WO2014178179A1 - Solid-state image capture element and image capture device - Google Patents

Solid-state image capture element and image capture device Download PDF

Info

Publication number
WO2014178179A1
WO2014178179A1 PCT/JP2014/002335 JP2014002335W WO2014178179A1 WO 2014178179 A1 WO2014178179 A1 WO 2014178179A1 JP 2014002335 W JP2014002335 W JP 2014002335W WO 2014178179 A1 WO2014178179 A1 WO 2014178179A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
row
solid
signal
imaging device
Prior art date
Application number
PCT/JP2014/002335
Other languages
French (fr)
Japanese (ja)
Inventor
崇 後藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020157032272A priority Critical patent/KR101732301B1/en
Publication of WO2014178179A1 publication Critical patent/WO2014178179A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/65Noise processing, e.g. detecting, correcting, reducing or removing noise applied to reset noise, e.g. KTC noise related to CMOS structures by techniques other than CDS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response

Definitions

  • the present invention relates to a solid-state imaging device including a photoelectric conversion unit that generates electric charge upon irradiation with light, and an imaging device including the solid-state imaging device.
  • a photoelectric conversion unit including a pair of electrodes and a photoelectric conversion layer sandwiched between these electrodes is provided above the silicon substrate, and generated in this photoelectric conversion layer
  • a photoelectric conversion layer stacked type solid-state imaging device is drawing attention, in which a stored charge is transferred from one of the pair of electrodes to a silicon substrate and accumulated, and a signal corresponding to the accumulated charge is read by a signal readout circuit formed on the silicon substrate. ing.
  • a solid-state imaging device for example, in Patent Document 1, as shown in FIG. 11, a photoelectric conversion unit 201 and a floating diffusion FD (hereinafter simply referred to as FD) that accumulates charges generated in the photoelectric conversion unit 201.
  • the output transistor 202 that outputs a voltage corresponding to the charge accumulated in the FD
  • the reset transistor 203 that resets the charge accumulated in the FD
  • the signal output from the output transistor 202 are selectively output to the signal line.
  • a solid-state imaging device has been proposed in which a large number of pixel portions 200 each including a selection transistor 204 are two-dimensionally arranged.
  • This solid-state imaging device is a circuit having a so-called three-transistor structure in which no transistor is provided between the FD and the photoelectric conversion unit 201, and the FD and the photoelectric conversion unit 201 are electrically connected directly. is there.
  • FIG. 12 shows the timing of the discharge operation and the charge signal readout operation of the pixel portion 200 in the nth to n + 2th rows.
  • FIG. 13 shows changes in drive and FD potential over time when the solid-state imaging device shown in FIG. 11 performs imaging under conditions where uniform light is incident on all pixels.
  • the solid line represents an ideal FD potential when there is no capacitive coupling, and the broken line represents a change in the potential of the FD when affected by capacitive coupling.
  • the change in the FD potential of the pixel of interest with the change in the FD potential of the adjacent pixel is a feature when there is an influence of capacitive coupling.
  • Each line discharges the charge accumulated in the FD until the time of discharge in the figure, and reads out the signal charge accumulated in the FD during the accumulation period from the discharge to the read at the time of reading.
  • the signal reading is completed at the time t1, and the potential of the FD becomes the reference potential.
  • discharging is performed at time t2, accumulation is started after the potential of FD is set to the reference potential.
  • reading is performed at time t5, and a signal corresponding to the signal charge accumulated in the FD between time t2 and time t5 is output.
  • the FD potential of the n-th row also changes with a large change in the FD potential of the n + 1-th row at time t2.
  • the FD potential changes monotonously from time t3 to time t4
  • the FD potential changes monotonically from time t3 to time t2, and then at time t2.
  • the potential decreases once, and the FD potential increases from the potential by accumulation of signal charges until time t4. For this reason, when the signal in the n-th row is read at time t4, the signal level is lower than the original signal level as indicated by the dotted line, compared to the original signal level indicated by the solid line.
  • red filters (R) and green filters (G) are alternately arranged in the column direction of the pixel unit 200.
  • the pixel unit 200 provided with the green filter is arranged in the same column as the pixel unit 200 provided with the red filter.
  • the discharge of the pixel unit 200 provided with the red filter reduces the potential of the FD of the pixel unit 200 provided with the green filter, and the magnitude of the charge signal G1. Will be smaller.
  • the coupling rate is the degree of influence of a potential change between FDs of adjacent pixel portions 200.
  • the coupling rate is determined by the ratio between the parasitic capacitance and the storage capacitance of the FD. The smaller the size of the pixel portion 200, the lower the degree of freedom of layout and the higher the coupling rate.
  • preliminary discharge which is preliminary charge discharge
  • discharge operation of each row Can be considered.
  • an operation when this preliminary discharge is performed will be described.
  • FIG. 16 shows the operation timing in the case of performing preliminary discharge on the (n + 1) th row before discharging on the nth row.
  • the FD potential change at the time of the n + 1th row discharge is performed by performing the n + 1th row preliminary discharge. Since the size can be reduced, the influence of the discharge of the (n + 1) th row on the accumulated signal of the nth row can be reduced.
  • this effect will be described quantitatively with reference to FIG.
  • the present invention includes a solid-state imaging device capable of sufficiently suppressing the influence even when a capacitive coupling formed between adjacent pixel rows is relatively large, and the solid-state imaging device.
  • An object is to provide an imaging device.
  • the solid-state imaging device of the present invention includes a photoelectric conversion unit that generates a signal charge corresponding to the amount of incident light, a storage unit that stores the signal charge generated in the photoelectric conversion unit, and a signal charge stored in the storage unit.
  • a signal charge that is stored in the storage unit and includes a plurality of pixel units that are electrically connected to the photoelectric conversion unit, the power storage unit, and the input node of the output circuit.
  • Preliminary discharge is performed at least twice, and the first preliminary discharge of the (n + 1) th row is performed before the discharge of the nth (n is a natural number) row, and the discharge is performed immediately before the discharge of the nth row. N before the first preliminary discharge in the nth row And characterized in that performing the second preliminary discharge in the first row.
  • a feedback control circuit that performs feedback control so that the power storage unit becomes a reference potential can be provided for each column of the pixel units.
  • the feedback control circuit can perform feedback control at the time of discharging, reading of signal charges, first preliminary discharging, and second preliminary discharging.
  • At least one of the discharge, the reading of signal charges, the first preliminary discharge, and the second preliminary discharge and an operation other than the at least one operation are performed in different rows within one scanning period. Can be done at different times.
  • a timing generator that outputs a pulse signal for controlling the timing of discharge, signal charge readout, first preliminary discharge, and second preliminary discharge is provided, and the timing generator is arranged within the scanning period of one row.
  • a pulse signal for controlling the timing of at least one operation and a pulse signal for controlling the timing of an operation other than the at least one operation can be output at different timings.
  • a shift register for controlling the timing of discharge, signal charge reading, first preliminary discharge, and second preliminary discharge can be provided for each operation.
  • the time for the first preliminary discharge or the second preliminary discharge can be made shorter than the discharge time.
  • the pixel portion includes a first electrode partitioned in units of pixels and a second electrode provided to face the pixel electrode with the photoelectric conversion portion interposed therebetween.
  • These pixel portions can be a common electrode.
  • the photoelectric conversion part can include an organic photoelectric conversion film.
  • the organic photoelectric conversion film can be common to all the pixel portions.
  • the signal charge from the photoelectric conversion part can be made a hole.
  • the signal charge from the photoelectric conversion unit can be converted to electrons.
  • a protection circuit can be provided in the power storage unit.
  • An image pickup apparatus includes the solid-state image sensor according to the present invention.
  • preliminary discharge which is preliminary charge discharge from the power storage unit, is performed at least twice before discharging in each row, and the nth (n is a natural number) row
  • the first preliminary discharge of the (n + 1) th row is performed
  • the second preliminary discharge of the (n + 1) th row is performed before the first preliminary discharge of the nth row performed immediately before the discharge of the nth row. Since this is performed, a change in voltage of the FD in discharging the pixel portion of each row can be reduced.
  • FIG. 1 shows the figure which shows the pixel part which comprises one Embodiment of the solid-state image sensor of this invention.
  • FIG. 1 shows the whole structure containing the peripheral circuit of the solid-state image sensor shown in FIG.
  • FIG. 1 shows an example of the timing of the 2nd preliminary
  • the figure which shows the electric potential change of FD of the pixel part of each line of nth line-n + 3th line The figure which shows an example of the relationship between the pulse signal output from a timing generator, and the operation
  • the figure which shows the positional relationship of the electrical storage part FD at the time of laying out the readout circuit of a pixel part by mirror image relation The figure which shows the electrical potential change of the electrical storage part FD at the time of only discharging, without performing preliminary discharge in the case of the positional relationship of the electrical storage part FD shown in FIG.
  • the figure which shows the structure and capacitive coupling of the pixel part of the conventional solid-state image sensor Timing chart for explaining discharge of conventional solid-state imaging device and reading of charge signal The figure for demonstrating the influence of the capacitive coupling in the conventional solid-state image sensor The figure for demonstrating the influence of the false signal by the capacitive coupling in the conventional solid-state image sensor The figure for demonstrating the influence of the afterimage by the capacitive coupling in the conventional solid-state image sensor
  • capacitance coupling at the time of performing preliminary discharge of the (n + 1) th row before discharge of the nth row The figure for demonstrating the influence of the afterimage by capacity
  • FIG. 1 is a diagram illustrating a pixel unit constituting the solid-state imaging device of the present embodiment.
  • the solid-state imaging device of the present embodiment has a large number of pixel portions 10 shown in FIG.
  • the pixel unit 10 includes a photoelectric conversion unit 11, a floating diffusion FD (corresponding to an accumulation unit) (hereinafter simply referred to as FD), an output transistor 12, a reset transistor 13, and a selection transistor 14. And.
  • the output transistor 12, the reset transistor 13, and the selection transistor 14 are each composed of an n-channel MOS transistor. Note that the size of the pixel portion 10 is desirably 5 ⁇ m or less.
  • the photoelectric conversion unit 11 includes a pixel electrode 104 (corresponding to the first electrode), a counter electrode 108 (corresponding to the second electrode) provided to face the pixel electrode 104, the pixel electrode 104, and the counter electrode. And a photoelectric conversion layer 107 provided between them.
  • the pixel electrode 104 is a thin film electrode divided for each pixel portion 10 and is formed of a transparent or opaque conductive material such as ITO, aluminum, titanium nitride, copper, tungsten, or the like.
  • the pixel electrode 104 collects charges generated in the photoelectric conversion layer 107 for each pixel unit 10.
  • the counter electrode 108 is an electrode for applying a voltage to the photoelectric conversion layer 107 between the pixel electrode 104 and generating an electric field in the photoelectric conversion layer 107. Since the counter electrode 108 is provided on the light incident surface side of the photoelectric conversion layer 107 and needs to be transmitted through the counter electrode 108 and incident on the photoelectric conversion layer 107, the counter electrode 108 is transparent to the incident light. It is formed from a conductive material such as ITO. Note that the counter electrode 108 in the present embodiment is configured by one electrode common to all the pixel units 10, but may be configured to be divided for each pixel unit 10.
  • the photoelectric conversion layer 107 includes an organic photoelectric conversion film or an inorganic photoelectric conversion film that absorbs incident light and generates charges according to the absorbed light quantity. Note that a function of a charge blocking layer or the like that suppresses charge injection from the electrode to the photoelectric conversion layer 107 between the photoelectric conversion layer 107 and the counter electrode 108 or between the photoelectric conversion layer 107 and the pixel electrode 104. A layer may be provided.
  • a bias voltage is applied to the counter electrode 108 so that holes out of the charges generated in the photoelectric conversion layer 107 move to the pixel electrode 104 and electrons move to the counter electrode 108.
  • a bias voltage a voltage higher than the power supply voltage Vdd (a voltage supplied to the drain of the output transistor 12 in FIG. 1, for example, 3 V) is used as a bias voltage so that the photoelectric conversion layer 107 exhibits sufficiently high sensitivity. It is desirable to use about 5 to 20 V, for example 10 V).
  • FD is composed of an n-type impurity region electrically connected to the pixel electrode 104. Since the potential of the FD changes according to the amount of holes collected by the pixel electrode 104, the FD functions as a charge storage portion.
  • the output transistor 12 converts the charge signal accumulated in the FD into a voltage signal and outputs it to the signal line SL.
  • the gate terminal of the output transistor 12 is electrically connected to the FD, and the drain terminal is connected to the power supply voltage Vdd of the solid-state imaging device.
  • the source terminal of the output transistor 12 is connected to the drain terminal of the selection transistor 14.
  • the pixel unit 10 in the present embodiment is a so-called three-transistor circuit in which the FD, the pixel electrode 104 of the photoelectric conversion unit 11, and the gate terminal of the output transistor 12 are directly connected.
  • the reset transistor 13 resets the potential of the FD to a reference potential.
  • the FD is electrically connected to the drain terminal of the reset transistor 13 and the feedback control circuit 16 is connected to the source terminal.
  • the feedback control circuit 16 includes an inverting amplifier 16a and a voltage source 16b that supplies a reference voltage RD.
  • the signal line SL is connected to the inverting input terminal ( ⁇ ) of the inverting amplifier 16a, the voltage source 16b is connected to the non-inverting input terminal (+), and the feedback line FL is connected to the output terminal.
  • the feedback line FL is connected to the source terminal of the reset transistor 13.
  • the reset transistor 13 When the reset pulse RS applied to the gate terminal of the reset transistor 13 becomes high level, the reset transistor 13 is turned on, and electrons are injected from the source to the drain of the reset transistor 13. Then, due to the injection of electrons, the potential of the FD drops and the potential of the FD is reset to the reference potential. At this time, the potential of the FD is changed via the output transistor 12, the selection transistor 14, and the signal line SL. Input to the feedback control circuit 16.
  • the feedback control circuit 16 feedback-controls the potential of the FD, whereby the potential of the FD is maintained at a constant reference potential. .
  • reset kTC noise of the reset transistor 13 can be reduced.
  • the feedback control circuit 16 is provided for each column of the pixel units 10 and is shared by the plurality of pixel units 10 belonging to each column.
  • the selection transistor 14 has a source terminal connected to the signal line SL, and selectively outputs a signal output from the output transistor 12 of each pixel unit 10 to the signal line SL provided for each column. belongs to.
  • the selection pulse RW applied to the gate terminal of the selection transistor 14 becomes a high level, the selection transistor 14 is turned on, whereby a signal output from the output transistor 12 of each pixel unit 10 is output to the signal line SL.
  • FIG. 2 is a schematic cross-sectional view of a solid-state imaging device 100 in which a large number of pixel portions 10 shown in FIG. 1 are two-dimensionally arranged.
  • the same name and reference numeral are assigned to the same configuration as the pixel unit 10 shown in FIG.
  • the solid-state imaging device 100 includes a substrate 101, an insulating layer 102, a connection electrode 103, a pixel electrode 104, a connection portion 105, a connection portion 106, a photoelectric conversion layer 107, and a counter electrode. 108, a sealing layer 110, a color filter 111, a light shielding layer 113, a protective layer 114, a counter electrode voltage supply unit 115, and a readout circuit 116.
  • the substrate 101 is a glass substrate or a semiconductor substrate such as Si.
  • An insulating layer 102 is formed on the substrate 101.
  • a plurality of pixel electrodes 104 and one or more connection electrodes 103 are formed on the surface of the insulating layer 102.
  • the photoelectric conversion layer 107 generates an electric charge according to the received light as described above.
  • the photoelectric conversion layer 107 is provided so as to cover the plurality of pixel electrodes 104.
  • the photoelectric conversion layer 107 has a constant film thickness on the pixel electrode 104, but there is no problem even if the film thickness changes outside the pixel portion (outside the effective pixel area).
  • the counter electrode 108 is an electrode facing the pixel electrode 104, and is provided so as to cover the photoelectric conversion layer 107.
  • the counter electrode 108 is formed up to the connection electrode 103 arranged outside the photoelectric conversion layer 107 and is electrically connected to the connection electrode 103.
  • connection unit 106 is embedded in the insulating layer 102 and is a plug or the like for electrically connecting the connection electrode 103 and the counter electrode voltage supply unit 115.
  • the counter electrode voltage supply unit 115 is formed on the substrate 101 and applies a predetermined voltage to the counter electrode 108 via the connection unit 106 and the connection electrode 103. Note that the counter voltage supply unit 115 may be configured not directly on the substrate 101 but directly connected to an external power source.
  • the readout circuit 116 includes the FD, the output transistor 12, the reset transistor 13, and the selection transistor 14 shown in FIG. 1, and is wired by a metal wiring (not shown) in the insulating layer 102.
  • the readout circuit 116 is provided on the substrate 101 corresponding to each of the plurality of pixel electrodes 104, and reads out a signal corresponding to the charge collected by the corresponding pixel electrode 104. Note that the reading circuit 116 is shielded from light by a light shielding layer (not shown) disposed in the insulating layer 102.
  • the sealing layer 110 is provided so as to cover the counter electrode 108.
  • the color filter 111 is formed at a position facing each pixel electrode 104 on the sealing layer 110.
  • the light shielding layer 113 is formed in a region other than the region where the color filter 111 is provided on the sealing layer 110, and prevents light from entering the photoelectric conversion layer 107 formed outside the effective pixel region.
  • a Bayer color filter can be used as the color filter 111.
  • the color filter is not limited to this, and a complementary color filter or other known color filters can be used.
  • the protective layer 114 is formed on the color filter 111 and the light shielding layer 113, and protects the entire solid-state imaging device.
  • FIG. 3 is a diagram showing an overall configuration including peripheral circuits of the solid-state imaging device 100 shown in FIG.
  • the solid-state imaging device 100 includes a vertical driver 121, a control unit 122, a signal processing circuit 123, a horizontal driver 124, an LVDS 125, a serial conversion unit 126, and a pad 127. It has.
  • the pixel area shown in FIG. 3 represents an area where the pixel portions 10 of the solid-state imaging device 100 shown in FIG. 2 are arranged.
  • a signal line SL for outputting a signal from the output transistor 12 of each pixel unit 10 and the feedback line FL described above are provided for each column of the pixel unit 10, and a switching pulse signal is output from the vertical driver 121.
  • a scanning line GL is provided for each row.
  • the feedback control circuit 16 is provided for each column of the pixel unit 10.
  • the control unit 122 includes a timing generator (hereinafter referred to as TG) 128 and the like, outputs a frame synchronization signal VD and a row synchronization signal HD, and controls operations of the vertical driver 121 and the horizontal driver 124. It controls the readout of charge signals in the pixel unit 10.
  • TG timing generator
  • the vertical driver 121 outputs a reset pulse RS and a selection pulse RW to the reading circuit 116 via the scanning line GL based on the timing pulse signal output from the TG 128 of the control unit 122, and performs the operation of the reading circuit 116. It is something to control.
  • the vertical driver 121 of the present embodiment performs a preliminary discharge, which is a preliminary charge discharge from the FD, twice before discharging the accumulated charge in the so-called conventional FD. Is to control.
  • the vertical driver 121 Based on the timing pulse signal output from the TG 128, the vertical driver 121 outputs a selection shift register 130 that outputs a selection pulse RW and a reset pulse RS for reading a charge signal, and a selection pulse RW and a reset for discharge.
  • the discharge shift register 131 that outputs the pulse RS
  • the first preliminary discharge shift register 132 that outputs the selection pulse RW and the reset pulse RS during the first preliminary discharge, and the selection during the second preliminary discharge
  • a second preliminary discharge shift register 133 that outputs a pulse RW and a reset pulse RS. The timing of the selection pulse RW and the reset pulse RS output from these shift registers 130 to 133 will be described in detail later.
  • the signal processing circuit 123 is provided corresponding to each column of the readout circuit 116.
  • the signal processing circuit 123 includes an ADC circuit that performs correlated double sampling (CDS) processing on the signals output from the corresponding columns and converts the processed signals into digital signals.
  • CDS correlated double sampling
  • the signal processed by the signal processing circuit 123 is stored in a memory provided for each column.
  • the horizontal driver 124 performs control to sequentially read out signals for one row of the pixel unit 10 stored in the memory of the signal processing circuit 123 and output the signals to the LVDS 125.
  • the LVDS 125 transmits a digital signal in accordance with LVDS (low voltage differential).
  • the serial conversion unit 126 converts an input parallel digital signal into a serial signal and outputs it.
  • the pad 127 is an interface used for input / output with the outside.
  • the second preliminary discharge, the first preliminary discharge, the discharge, and the charge signal reading operation are sequentially performed for each row of the pixel unit 10.
  • the second preliminary discharge, the first preliminary discharge, the discharge, and the charge signal reading operation for each row of the pixel unit 10 are sequentially scanned in the column direction of the pixel unit 10.
  • FIG. 4 shows an example of the timings of second preliminary discharge, first preliminary discharge, discharge, and charge signal readout in the nth row (n is a natural number) to the n + 3th row of the solid-state imaging device 100 of the present embodiment.
  • the second preliminary discharge, the first preliminary discharge, the discharge, and the readout of the charge signal are sequentially performed for each of the nth to n + 3th rows. .
  • the reset pulse RS and the selection pulse RW for the second preliminary discharge are output from the second preliminary discharge shift register 133 of the vertical driver 121 to each row. Then, the reset transistor 13 of the pixel unit 10 is turned on by the reset pulse RS, and the selection transistor 14 of the pixel unit 10 is turned on by the selection pulse RW. As a result, the FD is connected to the feedback control circuit 16 via the selection transistor 14, and the potential of the FD is feedback-controlled by the feedback control circuit 16 and reset to the reference potential.
  • the reset pulse RS and the selection pulse RW for the first preliminary discharge are output from the first preliminary discharge shift register 132 of the vertical driver 121 to each row.
  • the reset transistor 13 of the pixel unit 10 is turned on by the reset pulse RS
  • the selection transistor 14 of the pixel unit 10 is turned on by the selection pulse RW
  • the potential of the FD is feedback controlled again. And reset to the reference potential.
  • a reset pulse RS and a selection pulse RW for discharge are output from the discharge shift register 131 of the vertical driver 121 to each row.
  • the reset transistor 13 of the pixel unit 10 is turned on by the reset pulse RS
  • the selection transistor 14 of the pixel unit 10 is turned on by the selection pulse RW.
  • the potential is feedback controlled and reset to the reference potential.
  • a selection pulse RW is output from the read shift register 130 of the vertical driver 121 to each row. Then, the selection transistor 14 is turned on by this selection pulse RW, whereby the charge signal stored in the FD is converted into a voltage signal by the output transistor 12 and output as a storage signal to the signal line SL.
  • a reset pulse RS is output from the readout shift register 130 to each row, and the reset transistor 13 of the pixel portion 10 is turned on by this reset pulse RS, and the potential of the FD is again feedback controlled to be reset to the reference potential. . Then, a signal immediately after the reset transistor 13 is turned off and the reset is completed is output to the signal line SL as a reset signal.
  • the signal processing circuit 123 calculates the difference between the accumulated signal and the reset signal, and using this difference as an image signal makes it possible to acquire an image with less fixed pattern noise and reset kTC noise.
  • the feedback control time for the second preliminary discharge or the first preliminary discharge may be set shorter than the time for the feedback control for discharge.
  • the discharge time and the read time can be set longer, and the S / N of the image signal can be improved.
  • the feedback control time can be controlled by adjusting the ON time of the reset pulse RS and the selection pulse RW.
  • the first preliminary discharge of the (n + 1) th row is performed before the discharge of the nth row and the first preliminary discharge of the nth row is performed. And the second preliminary discharge in the (n + 1) th row is controlled. Similarly, the first preliminary discharge of the (n + 2) th row is performed before the discharge of the (n + 1) th row, and the second preliminary discharge of the (n + 2) th row is performed before the first preliminary discharge of the (n + 1) th row.
  • the first preliminary discharge of the next row is performed, and the first preliminary discharge and the second preliminary discharge of the predetermined row are Control is performed so that the second preliminary discharge of the next row is performed during the interval.
  • FIG. 5 shows the potential change of the FD of the pixel portion 10 in each row when the timing of each operation in each row is controlled as described above.
  • uniform light is irradiated to the solid-state imaging device 100 by the LED at time t0, and 10000 electrons are accumulated in the FD before the preliminary discharge of each row, and the coupling rate of adjacent rows is The case of 5% will be described.
  • the potential of the FD in the n-th row is changed from a potential corresponding to ⁇ 500 electrons to a potential corresponding to 0 electrons, that is, a reference potential.
  • the FD of the nth row is affected by the capacitive coupling, and the potential of the FD of the (n + 1) th row corresponds to ⁇ 500 electrons.
  • the potential corresponds to ⁇ 5% of the ⁇ 500 electrons. That is, the FD in the nth row has a potential corresponding to 25 electrons.
  • the potential of the FD of the nth row is changed from the potential corresponding to 25 electrons to the reference potential.
  • accumulation of signal charges is started from the start of the discharge.
  • the n + 1-th row FD is discharged, and the n-th row FD is affected by the capacitive coupling, so that the potential of the n + 1-th row FD changes from the potential corresponding to 25 electrons to the reference potential.
  • a potential fluctuation corresponding to ⁇ 5% of the 25 electrons occurs. That is, an offset potential corresponding to ⁇ 1.25 electrons is added to the charge signal accumulated after the nth row is discharged.
  • the offset potential corresponding to ⁇ 1.25 electrons can be suppressed for 10,000 stored signals.
  • the first preliminary discharge in the (n + 1) th row is performed before the discharge in the nth row
  • the second preliminary discharge is performed before the first preliminary discharge in the nth row.
  • the potential can be made sufficiently small.
  • the preliminary discharge is performed twice before the discharge of each row.
  • the preliminary discharge is not limited to two times, and may be performed three times or more.
  • the influence of capacitive coupling of optical signal charges in a predetermined frame can be set to ( ⁇ coupling ratio) (j + 1) .
  • the optical signal charge of the frame is as large as 100,000 electrons and the coupling rate is 10%
  • the effect of the present invention increases as the coupling rate increases.
  • the size of the pixel portion 10 is 5 ⁇ m or less, the coupling rate increases to a degree that cannot be ignored. It is remarkable.
  • the TG 128 periodically outputs a pulse signal in accordance with the timing of the second preliminary discharge, the first preliminary discharge, the discharge and the reading of each row.
  • the pulse signal output from the TG 128 is input to the read shift register 130, the discharge shift register 131, the first preliminary discharge shift register 132, and the second preliminary discharge shift register 133.
  • Each shift register outputs a reset pulse RS and a selection pulse RW to each row at a preset timing based on the input pulse signal.
  • FIG. 6 shows the relationship between the pulse signal output from the TG 128 and the operation timing in each of the n ⁇ 1 to n + 1 rows. In FIG. 6, it is assumed that time elapses from left to right in the upper stage and then elapses from left to right in the lower stage.
  • the TG 128 performs, for example, the second preliminary ejection pulse signal PR2, the first preliminary ejection pulse signal PR1, the ejection pulse signal R, and the readout pulse signal S in this order. Output.
  • These four types of pulse signals are output during each scanning period and input to each shift register, and each shift register is input to each row at the logical product timing of the input pulse signal and a preset timing.
  • a reset pulse RS and a selection pulse RW are output.
  • the second preliminary ejection pulse signal PR2, the first preliminary ejection pulse signal PR1, the ejection pulse signal R, and the readout pulse signal S are output from the TG 128 in this order. It is not necessarily limited to this order.
  • FIG. 7 shows an example in which four types of pulse signals are output from the TG 128 in the other order.
  • the TG 128 outputs the read pulse signal S, the discharge pulse signal R, the first preliminary discharge pulse signal PR1, and the second preliminary discharge pulse signal PR2. That is, FIG. 7 shows an example in which four types of pulse signals are output from the TG 128 in the reverse order to the example shown in FIG. Also in the example shown in FIG.
  • each shift register outputs the reset pulse RS and the selection pulse RW to each row at the logical product timing of the input pulse signal and a preset timing. Also in this case, the operation of each row is always performed in the order of the second preliminary discharge, the first preliminary discharge, the discharge, and the reading. Further, the first preliminary discharge of the (n + 1) th row is performed before the discharge of the nth row, and the second preliminary discharge of the (n + 1) th row is performed before the first preliminary discharge of the nth row. As described above, the timing is set in each shift register.
  • the output order of the four types of pulse signals output from the TG 128 is not limited to the order shown in FIGS. 6 and 7, but may be other orders.
  • the TG 128 outputs all four types of pulse signals at different timings.
  • the present invention is not limited to this, and at least one of the four types of pulse signals is output. May be output at a timing different from the timing of other pulse signals.
  • each row is performed in the order of the second preliminary discharge, the first preliminary discharge, the discharge, and the reading, and further, the first spare of the (n + 1) th row before the discharge of the nth row.
  • the timing is set in each shift register so that the discharge is performed and the second preliminary discharge of the (n + 1) th row is performed before the first preliminary discharge of the nth row.
  • the readout circuit of each pixel unit 10 may be laid out in a pattern having periodicity in the pixel unit column direction.
  • the readout circuit of the pixel unit 10 when the readout circuit of the pixel unit 10 is laid out in a mirror image relationship, the readout circuit is laid out in a pattern of 2 rows in the column direction, and the coupling capacitance between adjacent pixels is also 2 rows.
  • the capacitive coupling between the pixel units 10 in the nth row (odd row) and the n + 1th row (even row) is relatively large, and the n + 1th row (even row).
  • the (n + 2) -th row (odd-numbered row) pixel portions 10 are relatively small in capacitive coupling.
  • the capacitive coupling between the pixel portions 10 of the (n + 2) th row (odd row) and the (n + 3) th row (even row) becomes relatively large.
  • FIG. 9 shows a change in the potential of the FD when only discharging is performed as in the prior art without performing the preliminary discharging described above in such a configuration.
  • the figure shows the time variation of the drive and FD potential when imaging is performed under conditions where uniform light is incident on all pixels.
  • a solid line in FIG. 9 shows an ideal potential change when there is no capacitive coupling, and a dotted line shows an actual potential change.
  • the influence of the discharge of the (n + 1) th row on the potential of the FD of the pixel portion 10 of the nth row and the discharge of the (n + 3) th row are the discharges of the (n + 2) th row.
  • the even-numbered lines n + 1 and n + 3 can obtain an output almost equal to the case without capacitive coupling, while the odd-numbered lines n and n + 2 have no capacitive coupling.
  • the output will be very different. That is, even when uniform light is incident on the pixel units 10 from the nth row to the n + 3th row, the magnitudes of the charge signals read out by the odd-numbered pixel units 10 and the even-numbered pixel units 10 are different.
  • the horizontal stripes appear every other line on the read image.
  • the readout circuit of the pixel unit 10 is not limited to the 2-row cycle, and may be laid out with a pattern of a 3-row cycle or a 4-row cycle, for example.
  • the capacitive coupling formed between adjacent pixels in the column direction is a pattern that periodically changes in the column direction, it may be laid out in any periodic structure. The effect of the present invention becomes remarkable.
  • the reset transistor 13, the output transistor 12, and the selection transistor 14 are configured by n-channel MOS transistors, and holes are collected by the pixel electrode 104.
  • the reset transistor 13, the output transistor 12, and the selection transistor 14 are configured by p-channel MOS transistors, the electrons are collected by the pixel electrode 104, and a charge signal corresponding to the amount of the electrons is supplied to the p-channel MOS transistor. Reading may be performed by the signal reading circuit 116 configured as described above.
  • holes are collected by the pixel electrode 104 and read out by the signal readout circuit 116 constituted by an n-channel MOS transistor, or electrons are collected by the pixel electrode 104 as described above.
  • the signal readout circuit 116 configured by a p-channel MOS transistor
  • electrons are collected by the pixel electrode and read by a signal readout circuit configured by an n-channel MOS transistor.
  • the voltage amplitude of FD is large. For this reason, since the potential change of the FD at the time of discharge when the first and second preliminary discharges are not performed is large, the influence of the capacitive coupling on the signal charge of the FD of the adjacent pixel is large. The effect of the second preliminary discharge can be obtained more remarkably.
  • a configuration in which a protective circuit 17 is provided in the FD may be used. Since the number of components of the readout circuit 116 increases, the coupling rate increases. However, according to the present embodiment, there is no problem because it is possible to suppress deterioration in image quality due to the coupling rate.
  • the solid-state imaging device of the above-described embodiment can be used for various imaging devices.
  • the imaging device include a digital camera, a digital video camera, an electronic endoscope, and a camera-equipped mobile phone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

[Problem] The purpose of the present invention is, with respect to a solid-state image capture element wherein a plurality of pixel parts comprising photoelectric conversion parts which receive a light projection and emit an electric charge are arrayed in a two-dimensional matrix, to minimize the effect that capacitive coupling which is formed between adjacent pixel rows has on an accumulation signal and acquire an appropriate image signal. [Solution] A charge accumulation read-out operation is carried out in row sequence, said charge accumulation read-out operation being an operation of discharging a signal charge accumulated in an accumulation part (FD) and reading out a signal charge accumulated in the accumulation part (FD) once charge accumulation interval has elapsed after the discharge. In the charge accumulation read-out operation, at least two preparatory discharges, which are preparatory discharges of charge from the accumulation part, are carried out before the abovementioned discharge in each row. Prior to discharge at the nth row (where n is a natural number), a first preparatory discharge at the n+1th row is carried out, and prior to the first preparatory discharge at the nth row which is carried out immediately prior to the nth row discharge, a second preparatory discharge at the n+1th row is carried out.

Description

固体撮像素子および撮像装置Solid-state imaging device and imaging apparatus
 本発明は、光の照射を受けて電荷を発生する光電変換部を備えた固体撮像素子およびその固体撮像素子を備えた撮像装置に関するものである。 The present invention relates to a solid-state imaging device including a photoelectric conversion unit that generates electric charge upon irradiation with light, and an imaging device including the solid-state imaging device.
 近年、固体撮像素子の高感度化、画素微細化に対応するために、シリコン基板の上方に一対の電極とこれらで挟まれた光電変換層を含む光電変換部を設け、この光電変換層で発生した電荷を上記一対の電極の一方からシリコン基板に移動させて蓄積し、この蓄積電荷に応じた信号を、シリコン基板に形成した信号読出し回路で読み出す光電変換層積層型の固体撮像素子が注目されている。 In recent years, in order to cope with high sensitivity and pixel miniaturization of solid-state imaging devices, a photoelectric conversion unit including a pair of electrodes and a photoelectric conversion layer sandwiched between these electrodes is provided above the silicon substrate, and generated in this photoelectric conversion layer A photoelectric conversion layer stacked type solid-state imaging device is drawing attention, in which a stored charge is transferred from one of the pair of electrodes to a silicon substrate and accumulated, and a signal corresponding to the accumulated charge is read by a signal readout circuit formed on the silicon substrate. ing.
 このような固体撮像素子として、たとえば特許文献1には、図11に示すように、光電変換部201と、光電変換部201において発生した電荷を蓄積するフローティングディフュージョンFD(以下、単にFDという)と、FDに蓄積された電荷に対応した電圧を出力する出力トランジスタ202と、FDに蓄積された電荷をリセットするリセットトランジスタ203と、出力トランジスタ202から出力された信号を信号線に選択的に出力する選択トランジスタ204とを備えた画素部200が2次元状に多数配列された固体撮像素子が提案されている。この固体撮像素子は、FDと光電変換部201との間にトランジスタが設けられていない、いわゆる3トランジスタの構成の回路であり、FDと光電変換部201とが電気的に直接接続されたものである。 As such a solid-state imaging device, for example, in Patent Document 1, as shown in FIG. 11, a photoelectric conversion unit 201 and a floating diffusion FD (hereinafter simply referred to as FD) that accumulates charges generated in the photoelectric conversion unit 201. The output transistor 202 that outputs a voltage corresponding to the charge accumulated in the FD, the reset transistor 203 that resets the charge accumulated in the FD, and the signal output from the output transistor 202 are selectively output to the signal line. A solid-state imaging device has been proposed in which a large number of pixel portions 200 each including a selection transistor 204 are two-dimensionally arranged. This solid-state imaging device is a circuit having a so-called three-transistor structure in which no transistor is provided between the FD and the photoelectric conversion unit 201, and the FD and the photoelectric conversion unit 201 are electrically connected directly. is there.
 ここで、上述したような固体撮像素子においては、画素部200の各行についてそれぞれ排出および電荷信号の読み出し動作が順次行われる。図12は、n行目~n+2行目の画素部200の排出および電荷信号の読み出し動作のタイミングの示すものである。 Here, in the solid-state imaging device as described above, the discharge operation and the readout operation of the charge signal are sequentially performed for each row of the pixel unit 200. FIG. 12 shows the timing of the discharge operation and the charge signal readout operation of the pixel portion 200 in the nth to n + 2th rows.
 図12に示すように、蓄積期間の開始時には、まず、不要電荷の排出が行われる。排出は、リセットパルスRSによって画素部200のリセットトランジスタ203がオンされ、FDに蓄積された電荷がリセットされることで行われる。 As shown in FIG. 12, at the start of the accumulation period, unnecessary charges are first discharged. The discharge is performed when the reset transistor 203 of the pixel portion 200 is turned on by the reset pulse RS and the charge accumulated in the FD is reset.
 リセットトランジスタ203がオフされ、排出が完了するとこの時点からFDへの電荷の蓄積が開始する。そして、所定の電荷蓄積期間が経過した際に、画素部200に選択パルスRWが出力され、この選択パルスRWによって選択トランジスタ204がオンし、これによりFDに蓄積された電荷信号が出力トランジスタ202によって電圧信号に変換さ
れ、蓄積信号として信号線に出力される。その後、リセットトランジスタ203をオンすることで、FDがリセットされ、リセットされた後のFDの電位がリセット信号として信号線に出力される。蓄積信号とリセット信号との差分を画像信号として用いることで、固定パターンノイズの少ない画像の取得が可能となる。
When the reset transistor 203 is turned off and discharging is completed, accumulation of electric charges in the FD starts from this point. When a predetermined charge accumulation period elapses, a selection pulse RW is output to the pixel portion 200, and the selection transistor 204 is turned on by this selection pulse RW, whereby the charge signal accumulated in the FD is output by the output transistor 202. It is converted into a voltage signal and output to the signal line as an accumulated signal. After that, the reset transistor 203 is turned on to reset the FD, and the reset potential of the FD is output to the signal line as a reset signal. By using the difference between the accumulated signal and the reset signal as an image signal, it is possible to acquire an image with less fixed pattern noise.
 上述したような画素部200の行毎の排出および電荷信号の読み出し動作が、画素部200の列方向に順次走査されて行われることによって1フレームの画像信号が取得される。 The above-described discharge for each row of the pixel portion 200 and the readout operation of the charge signal are sequentially scanned in the column direction of the pixel portion 200, whereby one frame of image signal is acquired.
特開2011-54746号公報JP 2011-54746 A 国際公開第2012/137445号International Publication No. 2012/137445
 ここで、上述したような固体撮像素子においては、図11に示すように、画素部の配線や基板の不純物領域などの寄生容量に起因して、異なる行の隣接する画素部200間において容量カップリングが発生してしまう。特に、画素部の微細化が進むと、画素部本来の容量が小さくなるのに加えて、レイアウトの制限も厳しくなるため、容量カップリングの影響が必然的に大きくなってしまう。 Here, in the solid-state imaging device as described above, as shown in FIG. 11, due to parasitic capacitances such as the wiring of the pixel portion and the impurity region of the substrate, the capacitance cup between adjacent pixel portions 200 in different rows. A ring will occur. In particular, when the pixel portion is further miniaturized, the original capacitance of the pixel portion is reduced, and the layout is more severely limited. Therefore, the influence of capacitive coupling is inevitably increased.
 特に、上述した3トランジスタの構成では、画素ごとにFDが必要なこと、FDと光電変換部201との間にトランジスタが設けられておらず電気的に直接つながっていることから、隣接する画素部200のFD間の容量カップリングの影響が大きくなりやすい。この影響について説明する。 In particular, in the above-described three-transistor configuration, an FD is required for each pixel, and since no transistor is provided between the FD and the photoelectric conversion unit 201, the adjacent pixel units are electrically connected. The effect of capacitive coupling between 200 FDs tends to increase. This effect will be described.
 図13は図11に示す固体撮像素子において、全ての画素に均一な光が入射する条件で撮像を行った場合の駆動とFD電位の時間変化を示している。実線は容量カップリングが一切ない場合の理想的なFD電位を表し、破線は容量カップリングの影響を受けた場合のFDの電位変化を表す。隣接画素のFD電位の変化に伴い、着目画素のFD電位が変化してしまうのが、容量カップリングの影響がある場合の特徴である。 FIG. 13 shows changes in drive and FD potential over time when the solid-state imaging device shown in FIG. 11 performs imaging under conditions where uniform light is incident on all pixels. The solid line represents an ideal FD potential when there is no capacitive coupling, and the broken line represents a change in the potential of the FD when affected by capacitive coupling. The change in the FD potential of the pixel of interest with the change in the FD potential of the adjacent pixel is a feature when there is an influence of capacitive coupling.
 各行は図中の排出の時点でそれまでFDに蓄積していた電荷を排出し、読み出しの時点で排出から読み出しまでの蓄積期間にFDに蓄積した信号電荷を読み出す。ここで、n+1行目に注目すると、時刻t1において信号の読み出しが完了し、FDの電位が基準電位になる。その後、時刻t2において排出を行い、FDの電位を基準電位にした上で、蓄積を開始する。そして時刻t5において読み出しを行い、時刻t2から時刻t5の間にFDに蓄積した信号電荷に応じた信号を出力する。 Each line discharges the charge accumulated in the FD until the time of discharge in the figure, and reads out the signal charge accumulated in the FD during the accumulation period from the discharge to the read at the time of reading. Here, paying attention to the (n + 1) th row, the signal reading is completed at the time t1, and the potential of the FD becomes the reference potential. Thereafter, discharging is performed at time t2, accumulation is started after the potential of FD is set to the reference potential. Then, reading is performed at time t5, and a signal corresponding to the signal charge accumulated in the FD between time t2 and time t5 is output.
 一方、n行目に注目すると、時刻t2より前の時刻t3において排出を行い、蓄積を開始する。そして、時刻t2より後の時刻t4において読み出しを行う。すなわち、n行目の蓄積期間中(t3~t4の間)にn+1行目の排出を行うことになる。 On the other hand, when attention is paid to the n-th row, discharging is performed at time t3 before time t2, and accumulation is started. Then, reading is performed at time t4 after time t2. That is, the n + 1th row is discharged during the accumulation period of the nth row (between t3 and t4).
 ここでn行目とn+1行目の間の容量カップリングが大きい場合、時刻t2におけるn+1行目のFD電位の大きな変化に伴い、n行目のFD電位も変化してしまう。容量カップリングがない場合には時刻t3から時刻t4まで単調にFD電位が変化するのに対し、容量カップリングが大きい場合、時刻t3から時刻t2まで単調にFD電位が変化した後、時刻t2において電位が一旦下がり、時刻t4までその電位から信号電荷の蓄積によってFD電位が上昇することになる。このため、時刻t4においてn行目の信号を読み出す際に、実線で示した本来の信号レベルに比べて、点線で示すような本来の信号レベルよりも低い信号レベルになってしまう。 Here, when the capacitive coupling between the n-th row and the n + 1-th row is large, the FD potential of the n-th row also changes with a large change in the FD potential of the n + 1-th row at time t2. When there is no capacitive coupling, the FD potential changes monotonously from time t3 to time t4, whereas when the capacitive coupling is large, the FD potential changes monotonically from time t3 to time t2, and then at time t2. The potential decreases once, and the FD potential increases from the potential by accumulation of signal charges until time t4. For this reason, when the signal in the n-th row is read at time t4, the signal level is lower than the original signal level as indicated by the dotted line, compared to the original signal level indicated by the solid line.
 このような信号レベルの異常は、読み出す信号に比べて排出する際の電位変化が大きいほどに目立ちやすい。このため、固体撮像素子に入射する光が大きく、フレーム期間に比べて蓄積期間が短いほどこの影響が顕著になる。この結果、信号量が小さい場合のS/Nの低下や、露光期間に対する信号の直線性(リニアリティ)の低下などの問題を引き起こす。 Such an abnormality in the signal level is more conspicuous as the potential change when discharging is larger than the signal to be read out. For this reason, this effect becomes more conspicuous as the light incident on the solid-state imaging device is larger and the accumulation period is shorter than the frame period. As a result, problems such as a decrease in S / N when the signal amount is small and a decrease in signal linearity with respect to the exposure period are caused.
 また、たとえば上述した固体撮像素子において、ベイヤー配列のカラーフィルタが設けられている場合には、画素部200の列方向について、赤フィルタ(R)と緑フィルタ(G)とが交互に配列された画素部の列と、青フィルタ(B)と緑フィルタ(G)とが交互に配列された画素部の列とが存在することになる。 For example, in the solid-state imaging device described above, when a Bayer color filter is provided, red filters (R) and green filters (G) are alternately arranged in the column direction of the pixel unit 200. There will be a column of pixel portions and a column of pixel portions in which blue filters (B) and green filters (G) are alternately arranged.
 このような固体撮像素子に対して、R光とG光とを含むY光が照射された場合、緑フィルタが設けられた画素部200が、赤フィルタが設けられた画素部200と同じ列にある場合には、図14の上段に示すように、赤フィルタが設けられた画素部200の排出によって、緑フィルタが設けられた画素部200のFDの電位が減少し、その電荷信号G1の大きさが小さくなることになる。 When such a solid-state imaging device is irradiated with Y light including R light and G light, the pixel unit 200 provided with the green filter is arranged in the same column as the pixel unit 200 provided with the red filter. In some cases, as shown in the upper part of FIG. 14, the discharge of the pixel unit 200 provided with the red filter reduces the potential of the FD of the pixel unit 200 provided with the green filter, and the magnitude of the charge signal G1. Will be smaller.
 一方、緑フィルタが設けられた画素部200が、青フィルタが設けられた画素部200と同じ列にある場合には、図14の下段に示すように、青フィルタが設けられた画素部200には光が入射せず、そのFDの電位も変化しないため、青フィルタが設けられた画素部200の排出によって、緑フィルタが設けられた画素部200のFDの電位が影響を受けることはなく、上記電荷信号G1よりも大きい電荷信号G2が取得される。 On the other hand, when the pixel unit 200 provided with the green filter is in the same column as the pixel unit 200 provided with the blue filter, as shown in the lower part of FIG. Since no light is incident and the potential of the FD does not change, the discharge of the pixel portion 200 provided with the blue filter does not affect the potential of the FD of the pixel portion 200 provided with the green filter. A charge signal G2 larger than the charge signal G1 is acquired.
 すなわち、画素部200の列によって緑フィルタが設けられた画素部200の感度が異なるためカラーバランスが本来とは異なるものとなり、適切な画像信号を取得することができない。 That is, since the sensitivity of the pixel unit 200 provided with the green filter differs depending on the column of the pixel units 200, the color balance is different from the original, and an appropriate image signal cannot be acquired.
 また、たとえば上述した固体撮像素子においては容量カップリングに起因して残像が発生する。この影響を図15を用いて説明する。 Further, for example, in the above-described solid-state imaging device, an afterimage is generated due to capacitive coupling. This effect will be described with reference to FIG.
 まず、各行の排出前までに10000個の電子がFDに蓄積されており、隣接する行のカップリング率が1%の場合について説明する。なお、カップリング率とは、隣接する画素部200のFD間の電位変化の影響度のことである。例えば、カップリング率1%の場合、隣接画素の信号が変化した際に、その1%だけ信号が変化することを表している。カップリング率は寄生容量とFDの蓄積容量との比で決まり、画素部200のサイズが小さくなるほどレイアウトの自由度が下がり、カップリング率が高くなり易いことになる。 First, a case will be described in which 10000 electrons are accumulated in the FD before each row is discharged and the coupling rate of the adjacent row is 1%. Note that the coupling rate is the degree of influence of a potential change between FDs of adjacent pixel portions 200. For example, when the coupling rate is 1%, the signal changes by 1% when the signal of the adjacent pixel changes. The coupling rate is determined by the ratio between the parasitic capacitance and the storage capacitance of the FD. The smaller the size of the pixel portion 200, the lower the degree of freedom of layout and the higher the coupling rate.
 まず、n行目の排出によってn行目のFDに蓄積された10000個の電子は0個になる。しかしながら、次いで実行されるn+1行目のFDの排出により、n行目のFDは容量カップリングの影響を受けて、n+1行目のFDに蓄積されている10000個の電子が0個になるのに伴い、(0-10000)個の電子の1%の電子数に相当する電位となる。すなわち、n行目のFDは-100個の電子に相当する電位となる。そして、このあとn行目の読み出しが行われるため、n行目からは-100個の電子に相当する黒沈み残像が発生する。n+1行目についても同様に-100個の電子に相当する黒沈み残像が発生する。このように、隣接画素行間の容量カップリングに起因して蓄積電荷量×(-カップリング率)の残像が発生する。 First, 10000 electrons accumulated in the FD of the nth row by discharging the nth row become zero. However, due to the subsequent discharge of the FD of the (n + 1) th row, the FD of the nth row is affected by the capacitive coupling, and 10000 electrons accumulated in the FD of the (n + 1) th row become zero. Accordingly, the potential corresponds to the number of electrons of 1% of (0-10000) electrons. That is, the FD in the nth row has a potential corresponding to −100 electrons. Then, since reading of the nth row is performed, a black sun afterimage corresponding to −100 electrons is generated from the nth row. Similarly, a black sun afterimage corresponding to −100 electrons is generated in the (n + 1) th row. As described above, an afterimage of accumulated charge amount × (−coupling ratio) is generated due to capacitive coupling between adjacent pixel rows.
 そこで、上述したような隣接画素行間の容量カップリングの影響を抑制するため、たとえば特許文献2に記載されているように、各行の排出動作の前に、予備的な電荷の排出である予備排出を行うことが考えられる。以下、この予備排出を行った場合の作用について説明する。 Therefore, in order to suppress the influence of capacitive coupling between adjacent pixel rows as described above, for example, as described in Patent Document 2, preliminary discharge, which is preliminary charge discharge, is performed before the discharge operation of each row. Can be considered. Hereinafter, an operation when this preliminary discharge is performed will be described.
 図16は、n行目の排出の前にn+1行目の予備排出を行う場合の動作タイミングを示すものである。図16に示すように、n行目の排出の前にn+1行目の予備排出を行った場合には、n+1行目の予備排出を行うことによってn+1行目の排出時におけるFDの電位変化を小さくすることができるので、n+1行目の排出がn行目の蓄積信号におよぼす影響を小さくすることができる。以下、図17を参照しながらこの影響を定量的に説明する。 FIG. 16 shows the operation timing in the case of performing preliminary discharge on the (n + 1) th row before discharging on the nth row. As shown in FIG. 16, when the n + 1th row preliminary discharge is performed before the nth row discharge, the FD potential change at the time of the n + 1th row discharge is performed by performing the n + 1th row preliminary discharge. Since the size can be reduced, the influence of the discharge of the (n + 1) th row on the accumulated signal of the nth row can be reduced. Hereinafter, this effect will be described quantitatively with reference to FIG.
 まず、各行の予備排出前までに10000個の電子がFDに蓄積されており、隣接する行のカップリング率が1%の場合について説明する。 First, a case will be described in which 10000 electrons are accumulated in the FD before the preliminary discharge of each row and the coupling rate of the adjacent row is 1%.
 まず、n+1行目の予備排出によってn+1行目のFDに蓄積された10000個の電子は0個になる。しかしながら、次いで実行されるn+2行目のFDの予備排出により、n+1行目のFDは容量カップリングの影響を受けて、n+2行目のFDに蓄積されている10000個の電子が0個になるのに伴い、10000個の電子の-1%の電子数に相当する電位となる。すなわち、n+1行目のFDは-100個の電子に相当する電位となる。そして、この状態において次にn+1行目の排出が行われると、この排出による容量カップリングの影響を受けて、n行目においては、n+1行目のFDに蓄積されている-100個の電子の-1%の電子数に相当する電位変動が発生する。すなわち、n行目の排出後に蓄積された電荷信号に対して電子1個に相当するオフセット電位が付加されることになる。 First, 10000 electrons accumulated in the FD of the (n + 1) th row due to the preliminary discharge of the (n + 1) th row become zero. However, due to the preliminary discharge of the FD in the n + 2 row that is executed next, the FD in the n + 1 row is affected by the capacitive coupling, and the 10000 electrons accumulated in the FD in the n + 2 row become 0. Accordingly, the potential corresponds to -1% of the number of electrons of 10,000 electrons. That is, the FD in the (n + 1) th row has a potential corresponding to −100 electrons. In this state, when the (n + 1) th row is discharged next, the −100 electrons accumulated in the FD of the (n + 1) th row are affected by the capacitive coupling due to the discharge. A potential fluctuation corresponding to -1% of the number of electrons occurs. That is, an offset potential corresponding to one electron is added to the charge signal accumulated after the nth row is discharged.
 このように、カップリング率が1%程度であって比較的低い場合には、10000個の蓄積信号に対して、電子1個に相当するオフセット電位が付加されるに過ぎないので、図16に示すようなタイミングで予備排出を行うようにすれば、隣接画素行間の容量カップリングの影響を十分に抑制することができる。 In this way, when the coupling rate is about 1% and is relatively low, an offset potential corresponding to one electron is only added to 10,000 stored signals, so FIG. If preliminary discharge is performed at the timing as shown, the influence of capacitive coupling between adjacent pixel rows can be sufficiently suppressed.
 しかしながら、カップリング率が比較的高い場合には、上述したオフセット電位が大きくなって問題となる場合がある。たとえばカップリング率が5%である場合について、図18を参照しながら説明する。 However, when the coupling rate is relatively high, the above-described offset potential may become large and cause a problem. For example, the case where the coupling rate is 5% will be described with reference to FIG.
 まず、n+1行目の予備排出によってn+1行目のFDに蓄積された10000個の電子は0個になる。しかしながら、次いで実行されるn+2行目のFDの予備排出により、n+1行目のFDは容量カップリングの影響を受けて、n+2行目のFDに蓄積されている10000個の電子が0個になるのに伴い、10000個の電子の-5%の電子数に相当する電位となる。すなわち、n+1行目のFDは-500個の電子に相当する電位となる。そして、この状態において次にn+1行目の排出が行われると、この排出による容量カップリングの影響を受けて、n行目においては、n+1行目のFDに蓄積されている-500個の電子の-5%の電子数に相当する電位変動が発生する。すなわち、n行目の排出後に蓄積された電荷信号に対して電子25個に相当するオフセット電位が付加されることになる。一般的にノイズとして許容される範囲が電子3個に相当する電位変動であることを考えると、電子25個に相当するオフセット電位は非常に大きいものであり問題となる。 First, 10000 electrons accumulated in the FD of the (n + 1) th row due to the preliminary discharge of the (n + 1) th row become zero. However, due to the preliminary discharge of the FD in the n + 2 row that is executed next, the FD in the n + 1 row is affected by the capacitive coupling, and the 10000 electrons accumulated in the FD in the n + 2 row become 0. Accordingly, the potential corresponds to −5% of 10000 electrons. That is, the FD in the (n + 1) th row has a potential corresponding to −500 electrons. Then, when the n + 1th row is discharged in this state, the −500 electrons accumulated in the FD of the (n + 1) th row are affected by the capacitive coupling due to this discharge. A potential fluctuation corresponding to -5% of the number of electrons occurs. That is, an offset potential corresponding to 25 electrons is added to the charge signal accumulated after the nth row is discharged. Considering that generally the allowable range of noise is a potential fluctuation corresponding to 3 electrons, the offset potential corresponding to 25 electrons is very large and causes a problem.
 すなわち、図15に示すようにn行目の排出の前にn+1行目の予備排出を行うようにした場合でも、結果的には、本来の電荷信号に対して、「予備排出時の排出電荷量×(-カップリング率)」がオフセットとして付加されることになり、カップリング率が高い場合には無視することができない。 That is, as shown in FIG. 15, even when the preliminary discharge of the (n + 1) th row is performed before the discharge of the nth row, as a result, the “discharged charge at the time of preliminary discharging” The quantity × (−coupling rate) 2 ”is added as an offset, and cannot be ignored when the coupling rate is high.
 本発明は、上記の事情に鑑み、隣接する画素行間に形成される容量カップリングが比較的大きい場合においても、その影響を十分に抑制することができる固体撮像素子およびその固体撮像素子を備えた撮像装置を提供することを目的とする。 In view of the above circumstances, the present invention includes a solid-state imaging device capable of sufficiently suppressing the influence even when a capacitive coupling formed between adjacent pixel rows is relatively large, and the solid-state imaging device. An object is to provide an imaging device.
 本発明の固体撮像素子は、入射光の光量に応じた信号電荷を発生する光電変換部と、光電変換部において発生した信号電荷を蓄積する蓄積部と、蓄積部に蓄積された信号電荷に応じた電圧を出力する出力回路とを含み、光電変換部と蓄電部と出力回路の入力ノードとが電気的に接続された画素部が二次元状に複数配列され、蓄積部に蓄積された信号電荷を排出し、その排出後、電荷蓄積期間経過時において蓄電部に蓄積された信号電荷を読み出す電荷蓄積読出動作を行順次に行うものであり、各行において排出の前に、蓄電部からの予備的な電荷の排出である予備排出を少なくとも2回行い、かつn(nは自然数)行目の排出の前に、n+1行目の第1の予備排出を行い、n行目の排出の直前に行われるn行目の第1の予備排出の前に、n+1行目の第2の予備排出を行うものであることを特徴とする。 The solid-state imaging device of the present invention includes a photoelectric conversion unit that generates a signal charge corresponding to the amount of incident light, a storage unit that stores the signal charge generated in the photoelectric conversion unit, and a signal charge stored in the storage unit. A signal charge that is stored in the storage unit, and includes a plurality of pixel units that are electrically connected to the photoelectric conversion unit, the power storage unit, and the input node of the output circuit. After the discharge, a charge accumulation read operation for reading the signal charges accumulated in the power storage unit when the charge accumulation period has elapsed is performed in a row sequence, and a preliminary operation from the power storage unit is performed before the discharge in each row. Preliminary discharge is performed at least twice, and the first preliminary discharge of the (n + 1) th row is performed before the discharge of the nth (n is a natural number) row, and the discharge is performed immediately before the discharge of the nth row. N before the first preliminary discharge in the nth row And characterized in that performing the second preliminary discharge in the first row.
 また、上記本発明の固体撮像素子においては、蓄電部が基準電位となるようにフィードバック制御を行うフィードバック制御回路を、画素部の列毎に設けることができる。 In the solid-state imaging device of the present invention, a feedback control circuit that performs feedback control so that the power storage unit becomes a reference potential can be provided for each column of the pixel units.
 また、フィードバック制御回路を、排出、信号電荷の読み出し、第1の予備排出および第2の予備排出の際にフィードバック制御を行うものとできる。 Further, the feedback control circuit can perform feedback control at the time of discharging, reading of signal charges, first preliminary discharging, and second preliminary discharging.
 また、排出、信号電荷の読み出し、第1の予備排出および第2の予備排出のうちの少なくとも1つの動作とその少なくとも1つの動作以外の動作とを、1行の走査期間内において、異なる行で異なるタイミングで行うことができる。 In addition, at least one of the discharge, the reading of signal charges, the first preliminary discharge, and the second preliminary discharge and an operation other than the at least one operation are performed in different rows within one scanning period. Can be done at different times.
 また、排出、信号電荷の読み出し、第1の予備排出および第2の予備排出のタイミングを制御するためのパルス信号を出力するタイミングジェネレータを設け、タイミングジェネレータを、1行の走査期間内において、上記少なくとも1つの動作のタイミングを制御するためのパルス信号と、上記少なくとも1つの動作以外の動作のタイミングを制御するためのパルス信号とを異なるタイミングで出力するものとできる。 In addition, a timing generator that outputs a pulse signal for controlling the timing of discharge, signal charge readout, first preliminary discharge, and second preliminary discharge is provided, and the timing generator is arranged within the scanning period of one row. A pulse signal for controlling the timing of at least one operation and a pulse signal for controlling the timing of an operation other than the at least one operation can be output at different timings.
 また、排出、信号電荷の読み出し、第1の予備排出および第2の予備排出のタイミングを制御するシフトレジスタを、動作毎にそれぞれ設けることができる。 Also, a shift register for controlling the timing of discharge, signal charge reading, first preliminary discharge, and second preliminary discharge can be provided for each operation.
 また、第1の予備排出または第2の予備排出の時間を、排出の時間よりも短くすることができる。 Also, the time for the first preliminary discharge or the second preliminary discharge can be made shorter than the discharge time.
 また、画素部を、画素単位で区画された第1の電極と光電変換部を挟んで画素電極に対向して設けられた第2の電極とを備えたものとし、第2の電極を、全ての画素部について共通の電極とできる。 In addition, the pixel portion includes a first electrode partitioned in units of pixels and a second electrode provided to face the pixel electrode with the photoelectric conversion portion interposed therebetween. These pixel portions can be a common electrode.
 また、光電変換部を、有機光電変換膜を含むものとできる。 Also, the photoelectric conversion part can include an organic photoelectric conversion film.
 また、有機光電変換膜を、全ての画素部について共通なものとできる。 Also, the organic photoelectric conversion film can be common to all the pixel portions.
 また、光電変換部からの信号電荷を正孔とすることができる。 Also, the signal charge from the photoelectric conversion part can be made a hole.
 また、光電変換部からの信号電荷を電子とすることができる。 Also, the signal charge from the photoelectric conversion unit can be converted to electrons.
 また、蓄電部に保護回路を設けることができる。 Also, a protection circuit can be provided in the power storage unit.
 本発明の撮像装置は、上記本発明の固体撮像素子を備えたことを特徴とする。 An image pickup apparatus according to the present invention includes the solid-state image sensor according to the present invention.
 本発明の固体撮像素子および撮像装置によれば、各行において排出の前に、蓄電部からの予備的な電荷の排出である予備排出を少なくとも2回行い、かつn(nは自然数)行目の排出の前に、n+1行目の第1の予備排出を行い、n行目の排出の直前に行われるn行目の第1の予備排出の前に、n+1行目の第2の予備排出を行うようにしたので、各行の画素部の排出におけるFDの電圧変化を小さくできる。これにより、たとえばn行目とn+1行目に容量カップリングがある場合にも、n+1行目の排出の際の電圧変化が小さいため、容量カップリングによるn行目の信号の異常を低減でき、適切な画像信号を取得することができる。なお、上記予備排出の作用効果については後で詳述する。 According to the solid-state imaging device and the imaging apparatus of the present invention, preliminary discharge, which is preliminary charge discharge from the power storage unit, is performed at least twice before discharging in each row, and the nth (n is a natural number) row Before discharge, the first preliminary discharge of the (n + 1) th row is performed, and the second preliminary discharge of the (n + 1) th row is performed before the first preliminary discharge of the nth row performed immediately before the discharge of the nth row. Since this is performed, a change in voltage of the FD in discharging the pixel portion of each row can be reduced. Thereby, for example, even when there is capacitive coupling in the n-th row and the n + 1-th row, the voltage change at the discharge of the n + 1-th row is small, so that the abnormality of the signal in the n-th row due to the capacitive coupling can be reduced. An appropriate image signal can be acquired. The effect of the preliminary discharge will be described in detail later.
本発明の固体撮像素子の一実施形態を構成する画素部を示す図The figure which shows the pixel part which comprises one Embodiment of the solid-state image sensor of this invention. 本発明の固体撮像素子の一実施形態の断面模式図Schematic cross-sectional view of an embodiment of a solid-state imaging device of the present invention 図2に示す固体撮像素子の周辺回路を含む全体構成を示す図The figure which shows the whole structure containing the peripheral circuit of the solid-state image sensor shown in FIG. 本発明の固体撮像素子の一実施形態における第2の予備排出、第1の予備排出、排出および電荷信号の読み出しのタイミングの一例を示す図The figure which shows an example of the timing of the 2nd preliminary | backup discharge | emission, 1st preliminary | backup discharge | emission, discharge | emission, and the read-out of a charge signal in one Embodiment of the solid-state image sensor of this invention. n行目~n+3行目の各行の画素部のFDの電位変化を示す図The figure which shows the electric potential change of FD of the pixel part of each line of nth line-n + 3th line タイミングジェネレータから出力されるパルス信号とn-1行~n+1行の各行における動作タイミングとの関係の一例を示す図The figure which shows an example of the relationship between the pulse signal output from a timing generator, and the operation | movement timing in each line of n-1 line-n + 1 line. タイミングジェネレータから出力されるパルス信号とn-1行~n+1行の各行における動作タイミングとの関係のその他の例を示す図The figure which shows the other example of the relationship between the pulse signal output from a timing generator, and the operation | movement timing in each line of n-1 line-n + 1 line. 画素部の読出し回路を鏡像関係でレイアウトした場合における蓄電部FDの位置関係を示す図The figure which shows the positional relationship of the electrical storage part FD at the time of laying out the readout circuit of a pixel part by mirror image relation 図8に示す蓄電部FDの位置関係の場合に、予備排出を行うことなく排出のみを行った場合の蓄電部FDの電位変化を示す図The figure which shows the electrical potential change of the electrical storage part FD at the time of only discharging, without performing preliminary discharge in the case of the positional relationship of the electrical storage part FD shown in FIG. 蓄電部FDに保護回路を設けた構成を示す図The figure which shows the structure which provided the protection circuit in the electrical storage part FD. 従来の固体撮像素子の画素部の構成と容量カップリングとを示す図The figure which shows the structure and capacitive coupling of the pixel part of the conventional solid-state image sensor 従来の固体撮像素子の排出および電荷信号の読み出しを説明するためのタイミングチャートTiming chart for explaining discharge of conventional solid-state imaging device and reading of charge signal 従来の固体撮像素子における容量カップリングの影響を説明するための図The figure for demonstrating the influence of the capacitive coupling in the conventional solid-state image sensor 従来の固体撮像素子における容量カップリングによる偽信号の影響を説明するための図The figure for demonstrating the influence of the false signal by the capacitive coupling in the conventional solid-state image sensor 従来の固体撮像素子における容量カップリングによる残像の影響を説明するための図The figure for demonstrating the influence of the afterimage by the capacitive coupling in the conventional solid-state image sensor n行目の排出の前にn+1行目の予備排出を行う場合の動作タイミングの一例を示す図The figure which shows an example of the operation timing in the case of performing preliminary discharge of the (n + 1) th row before discharge of the nth row n行目の排出の前にn+1行目の予備排出を行った場合における容量カップリングによる残像の影響を説明するための図The figure for demonstrating the influence of the afterimage by capacity | capacitance coupling at the time of performing preliminary discharge of the (n + 1) th row before discharge of the nth row n行目の排出の前にn+1行目の予備排出を行った場合における容量カップリングによる残像の影響を説明するための図The figure for demonstrating the influence of the afterimage by capacity | capacitance coupling at the time of performing preliminary discharge of the (n + 1) th row before discharge of the nth row
 以下、図面を参照して本発明の固体撮像素子の一実施形態について説明する。本実施形態の固体撮像素子は、後で詳述する予備排出に特徴を有するものであるが、まずは、本実施形態の固体撮像素子の構成について説明する。図1は、本実施形態の固体撮像素子を構成する画素部を示す図である。本実施形態の固体撮像素子は、図1に示す画素部10を2次元状に多数配列したものである。 Hereinafter, an embodiment of the solid-state imaging device of the present invention will be described with reference to the drawings. The solid-state imaging device of the present embodiment is characterized by preliminary discharge, which will be described in detail later. First, the configuration of the solid-state imaging device of the present embodiment will be described. FIG. 1 is a diagram illustrating a pixel unit constituting the solid-state imaging device of the present embodiment. The solid-state imaging device of the present embodiment has a large number of pixel portions 10 shown in FIG.
 画素部10は、図1に示すように、光電変換部11と、フローティングディフュージョンFD(蓄積部に相当する)(以下、単にFDという)と、出力トランジスタ12と、リセットトランジスタ13と、選択トランジスタ14とを備えている。そして、出力トランジスタ12、リセットトランジスタ13および選択トランジスタ14は、それぞれnチャネルのMOSトランジスタで構成されている。なお、画素部10のサイズは5μm以下であることが望ましい。 As shown in FIG. 1, the pixel unit 10 includes a photoelectric conversion unit 11, a floating diffusion FD (corresponding to an accumulation unit) (hereinafter simply referred to as FD), an output transistor 12, a reset transistor 13, and a selection transistor 14. And. The output transistor 12, the reset transistor 13, and the selection transistor 14 are each composed of an n-channel MOS transistor. Note that the size of the pixel portion 10 is desirably 5 μm or less.
 光電変換部11は、画素電極104(第1の電極に相当する)と、画素電極104に対向して設けられた対向電極108(第2の電極に相当する)と、画素電極104と対向電極108との間に設けられた光電変換層107とを備えている。 The photoelectric conversion unit 11 includes a pixel electrode 104 (corresponding to the first electrode), a counter electrode 108 (corresponding to the second electrode) provided to face the pixel electrode 104, the pixel electrode 104, and the counter electrode. And a photoelectric conversion layer 107 provided between them.
 画素電極104は、画素部10毎に区分された薄膜電極であり、たとえばITO、アルミニウム、窒化チタン、銅、タングステンなどのような透明または不透明な導電性材料から形成されるものである。画素電極104は、光電変換層107において発生した電荷を画素部10毎に捕集するものである。 The pixel electrode 104 is a thin film electrode divided for each pixel portion 10 and is formed of a transparent or opaque conductive material such as ITO, aluminum, titanium nitride, copper, tungsten, or the like. The pixel electrode 104 collects charges generated in the photoelectric conversion layer 107 for each pixel unit 10.
 対向電極108は、画素電極104との間で光電変換層107に電圧を印加し、光電変換層107に電界を生じさせるための電極である。対向電極108は、光電変換層107よりも光の入射面側に設けられており、対向電極108を透過して光電変換層107に光を入射させる必要があるため、入射光に対して透明なITOなどの導電性材料から形成される。なお、本実施形態における対向電極108は、全ての画素部10で共通の1枚の電極から構成されるものであるが、画素部10毎に分割する構成としてもよい。 The counter electrode 108 is an electrode for applying a voltage to the photoelectric conversion layer 107 between the pixel electrode 104 and generating an electric field in the photoelectric conversion layer 107. Since the counter electrode 108 is provided on the light incident surface side of the photoelectric conversion layer 107 and needs to be transmitted through the counter electrode 108 and incident on the photoelectric conversion layer 107, the counter electrode 108 is transparent to the incident light. It is formed from a conductive material such as ITO. Note that the counter electrode 108 in the present embodiment is configured by one electrode common to all the pixel units 10, but may be configured to be divided for each pixel unit 10.
 光電変換層107は、入射光を吸収し、その吸収した光量に応じた電荷を発生する有機光電変換膜または無機光電変換膜を含むものである。なお、光電変換層107と対向電極108との間、または光電変換層107と画素電極104との間に、電極から光電変換層107へ電荷が注入されるのを抑制する電荷ブロッキング層などの機能層を設けるようにしてもよい。 The photoelectric conversion layer 107 includes an organic photoelectric conversion film or an inorganic photoelectric conversion film that absorbs incident light and generates charges according to the absorbed light quantity. Note that a function of a charge blocking layer or the like that suppresses charge injection from the electrode to the photoelectric conversion layer 107 between the photoelectric conversion layer 107 and the counter electrode 108 or between the photoelectric conversion layer 107 and the pixel electrode 104. A layer may be provided.
 本実施形態の画素部10においては、光電変換層107で発生した電荷のうち正孔が画素電極104に移動し、電子が対向電極108に移動するように、対向電極108に対してバイアス電圧が印加される。光電変換層107が十分に高い感度を発現するように、バイアス電圧としては、読出し回路の電源電圧Vdd(図1において出力トランジスタ12のドレインに供給されている電圧、たとえば3V)よりも高い電圧(5~20V程度、たとえば10V)を用いることが望ましい。 In the pixel unit 10 of the present embodiment, a bias voltage is applied to the counter electrode 108 so that holes out of the charges generated in the photoelectric conversion layer 107 move to the pixel electrode 104 and electrons move to the counter electrode 108. Applied. As a bias voltage, a voltage higher than the power supply voltage Vdd (a voltage supplied to the drain of the output transistor 12 in FIG. 1, for example, 3 V) is used as a bias voltage so that the photoelectric conversion layer 107 exhibits sufficiently high sensitivity. It is desirable to use about 5 to 20 V, for example 10 V).
 FDは、画素電極104と電気的につながったn形不純物領域からなるものである。画素電極104に捕集された正孔の量に応じてFDの電位が変化するため、FDは電荷蓄積部として機能する。 FD is composed of an n-type impurity region electrically connected to the pixel electrode 104. Since the potential of the FD changes according to the amount of holes collected by the pixel electrode 104, the FD functions as a charge storage portion.
 出力トランジスタ12は、FDに蓄積された電荷信号を電圧信号に変換して信号線SLに出力するものである。出力トランジスタ12のゲート端子はFDに電気的に接続され、ドレイン端子は固体撮像素子の電源電圧Vddが接続されている。また、出力トランジスタ12のソース端子は選択トランジスタ14のドレイン端子に接続されている。本実施形態における画素部10は、FDと光電変換部11の画素電極104と出力トランジスタ12のゲート端子とが電気的に直接接続された、いわゆる3トランジスタ構成の回路である。 The output transistor 12 converts the charge signal accumulated in the FD into a voltage signal and outputs it to the signal line SL. The gate terminal of the output transistor 12 is electrically connected to the FD, and the drain terminal is connected to the power supply voltage Vdd of the solid-state imaging device. The source terminal of the output transistor 12 is connected to the drain terminal of the selection transistor 14. The pixel unit 10 in the present embodiment is a so-called three-transistor circuit in which the FD, the pixel electrode 104 of the photoelectric conversion unit 11, and the gate terminal of the output transistor 12 are directly connected.
 リセットトランジスタ13は、FDの電位を基準電位にリセットするものである。リセットトランジスタ13のドレイン端子にはFDが電気的に接続され、ソース端子にはフィードバック制御回路16が接続されている。 The reset transistor 13 resets the potential of the FD to a reference potential. The FD is electrically connected to the drain terminal of the reset transistor 13 and the feedback control circuit 16 is connected to the source terminal.
 フィードバック制御回路16は、反転増幅器16aと、基準電圧RDを供給する電圧源16bとを備えている。反転増幅器16aの反転入力端子(-)に信号線SLが接続され、非反転入力端子(+)に電圧源16bが接続され、出力端子にフィードバック線FLが接続されている。また、フィードバック線FLは、リセットトランジスタ13のソース端子に接続されている。 The feedback control circuit 16 includes an inverting amplifier 16a and a voltage source 16b that supplies a reference voltage RD. The signal line SL is connected to the inverting input terminal (−) of the inverting amplifier 16a, the voltage source 16b is connected to the non-inverting input terminal (+), and the feedback line FL is connected to the output terminal. The feedback line FL is connected to the source terminal of the reset transistor 13.
 リセットトランジスタ13のゲート端子に印加されるリセットパルスRSがハイレベルになると、リセットトランジスタ13がオンし、リセットトランジスタ13のソースからドレインに電子が注入される。そして、この電子の注入によってFDの電位が降下してFDの電位が基準電位にリセットされることになるが、このときFDの電位が、出力トランジスタ12、選択トランジスタ14および信号線SLを介してフィードバック制御回路16に入力される。 When the reset pulse RS applied to the gate terminal of the reset transistor 13 becomes high level, the reset transistor 13 is turned on, and electrons are injected from the source to the drain of the reset transistor 13. Then, due to the injection of electrons, the potential of the FD drops and the potential of the FD is reset to the reference potential. At this time, the potential of the FD is changed via the output transistor 12, the selection transistor 14, and the signal line SL. Input to the feedback control circuit 16.
 そして、FDの現在の電位と電圧源16bから供給される基準電圧RDとに基づいて、フィードバック制御回路16によってFDの電位がフィードバック制御され、これによりFDの電位が一定の基準電位に維持される。このようにFDの電位をフィードバック制御することによって、リセットトランジスタ13のリセットkTCノイズを低減することができる。 Then, based on the current potential of the FD and the reference voltage RD supplied from the voltage source 16b, the feedback control circuit 16 feedback-controls the potential of the FD, whereby the potential of the FD is maintained at a constant reference potential. . Thus, by performing feedback control of the potential of the FD, reset kTC noise of the reset transistor 13 can be reduced.
 フィードバック制御回路16は、画素部10の列毎に1つずつ設けられるものであり、各列に属する複数の画素部10によって共用されるものである。 The feedback control circuit 16 is provided for each column of the pixel units 10 and is shared by the plurality of pixel units 10 belonging to each column.
 選択トランジスタ14は、そのソース端子が信号線SLに接続されるものであり、各画素部10の出力トランジスタ12から出力される信号を列ごとに設けられた信号線SLに選択的に出力するためのものである。選択トランジスタ14のゲート端子に印加される選択パルスRWがハイレベルになると、選択トランジスタ14はオンし、これにより各画素部10の出力トランジスタ12から出力された信号が信号線SLに出力される。 The selection transistor 14 has a source terminal connected to the signal line SL, and selectively outputs a signal output from the output transistor 12 of each pixel unit 10 to the signal line SL provided for each column. belongs to. When the selection pulse RW applied to the gate terminal of the selection transistor 14 becomes a high level, the selection transistor 14 is turned on, whereby a signal output from the output transistor 12 of each pixel unit 10 is output to the signal line SL.
 図2は、図1に示した画素部10を2次元状に多数配列した固体撮像素子100の断面模式図である。なお、以下の説明では、図1に示した画素部10と同じ構成については同じ名称と符号を付している。 FIG. 2 is a schematic cross-sectional view of a solid-state imaging device 100 in which a large number of pixel portions 10 shown in FIG. 1 are two-dimensionally arranged. In the following description, the same name and reference numeral are assigned to the same configuration as the pixel unit 10 shown in FIG.
 固体撮像素子100は、図2に示すように、基板101と、絶縁層102と、接続電極103と、画素電極104と、接続部105と、接続部106と、光電変換層107と、対向電極108と、封止層110と、カラーフィルタ111と、遮光層113と、保護層114と、対向電極電圧供給部115と、読出し回路116とを備えている。 As shown in FIG. 2, the solid-state imaging device 100 includes a substrate 101, an insulating layer 102, a connection electrode 103, a pixel electrode 104, a connection portion 105, a connection portion 106, a photoelectric conversion layer 107, and a counter electrode. 108, a sealing layer 110, a color filter 111, a light shielding layer 113, a protective layer 114, a counter electrode voltage supply unit 115, and a readout circuit 116.
 基板101は、ガラス基板またはSi等の半導体基板である。基板101上には絶縁層102が形成されている。絶縁層102の表面には複数の画素電極104と1つ以上の接続電極103が形成されている。 The substrate 101 is a glass substrate or a semiconductor substrate such as Si. An insulating layer 102 is formed on the substrate 101. A plurality of pixel electrodes 104 and one or more connection electrodes 103 are formed on the surface of the insulating layer 102.
 光電変換層107は、上述したように受光した光に応じて電荷を発生するものである。光電変換層107は、複数の画素電極104を覆うように設けられている。光電変換層107は、画素電極104の上では一定の膜厚となっているが、画素部以外(有効画素領域外)では膜厚が変化していても問題ない。 The photoelectric conversion layer 107 generates an electric charge according to the received light as described above. The photoelectric conversion layer 107 is provided so as to cover the plurality of pixel electrodes 104. The photoelectric conversion layer 107 has a constant film thickness on the pixel electrode 104, but there is no problem even if the film thickness changes outside the pixel portion (outside the effective pixel area).
 対向電極108は、画素電極104と対向する電極であり、光電変換層107を覆うように設けられている。対向電極108は、光電変換層107よりも外側に配置された接続電極103の上にまで形成されており、接続電極103と電気的に接続されている。 The counter electrode 108 is an electrode facing the pixel electrode 104, and is provided so as to cover the photoelectric conversion layer 107. The counter electrode 108 is formed up to the connection electrode 103 arranged outside the photoelectric conversion layer 107 and is electrically connected to the connection electrode 103.
 接続部106は、絶縁層102に埋設されており、接続電極103と対向電極電圧供給部115とを電気的に接続するためのプラグなどである。対向電極電圧供給部115は、基板101に形成され、接続部106および接続電極103を介して対向電極108に所定の電圧を印加するものである。なお、対向電圧供給部115は、基板101に形成された構成ではなく、直接外部の電源とつながった構成としても良い。 The connection unit 106 is embedded in the insulating layer 102 and is a plug or the like for electrically connecting the connection electrode 103 and the counter electrode voltage supply unit 115. The counter electrode voltage supply unit 115 is formed on the substrate 101 and applies a predetermined voltage to the counter electrode 108 via the connection unit 106 and the connection electrode 103. Note that the counter voltage supply unit 115 may be configured not directly on the substrate 101 but directly connected to an external power source.
 読出し回路116は、図1に示したFDと、出力トランジスタ12と、リセットトランジスタ13と、選択トランジスタ14とを備え、絶縁層102中の金属配線(図示せず)で配線されたものである。読出し回路116は、複数の画素電極104の各々に対応して基板101に設けられており、対応する画素電極104で捕集された電荷に応じた信号を読出すものである。なお、読出し回路116は、絶縁層102内に配置された図示しない遮光層によって遮光されている。 The readout circuit 116 includes the FD, the output transistor 12, the reset transistor 13, and the selection transistor 14 shown in FIG. 1, and is wired by a metal wiring (not shown) in the insulating layer 102. The readout circuit 116 is provided on the substrate 101 corresponding to each of the plurality of pixel electrodes 104, and reads out a signal corresponding to the charge collected by the corresponding pixel electrode 104. Note that the reading circuit 116 is shielded from light by a light shielding layer (not shown) disposed in the insulating layer 102.
 封止層110は、対向電極108を覆うように設けられている。 The sealing layer 110 is provided so as to cover the counter electrode 108.
 カラーフィルタ111は、封止層110上の各画素電極104と対向する位置に形成されている。遮光層113は、封止層110上のカラーフィルタ111を設けた領域以外に形成されており、有効画素領域以外に形成された光電変換層107に光が入射するのを防止するものである。カラーフィルタ111としては、たとえばベイヤー配列のカラーフィルタを用いることができるが、これに限らず、補色型のカラーフィルタやその他の公知なカラーフィルタを用いることができる。 The color filter 111 is formed at a position facing each pixel electrode 104 on the sealing layer 110. The light shielding layer 113 is formed in a region other than the region where the color filter 111 is provided on the sealing layer 110, and prevents light from entering the photoelectric conversion layer 107 formed outside the effective pixel region. As the color filter 111, for example, a Bayer color filter can be used. However, the color filter is not limited to this, and a complementary color filter or other known color filters can be used.
 保護層114は、カラーフィルタ111および遮光層113上に形成されており、固体撮像素子全体を保護するものである。 The protective layer 114 is formed on the color filter 111 and the light shielding layer 113, and protects the entire solid-state imaging device.
 図3は、図2に示した固体撮像素子100の周辺回路を含む全体構成を示す図である。図3に示すように、本実施形態の固体撮像素子100は、垂直ドライバ121と、制御部122と、信号処理回路123と、水平ドライバ124と、LVDS125と、シリアル変換部126と、パッド127とを備えている。図3に示す画素領域は、図2に示した固体撮像素子100の画素部10が配列された領域を表している。 FIG. 3 is a diagram showing an overall configuration including peripheral circuits of the solid-state imaging device 100 shown in FIG. As shown in FIG. 3, the solid-state imaging device 100 according to the present embodiment includes a vertical driver 121, a control unit 122, a signal processing circuit 123, a horizontal driver 124, an LVDS 125, a serial conversion unit 126, and a pad 127. It has. The pixel area shown in FIG. 3 represents an area where the pixel portions 10 of the solid-state imaging device 100 shown in FIG. 2 are arranged.
 画素領域には、各画素部10の出力トランジスタ12から信号が出力される信号線SLと上述したフィードバック線FLとが画素部10の列毎に設けられ、垂直ドライバ121からスイッチングパルス信号が出力される走査線GLが行毎に設けられている。そして、上述したようにフィードバック制御回路16が、画素部10の列毎に設けられている。 In the pixel region, a signal line SL for outputting a signal from the output transistor 12 of each pixel unit 10 and the feedback line FL described above are provided for each column of the pixel unit 10, and a switching pulse signal is output from the vertical driver 121. A scanning line GL is provided for each row. As described above, the feedback control circuit 16 is provided for each column of the pixel unit 10.
 制御部122は、タイミングジェネレータ(以下、TGという)128などを備えたものであり、フレーム同期信号VDや行同期信号HDを出力するとともに、垂直ドライバ121や水平ドライバ124の動作を制御することによって画素部10における電荷信号の読み出しなどを制御するものである。 The control unit 122 includes a timing generator (hereinafter referred to as TG) 128 and the like, outputs a frame synchronization signal VD and a row synchronization signal HD, and controls operations of the vertical driver 121 and the horizontal driver 124. It controls the readout of charge signals in the pixel unit 10.
 垂直ドライバ121は、制御部122のTG128から出力されたタイミングパルス信号に基づいて、走査線GLを介して読出し回路116に対してリセットパルスRSや選択パルスRWを出力し、読出し回路116の動作を制御するものである。 The vertical driver 121 outputs a reset pulse RS and a selection pulse RW to the reading circuit 116 via the scanning line GL based on the timing pulse signal output from the TG 128 of the control unit 122, and performs the operation of the reading circuit 116. It is something to control.
 特に、本実施形態の垂直ドライバ121は、いわゆる従来から行われているFDにおける蓄積電荷の排出の前に、FDからの予備的な電荷の排出である予備排出を2回行うように読出し回路116を制御するものである。 In particular, the vertical driver 121 of the present embodiment performs a preliminary discharge, which is a preliminary charge discharge from the FD, twice before discharging the accumulated charge in the so-called conventional FD. Is to control.
 垂直ドライバ121は、TG128から出力されたタイミングパルス信号に基づいて、電荷信号の読み出しの際の選択パルスRWおよびリセットパルスRSを出力する読み出し用シフトレジスタ130と、排出の際の選択パルスRWおよびリセットパルスRSを出力する排出用シフトレジスタ131と、第1の予備排出の際の選択パルスRWおよびリセットパルスRSを出力する第1の予備排出用シフトレジスタ132と、第2の予備排出の際の選択パルスRWおよびリセットパルスRSを出力する第2の予備排出用シフトレジスタ133とを備えている。なお、これらのシフトレジスタ130~133から出力される選択パルスRWおよびリセットパルスRSのタイミングについては、後で詳述する。 Based on the timing pulse signal output from the TG 128, the vertical driver 121 outputs a selection shift register 130 that outputs a selection pulse RW and a reset pulse RS for reading a charge signal, and a selection pulse RW and a reset for discharge. The discharge shift register 131 that outputs the pulse RS, the first preliminary discharge shift register 132 that outputs the selection pulse RW and the reset pulse RS during the first preliminary discharge, and the selection during the second preliminary discharge And a second preliminary discharge shift register 133 that outputs a pulse RW and a reset pulse RS. The timing of the selection pulse RW and the reset pulse RS output from these shift registers 130 to 133 will be described in detail later.
 信号処理回路123は、読出し回路116の各列に対応して設けられるものである。信号処理回路123は、対応する列から出力された信号に対し、相関二重サンプリング(CDS)処理を行ない、処理後の信号をデジタル信号に変換するADC回路を備えたものである。信号処理回路123で処理後の信号は、列毎に設けられたメモリに記憶される。 The signal processing circuit 123 is provided corresponding to each column of the readout circuit 116. The signal processing circuit 123 includes an ADC circuit that performs correlated double sampling (CDS) processing on the signals output from the corresponding columns and converts the processed signals into digital signals. The signal processed by the signal processing circuit 123 is stored in a memory provided for each column.
 水平ドライバ124は、信号処理回路123のメモリに記憶された画素部10の1行分の信号を順次読出してLVDS125に出力する制御を行なうものである。 The horizontal driver 124 performs control to sequentially read out signals for one row of the pixel unit 10 stored in the memory of the signal processing circuit 123 and output the signals to the LVDS 125.
 LVDS125は、LVDS(low voltage differential signaling)に従ってデジタル信号を伝送する。シリアル変換部126は、入力されるパラレルのデジタル信号をシリアルに変換して出力するものである。パッド127は、外部との入出力に用いるインターフェースである。 The LVDS 125 transmits a digital signal in accordance with LVDS (low voltage differential). The serial conversion unit 126 converts an input parallel digital signal into a serial signal and outputs it. The pad 127 is an interface used for input / output with the outside.
 次に、本実施形態の固体撮像素子100の動作について説明する。 Next, the operation of the solid-state imaging device 100 of this embodiment will be described.
 本実施形態の固体撮像素子100においては、画素部10の各行についてそれぞれ第2の予備排出、第1の予備排出、排出および電荷信号の読み出し動作が順次行われる。また、画素部10の行毎の第2の予備排出、第1の予備排出、排出および電荷信号の読み出し動作が、画素部10の列方向に順次走査されて行われる。 In the solid-state imaging device 100 of the present embodiment, the second preliminary discharge, the first preliminary discharge, the discharge, and the charge signal reading operation are sequentially performed for each row of the pixel unit 10. In addition, the second preliminary discharge, the first preliminary discharge, the discharge, and the charge signal reading operation for each row of the pixel unit 10 are sequentially scanned in the column direction of the pixel unit 10.
 図4に、本実施形態の固体撮像素子100のn行目(nは自然数)~n+3行目における第2の予備排出、第1の予備排出、排出および電荷信号の読み出しのタイミングの一例を示す。前述したように、本実施形態の固体撮像素子100においては、n行目~n+3行目の各行について、第2の予備排出、第1の予備排出、排出および電荷信号の読み出しを行順次で行う。 FIG. 4 shows an example of the timings of second preliminary discharge, first preliminary discharge, discharge, and charge signal readout in the nth row (n is a natural number) to the n + 3th row of the solid-state imaging device 100 of the present embodiment. . As described above, in the solid-state imaging device 100 according to the present embodiment, the second preliminary discharge, the first preliminary discharge, the discharge, and the readout of the charge signal are sequentially performed for each of the nth to n + 3th rows. .
 ここで、上述した第2の予備排出、第1の予備排出、排出および読み出しにおける読出し回路116の具体的な動作について説明する。 Here, a specific operation of the reading circuit 116 in the above-described second preliminary discharge, first preliminary discharge, discharge and reading will be described.
 第2の予備排出の際には、垂直ドライバ121の第2の予備排出用シフトレジスタ133から各行に対して、第2の予備排出のためのリセットパルスRSおよび選択パルスRWが出力される。そして、このリセットパルスRSによって画素部10のリセットトランジスタ13がオンされるとともに、選択パルスRWによって画素部10の選択トランジスタ14がオンされる。これによりFDが選択トランジスタ14を介してフィードバック制御回路16に接続され、FDの電位は、フィードバック制御回路16によってフィードバック制御されて基準電位にリセットされる。 In the case of the second preliminary discharge, the reset pulse RS and the selection pulse RW for the second preliminary discharge are output from the second preliminary discharge shift register 133 of the vertical driver 121 to each row. Then, the reset transistor 13 of the pixel unit 10 is turned on by the reset pulse RS, and the selection transistor 14 of the pixel unit 10 is turned on by the selection pulse RW. As a result, the FD is connected to the feedback control circuit 16 via the selection transistor 14, and the potential of the FD is feedback-controlled by the feedback control circuit 16 and reset to the reference potential.
 次に、第1の予備排出の際には、垂直ドライバ121の第1の予備排出用シフトレジスタ132から各行に対して、第1の予備排出のためのリセットパルスRSおよび選択パルスRWが出力される。そして、第2の予備排出と同様に、リセットパルスRSによって画素部10のリセットトランジスタ13がオンされるとともに、選択パルスRWによって画素部10の選択トランジスタ14がオンされ、再びFDの電位がフィードバック制御されて基準電位にリセットされる。 Next, at the time of the first preliminary discharge, the reset pulse RS and the selection pulse RW for the first preliminary discharge are output from the first preliminary discharge shift register 132 of the vertical driver 121 to each row. The Then, similarly to the second preliminary discharge, the reset transistor 13 of the pixel unit 10 is turned on by the reset pulse RS, the selection transistor 14 of the pixel unit 10 is turned on by the selection pulse RW, and the potential of the FD is feedback controlled again. And reset to the reference potential.
 次に、排出の際には、垂直ドライバ121の排出用シフトレジスタ131から各行に対して、排出のためのリセットパルスRSおよび選択パルスRWが出力される。そして、第1および2の予備排出と同様に、リセットパルスRSによって画素部10のリセットトランジスタ13がオンされるとともに、選択パルスRWによって画素部10の選択トランジスタ14がオンされ、これにより再びFDの電位がフィードバック制御されて基準電位にリセットされる。 Next, at the time of discharge, a reset pulse RS and a selection pulse RW for discharge are output from the discharge shift register 131 of the vertical driver 121 to each row. Similarly to the first and second preliminary discharges, the reset transistor 13 of the pixel unit 10 is turned on by the reset pulse RS, and the selection transistor 14 of the pixel unit 10 is turned on by the selection pulse RW. The potential is feedback controlled and reset to the reference potential.
 次に、上述した排出が行われた後、所定の電荷蓄積期間が経過した際に、垂直ドライバ121の読み出し用シフトレジスタ130から各行に対して選択パルスRWが出力される。そして、この選択パルスRWによって選択トランジスタ14がオンし、これによりFDに蓄積された電荷信号が出力トランジスタ12によって電圧信号に変換されて蓄積信号として信号線SLに出力される。 Next, after the discharge described above is performed, when a predetermined charge accumulation period has elapsed, a selection pulse RW is output from the read shift register 130 of the vertical driver 121 to each row. Then, the selection transistor 14 is turned on by this selection pulse RW, whereby the charge signal stored in the FD is converted into a voltage signal by the output transistor 12 and output as a storage signal to the signal line SL.
 その後、読み出し用シフトレジスタ130から各行に対してリセットパルスRSが出力され、このリセットパルスRSによって画素部10のリセットトランジスタ13がオンされ、再びFDの電位がフィードバック制御されて基準電位にリセットされる。そして、リセットトランジスタ13をオフにしてリセットを完了した直後の信号がリセット信号として信号線SLに出力される。信号処理回路123において蓄積信号とリセット信号との差分が算出され、この差分を画像信号として用いることで固定パターンノイズ、リセットkTCノイズとも少ない画像の取得が可能となる。 Thereafter, a reset pulse RS is output from the readout shift register 130 to each row, and the reset transistor 13 of the pixel portion 10 is turned on by this reset pulse RS, and the potential of the FD is again feedback controlled to be reset to the reference potential. . Then, a signal immediately after the reset transistor 13 is turned off and the reset is completed is output to the signal line SL as a reset signal. The signal processing circuit 123 calculates the difference between the accumulated signal and the reset signal, and using this difference as an image signal makes it possible to acquire an image with less fixed pattern noise and reset kTC noise.
 なお、上述したように、本実施形態においては、第2の予備排出、第1の予備排出および排出いずれの動作でもフィードバック制御が行われるが、排出では、電荷信号にオフセットが付加されないように基準電位にできるだけ近づくようにフィードバック制御を行う必要があるのに対し、第2の予備排出または第1の予備排出は、その後に排出が行われるので、基準電位から多少はずれていても許容することができる。そこで、第2の予備排出または第1の予備排出のフィードバック制御の時間を排出のフィードバック制御の時間よりも短く設定するようにしてもよい。これにより排出の時間や読み出しの時間をより長く設定することができ、画像信号のS/Nを向上させることができる。なお、フィードバック制御の時間は、リセットパルスRSおよび選択パルスRWのオン時間を調整することによって制御することができる。 As described above, in the present embodiment, feedback control is performed in any of the second preliminary discharge, the first preliminary discharge, and the discharge, but the reference is made so that no offset is added to the charge signal in the discharge. While it is necessary to perform feedback control so as to be as close to the potential as possible, the second preliminary discharge or the first preliminary discharge is performed after that, and thus it is allowed even if it is slightly deviated from the reference potential. it can. Accordingly, the feedback control time for the second preliminary discharge or the first preliminary discharge may be set shorter than the time for the feedback control for discharge. Thereby, the discharge time and the read time can be set longer, and the S / N of the image signal can be improved. Note that the feedback control time can be controlled by adjusting the ON time of the reset pulse RS and the selection pulse RW.
 次に、n行目~n+3行目の各行における第2の予備排出、第1の予備排出、排出および電荷信号の読み出しの動作タイミングと、各行の画素部10のFDの電位変化について説明する。 Next, the operation timing of the second preliminary discharge, the first preliminary discharge, the discharge and the readout of the charge signal in each of the nth to n + 3th rows and the potential change of the FD of the pixel portion 10 in each row will be described.
 本実施形態の固体撮像素子100においては、図4に示すように、n行目の排出の前にn+1行目の第1の予備排出を行い、かつn行目の第1の予備排出の前にn+1行目の第2の予備排出を行うように制御される。また、同様に、n+1行目の排出の前にn+2行目の第1の予備排出を行い、かつn+1行目の第1の予備排出の前にn+2行目の第2の予備排出を行うように制御され、n+2行目の排出の前にn+3行目の第1の予備排出を行い、かつn+2行目の第1の予備排出の前にn+3行目の第2の予備排出を行うように制御される。 In the solid-state imaging device 100 of the present embodiment, as shown in FIG. 4, the first preliminary discharge of the (n + 1) th row is performed before the discharge of the nth row and the first preliminary discharge of the nth row is performed. And the second preliminary discharge in the (n + 1) th row is controlled. Similarly, the first preliminary discharge of the (n + 2) th row is performed before the discharge of the (n + 1) th row, and the second preliminary discharge of the (n + 2) th row is performed before the first preliminary discharge of the (n + 1) th row. So that the first preliminary discharge in the (n + 3) th row is performed before the discharge in the (n + 2) th row, and the second preliminary discharge in the (n + 3) th row is performed before the first preliminary discharge in the (n + 2) th row. Be controlled.
 すなわち、所定の行の第1の予備排出と排出との間の期間に、次の行の第1の予備排出が行われ、所定の行の第1の予備排出と第2の予備排出との間の期間に、次の行の第2の予備排出が行われるように制御される。 That is, in the period between the first preliminary discharge and the discharge of a predetermined row, the first preliminary discharge of the next row is performed, and the first preliminary discharge and the second preliminary discharge of the predetermined row are Control is performed so that the second preliminary discharge of the next row is performed during the interval.
 図5は、上述したように各行の各動作のタイミングを制御した場合における各行の画素部10のFDの電位変化を示したものである。 FIG. 5 shows the potential change of the FD of the pixel portion 10 in each row when the timing of each operation in each row is controlled as described above.
 ここでは、時刻t0においてLEDによって固体撮像素子100に対して一様な光が照射され、各行の予備排出前までに10000個の電子がFDに蓄積されており、隣接する行のカップリング率が5%の場合について説明する。 Here, uniform light is irradiated to the solid-state imaging device 100 by the LED at time t0, and 10000 electrons are accumulated in the FD before the preliminary discharge of each row, and the coupling rate of adjacent rows is The case of 5% will be described.
 まず、n行目の第2の予備排出によってn行目のFDに蓄積された10000個の電子は0個になる。しかしながら、次いで実行されるn+1行目のFDの第2の予備排出により、n行目のFDは容量カップリングの影響を受けて、n+1行目のFDに蓄積されている10000個の電子が0個になるのに伴い、10000個の電子の-5%の電子数に相当する電位となる。すなわち、n行目のFDは-500個の電子に相当する電位となる。 First, 10000 electrons accumulated in the FD of the nth row by the second preliminary discharge of the nth row become zero. However, due to the second preliminary discharge of the FD of the (n + 1) th row to be executed next, the FD of the nth row is affected by the capacitive coupling, and 10000 electrons accumulated in the FD of the (n + 1) th row are reduced to 0. As the number of electrons increases, the potential corresponds to -5% of the number of electrons of 10,000 electrons. That is, the FD in the nth row has a potential corresponding to −500 electrons.
 次に、n行目の第1の予備排出によって、n行目のFDの電位は-500個の電子に相当する電位から0個の電子に相当する電位、すなわち基準電位になる。しかしながら、次いで実行されるn+1行目のFDの第1の予備排出により、n行目のFDは容量カップリングの影響を受けて、n+1行目のFDの電位が-500個の電子に相当する電位から基準電位になるのに伴い、-500個の電子の-5%の電子数に相当する電位となる。すなわち、n行目のFDは25個の電子に相当する電位となる。 Next, by the first preliminary discharge in the n-th row, the potential of the FD in the n-th row is changed from a potential corresponding to −500 electrons to a potential corresponding to 0 electrons, that is, a reference potential. However, due to the first preliminary discharge of the FD of the (n + 1) th row to be executed next, the FD of the nth row is affected by the capacitive coupling, and the potential of the FD of the (n + 1) th row corresponds to −500 electrons. As the potential is changed from the potential to the reference potential, the potential corresponds to −5% of the −500 electrons. That is, the FD in the nth row has a potential corresponding to 25 electrons.
 次に、n行目の排出によってn行目のFDの電位は25個の電子に相当する電位から基準電位になる。そして、この排出の開始から信号電荷の蓄積が開始される。このとき、次いで実行されるn+1行目のFDの排出により、n行目のFDは容量カップリングの影響を受けて、n+1行目のFDの電位が25個の電子に相当する電位から基準電位になるのに伴い、25個の電子の-5%の電子数に相当する電位変動が発生する。すなわち、n行目の排出後に蓄積された電荷信号に対して-1.25個の電子に相当するオフセット電位が付加されることになる。 Next, by discharging the nth row, the potential of the FD of the nth row is changed from the potential corresponding to 25 electrons to the reference potential. Then, accumulation of signal charges is started from the start of the discharge. At this time, the n + 1-th row FD is discharged, and the n-th row FD is affected by the capacitive coupling, so that the potential of the n + 1-th row FD changes from the potential corresponding to 25 electrons to the reference potential. As a result, a potential fluctuation corresponding to −5% of the 25 electrons occurs. That is, an offset potential corresponding to −1.25 electrons is added to the charge signal accumulated after the nth row is discharged.
 このように、カップリング率が5%程度であって比較的高い場合でも、10000個の蓄積信号に対して、-1.25個の電子に相当するオフセット電位に抑制することができる。 Thus, even when the coupling rate is about 5% and is relatively high, the offset potential corresponding to −1.25 electrons can be suppressed for 10,000 stored signals.
 すなわち、n行目の排出の前にn+1行目の第1の予備排出を行い、n行目の第1の予備排出の前に第2の予備排出を行うことによって、電荷信号の含まれるオフセット電位を十分に小さくすることができる。 That is, the first preliminary discharge in the (n + 1) th row is performed before the discharge in the nth row, and the second preliminary discharge is performed before the first preliminary discharge in the nth row. The potential can be made sufficiently small.
 以上、n行目の画素部10のFDの電位変化を中心に説明したが、n+1行目~n+3行目についても同様である。 The above description centered on the potential change of the FD of the pixel unit 10 in the n-th row, but the same applies to the n + 1-th to n + 3-th rows.
 また、本実施形態においては、各行の排出の前に予備排出を2回行うようにしたが、2回に限らず、3回以上行うようにしてもよい。予備排出をj回行うことによって、所定のフレームの光信号電荷の容量カップリングの影響を(-カップリング率)(j+1)とすることができる。たとえば、フレームの光信号電荷が100000個の電子に相当する大きさであり、カップリング率が10%であっても、4回の予備排出を行うようにした場合には、100000×(-0.1)=-1となり、-1個の電子に相当するオフセット電位に抑制することができる。 In the present embodiment, the preliminary discharge is performed twice before the discharge of each row. However, the preliminary discharge is not limited to two times, and may be performed three times or more. By performing preliminary discharge j times, the influence of capacitive coupling of optical signal charges in a predetermined frame can be set to (−coupling ratio) (j + 1) . For example, if the optical signal charge of the frame is as large as 100,000 electrons and the coupling rate is 10%, if preliminary discharge is performed four times, 100,000 × (−0 .1) 5 = −1, which can be suppressed to an offset potential corresponding to −1 electron.
 このように、本発明は、カップリング率が高くなるほど効果が大きく、特に、画素部10のサイズを5μm以下とした場合には、カップリング率が無視できないほど大きくなるので、本発明の効果が顕著である。 As described above, the effect of the present invention increases as the coupling rate increases. In particular, when the size of the pixel portion 10 is 5 μm or less, the coupling rate increases to a degree that cannot be ignored. It is remarkable.
 また、上述したように固体撮像素子に対してベイヤー配列などのカラーフィルタを設けた場合でも、画素部の列によって緑フィルタが設けられた画素部の感度が異なるようなことがないので、適切なカラーバランスの画像信号を取得することができる。 In addition, even when a color filter such as a Bayer array is provided for the solid-state imaging device as described above, the sensitivity of the pixel unit provided with the green filter does not differ depending on the column of the pixel unit. Color balance image signals can be acquired.
 次に、上述したように第2の予備排出、第1の予備排出、排出および読み出しを行うための制御部122のTG128の動作について説明する。TG128は、各行の第2の予備排出、第1の予備排出、排出および読み出しのタイミングに合わせてパルス信号を周期的に出力するものである。そして、上述したように、TG128から出力されたパルス信号は、読み出し用シフトレジスタ130、排出用シフトレジスタ131、第1の予備排出用シフトレジスタ132および第2の予備排出用シフトレジスタ133に入力され、各シフトレジスタは、入力されたパルス信号に基づいて予め設定されたタイミングでリセットパルスRSや選択パルスRWを各行に出力するものである。 Next, the operation of the TG 128 of the control unit 122 for performing the second preliminary discharge, the first preliminary discharge, the discharge and the reading as described above will be described. The TG 128 periodically outputs a pulse signal in accordance with the timing of the second preliminary discharge, the first preliminary discharge, the discharge and the reading of each row. As described above, the pulse signal output from the TG 128 is input to the read shift register 130, the discharge shift register 131, the first preliminary discharge shift register 132, and the second preliminary discharge shift register 133. Each shift register outputs a reset pulse RS and a selection pulse RW to each row at a preset timing based on the input pulse signal.
 図6は、TG128から出力されるパルス信号とn-1行~n+1行の各行における動作タイミングとの関係を示すものである。なお、図6では、上段の左から右に向かって時間が経過した後、下段の左から右に向かって時間が経過するものとする。 FIG. 6 shows the relationship between the pulse signal output from the TG 128 and the operation timing in each of the n−1 to n + 1 rows. In FIG. 6, it is assumed that time elapses from left to right in the upper stage and then elapses from left to right in the lower stage.
 図6に示すように、TG128は、たとえば、第2の予備排出用パルス信号PR2と、第1の予備排出用パルス信号PR1と、排出用パルス信号Rと、読み出し用パルス信号Sとをこの順に出力する。そして、この4種類のパルス信号は各走査期間の間に出力されて各シフトレジスタに入力され、各シフトレジスタは、入力されたパルス信号と予め設定されたタイミングとの論理積のタイミングで各行にリセットパルスRSや選択パルスRWを出力する。 As shown in FIG. 6, the TG 128 performs, for example, the second preliminary ejection pulse signal PR2, the first preliminary ejection pulse signal PR1, the ejection pulse signal R, and the readout pulse signal S in this order. Output. These four types of pulse signals are output during each scanning period and input to each shift register, and each shift register is input to each row at the logical product timing of the input pulse signal and a preset timing. A reset pulse RS and a selection pulse RW are output.
 本実施形態においては、動作毎のシフトレジスタを設けるようにしているので、1走査期間の間に複数行のタイミングが異なる動作を並行して行うことができる。 In this embodiment, since a shift register is provided for each operation, operations with different timings in a plurality of rows can be performed in parallel during one scanning period.
 また、図6では、第2の予備排出用パルス信号PR2、第1の予備排出用パルス信号PR1、排出用パルス信号Rおよび読み出し用パルス信号Sをこの順でTG128から出力するようにしたが、必ずしもこの順に限られるものではない。図7は、その他の順番でTG128から4種類のパルス信号を出力させた場合の一例である。図7においては、TG128は、読み出し用パルス信号S、排出用パルス信号R、第1の予備排出用パルス信号PR1および第2の予備排出用パルス信号PR2の順で出力する。すなわち、図7は、図6に示す例とは逆の順で4種類のパルス信号をTG128から出力させた場合の例である。図7に示す例においても、上述したように、各シフトレジスタが、入力されたパルス信号と予め設定されたタイミングとの論理積のタイミングで各行にリセットパルスRSや選択パルスRWを出力するが、この場合も必ず、各行の動作は、第2の予備排出、第1の予備排出、排出および読み出しの順で行わる。そして、さらに、n行目の排出の前にn+1行目の第1の予備排出が行われ、かつn行目の第1の予備排出の前にn+1行目の第2の予備排出が行われるように各シフトレジスタにタイミングがそれぞれ設定される。 In FIG. 6, the second preliminary ejection pulse signal PR2, the first preliminary ejection pulse signal PR1, the ejection pulse signal R, and the readout pulse signal S are output from the TG 128 in this order. It is not necessarily limited to this order. FIG. 7 shows an example in which four types of pulse signals are output from the TG 128 in the other order. In FIG. 7, the TG 128 outputs the read pulse signal S, the discharge pulse signal R, the first preliminary discharge pulse signal PR1, and the second preliminary discharge pulse signal PR2. That is, FIG. 7 shows an example in which four types of pulse signals are output from the TG 128 in the reverse order to the example shown in FIG. Also in the example shown in FIG. 7, as described above, each shift register outputs the reset pulse RS and the selection pulse RW to each row at the logical product timing of the input pulse signal and a preset timing. Also in this case, the operation of each row is always performed in the order of the second preliminary discharge, the first preliminary discharge, the discharge, and the reading. Further, the first preliminary discharge of the (n + 1) th row is performed before the discharge of the nth row, and the second preliminary discharge of the (n + 1) th row is performed before the first preliminary discharge of the nth row. As described above, the timing is set in each shift register.
 なお、TG128から出力される4種類のパルス信号の出力順は、図6および図7に示す順だけでなく、その他の順としてもよい。また、図6および図7に示す例では、TG128が、4種類のパルス信号を全て異なるタイミングで出力するようにしたが、これに限らず、4種類のパルス信号のうちの少なくとも1つのパルス信号が他のパルス信号のタイミングとは異なるタイミングで出力するようにすればよい。これにより、上述したように1走査期間の間に複数行のタイミングが異なる動作を並行して行うことができる。ただし、この場合も、各行の動作は、第2の予備排出、第1の予備排出、排出および読み出しの順で行われ、さらに、n行目の排出の前にn+1行目の第1の予備排出が行われ、かつn行目の第1の予備排出の前にn+1行目の第2の予備排出が行われるように各シフトレジスタにタイミングがそれぞれ設定される。 Note that the output order of the four types of pulse signals output from the TG 128 is not limited to the order shown in FIGS. 6 and 7, but may be other orders. In the example shown in FIG. 6 and FIG. 7, the TG 128 outputs all four types of pulse signals at different timings. However, the present invention is not limited to this, and at least one of the four types of pulse signals is output. May be output at a timing different from the timing of other pulse signals. Thus, as described above, operations with different timings for a plurality of rows can be performed in parallel during one scanning period. However, also in this case, the operation of each row is performed in the order of the second preliminary discharge, the first preliminary discharge, the discharge, and the reading, and further, the first spare of the (n + 1) th row before the discharge of the nth row. The timing is set in each shift register so that the discharge is performed and the second preliminary discharge of the (n + 1) th row is performed before the first preliminary discharge of the nth row.
 また、本実施形態の固体撮像素子100においては、各画素部10の読出し回路を画素部列方向について周期性を有するパターンでレイアウトするようにしてもよい。 Further, in the solid-state imaging device 100 of the present embodiment, the readout circuit of each pixel unit 10 may be laid out in a pattern having periodicity in the pixel unit column direction.
 たとえば、画素部10の読出し回路を鏡像関係でレイアウトした場合、読出し回路は列方向について2行周期のパターンでレイアウトされることになり、隣接する画素間のカップリング容量も2行周期になる。 For example, when the readout circuit of the pixel unit 10 is laid out in a mirror image relationship, the readout circuit is laid out in a pattern of 2 rows in the column direction, and the coupling capacitance between adjacent pixels is also 2 rows.
 すなわち、図8に示す模式図のように、たとえばn行目(奇数行)とn+1行目(偶数行)の画素部10間の容量カップリングが相対的に大きくなり、n+1行目(偶数行)とn+2行目(奇数行)の画素部10間の容量カップリングが相対的に小さくなる。また、n+2行目(奇数行)とn+3行目(偶数行)の画素部10間の容量カップリングが相対的に大きくなる。 That is, as shown in the schematic diagram of FIG. 8, for example, the capacitive coupling between the pixel units 10 in the nth row (odd row) and the n + 1th row (even row) is relatively large, and the n + 1th row (even row). ) And the (n + 2) -th row (odd-numbered row) pixel portions 10 are relatively small in capacitive coupling. Further, the capacitive coupling between the pixel portions 10 of the (n + 2) th row (odd row) and the (n + 3) th row (even row) becomes relatively large.
 このような構成において、上述した予備排出を行うことなく、従来のように排出のみを行う場合のFDの電位変化を示したのが図9である。全ての画素に均一な光が入射する条件で撮像を行った場合の駆動とFD電位の時間変化を示している。図9における実線は容量カップリングが全くない場合の理想的な電位変化を示し、点線が実際の電位変化を示している。図8に示す容量カップリングの大きさに従って、図9に示すように、n+1行目の排出がn行目の画素部10のFDの電位に及ぼす影響とn+3行目の排出がn+2行目の画素部10のFDの電位に及ぼす影響は大きいが、n+2行目の排出がn+1行目の画素部10のFDの電位に及ぼす影響は小さいことになる。この結果、偶数行であるn+1行目およびn+3行目は容量カップリングがない場合とほぼ等しい出力が得られるのに対し、奇数行であるn行目およびn+2行目は容量カップリングがない場合とは大きく異なる出力になる。すなわち、n行目~n+3行目までの画素部10に対して均一な光が入射したとしても、奇数行の画素部10と偶数行の画素部10とで読み出される電荷信号の大きさが異なり、読み出された画像上に1行おきの横筋が発生してしまう。 FIG. 9 shows a change in the potential of the FD when only discharging is performed as in the prior art without performing the preliminary discharging described above in such a configuration. The figure shows the time variation of the drive and FD potential when imaging is performed under conditions where uniform light is incident on all pixels. A solid line in FIG. 9 shows an ideal potential change when there is no capacitive coupling, and a dotted line shows an actual potential change. According to the magnitude of the capacitive coupling shown in FIG. 8, as shown in FIG. 9, the influence of the discharge of the (n + 1) th row on the potential of the FD of the pixel portion 10 of the nth row and the discharge of the (n + 3) th row are the discharges of the (n + 2) th row. Although the influence on the potential of the FD of the pixel unit 10 is large, the influence of the discharge of the (n + 2) th row on the potential of the FD of the pixel unit 10 of the (n + 1) th row is small. As a result, the even-numbered lines n + 1 and n + 3 can obtain an output almost equal to the case without capacitive coupling, while the odd-numbered lines n and n + 2 have no capacitive coupling. The output will be very different. That is, even when uniform light is incident on the pixel units 10 from the nth row to the n + 3th row, the magnitudes of the charge signals read out by the odd-numbered pixel units 10 and the even-numbered pixel units 10 are different. The horizontal stripes appear every other line on the read image.
 これに対し、上記実施形態の固体撮像素子において説明したようなタイミングで第1および第2の予備排出を行うようにすれば、上述した容量カップリングの影響を抑制することができるので、横筋の発生を防止することができる。 On the other hand, if the first and second preliminary discharges are performed at the timing described in the solid-state imaging device of the above embodiment, the influence of the capacitive coupling described above can be suppressed. Occurrence can be prevented.
 また、画素部10の読出し回路は、2行周期に限らず、たとえば3行周期や4行周期のパターンでレイアウトするようにしてもよい。要するに、列方向に隣接する画素間に形成される容量カップリングが、列方向について周期的に変化するようなパターンであれば如何なる周期構造でレイアウトしてもよく、このようにレイアウトされた場合、本発明の効果が顕著となる。 Further, the readout circuit of the pixel unit 10 is not limited to the 2-row cycle, and may be laid out with a pattern of a 3-row cycle or a 4-row cycle, for example. In short, as long as the capacitive coupling formed between adjacent pixels in the column direction is a pattern that periodically changes in the column direction, it may be laid out in any periodic structure. The effect of the present invention becomes remarkable.
 また、上記実施形態の固体撮像素子100においては、リセットトランジスタ13、出力トランジスタ12および選択トランジスタ14をnチャネルMOSトランジスタから構成し、画素電極104によって正孔を捕集するようにしたが、これに限らず、リセットトランジスタ13、出力トランジスタ12および選択トランジスタ14をpチャネルMOSトランジスタから構成するようにし、画素電極104で電子を捕集し、その電子の量に応じた電荷信号を、pチャネルMOSトランジスタで構成された信号読出し回路116で読み出すようにしてもよい。 In the solid-state imaging device 100 of the above embodiment, the reset transistor 13, the output transistor 12, and the selection transistor 14 are configured by n-channel MOS transistors, and holes are collected by the pixel electrode 104. Not limited to this, the reset transistor 13, the output transistor 12, and the selection transistor 14 are configured by p-channel MOS transistors, the electrons are collected by the pixel electrode 104, and a charge signal corresponding to the amount of the electrons is supplied to the p-channel MOS transistor. Reading may be performed by the signal reading circuit 116 configured as described above.
 上記実施形態のように画素電極104で正孔を捕集し、これをnチャネルMOSトランジスタで構成された信号読出し回路116で読み出す構成としたり、もしくは上述したように画素電極104で電子を捕集し、これをpチャネルMOSトランジスタで構成された信号読出し回路116で読み出す構成とした場合、画素電極によって電子を捕集し、これをnチャネルMOSトランジスタで構成された信号読出し回路によって読み出す構成とした場合と比較すると、FDの電圧振幅が大きい。このため、第1および第2の予備排出を行わない場合の排出時のFDの電位変化が大きいため、容量カップリングが隣接画素のFDの信号電荷に与える影響も大きいので、上述した第1および第2の予備排出の効果をより顕著に得ることができる。 As described in the above embodiment, holes are collected by the pixel electrode 104 and read out by the signal readout circuit 116 constituted by an n-channel MOS transistor, or electrons are collected by the pixel electrode 104 as described above. When this is configured to be read by the signal readout circuit 116 configured by a p-channel MOS transistor, electrons are collected by the pixel electrode and read by a signal readout circuit configured by an n-channel MOS transistor. Compared with the case, the voltage amplitude of FD is large. For this reason, since the potential change of the FD at the time of discharge when the first and second preliminary discharges are not performed is large, the influence of the capacitive coupling on the signal charge of the FD of the adjacent pixel is large. The effect of the second preliminary discharge can be obtained more remarkably.
 ただし、このような構成の場合、FDの電位が上昇し過ぎて回路が破壊される可能性があるため、図10に示すように、FDに保護回路17を設けた構成としても良い。読出し回路116の構成部品が多くなるため、カップリング率が大きくなるが、本実施形態によればカップリング率による画質の低下を抑制できるので問題ない。 However, in the case of such a configuration, the potential of the FD rises too much and the circuit may be destroyed. Therefore, as shown in FIG. 10, a configuration in which a protective circuit 17 is provided in the FD may be used. Since the number of components of the readout circuit 116 increases, the coupling rate increases. However, according to the present embodiment, there is no problem because it is possible to suppress deterioration in image quality due to the coupling rate.
 また、上述した実施形態の固体撮像素子は、種々の撮像装置に用いることができる。撮像装置としては、たとえばデジタルカメラ、デジタルビデオカメラ、電子内視鏡、カメラ付携帯電話などがある。 Further, the solid-state imaging device of the above-described embodiment can be used for various imaging devices. Examples of the imaging device include a digital camera, a digital video camera, an electronic endoscope, and a camera-equipped mobile phone.

Claims (14)

  1.  入射光の光量に応じた信号電荷を発生する光電変換部と、該光電変換部において発生した信号電荷を蓄積する蓄積部と、該蓄積部に蓄積された信号電荷に応じた電圧を出力する出力回路とを含み、前記光電変換部と前記蓄電部と前記出力回路の入力ノードとが電気的に接続された画素部が二次元状に複数配列され、
     前記蓄積部に蓄積された信号電荷を排出し、該排出後、電荷蓄積期間経過時において前記蓄電部に蓄積された信号電荷を読み出す電荷蓄積読出動作を行順次に行うものであり、
     各行において前記排出の前に、前記蓄電部からの予備的な電荷の排出である予備排出を少なくとも2回行い、
     かつn(nは自然数)行目の前記排出の前に、n+1行目の第1の前記予備排出を行い、前記n行目の排出の直前に行われる前記n行目の第1の前記予備排出の前に、前記n+1行目の第2の前記予備排出を行うものであることを特徴とする固体撮像素子。
    A photoelectric conversion unit that generates a signal charge corresponding to the amount of incident light, a storage unit that stores the signal charge generated in the photoelectric conversion unit, and an output that outputs a voltage corresponding to the signal charge stored in the storage unit A plurality of pixel units that are electrically connected to the photoelectric conversion unit, the power storage unit, and an input node of the output circuit,
    Discharging the signal charges accumulated in the accumulating unit, and performing the charge accumulating / reading operation for sequentially reading out the signal charges accumulated in the accumulating unit when the charge accumulating period has elapsed after the ejection,
    Before each discharge in each row, at least twice a preliminary discharge, which is a preliminary charge discharge from the power storage unit,
    In addition, before the discharge of the nth (n is a natural number) row, the first preliminary discharge of the (n + 1) th row is performed, and the first reserve of the nth row performed immediately before the discharge of the nth row A solid-state imaging device characterized in that the second preliminary discharge in the (n + 1) th row is performed before discharge.
  2.  前記蓄電部が基準電位となるようにフィードバック制御を行うフィードバック制御回路が、前記画素部の列毎に設けられていることを特徴とする請求項1記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein a feedback control circuit that performs feedback control so that the power storage unit becomes a reference potential is provided for each column of the pixel units.
  3.  前記フィードバック制御回路が、前記排出、前記信号電荷の読み出し、前記第1の予備排出および前記第2の予備排出の際に前記フィードバック制御を行うものであることを特徴とする請求項2記載の固体撮像素子。 3. The solid state according to claim 2, wherein the feedback control circuit performs the feedback control at the time of the discharge, reading of the signal charge, the first preliminary discharge, and the second preliminary discharge. Image sensor.
  4.  前記排出、前記信号電荷の読み出し、前記第1の予備排出および前記第2の予備排出のうちの少なくとも1つの動作と該少なくとも1つの動作以外の動作とが、1行の走査期間内において、異なる行で異なるタイミングで行われるものであることを特徴とする請求項1から3いずれか1項記載の固体撮像素子。 At least one operation of the discharge, reading of the signal charge, the first preliminary discharge, and the second preliminary discharge is different from the operation other than the at least one operation within a scanning period of one row. The solid-state imaging device according to any one of claims 1 to 3, wherein the solid-state imaging device is performed at different timing in a row.
  5.  前記排出、前記信号電荷の読み出し、前記第1の予備排出および前記第2の予備排出のタイミングを制御するためのパルス信号を出力するタイミングジェネレータを備え、
     該タイミングジェネレータが、1行の走査期間内において、前記少なくとも1つの動作のタイミングを制御するためのパルス信号と、該少なくとも1つの動作以外の動作のタイミングを制御するためのパルス信号とを異なるタイミングで出力するものであることを特徴とする請求項4記載の固体撮像素子。
    A timing generator for outputting a pulse signal for controlling the timing of the discharge, reading of the signal charge, the first preliminary discharge and the second preliminary discharge;
    The timing generator uses different timings for the pulse signal for controlling the timing of the at least one operation and the pulse signal for controlling the timing of the operation other than the at least one operation within a scanning period of one row. The solid-state imaging device according to claim 4, wherein the solid-state imaging device outputs the signal.
  6.  前記排出、前記信号電荷の読み出し、前記第1の予備排出および前記第2の予備排出のタイミングを制御するシフトレジスタが、動作毎にそれぞれ設けられていることを特徴とする請求項1から5いずれか1項記載の固体撮像素子。 6. A shift register for controlling the timing of the discharge, reading of the signal charge, the first preliminary discharge and the second preliminary discharge is provided for each operation. The solid-state image sensor of Claim 1.
  7.  前記第1の予備排出または前記第2の予備排出の時間が、前記排出の時間よりも短いことを特徴とする請求項1から6いずれか1項記載の固体撮像素子。 The solid-state imaging device according to any one of claims 1 to 6, wherein a time of the first preliminary discharge or the second preliminary discharge is shorter than the time of the discharge.
  8.  前記画素部が、画素単位で区画された第1の電極と前記光電変換部を挟んで前記画素電極に対向して設けられた第2の電極とを備え、
     前記第2の電極が、全ての前記画素部について共通の電極であることを特徴とする請求項1から7いずれか1項記載の固体撮像素子。
    The pixel unit includes a first electrode partitioned in pixel units and a second electrode provided to face the pixel electrode with the photoelectric conversion unit interposed therebetween,
    The solid-state imaging device according to claim 1, wherein the second electrode is a common electrode for all the pixel portions.
  9.  前記光電変換部が、有機光電変換膜を含むものであることを特徴とする請求項1から8いずれか1項記載の固体撮像素子。 The solid-state imaging device according to any one of claims 1 to 8, wherein the photoelectric conversion unit includes an organic photoelectric conversion film.
  10.  前記有機光電変換膜が、全ての前記画素部について共通なものあることを特徴とする請求項9記載の固体撮像素子。 10. The solid-state imaging device according to claim 9, wherein the organic photoelectric conversion film is common to all the pixel portions.
  11.  前記光電変換部からの信号電荷が正孔であることを特徴とする請求項1から10いずれか1項記載の固体撮像素子。 11. The solid-state imaging device according to claim 1, wherein a signal charge from the photoelectric conversion unit is a hole.
  12.  前記光電変換部からの信号電荷が電子であることを特徴とする請求項1から10いずれか1項記載の固体撮像素子。 The solid-state imaging device according to any one of claims 1 to 10, wherein a signal charge from the photoelectric conversion unit is an electron.
  13.  前記蓄電部に保護回路が設けられていることを特徴とする請求項1から12いずれか1項記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein a protection circuit is provided in the power storage unit.
  14.  請求項1から13いずれか1項記載の固体撮像素子を備えたことを特徴とする撮像装置。 An image pickup apparatus comprising the solid-state image pickup device according to any one of claims 1 to 13.
PCT/JP2014/002335 2013-04-30 2014-04-25 Solid-state image capture element and image capture device WO2014178179A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020157032272A KR101732301B1 (en) 2013-04-30 2014-04-25 Solid-state image capture element and image capture device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013095038A JP6195728B2 (en) 2013-04-30 2013-04-30 Solid-state imaging device and imaging apparatus
JP2013-095038 2013-04-30

Publications (1)

Publication Number Publication Date
WO2014178179A1 true WO2014178179A1 (en) 2014-11-06

Family

ID=51843324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002335 WO2014178179A1 (en) 2013-04-30 2014-04-25 Solid-state image capture element and image capture device

Country Status (4)

Country Link
JP (1) JP6195728B2 (en)
KR (1) KR101732301B1 (en)
TW (1) TWI611695B (en)
WO (1) WO2014178179A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380203A (en) * 2020-03-09 2021-09-10 北京小米移动软件有限公司 Display panel, control method thereof and electronic equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102344871B1 (en) 2015-06-22 2021-12-29 삼성전자주식회사 Image sensors and electronic devices including the same
JP6646824B2 (en) 2016-01-22 2020-02-14 パナソニックIpマネジメント株式会社 Imaging device
CN116744130A (en) 2018-02-07 2023-09-12 索尼半导体解决方案公司 Solid-state imaging device and imaging apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000004399A (en) * 1998-06-17 2000-01-07 Canon Inc Solid-state image-pickup device and its drive method
JP2000253314A (en) * 1999-03-03 2000-09-14 Olympus Optical Co Ltd Method for driving solid-state image pickup device
JP2003060977A (en) * 2001-08-17 2003-02-28 Nikon Corp Electronic camera
JP2012004545A (en) * 2010-05-18 2012-01-05 Fujifilm Corp Solid imaging element and imaging device
JP2012129799A (en) * 2010-12-15 2012-07-05 Sony Corp Solid state image sensor, driving method and electronic apparatus
JP2013042403A (en) * 2011-08-18 2013-02-28 Sony Corp Imaging apparatus and imaging display system
WO2013046587A1 (en) * 2011-09-29 2013-04-04 パナソニック株式会社 Solid-state imaging device and method for driving same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471515A (en) * 1994-01-28 1995-11-28 California Institute Of Technology Active pixel sensor with intra-pixel charge transfer
US5461425A (en) * 1994-02-15 1995-10-24 Stanford University CMOS image sensor with pixel level A/D conversion
US5631704A (en) * 1994-10-14 1997-05-20 Lucent Technologies, Inc. Active pixel sensor and imaging system having differential mode
US5541402A (en) * 1994-10-17 1996-07-30 At&T Corp. Imaging active pixel device having a non-destructive read-out gate
US5892540A (en) * 1996-06-13 1999-04-06 Rockwell International Corporation Low noise amplifier for passive pixel CMOS imager
US6222175B1 (en) * 1998-03-10 2001-04-24 Photobit Corporation Charge-domain analog readout for an image sensor
US6493030B1 (en) * 1998-04-08 2002-12-10 Pictos Technologies, Inc. Low-noise active pixel sensor for imaging arrays with global reset
JP2007324873A (en) 2006-05-31 2007-12-13 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus, and its driving method
JP5714982B2 (en) 2011-02-01 2015-05-07 浜松ホトニクス株式会社 Control method of solid-state image sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000004399A (en) * 1998-06-17 2000-01-07 Canon Inc Solid-state image-pickup device and its drive method
JP2000253314A (en) * 1999-03-03 2000-09-14 Olympus Optical Co Ltd Method for driving solid-state image pickup device
JP2003060977A (en) * 2001-08-17 2003-02-28 Nikon Corp Electronic camera
JP2012004545A (en) * 2010-05-18 2012-01-05 Fujifilm Corp Solid imaging element and imaging device
JP2012129799A (en) * 2010-12-15 2012-07-05 Sony Corp Solid state image sensor, driving method and electronic apparatus
JP2013042403A (en) * 2011-08-18 2013-02-28 Sony Corp Imaging apparatus and imaging display system
WO2013046587A1 (en) * 2011-09-29 2013-04-04 パナソニック株式会社 Solid-state imaging device and method for driving same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380203A (en) * 2020-03-09 2021-09-10 北京小米移动软件有限公司 Display panel, control method thereof and electronic equipment
CN113380203B (en) * 2020-03-09 2022-05-03 北京小米移动软件有限公司 Display panel, control method thereof and electronic equipment

Also Published As

Publication number Publication date
JP6195728B2 (en) 2017-09-13
JP2014216978A (en) 2014-11-17
TW201448599A (en) 2014-12-16
KR101732301B1 (en) 2017-05-02
TWI611695B (en) 2018-01-11
KR20150140385A (en) 2015-12-15

Similar Documents

Publication Publication Date Title
KR101705491B1 (en) Solid-state image pickup apparatus, signal processing method for a solid-state image pickup apparatus, and electronic apparatus
JP6727938B2 (en) IMAGING DEVICE, IMAGING DEVICE CONTROL METHOD, AND IMAGING SYSTEM
WO2013140872A1 (en) Solid imaging device and electronic equipment
JP6299544B2 (en) Solid-state imaging device
JP6341675B2 (en) Solid-state imaging device, driving method thereof, and imaging system using the same
JP6351423B2 (en) Imaging apparatus and imaging system
JP2014165396A (en) Solid imaging device and electronic apparatus
JP2014078870A (en) Solid-state imaging element and imaging apparatus
WO2017169478A1 (en) Image capturing element and image capturing device
JP6195728B2 (en) Solid-state imaging device and imaging apparatus
JP6083977B2 (en) Solid-state imaging device and imaging device
JP6134979B2 (en) Solid-state imaging device and imaging apparatus
JP6769349B2 (en) Solid-state image sensor and image sensor
WO2018087975A1 (en) Solid-state image pickup element, solid-state image pickup element driving method, and electronic device
JP6676317B2 (en) Imaging device and imaging system
JP5893372B2 (en) Solid-state imaging device, imaging device, and signal readout method
JP6217338B2 (en) Solid-state imaging device and imaging apparatus
JP7160129B2 (en) Imaging element and imaging device
JP2020005131A (en) Solid state image pickup device and imaging system
JP6053321B2 (en) Solid-state imaging device
JP7439772B2 (en) Imaging device and imaging device
JP7156330B2 (en) Imaging element and imaging device
JP7013973B2 (en) Solid-state image sensor and image sensor
JP5945463B2 (en) Solid-state imaging device
JP2015076722A (en) Solid photographing element and photographing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157032272

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14791082

Country of ref document: EP

Kind code of ref document: A1