WO2014178249A1 - Container - Google Patents

Container Download PDF

Info

Publication number
WO2014178249A1
WO2014178249A1 PCT/JP2014/059184 JP2014059184W WO2014178249A1 WO 2014178249 A1 WO2014178249 A1 WO 2014178249A1 JP 2014059184 W JP2014059184 W JP 2014059184W WO 2014178249 A1 WO2014178249 A1 WO 2014178249A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene
layer
elastomer
container
polypropylene
Prior art date
Application number
PCT/JP2014/059184
Other languages
French (fr)
Japanese (ja)
Inventor
尊 佐野
Original Assignee
キョーラク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キョーラク株式会社 filed Critical キョーラク株式会社
Publication of WO2014178249A1 publication Critical patent/WO2014178249A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • B65D1/0215Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features multilayered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles

Definitions

  • the present invention relates to a plastic container, and more particularly to a food bottle. More specifically, the present invention relates to a material using polypropylene that has low temperature impact resistance, high heat resistance rigidity, and suitable for heat filling.
  • Patent Documents 1 to 4 are listed as documents describing the technology related to the present invention.
  • Patent Document 1 is a precedent example of a plastic container, and describes that a low temperature impact resistance is improved from that of a single polypropylene by a resin composition obtained by blending a linear polyethylene with a polypropylene resin.
  • the low temperature impact resistance is an index of container physical properties using an evaluation method for preventing breakage at a low temperature of less than 5 degrees Celsius assuming the temperature in the refrigerator. Containers with higher resistance to low temperature impact have less damage at low temperatures.
  • Patent Documents 2 and 3 describe the use of a composition of polypropylene, linear polyethylene, and low-density polyethylene to improve the low-temperature impact resistance from that of polypropylene alone.
  • Patent Document 4 discloses that by adding a hydrogenated polymer of a styrene-butadiene random copolymer to polypropylene, the low-temperature impact resistance and transparency are improved as compared with polypropylene alone, and the resin thus obtained is also disclosed. There is a description about using the composition for the main layer (thickest layer) (see paragraph 0017 of Patent Document 4).
  • the heat-resistant rigidity is an index related to the rigidity of the container at a high temperature of about 80 ° C.
  • the heat-resistant rigidity When filling a high-viscosity seasoning among seasonings, it may be filled at a temperature around 80 ° C. for the purpose of adjusting the viscosity. It is necessary to prevent the rigidity of the container from being lowered and difficult to handle in the filling line due to the heat of filling at that time. Therefore, the tensile elastic modulus at 80 ° C. is measured and evaluated.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a highly transparent container excellent in low-temperature impact resistance and heat-resistant rigidity.
  • a plastic container having a mixed layer in which polypropylene, linear polyethylene, low-density polyethylene, and polyethylene-based elastomer are arranged in at least one layer of the container.
  • FIG. 1 shows the longitudinal cross-section of the multilayer plastic container of embodiment of this invention. It is a schematic cross section which shows one suitable example of the layer structure of the A section of the plastic container of FIG.
  • the multilayer plastic container of the present embodiment is a container filled with the contents at a high temperature, and at least one layer has a layer made of a mixture of polypropylene, polyethylene elastomer, linear polyethylene and low density polyethylene. It is characterized by that.
  • the polyethylene elastomer refers to an elastomer having polyethylene as a hard segment and a predetermined rubber component as a soft segment.
  • C-4 polyethylene elastomer containing butene as a comonomer with respect to ethylene C-6 polyethylene elastomer containing hexene, C-8 polyethylene elastomer containing octene, and the like.
  • Examples of the multilayer plastic container of this embodiment include containers of various shapes including hollow bottles as seen in FIG. 1, and these plastic containers can be produced by a method such as rotary blow molding or shuttle blow molding. Can be manufactured.
  • the multilayer plastic container of this embodiment is useful as a food bottle such as ketchup, mayonnaise, sauce, and the like.
  • a fluid having a characteristic of high viscosity at normal temperature but low viscosity at high temperature such as ketchup and sauce needs to be filled at high temperature.
  • the production efficiency is improved as compared with a propylene simple substance multilayer container.
  • FIG. 2 shows a preferred example of the layer configuration of part A of the plastic container of FIG.
  • the outer layer 2 (mixed layer), the adhesive layer 3, the gas barrier layer 4, the adhesive layer 3, the intermediate layer 5, and the inner layer 6 (mixed layer) are stacked in this order. is there.
  • an adhesive resin such as maleic anhydride grafted polypropylene is used.
  • a gas barrier layer made of an ethylene vinyl acetate copolymer (EVOH) is used.
  • EVOH ethylene vinyl acetate copolymer
  • scrap resin such as burrs generated at the time of molding a plastic container or a mixed resin obtained by blending scrap resin and unused polypropylene can be used.
  • a gas barrier layer uses a resin that has a lower gas permeability compared to polyolefin, which is a main material such as ethylene-vinyl acetate copolymer (EVOH) and polyamide, and blocks gas that lowers the flavor of food typified by oxygen. It is a layer.
  • polyolefin which is a main material such as ethylene-vinyl acetate copolymer (EVOH) and polyamide
  • the optimum film ratio to be disposed in the container having the layer structure shown in FIG. 2 is 20% or more of the total thickness of the container including the outer layer 2 (mixed layer) and the inner layer 6 (mixed layer).
  • a multilayer container excellent in low temperature impact resistance and heat resistance rigidity can be produced.
  • the thickness of the entire container is obtained by measuring the thickness for every 10 mm in the container height direction and for every 10 mm in the container circumferential direction over the entire area of the container and averaging it.
  • the thicknesses of the outer layer 2 and the inner layer 6 are the average values of numerical values obtained by measuring the slices cut in the circumferential direction 12 at a half height position of the total height of the container and cutting with a microtome using an optical microscope. can get.
  • the total thickness of the container is 0.6 mm
  • the total thickness of the outer layer 2 and the inner layer 6 is 120 ⁇ m or more.
  • the outer layer 2 (mixed layer) is 141 ⁇ m
  • the adhesive layer 3 (outer layer side) 7.5 ⁇ m
  • the gas barrier layer 4 is 24 ⁇ m
  • the intermediate layer 5 is preferably 240 ⁇ m
  • the inner layer 6 (mixed layer) is preferably 180 ⁇ m.
  • the polypropylene that is the main component of the resin composition is preferably an ethylene-propylene random copolymer (r-PP) from the viewpoint of transparency.
  • the total amount of polypropylene is preferably 70% by weight or more from the viewpoint of transparency and heat-resistant rigidity. Further, the preferable range is 80% or more from the viewpoint of obtaining a high level of heat resistance rigidity, and less than 90% from the viewpoint of low temperature impact resistance.
  • each layer has a function. Basically, because the inner and outer layer materials have the functions of low temperature shock resistance, heat resistance rigidity, and transparency, the low temperature shock resistance and heat resistance rigidity of the multilayer container are evaluated by evaluating the physical properties of the inner and outer layer materials. , Leading to transparency evaluation. In the following examples, a sheet having a thickness of 1.5 mm and a width of 25 mm was formed and evaluated.
  • Example 1 [Material composition] Experiments were made with various combinations of polypropylene (PP), polyethylene elastomer (PE elastomer), linear low density polyethylene (LLDPE), and low density polyethylene (LDPE), and compared with Example 1 below. Examples 1 to 5 were obtained.
  • PP polypropylene
  • PE elastomer polyethylene elastomer
  • LLDPE linear low density polyethylene
  • LDPE low density polyethylene
  • Example 1 Random polypropylene (r-PP density: 0.890 g / cm 3 , MFR (230 ° C., 2.16 kg): 1.20 g / 10 min, melting point: 135 ° C.) was used as the total mixture of 100% by weight, 84.6% by weight.
  • Example 1 The density of physical properties and MFR were measured based on JIS K 7112, and the melting point was judged from the peak of DSC. Moreover, it is as follows when the mixing
  • blending of Example 1 is shown in a specific ratio. r-PP / LLDPE / LDPE / PE elastomer 1 84.6 / 9.4 / 1/5
  • PE-based elastomer 1 is a PE-based elastomer 2 having a large density and MFR (comonomer is 1-butene density 0.880 g / cm 3 , MFR (190 ° C., 2.16 kg): 1.20 g / 10 min, The melting point was 66 ° C., and a resin composition was prepared and evaluated under the same conditions as in Example 1 except for the ratio.
  • Example 3 The PE-based elastomer 3 having an increased number of unsaturated hydrocarbons using the PE-based elastomer 1 as a comonomer in the formulation of Example 1 (comonomer is 1-octene density 0.863 g / cm 3 , MFR (190 ° C., 2. 16 kg): 0.50 g / 10 min, melting point 47 ° C.), and a resin composition was prepared and evaluated under the same conditions as in Example 1 except for the ratio.
  • Comparative Example 1 A resin composition was prepared and evaluated under the same conditions except that LDPE was excluded from the formulation of Example 1.
  • Comparative Example 2 A resin composition was prepared and evaluated under the same conditions except that LDPE was excluded from the formulation of Example 2.
  • Comparative Example 3 A resin composition was prepared and evaluated under the same conditions except that LDPE was excluded from the formulation of Example 3.
  • Comparative Example 4 A resin composition was prepared and evaluated under the same conditions except that LLDPE and LDPE were excluded from the formulation of Example 1.
  • Comparative Example 5 A resin composition was prepared and evaluated under the same conditions except that the PE elastomer 1 and LDPE were removed from the formulation of Example 1.
  • Izod impact strength As a method for estimating the low temperature impact resistance of a container from the mechanical properties of the material without actually performing a drop test.
  • the Izod impact strength was measured at ⁇ 5 ° C. based on JIS K 7110, and the results are shown in Table 1.
  • Table 1 shows the results of measuring the light transmittance at a wavelength of 450 nm, which increases the numerical value when the transparency of visible light is high, with UV-2400PC, Shimadzu Corporation.
  • Example 1 and Comparative Example 1 described above are those in which LDPE is blended in a mixture of polypropylene, linear polyethylene, and a polyethylene-based elastomer but not in Example 1. It can be seen that Example 1 has improved Izod impact strength and tensile modulus as compared with Comparative Example 1.
  • the crystallization rate is a ratio of crystals contained in the resin, and the crystalline resin is divided into a crystal part having excellent heat resistance rigidity and an amorphous part having no heat resistance rigidity.
  • the improvement in the compatibility of the mixed resin leads to the dispersion of the rubber component that absorbs impact or stress in the order of submicrometers where the most effective effect is achieved, and the low temperature impact property is improved.
  • the crystallization rate increases because the dispersion is improved and the resin is arranged in an orderly manner and is easily crystallized. Many crystal components having excellent heat resistance rigidity are present in the mixed resin, and the heat resistance rigidity is improved.
  • Examples 1 to 3 were compared, there was a difference between the -5 ° C. Izod impact strength and the 80 ° C. tensile modulus improvement tendency depending on the PE elastomer.
  • the most effective PE-based elastomer is the PE-based elastomer of Example 1 having an Izod impact strength increased from 4.67 kJ / cm 2 to 11.01 kJ / cm 2 and a tensile elastic modulus increased from 126 MPa to 147 MPa. That is, it was found that the PE monomer having a density of 0.860 g / cm 3 and 1-butene as the comonomer had the highest improvement effect.
  • Comparative Example 5 shows that the Izod impact strength is low as compared with Examples 1 to 3, and the improvement effect is small even if a large amount of linear polyethylene is added.
  • the material composition blended with polypropylene, linear low density polyethylene, low density polyethylene, and polyethylene elastomer is compared to the material composition blended with polypropylene, polyethylene elastomer, and linear low density polyethylene. It can be seen that the Izod impact value at 5 ° C. and the rigidity at 80 ° C. are improved. This can provide a highly transparent container excellent in low-temperature impact resistance and heat-resistant rigidity.
  • the optimum material composition is 70% to 89% polypropylene, 3% to 10% polyethylene elastomer, 7% to 15% linear low density polyethylene, and 1% to 5% low density polyethylene. It is a configuration.
  • Multilayer plastic container Outer layer (mixed layer) 3 Adhesive layer 4 Gas barrier layer 5 Intermediate layer 6 Inner layer (mixed layer)

Abstract

The present invention provides a highly transparent plastic container which has excellent impact resistance at low temperatures and excellent rigidity. This plastic container (1) has, as at least one layer of the container, a mixed layer (6) in which a polypropylene, a linear polyethylene, a low-density polyethylene and a polyethylene-based elastomer are blended.

Description

容器container
 本発明は、プラスチック容器に関し、特に食品用のボトルに関する。さらにいえば、耐低温衝撃性を有し、耐熱剛性が大きく、熱充填に適したポリプロピレンを使用したものに関する。 The present invention relates to a plastic container, and more particularly to a food bottle. More specifically, the present invention relates to a material using polypropylene that has low temperature impact resistance, high heat resistance rigidity, and suitable for heat filling.
 本発明に関連する技術が記載された文献として、特許文献1ないし4をあげる。特許文献1は、プラスチック容器の先行例であり、ポリプロピレン樹脂に直鎖状ポリエチレンをブレンドさせた樹脂組成物により、耐低温衝撃性をポリプロピレン単体より向上させることについて記載がある。尚、耐低温衝撃性とは、冷蔵庫内の温度を想定した摂氏5℃未満の低温での破損を防ぐという評価方法を用いた容器物性の一指標である。耐低温衝撃性が高い容器ほど、低温での破損が小さい。 Patent Documents 1 to 4 are listed as documents describing the technology related to the present invention. Patent Document 1 is a precedent example of a plastic container, and describes that a low temperature impact resistance is improved from that of a single polypropylene by a resin composition obtained by blending a linear polyethylene with a polypropylene resin. The low temperature impact resistance is an index of container physical properties using an evaluation method for preventing breakage at a low temperature of less than 5 degrees Celsius assuming the temperature in the refrigerator. Containers with higher resistance to low temperature impact have less damage at low temperatures.
 特許文献2、3には、ポリプロピレンと直鎖状ポリエチレンと低密度ポリエチレンの組成物を用いることにより、耐低温衝撃性をポリプロピレン単体より向上させることについての記載がある。 Patent Documents 2 and 3 describe the use of a composition of polypropylene, linear polyethylene, and low-density polyethylene to improve the low-temperature impact resistance from that of polypropylene alone.
 特許文献4には、ポリプロピレンにスチレン-ブタジエンランダム共重合体の水素添加ポリマーを含有させることによって、耐低温衝撃性と透明性をポリプロピレン単体より向上させること、また、そのようにして得られた樹脂組成物を主層(最も厚い層)に用いることについて記載がある(特許文献4の段落0017参照)。 Patent Document 4 discloses that by adding a hydrogenated polymer of a styrene-butadiene random copolymer to polypropylene, the low-temperature impact resistance and transparency are improved as compared with polypropylene alone, and the resin thus obtained is also disclosed. There is a description about using the composition for the main layer (thickest layer) (see paragraph 0017 of Patent Document 4).
特許第2691494号公報Japanese Patent No. 2691494 特開2012-148810号公報JP 2012-148810 A 特開2012-148811号公報JP 2012-148811 A 特開2003-226323号公報JP 2003-226323 A
 従来のポリプロピレンに直鎖状ポリエチレンまたは低密度ポリエチレンをブレンドさせて低温衝撃強度を向上させる技術では、十分な改質強度を得るために直鎖状ポリエチレンや低密度ポリエチレンを多量に持ちいらなければならず、主材のポリプロピレンの透明性や耐熱剛性が損なわれる点で問題になる。また、ポリプロピレンにスチレン-ブタジエンランダム共重合体の水素添加ポリマーを含有させると耐低温衝撃性と透明性をポリプロピレン単体より向上させることが出来るものの耐熱剛性が低下する点で問題となる。 In conventional techniques to improve low-temperature impact strength by blending linear polyethylene or low-density polyethylene with polypropylene, a large amount of linear polyethylene or low-density polyethylene must be carried to obtain sufficient modified strength. However, there is a problem in that the transparency and heat-resistant rigidity of the main polypropylene are impaired. In addition, when a hydrogenated polymer of a styrene-butadiene random copolymer is contained in polypropylene, although low temperature impact resistance and transparency can be improved as compared with polypropylene alone, there is a problem in that the heat resistance rigidity is lowered.
 耐熱剛性とは、80℃程度の高温時における容器の剛性に関する指標である。調味料の中でも高粘度の調味料を充填する際に、粘度調整の目的で80℃近辺の温度で充填することがある。その際の充填の熱によって、容器の剛性が低下し充填ラインにて取扱いにくくなることを防止する必要がある。従って、80℃時の引張弾性率を測定し評価する。 The heat-resistant rigidity is an index related to the rigidity of the container at a high temperature of about 80 ° C. When filling a high-viscosity seasoning among seasonings, it may be filled at a temperature around 80 ° C. for the purpose of adjusting the viscosity. It is necessary to prevent the rigidity of the container from being lowered and difficult to handle in the filling line due to the heat of filling at that time. Therefore, the tensile elastic modulus at 80 ° C. is measured and evaluated.
 本発明は、上記実情に鑑みてなされたものであって、耐低温衝撃性及び耐熱剛性に優れた透明性の高い容器を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a highly transparent container excellent in low-temperature impact resistance and heat-resistant rigidity.
 本発明者らは、上記課題を達成するべく検討を重ねた結果、以下の構成をもって、上記の目的を達成できることを見出し、本発明を完成するに至った。 As a result of repeated studies to achieve the above problems, the present inventors have found that the above object can be achieved with the following configuration, and have completed the present invention.
 容器の少なくとも1つの層に、ポリプロピレンと、直鎖状ポリエチレンと、低密度ポリエチレンと、ポリエチレン系エラストマーとを配する混合層を持つプラスチック容器を使用する。 ∙ Use a plastic container having a mixed layer in which polypropylene, linear polyethylene, low-density polyethylene, and polyethylene-based elastomer are arranged in at least one layer of the container.
 本発明によれば、低温耐衝撃性及び耐熱剛性に優れた透明性の高い容器を提供することが可能となる。 According to the present invention, it is possible to provide a highly transparent container excellent in low-temperature impact resistance and heat-resistant rigidity.
本発明の実施形態の多層プラスチック容器の縦断面を示す図である。It is a figure which shows the longitudinal cross-section of the multilayer plastic container of embodiment of this invention. 図1のプラスチック容器のA部の層構成の好適な1例を示す模式断面図である。It is a schematic cross section which shows one suitable example of the layer structure of the A section of the plastic container of FIG.
 本実施形態の多層プラスチック容器は、内容物を高温で充填される容器であって、少なくとも1層が、ポリプロピレンと、ポリエチレン系エラストマーと、直鎖状ポリエチレンと低密度ポリエチレンの混合物からなる層を有することを特徴とする。ここで、ポリエチレン系エラストマーとは、ポリエチレンをハードセグメントとして、所定のゴム成分をソフトセグメントとしたエラストマーをいう。例えば、エチレンに対してコモノマーとしてブテンを入れたC-4のポリエチレン系エラストマー、ヘキセンを入れたC-6のポリエチレン系エラストマー、オクテンをいれたC-8のポリエチレン系エラストマーなどが挙げられる。 The multilayer plastic container of the present embodiment is a container filled with the contents at a high temperature, and at least one layer has a layer made of a mixture of polypropylene, polyethylene elastomer, linear polyethylene and low density polyethylene. It is characterized by that. Here, the polyethylene elastomer refers to an elastomer having polyethylene as a hard segment and a predetermined rubber component as a soft segment. For example, C-4 polyethylene elastomer containing butene as a comonomer with respect to ethylene, C-6 polyethylene elastomer containing hexene, C-8 polyethylene elastomer containing octene, and the like.
 本実施形態の多層プラスチック容器としては、図1に見られるような中空ボトルをはじめとする各種形状の容器が挙げられ、これらのプラスチック容器は、ロータリーブロー成形、シャトル方式のブロー成形等の方法により製造することができる。 Examples of the multilayer plastic container of this embodiment include containers of various shapes including hollow bottles as seen in FIG. 1, and these plastic containers can be produced by a method such as rotary blow molding or shuttle blow molding. Can be manufactured.
 本実施形態の多層プラスチック容器は、例えば、ケチャップ、マヨネーズ、ソース等の食品用ボトルとして有用である。特に、ケチャップ、ソースのように常温では高粘度であるが高温時には低粘度になる特性を持っている流体には、高温で充填する必要があるため、本実施形態容器を使用することにより、容器が変形せずライン適性が低下しないため生産効率がプロピレン単体多層容器と比較して向上する。 The multilayer plastic container of this embodiment is useful as a food bottle such as ketchup, mayonnaise, sauce, and the like. In particular, a fluid having a characteristic of high viscosity at normal temperature but low viscosity at high temperature such as ketchup and sauce needs to be filled at high temperature. As a result, the production efficiency is improved as compared with a propylene simple substance multilayer container.
 図2に、図1のプラスチック容器のA部の層構成の好適な1例を示す。図2に示した層構成においては、外層2(混合層)、接着層3、ガスバリア層4、接着層3、中間層5、内層6(混合層)が、この順番で積層された層構成である。外層2、内層6は、耐低温衝撃性、耐熱剛性に優れるポリプロピレンと、直鎖状ポリエチレンと低密度ポリエチレンとポリエチレン系エラストマーの混合物を使用する。具体的には、ポリプロピレン/直鎖状ポリエチレン/低密度ポリエチレン/ポリエチレン系エラストマー=84.6/9.4/1/5の割合が好ましい。接着層3としては、無水マレイン酸グラフトポリプロピレンなどの接着樹脂を使用する。ガスバリア層4として、エチレン酢酸ビニル共重合体(EVOH)からなるガスバリア層を使用する。中間層5としては、プラスチック容器の成形時に発生するバリなどのスクラップ樹脂、またはスクラップ樹脂と未使用のポリプロピレンをブレンドした混合樹脂などを使用することが出来る。 FIG. 2 shows a preferred example of the layer configuration of part A of the plastic container of FIG. In the layer configuration shown in FIG. 2, the outer layer 2 (mixed layer), the adhesive layer 3, the gas barrier layer 4, the adhesive layer 3, the intermediate layer 5, and the inner layer 6 (mixed layer) are stacked in this order. is there. The outer layer 2 and the inner layer 6 use a mixture of polypropylene excellent in low-temperature impact resistance and heat-resistant rigidity, linear polyethylene, low-density polyethylene and polyethylene-based elastomer. Specifically, a ratio of polypropylene / linear polyethylene / low density polyethylene / polyethylene elastomer = 84.6 / 9.4 / 1/5 is preferable. As the adhesive layer 3, an adhesive resin such as maleic anhydride grafted polypropylene is used. As the gas barrier layer 4, a gas barrier layer made of an ethylene vinyl acetate copolymer (EVOH) is used. As the intermediate layer 5, scrap resin such as burrs generated at the time of molding a plastic container or a mixed resin obtained by blending scrap resin and unused polypropylene can be used.
 ガスバリア層とは、エチレン酢酸ビニル共重合体(EVOH)やポリアミドなどの主材のポリオレフィンと比較し気体透過性の小さい樹脂を用いて、酸素に代表される食品の風味を低下させる気体を遮断する層のことである。 A gas barrier layer uses a resin that has a lower gas permeability compared to polyolefin, which is a main material such as ethylene-vinyl acetate copolymer (EVOH) and polyamide, and blocks gas that lowers the flavor of food typified by oxygen. It is a layer.
 図2に示した層構成を持つ容器に配置される最適な膜比率は外層2(混合層)、内層6(混合層)を合わせて容器全体の厚みに対して20%以上である。そのことにより。低温耐衝撃性及び耐熱剛性に優れた多層容器が作製できる。ここで、容器全体の厚みは、マイクロメーターを使い、容器の全域にわたって、容器高さ方向10mmごと、容器周方向10mmごとに厚みを測定し、平均して求める。また、外層2、内層6の厚みは、容器全高の1/2高さ位置にて周方向12方向で切出し、ミクロトームで切削した薄片を光学顕微鏡を用いて目視で測定した数値の平均値にて得られる。本実施形態においては、容器全体の厚みは、0.6mmであり、外層2、内層6を合算した層の厚みは、120μm以上である。 The optimum film ratio to be disposed in the container having the layer structure shown in FIG. 2 is 20% or more of the total thickness of the container including the outer layer 2 (mixed layer) and the inner layer 6 (mixed layer). By that. A multilayer container excellent in low temperature impact resistance and heat resistance rigidity can be produced. Here, the thickness of the entire container is obtained by measuring the thickness for every 10 mm in the container height direction and for every 10 mm in the container circumferential direction over the entire area of the container and averaging it. Further, the thicknesses of the outer layer 2 and the inner layer 6 are the average values of numerical values obtained by measuring the slices cut in the circumferential direction 12 at a half height position of the total height of the container and cutting with a microtome using an optical microscope. can get. In the present embodiment, the total thickness of the container is 0.6 mm, and the total thickness of the outer layer 2 and the inner layer 6 is 120 μm or more.
 例えば、先ほど示した肉厚0.6mmの容器であれば、外層2(混合層)は141μm、接着層3(外層側)7.5μm、ガスバリア層4は24μm、接着層3(内層側)7.5μm、中間層5は240μm、内層6(混合層)は180μmのように配置することが望ましい。 For example, in the case of a container having a thickness of 0.6 mm as shown above, the outer layer 2 (mixed layer) is 141 μm, the adhesive layer 3 (outer layer side) 7.5 μm, the gas barrier layer 4 is 24 μm, and the adhesive layer 3 (inner layer side) 7 5 μm, the intermediate layer 5 is preferably 240 μm, and the inner layer 6 (mixed layer) is preferably 180 μm.
 この樹脂組成物の主成分であるポリプロピレンは、エチレン-プロピレン・ランダム共重合体(r-PP)であることが透明性の点で好ましい。 The polypropylene that is the main component of the resin composition is preferably an ethylene-propylene random copolymer (r-PP) from the viewpoint of transparency.
 また、以下の実施例に示すように、ポリプロピレンの総量は、透明性、耐熱剛性の観点より70重量%以上が好ましい。さらに、好ましい範囲は、高い水準の耐熱剛性を求める点で80%以上、耐低温衝撃性の関係から90%未満が好ましい。 Also, as shown in the following examples, the total amount of polypropylene is preferably 70% by weight or more from the viewpoint of transparency and heat-resistant rigidity. Further, the preferable range is 80% or more from the viewpoint of obtaining a high level of heat resistance rigidity, and less than 90% from the viewpoint of low temperature impact resistance.
[実施例]
 以下、本発明の内外層材(外層2、内層6いずれも混合層)として使用する材料構成の実施例と比較例について説明を行う。多層容器とは、各層の多層構造であるので、それぞれの層にそれぞれの機能を持たせている。基本的には、内外層材に、耐低温衝撃性、耐熱剛性、透明性の機能を持たせているため、内外層材の物性を評価することにより、多層容器の耐低温衝撃性、耐熱剛性、透明性の評価につながる。なお、以下の例においては、厚さ1.5mm、幅25mmのシートを成形し評価を行った。
[Example]
Hereinafter, examples and comparative examples of material configurations used as the inner and outer layer materials of the present invention (both outer layer 2 and inner layer 6 are mixed layers) will be described. Since the multilayer container is a multilayer structure of each layer, each layer has a function. Basically, because the inner and outer layer materials have the functions of low temperature shock resistance, heat resistance rigidity, and transparency, the low temperature shock resistance and heat resistance rigidity of the multilayer container are evaluated by evaluating the physical properties of the inner and outer layer materials. , Leading to transparency evaluation. In the following examples, a sheet having a thickness of 1.5 mm and a width of 25 mm was formed and evaluated.
[材料構成]
 ポリプロピレン(PP)と、ポリエチレン系エラストマー(PE系エラストマー)、直鎖状低密度ポリエチレン(LLDPE)と、低密度ポリエチレン(LDPE)の配合を種々に変更して試行し、下記の実施例1と比較例1ないし5を得た。
[Material composition]
Experiments were made with various combinations of polypropylene (PP), polyethylene elastomer (PE elastomer), linear low density polyethylene (LLDPE), and low density polyethylene (LDPE), and compared with Example 1 below. Examples 1 to 5 were obtained.
[実施例1]
 混合物合計100重量%として、ランダムポリプロピレン(r-PP 密度:0.890g/cm、MFR(230℃、2.16kg):1.20g/10min、融点:135℃)を84.6重量%用い、直鎖状低密度ポリエチレン(LLDPE 密度:0.898g/cm、MFR(190℃、2.16kg):2.00g/10min、融点:94℃)を9.4重量%と、低密度ポリエチレン(LDPE 密度:0.923g/cm、MFR(190℃、2.16kg):0.60g/10min、融点:112℃)を1重量%と、ポリエチレン系エラストマー(PE系エラストマー1(コモノマーは1-ブテン) 密度0.860g/cm、MFR(190℃、2.16kg):0.50g/10min、融点50℃)5重量%を配合して混練し、得られた樹脂組成物の23℃での透明性、80℃での耐熱剛性、-5℃の低温衝撃性についての評価を行った。物性値の密度、MFRは、JIS K 7112に基づき測定し、融点はDSCのピークから判断した。また、実施例1の配合を具体的な割合で示すと以下のようになる。r-PP/LLDPE/LDPE/PE系エラストマー1=84.6/9.4/1/5
[Example 1]
Random polypropylene (r-PP density: 0.890 g / cm 3 , MFR (230 ° C., 2.16 kg): 1.20 g / 10 min, melting point: 135 ° C.) was used as the total mixture of 100% by weight, 84.6% by weight. 9.4% by weight of linear low density polyethylene (LLDPE density: 0.898 g / cm 3 , MFR (190 ° C., 2.16 kg): 2.00 g / 10 min, melting point: 94 ° C.) (LDPE density: 0.923 g / cm 3 , MFR (190 ° C., 2.16 kg): 0.60 g / 10 min, melting point: 112 ° C.) 1% by weight, polyethylene elastomer (PE elastomer 1 (comonomer is 1 -Butene) Density 0.860 g / cm 3 , MFR (190 ° C., 2.16 kg): 0.50 g / 10 min, melting point 50 ° C.) 5 wt% were blended and kneaded to obtain The resin composition was evaluated for transparency at 23 ° C., heat-resistant rigidity at 80 ° C., and low temperature impact resistance at −5 ° C. The density of physical properties and MFR were measured based on JIS K 7112, and the melting point was judged from the peak of DSC. Moreover, it is as follows when the mixing | blending of Example 1 is shown in a specific ratio. r-PP / LLDPE / LDPE / PE elastomer 1 = 84.6 / 9.4 / 1/5
[実施例2]
 実施例1の配合においてPE系エラストマー1を密度とMFRが大きいPE系エラストマー2(コモノマーは1-ブテン 密度0.880g/cm、MFR(190℃、2.16kg):1.20g/10min、融点66℃)に変更し、割合以外は実施例1と同じ条件にて樹脂組成物を作製し、評価を行った。実施例2の配合を具体的な割合で示すと以下のようになる。
 r-PP/LLDPE/LDPE/PE系エラストマー2=84.6/9.4/1/5
[Example 2]
In the formulation of Example 1, PE-based elastomer 1 is a PE-based elastomer 2 having a large density and MFR (comonomer is 1-butene density 0.880 g / cm 3 , MFR (190 ° C., 2.16 kg): 1.20 g / 10 min, The melting point was 66 ° C., and a resin composition was prepared and evaluated under the same conditions as in Example 1 except for the ratio. The formulation of Example 2 is shown as a specific ratio as follows.
r-PP / LLDPE / LDPE / PE elastomer 2 = 84.6 / 9.4 / 1/5
[実施例3]
 実施例1の配合においてPE系エラストマー1をコモノマーに使用する不飽和炭化水素の炭素数が増加したPE系エラストマー3(コモノマーは1-オクテン 密度0.863g/cm、MFR(190℃、2.16kg):0.50g/10min、融点47℃)に変更し、割合以外は実施例1と同じ条件にて樹脂組成物を作製し、評価を行った。実施例3の配合を具体的な割合で示すと以下のようになる。
 r-PP/LLDPE/LDPE/PE系エラストマー3=84.6/9.4/1/5
[Example 3]
The PE-based elastomer 3 having an increased number of unsaturated hydrocarbons using the PE-based elastomer 1 as a comonomer in the formulation of Example 1 (comonomer is 1-octene density 0.863 g / cm 3 , MFR (190 ° C., 2. 16 kg): 0.50 g / 10 min, melting point 47 ° C.), and a resin composition was prepared and evaluated under the same conditions as in Example 1 except for the ratio. The formulation of Example 3 is shown as a specific ratio as follows.
r-PP / LLDPE / LDPE / PE elastomer 3 = 84.6 / 9.4 / 1/5
[比較例1]
 実施例1の配合からLDPEを除いた他は同じ条件にて樹脂組成物を作製し、評価を行った。比較例1の配合を具体的な割合で示すと以下のようになる。
 r-PP/LLDPE/PE系エラストマー1=85.5/9.5/5
[Comparative Example 1]
A resin composition was prepared and evaluated under the same conditions except that LDPE was excluded from the formulation of Example 1. The composition of Comparative Example 1 is shown in a specific ratio as follows.
r-PP / LLDPE / PE elastomer 1 = 85.5 / 9.5 / 5
[比較例2]
 実施例2の配合からLDPEを除いた他は同じ条件にて樹脂組成物を作製し、評価を行った。比較例2の配合を具体的な割合で示すと以下のようになる。
 r-PP/LLDPE/PE系エラストマー1=85.5/9.5/5
[Comparative Example 2]
A resin composition was prepared and evaluated under the same conditions except that LDPE was excluded from the formulation of Example 2. The composition of Comparative Example 2 is shown in a specific ratio as follows.
r-PP / LLDPE / PE elastomer 1 = 85.5 / 9.5 / 5
[比較例3]
 実施例3の配合からLDPEを除いた他は同じ条件にて樹脂組成物を作製し、評価を行った。比較例3の配合を具体的な割合で示すと以下のようになる。
 r-PP/LLDPE/PE系エラストマー1=85.5/9.5/5
[Comparative Example 3]
A resin composition was prepared and evaluated under the same conditions except that LDPE was excluded from the formulation of Example 3. The composition of Comparative Example 3 is shown in a specific ratio as follows.
r-PP / LLDPE / PE elastomer 1 = 85.5 / 9.5 / 5
[比較例4]
 実施例1の配合からLLDPEとLDPEを除いた他は同じ条件にて樹脂組成物を作製し、評価を行った。比較例4の配合を具体的な割合で示すと以下のようになる。
 r-PP/PE系エラストマー1=85/15
[Comparative Example 4]
A resin composition was prepared and evaluated under the same conditions except that LLDPE and LDPE were excluded from the formulation of Example 1. The composition of Comparative Example 4 is shown in a specific ratio as follows.
r-PP / PE elastomer 1 = 85/15
[比較例5]
 実施例1の配合からPE系エラストマー1とLDPEを除いた他は同じ条件にて樹脂組成物を作製し、評価を行った。比較例5の配合を具体的な割合で示すと以下のようになる。
 r-PP/LLDPE=85/15
[Comparative Example 5]
A resin composition was prepared and evaluated under the same conditions except that the PE elastomer 1 and LDPE were removed from the formulation of Example 1. The composition of Comparative Example 5 is shown in a specific ratio as follows.
r-PP / LLDPE = 85/15
 容器の耐低温衝撃性を実際の落下試験をせずに材料の機械物性で推測する方法としてアイゾット衝撃強度がある。アイゾット衝撃強度については、JIS K 7110に基づき-5℃で測定し、結果を表1に示す。 There is Izod impact strength as a method for estimating the low temperature impact resistance of a container from the mechanical properties of the material without actually performing a drop test. The Izod impact strength was measured at −5 ° C. based on JIS K 7110, and the results are shown in Table 1.
 容器の耐熱剛性を推測するために、80℃における試験片の引張弾性率をJIS K 7161に基づき測定し、結果を表1に示す。 In order to estimate the heat resistant rigidity of the container, the tensile modulus of the test piece at 80 ° C. was measured based on JIS K 7161, and the results are shown in Table 1.
 可視光の透明性が高いと数値が大きくなる波長450nmの光線透過率を島津製作所株式会社 UV-2400PCにて測定した結果を表1に示す。 Table 1 shows the results of measuring the light transmittance at a wavelength of 450 nm, which increases the numerical value when the transparency of visible light is high, with UV-2400PC, Shimadzu Corporation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上述した実施例1と比較例1は、ポリプロピレンと直鎖状ポリエチレンとポリエチレン系エラストマーの混合物にLDPEが配合されているものが実施例1で配合されていないのが比較例1である。実施例1は比較例1と比較するとアイゾット衝撃強度と引張弾性率が向上していることが分かる。 Example 1 and Comparative Example 1 described above are those in which LDPE is blended in a mixture of polypropylene, linear polyethylene, and a polyethylene-based elastomer but not in Example 1. It can be seen that Example 1 has improved Izod impact strength and tensile modulus as compared with Comparative Example 1.
 このことは、LDPEがポリプロピレンと直鎖状ポリエチレンとポリエチレン系エラストマーの相溶性を向上させ、さらに結晶化率を向上させたことによると推測される。結晶化率とは、樹脂中に含まれる結晶の割合であり、結晶性樹脂には、耐熱剛性に優れる結晶部と耐熱剛性のない非晶部に分けられる。そして、混合樹脂の相溶性が向上することは、衝撃または応力を吸収するゴム成分を最も効果の発現するサブマイクロメーターオーダーに分散することにつながり低温衝撃性が向上する。さらに、結晶化率は分散が良くなることで樹脂が秩序よく配列し結晶化しやすくなるため大きくなる。耐熱剛性に優れる結晶成分が混合樹脂中に多く存在することになり耐熱剛性が向上することとなる。 This is presumably due to the fact that LDPE has improved the compatibility of polypropylene, linear polyethylene and polyethylene elastomer, and has further improved the crystallization rate. The crystallization rate is a ratio of crystals contained in the resin, and the crystalline resin is divided into a crystal part having excellent heat resistance rigidity and an amorphous part having no heat resistance rigidity. The improvement in the compatibility of the mixed resin leads to the dispersion of the rubber component that absorbs impact or stress in the order of submicrometers where the most effective effect is achieved, and the low temperature impact property is improved. Furthermore, the crystallization rate increases because the dispersion is improved and the resin is arranged in an orderly manner and is easily crystallized. Many crystal components having excellent heat resistance rigidity are present in the mixed resin, and the heat resistance rigidity is improved.
 このことは、実施例2と比較例2、実施例3と比較例3も同様に説明できる。 This can be explained in the same way for Example 2 and Comparative Example 2, and Example 3 and Comparative Example 3.
 実施例1~3を比較するとPEエラストマーによって-5℃のアイゾッド衝撃強度と80℃の引張弾性率の改善傾向に差が見られた。最も効果があるPE系エラストマーは、アイゾット衝撃強度が4.67kJ/cmから11.01kJ/cmに上昇し、引張弾性率が126MPaから147MPaに上昇した実施例1のPE系エラストマーである。すなわち、密度が0.860g/cmでコモノマーは1-ブテンのPE系エラストマーが最も改善効果が高いことが分かった。 When Examples 1 to 3 were compared, there was a difference between the -5 ° C. Izod impact strength and the 80 ° C. tensile modulus improvement tendency depending on the PE elastomer. The most effective PE-based elastomer is the PE-based elastomer of Example 1 having an Izod impact strength increased from 4.67 kJ / cm 2 to 11.01 kJ / cm 2 and a tensile elastic modulus increased from 126 MPa to 147 MPa. That is, it was found that the PE monomer having a density of 0.860 g / cm 3 and 1-butene as the comonomer had the highest improvement effect.
 また、屈折率の異なるポリプロピレンとポリエチレン系エラストマーをブレンドした配合では、透明性が低下する傾向になる。特に、比較例4のようにポリプロピレンに対してポリエチレン系エラストマーの相対量が多いとポリプロピレンはポリプロピレンで集合し、エラストマーはエラストマーで集合するため、分散が悪くなり極端に透明性が低下する。 Also, blending blends of polypropylene and polyethylene elastomers with different refractive indexes tends to decrease transparency. In particular, as in Comparative Example 4, when the relative amount of polyethylene-based elastomer is large with respect to polypropylene, polypropylene aggregates with polypropylene and elastomer aggregates with elastomer, resulting in poor dispersion and extremely low transparency.
 さらに、比較例4はエラストマーの比率が実施例1~3と比べて大きいため、耐低温衝撃性が改善するものの、耐熱剛性が急激に悪化する。 Furthermore, since the ratio of the elastomer in Comparative Example 4 is larger than that in Examples 1 to 3, the low temperature impact resistance is improved, but the heat resistant rigidity is rapidly deteriorated.
 比較例5では、実施例1~3と比較してアイゾット衝撃強度が低く、直鎖状ポリエチレンを大量に入れても改善効果は小さいことがわかる。 Comparative Example 5 shows that the Izod impact strength is low as compared with Examples 1 to 3, and the improvement effect is small even if a large amount of linear polyethylene is added.
 以上により、ポリプロピレンと、直鎖状低密度ポリエチレン、低密度ポリエチレン、ポリエチレン系エラストマーをブレンドした材料構成は、ポリプロピレンと、ポリエチレン系エラストマー、直鎖状低密度ポリエチレンをブレンドした材料構成と比較して-5℃のアイゾット衝撃値、80℃における剛性が向上することが分かる。このことは、低温耐衝撃性及び耐熱剛性に優れた透明性の高い容器を提供することができる。 Based on the above, the material composition blended with polypropylene, linear low density polyethylene, low density polyethylene, and polyethylene elastomer is compared to the material composition blended with polypropylene, polyethylene elastomer, and linear low density polyethylene. It can be seen that the Izod impact value at 5 ° C. and the rigidity at 80 ° C. are improved. This can provide a highly transparent container excellent in low-temperature impact resistance and heat-resistant rigidity.
 最適な材料構成としては、ポリプロピレンが70%~89%、ポリエチレン系エラストマー3%~10%、直鎖状低密度ポリエチレン7%~15%と、低密度ポリエチレン1%~5%の割合でブレンドされた構成である。 The optimum material composition is 70% to 89% polypropylene, 3% to 10% polyethylene elastomer, 7% to 15% linear low density polyethylene, and 1% to 5% low density polyethylene. It is a configuration.
 1  多層プラスチック容器
 2  外層(混合層)
 3  接着層
 4  ガスバリア層
 5  中間層
 6  内層(混合層)
1 Multilayer plastic container 2 Outer layer (mixed layer)
3 Adhesive layer 4 Gas barrier layer 5 Intermediate layer 6 Inner layer (mixed layer)

Claims (4)

  1.  容器の少なくとも1つの層に、ポリプロピレンと、直鎖状ポリエチレンと、低密度ポリエチレンとポリエチレン系エラストマーとを配する混合層を持つプラスチック容器。 A plastic container having a mixed layer in which polypropylene, linear polyethylene, low-density polyethylene and polyethylene-based elastomer are arranged in at least one layer of the container.
  2.  前記混合層において、直鎖状ポリエチレンと低密度ポリエチレンとポリエチレン系エラストマーの合計が30重量%以下であることを特徴とする請求項1記載のプラスチック容
    器。
    2. The plastic container according to claim 1, wherein in the mixed layer, the total of the linear polyethylene, the low density polyethylene, and the polyethylene elastomer is 30% by weight or less.
  3.  前記ポリエチレン系エラストマーは、密度が0.880g/cm3未満でかつ導入されるコモノマーが1-ブテンであることを特徴とする請求項1又は2記載のプラスチック容器。 3. The plastic container according to claim 1, wherein the polyethylene elastomer has a density of less than 0.880 g / cm 3 and the comonomer to be introduced is 1-butene.
  4.  中間層としてガスバリア層を有することを特徴とする請求項1、2又は3記載の多層容器。 The multilayer container according to claim 1, 2 or 3, further comprising a gas barrier layer as an intermediate layer.
PCT/JP2014/059184 2013-04-30 2014-03-28 Container WO2014178249A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013095446A JP6319546B2 (en) 2013-04-30 2013-04-30 container
JP2013-095446 2013-04-30

Publications (1)

Publication Number Publication Date
WO2014178249A1 true WO2014178249A1 (en) 2014-11-06

Family

ID=51843384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059184 WO2014178249A1 (en) 2013-04-30 2014-03-28 Container

Country Status (2)

Country Link
JP (1) JP6319546B2 (en)
WO (1) WO2014178249A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017013809A (en) * 2015-06-30 2017-01-19 三笠産業株式会社 Multilayer container
JP6738550B2 (en) * 2015-08-10 2020-08-12 大日本印刷株式会社 Composite container, composite preform, method for manufacturing composite container, and plastic member
JP6912718B2 (en) * 2017-08-31 2021-08-04 キョーラク株式会社 Laminate peeling container

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198756A (en) * 1984-10-20 1986-05-17 Mitsui Petrochem Ind Ltd Polypropylene composition having improved low-temperature impact resistance
JP2012148811A (en) * 2011-01-20 2012-08-09 Kyoraku Co Ltd Plastic container
JP2012148810A (en) * 2011-01-20 2012-08-09 Kyoraku Co Ltd Plastic container

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262948A (en) * 1996-03-28 1997-10-07 Mitsui Petrochem Ind Ltd Resin laminate and its application
JP5459535B2 (en) * 2009-07-29 2014-04-02 Dic株式会社 Coextruded multilayer film and packaging material comprising the film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198756A (en) * 1984-10-20 1986-05-17 Mitsui Petrochem Ind Ltd Polypropylene composition having improved low-temperature impact resistance
JP2012148811A (en) * 2011-01-20 2012-08-09 Kyoraku Co Ltd Plastic container
JP2012148810A (en) * 2011-01-20 2012-08-09 Kyoraku Co Ltd Plastic container

Also Published As

Publication number Publication date
JP2014213934A (en) 2014-11-17
JP6319546B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
JP6731951B2 (en) Laminated structure and stand-up pouch made therefrom
US8859671B2 (en) Photodegradable films with good tensile and dart properties
JP5672060B2 (en) Sealant film for polypropylene retort packaging and laminate thereof
JP6277485B2 (en) Polypropylene film and laminate using the same
KR20180046918A (en) A polypropylene-based sealant film for use in retort packaging and a laminated body using the same
JP5857046B2 (en) Stretch hood made from ULDPE rich formulation
KR101504434B1 (en) Polyethylene compositions and process for producing the same and polyethylene film having the same compositions
JP6319546B2 (en) container
US10899113B2 (en) Multilayer cast films with reduced blocking and methods of making same
WO2021054349A1 (en) Packaging body
JP6460989B2 (en) Thermoplastic resin sheet and its container
JP5569517B2 (en) Non-oil content hot-fill packaging
JP2018127556A (en) Resin composition, lid material for easily-openable container, and easily-openable container
JP6480472B2 (en) LAMINATE, CONTAINER, MANUFACTURING METHOD THEREOF, AND LAMINATE MATERIAL SHEET
JP2012085742A (en) Laminated body for transfusion bag, and transfusion bag
KR101634456B1 (en) Polyethylene compositions and process for producing the same and polyethylene film having the same compositions
JP4692140B2 (en) Polypropylene resin laminated film
JP5779889B2 (en) Multi-layer plastic container
JP2020007445A (en) Packaging film for food and packaging body for food
JP4747538B2 (en) Heat-sealable laminated polypropylene resin film and package
JP5165277B2 (en) Multilayer bottle
JP2007152729A (en) Polypropylene resin laminated film
JP6726911B2 (en) Low reflective easy tear film and auxiliary sheet for identification
KR20140007784A (en) Stretch hoods made from uldpe-rich formulations
US20200148455A1 (en) Flexible Container with Three-Dimensional Random Loop Material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14792212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14792212

Country of ref document: EP

Kind code of ref document: A1