WO2014177031A1 - 一种污水处理专用钯催化剂及其应用 - Google Patents

一种污水处理专用钯催化剂及其应用 Download PDF

Info

Publication number
WO2014177031A1
WO2014177031A1 PCT/CN2014/076319 CN2014076319W WO2014177031A1 WO 2014177031 A1 WO2014177031 A1 WO 2014177031A1 CN 2014076319 W CN2014076319 W CN 2014076319W WO 2014177031 A1 WO2014177031 A1 WO 2014177031A1
Authority
WO
WIPO (PCT)
Prior art keywords
sewage
treatment
wastewater
stainless steel
catalyst
Prior art date
Application number
PCT/CN2014/076319
Other languages
English (en)
French (fr)
Inventor
吴浩
Original Assignee
南京德磊科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京德磊科技有限公司 filed Critical 南京德磊科技有限公司
Priority to US14/888,866 priority Critical patent/US20160075575A1/en
Publication of WO2014177031A1 publication Critical patent/WO2014177031A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour

Definitions

  • the invention belongs to the technical field of environmental protection, and particularly relates to a palladium catalyst special for sewage treatment and an application thereof. Background technique
  • a conventional sewage treatment process is to complete the whole process of sewage treatment by passing the discharged sewage through a sedimentation tank, a flat flow tank, a filtering device, a concentration tank, a mud water separation device, and the like.
  • Sewage Treatment (CN1100070A) Constructs an oxidation pond in the offshore area and is divided into aerobic, anaerobic and facultative areas. The microorganisms are used to digest harmful substances in the wastewater.
  • the treated sewage can be discharged from the oxidation pond by pumps. To the open sea, digestive products and tangible particles settle on the bottom of the pond.
  • the program has high requirements for terrain and climate and is not suitable for a wider range of promotion.
  • the Sewage Treatment Machine (CN 101574595 B) focuses on the separation of sludge and wastewater.
  • the Sewage Treatment Machine (CN 102160943 A) mechanical vibrating screen filters out impurities in wastewater.
  • the Sewage Treatment Vehicle (CN 102515415 A) treats domestic sewage in rural areas by providing a primary aerobic tank, a secondary aerobic tank and a sedimentation tank.
  • the existing sewage treatment process has the following problems: the equipment used has a large area, the construction cost is high, the equipment investment is large, the operation cost is high, and there are certain limitations in the promotion and application.
  • the degradation and treatment of harmful substances is not thorough enough to solve the problem of detoxification, deodorization and decomposition of organic pollutants.
  • the technical problem to be solved by the present invention is to provide a palladium catalyst for sewage treatment for treating a plurality of sewages with maximum efficiency.
  • the technical problem to be solved by the present invention is to provide the use of the above catalyst.
  • a palladium catalyst for wastewater treatment characterized in that it is made of stainless steel and uniformly distributes a metal palladium layer on the surface of the stainless steel.
  • the metal palladium layer has a thickness of 1 nm to 5 ⁇ m.
  • the metal palladium layer is doped with metallic silver.
  • the weight of the metallic silver is from 0.001% to 45% by weight of the metal palladium layer.
  • the above-mentioned preparation method of the palladium catalyst for sewage treatment uses chemical deposition to uniformly adhere the metal palladium layer to the stainless steel on the carrier.
  • the chemical deposition method adding palladium in the solution by adding a suitable reducing agent (such as hydrazine, sodium hypophosphite, etc.) to the solution.
  • a suitable reducing agent such as hydrazine, sodium hypophosphite, etc.
  • the ions are reduced to palladium atoms on the surface of the stainless steel under certain conditions to form a palladium-attached film layer on the surface of the stainless steel.
  • Palladium ions and silver ions can also be reduced to palladium atoms and silver atoms on the surface of stainless steel under certain conditions by adding an appropriate reducing agent (such as hydrazine, sodium hypophosphite, glucose, etc.) to form a surface of the stainless steel.
  • an appropriate reducing agent such as hydrazine, sodium hypophosphite, glucose, etc.
  • the above solution means a substance containing a stable complex with palladium ions and silver ions such as citric acid, ammonia water, etc., the solution has a P H value of 6-10, and the solution temperature is controlled at 50-80 ° C to form a palladium film or palladium.
  • the time for the silver alloy film is usually from 1 hour to 8 hours.
  • the above-mentioned palladium catalyst for sewage treatment is applied in sewage treatment.
  • the pH of the sewage is between 6 and 14, wherein the effect is better when the pH is greater than 9, and the sewage is printing and dyeing wastewater, papermaking wastewater, slaughtering sewage, tannery sewage, chemical fiber sewage, food processing sewage, Petrochemical sewage, sewage containing polyvinyl alcohol, non-ferrous metallurgical wastewater, coking wastewater, coal chemical wastewater, electroplating and other surface treatment wastewater, ammonia deuterated sewage, MBR wastewater, biochemical tank treatment of substandard discharge water, biochemical treatment containing sludge Sewage, foul-smelting sewage, chemical wastewater containing less than 100 ppm of halogen, municipal sewage, landfill infiltration sewage, biochemical pharmaceutical wastewater, sewage containing plasticizers and organic pesticides or highly cyanide, large-area organic matter Pollution and eutrophic rivers and lakes or industrial circulating water.
  • the specific operation is to use stainless steel as the material for the inner surface of the sewage treatment container.
  • the inner surface of the stainless steel is uniformly distributed with the metal palladium layer, and the sewage to be treated is thoroughly mixed with ozone-containing oxygen or ozone-containing air, and then introduced into the sewage treatment container.
  • the sewage is fully contacted with the catalyst, and the sewage is simultaneously deodorized, decolorized, and degraded by the catalyst under the action of the catalyst, and the subsequent precipitation and solidification of the heavy metal in the water becomes easier and more thorough due to the degradation of the organic matter;
  • reduce the COD of sewage and increase the ratio of BOD to COD, increasing the biodegradability of water.
  • ozone-containing oxygen or ozone-containing air ozone accounts for 10-160 mg/L of total gas.
  • the volume ratio of the sewage volume to be treated to ozone-containing oxygen or ozone-containing air is 10:0.3 to 10:8.
  • the sewage treatment process can be either a cyclic treatment or a straight-through treatment.
  • Those skilled in the art can determine the scale of the sewage treatment according to the type of main pollutants, the level of COD in the sewage, and the scale of the small-scale experiment.
  • the processing vessel is provided with a stainless steel baffle, a stainless steel barrier or a stainless steel pipe, and the surface of the accessory components is evenly distributed with a metal palladium layer so that the sewage is sufficiently contacted with the catalyst.
  • a stainless steel baffle a stainless steel barrier or a stainless steel pipe
  • the surface of the accessory components is evenly distributed with a metal palladium layer so that the sewage is sufficiently contacted with the catalyst.
  • the accessory part can be integrally formed with the sewage treatment container, and the metal palladium layer can be uniformly distributed on the inner surface of the sewage treatment container and the surface of the accessory part.
  • the ozone-containing oxygen or air entering the reactor is mixed with the sewage.
  • the ozone and water generate a hydroxyl radical with strong oxidizing ability under the catalyst of the catalyst, and the hydroxyl radical and the organic substance undergo a non-selective oxidation reaction, thereby achieving oxidative decomposition of the organic substance. the goal of.
  • the air or oxygen in the 0 3 can not be separated from the sewage, and always contact with the catalytic catalyst, so that the catalytic oxidation reaction in the sewage continues, greatly improving the utilization rate of 0 3 , thereby reducing the sewage treatment Cost, even if there is no time to consume, 0 3 will decay into 0 2 in a closed catalytic environment, continue to reduce COD after entering the lagoon, and will not cause any side effects to the environment, nor will it be a sewage treatment plant
  • the bacteria are inactivated, and the dissolved oxygen contributes to the activity of the biochemical pool of aerobic bacteria.
  • the organic polymer materials can be efficiently degraded by catalytic oxidation, which can greatly reduce the pressure and cost of subsequent sewage treatment.
  • Fig. 1 shows the results of X-fluorescence test of the palladium catalyst prepared in Example 1.
  • Fig. 2 shows the results of X-fluorescence test of the palladium silver catalyst prepared in Example 2.
  • Fig. 3 is a photograph showing the results of the treatment of Example 3, from left to right, before the treatment, after the ozone treatment (the result of the B container treatment), and after the ozone catalytic treatment (the result of the A container treatment).
  • Fig. 4 is a graph showing the results of COD change in the sewage treatment process of Example 11.
  • Example 1 Preparation of a palladium catalyst.
  • the SS304 stainless steel with a surface area of 1 square meter is cleaned with tap water, and then chemically degreased, tap water washed, pickled and activated, and washed with pure water.
  • the palladium layer is uniformly attached to the surface of the stainless steel by chemical deposition, and finally washed with tap water.
  • the palladium catalyst was prepared by treatment under dry conditions.
  • the chemical reagent used for chemical degreasing consists of the following components by weight: 4 wt% NaOH, 4 wt% Na 3 P0 4 , 3 wt% Na 2 C0 3 , water to 100%; chemical degreasing temperature is 85 ° C, processing time is more than 30 minutes.
  • the pickling activation is carried out by pickling with 15 wt% hydrochloric acid at 45 °C.
  • the chemical deposition operation is as follows: 2-5 g of palladium chloride is prepared per square meter according to the surface area of the stainless steel, dissolved in 95 liters of pure water by dissolving with 31 wt% hydrochloric acid, and sodium citrate is added to the above solution.
  • Example 2 Preparation of a palladium silver catalyst.
  • SS316 stainless steel with a surface area of 1 square meter is cleaned with tap water, then chemically degreased, tap water washed, pickled activated, pure water washed, pre-plated nickel (such as the combination of palladium silver layer and stainless steel can meet the requirements of use, then This step can be omitted.
  • the palladium-silver alloy layer is uniformly adhered to the surface of the stainless steel by chemical deposition, and finally the palladium-silver catalyst is obtained by washing with tap water and drying conditions.
  • the chemical reagent used for chemical degreasing consists of the following components by weight: 4 wt% NaOH, 4 wt% Na 3 P0 4 , 3 wt% Na 2 C0 3 , water to 100%; chemical degreasing temperature is 85 ° C, processing time is more than 30 minutes.
  • the pickling activation is carried out by pickling with 15 wt% hydrochloric acid at 45 °C.
  • the stainless steel sampled by the method of the present example was sampled for X-fluorescence test, and it was found that the surface was uniformly covered with a 0.88 ⁇ m palladium-silver alloy layer having a palladium content of 56.7% and a silver content of 43.3%. See Figure 2.
  • Example 3 Small test.
  • the results of the water samples before and after treatment are shown in Figure 3.
  • the COD of the black raw water was 1000 mg/L
  • the COD of the brown water after the ozone treatment of the B container was 630 mg/L
  • the COD of the water after the treatment of the A container was 55 mg/L.
  • the results of the treatment are shown in Fig. 3, from left to right, before treatment, after ozone treatment (B container treatment results), after ozone catalytic treatment (A vessel treatment results).
  • Example 4 Whether or not the catalyst has an oxidation effect.
  • Two 304 stainless steel reactors were fabricated using the same design dimensions and process.
  • the reactor was DN 100 mm in diameter and 0.6 m in length.
  • the internal 304 stainless steel packing was 4.5 cubic decimeters and the specific surface area of the packing was 500 m 2 /m3.
  • One of them was left untreated (ie, there was no catalyst in the reactor); the other internal stainless steel was a stainless steel containing palladium catalyst treated in column 1 (ie, a catalyst was present in the reactor).
  • Pipes are connected to the pump and the venturi mixer respectively, so that the sewage passes through the pump outlet and then flows through the venturi mixer to inhale the ozone-containing gas and enters the catalytic reactor to flow out.
  • Ozone was introduced into the ozone generator to prepare ozone.
  • the ozone generator was prepared to have an ozone capacity of 30 g/h. 6 liters of oxygen per minute is introduced, and the ozone content in the oxygen after treatment by the ozone generator is about 90 mg/L.
  • the circulation pump has a flow rate of 0.6 m 3 /h and a treated sewage volume of 35 liters. The processing results are shown in Table 1.
  • the ozone generator has a capacity of 30 g/h of ozone, and 6 liters of oxygen per minute. After treatment with an ozone generator, the ozone content of oxygen is about 90 mg/L, and the flow rate of the circulation pump is 0.5 m 3 . / hour, the amount of sewage treated is 35 liters.
  • Table 2 The processing results are shown in Table 2.
  • the amine deuterated sewage is recycled, and ozone is continuously supplied for 40 minutes.
  • the color of the sewage changes, from colorless to light red, then to colorless, indicating that the unsaturated state is contained.
  • the key organic matter undergoes an oxidation reaction, and the COD decreases by 59.4%.
  • the circulation pump has a flow rate of 0.6 m 3 /hr and a treated sewage volume of 40 liters. The processing results are shown in Table 3.
  • the COD in the sewage is increased after the continuous introduction of ozone, because the sewage contains benzene low-boiling hard-to-oxidize substances, which is difficult to be reflected in the national standard detection of COD, so the raw water
  • the measured COD value does not include low-boiling hard-to-oxidize substances such as benzene, and its COD value is significantly lower than the actual value in water.
  • Example 5 Treatment experiments for various types of sewage (The following data are the results of treatment with a palladium catalyst).
  • a catalytic reactor with a DN 150 mm and a length of 0.8 m filled with a filler (with a specific surface area of 500 m 2 /m 3 ) was prepared by using the stainless steel treated in the first step, and the catalytic reactor was coupled with a pump and a venturi mixer by a pipe. After the sewage is discharged through the pump, it flows through the venturi mixer to inhale the ozone-containing gas and enters the catalytic reactor to flow out. The circulating treatment experiment was carried out.
  • the sewage was 70 liters, the circulating pump flow rate was 0.8 m 3 /h, the ozone generator model was 100 g/h, and 19 liters of oxygen per minute was passed. After the ozone generator was treated, the ozone content in the oxygen was 90 mg/L. about.
  • the sewage temperature is room temperature, and the same experimental conditions are used for several sewages.
  • the sewage treatment results are shown in Table 4.
  • Anti-staining salt (low concentration) 1.5 79.00 0.14 99.82
  • Example 6 Treatment experiments for various types of sewage (The following data are the results of the treatment of palladium-silver catalyst).
  • a catalytic reactor with a DN of 200 mm and a length of 1 m filled with a filler (with a specific surface area of 500 m 2 /m 3 ) was prepared by using the stainless steel treated in the second step, and the catalytic reactor was coupled with a pump and a venturi mixer by a pipe. After the sewage is discharged through the pump, it flows through the venturi mixer to inhale the ozone-containing gas and enters the catalytic reactor to flow out.
  • the circulating treatment experiment was carried out.
  • the sewage was 1000 liters, the circulating pump flow rate was 5 m 3 /h, the ozone generator model was 200 g/h, and the oxygen per minute was 38 liters. After the ozone generator was treated, the ozone content in the oxygen was about 90 mg/L. .
  • the sewage temperature is room temperature, and the same experimental conditions are used for several sewages.
  • the sewage treatment results are shown in Table 5.
  • the design capacity of the original biochemical treatment facilities cannot be The treatment requirements for the amount of wastewater from the production plant are met, which causes the wastewater containing aromatic hydrocarbons in the chemical plant to enter the sewage discharge port without being completely degraded by the biochemical pool, resulting in the sewage being unable to reach the standard discharge.
  • Example 7 Treatment experiment of surface water (The following data is the result of treatment with a palladium catalyst).
  • a catalytic reactor with a DN of 200 mm and a length of 1 m filled with a filler (with a specific surface area of 500 m 2 /m 3 ) was prepared by using the stainless steel treated in the first step, and the catalytic reactor was coupled with a pump and a venturi mixer by a pipe. After the sewage is discharged through the pump, it flows through the venturi mixer to inhale the ozone-containing gas and enters the catalytic reactor, and then flows out. The circulation treatment experiment is carried out.
  • the sewage is 1000 liters
  • the circulating pump flow rate is 5 m 3 /h
  • the ozone generator model is 200 g/h.
  • 38 liters of oxygen per minute is introduced, and the ozone content in the oxygen after treatment by the ozone generator is about 90 mg/L.
  • the temperature of the lake water is normal temperature, and the water quality treatment results are shown in Table 6.
  • the park is a kind of ornamental fish in landscape water. Because it is a system-closed stagnant water, the area is about 5,000 square meters. Every year in April, as the temperature rises, algae reproduction in the water accelerates, causing the fish to turn white or even die. The COD index reaches 85. Experiments show that this method can rapidly degrade algae in water and reduce COD in water, so that water can quickly restore water culture conditions.
  • Example 8 Treatment experiment of MBR tail water.
  • a catalytic reactor having a DN of 200 mm and a length of 1 m filled with a filler (packing specific surface area of 500 m 2 /m 3 ) was prepared by using the stainless steel treated in the first step, and the catalytic reactor was coupled with a pump and a venturi mixer by a pipe.
  • Carry out a cyclic treatment experiment 1000 liters of sewage, 5m 3 /h of circulating pump, and 200g/h of ozone generator. 38 liters of oxygen per minute is introduced, and the ozone content in the oxygen after treatment by the ozone generator is about 90 mg/L.
  • the sewage temperature is room temperature, and the same experimental conditions are used for several sewages.
  • the sewage treatment results are shown in Table 7.
  • Example 9 Tail water treatment experiment after biochemical treatment of caprolactam.
  • the production process of caprolactam is complicated.
  • the organic components in wastewater are mainly benzene, toluene, cyclohexanone oxime, cyclohexanone, cyclohexanone, organic acid, caprolactam, ammonia nitrogen, etc., and contain various peroxides and intermediates, organic solvents.
  • the same component is a high-COD, multi-component wastewater.
  • various organic components in the wastewater have bio-resistance and biosuppressive effects, often making B/C around 0.01, which makes it difficult to carry out stable biochemistry. After treatment, the tail water after biochemical treatment is difficult to achieve stable discharge.
  • On-site experiment 1. Connect the sewage pipe directly to the inlet of the circulation pump, adjust the pump flow rate lm 3 /h, the ozone generator model is 200g/h, and the oxygen is 38 liters per minute.
  • the ozone content in the oxygen after treatment by the ozone generator It is about 90mg/L.
  • the temperature of the tail water is room temperature.
  • the sample and analysis of the inlet and outlet water samples after the reaction process are compared. Firstly, it is found that the color of the water has obvious decolorization after catalytic oxidation, and its color has been reduced from 155.33 to 48.35.
  • Example 10 Treatment experiment of papermaking sewage
  • a palladium-silver catalytic reactor with a DN of 200 mm and a length of 1 m filled with a filler (with a specific surface area of 500 m 2 /m 3 ) was prepared by using the stainless steel treated in the first step, and the catalytic reactor and the pump, the venturi mixer were piped. coupling.
  • the cycle treatment experiment was carried out.
  • the sewage was 500 liters
  • the circulation pump flow rate was 5 m 3 /h
  • the ozone ozone generator model was 200 g/h
  • 38 liters of oxygen per minute was introduced.
  • the ozone content in the oxygen was 90 mg/ L or so.
  • the sewage temperature is room temperature, and the sewage treatment results are shown in Table 8.
  • the papermaking wastewater contains a large amount of PVA (polyvinyl alcohol), and the BOD/COD value is only 0.05, indicating that the wastewater is poorly biodegradable. It is difficult to treat such wastewater by conventional biodegradation. After 30 minutes, PVA has been degraded to be undetectable, but there is almost no change in COD in water, indicating that PVA has been degraded into small molecular weight organic matter. Another indicator worthy of attention is that the value of BOD/COD is greatly increased, indicating that the wastewater is biodegradable. Degradability is well improved.
  • Example 11 Treatment experiment of refinery wastewater
  • a palladium catalytic reactor with a DN of 200 mm and a length of 1 m filled with a filler (with a specific surface area of 500 m 2 /m 3 ) was prepared by the stainless steel treated in the first step, and the catalytic reactor was coupled with a pump and a venturi mixer by a pipe.
  • the sewage flows from the pump outlet through the venturi mixer, inhales the ozone-containing gas into the catalytic reactor group, and flows out through the pipeline.
  • the circulating treatment experiment was carried out, 1000 liters of sewage, 5m 3 /h of circulating pump, 200g/h of ozone generator, 38 liters of oxygen per minute, and ozone content of 90mg/L in oxygen after treatment by ozone generator about.
  • the sewage temperature is room temperature.
  • the sewage contains hydrocarbons and sulfur compounds, which are yellowish in color and have an unpleasant smell of kerosene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明公开了一种污水处理专用钯催化剂,它以不锈钢为载体,不锈钢表面均匀分布金属钯层。本发明还公开了上述污水处理专用钯催化剂的制备方法及其应用。本发明方法运行成本低、去污效果好、能够有效降解有机物、去除臭味并且有效脱色。

Description

一种污水处理专用钯催化剂及其应用 技术领域
本发明属于环境保护技术领域, 具体涉及一种污水处理专用钯催化剂及其应用。 背景技术
一种传统的污水处理工艺是, 将排出的污水通过沉淀池、 平流池、 过滤装置、 浓缩 池、 泥水分离装置等来完成污水处理的全过程。 《污水处理》 (CN1100070A) 在近海区 域建造氧化塘, 且被分隔成好氧、 厌氧和兼性区域, 利用微生物对废水中的有害物质进 行消化, 处理过的污水可用泵从氧化塘中排放至开放海域, 消化产物和有形颗粒沉淀在 池塘的底层。 该方案对地形和气候的要求较高, 不适合较大范围的推广。 《污水处理机》 (CN 101574595 B )重点解决了污泥和废水的分离问题《污水处理机》(CN 102160943 A ) 机械振动筛来滤除废水中的杂质。 《污水处理车》(CN 102515415 A)通过设置一级好氧 池、 二级好氧池和沉淀池来处理农村的生活污水。
现有污水处理工艺存在的问题是:所用设备占地面积大,建设费用高,设备投资大, 运行成本高, 在推广应用方面有一定的局限性。 对有害物质进行降解和处理不够彻底, 未充分解决污水的除毒、 除臭问题和有机污染物的分解去除问题。
发明内容
本发明所要解决的技术问题是提供一种污水处理专用钯催化剂,用于最大效能的处 理多种污水。
本发明还要解决的技术问题是提供上述催化剂的应用。
为解决上述技术问题, 本发明采用的技术方案如下:
一种污水处理专用钯催化剂, 其特征在于, 它以不锈钢为载体, 不锈钢表面均匀分 布金属钯层。
其中, 所述的金属钯层的厚度为 1纳米〜 5微米。
其中, 所述的金属钯层内参杂金属银。 优选的, 金属银的重量占金属钯层重量的 0.001%〜45%。
上述污水处理专用钯催化剂的制备方法,采用化学沉积将金属钯层均匀附着在不锈 钢在载体上。
所述的化学沉积法: 通过溶液中添加适当的还原剂 (如肼、 次磷酸钠等)使溶液中钯 离子在一定的条件下在不锈钢表面还原为钯原子, 使不锈钢表面形成附着钯的薄膜层。 也可以通过溶液中添加适当的还原剂 (如肼、 次亚磷酸钠、 葡萄糖等)使钯离子和银离 子在一定的条件下同时在不锈钢表面还原为钯原子和银原子,使不锈钢表面形成附着钯 银合金的薄膜层。上述溶液是指含有能与钯离子和银离子形成稳定络合物的物质如柠檬 酸、 氨水等, 溶液 PH值为 6-10, 溶液温度控制在 50-80°C, 形成钯膜或钯银合金薄膜 的时间通常在 1小时至 8小时。
上述污水处理专用钯催化剂在污水处理中的应用。
其中, 所述的污水的 pH值在 6〜 14之间, 其中 pH大于 9时效果更佳, 所述的污 水为印染废水、 造纸废水、 屠宰污水、 制革污水、 化纤污水、 食品加工污水、 石化污水、 含有聚乙烯醇的污水、 有色冶金污水、 焦化污水、 煤化工污水、 电镀及其它表面处理废 水、 胺肟化污水、 MBR废水、 生化池处理不达标排放水、 生化处理后含有污泥的污水、 产生恶臭的污水、含卤素低于 lOOppm的化工废水、城市生活污水、垃圾填埋渗透污水、 生化制药污水、 含有塑化剂与有机农药或剧毒氰化物的污水、 大面积被有机物污染以及 富营养的江河及湖水或工业循环水。
具体的操作是, 将不锈钢作为污水处理容器内表面的制作材质, 不锈钢内表面均匀 分布金属钯层, 将待处理污水与含有臭氧的氧气或含有臭氧的空气充分混合, 再一起通 入污水处理容器中, 搅拌或循环处理, 使得污水充分接触催化剂, 污水在催化剂作用下 同时完成除臭、 脱色、 降解有机物步骤, 由于有机物的降解而使后续对水中重金属的沉 淀和固化变得更加容易和彻底; 同时降低污水的 COD, 并提高 BOD与 COD的比值, 增加水的可生物降解性。
其中, 含有臭氧的氧气或含有臭氧的空气, 臭氧占总气体的含量为 10-160mg/L。 其中, 待处理污水体积与含有臭氧的氧气或含有臭氧的空气的体积比为 10: 0.3至 10: 8。
根据污水处理的流程既可以是循环处理也可以是直通处理,本领域技术人员可以根 据主要污染物的种类、 污水中 COD指标的高低、 需要将污水处理达到何种等级以及小 试实验确定大规模污水处理中通入单位时间混入的具体臭氧量、单位时间需要处理的具 体污水量。
优选的方式是, 所述的处理容器内增加不锈钢挡板、 不锈钢隔层或不锈钢管道, 这 些附属部件表面均匀分布金属钯层, 使得污水与催化剂充分接触反应。这些不锈钢材质 的附属部件可以与污水处理容器一体成型制备,再在污水处理容器内表面以及附属部件 表面同时实现均匀分布金属钯层。
进入反应器的含有臭氧的氧气或空气与污水混合,臭氧和水在催化剂的催化下产生 氧化能力极强的羟基自由基, 羟基自由基与有机物发生无选择性的氧化反应, 从而达到 氧化分解有机物的目的。
由于封闭环境使空气或氧气中的 03无法脱离污水, 且总是接触具有催化作用的催 化剂, 使污水中的催化氧化反应持续进行, 大幅度提高了 03的利用率, 从而降低了污 水处理成本, 既使没有来得及消耗的 03将在封闭的催化环境下衰变为 02, 进入污水池 后继续对降低 COD产生作用, 且不对环境产生任何副作用, 也不会对后续污水处理厂 污水池中细菌灭活, 且溶解的氧气有助于生化池嗜氧菌的活动。
有益效果: 本发明方法与现有技术相比, 具有如下优势:
( 1 ) 运行成本低。 按照目前污水流量和环境指标, 通过催化氧化使有机高分子物 质高效降解, 可以大幅度减轻后续污水处理的压力和成本。
(2) 去污效果好。 本专利改变了传统的先分离后治理的模式, 污泥和污水混合在 一起进入催化氧化, 此过程能够降解一些有毒有害物质, 把复杂的物质分解成简单无害 的小分子物质, 如造纸污水的 PVA和 COD可以分别减少 100%和 95%。
(3 )有效去除臭味。 根据污水流量及其它环境指标选择合适的臭氧及空气混入量、 设计好匹配的催化反应器并确保污水封闭时间, 就可以彻底消除污水中的臭源。
(4) 有效脱色。 大多数污水颜色呈深黑色, 特别是印染污水, 经过此反应流程, 污水基本能够回归自然状态下的颜色。
附图说明
图 1为实施例 1制得的钯催化剂的 X-荧光测试结果。
图 2为实施例 2制得的钯银催化剂的 X-荧光测试结果。
图 3为实施例 3处理结果照片, 自左至右依次是处理前、 臭氧处理后 (B容器处理 结果)、 臭氧催化处理后 (A容器处理结果)。
图 4为实施例 11污水处理过程的 COD变化结果图。
具体实施方式
根据下述实施例, 可以更好地理解本发明。 然而, 本领域的技术人员容易理解, 实 施例所描述的内容仅用于说明本发明, 而不应当也不会限制权利要求书中所详细描述的 本发明。 实施例 1 : 钯催化剂的制备。
将表面积为 1平方米的 SS304不锈钢用自来水进行清洗,再经化学除油、自来水洗、 酸洗活化、 纯水洗后, 采用化学沉积的方式将钯层均匀附着在不锈钢表面, 最后经自来 水洗、 干燥条件处理制得钯催化剂。
其中,所述的化学除油使用的化学试剂由如下重量百分比的组分组成: 4wt%NaOH, 4wt%Na3P04、 3wt%Na2C03、 水补足至 100%; 化学除油温度为 85°C, 处理时间为 30 分钟以上。
其中, 所述的酸洗活化为采用 15wt%盐酸, 45°C条件下酸洗活化。
其中, 所述的化学沉积的操作如下: 根据不锈钢的表面积按每平方米准备 2-5g 氯 化钯, 用 31wt%盐酸溶解倒入纯水 95升纯水中, 往上述溶液中加入柠檬酸钠 300g, 加 氨水使溶液 pH值上升至 8~9,加温使溶液温度控制在 65 °C,将不锈钢放入上述溶液中, 并缓慢加入水合肼 N2H4.H20, 水合肼总加入量为 100ml,在 2个小时内将水合肼均匀添 加完成后, 继续控制溶液温度在 65°C, 1小时后结束化学沉积过程。
将经过本实施例方法处理后的不锈钢取样进行 X-荧光测试, 可以得知表面均匀覆 盖了一层 0.23微米的钯层。 见图 1。 实施例 2: 钯银催化剂的制备。
将表面积为 1平方米的 SS316不锈钢用自来水进行清洗,再经化学除油、自来水洗、 酸洗活化、 纯水洗后、 预电镀镍 (如钯银层与不锈钢的结合力能满足使用要求, 则该步 骤可以省略), 采用化学沉积的方式将钯银合金层均匀附着在不锈钢表面, 最后经自来 水洗、 干燥条件处理制得钯银催化剂。
其中,所述的化学除油使用的化学试剂由如下重量百分比的组分组成: 4wt%NaOH, 4wt%Na3P04、 3wt%Na2C03、 水补足至 100%; 化学除油温度为 85°C, 处理时间为 30 分钟以上。
其中, 所述的酸洗活化为采用 15wt%盐酸, 45°C条件下酸洗活化。
其中, 所述的化学沉积的操作如下: 根据按每平方米的不锈钢的表面积准备好工作 液: 95升纯水, 加入 200g柠檬酸钠、 200g EDTA、 葡萄糖 100g, 加氨水使溶液 pH值 上升至 9~10, 加温使溶液温度控制在 65 加温之前准备好 A和 B两种溶液; A溶液 配制方法: 2g氯化钯,用 31wt%盐酸溶解,加入氨水使 pH值达 11以上,加水至 lOOOmL 待用; B溶液配制方法: lg AgN03, 加水溶解, 加入氨水 lOOmL, 加水至 500mL待用; 将不锈钢放入已控制好温度的工作液中,按体积比 A:B=2: 1在 2小时内均匀加入上述工 作液中, 同时在 2小时内均匀加入 lOOmL水合肼 N2H4.H20。 在 2个小时内将 A、 B、 水合肼添加完成后, 继续控制溶液温度在 65 °C, 1小时后结束化学沉积过程。
将经过本实施例方法处理后的不锈钢取样进行 X-荧光测试, 可以得知表面均匀覆 盖了一层 0.88微米的钯银合金层, 其中钯含量为 56.7%, 银含量为 43.3%。 见图 2。 实施例 3 : 小试实验。
分别取某印染公司含有染料的黑色污水 2升进行脱色效果对比实验, A容器中放入 50g直径 3毫米 304不锈钢球体, 这些球体已经过实施例 2的方法处理; B容器放入未 经处理的同样分量的不锈钢球体。同时用同样型号的 20g/小时的臭氧发生器产生的臭氧 与氧气混合后通入 A、 B的污水中, 每分钟通入氧气 4升, 经过臭氧发生器处理后氧气 中的臭氧含量为 90mg/L左右。 30分钟后 A容器中的水变为无色透明, B容器中水颜色 由深黑色变为褐色。 处理前后的水样结果见图 3。 经对处理前后三种水样的分析, 黑色 原水的 COD为 1000mg/L, B容器臭氧处理后褐色水的 COD为 630mg/L, A容器处理 后水的 COD为 55mg/L。 处理结果见图 3, 自左至右依次是处理前、 臭氧处理后 (B容 器处理结果)、 臭氧催化处理后 (A容器处理结果) 实施例 4: 有无催化剂的氧化效果中试对比。
用同样的设计尺寸和工艺制成 2台 304不锈钢反应器, 反应器直径 DN100mm、 长 度 0.6米, 内部放入 304不锈钢填料 4.5立方分米, 填料的比表面积为 500平方米 /立方 米。其中 1台不经任何处理(即反应器内无催化剂); 另外 1台内部不锈钢是经实施列 1 处理的含钯催化剂的不锈钢 (即反应器内有催化剂)。 分别用管道和泵及文丘里混合器 进行联结,使污水经泵出口后流经文丘里混合器吸入含臭氧的气体共同进入催化反应器 后流出。
用两种不锈钢反应器对某造纸厂含有 PVA 的污水进行臭氧循环氧化处理并进行取 样分析, 采用氧气通入臭氧发生器来制取臭氧, 臭氧发生器的制取能力为 30g/h臭氧, 每分钟通入氧气 6升, 经过臭氧发生器处理后氧气中的臭氧含量为 90mg/L左右。 循环 泵的流量为 0.6m3/h, 处理污水量为 35升。 处理结果见表 1。
表 1
Figure imgf000008_0001
从表中结果可以看出, 当反应器内部覆盖催化剂后, 臭氧对污水 PVA的降解效率大 幅度提高, 且同时大幅度降低了污水中的 COD含量。 而反应器内表面没有附着催化剂 的情况下, 即使持续延长通入臭氧量和循环时间, PVA也很难降解。 用两种不锈钢反应器对某石化公司的氨肟化装置的污水(主要含甲苯、 环己酮肟、 叔 丁醇等) 取样进行对比实验, 并进行取样分析, 采用氧气通入臭氧发生器来制取臭氧, 臭氧发生器的制取能力为 30g/h臭氧, 每分钟通入氧气 6升, 经过臭氧发生器处理后氧 气中的臭氧含量为 90mg/L左右, 循环泵的流量为 0.5m3/小时, 处理污水量为 35升。 处 理结果见表 2。
表 2
Figure imgf000008_0002
在反应器内表面覆盖催化剂后, 对胺肟化污水循环处理, 持续通入臭氧 40分钟, 反应过程中污水颜色发生变化, 由无色变为浅红色、 再变为无色, 说明含有不饱和键类 有机物物质发生氧化反应, COD下降了 59.4%。 用两种不锈钢反应器对某石化公司的蒸发冷却水(含有己内酰胺、环己綱、环己醇、 环己烷、 苯、 甲苯、 氨氮等) 取样进行对比实验, 并进行取样分析, 臭氧发生器型号为
30g/小时, 每分钟通入氧气 6升, 经过臭氧发生器处理后氧气中的臭氧含量为 90mg/L 左右。 循环泵的流量为 0.6m3/小时, 处理污水量为 40升。 处理结果见表 3。
表 3
Figure imgf000009_0001
在反应器内部没有催化剂的情况下, 持续通入臭氧后, 污水中的 COD反而增加, 原因是该污水中含有苯类低沸点难氧化物质, 在 COD的国标检测中很难体现出, 故原 水所测得的 COD值是不包括苯类等低沸点难氧化物质的, 其 COD值明显的要低于水中 的实际值。
臭氧通入覆盖有催化剂的反应器内对污水进行高级氧化后, 苯类低沸点难氧化物 质被羟基自由基氧化成易溶于水的高沸点醌类物质, 从而导致其 COD值升高, 随着高 级氧化的继续进行, 醌类物质继续被氧化, 从而体现在 COD的进一步下降。 实施例 5: 各类污水的处理实验 (以下数据为钯催化剂的处理结果)。
用实施列 1步骤处理的不锈钢制成 DN150mm、 长度 0.8米内部充满填料 (填料比 表面积为 500平方米 /立方米)的催化反应器, 用管道将催化反应器和泵、文丘里混合器 联结,使污水经泵出口后流经文丘里混合器吸入含臭氧的气体共同进入催化反应器后流 出。 进行循环处理实验, 污水 70升, 循环泵流量 0.8m3/h, 臭氧发生器型号为 100g/h, 每分钟通入氧气 19升, 经过臭氧发生器处理后氧气中的臭氧含量为 90mg/L左右。污水 温度为室温, 几种污水均采用相同的实验条件。 污水处理结果见表 4。
表 4 处理前 处理后
成分去 COD去 处理时
成分 含量 /ppm COD a里 ppm COD 除率 /% 除率 /% 间/ h
造纸废水 PVA 8 3000.00 3427 0 55 100.00 98.40 氨肟化废水 5 2330 172 92.62 蒸发冷却水 5 2700 864 68.00 苯酚废水 (高浓度) 3 549.50 1840 3.4 714 99.38 61.20 苯酚废水 (低浓度) 3 208.00 694 0.08 142 79.54
EDTA (高浓度) 3 2330.47 1435 93.07 1427 96.01 0.56
EDTA (低浓度) 2.5 140.00 40 15.8 88.71
苯胺 3 141 283 10 59 92.20 79.15 防染盐 (高浓度) 3 531.00 40 92.47
防染盐 (低浓度) 1.5 79.00 0.14 99.82
实施例 6: 各类污水的处理实验 (以下数据为钯银催化剂的处理结果)。
用实施列 2步骤处理的不锈钢制成 DN200mm、 长度 1米内部充满填料 (填料比表 面积为 500平方米 /立方米)的催化反应器, 用管道将催化反应器和泵、文丘里混合器联 结, 使污水经泵出口后流经文丘里混合器吸入含臭氧的气体共同进入催化反应器后流 出。 进行循环处理实验, 污水 1000升, 循环泵流量 5m3/h, 臭氧发生器型号为 200g/h, 每分钟通入氧气 38升, 经过臭氧发生器处理后氧气中的臭氧含量为 90mg/L左右。污水 温度为室温, 几种污水均采用相同的实验条件。 污水处理结果见表 5。
表 5
Figure imgf000010_0001
市政污水由于污水来源变化, 干扰了生化池中的生物降解能力, 尤其是一些含有抗 菌素、 重金属、 消毒液等的污水混入可能造成生物细菌活性下降甚至细菌灭活, 导致生 化降解系统不能稳定运行, 造成即使经过了生化降解流程的污水仍然无法达标排放。 化工厂生化水处理车间排放水不能达标的原因是由于化工厂生产装置的持续扩容, 而受场地及投资经费的限制, 无法扩大相应的生化污水处理设施, 原有生化处理设施的 设计生产能力不能满足生产装置污水来水量的处理要求, 导致化工厂的含芳烃类有机物 的污水来不及经生化池彻底降解就进入污水排放口, 造成污水不能稳定达标排放。
经本发明的现场实验说明, 如在污水厂出口接入按本发明实施的相应的处理装置, 完全可保障污水厂的达标排放。 实施例 7: 地表水的处理实验 (以下数据为钯催化剂的处理结果)。
用实施列 1步骤处理的不锈钢制成 DN200mm、 长度 1米内部充满填料 (填料比表 面积为 500平方米 /立方米)的催化反应器, 用管道将催化反应器和泵、文丘里混合器联 结, 使污水经泵出口后流经文丘里混合器吸入含臭氧的气体共同进入催化反应器后流 出, 进行循环处理实验, 污水 1000升, 循环泵流量 5m3/h, 臭氧发生器型号为 200g/h, 每分钟通入氧气 38升, 经过臭氧发生器处理后氧气中的臭氧含量为 90mg/L左右。湖水 温度为常温, 水质处理结果见表 6。
表 6
Figure imgf000011_0001
该公园为景观水内养殖观赏鱼类, 由于是系统封闭的死水, 面积约 5000平方米, 每年 4月开始随着气温升高, 水中藻类繁殖加快, 使鱼类开始翻白甚至死亡, 经取样检 测 COD指标达 85, 实验表明, 本实施可以快速降解水中藻类并降低水中 COD, 使水能 快速恢复水体产养殖条件。
实施例 8: MBR尾水的处理实验。
用实施列 1步骤处理的不锈钢制成 DN200mm、 长度 1米内部充满填料 (填料比表 面积为 500平方米 /立方米)的催化反应器, 用管道将催化反应器和泵、文丘里混合器联 结。 进行循环处理实验, 污水 1000升, 循环泵流量 5m3/h, 臭氧发生器型号为 200g/h, 每分钟通入氧气 38升, 经过臭氧发生器处理后氧气中的臭氧含量为 90mg/L左右。污水 温度为室温, 几种污水均采用相同的实验条件。 污水处理结果见表 7
表 7
Figure imgf000012_0001
实施例 9: 己内酰胺生化处理后的尾水处理实验。
己内酰胺生产流程复杂, 废水中有机成份以苯、 甲苯、环己酮肟、环己酮、环己垸、 有机酸、 己内酰胺、 氨氮等为主, 同时含有各种过氧化物及中间体、 有机溶剂等组份, 属较高 COD、 多组分种类的废水, 同时废水中的多种有机组分具有生物阻抗性及生物 抑制作用, 经常使 B/C在 0.01左右, 导致很难进行稳定的生化处理, 且生化处理后的 尾水很难稳定的达标排放。
用实施列 1步骤处理的不锈钢制成 DN150mm、 长度 0.8米内部充满填料 (填料比 表面积为 500平方米 /立方米) 的钯催化反应器 10个, 用管道将催化反应器和文丘里混 合器以及泵联结。
现场进行两种实验, 一种是直通催化氧化、 另一种是循环催化氧化,
现场实验一、 将污水管道直接接入循环泵入口, 调节泵流量 lm3/h, 臭氧发生器型 号为 200g/h,每分钟通入氧气 38升,经过臭氧发生器处理后氧气中的臭氧含量为 90mg/L 左右。 尾水温度为室温, 对经过反应流程的进出口水样进行采样分析对比, 首先发现经 催化氧化后水质颜色发生明显的脱色改善, 其色度已从 155.33降为 48.35; 进出口水样 的 COD为 97, BOD/COD经处理后已由 0.08上升为 0.26, 说明尽管 COD没有改变, 但水的可生化性能发生了很大的改善。
现场实验二、 将污水 1立方米盛入塑料容器中, 用法兰和管道将塑料容器的污水引 入泵的入口, 泵、 文丘里混合器、 反应器通过管道联结, 污水由泵出口流经文丘里混合 器、 吸入含有臭氧的气体后进入催化反应器组后经管道流回塑料容器, 循环泵流量为
8mJ/h。
污水均采用相同的实验条件, 污水处理结果见表 7
表 7
Figure imgf000013_0001
实施例 10: 造纸污水的的处理实验
用实施列 1步骤处理的不锈钢制成 DN200mm、 长度 1米内部充满填料 (填料比表 面积为 500平方米 /立方米)的钯银催化反应器, 用管道将催化反应器和泵、文丘里混合 器联结。 进行循环处理实验, 污水 500升, 循环泵流量 5m3/h, 臭氧臭氧发生器的型号 为 200g/h, 每分钟通入氧气 38升, 经过臭氧发生器处理后氧气中的臭氧含量为 90mg/L 左右。 污水温度为室温, 污水处理结果见表 8
表 8
Figure imgf000013_0002
造纸废水中含有大量的 PVA (聚乙烯醇), BOD/COD值只有 0.05, 说明这种废水 的可生化性很差, 采用常规的生物降解很难处理这样的废水, 通过化学分析表明, 只需 30分钟 PVA已被降解至无法检出, 但水中 COD几乎没有变化, 说明 PVA已被降解为 小分子量有机物, 另一值得关注的指标是 BOD/COD的值大幅度提升, 说明该废水的可 生物降解性得到了很好的改善。 实施例 11 : 炼油污水的的处理实验
用实施列 1步骤处理的不锈钢制成 DN200mm、 长度 1米内部充满填料 (填料比表 面积为 500平方米 /立方米)的鈀催化反应器, 用管道将催化反应器和泵、文丘里混合器 联结, 污水由泵出口流经文丘里混合器、 吸入含有臭氧的气体进入催化反应器组后经管 道流出。 进行循环处理实验, 污水 1000升, 循环泵流量 5m3/h, 臭氧发生器的型号为 200g/h, 每分钟通入氧气 38升, 经过臭氧发生器处理后氧气中的臭氧含量为 90mg/L左 右。污水温度为室温, 污水中含有烃类和含硫化合物, 呈泥土黄色, 有股难闻的煤油味。
持续实验 58分钟, 实验过程污水颜色发生如下变化: 泥土黄一浅红一红一浅绿色一无色; 污水气味由有难闻煤油味到气味消失, 过程中出现大量泡沫后泡沫消失, 最终处理效果为 COD 下降 63. 5%
污水处理过程的 COD变化结果见图 4。

Claims

权 利 要 求 书
1、 一种污水处理专用钯催化剂, 其特征在于, 它以不锈钢为载体, 不锈钢表面均 匀分布金属钯层。
2、 根据权利要求 1所述的污水处理专用钯催化剂, 其特征在于, 所述的金属钯层 的厚度为 1纳米 ~5微米。
3、 根据权利要求 1所述的污水处理专用钯催化剂, 其特征在于, 所述的金属钯层 内参杂金属银。
4、 根据权利要求 3所述的污水处理专用钯催化剂, 其特征在于, 金属银的重量占 金属钯层重量的 0.001%〜45%。
5、 权利要求 1-4任一所述的污水处理专用钯催化剂的制备方法, 其特征在于, 采 用化学沉积的方式将金属钯层均匀附着在不锈钢在载体上。
6、 权利要求 1-4任一所述的污水处理专用钯催化剂在污水处理中应用。
7、 根据权利要求 6所述的应用, 其特征在于, 所述的污水的 pH值在 6〜14之间, 所述的污水为印染废水、 造纸废水、 屠宰污水、 制革污水、 化纤污水、 食品加工污水、 石化污水、 含有聚乙烯醇的污水、 有色冶金污水、 焦化污水、 煤化工污水、 电镀及其它 表面处理废水、 胺肟化污水、 MBR废水、 生化池处理不达标排放水、 生化处理后含有 污泥的污水、 产生恶臭的污水、 含卤素低于 lOOppm的化工废水、 城市生活污水、 垃圾 填埋渗透污水、 生化制药污水、 含有塑化剂与有机农药或剧毒氰化物的污水、 大面积被 有机物污染以及富营养的江河及湖水或工业循环水。
8、 根据权利要求 6所述的应用, 其特征在于, 将不锈钢作为污水处理容器内表面 的制作材质, 不锈钢内表面均匀分布金属钯层, 将待处理污水与含有臭氧的氧气或含有 臭氧的空气充分混合, 再一起通入污水处理容器中, 搅拌或循环处理, 使得污水充分接 触催化剂, 污水在催化剂作用下同时完成除臭、 脱色、 降解有机物步骤, 由于有机物的 降解而使后续对水中重金属的沉淀和固化变得更加容易和彻底; 同时降低污水的 COD, 并提高 BOD与 COD的比值, 增加水的可生物降解性。
9、 根据权利要求 6所述的应用, 其特征在于, 所述的处理容器内增加不锈钢挡板、 不锈钢隔层或不锈钢管道, 这些附属部件表面均匀分布金属钯层, 使得污水与催化剂充 分接触反应。
PCT/CN2014/076319 2013-05-03 2014-04-28 一种污水处理专用钯催化剂及其应用 WO2014177031A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/888,866 US20160075575A1 (en) 2013-05-03 2014-04-28 Special palladium catalyst for sewage treatment and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310160589.7A CN103272614B (zh) 2013-05-03 2013-05-03 一种污水处理专用钯催化剂及其应用
CN201310160589.7 2013-05-03

Publications (1)

Publication Number Publication Date
WO2014177031A1 true WO2014177031A1 (zh) 2014-11-06

Family

ID=49055294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076319 WO2014177031A1 (zh) 2013-05-03 2014-04-28 一种污水处理专用钯催化剂及其应用

Country Status (3)

Country Link
US (1) US20160075575A1 (zh)
CN (1) CN103272614B (zh)
WO (1) WO2014177031A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103272614B (zh) * 2013-05-03 2015-04-08 南京德磊科技有限公司 一种污水处理专用钯催化剂及其应用
CN104588111B (zh) * 2014-12-24 2017-02-22 东华大学 一种表面接枝离子液体的氧化硅/钯杂化材料及其制备和应用
CN108503173B (zh) * 2018-03-28 2021-07-06 成都承宏机电有限公司 市政活性污泥处理催化体、污泥处理系统及污泥处理方法
CN110104828A (zh) * 2019-05-07 2019-08-09 沭阳利民畜禽无害化处理有限公司 一种病死畜禽无害化处理废水处理工艺
CN113856691B (zh) * 2021-09-27 2024-05-14 达斯玛环境科技(北京)有限公司 臭氧催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269671A (ja) * 1993-03-19 1994-09-27 Tanaka Kikinzoku Kogyo Kk 廃液酸化分解触媒およびその製造方法
CN1628898A (zh) * 2003-12-19 2005-06-22 雷敏宏 用于高纯度氢气纯化的支撑式钯膜的制备方法
CN101249436A (zh) * 2008-02-27 2008-08-27 浙江大学 不锈钢丝网阳极氧化膜金属蜂窝催化剂的制备方法
CN103272614A (zh) * 2013-05-03 2013-09-04 南京德磊科技有限公司 一种污水处理专用钯催化剂及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1045076C (zh) * 1992-09-22 1999-09-15 中国科学院大连化学物理研究所 含高浓度有机物及氨工业污水湿式氧化净化催化剂及制备方法
US20080060997A1 (en) * 2006-09-07 2008-03-13 Musale Deepak A Method of heavy metals removal from municipal wastewater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269671A (ja) * 1993-03-19 1994-09-27 Tanaka Kikinzoku Kogyo Kk 廃液酸化分解触媒およびその製造方法
CN1628898A (zh) * 2003-12-19 2005-06-22 雷敏宏 用于高纯度氢气纯化的支撑式钯膜的制备方法
CN101249436A (zh) * 2008-02-27 2008-08-27 浙江大学 不锈钢丝网阳极氧化膜金属蜂窝催化剂的制备方法
CN103272614A (zh) * 2013-05-03 2013-09-04 南京德磊科技有限公司 一种污水处理专用钯催化剂及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KANG, XINTING ET AL.: "Forming Mechanism of Pd Composite Membrane Prepared by Electroless Plating", RARE METAL MATERIALS AND ENGINEERING, vol. 36, no. 11, 30 November 2007 (2007-11-30), pages 1901 - 1904 *
NING, YINGNAN ET AL.: "New technique of palladium Membrane preparation", CHEMICAL INDUSTRY AND ENGINEERING PROGRESS, vol. 21, no. 5, 31 May 2002 (2002-05-31), pages 342 - 359 *

Also Published As

Publication number Publication date
CN103272614A (zh) 2013-09-04
US20160075575A1 (en) 2016-03-17
CN103272614B (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
CN105859019B (zh) 一种有机废水的处理回用方法和设备
CN101863589B (zh) 一种应用臭氧催化氧化与内循环生物滤池组合进行污水深度处理的方法
CN108191162A (zh) 一种含苯胺高盐含量难降解有机废水的处理工艺
WO2014177031A1 (zh) 一种污水处理专用钯催化剂及其应用
CN103864264B (zh) 一种光催化复合膜生物反应器的水处理方法及设备
CN102452770A (zh) 一种生化与高级氧化耦合的污水处理工艺
CN105481177A (zh) 低耗硝化反硝化煤化工污水深度处理装置
Lofrano et al. Fenton’s oxidation of various-based tanning materials
CN208471815U (zh) 一种ao工艺与芬顿系统配套的高浓度污水处理系统
CN106976949A (zh) 一种渗沥液生物处理出水的氧化处理方法
CN102491451A (zh) 超声化臭氧与紫外协同的水处理装置和方法
CN102921424B (zh) 一种催化剂、lx催化氧化方法和抗生素废水处理方法
CN103224308B (zh) 亚铁还原与催化氧化协同强化废水生物处理工艺
CN107473435A (zh) 一种低浓度生物难降解工业有机废水处理的催化氧化方法
Xu et al. Simultaneous removal of dissolved organic matter and nitrate from sewage treatment plant effluents using photocatalytic membranes
CN101767859A (zh) Fenton氧化和微波催化相结合的废水处理方法
CN107459170A (zh) 一种去除精细化工生化处理尾水毒性的方法
Kilic et al. Landfill Leachate Treatment by Fenton and Fenton‐L ike Oxidation Processes
Jiang et al. Pilot-scale and mechanistic study of the degradation of typical odors and organic compounds in drinking water by a combined UV/H2O2-BAC process
Al-Momani Combination of photo-oxidation processes with biological treatment
CN110950495A (zh) 高级氧化联用微纳米气泡的给水深度处理系统及方法
García-Morales et al. Treatment of soft drink process wastewater by ozonation, ozonation-H2O2 and ozonation-coagulation processes
CN109626726A (zh) 一种含苯废水的处理方法
Chen et al. Aerobic biological treatment of microconstituents
CN104276686A (zh) 一种富含有机物的污水处理处置方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14888866

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14791779

Country of ref document: EP

Kind code of ref document: A1