的には、アルカリ成分が3000ppm以下のガラスのことである。本発明でのアルカリ成分の含有量は、好ましくは1000ppm以下であり、より好ましくは500ppm以下であり、更に好ましくは300ppm以下である。 The glass film 11 is made of silicate glass or silica glass, preferably borosilicate glass, aluminosilicate glass, or aluminoborosilicate glass, and most preferably non-alkali glass. If the glass film 11 contains an alkali component, cations are dropped on the surface, so-called soda blowing phenomenon occurs, and the structure becomes rough. In this case, if the glass film 11 is curved and used, there is a possibility that it will be damaged from a portion that has become rough due to deterioration over time. Here, the alkali-free glass is a glass that does not substantially contain an alkali component (alkali metal oxide), and specifically, a glass having an alkali component of 3000 ppm or less. The content of the alkali component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and still more preferably 300 ppm or less.
 ガラスフィルム11の厚みは、好ましくは300μm以下、より好ましくは5μm~200μm、最も好ましくは5μm~100μmである。これによりガラスフィルム11の厚みをより薄くして、適切な可撓性を付与することができるとともに、ハンドリング性が困難で、かつ、位置決めミスやパターニング時の撓み等の問題が生じやすいガラスフィルム11に対して、後述する支持ガラス12を使用することで電子デバイス製造関連処理等を容易に行うことができる。ガラスフィルム11の厚みが5μm未満であると、ガラスフィルム11の強度が不足がちになり、支持ガラス12からガラスフィルム11を剥離しにくくなるおそれがある。 The thickness of the glass film 11 is preferably 300 μm or less, more preferably 5 μm to 200 μm, and most preferably 5 μm to 100 μm. Thereby, the thickness of the glass film 11 can be made thinner and appropriate flexibility can be imparted, handling properties are difficult, and problems such as misalignment and bending during patterning are likely to occur. On the other hand, processing related to electronic device manufacturing can be easily performed by using the supporting glass 12 described later. If the thickness of the glass film 11 is less than 5 μm, the strength of the glass film 11 tends to be insufficient, and the glass film 11 may be difficult to peel from the support glass 12.
 支持ガラス12は、ガラスフィルム11と同様、ケイ酸塩ガラスやシリカガラスが用いられ、好ましくはホウケイ酸ガラス、アルミノケイ酸塩ガラス、アルミノホウケイ酸ガラスが用いられ、最も好ましくは無アルカリガラスが用いられる。支持ガラス12については、ガラスフィルム11との30~380℃における熱膨張係数の差が、5×10-7/℃以内のガラスを使用することが好ましい。これにより、電子デバイス製造関連処理の際に加熱を伴ったとしても、膨張率の差による熱反りやガラスフィルム11の割れ等が生じ難く、安定した積層状態を維持できるガラスフィルム積層体1とすることが可能となる。支持ガラス12とガラスフィルム11とは、同一の組成を有するガラスを使用することが最も好ましい。 The support glass 12 is made of silicate glass or silica glass, like the glass film 11, preferably borosilicate glass, aluminosilicate glass, or aluminoborosilicate glass, and most preferably non-alkali glass. . For the supporting glass 12, it is preferable to use a glass having a difference in thermal expansion coefficient at 30 to 380 ° C. from the glass film 11 within 5 × 10 −7 / ° C. Thereby, even if heating is involved in the electronic device manufacturing related process, it is difficult to cause thermal warp due to a difference in expansion coefficient, cracking of the glass film 11, and the like, and the glass film laminate 1 can maintain a stable laminated state. It becomes possible. The supporting glass 12 and the glass film 11 are most preferably glass having the same composition.
 支持ガラス12の厚みは、300μm以上であることが好ましい。支持ガラス12の厚みが300μm未満であると、支持ガラス12を単体で取り扱う場合に、強度の面で問題が生じるおそれがある。支持ガラス12の厚みは、400μm~700μmであることが好ましく、500μm~700μmであることが最も好ましい。これによりガラスフィルム11を確実に支持することが可能となる。尚、電子デバイス等の製造関連処理時に、図示しないセッター上に、ガラスフィルム積層体1を載置する場合は、支持ガラス12の厚みは300μm未満(例えば200μm等、ガラスフィルム11と同一の厚み)でも良い。 The thickness of the support glass 12 is preferably 300 μm or more. When the thickness of the supporting glass 12 is less than 300 μm, there is a possibility that a problem may occur in terms of strength when the supporting glass 12 is handled alone. The thickness of the support glass 12 is preferably 400 μm to 700 μm, and most preferably 500 μm to 700 μm. Thereby, it becomes possible to support the glass film 11 reliably. When the glass film laminate 1 is placed on a setter (not shown) during manufacturing-related processing such as an electronic device, the thickness of the support glass 12 is less than 300 μm (for example, 200 μm, the same thickness as the glass film 11). But it ’s okay.
 本発明に使用されるガラスフィルム11及び支持ガラス12は、ダウンドロー法、フロート法、スロットダウンドロー法、ロールアウト法、アップドロー法、リドロー法等によって成形されていることが好ましく、オーバーフローダウンドロー法によって成形されていることがより好ましい。特に、図3に示すオーバーフローダウンドロー法は、成形時にガラス板の両面が、成形部材と接触しない成形法であり、得られたガラス板の両面(透光面)には傷が生じ難く、研磨しなくても高い表面品位を得ることができる。 The glass film 11 and the supporting glass 12 used in the present invention are preferably formed by a down draw method, a float method, a slot down draw method, a roll out method, an up draw method, a redraw method or the like, and an overflow down draw More preferably, it is molded by the method. In particular, the overflow downdraw method shown in FIG. 3 is a molding method in which both surfaces of the glass plate do not come into contact with the molded member at the time of molding, and the both surfaces (translucent surface) of the obtained glass plate are hardly scratched and polished. Even if not, high surface quality can be obtained.
 図3に示すオーバーフローダウンドロー法において、成形炉4内の断面が楔型の成形体41の下端部42から流下した直後のガラスリボンGは、冷却ローラ43によって幅方向の収縮が規制されながら下方へ引き伸ばされて所定の厚みまで薄くなる。次に、前記所定厚みに達したガラスリボンGを徐冷炉(アニーラ)で徐々に冷却し、ガラスリボンGの熱歪を除き、ガラスリボンGを所定寸法に切断することにより、ガラスフィルム11及び支持ガラス12が夫々成形される。 In the overflow down draw method shown in FIG. 3, the glass ribbon G immediately after the cross section in the molding furnace 4 flows down from the lower end portion 42 of the wedge-shaped molded body 41 is lowered while the shrinkage in the width direction is restricted by the cooling roller 43. And is thinned to a predetermined thickness. Next, the glass ribbon G that has reached the predetermined thickness is gradually cooled in a slow cooling furnace (annealer), the thermal distortion of the glass ribbon G is removed, and the glass ribbon G is cut into predetermined dimensions, whereby the glass film 11 and the supporting glass are removed. 12 are molded.
 図2では、支持ガラス12とガラスフィルム11とが、略同一の大きさであるが、ガラスフィルム11を保護するという観点から、支持ガラス12よりもガラスフィルム11が、一回り小さいことが好ましい。この場合、支持ガラス12のガラスフィルム11からの食み出し量は、0.5~30mmであることが好ましく、0.5~5mmであることがより好ましい。支持ガラス12の食み出し量を少なくすることで、ガラスフィルム11の有効面をより広く確保することができる。特に、ガラスフィルム11が支持ガラス12よりも一回り小さいガラスフィルム積層体1の場合については、ガラスフィルム11の前面が支持ガラス12と接触していることから、ガラスフィルム11の剥離の起点がないことにより支持ガラス12からガラスフィルム11を剥離させ難い。このような場合であったとしても、後述する剥離開始部形成工程で剥離開始部3を形成することにより、ガラスフィルム11が支持ガラス12よりも一回り小さくても、好適にガラスフィルム11を剥離することができる。 In FIG. 2, the support glass 12 and the glass film 11 have substantially the same size, but it is preferable that the glass film 11 is slightly smaller than the support glass 12 from the viewpoint of protecting the glass film 11. In this case, the protruding amount of the supporting glass 12 from the glass film 11 is preferably 0.5 to 30 mm, and more preferably 0.5 to 5 mm. By reducing the amount of protrusion of the support glass 12, the effective surface of the glass film 11 can be secured more widely. In particular, in the case of the glass film laminate 1 in which the glass film 11 is slightly smaller than the supporting glass 12, the front surface of the glass film 11 is in contact with the supporting glass 12, so that there is no starting point of peeling of the glass film 11. Therefore, it is difficult to peel the glass film 11 from the support glass 12. Even in such a case, even if the glass film 11 is slightly smaller than the supporting glass 12 by forming the peeling start part 3 in the peeling start part forming step described later, the glass film 11 is suitably peeled off. can do.
 ガラスフィルム11及び支持ガラス12の相互に接触する側の表面(ガラスフィルム11の下面11bと支持ガラス12の上面12a)の表面粗さRaが夫々2.0nm以下であることが好ましい。これにより、ガラスフィルム11と支持ガラス12とを、接着剤を使用することなく安定して積層させることができる。ガラスフィルム11の下面11b及び支持ガラス12の上面12aの表面粗さRaは、夫々1.0nm以下であることが好ましく、0.5nm以下であることがより好ましく、0.2nm以下であることが最も好ましい。 It is preferable that the surface roughness Ra of the surface (the lower surface 11b of the glass film 11 and the upper surface 12a of the supporting glass 12) of the glass film 11 and the supporting glass 12 that are in contact with each other is 2.0 nm or less. Thereby, the glass film 11 and the support glass 12 can be laminated | stacked stably, without using an adhesive agent. The surface roughness Ra of the lower surface 11b of the glass film 11 and the upper surface 12a of the supporting glass 12 is preferably 1.0 nm or less, more preferably 0.5 nm or less, and preferably 0.2 nm or less. Most preferred.
 図1に示す実施形態においては、ガラスフィルム11と支持ガラス12とを直接面接触させることで積層させているが、ガラスフィルム11と支持ガラス12との接着性や製造関連処理後の剥離性を適宜調整するために、支持ガラス12の上面12a上やガラスフィルム11の下面11b上にITO等の無機酸化物薄膜(金属酸化物薄膜)やTi等の金属薄膜等、アクリル樹脂やシリコーン樹脂等の樹脂層等を適宜形成しても良い。ガラスフィルム11の下面11bや支持ガラスの上面12aに上述の無機酸化物(金属酸化物薄膜)やTi等の金属薄膜を形成する場合については、形成された膜面の表面粗さRaは、2.0nm以下であることが好ましく、1.0nm以下であることがより好ましく、0.5nm以下であることがより好ましく、0.2nm以下であることが最も好ましい。 In the embodiment shown in FIG. 1, the glass film 11 and the support glass 12 are laminated by direct surface contact. However, the adhesiveness between the glass film 11 and the support glass 12 and the peelability after the manufacturing-related process are improved. In order to adjust appropriately, an inorganic oxide thin film (metal oxide thin film) such as ITO or a metal thin film such as Ti on the upper surface 12a of the support glass 12 and the lower surface 11b of the glass film 11, acrylic resin, silicone resin, etc. A resin layer or the like may be appropriately formed. When the above-described inorganic oxide (metal oxide thin film) or metal thin film such as Ti is formed on the lower surface 11b of the glass film 11 or the upper surface 12a of the supporting glass, the surface roughness Ra of the formed film surface is 2 It is preferably 0.0 nm or less, more preferably 1.0 nm or less, more preferably 0.5 nm or less, and most preferably 0.2 nm or less.
 ガラスフィルム積層体作製工程と、後述する剥離開始部形成工程との間に、製造関連処理工程を有することが好ましい。本実施形態における製造関連処理工程は、製造関連処理を行うことで、ガラスフィルム積層体作製工程で作製されたガラスフィルム積層体1のガラスフィルム11の上面11a(有効面)上に素子2を形成する工程である。ガラスフィルム11の上面11a(有効面)上に形成される素子2としては、液晶素子、有機EL素子、タッチパネル素子、太陽電池素子、圧電素子、受光素子、リチウムイオン2次電池等の電池素子、MEMS素子、半導体素子等が挙げられる。製造関連処理工程でガラスフィルム11上に形成されるのは、図1に示すような素子2には限られず、ガラスフリットの焼結処理等や反射防止膜、透過防止膜、反射膜、防汚コート等を成膜することも含まれる。 It is preferable to have a manufacturing related process process between a glass film laminated body preparation process and the peeling start part formation process mentioned later. The manufacturing related processing step in the present embodiment forms the element 2 on the upper surface 11a (effective surface) of the glass film 11 of the glass film laminated body 1 produced in the glass film laminated body producing step by performing the manufacturing related processing. It is a process to do. As the element 2 formed on the upper surface 11a (effective surface) of the glass film 11, a battery element such as a liquid crystal element, an organic EL element, a touch panel element, a solar cell element, a piezoelectric element, a light receiving element, a lithium ion secondary battery, A MEMS element, a semiconductor element, etc. are mentioned. What is formed on the glass film 11 in the manufacturing-related processing steps is not limited to the element 2 as shown in FIG. 1, and is a glass frit sintering process, an antireflection film, an antireflection film, a reflection film, an antifouling process, and the like. It also includes forming a coat or the like.
 製造関連処理工程における製造関連処理としては、加熱を伴う製造関連処理であることが好ましく、例えば、CVD法やスパッタリング等による成膜処理等が挙げられる。加熱を伴う製造関連処理後は、特に支持ガラス12からガラスフィルム11を剥離しにくくなるところ、後述する剥離開始部形成工程で剥離開始部3を形成することで、容易に支持ガラス12からガラスフィルム11を剥離することができる。液晶ディスプレイや有機EL素子などの製造においては、ガラスフィルム11上にフォトレジストやカラーフィルター等が形成されるが、製造関連処理工程時において、本発明におけるガラスフィルム積層体1は、ガラスフィルム11と支持ガラス12との間に離間している箇所がないため、これらの有機系材料がガラスフィルム積層体1の端部(ガラスフィルム11と支持ガラス12との界面)に意図せず残り、支持ガラス12とガラスフィルム11とが固着することが少ない。 The production-related process in the production-related process is preferably a production-related process involving heating, and examples thereof include a film formation process by a CVD method or sputtering. After the manufacturing-related process with heating, it is particularly difficult to peel off the glass film 11 from the support glass 12. By forming the peeling start part 3 in the peeling start part forming step described later, the glass film can be easily formed from the support glass 12. 11 can be peeled off. In the production of a liquid crystal display or an organic EL element, a photoresist, a color filter, or the like is formed on the glass film 11, but the glass film laminate 1 in the present invention is the Since there is no part spaced apart from the support glass 12, these organic materials remain unintentionally at the end (interface between the glass film 11 and the support glass 12) of the glass film laminate 1, and the support glass 12 and the glass film 11 are hardly adhered.
 剥離開始部形成工程は、ガラスフィルム積層体1の側部14に、ガラスフィルム11と支持ガラス12の界面15を含む凹状の剥離開始部3を形成する工程であり、これにより、ガラスフィルム11と支持ガラス12とが一部離間している。換言すれば、ガラスフィルム積層体1の側部14の周方向の少なくとも一部に剥離開始部3が形成される。 A peeling start part formation process is a process of forming the concave peeling start part 3 containing the interface 15 of the glass film 11 and the support glass 12 in the side part 14 of the glass film laminated body 1, Thereby, the glass film 11 and The support glass 12 is partially separated. In other words, the peeling start part 3 is formed on at least part of the circumferential direction of the side part 14 of the glass film laminate 1.
 本実施形態では、ガラスフィルム積層体作製工程後に、剥離開始部形成工程を行っているため、剥離開始部形成工程を先に行う場合と比較して、剥離開始部形成工程時に発生するガラス粉等のゴミや異物が、支持ガラス12の上面12aに付着することで、界面15にゴミ等の異物が混入し、ガラスフィルム積層体1の作製時に気泡等が発生することを防止することができる。よって、気泡の発生が少ないガラスフィルム積層体1を作製することができる。また、製造関連処理工程後に剥離開始部形成工程を行うことで、樹脂等によって、ガラスフィルム11と支持ガラス12とが固着することを防止することができる。 In this embodiment, since the peeling start part formation process is performed after the glass film laminate manufacturing process, compared with the case where the peeling start part formation process is performed first, glass powder generated at the time of the peeling start part formation process, etc. The foreign matter such as dust adheres to the upper surface 12 a of the support glass 12, so that foreign matter such as dust can be mixed into the interface 15, and bubbles can be prevented from being generated during the production of the glass film laminate 1. Therefore, the glass film laminated body 1 with few generation | occurrence | production of a bubble can be produced. Moreover, it can prevent that the glass film 11 and the support glass 12 adhere by resin etc. by performing a peeling start part formation process after a manufacture related process process.
 図4は、ガラスフィルム積層体1の側部14に、ガラスフィルム11と支持ガラス12とが離間している剥離開始部3を形成した図である。 FIG. 4 is a diagram in which a peeling start portion 3 in which the glass film 11 and the supporting glass 12 are separated is formed on the side portion 14 of the glass film laminate 1.
 剥離開始部3は、ガラスフィルム積層体1の側部14において、ガラスフィルム11と支持ガラス12とが、互いに離間している領域のことである。詳述すると、ガラスフィルム積層体1の側部14において、ガラスフィルム11の下面11a側と支持ガラス12の上面12a側の夫々の厚みを減少させることで、剥離開始部3が形成されている。加えて、剥離開始部3は、ガラスフィルム積層体1の外方側が開放されている。ガラスフィルム11の厚みと支持ガラス12の厚みを夫々減少させているため、ガラスフィルム積層体1に外力を加えることなく、つまり、ガラスフィルム11の上面11aと支持ガラス12bの下面12bとが変形することなくガラスフィルム積層体1のそのままの状態で、ガラスフィルム11と支持ガラス12とを離間させることができる。図4では、ガラスフィルム11と支持ガラス12の両方の厚みを減少させることで剥離開始部3を形成しているが、これには限定されず、ガラスフィルム11と支持ガラス12の何れか一方のみの厚みを減少させることで、剥離開始部3を形成してもよい。特に、ガラスフィルム11の厚みのみを減少させると、支持ガラス12をリサイクルすることが可能であるため好ましい。 The peeling start part 3 is an area where the glass film 11 and the supporting glass 12 are separated from each other in the side part 14 of the glass film laminate 1. Specifically, in the side portion 14 of the glass film laminate 1, the peeling start portion 3 is formed by reducing the thickness of the lower surface 11 a side of the glass film 11 and the upper surface 12 a side of the support glass 12. In addition, as for the peeling start part 3, the outer side of the glass film laminated body 1 is open | released. Since the thickness of the glass film 11 and the thickness of the support glass 12 are reduced, the upper surface 11a of the glass film 11 and the lower surface 12b of the support glass 12b are deformed without applying an external force to the glass film laminate 1. The glass film 11 and the supporting glass 12 can be separated from each other with the glass film laminate 1 as it is. In FIG. 4, although the peeling start part 3 is formed by reducing the thickness of both the glass film 11 and the support glass 12, it is not limited to this, Only one of the glass film 11 and the support glass 12 The peeling start part 3 may be formed by reducing the thickness of the film. In particular, it is preferable to reduce only the thickness of the glass film 11 because the supporting glass 12 can be recycled.
 剥離開始部3におけるガラスフィルム11と支持ガラス12との離間高さhは、特に限定されないが、後述する剥離工程時に、金属刃等の剥離部材を使用する場合については、使用する剥離部材の肉厚よりも大きいことが好ましい。これにより、ガラスフィルム11の端面に剥離部材が打突することによって、ガラスフィルム11の端面の品位が悪化することを防止することができる。 The separation height h between the glass film 11 and the support glass 12 in the peeling start part 3 is not particularly limited. However, when a peeling member such as a metal blade is used in the peeling step described later, the thickness of the peeling member to be used is used. It is preferable that the thickness is larger than the thickness. Thereby, it can prevent that the quality of the end surface of the glass film 11 deteriorates by a peeling member striking the end surface of the glass film 11.
 ガラスフィルム積層体1の側部14から内方に向かう方向における剥離開始部3の深さ、すなわち、剥離開始部3のガラスフィルム端面からの離間距離tは、上述の離間高さhよりも大きいことが好ましい。これにより、ガラスフィルム11と支持ガラス12との剥離を開始する際に、剥離開始時にガラスフィルム11に付与される応力を低減させることができる。離間距離tは、支持ガラス12の厚みよりも大きいことが好ましく、ガラスフィルム積層体1の総厚みよりも大きいことが好ましい。具体的には、離間距離tは、1mm以上であることが好ましく、5mm以上であることがより好ましい。これにより、後述する剥離工程時に、支持ガラス12からガラスフィルム11を、剥離開始部3を起点として、容易に剥離することができる。ガラスフィルム端面からの離間距離tは、20mm以下であることが好ましく、10mm以下であることがより好ましい。これにより、剥離開始部3を短時間で形成することができる。 The depth of the peeling start part 3 in the direction from the side part 14 of the glass film laminate 1 inward, that is, the separation distance t from the glass film end surface of the peeling start part 3 is larger than the above-described separation height h. It is preferable. Thereby, when starting peeling with the glass film 11 and the support glass 12, the stress provided to the glass film 11 at the time of peeling start can be reduced. The separation distance t is preferably larger than the thickness of the supporting glass 12 and preferably larger than the total thickness of the glass film laminate 1. Specifically, the separation distance t is preferably 1 mm or more, and more preferably 5 mm or more. Thereby, at the time of the peeling process mentioned later, the glass film 11 can be easily peeled from the support glass 12 from the peeling start part 3 as a starting point. The separation distance t from the glass film end surface is preferably 20 mm or less, and more preferably 10 mm or less. Thereby, the peeling start part 3 can be formed in a short time.
 図4に示す通り、剥離開始部3は、ガラスフィルム積層体1の側部14から内方に向かって漸次ガラスフィルム11と支持ガラス12との離間距離が狭くなるようなV字型のテーパ形状であることが好ましい。支持ガラス12からガラスフィルム11の剥離の開始時は、大きな曲率(大きな曲げ応力)を付与させる必要があるところ、剥離開始部の先端の肉厚が最も小さいため、剥離開始時に大きな曲率を付与させてもガラスフィルム11や支持ガラス12が破損し難くなる。また、前述の剥離部材を使用する場合には、剥離開始部3が、剥離部材挿入の際の、ガイドの機能も果たすこととなり、より円滑な支持ガラス12からのガラスフィルムの11の剥離を達成することができる。剥離開始部3の形状は、V字型のテーパ形状には限定されず、図5のようなU字型でもよい。 As shown in FIG. 4, the peeling start part 3 is a V-shaped taper shape in which the distance between the glass film 11 and the support glass 12 gradually decreases inward from the side part 14 of the glass film laminate 1. It is preferable that When the peeling of the glass film 11 from the support glass 12 is started, it is necessary to give a large curvature (a large bending stress). Since the thickness of the tip of the peeling start portion is the smallest, a large curvature is given at the start of peeling. However, the glass film 11 and the supporting glass 12 are not easily damaged. Moreover, when using the above-mentioned peeling member, the peeling start part 3 will also fulfill | perform the function of the guide at the time of insertion of a peeling member, and the peeling of 11 of the glass film from the support glass 12 was achieved more smoothly. can do. The shape of the peeling start portion 3 is not limited to a V-shaped taper shape, and may be a U-shape as shown in FIG.
 剥離開始部3は、コーナーカットされた矩形状のガラスフィルム積層体1の少なくとも1箇所のコーナー部に形成されていればよい。一箇所のコーナー部に形成されていることで、当該コーナー部を起点として、支持ガラス12からガラスフィルム11を容易に剥離することができる。 The peeling start part 3 should just be formed in the corner part of at least one place of the rectangular-shaped glass film laminated body 1 by which the corner cut was carried out. By being formed in one corner part, the glass film 11 can be easily peeled from the support glass 12 starting from the corner part.
 剥離開始部3は、略矩形状のガラスフィルム積層体1の少なくとも1辺に形成されていても良い。1辺に形成されていることで、当該辺部を起点として、支持ガラス12からガラスフィルム11を容易に剥離することができる。 The peeling start part 3 may be formed on at least one side of the substantially rectangular glass film laminate 1. By being formed on one side, the glass film 11 can be easily peeled from the support glass 12 starting from the side.
 図6に示す通り、支持ガラス12の上面12a上やガラスフィルム11の下面11b上にITO等の無機酸化物薄膜(金属酸化物薄膜)やTi等の金属薄膜等、アクリル樹脂やシリコーン樹脂等の樹脂層等(以下、調整層13という)を適宜形成することが可能であり、その場合には、調整層13の厚みを減少させるか一部除去することで、凹状の剥離開始部3を形成してもよい。 As shown in FIG. 6, an inorganic oxide thin film (metal oxide thin film) such as ITO or a metal thin film such as Ti on the upper surface 12 a of the support glass 12 or the lower surface 11 b of the glass film 11, such as an acrylic resin or a silicone resin. A resin layer or the like (hereinafter referred to as an adjustment layer 13) can be appropriately formed. In this case, the thickness of the adjustment layer 13 is reduced or a part thereof is removed to form the concave peeling start portion 3 May be.
 図7は、剥離開始部形成工程における剥離開始部3の形成方法の一例を示した図である。図7では、処理槽5内に、処理液51を貯留し、ガラスフィルム積層体1を縦方向に姿勢を変更させた後、ガラスフィルム積層体1の側部14を処理液51内に浸漬している。ここで、ガラスフィルム積層体1の側部14を処理液51内に浸漬するとは、ガラスフィルム11の側面と支持ガラス12の側面の両方を、処理液51内に浸漬することを意味する。 FIG. 7 is a diagram showing an example of a method for forming the peeling start portion 3 in the peeling start portion forming step. In FIG. 7, the processing liquid 51 is stored in the processing tank 5, and after changing the posture of the glass film laminated body 1 in the vertical direction, the side portion 14 of the glass film laminated body 1 is immersed in the processing liquid 51. ing. Here, immersing the side part 14 of the glass film laminate 1 in the treatment liquid 51 means immersing both the side surface of the glass film 11 and the side surface of the support glass 12 in the treatment liquid 51.
 処理液51は、ガラスを溶解することが可能な液体であれば特に限定されないが、フッ素化合物を含有する液体であることが好ましい。フッ素化合物としては、フッ酸、酸性フッ化アンモニウム、テトラフルオロホウ酸等が挙げられるが、フッ酸を利用することが好ましい。本実施形態では、フッ酸を含有している液体を使用している。処理液51の濃度は、10~50%であることが好ましく、15~30%であることがより好ましい。これにより、適切に剥離開始部3を形成することができる。なお、図6に示す通り、調整層13を有するガラスフィルム積層体1に対して剥離開始部3を作製するためには、処理液51は調整層13を溶解することが可能な液体であればよい。調整層13としてITO等の無機酸化物薄膜(金属酸化物薄膜)やTi等の金属薄膜等、無機薄膜を使用した場合は、処理液51として塩酸や硫酸等を用いることもできる。調整層13としてアクリル樹脂やシリコーン樹脂等の樹脂層を使用した場合は、処理液51として樹脂層を溶解可能な有機溶媒等を使用することができる。 The treatment liquid 51 is not particularly limited as long as it is a liquid capable of dissolving glass, but is preferably a liquid containing a fluorine compound. Examples of the fluorine compound include hydrofluoric acid, acidic ammonium fluoride, tetrafluoroboric acid, and it is preferable to use hydrofluoric acid. In the present embodiment, a liquid containing hydrofluoric acid is used. The concentration of the treatment liquid 51 is preferably 10 to 50%, more preferably 15 to 30%. Thereby, the peeling start part 3 can be formed appropriately. In addition, as shown in FIG. 6, in order to produce the peeling start part 3 with respect to the glass film laminated body 1 which has the adjustment layer 13, the process liquid 51 should be a liquid which can melt | dissolve the adjustment layer 13. Good. When an inorganic thin film such as an inorganic oxide thin film (metal oxide thin film) such as ITO or a metal thin film such as Ti is used as the adjustment layer 13, hydrochloric acid, sulfuric acid, or the like can be used as the treatment liquid 51. When a resin layer such as an acrylic resin or a silicone resin is used as the adjustment layer 13, an organic solvent that can dissolve the resin layer can be used as the treatment liquid 51.
 処理液51内へのガラスフィルム積層体1の側部14の浸漬時間は、使用する処理液の濃度にも依存するが、5分~360分であることが好ましく、10分~60分であることがより好ましく。20~40分であることが最も好ましい。これにより、短時間で適切な剥離開始部3を形成することができる。 The immersion time of the side portion 14 of the glass film laminate 1 in the treatment liquid 51 is preferably 5 minutes to 360 minutes, depending on the concentration of the treatment liquid used, but is preferably 10 minutes to 60 minutes. More preferably. Most preferably, it is 20 to 40 minutes. Thereby, the appropriate peeling start part 3 can be formed in a short time.
 図7に示す通り、ガラスフィルム積層体1の側部14を処理液51内に浸漬すると、ガラスフィルム11と支持ガラス12とを直接積層していることから、ガラスフィルム11と支持ガラス12の端面角部が最も処理液51の浸食を受け易い。このため、まず界面15の端部に楔状(V字状)の微小な剥離開始部3が形成され、それが次第に拡大して、ガラスフィルム積層体1内部へと処理液51が浸透する。これにより、図4や図5に示す通り、ガラスフィルム11の下面11b側と支持ガラス12の上面12a側の夫々の厚みを減少させたV字形状やU字形状の剥離開始部3を形成することができる。また、離間距離tが離間高さhよりも大きい剥離開始部3とすることができる。ガラスフィルム積層体1の側部14の処理液51内への浸漬深さd(処理液51の液面からガラスフィルム11の端面と支持ガラス12の端面の両方が浸漬されている距離)は、50mm以下であることが好ましく、30mm以下がより好ましく、10mm以下が最も好ましい。これにより、ガラスフィルム11の上面11a側が処理液によって劣化することを防止することができる。また、ガラスフィルム11の上面11a側に形成された素子2が劣化することを防止する観点から、ガラスフィルム11の上面11a側に、樹脂フィルム等による保護層を設けても良い。 As shown in FIG. 7, when the side part 14 of the glass film laminated body 1 is immersed in the process liquid 51, since the glass film 11 and the support glass 12 are laminated | stacked directly, the end surface of the glass film 11 and the support glass 12 will be shown. The corners are most susceptible to erosion of the processing liquid 51. For this reason, a wedge-shaped (V-shaped) minute peeling start portion 3 is first formed at the end of the interface 15, which gradually expands and the processing liquid 51 penetrates into the glass film laminate 1. As a result, as shown in FIGS. 4 and 5, the V-shaped or U-shaped peeling start portion 3 is formed by reducing the thicknesses of the lower surface 11 b side of the glass film 11 and the upper surface 12 a side of the supporting glass 12. be able to. Moreover, it can be set as the peeling start part 3 whose separation distance t is larger than separation height h. The immersion depth d of the side portion 14 of the glass film laminate 1 into the treatment liquid 51 (distance where both the end face of the glass film 11 and the end face of the support glass 12 are immersed from the liquid surface of the treatment liquid 51) is as follows. It is preferably 50 mm or less, more preferably 30 mm or less, and most preferably 10 mm or less. Thereby, it can prevent that the upper surface 11a side of the glass film 11 deteriorates with a process liquid. Moreover, you may provide the protective layer by the resin film etc. in the upper surface 11a side of the glass film 11 from a viewpoint which prevents the element 2 formed in the upper surface 11a side of the glass film 11 from deteriorating.
 図7では、ガラスフィルム積層体1の側部14を処理液51に浸漬する形態を説明したが、この形態には限定されず、処理液51を直接ガラスフィルム積層体1の側部14に塗布することや、処理液51を含浸させた多孔質体等に側部14を接触させることで、剥離開始部3を形成してもよい。 In FIG. 7, although the form which immerses the side part 14 of the glass film laminated body 1 in the process liquid 51 was demonstrated, it is not limited to this form, The process liquid 51 is directly apply | coated to the side part 14 of the glass film laminated body 1 Alternatively, the peeling start portion 3 may be formed by bringing the side portion 14 into contact with a porous body or the like impregnated with the treatment liquid 51.
 図7では、処理液51を使用してガラスフィルム積層体1の側部14に剥離開始部3を形成する形態について説明したが、ガラスフィルム積層体1の側部14を図示しない研削部材等を使用して研削することで、物理的に剥離開始部3を形成してもよい。 In FIG. 7, although the form which forms the peeling start part 3 in the side part 14 of the glass film laminated body 1 using the process liquid 51 was demonstrated, the grinding member etc. which do not illustrate the side part 14 of the glass film laminated body 1 are shown. The peeling start part 3 may be physically formed by using and grinding.
 図7に示す処理液51を使用して剥離開始部3を形成する場合については、矩形状のガラスフィルム積層体1の少なくとも1辺全体に渡って形成することが好ましく、3辺以上に形成することが好ましい。後述する剥離工程時に、剥離開始部3を起点として、支持ガラス12とガラスフィルム11とを剥離する際にガラスフィルム11の側面に曲げ応力が付与されるところ、処理液51によってガラスフィルム11の側面に生じているマイクロクラックが除去されるため、破損し難くなる。 About the case where the peeling start part 3 is formed using the process liquid 51 shown in FIG. 7, it is preferable to form over at least one side of the rectangular glass film laminate 1 and to form over three sides. It is preferable. At the time of the peeling process to be described later, when the supporting glass 12 and the glass film 11 are peeled from the peeling start portion 3 as a starting point, bending stress is applied to the side surface of the glass film 11. Since the microcracks occurring in are removed, they are difficult to break.
 本実施形態において、剥離工程は、剥離開始部形成工程後のガラスフィルム積層体1を、剥離開始部3を起点として、ガラスフィルム11と支持ガラス12とに分離する工程である。 In the present embodiment, the peeling step is a step of separating the glass film laminate 1 after the peeling start portion forming step into the glass film 11 and the supporting glass 12 starting from the peeling start portion 3.
 図8は、剥離工程の一例を示した図である。図8に示すガラスフィルム剥離装置6は、支持ガラス12とガラスフィルム11とを引き離す力を付与することによって、支持ガラス12からガラスフィルム11を剥離することができる。この場合においては、剥離開始部3は、支持ガラス12とガラスフィルム11とが離間しているため、剥離開始の起点とすることができる。 FIG. 8 is a diagram showing an example of the peeling process. The glass film peeling apparatus 6 shown in FIG. 8 can peel the glass film 11 from the support glass 12 by giving the force which separates the support glass 12 and the glass film 11. In this case, since the support glass 12 and the glass film 11 are separated, the peeling start part 3 can be used as a starting point for peeling.
 支持ガラス12からガラスフィルム11を剥離する際には、界面15に対してノズル61から流体62を付与することが好ましい。これにより、支持ガラス12やガラスフィルム11と物理的な接触をすることなく、支持ガラス12からガラスフィルム11の剥離を促進させることができる。これにより、剥離の際にガラスフィルム11に傷等が発生することが防止される。流体62としては、空気や水等を好適に使用することができる。支持ガラス12からガラスフィルム11を剥離する際には、剥離帯電が生じるおそれがあり、ガラスフィルム11上に形成したデバイスや素子2によっては、静電放電破壊が生じるため、徐電作用を有する流体62を使用することが好ましい。流体噴出ノズルにイオナイザー機能を持たせることや、高湿度の空気や水を吹き付けることで、徐電作用を有する流体62とすることができる。 When peeling the glass film 11 from the support glass 12, it is preferable to apply the fluid 62 from the nozzle 61 to the interface 15. Thereby, peeling of the glass film 11 from the support glass 12 can be promoted, without making physical contact with the support glass 12 or the glass film 11. Thereby, it is prevented that a damage | wound etc. generate | occur | produce in the glass film 11 in the case of peeling. As the fluid 62, air, water, or the like can be preferably used. When the glass film 11 is peeled from the supporting glass 12, there is a possibility that peeling electrification may occur. Depending on the device or element 2 formed on the glass film 11, electrostatic discharge breakage may occur, and thus a fluid having a slow current action. Preferably 62 is used. By providing the fluid ejection nozzle with an ionizer function, or blowing high-humidity air or water, the fluid 62 having a slow current action can be obtained.
 剥離工程は、図8に示す通り、ガラスフィルム積層体1の界面15に、ノズル61から高圧で噴射する手法(例えば、ウォータージェットの手法)で流体62たる液体(例えば、水)を吹き付けている。図8では、支持ガラス保持機構63とガラスフィルム保持機構64を用いて、ガラスフィルム積層体1のガラスフィルム11をガラスフィルム保持機構64の真空吸着パッド64a・64a・・・で固定し、支持ガラス12を支持ガラス保持機構63の真空吸着パッド63a・63a・・・で引っ張りながら、界面15に液体62を吹き付けて剥離開始部3を起点として剥離する過程を示している。 In the peeling step, as shown in FIG. 8, a liquid (for example, water) that is a fluid 62 is sprayed on the interface 15 of the glass film laminate 1 by a method (for example, a water jet method) that is sprayed from the nozzle 61 at a high pressure. . In FIG. 8, using the supporting glass holding mechanism 63 and the glass film holding mechanism 64, the glass film 11 of the glass film laminate 1 is fixed by the vacuum suction pads 64a, 64a,. 12 shows a process in which the liquid 62 is sprayed onto the interface 15 and the separation starting portion 3 is used as a starting point while the substrate 12 is pulled by the vacuum suction pads 63a, 63a.
 ガラスフィルム保持機構64は、真空吸着パッド64aを複数配列したものや、真空吸着機能のあるプレートを使用してもよく、あるいは粘着性の樹脂シートを使用してもよい。特に、ガラスフィルム積層体1を水平に保った状態で取り扱う場合は、基板が撓みやすいため、プレート状の真空吸着機構を使用するのが好ましい。また、ガラスフィルム11上にデバイスを形成したことによりプレートで平面状に固定することが困難な場合には真空吸着パッドを用いるのが好ましい。また、デバイス表面に形成された配線やデバイスの封着剤などが、液体62から受ける圧力や真空吸着パッドの接触によりダメージを受けることが懸念される場合は、ダメージを回避したい部位に保護フィルムを貼ってもよい。また、封着剤の外周に液体62の浸入防止層を設けてもよい。 The glass film holding mechanism 64 may use a plurality of vacuum suction pads 64a arranged, a plate having a vacuum suction function, or an adhesive resin sheet. In particular, when the glass film laminate 1 is handled in a horizontal state, it is preferable to use a plate-like vacuum suction mechanism because the substrate is easily bent. In addition, when it is difficult to fix a flat plate with a plate by forming a device on the glass film 11, it is preferable to use a vacuum suction pad. If there is a concern that the wiring formed on the device surface or the sealing agent of the device may be damaged by the pressure received from the liquid 62 or the contact with the vacuum suction pad, a protective film is applied to the site where damage is to be avoided. It may be pasted. Further, an intrusion prevention layer for the liquid 62 may be provided on the outer periphery of the sealing agent.
 また、支持ガラス及びガラスフィルムの各保持機構63・64は、支持ガラス12やガラスフィルム11等を平面状に固定するための用途と、ガラスフィルム11や支持ガラス12等を引っ張るための用途の、両方の用途を切り替えつつ使用する場合があるため、各保持機構63・64の構成に差をつけることなく共通の構成としてもよい。 Moreover, each support mechanism 63 * 64 of support glass and glass film is used for fixing the support glass 12, the glass film 11 and the like in a flat shape, and used for pulling the glass film 11 and the support glass 12, etc. Since both applications may be used while being switched, a common configuration may be used without making a difference in the configuration of the holding mechanisms 63 and 64.
 支持ガラス12からガラスフィルムを剥離する際には、図8の形態とは異なり、図示しない剥離部材を使用してもよい。剥離開始部3を有することで、剥離部材を円滑に剥離開始部3に挿入することができ、引き続き剥離部材を界面15に挿入し続けることで、支持ガラス12からガラスフィルム11を剥離することができる。支持ガラス12からガラスフィルム11を剥離する際に、ガラスフィルム積層体1を水中に浸漬してもよく、水中に浸漬した際には、超音波を印加しても良い。 When peeling a glass film from the support glass 12, you may use the peeling member which is not shown in figure unlike the form of FIG. By having the peeling start part 3, the peeling member can be smoothly inserted into the peeling start part 3, and the glass film 11 can be peeled from the support glass 12 by continuing to insert the peeling member into the interface 15. it can. When peeling the glass film 11 from the support glass 12, the glass film laminated body 1 may be immersed in water, and when immersed in water, an ultrasonic wave may be applied.
 剥離部材の形状は、シート状、帯状、板状、短冊状等、厚みが少なく剥離進行方向に幅広な部材を使用することが好ましい。具体的には、剥離部材の厚みが0.01mm~1mmであることが好ましく、0.1mm~0.5mmであることがより好ましい。これにより、剥離開始部3に剥離部材を円滑に挿入することができる。剥離部材の幅は、剥離の対象となるガラスフィルム積層体1の面積にも依存するが、少なくともガラスフィルム積層体1よりも剥離進行方向において幅広であることが好ましい。 The shape of the peeling member is preferably a sheet-like, belt-like, plate-like, strip-like or the like, which has a small thickness and is wide in the peeling progress direction. Specifically, the thickness of the peeling member is preferably 0.01 mm to 1 mm, and more preferably 0.1 mm to 0.5 mm. Thereby, a peeling member can be smoothly inserted into the peeling start part 3. The width of the peeling member depends on the area of the glass film laminate 1 to be peeled, but is preferably wider than at least the glass film laminate 1 in the peeling progress direction.
 剥離部材の材質は、剛性を有するアルミニウム、ステンレス等の金属を使用することが可能であるが、可撓性を有するポリエチレンやアクリル等の樹脂フィルムを使用することが好ましく、フッ素樹脂フィルム等の疎水性の樹脂シートであることがより好ましい。 As the material of the peeling member, it is possible to use a rigid metal such as aluminum or stainless steel, but it is preferable to use a flexible resin film such as polyethylene or acrylic, and a hydrophobic film such as a fluororesin film. The resin sheet is more preferable.
 そして、図8に示すように、剥離工程により、ガラスフィルム積層体1から支持ガラス12を剥離することで、最終的にフィルム状ガラス110を製造することができる。 And as shown in FIG. 8, the film-like glass 110 can be finally manufactured by peeling the support glass 12 from the glass film laminated body 1 by a peeling process.
 図9は、本発明の一実施形態に係る電子デバイスの製造方法を示した図である。図9に記載された実施形態が上述の実施形態と異なる点は、素子2の周囲にスペーサ21が配置され、キャリアガラス72によって支持されたカバーガラスフィルム71によって封止されている点である。キャリアガラス72上にカバーガラスフィルム71が積層されたものを、カバーガラスフィルム積層体7とする。本実施形態においては、支持ガラスキャリアガラス付電子デバイス8を、縦方向に処理液51に浸漬することで、カバーガラスフィルム積層体7の側部73にも、カバーガラスフィルム側剥離開始部31が形成される。カバーガラスフィルム71は上述のガラスフィルム11と同様であり、キャリアガラス72は上述の支持ガラス12と同様であり、カバーガラスフィルム側剥離開始部31は上述の剥離開始部3と同様である。 FIG. 9 is a diagram showing an electronic device manufacturing method according to an embodiment of the present invention. The embodiment described in FIG. 9 is different from the above-described embodiment in that the spacer 21 is disposed around the element 2 and is sealed by a cover glass film 71 supported by a carrier glass 72. A cover glass film laminate 7 is formed by laminating a cover glass film 71 on a carrier glass 72. In this embodiment, the cover glass film side peeling start part 31 also exists in the side part 73 of the cover glass film laminated body 7 by immersing the electronic device 8 with support glass carrier glass in the process liquid 51 in the vertical direction. It is formed. The cover glass film 71 is the same as the above glass film 11, the carrier glass 72 is the same as the above supporting glass 12, and the cover glass film side peeling start part 31 is the same as the above peeling start part 3.
 本実施形態においては、図10に示す通り、処理液51に浸漬する際に、ガラスフィルム11とカバーガラスフィルム71の間且つスペーサ21の外方側に保護部材22を設けることが好ましい。これにより、スペーサ21外側のガラスフィルム11やカバーガラスフィルム71には、電極等が設けられることがあり、これらの電極が処理液51によって劣化することを防止することができる。また、後述する剥離工程時に、剥離開始部3やカバーガラス側剥離開始部31から支持ガラス12やキャリアガラス72を剥離させる際、スペーサ21の外側を保護部材22でガラスフィルム11とカバーガラスフィルム71とを固定しているため、剥離開始時にガラスフィルム積層体1やカバーガラスフィルム積層体7が引っ張り力によって撓むことなく、円滑に剥離を開始することができる。保護部材22としては、処理液51によって侵食されない部材を使用することができ、エポキシ樹脂や紫外線硬化樹脂等を好適に使用することができる。保護部材22は、支持ガラス12やキャリアガラス72の剥離後に、最終的に除去される。 In this embodiment, as shown in FIG. 10, it is preferable to provide the protective member 22 between the glass film 11 and the cover glass film 71 and on the outer side of the spacer 21 when immersed in the treatment liquid 51. Thereby, the glass film 11 and the cover glass film 71 outside the spacer 21 may be provided with electrodes and the like, and these electrodes can be prevented from being deteriorated by the treatment liquid 51. Moreover, when peeling the support glass 12 and the carrier glass 72 from the peeling start part 3 or the cover glass side peeling start part 31 at the time of the peeling process mentioned later, the glass film 11 and the cover glass film 71 are outside the spacer 21 with the protective member 22. Since the glass film laminate 1 and the cover glass film laminate 7 are not bent by the pulling force at the start of peeling, peeling can be started smoothly. As the protective member 22, a member that is not eroded by the treatment liquid 51 can be used, and an epoxy resin, an ultraviolet curable resin, or the like can be suitably used. The protective member 22 is finally removed after the support glass 12 and the carrier glass 72 are peeled off.
 図11は、電子デバイスの製造方法の実施形態における剥離工程の一例を示した図である。 FIG. 11 is a diagram showing an example of a peeling process in the embodiment of the method for manufacturing an electronic device.
 図11では、まず、支持ガラス12を支持ガラス保持機構63で引っ張り、キャリアガラス72をキャリアガラス保持機構65で固定することでガラスフィルム11を平面に保ち、支持ガラス12とガラスフィルム11の界面15にノズル61から流体62たる水を吹き付けて支持ガラス12を剥離している。 In FIG. 11, first, the support glass 12 is pulled by the support glass holding mechanism 63 and the carrier glass 72 is fixed by the carrier glass holding mechanism 65 to keep the glass film 11 flat, and the interface 15 between the support glass 12 and the glass film 11. The support glass 12 is peeled off by spraying water as the fluid 62 from the nozzle 61.
 次に、支持ガラス12の剥離後、ガラスフィルム11を支持ガラス保持機構63で平面状に固定し、かつ、キャリアガラス72をキャリアガラス保持機構65で引っ張りながらキャリアガラス72とカバーガラスフィルム71の界面74に流体62たる水を吹き付けてキャリアガラス72を剥離する。 Next, after the support glass 12 is peeled off, the glass film 11 is fixed to a flat surface by the support glass holding mechanism 63 and the carrier glass 72 is pulled by the carrier glass holding mechanism 65 while the interface between the carrier glass 72 and the cover glass film 71. The carrier glass 72 is peeled off by spraying water as the fluid 62 onto 74.
 剥離工程において、ガラスフィルム11と支持ガラス12とが剥離するのと同一の工程内で、カバーガラスフィルム71とキャリアガラス72も剥離する。カバーガラスフィルム71とキャリアガラス72との剥離の際にも、キャリアガラス72を引っ張りながら剥離を行う。 In the peeling process, the cover glass film 71 and the carrier glass 72 are also peeled in the same process as the glass film 11 and the supporting glass 12 are peeled. Even when the cover glass film 71 and the carrier glass 72 are peeled off, the carrier glass 72 is peeled off while being pulled.
 本実施形態において、剥離工程により、支持ガラスキャリアガラス付電子デバイス8から支持ガラス12とキャリアガラス72を剥離することで、最終的に所望の電子デバイス81を製造することができる。 In this embodiment, the desired electronic device 81 can be finally manufactured by peeling the support glass 12 and the carrier glass 72 from the electronic device 8 with support glass carrier glass by a peeling process.
 上述の実施形態においては、支持ガラス12の次にキャリアガラス72の剥離を行ったが、キャリアガラス72から先に剥離を行っても良い。 In the above-described embodiment, the carrier glass 72 is peeled after the support glass 12, but the carrier glass 72 may be peeled first.
 上述の実施形態においては、封止基板としてカバーガラスフィルム積層体7を使用した形態について説明を行ったが、これには限定されず、封止基板として1枚のガラス板を使用してもよく、1枚の樹脂基板を使用してもよい。 In the above-mentioned embodiment, although the form which used the cover glass film laminated body 7 as a sealing substrate was demonstrated, it is not limited to this, You may use one glass plate as a sealing substrate. A single resin substrate may be used.
 本発明は、図1や図9に模式的に示すように、ガラスフィルム積層体作製工程、製造関連処理工程(電子デバイス作製工程)、剥離開始部形成工程、及び剥離工程を連続して行うことができる。また、本発明は、ガラスフィルム積層体作製工程から剥離工程まで連続して行う構成には限定されず、例えば、ガラスフィルム積層体作製工程後に製造されたガラスフィルム積層体1やカバーガラスフィルム積層体7を梱包、出荷し、別途電子デバイス製造関連処理施設において、製造関連処理工程(電子デバイス作製工程)、剥離開始部形成工程、及び剥離工程を行う構成であっても良い。 In the present invention, as schematically shown in FIG. 1 and FIG. 9, a glass film laminate manufacturing process, a manufacturing-related processing process (electronic device manufacturing process), a peeling start part forming process, and a peeling process are continuously performed. Can do. Moreover, this invention is not limited to the structure performed continuously from a glass film laminated body preparation process to a peeling process, For example, the glass film laminated body 1 manufactured after the glass film laminated body preparation process, or a cover glass film laminated body 7 may be packaged, shipped, and separately subjected to a manufacturing-related processing step (electronic device manufacturing step), a peeling start portion forming step, and a peeling step in an electronic device manufacturing-related processing facility.
 (実施例1)
 支持ガラス、ガラスフィルム、カバーガラスフィルム、及び、キャリアガラスとして、日本電気硝子株式会社製の無アルカリガラス(OA-10G、30~380℃における熱膨張係数:38×10-7/℃)を使用した。オーバーフローダウンドロー法にて、製造し、未研磨の状態で使用した。支持ガラス、キャリアガラスとして、縦680mm、横880mm、厚み500μmの矩形状の板ガラスを準備した。ガラスフィルム、カバーガラスフィルムとして、縦678mm、横878mm、厚み200μmの矩形状の透明なガラスを準備した。支持ガラス上にガラスフィルムを積層して、ガラスフィルム積層体を作製した。キャリアガラス上にカバーガラスフィルムを積層してカバーガラスフィルム積層体を作製した。その後、ガラスフィルム上に有機EL素子を形成した。有機EL素子形成の際の形成温度は、350°であった。有機EL素子の形成後、カバーガラスフィルム積層体で、有機EL素子を封止することで、支持ガラスキャリアガラス付電子デバイスを作製した。その後、作製された支持ガラスキャリアガラス付電子デバイスの側部5mm(ガラスフィルム側面から5mm)を、濃度20%のフッ酸水溶液に30分間浸漬した。支持ガラスキャリアガラス付電子デバイスの3側部を同様にフッ酸水溶液に浸漬した。ガラスフィルムとカバーガラスフィルムの剥離開始部を観察したところ、厚み方向に150μm薄化して、50μmとなっていた。この後、純水で洗浄した後、図11に記載された方法で、剥離開始部から支持ガラスとキャリアガラスの剥離を試みたところ、夫々10分以内に剥離することができた。
Example 1
Non-alkali glass (OA-10G, thermal expansion coefficient at 30 to 380 ° C .: 38 × 10 −7 / ° C.) manufactured by Nippon Electric Glass Co., Ltd. is used as the supporting glass, glass film, cover glass film, and carrier glass. did. Manufactured by the overflow downdraw method and used in an unpolished state. A rectangular plate glass having a length of 680 mm, a width of 880 mm, and a thickness of 500 μm was prepared as a supporting glass and a carrier glass. A rectangular transparent glass having a length of 678 mm, a width of 878 mm, and a thickness of 200 μm was prepared as a glass film and a cover glass film. A glass film was laminated on a supporting glass to prepare a glass film laminate. A cover glass film was laminated on a carrier glass to prepare a cover glass film laminate. Thereafter, an organic EL element was formed on the glass film. The formation temperature in forming the organic EL element was 350 °. After the organic EL element was formed, the organic EL element was sealed with a cover glass film laminate to produce an electronic device with a supporting glass carrier glass. Thereafter, 5 mm (5 mm from the glass film side surface) of the produced electronic device with supporting glass carrier glass was immersed in a hydrofluoric acid aqueous solution having a concentration of 20% for 30 minutes. The three sides of the electronic device with supporting glass carrier glass were similarly immersed in a hydrofluoric acid aqueous solution. When the peeling start part of the glass film and the cover glass film was observed, the thickness was reduced by 150 μm in the thickness direction to 50 μm. Then, after washing with pure water, when the support glass and the carrier glass were peeled from the peeling start portion by the method described in FIG. 11, they were peeled within 10 minutes.
 (実施例2)
 支持ガラスキャリアガラス付電子デバイスの1側部のみをフッ酸水溶液に浸漬した以外は、実施例1と同様とした。支持ガラスとキャリアガラスの剥離時間は、夫々、10~20分程度必要であった。
(Example 2)
The same procedure as in Example 1 was performed except that only one side of the electronic device with supporting glass carrier glass was immersed in an aqueous hydrofluoric acid solution. The peeling time between the supporting glass and the carrier glass required about 10 to 20 minutes.
 (実施例3)
 支持ガラスキャリアガラス付電子デバイスの1コーナー部のみをフッ酸水溶液に浸漬した以外は、実施例1と同様とした。支持ガラスとキャリアガラスの剥離時間は、20分~30分程度必要であった。
Example 3
The same procedure as in Example 1 was performed except that only one corner of the electronic device with supporting glass carrier glass was immersed in a hydrofluoric acid aqueous solution. The peeling time between the support glass and the carrier glass required about 20 to 30 minutes.
 (比較例1)
 フッ酸水溶液に浸漬しなかったこと以外は、実施例1と同様とした。支持ガラスとキャリアガラスを剥離するために、夫々1時間以上必要であった。
(Comparative Example 1)
It was the same as Example 1 except that it was not immersed in a hydrofluoric acid solution. In order to peel off the supporting glass and the carrier glass, it took 1 hour or more respectively.
 本発明は、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイや太陽電池等のデバイスに使用されるガラス基板、及び有機EL照明のカバーガラスに好適に使用することができる。 The present invention can be suitably used for glass substrates used in flat panel displays such as liquid crystal displays and organic EL displays, devices such as solar cells, and cover glasses for organic EL lighting.
1   ガラスフィルム積層体
11  ガラスフィルム
12  支持ガラス
13  調整層
14  側部
15  界面
110 フィルム状ガラス
2   素子
21  スペーサ
22  保護部材
3   剥離開始部
31  カバーガラスフィルム側剥離開始部
5   処理槽
51  処理液
6   ガラスフィルム剥離装置
7   カバーガラスフィルム積層体
71  カバーガラスフィルム
72  キャリアガラス
73  側部
74  界面
8   支持ガラスキャリアガラス付電子デバイス
81  電子デバイス
 
DESCRIPTION OF SYMBOLS 1 Glass film laminated body 11 Glass film 12 Support glass 13 Adjustment layer 14 Side part 15 Interface 110 Film-like glass 2 Element 21 Spacer 22 Protection member 3 Peel start part 31 Cover glass film side peel start part 5 Processing tank 51 Process liquid 6 Glass Film peeling device 7 Cover glass film laminate 71 Cover glass film 72 Carrier glass 73 Side 74 Interface 8 Electronic device 81 with supporting glass carrier glass Electronic device

Claims (10)

  1.  支持ガラス上にガラスフィルムを積層してガラスフィルム積層体を作製するガラスフィルム積層体作製工程と、
     前記ガラスフィルム積層体の側部に、前記ガラスフィルムと前記支持ガラスとが一部離間した剥離開始部を形成する剥離開始部形成工程と、
     前記剥離開始部形成工程後に前記ガラスフィルム積層体の前記剥離開始部を起点として、前記ガラスフィルムと前記支持ガラスとに分離する分離工程と、
     を有するフィルム状ガラスの製造方法。
    A glass film laminate production step of producing a glass film laminate by laminating a glass film on a supporting glass;
    A peeling start part forming step for forming a peeling start part in which the glass film and the supporting glass are partially separated from each other on the side of the glass film laminate,
    A separation step of separating into the glass film and the supporting glass starting from the peeling start portion of the glass film laminate after the peeling start portion forming step,
    The manufacturing method of the film-form glass which has.
  2.  前記ガラスフィルム積層体作製工程と、前記剥離開始部形成工程との間に、前記ガラスフィルムに製造関連処理を行う製造関連処理工程を有することを特徴とする請求項1に記載のフィルム状ガラスの製造方法。 2. The film-like glass according to claim 1, further comprising a production-related treatment step of performing a production-related treatment on the glass film between the glass film laminate manufacturing step and the peeling start portion forming step. Production method.
  3.  前記剥離開始部形成工程は、前記ガラスフィルム積層体の側部に、フッ素化合物を含有する液体を付与することで、前記剥離開始部を形成することを特徴とする請求項1または2に記載のフィルム状ガラスの製造方法。 The said peeling start part formation process forms the said peeling start part by providing the liquid containing a fluorine compound to the side part of the said glass film laminated body, The Claim 1 or 2 characterized by the above-mentioned. A method for producing film-like glass.
  4.  前記ガラスフィルム積層体は、略矩形状のガラスフィルム積層体がコーナーカットされた形状を有し、
     前記剥離開始部形成工程は、前記ガラスフィルム積層体の少なくとも1つのコーナー部に、前記剥離開始部を形成することを特徴とする請求項1~3の何れかに記載のフィルム状ガラスの製造方法。
    The glass film laminate has a shape obtained by corner-cutting a substantially rectangular glass film laminate,
    The method for producing a film-like glass according to any one of claims 1 to 3, wherein in the peeling start portion forming step, the peeling start portion is formed in at least one corner portion of the glass film laminate. .
  5.  前記ガラスフィルム積層体は、略矩形状であり、
     前記剥離開始部形成工程は、前記ガラスフィルム積層体の少なくとも1辺に、前記剥離開始部を形成することを特徴とする請求項1~4の何れかに記載のフィルム状ガラスの製造方法。
    The glass film laminate is substantially rectangular,
    The method for producing a film-like glass according to any one of claims 1 to 4, wherein in the peeling start portion forming step, the peeling start portion is formed on at least one side of the glass film laminate.
  6.  前記ガラスフィルム積層体は、略矩形状であり、
     前記剥離開始部形成工程は、前記ガラスフィルム積層体の側部のうち、少なくとも3辺にフッ酸を含有する液体を付与し、中央の1辺を前記剥離開始部とすることを特徴とする請求項3に記載のフィルム状ガラスの製造方法。
    The glass film laminate is substantially rectangular,
    The said peeling start part formation process provides the liquid containing hydrofluoric acid to at least 3 sides among the side parts of the said glass film laminated body, and makes 1 side of the center the said peeling start part, It is characterized by the above-mentioned. Item 4. A method for producing a film-like glass according to Item 3.
  7.  前記ガラスフィルム端面からの前記剥離開始部の離間距離は、1mm以上であることを特徴とする請求項1~6の何れかに記載のフィルム状ガラスの製造方法。 The method for producing a film-like glass according to any one of claims 1 to 6, wherein the separation distance of the peeling start portion from the end face of the glass film is 1 mm or more.
  8.  支持ガラス上にガラスフィルムを積層してガラスフィルム積層体を作製するガラスフィルム積層体作製工程と、
     前記ガラスフィルム積層体における前記ガラスフィルムに電子デバイス製造関連処理を行うことで前記ガラスフィルム積層体の前記ガラスフィルム上に素子を形成し、封止基板で前記素子を封止して支持ガラス付電子デバイスを作製する電子デバイス作製工程と、
     前記製造関連処理後の前記支持ガラス付電子デバイスにおける前記ガラスフィルム積層体の側部に、前記ガラスフィルムと前記支持ガラスとが一部離間した剥離開始部を形成する剥離開始部形成工程と、
     前記剥離開始部形成工程後の前記支持ガラス付電子デバイスを、前記剥離開始部を起点として、前記電子デバイスと前記支持ガラスとに分離する分離工程と、
     を有することを特徴とする電子デバイスの製造方法。
    A glass film laminate production step of producing a glass film laminate by laminating a glass film on a supporting glass;
    An electronic device manufacturing related process is performed on the glass film in the glass film laminate to form an element on the glass film of the glass film laminate, and the element is sealed with a sealing substrate to provide an electron with supporting glass. An electronic device manufacturing process for manufacturing a device;
    A peeling start part forming step for forming a peeling start part in which the glass film and the supporting glass are partially separated from each other on the side part of the glass film laminate in the electronic device with supporting glass after the manufacturing-related treatment,
    A separation step of separating the electronic device with supporting glass after the peeling start portion forming step into the electronic device and the supporting glass starting from the peeling start portion;
    A method for manufacturing an electronic device, comprising:
  9.  前記封止基板は、キャリアガラスにカバーガラスフィルムが積層されたカバーガラスフィルム積層体であって、
     前記ガラスフィルム積層体作製工程において、前記キャリアガラス上に前記カバーガラスフィルムを積層してカバーガラスフィルム積層体を作製する工程をさらに含み、
     前記剥離開始部形成工程において、前記カバーガラスフィルム積層体の側部に、前記カバーガラスフィルムと前記キャリアガラスとが一部離間したカバーガラスフィルム側剥離開始部を形成する工程をさらに含み、
     前記分離工程において、前記カバーガラスフィルム側剥離開始部を起点として、前記キャリアガラスと前記カバーガラスフィルムとを分離する工程をさらに含むことを特徴とする請求項8に記載の電子デバイスの製造方法。
    The sealing substrate is a cover glass film laminate in which a cover glass film is laminated on a carrier glass,
    In the glass film laminate production step, the method further includes the step of laminating the cover glass film on the carrier glass to produce a cover glass film laminate,
    In the peeling start portion forming step, the method further includes a step of forming a cover glass film side peeling start portion in which the cover glass film and the carrier glass are partially separated from each other on the side portion of the cover glass film laminate,
    9. The method of manufacturing an electronic device according to claim 8, further comprising the step of separating the carrier glass and the cover glass film from the cover glass film side peeling start portion in the separation step.
  10.  支持ガラス上にガラスフィルムを積層してガラスフィルム積層体を作製するガラスフィルム積層体作製工程と、
     前記ガラスフィルム積層体の側部に、前記ガラスフィルムと前記支持ガラスとが一部離間した剥離開始部を形成する剥離開始部形成工程と、
     を有するガラスフィルム積層体の製造方法。
     
    A glass film laminate production step of producing a glass film laminate by laminating a glass film on a supporting glass;
    A peeling start part forming step for forming a peeling start part in which the glass film and the supporting glass are partially separated from each other on the side of the glass film laminate,
    A method for producing a glass film laminate comprising:
PCT/JP2014/075816 2013-09-30 2014-09-29 Method for producing film-like glass body, method for manufacturing electronic device, and method for producing glass film laminate WO2015046490A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-204948 2013-09-30
JP2013204948 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015046490A1 true WO2015046490A1 (en) 2015-04-02

Family

ID=52743614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075816 WO2015046490A1 (en) 2013-09-30 2014-09-29 Method for producing film-like glass body, method for manufacturing electronic device, and method for producing glass film laminate

Country Status (3)

Country Link
JP (1) JP2015091746A (en)
TW (1) TW201514110A (en)
WO (1) WO2015046490A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190418A1 (en) * 2014-06-13 2015-12-17 日本電気硝子株式会社 Method for manufacturing glass film, and method for manufacturing electronic device including glass film
US20190270284A1 (en) * 2016-11-09 2019-09-05 Corning Incorporated Dimmable window pane with reduced bow and insulated glazing unit comprising the same
CN111149025A (en) * 2017-09-27 2020-05-12 日本电气硝子株式会社 Glass plate with optical film and method for producing same
WO2022113874A1 (en) * 2020-11-26 2022-06-02 日本電気硝子株式会社 Method of manufacturing glass film laminate and method of washing glass sheet

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106356375B (en) * 2015-07-17 2019-12-03 群创光电股份有限公司 Base board unit, device substrate, display device and display device manufacturing method
TWI551440B (en) * 2015-07-17 2016-10-01 群創光電股份有限公司 Substrate unit, element substrate and manufacturing method of display device
JP6519951B2 (en) * 2015-07-24 2019-05-29 日本電気硝子株式会社 METHOD FOR MANUFACTURING GLASS FILM, AND METHOD FOR MANUFACTURING ELECTRONIC DEVICE INCLUDING GLASS FILM
JP2020100502A (en) * 2018-12-20 2020-07-02 日本電気硝子株式会社 Method and device of manufacturing glass film, and method of manufacturing electronic device including glass film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186916A (en) * 2008-02-08 2009-08-20 Asahi Glass Co Ltd Method of manufacturing display device panel
JP2010018505A (en) * 2008-07-14 2010-01-28 Asahi Glass Co Ltd Glass laminate, panel for display device with supporting body, panel for display device, display device, and methods for manufacturing them
JP2011162432A (en) * 2010-01-12 2011-08-25 Nippon Electric Glass Co Ltd Glass film laminate, method for producing the same and method for producing glass film
JP2012030404A (en) * 2010-07-28 2012-02-16 Nippon Electric Glass Co Ltd Glass film laminate
JP2012131664A (en) * 2010-12-22 2012-07-12 Nippon Electric Glass Co Ltd Glass film laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186916A (en) * 2008-02-08 2009-08-20 Asahi Glass Co Ltd Method of manufacturing display device panel
JP2010018505A (en) * 2008-07-14 2010-01-28 Asahi Glass Co Ltd Glass laminate, panel for display device with supporting body, panel for display device, display device, and methods for manufacturing them
JP2011162432A (en) * 2010-01-12 2011-08-25 Nippon Electric Glass Co Ltd Glass film laminate, method for producing the same and method for producing glass film
JP2012030404A (en) * 2010-07-28 2012-02-16 Nippon Electric Glass Co Ltd Glass film laminate
JP2012131664A (en) * 2010-12-22 2012-07-12 Nippon Electric Glass Co Ltd Glass film laminate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190418A1 (en) * 2014-06-13 2015-12-17 日本電気硝子株式会社 Method for manufacturing glass film, and method for manufacturing electronic device including glass film
JP2016003147A (en) * 2014-06-13 2016-01-12 日本電気硝子株式会社 Manufacturing method of glass film, and manufacturing method of electronic device including glass film
US20190270284A1 (en) * 2016-11-09 2019-09-05 Corning Incorporated Dimmable window pane with reduced bow and insulated glazing unit comprising the same
US11872787B2 (en) * 2016-11-09 2024-01-16 Corning Incorporated Dimmable window pane with reduced bow and insulated glazing unit comprising the same
CN111149025A (en) * 2017-09-27 2020-05-12 日本电气硝子株式会社 Glass plate with optical film and method for producing same
CN111149025B (en) * 2017-09-27 2022-08-12 日本电气硝子株式会社 Glass plate with optical film and method for producing same
WO2022113874A1 (en) * 2020-11-26 2022-06-02 日本電気硝子株式会社 Method of manufacturing glass film laminate and method of washing glass sheet

Also Published As

Publication number Publication date
JP2015091746A (en) 2015-05-14
TW201514110A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
WO2015046490A1 (en) Method for producing film-like glass body, method for manufacturing electronic device, and method for producing glass film laminate
US9156230B2 (en) Glass film laminate without adhesive
JP5794325B2 (en) Manufacturing method of glass substrate for electronic device and manufacturing method of cover glass for electronic device
US9333724B2 (en) Glass film laminate
JP6287070B2 (en) Method for producing glass film laminate and method for producing electronic / electrical device
WO2012144499A1 (en) Laminate, method for producing same, and use of same
JP2014019597A (en) Method for producing glass film, and glass film laminate
JP2011184284A (en) Method for producing glass film, method for treating glass film and glass film laminate
JP5692513B2 (en) Glass film laminate
JP5585937B2 (en) Glass film laminate
JP2010215436A (en) Glass film laminate
WO2014133007A1 (en) Method for manufacturing electronic device
JP6327437B2 (en) Manufacturing method of electronic device
WO2014178405A1 (en) Glass film laminate, and production method for electronic device
JP6327580B2 (en) Glass film laminate and method for producing electronic device
JP2016060135A (en) Glass film laminate, and production method of electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847103

Country of ref document: EP

Kind code of ref document: A1