WO2014176729A1 - 传送网控制方法、控制器和节点 - Google Patents

传送网控制方法、控制器和节点 Download PDF

Info

Publication number
WO2014176729A1
WO2014176729A1 PCT/CN2013/074961 CN2013074961W WO2014176729A1 WO 2014176729 A1 WO2014176729 A1 WO 2014176729A1 CN 2013074961 W CN2013074961 W CN 2013074961W WO 2014176729 A1 WO2014176729 A1 WO 2014176729A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
path
controller
atomic
message
Prior art date
Application number
PCT/CN2013/074961
Other languages
English (en)
French (fr)
Inventor
林毅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380000442.XA priority Critical patent/CN103547337B/zh
Priority to PCT/CN2013/074961 priority patent/WO2014176729A1/zh
Priority to EP13883411.4A priority patent/EP2983317B1/en
Priority to ES13883411.4T priority patent/ES2632608T3/es
Publication of WO2014176729A1 publication Critical patent/WO2014176729A1/zh
Priority to US14/925,757 priority patent/US10084695B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/42Centralised routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/54Organization of routing tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/326Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the transport layer [OSI layer 4]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/34Signalling channels for network management communication
    • H04L41/344Out-of-band transfers

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a transport network control method, a controller, and a node. Background technique
  • the function of the transport network is to transmit services for users.
  • the transport network can use a variety of transport technologies, such as Synchronous Digital Hierarchy (SDH), Optical Transport Network (OTN), and wavelength division multiplexing ( Wavelength Division Multiplexing, referred to as WDM).
  • SDH Synchronous Digital Hierarchy
  • OTN Optical Transport Network
  • WDM Wavelength Division Multiplexing
  • the traditional transport network is a static system.
  • the path creation, maintenance, and teardown in the network need to be manually configured through the network management system. As the data service continues to grow, this connection method cannot satisfy the user's dynamics on the optical network system. Flexible requirements. Therefore, the International Telecommunication Union-Telecommunication Standardization Sector (ITU-T) proposes an Automatically Switched Optical Network (ASON) architecture, which adds a new optical network to the traditional optical network.
  • ASON Automatically Switched Optical Network
  • the control plane is implemented to implement automatic control of the optical network. Further, the Internet Engineering Task Force (IETF) defines a Generalized Multi-Protocol Label Switching (GMPLS) based on the control plane.
  • the protocol stack implements functions such as automatic link discovery, path calculation, and path establishment in the network by performing related protocols such as link management, routing, and signaling.
  • the distributed GMPLS is used to control the transport network, and each node runs a routing protocol, such as Open Shortest Path First-Traffic Engineering (OSPF-TE), and a letter.
  • OSPF-TE Open Shortest Path First-Traffic Engineering
  • RSVP-TE Resource Reservation Protocol - Traffic Engineering
  • the control plane including routing of all nodes in the entire network is required. Modules, signaling modules, etc. are upgraded, making the upgrade process very complex and prone to failure and high risk.
  • a first aspect of the present invention provides a transport network control method, including:
  • the controller receives a control request message of the path
  • the controller sends a path configuration message including an atomic behavior to the at least one node, so that each node configures the transport plane to perform an atomic behavior included in the message to implement the requested in the control request message.
  • Transfer function
  • the atomic behavior is a basic action that constitutes a function that a node can perform.
  • the controller before the controller receives the control request message of the path, the controller further includes:
  • the controller acquires topology information of the transport network and atomic behavior supported by each node in the transport network.
  • the controller acquires topology information of the transport network and an atom supported by each node in the transport network Behavior, including:
  • the controller receives topology information of the transport network input by a user and atomic behavior supported by nodes in the transport network; or
  • the controller acquires topology information of the transport network and atomic behavior supported by each node in the transport network through a control channel established between nodes in the transport network.
  • the controller acquires the extension of the transmission network by using a control channel established between nodes in the transport network
  • the information about the atomic behavior supported by each node in the transport network including:
  • the controller establishes a control channel to each node in the transport network
  • the controller collects topology information of the transport network through the control channel, and passes the With reference to any one of the first aspect to the third possible implementation manner of the first aspect, in a fourth possible implementation manner of the first aspect, the controller, according to the topology information of the transport network, and the transport network The atomic behavior supported by each node in the medium, determining at least one node in the transport network through which the path passes and at least one atomic behavior to be performed by the at least one node, including:
  • the controller invokes a control plugin according to the control request message, and the control plugin is configured to calculate at least one node that the path passes according to the topology information of the transport network;
  • the controller determines at least one atomic behavior that the at least one node is required to perform based on atomic behavior supported by each node in the transport network.
  • the method before the controller invokes the corresponding control plug-in according to the control request message, the method further includes:
  • the controller maintains a control plugin installed through the control plugin interface.
  • the controller receiving the control request message of the path, including: the controlling Receiving a control request message of a path configured by the network management; or
  • the controller receives a control request message of an application layer driven path
  • the controller receives a control request message conveying a path of the network drive.
  • control request message of the path includes:
  • a path establishment request message, a path modification request message, a path deletion request message, or a path re-routing request message is a request for establishing a path re-routing request message.
  • the atomic behavior comprises: a location and a configuration of the atomic behavior configuration Content
  • the controller sends a message that includes an atomic behavior to the at least one node, so that each node performs the atomic behavior included in the message to configure the transport plane, including:
  • the controller correspondingly transmits a message containing the location of the atomic behavior configuration and the configured content to the at least one node, so that each node performs the configuration of the transmission plane according to the location of the atomic behavior configuration and the content of the configuration.
  • the path configuration message is an OpenFlow OF message or an Extensible Markup Language (XML) message.
  • the transport network includes any one of the following:
  • Synchronous digital system SDH Synchronous digital system SDH, synchronous optical network S0NET, optical transport network 0TN, wavelength division multiplexing
  • a second aspect of the embodiments of the present invention provides a transport network control method, including:
  • the node receives a path configuration message sent by the controller that includes an atomic behavior
  • the node configures the transport plane according to the path configuration message and performs the atomic behavior contained in the message.
  • the method before the receiving, by the node, the path configuration message that is sent by the controller and including the atomic behavior, the method further includes:
  • the node transmits the supported atomic behavior to the controller via a control channel with the controller.
  • a third aspect of the embodiments of the present invention provides a controller, including:
  • a receiving module configured to receive a control request message of the path
  • a determining module configured to determine at least one node in the transport network through which the path passes and at least one required to be performed by the at least one node according to topology information of the transport network and atomic behavior supported by each node in the transport network Atomic behavior
  • a sending module configured to send, to the at least one node, a path configuration message that includes an atomic behavior, so that each node configures a transport plane to perform an atomic behavior included in the message, to implement the control request message.
  • Requested transfer function
  • the atomic behavior is a basic action that constitutes a function that a node can perform.
  • the controller further includes:
  • an obtaining module configured to acquire topology information of the transport network and atomic behavior supported by each node in the transport network.
  • the acquiring module is specifically configured to receive topology information of the transport network input by a user, and The atomic behavior supported by each node in the transport network; or, The topology information of the transport network and the atomic behavior supported by each node in the transport network are obtained through a control channel established between nodes in the transport network.
  • the acquiring module includes:
  • a collecting unit configured to collect topology information of the transport network by using the control channel
  • a receiving unit configured to receive, by using the control channel, the supported atomic behavior sent by each node in the transport network.
  • the determining module includes:
  • a calling unit configured to invoke a control plugin according to the control request message, where the control plugin is configured to calculate at least one node that the path passes according to the topology information of the transport network;
  • a determining unit configured to determine, according to an atomic behavior supported by each node in the transport network, at least one atomic behavior required to be performed by the at least one node.
  • the controller further includes:
  • Maintenance module for maintaining control plug-ins installed through the control plug-in interface.
  • the receiving module is specifically configured to receive a path for configuring a network management Request message;
  • a control request message that receives a path of the transport network driver is not limited to:
  • control request message of the path includes:
  • a path establishment request message, a path modification request message, a path deletion request message, or a path re-routing request message is a request for establishing a path re-routing request message.
  • the sending module is specifically configured to correspond to the at least one node A message is sent containing the location of the atomic behavior configuration and the content of the configuration, so that each node performs the configuration of the transport plane according to the location of the atomic behavior configuration and the content of the configuration.
  • the path configuration message is an OF message or an XML message.
  • the transport network includes any one of the following:
  • a fourth aspect of the embodiments of the present invention provides a node, including:
  • a receiving module configured to receive a path configuration message that is sent by the controller and includes an atomic behavior
  • an execution module configured to configure a transport plane according to the path configuration message, and perform an atomic behavior included in the message.
  • the node further includes:
  • a sending module configured to send the supported atomic behavior to the controller through a control channel with the controller.
  • a fifth aspect of the embodiments of the present invention provides a controller, including:
  • a receiver a control request message for receiving a path
  • a processor configured to determine at least one node in the transport network through which the path passes and at least one required to be performed by the at least one node according to topology information of the transport network and atomic behavior supported by each node in the transport network Atomic behavior
  • a transmitter configured to send, to the at least one node, a path configuration message that includes an atomic behavior, so that each node configures a transport plane to perform an atomic behavior included in the message, to implement the control request message.
  • Requested transfer function
  • the atomic behavior is a basic action that constitutes a function that a node can perform.
  • the processor is further configured to acquire topology information of the transport network and atomic behavior supported by each node in the transport network.
  • the processor is specifically configured to receive topology information of the transport network input by a user, and the The atomic behavior supported by each node in the transport network; or,
  • the topology information of the transport network and the atomic behavior supported by each node in the transport network are obtained through a control channel established between nodes in the transport network.
  • the processor is specifically configured to establish a control channel to each node in the transport network; and collect the topology information of the transport network by using the control channel;
  • the receiver is further configured to receive, by using the control channel, the supported atomic behavior sent by each node in the transport network.
  • the processor is specifically configured to invoke a control plugin according to the control request message,
  • the control plugin is configured to calculate at least one node that the path passes according to the topology information of the transport network;
  • the processor is further configured to maintain a control plug-in installed by using a control plug-in interface.
  • the receiver is specifically configured to receive a control request message of a path configured by the network management; or ,
  • a control request message that receives a path of the transport network driver is not limited to:
  • control request message of the path includes:
  • a path establishment request message, a path modification request message, a path deletion request message, or a path re-routing request message is a request for establishing a path re-routing request message.
  • the transmitter is specifically configured to send the atomic behavior corresponding to the at least one node A message of the configured location and the content of the configuration, so that each node performs the configuration of the transport plane according to the location of the atomic behavior configuration and the content of the configuration.
  • the path configuration message is an OF message or an XML message.
  • the transmission network includes any one of the following: SDH, SONET, OTN, WDM.
  • a sixth aspect of the embodiments of the present invention provides a node, including:
  • a receiver configured to receive a path configuration message that is sent by the controller and includes an atomic behavior
  • a processor configured to configure a transport plane according to the path configuration message, and perform an atomic behavior included in the message.
  • the node further includes:
  • a transmitter configured to send the supported atomic behavior to the controller through a control channel with the controller.
  • the controller determines, according to the topology information of the transport network and the atomic behavior supported by each node in the transport network, at least one node and at least one of the transport networks through which the path passes. At least one atomic behavior that the node needs to perform, and sends a path configuration message containing the atomic behavior to the at least one node, so that each node configures the transport plane to perform the atomic behavior contained in the message, and thus, when the transport network
  • the nodes included in the notification path can perform the corresponding atomic behavior, so that it is no longer necessary to upgrade each node on the control plane, which can quickly implement new functions and reduce the risk of upgrade. .
  • Embodiment 1 is a schematic flowchart of Embodiment 1 of a method for controlling a transport network provided by the present invention
  • Embodiment 2 is a schematic flowchart of Embodiment 2 of a method for controlling a transport network provided by the present invention
  • Embodiment 3 is a schematic flowchart of Embodiment 3 of a method for controlling a transport network provided by the present invention
  • FIG. 4 is a scene diagram of an embodiment of the method shown in FIG. 3;
  • FIG. 5 is a schematic flowchart of Embodiment 5 of a method for controlling a transport network according to the present invention
  • FIG. 6 is a scene diagram of an embodiment of the method shown in FIG. 5; 7 is a schematic flowchart of Embodiment 7 of a method for controlling a transmission network according to the present invention;
  • FIG. 8 is a schematic structural diagram of Embodiment 1 of a controller provided by the present invention;
  • Embodiment 9 is a schematic structural diagram of Embodiment 2 of a controller provided by the present invention.
  • Embodiment 3 of a controller provided by the present invention.
  • FIG. 11 is a schematic structural diagram of Embodiment 1 of a node provided by the present invention.
  • Embodiment 4 of a controller provided by the present invention.
  • FIG. 13 is a schematic structural diagram of a second embodiment of a node according to the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 1 is a schematic flowchart of Embodiment 1 of a method for controlling a transport network according to the present invention. As shown in FIG. 1, the method includes:
  • the controller receives the control request message of the path.
  • the control request message of the path is used to request different transmission functions, and may be a path establishment request message, a path modification request message, a path deletion request message, or It is a re-routing request message of the path, but is not limited thereto.
  • the path modification request message may be a path bandwidth modification request or a wavelength path optical power adjustment request.
  • the control plug-ins of the nodes corresponding to different control request messages are different on the subsequent calculation path.
  • the setup request message has a corresponding setup path plugin
  • the delete request message has a corresponding delete path plugin.
  • the controller determines, according to the topology information of the transport network and the atomic behavior supported by each node in the transport network, at least one node in the transport network through which the path passes and at least one atomic behavior to be performed by the at least one node.
  • the controller may be based on a specific algorithm to calculate the atomic behavior that needs to be performed by the nodes and nodes in the transport network through which the path passes.
  • the controller sends a path configuration message including an atomic behavior to the at least one node, so that each node configures the transport plane to perform the atomic behavior included in the foregoing message, so as to implement the requested transfer function in the control request message.
  • the path configuration message can be an open stream (Openflow, referred to as OF) message, that is, the OF protocol is extended, and the Modify Flow Entry message carries the atomic behavior that the node needs to perform; it can also be an Extensible Markup Language (XML) message. That is, XML is used to describe the atomic behavior that the node needs to perform, and the node is sent a message carrying the atomic behavior that the node needs to perform through the XML-based protocol.
  • OF Openflow
  • XML Extensible Markup Language
  • the above atomic behavior is the basic action of the functions that the node can perform.
  • the role of the node in a transport network is to transmit the client signal in the network.
  • the first node of a certain service in the transport network needs to encapsulate the client signal so that it can be transmitted in the transport network.
  • the intermediate node of the service needs to establish a crossover, so that the encapsulated client signal can be specified from the ingress port of the node.
  • the ingress channel is transmitted to the outbound channel specified in the outbound port of the node, and the last node of the service needs to decapsulate the client signal.
  • some of the nodes need to monitor and protect the service.
  • the function of transmitting customer information in the network is composed of a plurality of basic actions. For example, the intermediate node establishes an intersection, and the establishment of the intersection is an atomic behavior.
  • the controller determines at least one node and the at least one node in the transport network through which the path passes according to the topology information of the transport network and the atomic behavior supported by each node in the transport network. At least one atomic behavior required to be performed, and a path configuration message containing atomic behavior is sent to the at least one node to cause each node to configure the transport plane to perform atomic behavior contained in the message, thus, when the transport network needs When the extension supports the new control function, the nodes included in the notification path can perform the corresponding atomic behavior, which can quickly implement new functions and reduce the risk of upgrading the network.
  • each node in the transport network needs to run the control function of the control plane, and when the transport network needs to be extended to support the new control function, the control plane of all nodes in the transport network needs to be upgraded. Very complex, and any error in one place can cause the entire upgrade process to fail.
  • the transport network in the embodiment of the present invention may be an SDH or a Synchronous Optical Network.
  • SONET SONET
  • OTN OTN
  • WDM etc.
  • the controller needs to acquire the topology information of the transport network and the atomic behavior supported by each node in the transport network; specifically, there are two ways to obtain: 1) the controller receives the topology information of the above-mentioned transport network input by the user and the atomic behavior supported by each node in the transport network; (2) the controller passes through each node in the transport network The established control channel acquires the topology information of the above transport network and the atomic behavior supported by each node in the transport network.
  • the controller establishes a control channel to each node in the foregoing transport network, and then collects topology information of the transport network through the control channel, and controls the controller in the pass You can learn about the entire network. You can use this control channel to collect the topology information of the entire network, and receive the atomic behavior supported by each node. The controller will maintain this information. If all the nodes in the transport network support the same atomic behavior, the controller can maintain only one atomic behavior list. If all the nodes in the transport network support different atomic behaviors, the controller maintains atomic behavior. The list also needs to maintain the correspondence between each node and the atomic behavior, that is, which atomic behavior is supported by a node.
  • the atomic behavior may include: the location and configuration content of the atomic behavior configuration; for example, in the "SDH cross" atomic behavior, the configurable locations are: node in port and in SDH label , and node out port and out SDH tag; configurable content: Create or remove one-way or two-way SDH type cross-connection.
  • the controller sends a message including an atomic behavior to the at least one node, so that each node performs the atomic behavior included in the message to configure the transmission plane, and specifically, the controller sends the content to the at least one node.
  • the atomic behavior configures the location and the content of the configured message so that each node performs the configuration of the transport plane according to the location and configuration content of the atomic behavior configuration described above. After the configuration of each node is completed, the contents of the atomic behavior can be executed.
  • FIG. 2 is a schematic flowchart of a second embodiment of a method for controlling a transport network according to the present invention.
  • the controller determines, according to the topology information of the transport network and the atomic behavior supported by each node in the transport network.
  • At least one node in the transport network through which the path passes and at least one atomic behavior to be performed by the at least one node is specifically:
  • the controller invokes a control plug-in according to the control request message, where the control plug-in is configured to calculate at least one node that the path passes by according to the topology information of the transport network.
  • the controller After receiving the control request message of the path, the controller obtains the requirement, and invokes the control plug-in according to the requirement. For example, the request message received by the controller requests to establish the N+R hybrid protection recovery control function, and the controller according to the request
  • the control plug-in with the N+R hybrid protection recovery control function is invoked, and the N+R hybrid protection reply control function is specifically: For one service, when the first to the Nth fault occurs, the service is started with 1+1 protection. When the business occurs from the N+1th to the N+R When the fault occurs, the service is re-routed and restored. When the service has the N+R+1 fault, the service is not restored.
  • the controller determines, according to the atomic behavior supported by each node in the transport network, at least one atomic behavior that needs to be performed by the at least one node.
  • the controller Before the S201, the controller maintains the control plug-in installed by the control plug-in interface.
  • the control plug-in is pre-installed in the controller, and the controller is provided with a control plug-in installation interface, when needed to transmit
  • the related control plug-in is installed through the control plug-in installation interface in the controller, and the control plug-in is maintained by the controller, and after receiving the control request message, the corresponding control plug-in is selected to execute the relevant control plug-in. operating.
  • the functions performed by nodes in the transport network are represented as multiple atomic behaviors. Therefore, when designing a new control plug-in to implement the control function of the new path, it is not necessary to change the atomic behavior of the nodes on the path. Simply recombine existing atomic behaviors.
  • the controller receives the control request message of the path, and the following three situations may exist: (1) the controller receives the control request message of the path configured by the network management, that is, receives the command of the network management; (2) The controller receives the control request message of the path of the application layer driver, that is, the controller receives the service driver of the upper application layer, for example, the data center controller drives the transport network controller to execute a path establishment command, so that the transport network carries the data center between (3) The controller receives the control request message of the path of the transport network driver, that is, the service driver of the transport network of the lower layer of the receiving controller. For example, the network layer link fault triggers the transport network controller to perform the rerouting request.
  • FIG. 3 is a schematic flowchart of Embodiment 3 of a method for controlling a transport network provided by the present invention
  • FIG. 4 is a schematic diagram of FIG.
  • the scenario diagram of the method embodiment shown in FIG. 3 illustrates the foregoing method embodiment.
  • the atomic behavior supported by each node in the OTN transport network includes: (1) ODU crossover; (2) 1+ 1 protection-source; (3) 1+1 protection-sink, and assumes that the OTN transport network needs to be upgraded, so that the OTN transport network supports the above N+R hybrid protection recovery control function, where N and R are greater than or equal to An integer of 1.
  • the controller 10 is included.
  • the control 10 is a transport network controller. Taking four nodes as an example, it is node A, node B, node C, and node D, respectively, where the dotted line indicates the controller and controller established by the controller 10.
  • the control channel between each node, the solid line indicates the link between the nodes, and node A is the source node.
  • the method includes: 5301.
  • the controller acquires topology information of the transport network and atomic behavior supported by each node in the transport network.
  • the controller acquires topology information of the transport network and atomic behavior supported by each node in the transport network.
  • the controller receives the control request message of the path.
  • the controller invokes the corresponding control plug-in according to the control request message of the path, calculates a path of the 1+1 protection group for the service, and specifically invokes the control plug-in installed in S302. Referring to Figure 4, it is assumed that the calculated working path is "Node A-Node B" and the protection path is "Node A-Node C-Node B".
  • the controller determines the atomic behavior of the node A, the node B, and the node C according to the atomic behavior supported by each node in the transport network, that is, the node that passes the working path and the protection path needs to be configured.
  • the node A The atomic behaviors that need to be performed are: 1) "1+1 protection-source" atomic behavior, where the configurable positions are: node in port, outbound port corresponding to the working path of the node, and outbound ODU label, corresponding to the node protection path Outbound port and outbound ODU label; configurable content is: Create 1+1 double-signal crossover.
  • the atomic behavior that Node B needs to perform is: 1) "1+1 protection - sink" atomic behavior, where the configurable location is: the ingress port corresponding to the node working path and the incoming ODU label, and the ingress port corresponding to the node protection path And enter the ODU label, the node out port; configurable content is: Create 1+1 selection cross.
  • the controller sends a path configuration message including the atomic behavior to the node A, the node B, and the node C, so that the node VIII, the node B, and the node C configure the transport plane to perform the atomic behavior included in the message, that is, S305.
  • the atomic behavior that is configured for them separately.
  • the transport plane is the plane in which the nodes in the transport network are located.
  • the first fault occurs in the working path or the protection path, and the source node or the node at both ends of the failed link sends a first fault message to the controller, where the fault message is equivalent to the foregoing control request message.
  • there is no working path failure specifically "Node A-Node B" failure, in which node A sends a fault message to the controller, which belongs to the control request message of the path of the aforementioned transport network driver.
  • the controller determines atomic behaviors of node A, node B, and node D according to atomic behavior supported by each node in the transport network. wherein node C does not change, and does not need to determine its atomic behavior.
  • node A needs The atomic behaviors performed are: 1) "1+1 protection-source” atomic behavior, where the configurable location is: node in port, node outbound port corresponding to the original working path (node A-node B) and outgoing ODU Label, the outbound port and the outbound ODU label corresponding to the original protection path of the node (node A-node C-node B, that is, the new working path); configurable content: remove 1+1 double-crossing; 2) "1+1 Protection-source” atomic behavior, where the configurable location is: node in port, node new working path (node A-node C-node B, ie original protection path) corresponding to the outbound port and outgoing ODU label, node new The out
  • the atomic behaviors that Node B needs to perform are: 1) "1+1 protection-source” atomic behavior, where the configurable locations are: node out port, ingress port corresponding to the node's original working path (AB), and into the ODU label, The ingress port and the ODU label corresponding to the original protection path of the node (node A-node C-node B, that is, the new working path); the configurable content is: Remove the 1+1 selection cross.
  • the configurable location is: node out port, node new working path (node A-node C-node B, ie original protection path) corresponding to the ingress port and Enter the ODU label, the ingress port and the ODU label corresponding to the new protection path of the node (node A-node D-node B);
  • the configurable content is: Establish 1+1 selection crossover.
  • the atomic behavior that node D needs to perform is: 1) "ODU cross" atomic behavior, where the configurable location is: the ingress port and the inbound ODU tag corresponding to the node new protection path (node A-node D-node B), and The outbound port and the outbound ODU label corresponding to the new protection path of the node (node A-node D-node B); the configurable content is: Establish an ODU type cross-connection.
  • the controller sends a path configuration message including the atomic behavior to the node A, the node B, and the node D, so that the node VIII, the node B, and the node D configure the transmission plane to execute the foregoing message.
  • the atomic behaviors involved ie the atomic behaviors assigned to them in S309.
  • the working path or the protection path fails for the second time, and the source node or the node at both ends of the failed link sends a second fault message to the controller, where the fault message is equivalent to the foregoing. Control request message.
  • the working path is faulty, specifically a "node A-node C" fault, in which node A sends a fault message to the controller, which belongs to the control request message of the path of the aforementioned transport network driver.
  • the controller invokes the control plug-in according to the second fault message to determine how to perform protection recovery on the service. Specifically, the control plug-in installed in S302 is invoked.
  • the controller determines the atomic behavior of the node C according to the atomic behavior supported by each node in the transport network. At this time, the atomic behavior that the node C needs to perform is:
  • Atomic behavior The configurable location is: the inbound ODU tag corresponding to the original working path of the node ingress port (node A-node C-node B), and the original working path of the node (node A-node C- Node B) corresponding outgoing port and outgoing ODU label; configurable content is: Remove the ODU type cross-connection. If the intersection of node C is not removed, node C does not need to perform the atomic behavior.
  • S313 is optional. If S313 is executed, S314 is executed. If S313 is not executed, S312 is directly executed to execute S315.
  • the controller sends a path configuration message including the atomic behavior to the node C, so that the node C configures the transport plane to perform the atomic behavior included in the message, that is, the atomic behavior respectively configured in the S313, if the node C There is no need to send a path configuration message to node C without performing the corresponding atomic behavior in S313.
  • the working path or the protection path fails for the third time, and the source node or the node at both ends of the failed link sends a third fault message to the controller, where The failure message is equivalent to the aforementioned control request message.
  • the working path is faulty, specifically a "node D-node B" fault, wherein node A or node D sends a fault message to the controller, which belongs to the control request message of the path of the aforementioned transport network driver.
  • the controller invokes the corresponding control plug-in according to the third fault message to determine how to perform protection recovery on the foregoing service, specifically calling the control plug-in installed in S302.
  • the transport network controller can remove the failed working path.
  • the controller determines the atomic behavior of the node B, the node C, and the node D according to the atomic behavior supported by each node in the transport network.
  • the atomic behavior that the node D needs to perform is: 1) "ODU cross" atomic behavior, where The configured location is: the ingress port and the inbound ODU label corresponding to the original working path of the node (node A-node D-node B), and the egress port and outbound ODU corresponding to the original working path of the node (node A-node D-node B) Label; configurable content: remove ODU type cross-connection; 2) "ODU cross" atomic behavior, where configurable location is: node new working path (node A-node D-node C-node B) corresponds The inbound port and the inbound ODU tag, and the outbound port and outbound ODU tag corresponding to the new working path of the node (node A-node D-node
  • the atomic behavior that Node C needs to perform is: 1) "ODU Cross" atomic behavior, where the configurable location is: Incoming port and ODU corresponding to the node's new working path (Node A - Node D - Node C - Node B) The label, and the outbound port and the outbound ODU label corresponding to the new working path of the node (node A-node D-node C-node B); the configurable content is: Establish an ODU type cross-connection.
  • the atomic behavior that Node B needs to perform is: 1) "ODU cross" atomic behavior, where the configurable location is: the ingress port and the inbound ODU tag corresponding to the node's original working path (node A-node D-node B), and Node out port; configurable content: remove ODU type cross-connection; 2) "ODU cross” atomic behavior, where configurable location is: node new working path (node A-node D-node C-node B Corresponding ingress port and inbound ODU tag, and node out port; configurable content: establish ODU type cross-connection.
  • the controller sends a path configuration message including the atomic behavior to the node D, the node C, and the node B, so that the node 0, the node C, and the node B configure the transmission plane to perform the atomic behavior included in the message, that is, S317.
  • the atomic behavior that is configured for them separately.
  • FIG. 5 is a schematic flowchart of Embodiment 5 of a method for controlling a transport network according to the present invention.
  • FIG. 6 is a schematic diagram of a method for performing the method shown in FIG.
  • the atomic behavior supported by each node in the WDM transmission network includes: (1) wavelength crossing; (2) optical power adjustment, where it is assumed that the original WDM transmission network needs to monitor data according to actual optical power.
  • the wavelength path in the WDM transport network is probed and debugged until each wavelength in each link reaches a certain level of equalization.
  • the WDM transport network needs to be upgraded so that the WDM transport network can directly calculate the optical power values of the respective wavelength paths according to the damage model of each node.
  • the control 10 is a transport network controller. Taking four nodes as an example, respectively, a node E, a node F, a node G, and a node H, wherein a broken line indicates a controller established by the controller 10 and The control channel between each node, the solid line indicates the link between the nodes, and node A is the source node.
  • the wavelength path "Node E-Node F-Node G" already exists in the WDM transport network, and the wavelength used is ⁇ 1 , and the luminous power of the wavelength port on the ⁇ 1 of the node ⁇ is Pl . (Because there is damage in the WDM network, at node F and node G, the optical power of ⁇ 1 has changed, not equal to P1)
  • the method includes:
  • the controller acquires topology information of the transport network and atomic behavior supported by each node in the transport network.
  • S502 Install a new control plug-in on the controller and perform maintenance.
  • the installed control plug-in can calculate an appropriate optical power value for the wavelength path according to the damage model of each node in the WDM transport network.
  • the controller receives a control request of the path, where the control request of the path indicates establishing a wavelength path between the node F and the node H.
  • the controller invokes the corresponding control plug-in according to the path control request, calculates a wavelength path established by the request, and allocates a wavelength.
  • the calculation result is “node F-node G-node H” and the wavelength is input 2.
  • the controller calculates the optical power value of the wavelength path in the WDM transmission network by using the foregoing control plug-in.
  • the existing wavelength path "Node E-Node F-Node G" and the above-mentioned newly required wavelength path "Node F-Node G-Node H" pass the same link "Node F-Node G", Therefore, it is necessary to consider the optical power equalization of the two wavelengths on the link "Node F-Node G".
  • the above controller calculates the optical power according to the damage model of each node:
  • the new wavelength path "Node F-Node G-Node H” The luminous power of the wave port on the ⁇ 2 of the first node F is P2, and at the same time, the old Wave Long path "node E-node F-node G”
  • the luminous power of the wave port on ⁇ 1 of the first node E is adjusted to ⁇ 3.
  • S504 and S505 can be executed simultaneously.
  • the controller determines, according to the atomic behavior supported by each node in the transport network, the atomic behavior of the node ⁇ , the node F, the node G, and the node H, that is, the node that passes the working path and the protection path needs to be configured, in this example,
  • the atomic behavior that node E needs to perform is: 1) "Optical power adjustment" atomic behavior, where the configurable position is: Old wavelength path "Node E-node F-node G" on node E's ⁇ ⁇ wave port
  • the configurable content is: Adjust the luminous power to ⁇ 3.
  • the atomic behavior that Node F needs to perform is: 1) "wavelength crossing" atomic behavior, where the configurable position is: new wavelength path "node F-node G-node” wave port on ⁇ 2 of node F, and The path corresponds to the egress port and the outgoing wavelength ⁇ 2; the configurable content is: establishing a cross-connection of the wavelength type; 2) "optical power adjustment” atomic behavior, wherein the configurable position is: the new wavelength path "node F- Node G-node ⁇ "wave port on ⁇ 2 of node F; configurable content is: Adjust the illuminating power to ⁇ 2.
  • the atomic behavior that node G needs to perform is: 1) "wavelength crossing" atomic behavior, where the configurable position is: the new wavelength path "node F-node G-node” corresponds to the ingress port and the incoming wavelength ⁇ 2, and The outbound port corresponding to the path and the outgoing wavelength ⁇ 2; configurable content is: Establish a cross-connection of the wavelength type.
  • the atomic behaviors that nodes need to perform are: 1) "wavelength crossing”.
  • the controller sends a path configuration message including the atomic behavior to the node E, the node F, the node G, and the node H, so that the node, the node F, the node G, and the node H configure the transport plane to execute the information included in the foregoing message.
  • Atomic behavior the atomic behavior that is configured separately for them in S506.
  • the transport plane is the plane in which the nodes in the transport network are located.
  • a complete function is decomposed into multiple atomic behaviors.
  • the pre-installed corresponding control plug-in can be called, and the control plug-in is used to calculate the path.
  • the controller determines the atomic behavior that the node passing through the path needs to perform according to the atomic behavior supported by each node in the transport network, and notifies the nodes to perform the corresponding atomic behavior, and does not need the atom of each node. Behavior, you only need to recombine the atomic behaviors supported by each node, which can quickly implement new functions and reduce upgrades. The risk of the network.
  • FIG. 7 is a schematic flowchart of a seventh embodiment of a method for controlling a transport network according to the present invention.
  • the executor of the method may be any one of the nodes that the path determined by the controller passes, and the method includes:
  • the node receives a path configuration message that is sent by the controller and includes an atomic behavior.
  • the controller according to the control request message of the path, invokes the corresponding control plug-in to calculate the node through which the path passes, and the controller determines the atomic behavior that the node needs to perform, and carries the atomic behavior that the node needs to perform in the path configuration message. Send to the corresponding node.
  • the node configures the transport plane according to the path configuration message, and performs an atomic behavior included in the message.
  • the plane where the node is located is the transport plane. After receiving the path configuration message, the node completes its own configuration and can perform the atomic behavior.
  • the controller uses the automatic acquisition of the atomic behavior supported by each node in the transport network, then before S701, the node sends the supported atomic behavior to the controller through a control channel with the controller.
  • the node receives the path configuration message sent by the controller and includes the atomic behavior, and implements the atomic behavior therein, and realizes that in the upgrade process of the transport network, the node in the determined path according to the indication supports itself.
  • Atomic behavior can be recombined without having to change other functions of the node. For example, when a function is implemented, the node completes the encapsulation of the atomic behavior, and in another function, the node performs the decapsulation of the atomic behavior, and the node supports encapsulation of the two atomic behaviors of the decapsulation, using the embodiment of the present invention. Just indicate which atomic behavior it performs, and if you are using existing technology, you need to reconfigure the entire function for that node.
  • FIG. 8 is a schematic structural diagram of Embodiment 1 of a controller provided by the present invention. As shown in FIG. 8, the controller includes: a receiving module 801, a determining module 802, and a sending module 803, where:
  • the receiving module 801 is configured to receive a control request message of the path
  • the determining module 802 is configured to determine, according to the topology information of the transport network and the atomic behavior supported by each node in the transport network, at least the transport network through which the path passes. a node and at least one atomic behavior that the at least one node needs to perform; a sending module 803, configured to send, to the at least one node, a path configuration message including an atomic behavior, so that each node configures the transport plane to perform
  • the atomic behavior contained in the message is to implement the transfer function requested in the control request message; wherein the atomic behavior is a basic action that constitutes a function that the node can perform.
  • the controller determines at least one node and the at least one node in the transport network through which the path passes according to the topology information of the transport network and the atomic behavior supported by each node in the transport network. At least one atomic behavior required to be performed, and a path configuration message containing atomic behavior is sent to the at least one node to cause each node to configure the transport plane to perform atomic behavior contained in the message, thus, when the transport network needs When the extension supports the new control function, the nodes included in the notification path can perform the corresponding atomic behavior, which can quickly implement new functions and reduce the risk of upgrade.
  • FIG. 9 is a schematic structural diagram of a second embodiment of a controller according to the present invention. As shown in FIG. 9, the controller further includes: an obtaining module 804, configured to acquire topology information of the transport network. And the atomic behavior supported by each node in the transport network.
  • the obtaining module 804 is specifically configured to receive topology information of the transport network input by the user and atomic behavior supported by each node in the transport network; or, by using a control channel established between each node in the transport network Obtaining topology information of the transport network and atomic behavior supported by nodes in the transport network.
  • the obtaining module 804 includes: an establishing unit 901, a collecting unit 902, and a receiving unit 903, where:
  • An establishing unit 901 configured to establish a control channel to each node in the transport network, a collecting unit 902, configured to collect topology information of the transport network by using the control channel, and a receiving unit 903, using each module
  • the determining module 802 of the controller includes: a calling unit 110, a determining unit 120, where:
  • the calling unit 1 10 is configured to invoke a control plugin according to the control request message, where the control plugin is configured to calculate at least one node that the path passes according to the topology information of the transport network; and the determining unit 120 is configured to: Determining at least one atomic behavior that the at least one node is required to perform based on atomic behavior supported by each node in the transport network.
  • the controller further includes: a maintenance module 805 for maintaining a control plug-in installed through the control plug-in interface.
  • the receiving module 801 is specifically configured to receive a control request message of a path configured by the network management; or, receive a control request message of a path driven by the application layer; or receive a control request message of a path of the transport network driver.
  • the sending module 803 is specifically configured to: send, to the at least one node, a message that includes a location and a configured content of the atomic behavior configuration, so that each node performs a configuration of the transport plane according to the location and the configured content of the atomic behavior configuration. .
  • the path control request message includes: a path establishment request message, a path modification request message, a path deletion request message, or a path re-routing request message, but does not This is limited.
  • the path configuration message is an OF message or an XML message.
  • the transport network may be any of the following: SDH, SONET, OTN, WDM, and the like.
  • FIG. 11 is a schematic structural diagram of a first embodiment of a node according to the present invention.
  • the node is any node of a node that the path is determined by the controller.
  • the node includes: a receiving module 111, an executing module 112, among them:
  • the receiving module 11 1 is configured to receive a path configuration message that is sent by the controller and includes an atomic behavior.
  • the executing module 112 is configured to configure the transport plane according to the path configuration message, and perform an atomic behavior included in the message.
  • the node further includes a transmitting module 113 for transmitting the supported atomic behavior to the controller through a control channel with the controller.
  • FIG. 12 is a schematic structural diagram of Embodiment 4 of a controller according to the present invention. As shown in FIG. 12, the controller includes: a receiver 121, a processor 122, and a transmitter 123, where:
  • a receiver 121 configured to receive a control request message of the path
  • a processor 122 configured to determine, according to topology information of the transport network and atomic behavior supported by each node in the transport network, at least one of the transport networks through which the path passes a node and at least one atomic behavior that the at least one node needs to perform
  • a sender 123 configured to send, to the at least one node, a path configuration message including an atomic behavior, so that each node configures the transport plane to perform
  • the behavior is to implement the transfer function requested in the control request message; it should be noted that the atomic behavior is a basic action that constitutes a function that the node can perform.
  • the processor 122 is further configured to acquire topology information of the transport network and atomic behavior supported by each node in the transport network.
  • the processor 122 is specifically configured to receive topology information of the transport network input by a user and an atomic behavior supported by each node in the transport network; or obtain the foregoing by using a control channel established between nodes in the transport network.
  • the topology information of the transport network and the atomic behavior supported by the nodes in the transport network are specifically configured to receive topology information of the transport network input by a user and an atomic behavior supported by each node in the transport network; or obtain the foregoing by using a control channel established between nodes in the transport network.
  • the processor 122 is specifically configured to establish a control channel to each node in the transport network; collect the topology information of the transport network by using the control channel; at this time, the receiver 121 is further used for The supported atomic behavior sent by each node in the transport network is received by the control channel.
  • the processor 122 is further configured to invoke a control plugin according to the control request message, where the control plugin is configured to calculate, according to the topology information of the transport network, at least one node that the path passes through; according to the transport network
  • the atomic behavior supported by each node in the determination determines at least one atomic behavior that the at least one node is required to perform.
  • the processor 122 is further configured to maintain a control plug-in installed through the control plug-in interface.
  • the receiver 121 is specifically configured to receive a control request message of the path configured by the network management; or, receive a control request message of the path driven by the application layer; or receive a control request message of the path of the transport network driver.
  • control request message of the path includes: a path establishment request message, a path modification request message, a path deletion request message, or a path re-routing request message.
  • the path configuration message is an OF message or an XML message.
  • the transport network includes any one of the following: SDH, SONET, OTN, WDM, and the like.
  • the transmitter 123 is configured to send, to the at least one node, a message that includes the location and the configured content of the atomic behavior configuration, so that each node performs the configuration of the transport plane according to the location and the configured content of the atomic behavior configuration.
  • the controller may perform the foregoing method embodiments, and the implementation principles thereof are similar, and details are not described herein again.
  • the controller determines at least one node and the at least one node in the transport network through which the path passes according to the topology information of the transport network and the atomic behavior supported by each node in the transport network.
  • At least one atomic behavior required to be performed and to the at least one The nodes send a path configuration message containing the atomic behavior, so that each node configures the transport plane to perform the atomic behavior contained in the message, and thus, when the transport network needs to be extended to support the new control function, the notification path includes The node can perform the corresponding atomic behavior, which can quickly implement new functions and reduce the risk of upgrade.
  • FIG. 13 is a schematic structural diagram of a second embodiment of a node according to the present invention.
  • the node is any node of a node that the path determined by the controller passes, and as shown in FIG. 13, the node includes: a receiver 131 and a processor 132. , among them:
  • the receiver 131 is configured to receive a path configuration message that is sent by the controller and includes an atomic behavior.
  • the processor 132 is configured to configure the transmission plane according to the path configuration message, and perform an atomic behavior included in the message.
  • the node further includes: a transmitter 133, specifically, the transmitter 133 is configured to send the supported atomic behavior to the controller through a control channel with the controller.
  • the method includes the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种传送网控制方法、控制器和节点,该方法包括:控制器接收路径的控制请求消息;根据传送网的拓朴信息和所述传送网中各节点支持的原子行为,确定所述路径所经过的传送网中至少一个节点以及所述至少一个节点所需执行的至少一个原子行为;向所述至少一个节点对应发送包含原子行为的路径配置消息,以使各节点对传送平面进行配置以执行所述消息中所包含的原子行为;本发明实施例中通过使路径经过的节点执行对应的原子行为,实现了新功能的快速实现,并降低了升级的风险。

Description

传送网控制方法、 控制器和节点
技术领域
本发明实施例涉及通信技术, 尤其涉及一种传送网控制方法、 控制器和 节点。 背景技术
传送网的功能是为用户传送业务, 传送网可以釆用多种传送技术, 例如 同步数字体系( Synchronous Digital Hierarchy,简称 SDH )、光传送网( Optical Transport Network,简称 OTN )、波分复用 ( Wavelength Division Multiplexing, 简称 WDM )等。 传统的传送网是一种静态系统, 网络中的路径创建、 维护 和拆除等, 都需要人工通过网管系统进行配置, 随着数据业务的不断增长, 这种连接方式不能满足用户对光网络系统动态、 灵活的要求。 于是, 国际电 信联盟 -电信标准化部门 ( International Telecommunication Union - Telecommunication Standardization Sector, 简称 ITU-T )提出了自动交换光网 络( Automatically Switched Optical Network, 简称 ASON )架构, 该架构给传 统的光网络增加了一个控制平面, 以实现对光网络的自动控制的功能, 进而, 因特网工程任务组( Internet Engineering Task Force , 简称 IETF )基于该控制 平面定义了扩展多协议标记交换 ( Generalized Multi-Protocol Label Switching , 简称 GMPLS )协议栈, 通过执行链路管理、 路由、 信令等相关协议, 在网络 中实现链路自动发现、 路径计算和路径自动建立等功能。
现有技术中, 釆用分布式的 GMPLS对传送网进行控制, 各节点运行路 由协议, 例如流量工程扩展的开放式最短路径优先( Open Shortest Path First - Traffic Engineering, 简称 OSPF-TE ) , 以及信令协议, 例如流量工程扩展的 资源子贞留十办议 ( Resource Reservation Protocol - Traffic Engineering , 简称 RSVP-TE ) , 来实现对传送网的控制。 但是, 一旦运营商需要升级网络中各 节点的控制功能(例如升级釆用新的路由算法, 或升级支持对光功率的自动 控制等) , 则需要对全网中所有节点的控制平面 (包括路由模块、 信令模块 等)进行升级, 从而使得升级过程非常复杂, 而且容易失败、 风险度高。 发明内容 本发明实施例提供一种传送网控制方法、 控制器和节点, 用于解决传送 网中升级过程复杂、 风险度高的问题。
本发明第一方面提供一种传送网控制方法, 包括:
控制器接收路径的控制请求消息;
控制器根据传送网的拓朴信息和所述传送网中各节点支持的原子行为 , 确定所述路径所经过的传送网中至少一个节点以及所述至少一个节点所需执 行的至少一个原子行为;
控制器向所述至少一个节点对应发送包含原子行为的路径配置消息, 以 使各节点对传送平面进行配置以执行所述消息中所包含的原子行为, 以实现 所述控制请求消息中所请求的传送功能;
其中, 所述原子行为为组成节点所能完成的功能的基本动作。
结合第一方面, 在第一方面的第一种可能的实施方式中, 所述控制器接 收路径的控制请求消息之前, 还包括:
所述控制器获取所述传送网的拓朴信息和所述传送网中各节点支持的原 子行为。
结合第一方面的第一种可能的实施方式, 在第一方面第二种可能的实施 方式中 , 所述控制器获取所述传送网的拓朴信息和所述传送网中各节点支持 的原子行为, 包括:
所述控制器接收用户输入的所述传送网的拓朴信息和所述传送网中各节 点支持的原子行为; 或者,
所述控制器通过与传送网中各节点之间建立的控制通道获取所述传送网 的拓朴信息和所述传送网中各节点支持的原子行为。
结合第一方面的第二种可能的实施方式, 在第一方面第三种可能的实施 方式中, 所述控制器通过与传送网中各节点之间建立的控制通道获取所述传 送网的拓朴信息和所述传送网中各节点支持的原子行为, 包括:
所述控制器建立到所述传送网中各节点的控制通道;
所述控制器通过所述控制通道釆集所述传送网的拓朴信息, 并通过所述 结合第一方面至第一方面的第三种可能的实施方式中任一项, 在第一方 面第四种可能的实施方式中, 所述控制器根据传送网的拓朴信息和所述传送 网中各节点支持的原子行为, 确定所述路径所经过的传送网中至少一个节点 以及所述至少一个节点所需执行的至少一个原子行为, 包括:
所述控制器根据所述控制请求消息调用控制插件, 所述控制插件用于根 据所述传送网的拓朴信息计算出所述路径所经过的至少一个节点;
所述控制器根据所述传送网中各节点支持的原子行为, 确定所述至少一 个节点所需执行的至少一个原子行为。
结合第一方面的第四种可能的实施方式, 在第一方面第五种可能的实施 方式中, 所述控制器根据所述控制请求消息调用对应的控制插件之前, 还包 括:
所述控制器维护通过控制插件接口安装的控制插件。
结合第一方面至第一方面的第五种可能的实施方式中任一项, 在第一方 面第六种可能的实施方式中, 所述控制器接收路径的控制请求消息, 包括: 所述控制器接收网管配置的路径的控制请求消息; 或者,
所述控制器接收应用层驱动的路径的控制请求消息; 或者,
所述控制器接收传送网驱动的路径的控制请求消息。
结合第一方面至第一方面的第六种可能的实施方式中任一项, 在第一方 面第七种可能的实施方式中, 所述路径的控制请求消息, 包括:
路径的建立请求消息、 路径的修改请求消息、 路径的删除请求消息、 或 者路径的重路由请求消息。
结合第一方面至第一方面的第七种可能的实施方式中任一项, 在第一方 面第八种可能的实施方式中, 所述原子行为包括: 所述原子行为配置的位置 和配置的内容;
所述控制器向所述至少一个节点对应发送包含原子行为的消息, 以使各 节点执行所述消息中所包含的原子行为对传送平面进行配置, 包括:
所述控制器向所述至少一个节点对应发送包含原子行为配置的位置和配 置的内容的消息, 以使各节点根据所述原子行为配置的位置和配置的内容进 行传送平面的配置。
结合第一方面至第一方面的第八种可能的实施方式中任一项, 在第一方 面第九种可能的实施方式中, 所述路径配置消息为开放流 OF 消息或者可扩 展标记语言 XML消息。
结合第一方面至第一方面的第九种可能的实施方式中任一项, 在第一方 面第十种可能的实施方式中, 所述传送网, 包括下述任一种:
同步数字体系 SDH、 同步光纤网 S0NET、 光传送网 0TN、 波分复用
WDM。
本发明实施例第二方面提供一种传送网控制方法, 包括:
节点接收控制器发送的包含原子行为的路径配置消息;
节点根据所述路径配置消息对传送平面进行配置, 并执行所述消息中包 含的原子行为。
结合第二方面, 在第二方面的第一种可能的实施方式中, 所述节点接收 控制器发送的包含原子行为的路径配置消息之前, 还包括:
所述节点通过与所述控制器之间的控制通道向所述控制器发送所支持的 原子行为。
本发明实施例第三方面提供一种控制器, 包括:
接收模块, 用于接收路径的控制请求消息;
确定模块, 用于根据传送网的拓朴信息和所述传送网中各节点支持的原 子行为, 确定所述路径所经过的传送网中至少一个节点以及所述至少一个节 点所需执行的至少一个原子行为;
发送模块, 用于向所述至少一个节点对应发送包含原子行为的路径配置 消息,以使各节点对传送平面进行配置以执行所述消息中所包含的原子行为, 以实现所述控制请求消息中所请求的传送功能;
其中, 所述原子行为为组成节点所能完成的功能的基本动作。
结合第三方面, 在第三方面的第一种可能的实施方式中, 所述控制器还 包括:
获取模块 , 用于获取所述传送网的拓朴信息和所述传送网中各节点支持 的原子行为。
结合第三方面的第一种可能的实施方式, 在第三方面的第二种可能的实 施方式中, 所述获取模块, 具体用于接收用户输入的所述传送网的拓朴信息 和所述传送网中各节点支持的原子行为; 或者, 通过与传送网中各节点之间建立的控制通道获取所述传送网的拓朴信息 和所述传送网中各节点支持的原子行为。
结合第三方面的第二种可能的实施方式, 在第三方面的第三种可能的实 施方式中, 所述获取模块, 包括:
建立单元, 用于建立到所述传送网中各节点的控制通道;
釆集单元, 用于通过所述控制通道釆集所述传送网的拓朴信息; 接收单元, 用于通过所述控制通道接收所述传送网中各节点发送的所支 持的原子行为。
结合第三方面至第三方面的第三种可能的实施方式中任一项, 在第三方 面的第四种可能的实施方式中, 所述确定模块, 包括:
调用单元, 用于根据所述控制请求消息调用控制插件, 所述控制插件用 于根据所述传送网的拓朴信息计算出所述路径所经过的至少一个节点;
确定单元, 用于根据所述传送网中各节点支持的原子行为, 确定所述至 少一个节点所需执行的至少一个原子行为。
结合第三方面的第四种可能的实施方式, 在第三方面的第五种可能的实 施方式中, 所述控制器还包括:
维护模块, 用于维护通过控制插件接口安装的控制插件。
结合第三方面至第三方面的第五种可能的实施方式中任一项, 在第三方 面的第六种可能的实施方式中, 所述接收模块, 具体用于接收网管配置的路 径的控制请求消息; 或者,
接收应用层驱动的路径的控制请求消息; 或者,
接收传送网驱动的路径的控制请求消息。
结合第三方面至第三方面的第六种可能的实施方式中任一项, 在第三方 面的第七种可能的实施方式中, 所述路径的控制请求消息, 包括:
路径的建立请求消息、 路径的修改请求消息、 路径的删除请求消息、 或 者路径的重路由请求消息。
结合第三方面至第三方面的第七种可能的实施方式中任一项, 在第三方 面的第八种可能的实施方式中, 所述发送模块, 具体用于向所述至少一个节 点对应发送包含原子行为配置的位置和配置的内容的消息, 以使各节点根据 所述原子行为配置的位置和配置的内容进行传送平面的配置。 结合第三方面至第三方面的第八种可能的实施方式中任一项, 在第三方 面的第九种可能的实施方式中,所述路径配置消息为 OF消息或者 XML消息。
结合第三方面至第三方面的第九种可能的实施方式中任一项, 在第三方 面的第十种可能的实施方式中, 所述传送网, 包括下述任一种:
SDH、 SONET、 OTN、 WDM。
本发明实施例第四方面提供一种节点, 包括:
接收模块, 用于接收控制器发送的包含原子行为的路径配置消息; 执行模块, 用于根据所述路径配置消息对传送平面进行配置, 并执行所 述消息中包含的原子行为。
结合第四方面, 在第四方面的第一种可能的实施方式中, 所述节点还包 括:
发送模块, 用于通过与所述控制器之间的控制通道向所述控制器发送所 支持的原子行为。
本发明实施例第五方面提供一种控制器, 包括:
接收器, 用于接收路径的控制请求消息;
处理器, 用于根据传送网的拓朴信息和所述传送网中各节点支持的原子 行为, 确定所述路径所经过的传送网中至少一个节点以及所述至少一个节点 所需执行的至少一个原子行为;
发送器, 用于向所述至少一个节点对应发送包含原子行为的路径配置消 息, 以使各节点对传送平面进行配置以执行所述消息中所包含的原子行为, 以实现所述控制请求消息中所请求的传送功能;
其中, 所述原子行为为组成节点所能完成的功能的基本动作。
结合第五方面, 在第五方面的第一种可能的实施方式中, 所述处理器, 还用于获取所述传送网的拓朴信息和所述传送网中各节点支持的原子行为。
结合第五方面的第一种可能的实施方式, 在第五方面的第二种可能的实 施方式中, 所述处理器, 具体用于接收用户输入的所述传送网的拓朴信息和 所述传送网中各节点支持的原子行为; 或者,
通过与传送网中各节点之间建立的控制通道获取所述传送网的拓朴信息 和所述传送网中各节点支持的原子行为。
结合第五方面的第二种可能的实施方式, 在第五方面的第三种可能的实 施方式中, 所述处理器, 具体用于建立到所述传送网中各节点的控制通道; 通过所述控制通道釆集所述传送网的拓朴信息;
所述接收器, 还用于通过所述控制通道接收所述传送网中各节点发送的 所支持的原子行为。
结合第五方面至第五方面的第三种可能的实施方式, 在第五方面的第四 种可能的实施方式中, 所述处理器具体用于根据所述控制请求消息调用控制 插件, 所述控制插件用于根据所述传送网的拓朴信息计算出所述路径所经过 的至少一个节点;
用于根据所述传送网中各节点支持的原子行为, 确定所述至少一个节点 所需执行的至少一个原子行为。
结合第五方面至第五方面的第四种可能的实施方式, 在第五方面的第五 种可能的实施方式中, 所述处理器, 还用于维护通过控制插件接口安装的控 制插件。
结合第五方面至第五方面的第五种可能的实施方式, 在第五方面的第六 种可能的实施方式中, 所述接收器, 具体用于接收网管配置的路径的控制请 求消息; 或者,
接收应用层驱动的路径的控制请求消息; 或者,
接收传送网驱动的路径的控制请求消息。
结合第五方面至第五方面的第六种可能的实施方式, 在第五方面的第七 种可能的实施方式中, 所述路径的控制请求消息, 包括:
路径的建立请求消息、 路径的修改请求消息、 路径的删除请求消息、 或 者路径的重路由请求消息。
结合第五方面至第五方面的第七种可能的实施方式, 在第五方面的第八 种可能的实施方式中, 所述发送器, 具体用于向所述至少一个节点对应发送 包含原子行为配置的位置和配置的内容的消息, 以使各节点根据所述原子行 为配置的位置和配置的内容进行传送平面的配置。
结合第五方面至第五方面的第八种可能的实施方式, 在第五方面的第九 种可能的实施方式中, 所述路径配置消息为 OF消息或者 XML消息。
结合第五方面至第五方面的第九种可能的实施方式, 在第五方面的第十 种可能的实施方式中, 所述传送网, 包括下述任一种: SDH, SONET、 OTN、 WDM。
本发明实施例第六方面提供一种节点, 包括:
接收器, 用于接收控制器发送的包含原子行为的路径配置消息; 处理器, 用于根据所述路径配置消息对传送平面进行配置, 并执行所述 消息中包含的原子行为。
结合第六方面, 在第六方面的第一种可能的实施方式中, 所述节点还包 括:
发送器, 用于通过与所述控制器之间的控制通道向所述控制器发送所支 持的原子行为。
本发明实施例中, 控制器接收到路径的控制请求之后, 根据传送网的拓 朴信息和传送网中各节点支持的原子行为, 确定上述路径所经过的传送网中 至少一个节点以及该至少一个节点所需执行的至少一个原子行为, 并向该至 少一个节点发送包含原子行为的路径配置消息, 以使各节点对传送平面进行 配置以执行该消息中所包含的原子行为, 因而, 当传送网需要扩展支持新的 控制功能时, 通知路径中包含的节点执行对应的原子行为即可, 这样就无需 再对控制平面上的各节点进行升级, 可以快速实现新的功能, 且降低了升级 的风险。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图做一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。
图 1为本发明提供的传送网控制方法实施例一的流程示意图;
图 2为本发明提供的传送网控制方法实施例二的流程示意图;
图 3为本发明提供的传送网控制方法实施例三的流程示意图;
图 4为图 3所示方法实施例的场景图;
图 5为本发明提供的传送网控制方法实施例五的流程示意图;
图 6为图 5所示方法实施例的场景图; 图 7为本发明提供的传送网控制方法实施例七的流程示意图; 图 8为本发明提供的控制器实施例一的结构示意图;
图 9为本发明提供的控制器实施例二的结构示意图;
图 10为本发明提供的控制器实施例三的结构示意图;
图 11为本发明提供的节点实施例一的结构示意图;
图 12为本发明提供的控制器实施例四的结构示意图;
图 13为本发明提供的节点实施例二的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明提供的传送网控制方法实施例一的流程示意图, 如图 1所 示, 该方法包括:
5101、 控制器接收路径的控制请求消息; 具体地, 该路径的控制请求消 息用于请求不同的传送功能, 可以是路径的建立请求消息、 路径的修改请求 消息、 路径的删除请求消息, 也可以是路径的重路由请求消息, 但并不以此 为限; 其中, 路径的修改请求消息可以是路径带宽修改请求或者波长路径光 功率调整请求等。 不同的控制请求消息对应的在后续计算路径上节点的控制 插件不同。 例如, 建立请求消息有对应的建立路径插件, 删除请求消息有对 应的删除路径插件。
5102、 控制器根据传送网的拓朴信息和上述传送网中各节点支持的原子 行为, 确定上述路径所经过的传送网中至少一个节点以及上述至少一个节点 所需执行的至少一个原子行为。 控制器可以是根据具体的算法计算出路径经 过的传送网中的节点和各节点所需执行的原子行为。
5103、 控制器向上述至少一个节点对应发送包含原子行为的路径配置消 息, 以使各节点对传送平面进行配置以执行上述消息中包含的原子行为, 以 实现上述控制请求消息中所请求的传送功能。 该路径配置消息可以为开放流 ( Openflow, 简称 OF ) 消息, 即对 OF协议进行扩展, 在修改流项 ( Modify Flow Entry )消息中携带节点需要执行的原子行为; 也可以是可扩展标记语言 ( Extensible Markup Language , 简称 XML ) 消息, 即用 XML来描述节点需 要执行的原子行为, 并通过基于 XML 的协议向节点发送携带节点需要执行 的原子行为的消息。
其中, 上述原子行为为组成节点所能完成的功能的基本动作, 举例说明, 例如, 某传送网中的节点的作用是将客户信号在网络中进行传送。 该传送网 中的某条业务的首节点需要将客户信号封装起来使其可以在传送网中传送, 该业务的中间节点需要建立交叉, 使封装后的客户信号可以从节点的入端口 中指定的入通道向节点的出端口中指定的出通道传送, 该业务的末节点则需 要把客户信号进行解封装, 另外, 为了有保障地传送客户信号, 其中部分节 点还需要对该业务进行监控、 保护等, 这里将客户信息在网络中进行传送的 功能由多个基本动作组成, 例如, 上述中间节点建立交叉, 该建立交叉就是 一个原子行为。
本实施例中, 控制器接收到路径的控制请求之后, 根据传送网的拓朴信 息和传送网中各节点支持的原子行为, 确定上述路径所经过的传送网中至少 一个节点以及该至少一个节点所需执行的至少一个原子行为, 并向该至少一 个节点发送包含原子行为的路径配置消息, 以使各节点对传送平面进行配置 以执行该消息中所包含的原子行为, 因而, 当传送网需要扩展支持新的控制 功能时, 通知路径中包含的节点执行对应的原子行为即可, 这样可以快速实 现新的功能, 且降低了升级网络的风险。 如果釆用现有技术, 传送网中各个 节点均需要运行控制平面的控制功能, 并在传送网需要扩展支持新的控制功 能时, 需要对传送网中所有节点的控制平面进行升级, 这个过程会非常复杂, 且任何一处出现错误都可能导致整个升级过程失败。
本发明实施例中的传送网可以是 SDH、 同步光纤网( Synchronous Optical
Network, 简称 SONET ) 、 OTN、 WDM等中的任一种。
进一步地, S101中控制器接收路径的控制请求消息之前, 该控制器需要 获取上述传送网的拓朴信息和该传送网中各节点支持的原子行为; 具体地, 有两种方式去获取: ( 1 )该控制器接收用户输入的上述传送网的拓朴信息和 该传送网中各节点支持的原子行为; (2 )该控制器通过与传送网中各节点之 间建立的控制通道获取上述传送网的拓朴信息和该传送网中各节点支持的原 子行为。 如果釆用上述第 (2 )种方式, 具体为, 该控制器建立到上述传送网 中各节点的控制通道, 然后通过该控制通道釆集该传送网的拓朴信息, 并通 中的控制器, 可以了解到整个网络的情况, 可以通过这个控制通道釆集到整 个网络的拓朴信息, 并且接收各节点主动上报的自己所支持的原子行为, 控 制器会将这些信息进行维护, 其中, 如果该传送网中所有的节点所支持的原 子行为相同, 则该控制器可以只维护 1份原子行为列表, 如果该传送网中所 有的节点所支持的原子行为不同, 则该控制器除了维护原子行为的列表, 还 需要维护各节点与原子行为的对应关系, 即某节点支持哪些原子行为。
需要说明的是, 本发明实施例中, 原子行为可以包括: 该原子行为配置 的位置和配置的内容; 例如, "SDH交叉" 原子行为中, 可配置的位置为: 节点入端口和入 SDH标签, 以及节点出端口和出 SDH标签; 可配置的内容 为: 建立或拆除单向或双向的 SDH类型的交叉连接。 进而, 上述控制器向上 述至少一个节点对应发送包含原子行为的消息, 以使各节点执行上述消息中 所包含的原子行为对传送平面进行配置, 具体为, 控制器向上述至少一个节 点对应发送包含原子行为配置的位置和配置的内容的消息, 以使各节点根据 上述原子行为配置的位置和配置的内容进行传送平面的配置。 各节点配置完 成后就可以执行该原子行为中的内容了。
图 2为本发明提供的传送网控制方法实施例二的流程示意图, 如图 2所 示, 上述 S102中,控制器根据传送网的拓朴信息和上述传送网中各节点支持 的原子行为, 确定上述路径所经过的传送网中至少一个节点以及上述至少一 个节点所需执行的至少一个原子行为, 具体为:
S201、 控制器根据上述控制请求消息调用控制插件, 该控制插件用于根 据上述传送网的拓朴信息计算出上述路径所经过的至少一个节点。
控制器接收到路径的控制请求消息后, 从中获取到需求, 并根据需求调 用控制插件, 例如, 控制器接收到的请求消息请求建立 N+R混合保护恢复控 制功能,则控制器会根据这个请求调用具备 N+R混合保护恢复控制功能的控 制插件, 该 N+R混合保护回复控制功能具体为: 对于 1条业务, 当发生第 1 次到第 N次故障时,对业务启动 1+1保护; 当该业务发生第 N+1次到第 N+R 次故障时, 对业务启动重路由恢复; 当该业务发生第 N+R+1次故障时, 不对 业务进行保护恢复。
S202、 控制器根据上述传送网中各节点所支持的原子行为, 确定上述至 少一个节点所需执行的至少一个原子行为。
在 S201之前, 控制器维护通过控制插件接口安装的控制插件, 具体地, 本实施例中, 上述控制插件是预先安装在上述控制器中的, 控制器中设置有 控制插件安装接口, 当需要传送网支持新的控制功能时, 通过控制器中的控 制插件安装接口安装相关的控制插件, 并由控制器对该控制插件进行维护, 且在接收到控制请求消息后选择调用对应的控制插件执行相关操作。
釆用本发明实施例, 传送网中节点完成的功能被表示为多个原子行为, 因此, 在设计新的控制插件来实现新的路径的控制功能时, 不需要改动路径 上节点的原子行为, 只需将已有的原子行为重新进行组合即可。
需要说明的是, 上述 S101中, 控制器接收路径的控制请求消息, 可以存 在下述三种情况: ( 1 )控制器接收网管配置的路径的控制请求消息, 即接收 网管的命令; (2 )控制器接收应用层驱动的路径的控制请求消息, 即控制器 接收上层应用层的业务驱动, 例如, 数据中心控制器驱动传送网控制器执行 路径建立命令, 以使该传送网承载数据中心之间的数据迁移; (3 )控制器接 收传送网驱动的路径的控制请求消息, 即接收控制器下层的传送网的业务驱 动, 例如, 网络层链路故障触发传送网控制器执行重路由请求。
图 3为本发明提供的传送网控制方法实施例三的流程示意图, 图 4为图
3所示方法实施例的场景图,举例说明前述方法实施例,以 OTN传送网为例, 殳该 OTN传送网中各节点都支持的原子行为包括: ( 1 ) ODU交叉; ( 2 ) 1+1保护-源端; (3 ) 1+1保护-宿端, 并假设需要升级该 OTN传送网, 使该 OTN传送网支持上述 N+R混合保护恢复控制功能, 其中, N、 R为大于等于 1的整数。
参照图 4, 包括控制器 10,该控制 10为传送网控制器,以 4个节点为例, 分别为节点 A、 节点 B、 节点 C、 节点 D, 其中虚线表示控制器 10建立的控 制器与各节点之间的控制通道, 实线表示各节点之间的链路, 其中节点 A为 源节点。
如图 3所示, 该方法包括: 5301、 控制器获取传送网的拓朴信息和该传送网中各节点支持的原子行 为。 具体获取的过程可参照前述方法实施例, 在此不再赘述。
5302、 在控制器上安装新的控制插件并进行维护, 本例中, 安装的控制 插件支持上述 N+R混合保护恢复控制功能。
S303、 控制器接收路径的控制请求消息, 本例中假设该控制请求消息为 网管发送的命令,用于指示该业务需要 N+R混合保护恢复,其中,假设 N=2, R=l。
5304、 控制器根据上述路径的控制请求消息调用对应的控制插件, 为上 述业务计算出 1+1保护组的路径, 具体地调用 S302中安装的控制插件。参照 图 4, 假定计算出来的工作路径是 "节点 A-节点 B" , 保护路径是 "节点 A- 节点 C-节点 B" 。
5305、 控制器根据上述传送网中各节点支持的原子行为, 确定节点 A、 节点 B、 节点 C的原子行为, 即需要对上述工作路径和保护路径经过的节点 进行配置, 本例中, 节点 A需要执行的原子行为有: 1 ) "1+1保护-源端" 原子行为, 其中, 可配置的位置为: 节点入端口, 节点工作路径对应的出端 口和出 ODU标签, 节点保护路径对应的出端口和出 ODU标签; 可配置的内 容为: 建立 1+1双发交叉。 节点 B需要执行的原子行为有: 1 ) "1+1保护- 宿端" 原子行为, 其中, 可配置的位置为: 节点工作路径对应的入端口和入 ODU标签, 节点保护路径对应的入端口和入 ODU标签, 节点出端口; 可配 置的内容为: 建立 1+1选收交叉。
5306、 控制器向节点 A、 节点 B、 节点 C发送包含原子行为的路径配置 消息, 以使节点八、 节点 B、 节点 C对传送平面进行配置以执行上述消息中 所包含的原子行为, 即 S305中为它们分别配置的原子行为。 其中传送平面, 就是传送网中各节点所在的平面。
S307、 上述工作路径或保护路径发生第一次故障, 源节点或发生故障的 链路两端的节点向上述控制器发送第一次故障消息, 该故障消息相当于前述 控制请求消息。 本例中, 没工作路径故障, 具体为 "节点 A-节点 B"故障, 其中节点 A向控制器发送故障消息, 这属于前述传送网驱动的路径的控制请 求消息。
S308、 控制器根据上述第一次故障消息调用控制插件, 确定如何对上述 业务进行保护恢复, 具体地调用 S302中安装的控制插件, 由于这是第一次故 障, 因此根据上述 "N+R混合保护回复控制功能"对上述业务进行 1+1保护, 业务将倒换到保护路径 "节点 A-节点 C-节点 B" 上, 且该保护路径变成新的 工作路径; 同时, 为了使下一次故障(N=2 )时, 仍能够实现对业务进行 1+1 保护, 需要再次新建一条保护路径 "节点 A-节点 D-节点 B" , 与原有的保护 路径再次形成 1+1保护, 该新的保护路径可以由是上述控制插件计算的。 可 选地, 传送网控制器可以将发生故障的工作路径进行拆除。
5309、 控制器根据上述传送网中各节点支持的原子行为, 确定节点 A、 节点 B、 节点 D的原子行为, 其中, 节点 C没有发生变化, 不需要确定其原 子行为, 此时, 节点 A需要执行的原子行为有: 1 ) "1+1保护-源端" 原子 行为, 其中, 可配置的位置为: 节点入端口, 节点原工作路径(节点 A-节点 B )对应的出端口和出 ODU标签, 节点原保护路径(节点 A-节点 C-节点 B, 即新工作路径)对应的出端口和出 ODU标签; 可配置的内容为: 拆除 1+1 双发交叉; 2 ) "1+1保护-源端" 原子行为, 其中, 可配置的位置为: 节点入 端口, 节点新工作路径 (节点 A-节点 C-节点 B, 即原保护路径 )对应的出端 口和出 ODU标签, 节点新保护路径(节点 A-节点 D-节点 B )对应的出端口 和出 ODU标签; 可配置的内容为: 建立 1+1双发交叉。 节点 B需要执行的 原子行为有: 1 ) "1+1保护-源端" 原子行为, 其中可配置的位置为: 节点出 端口, 节点原工作路径(A-B )对应的入端口和入 ODU标签, 节点原保护路 径(节点 A-节点 C-节点 B , 即新工作路径 )对应的入端口和入 ODU标签; 可配置的内容为: 拆除 1+1选收交叉。 2 ) "1+1保护-源端" 原子行为, 其 中, 可配置的位置为: 节点出端口, 节点新工作路径(节点 A-节点 C-节点 B, 即原保护路径 )对应的入端口和入 ODU标签, 节点新保护路径 (节点 A-节 点 D-节点 B )对应的入端口和入 ODU标签; 可配置的内容为: 建立 1+1选 收交叉。 节点 D需要执行的原子行为有: 1 ) "ODU交叉" 原子行为, 其中, 可配置的位置为: 节点新保护路径(节点 A-节点 D-节点 B )对应的入端口和 入 ODU标签, 以及节点新保护路径 (节点 A-节点 D-节点 B )对应的出端口 和出 ODU标签; 可配置的内容为: 建立 ODU类型的交叉连接。
5310、 控制器向节点 A、 节点 B、 节点 D发送包含原子行为的路径配置 消息, 以使节点八、 节点 B、 节点 D对传送平面进行配置以执行上述消息中 所包含的原子行为, 即 S309中为它们分别配置的原子行为。
5311、 上述第一次故障消失前, 上述工作路径或保护路径第二次发生故 障,源节点或发生故障的链路两端的节点向上述控制器发送第二次故障消息, 该故障消息相当于前述控制请求消息。 本例中, 假设工作路径故障, 具体为 "节点 A-节点 C" 故障, 其中节点 A向控制器发送故障消息, 这属于前述传 送网驱动的路径的控制请求消息。
5312、 控制器根据上述第二次故障消息调用控制插件, 确定如何对上述 业务进行保护恢复,具体地调用 S302中安装的控制插件,本例中, N=2, R=l , 这是第二次故障, 因此根据上述 "N+R混合保护回复控制功能" 对上述业务 进行 1+1保护, 业务将倒换到保护路径 "节点 A-节点 D-节点 B" , 且该保护 路径变成新的工作路径。 由于发生下一次故障 (N+R=3 ) 时只需要启动重路 由进行恢复即可, 此时不需要提前为下一次故障建立保护路径。 可选地, 传 送网控制器可以将发生故障的工作路径进行拆除。
5313、 拆除节点 C的交叉, 那么控制器根据上述传送网中各节点支持的 原子行为, 确定节点 C的原子行为, 此时, 节点 C需要执行的原子行为有:
1 ) "ODU 交叉" 原子行为: 可配置的位置为: 节点入端口原工作路径 (节 点 A-节点 C-节点 B )对应的和入 ODU标签, 以及节点原工作路径 (节点 A- 节点 C-节点 B )对应的出端口和出 ODU标签; 可配置的内容为: 拆除 ODU 类型的交叉连接,如果不拆除节点 C的交叉,则节点 C不需执行该原子行为。
需要说明的是, S313为可选地, 如果执行了 S313则执行 S314, 如果不 执行 S313 , 则执行完 S312直接执行 S315。
5314、 控制器向节点 C发送包含原子行为的路径配置消息, 以使节点 C 对传送平面进行配置以执行上述消息中所包含的原子行为,即 S313中为其分 别配置的原子行为, 如果节点 C不需执行 S313 中的对应的原子行为, 则不 需要向节点 C发送路径配置消息。
5315、 上述第一次故障和第二次故障消失前, 上述工作路径或保护路径 第三次发生故障, 源节点或发生故障的链路两端的节点向上述控制器发送第 三次故障消息, 该故障消息相当于前述控制请求消息。 本例中, 假设工作路 径故障, 具体为 "节点 D-节点 B"故障, 其中节点 A或节点 D向控制器发送 故障消息, 这属于前述传送网驱动的路径的控制请求消息。 5316、 控制器根据上述第三次故障消息调用对应的控制插件, 确定如何 对上述业务进行保护恢复, 具体地调用 S302 中安装的控制插件, 本例中, N=2, R=l , 这是第三次故障, 因此根据上述 "N+R混合保护回复控制功能" 对上述业务进行重路由恢复, 上述调用的控制插件为该业务计算出新的工作 路径 "节点 A-节点 D-节点 C-节点 B" 。 可选地, 传送网控制器可以将发生 故障的工作路径进行拆除。
5317、 控制器根据上述传送网中各节点支持的原子行为, 确定节点 B、 节点 C、 节点 D的原子行为, 节点 D需要执行的原子行为有: 1 ) "ODU交 叉" 原子行为, 其中, 可配置的位置为: 节点原工作路径 (节点 A-节点 D- 节点 B )对应的入端口和入 ODU标签, 以及节点原工作路径 (节点 A-节点 D-节点 B )对应的出端口和出 ODU标签; 可配置的内容为: 拆除 ODU类型 的交叉连接; 2 ) "ODU 交叉" 原子行为, 其中, 可配置的位置为: 节点新 工作路径 (节点 A-节点 D-节点 C-节点 B )对应的入端口和入 ODU标签, 以 及节点新工作路径 (节点 A-节点 D-节点 C-节点 B )对应的出端口和出 ODU 标签; 可配置的内容为: 建立 ODU类型的交叉连接。 节点 C需要执行的原 子行为有: 1 ) "ODU 交叉" 原子行为, 其中, 可配置的位置为: 节点新工 作路径 (节点 A-节点 D-节点 C-节点 B )对应的入端口和入 ODU标签, 以及 节点新工作路径 (节点 A-节点 D-节点 C-节点 B )对应的出端口和出 ODU标 签; 可配置的内容为: 建立 ODU类型的交叉连接。 节点 B需要执行的原子 行为有: 1 ) "ODU 交叉" 原子行为, 其中, 可配置的位置为: 节点原工作 路径 (节点 A-节点 D-节点 B )对应的入端口和入 ODU标签, 以及节点出端 口; 可配置的内容为: 拆除 ODU类型的交叉连接; 2 ) "ODU交叉" 原子行 为,其中,可配置的位置为: 节点新工作路径(节点 A-节点 D-节点 C-节点 B ) 对应的入端口和入 ODU标签,以及节点出端口;可配置的内容为:建立 ODU 类型的交叉连接。
5318、 控制器向节点 D、 节点 C、 节点 B发送包含原子行为的路径配置 消息, 以使节点0、 节点 C、 节点 B对传送平面进行配置以执行上述消息中 所包含的原子行为, 即 S317中为它们分别配置的原子行为。
图 5为本发明提供的传送网控制方法实施例五的流程示意图, 图 6为图 5所示方法实施例的场景图, 举例说明前述方法实施例, 以 WDM传送网为 例, 殳该 WDM传送网中各节点都支持的原子行为包括: ( 1 ) 波长交叉; ( 2 )光功率调整, 这里假设原来的 WDM传送网中需要根据实际的光功率监 测数据, 来对该 WDM传送网中的波长路径进行探测性的调测, 直到各链路 中的各个波长达到一定程度的均衡。 现需要对该 WDM传送网进行升级, 以 使该 WDM传送网可以根据各节点的损伤模型, 直接计算出各条波长路径的 光功率值。
参照图 6, 包括控制器 10,该控制 10为传送网控制器,以 4个节点为例, 分别为节点 E、 节点 F、 节点 G、 节点 H, 其中虚线表示控制器 10建立的控 制器与各节点之间的控制通道, 实线表示各节点之间的链路, 其中节点 A为 源节点。 本例中, 假设该 WDM传送网中已经存在波长路径 "节点 E-节点 F- 节点 G" , 其使用的波长为 λ 1 , 该波长路径在节点 Ε的 λ 1上波端口的发光 功率为 Pl。 (由于 WDM网络中存在损伤, 因此在节点 F、 节点 G处, λ 1 的光功率已经发生了变化, 不等于 P1 )
如图 5所示, 该方法包括:
S501、 控制器获取传送网的拓朴信息和该传送网中各节点支持的原子行 为。 具体获取的过程可参照前述方法实施例, 在此不再赘述。
S502、 在控制器上安装新的控制插件并进行维护, 本例中, 安装的控制 插件可以根据该 WDM传送网中各节点的损伤模型, 为波长路径计算合适的 光功率值。
S503、 控制器接收路径的控制请求, 该路径的控制请求指示建立节点 F 与节点 H之间的波长路径。
S504、 控制器根据上述路径控制请求调用对应的控制插件, 计算上述请 求建立的波长路径并分配波长, 假设计算结果是 "节点 F-节点 G-节点 H" , 波长为入2。
S505、 控制器釆用上述控制插件计算该 WDM传送网中的波长路径的光 功率值。 本例中, 由于已有的波长路径 "节点 E-节点 F-节点 G" 和上述要求 新建的波长路径 "节点 F-节点 G-节点 H"经过相同的链路 "节点 F-节点 G" , 因此需要考虑在链路 "节点 F-节点 G" 上的两个波长的光功率均衡。 假设上 述控制器根据各节点的损伤模型, 计算光功率的结果是: 新波长路径 "节点 F-节点 G-节点 H" 在首节点 F的 λ 2上波端口的发光功率为 P2, 同时, 旧波 长路径 "节点 E-节点 F-节点 G" 在首节点 E的 λ 1上波端口的发光功率调整 为 Ρ3。
需要说明的是, S504和 S505可以同时执行。
5506, 控制器根据上述传送网中各节点支持的原子行为, 确定节点 Ε、 节点 F、 节点 G、 节点 H的原子行为, 即需要对上述工作路径和保护路径经 过的节点进行配置, 本例中, 节点 E需要执行的原子行为有: 1 ) "光功率调 整"原子行为, 其中, 可配置的位置为: 旧波长路径 "节点 E-节点 F-节点 G" 在节点 E的 λ ΐ上波端口; 可配置的内容为: 将发光功率调整为 Ρ3。 节点 F 需要执行的原子行为有: 1 ) "波长交叉"原子行为, 其中, 可配置的位置为: 新波长路径 "节点 F-节点 G-节点 Η" 在节点 F的 λ 2上波端口, 以及该路径 对应的出端口和出波长 λ 2; 可配置的内容为: 建立波长类型的交叉连接; 2 ) "光功率调整" 原子行为, 其中, 可配置的位置为: 新波长路径 "节点 F-节 点 G-节点 Η" 在节点 F的 λ 2上波端口; 可配置的内容为: 将发光功率调整 为 Ρ2。 节点 G需要执行的原子行为有: 1 ) "波长交叉" 原子行为, 其中, 可配置的位置为: 新波长路径 "节点 F-节点 G-节点 Η" 对应的入端口和入波 长 λ 2, 以及该路径对应的出端口和出波长 λ 2; 可配置的内容为: 建立波长 类型的交叉连接。 节点 Η需要执行的原子行为有: 1 ) "波长交叉" 原子行 为: 可配置的位置为: 新波长路径 "节点 F-节点 G-节点 Η" 对应的入端口和 入波长 λ 2, 以及该路径在节点 Η的 λ 2下波端口; 可配置的内容为: 建立波 长类型的交叉连接。
5507、 控制器向节点 E、 节点 F、 节点 G、 节点 H发送包含原子行为的 路径配置消息, 以使节点 、 节点 F、 节点 G、 节点 H对传送平面进行配置 以执行上述消息中所包含的原子行为, 即 S506 中为它们分别配置的原子行 为。 其中传送平面, 就是传送网中各节点所在的平面。
本实施例中, 将某一完整的功能分解为多个原子行为, 当传送网需要扩 展支持新的控制功能时, 只要调用预先安装好的对应控制插件即可, 釆用该 控制插件计算出路径经过的节点, 再由控制器根据传送网中各节点所支持的 原子行为确定出上述路径经过的节点所需要执行的原子行为, 并通知这些节 点执行对应的原子行为, 不需要对各节点的原子行为, 只需对各节点所支持 的原子行为重新进行组合即可, 这样可以快速实现新的功能, 且降低了升级 网络的风险。
图 7为本发明提供的传送网控制方法实施例七的流程示意图, 该方法的 执行主体可以为上述控制器确定出的路径经过的节点中任一节点, 该方法包 括:
S701、 节点接收控制器发送的包含原子行为的路径配置消息。 上述控制 器根据路径的控制请求消息, 调用对应的控制插件, 计算出路径经过的节点, 且该控制器会确定出这些节点需要执行的原子行为, 将节点需要执行的原子 行为携带在路径配置消息中发送给对应的节点。
S702、 节点根据上述路径配置消息对传送平面进行配置, 并执行该消息 中包含的原子行为。 该节点所在的平面即为传送平面, 该节点接收到路径配 置消息后, 完成对自身的配置, 即可执行其中的原子行为。
进一步地, 如果上述控制器釆用自动获取传送网中各节点支持的原子行 为, 那么, S701之前, 该节点通过与上述控制器之间的控制通道向该控制器 发送所支持的原子行为。
本实施例中, 节点接收控制器发送的包含原子行为的路径配置消息, 并 执行其中的原子行为, 实现了在传送网升级过程中, 确定出的路径中的节点 根据指示, 将本身所支持的原子行为重新组合即可, 而无需来改变该节点的 其它功能。 例如, 在实现一个功能时, 该节点完成封装这个原子行为, 另一 个功能中该节点完成解封装这个原子行为, 该节点本就支持封装个解封装这 两个原子行为, 釆用本发明实施例只用指示它执行哪一个原子行为, 而如果 釆用现有技术, 则需对该节点重新配置整个功能。
图 8为本发明提供的控制器实施例一的结构示意图, 如图 8所示, 该控 制器包括: 接收模块 801、 确定模块 802、 发送模块 803 , 其中:
接收模块 801 , 用于接收路径的控制请求消息; 确定模块 802, 用于根据 传送网的拓朴信息和所述传送网中各节点支持的原子行为, 确定所述路径所 经过的传送网中至少一个节点以及所述至少一个节点所需执行的至少一个原 子行为; 发送模块 803 , 用于向所述至少一个节点对应发送包含原子行为的 路径配置消息, 以使各节点对传送平面进行配置以执行所述消息中所包含的 原子行为, 以实现所述控制请求消息中所请求的传送功能; 其中, 所述原子 行为为组成节点所能完成的功能的基本动作。 上述各模块可以执行前述方法实施例, 其实现原理类似, 在此不再赘述。 本实施例中, 控制器接收到路径的控制请求之后, 根据传送网的拓朴信 息和传送网中各节点支持的原子行为, 确定上述路径所经过的传送网中至少 一个节点以及该至少一个节点所需执行的至少一个原子行为, 并向该至少一 个节点发送包含原子行为的路径配置消息, 以使各节点对传送平面进行配置 以执行该消息中所包含的原子行为, 因而, 当传送网需要扩展支持新的控制 功能时, 通知路径中包含的节点执行对应的原子行为即可, 这样可以快速实 现新的功能, 且降低了升级的风险。
图 9为本发明提供的控制器实施例二的结构示意图, 如图 9所示, 在图 8的基础上, 该控制器还包括: 获取模块 804, 用于获取所述传送网的拓朴信 息和所述传送网中各节点支持的原子行为。
进一步地, 获取模块 804, 具体用于接收用户输入的所述传送网的拓朴 信息和所述传送网中各节点支持的原子行为; 或者, 通过与传送网中各节点 之间建立的控制通道获取所述传送网的拓朴信息和所述传送网中各节点支持 的原子行为。
参照图 9, 更为具体地, 该获取模块 804包括: 建立单元 901、 釆集单元 902、 接收单元 903 , 其中:
建立单元 901 , 用于建立到所述传送网中各节点的控制通道; 釆集单元 902, 用于通过所述控制通道釆集所述传送网的拓朴信息; 接收单元 903 , 用 上述各模块和 /或单元可以执行前述方法实施例, 其实现原理类似, 在此 不再赘述。
图 10为本发明提供的控制器实施例三的结构示意图, 在图 9的基础上, 该控制器中确定模块 802包括: 调用单元 110、 确定单元 120, 其中:
调用单元 1 10, 用于根据所述控制请求消息调用控制插件, 所述控制插 件用于根据所述传送网的拓朴信息计算出所述路径所经过的至少一个节点; 确定单元 120, 用于根据所述传送网中各节点支持的原子行为, 确定所述至 少一个节点所需执行的至少一个原子行为。
参照图 10, 该控制器还包括: 维护模块 805 , 用于维护通过控制插件接 口中安装的控制插件。 进一步地, 上述接收模块 801 , 具体用于接收网管配置的路径的控制请 求消息; 或者, 接收应用层驱动的路径的控制请求消息; 或者, 接收传送网 驱动的路径的控制请求消息。
上述发送模块 803 , 具体用于向所述至少一个节点对应发送包含原子行 为配置的位置和配置的内容的消息, 以使各节点根据所述原子行为配置的位 置和配置的内容进行传送平面的配置。
需要说明的是, 本实施例中, 所述路径的控制请求消息, 包括: 路径的 建立请求消息、 路径的修改请求消息、 路径的删除请求消息、 或者路径的重 路由请求消息, 但并不以此为限。
所述路径配置消息为 OF消息或者 XML消息。
所述传送网可以为下述任一种: SDH、 SONET、 OTN、 WDM等。
上述各模块和 /或单元可以执行前述方法实施例, 其实现原理类似, 在此 不再赘述。
图 11为本发明提供的节点实施例一的结构示意图,该节点为控制器确定 出的路径经过的节点中任一节点,如图 11所示, 该节点包括: 接收模块 111、 执行模块 112, 其中:
接收模块 11 1 , 用于接收控制器发送的包含原子行为的路径配置消息; 执行模块 112, 用于根据所述路径配置消息对传送平面进行配置, 并执行所 述消息中包含的原子行为。
进一步地, 该节点还包括发送模块 113 , 用于通过与所述控制器之间的 控制通道向所述控制器发送所支持的原子行为。
上述各模块和 /或单元可以执行前述方法实施例, 其实现原理类似, 在此 不再赘述。
图 12为本发明提供的控制器实施例四的结构示意图, 如图 12所示, 该 控制器包括: 接收器 121、 处理器 122、 发送器 123 , 其中:
接收器 121 , 用于接收路径的控制请求消息; 处理器 122, 用于根据传 送网的拓朴信息和所述传送网中各节点支持的原子行为, 确定所述路径所经 过的传送网中至少一个节点以及所述至少一个节点所需执行的至少一个原子 行为; 发送器 123 , 用于向所述至少一个节点对应发送包含原子行为的路径 配置消息, 以使各节点对传送平面进行配置以执行所述消息中所包含的原子 行为, 以实现所述控制请求消息中所请求的传送功能; 需要说明的是, 所述 原子行为为组成节点所能完成的功能的基本动作。
进一步地, 处理器 122, 还用于获取所述传送网的拓朴信息和所述传送 网中各节点支持的原子行为。
处理器 122, 具体用于接收用户输入的所述传送网的拓朴信息和所述传 送网中各节点支持的原子行为; 或者, 通过与传送网中各节点之间建立的控 制通道获取所述传送网的拓朴信息和所述传送网中各节点支持的原子行为。
更进一步地, 处理器 122, 具体用于建立到所述传送网中各节点的控制 通道; 通过所述控制通道釆集所述传送网的拓朴信息; 此时, 接收器 121 , 还用于通过所述控制通道接收所述传送网中各节点发送的所支持的原子行 为。
处理器 122, 还具体用于根据所述控制请求消息调用控制插件, 所述控 制插件用于根据所述传送网的拓朴信息计算出所述路径所经过的至少一个节 点; 根据所述传送网中各节点支持的原子行为, 确定所述至少一个节点所需 执行的至少一个原子行为。
另外, 处理器 122, 还用于维护通过控制插件接口安装的控制插件。 接收器 121 , 具体用于接收网管配置的路径的控制请求消息; 或者, 接 收应用层驱动的路径的控制请求消息; 或者, 接收传送网驱动的路径的控制 请求消息。
需要说明的是, 所述路径的控制请求消息, 包括: 路径的建立请求消息、 路径的修改请求消息、路径的删除请求消息、 或者路径的重路由请求消息等。 所述路径配置消息为 OF消息或者 XML消息。所述传送网,包括下述任一种: SDH、 SONET、 OTN、 WDM等。
发送器 123 , 具体用于向所述至少一个节点对应发送包含原子行为配置 的位置和配置的内容的消息, 以使各节点根据所述原子行为配置的位置和配 置的内容进行传送平面的配置。
上述控制器可以执行前述方法实施例, 其实现原理类似, 在此不再赘述。 本实施例中, 控制器接收到路径的控制请求之后, 根据传送网的拓朴信 息和传送网中各节点支持的原子行为, 确定上述路径所经过的传送网中至少 一个节点以及该至少一个节点所需执行的至少一个原子行为, 并向该至少一 个节点发送包含原子行为的路径配置消息, 以使各节点对传送平面进行配置 以执行该消息中所包含的原子行为, 因而, 当传送网需要扩展支持新的控制 功能时, 通知路径中包含的节点执行对应的原子行为即可, 这样可以快速实 现新的功能, 且降低了升级的风险。
图 13为本发明提供的节点实施例二的结构示意图,该节点为上述控制器 确定出的路径经过的节点中任一节点, 如图 13 所示, 该节点包括: 接收器 131、 处理器 132, 其中:
接收器 131 , 用于接收控制器发送的包含原子行为的路径配置消息; 处 理器 132, 用于根据所述路径配置消息对传送平面进行配置, 并执行所述消 息中包含的原子行为。
进一步地, 参照图 13 , 该节点还包括: 发送器 133 , 具体的, 该发送器 133 用于通过与所述控制器之间的控制通道向所述控制器发送所支持的原子 行为。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM, RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种传送网控制方法, 其特征在于, 包括:
控制器接收路径的控制请求消息;
控制器根据传送网的拓朴信息和所述传送网中各节点支持的原子行为 , 确定所述路径所经过的传送网中至少一个节点以及所述至少一个节点所需执 行的至少一个原子行为;
控制器向所述至少一个节点对应发送包含原子行为的路径配置消息, 以 使各节点对传送平面进行配置以执行所述消息中所包含的原子行为, 以实现 所述控制请求消息中所请求的传送功能;
其中, 所述原子行为为组成节点所能完成的功能的基本动作。
2、 根据权利要求 1所述的方法, 其特征在于, 所述控制器接收路径的控 制请求消息之前, 还包括:
所述控制器获取所述传送网的拓朴信息和所述传送网中各节点支持的原 子行为。
3、 根据权利要求 2所述的方法, 其特征在于, 所述控制器获取所述传送 网的拓朴信息和所述传送网中各节点支持的原子行为, 包括:
所述控制器接收用户输入的所述传送网的拓朴信息和所述传送网中各节 点支持的原子行为; 或者,
所述控制器通过与传送网中各节点之间建立的控制通道获取所述传送网 的拓朴信息和所述传送网中各节点支持的原子行为。
4、 根据权利要求 3所述的方法, 其特征在于, 所述控制器通过与传送网 中各节点之间建立的控制通道获取所述传送网的拓朴信息和所述传送网中各 节点支持的原子行为, 包括:
所述控制器建立到所述传送网中各节点的控制通道;
所述控制器通过所述控制通道釆集所述传送网的拓朴信息, 并通过所述
5、 根据权利要求 1〜4中任一项所述的方法, 其特征在于, 所述控制器根 据传送网的拓朴信息和所述传送网中各节点支持的原子行为, 确定所述路径 所经过的传送网中至少一个节点以及所述至少一个节点所需执行的至少一个 原子行为, 包括: 所述控制器根据所述控制请求消息调用控制插件, 所述控制插件用于根 据所述传送网的拓朴信息计算出所述路径所经过的至少一个节点;
所述控制器根据所述传送网中各节点支持的原子行为, 确定所述至少一 个节点所需执行的至少一个原子行为。
6、 根据权利要求 5所述的方法, 其特征在于, 所述控制器根据所述控制 请求消息调用对应的控制插件之前, 还包括:
所述控制器维护通过控制插件接口安装的控制插件。
7、 根据权利要求 1〜6中任一项所述的方法, 其特征在于, 所述控制器接 收路径的控制请求消息, 包括:
所述控制器接收网管配置的路径的控制请求消息; 或者,
所述控制器接收应用层驱动的路径的控制请求消息; 或者,
所述控制器接收传送网驱动的路径的控制请求消息。
8、 根据权利要求 1〜7中任一项所述的方法, 其特征在于, 所述路径的控 制请求消息, 包括:
路径的建立请求消息、 路径的修改请求消息、 路径的删除请求消息、 或 者路径的重路由请求消息。
9、 根据权利要求 1〜8中任一项所述的方法, 其特征在于, 所述原子行为 包括: 所述原子行为配置的位置和配置的内容;
所述控制器向所述至少一个节点对应发送包含原子行为的消息, 以使各 节点执行所述消息中所包含的原子行为对传送平面进行配置, 包括:
所述控制器向所述至少一个节点对应发送包含原子行为配置的位置和配 置的内容的消息, 以使各节点根据所述原子行为配置的位置和配置的内容进 行传送平面的配置。
10、 根据权利要求 1〜9中任一项所述的方法, 其特征在于, 所述路径配 置消息为开放流 OF消息或者可扩展标记语言 XML消息。
11、根据权利要求 1〜10中任一项所述的方法,其特征在于,所述传送网, 包括下述任一种:
同步数字体系 SDH、 同步光纤网 SONET、 光传送网 OTN、 波分复用 WDM。
12、 一种传送网控制方法, 其特征在于, 包括: 节点接收控制器发送的包含原子行为的路径配置消息;
节点根据所述路径配置消息对传送平面进行配置, 并执行所述消息中包 含的原子行为。
13、 根据权利要求 12所述的方法, 其特征在于, 所述节点接收控制器发 送的包含原子行为的路径配置消息之前, 还包括:
所述节点通过与所述控制器之间的控制通道向所述控制器发送所支持的 原子行为。
14、 一种控制器, 其特征在于, 包括:
接收模块, 用于接收路径的控制请求消息;
确定模块, 用于根据传送网的拓朴信息和所述传送网中各节点支持的原 子行为, 确定所述路径所经过的传送网中至少一个节点以及所述至少一个节 点所需执行的至少一个原子行为;
发送模块, 用于向所述至少一个节点对应发送包含原子行为的路径配置 消息,以使各节点对传送平面进行配置以执行所述消息中所包含的原子行为, 以实现所述控制请求消息中所请求的传送功能;
其中, 所述原子行为为组成节点所能完成的功能的基本动作。
15、 根据权利要求 14所述的控制器, 其特征在于, 还包括:
获取模块 , 用于获取所述传送网的拓朴信息和所述传送网中各节点支持 的原子行为。
16、 根据权利要求 15所述的控制器, 其特征在于, 所述获取模块, 具体 用于接收用户输入的所述传送网的拓朴信息和所述传送网中各节点支持的原 子行为; 或者,
通过与传送网中各节点之间建立的控制通道获取所述传送网的拓朴信息 和所述传送网中各节点支持的原子行为。
17、根据权利要求 16所述的控制器, 其特征在于, 所述获取模块, 包括: 建立单元, 用于建立到所述传送网中各节点的控制通道;
釆集单元, 用于通过所述控制通道釆集所述传送网的拓朴信息; 接收单元, 用于通过所述控制通道接收所述传送网中各节点发送的所支 持的原子行为。
18、 根据权利要求 14〜17中任一项所述的控制器, 其特征在于, 所述确 定模块, 包括:
调用单元, 用于根据所述控制请求消息调用控制插件, 所述控制插件用 于根据所述传送网的拓朴信息计算出所述路径所经过的至少一个节点;
确定单元, 用于根据所述传送网中各节点支持的原子行为, 确定所述至 少一个节点所需执行的至少一个原子行为。
19、 根据权利要求 18所述的控制器, 其特征在于, 还包括:
维护模块, 用于维护通过控制插件接口安装的控制插件。
20、 根据权利要求 14〜19中任一项所述的控制器, 其特征在于, 所述接 收模块, 具体用于接收网管配置的路径的控制请求消息; 或者,
接收应用层驱动的路径的控制请求消息; 或者,
接收传送网驱动的路径的控制请求消息。
21、 根据权利要求 14〜20中任一项所述的控制器, 其特征在于, 所述路 径的控制请求消息, 包括:
路径的建立请求消息、 路径的修改请求消息、 路径的删除请求消息、 或 者路径的重路由请求消息。
22、 根据权利要求 14〜21 中任一项所述的控制器, 其特征在于, 所述发 送模块, 具体用于向所述至少一个节点对应发送包含原子行为配置的位置和 配置的内容的消息, 以使各节点根据所述原子行为配置的位置和配置的内容 进行传送平面的配置。
23、 根据权利要求 14〜22中任一项所述的控制器, 其特征在于, 所述路 径配置消息为开放流 OF消息或者可扩展标记语言 XML消息。
24、 根据权利要求 14〜23中任一项所述的控制器, 其特征在于, 所述传 送网, 包括下述任一种:
同步数字体系 SDH、 同步光纤网 SONET、 光传送网 OTN、 波分复用 WDM。
25、 一种节点, 其特征在于, 包括:
接收模块, 用于接收控制器发送的包含原子行为的路径配置消息; 执行模块, 用于根据所述路径配置消息对传送平面进行配置, 并执行所 述消息中包含的原子行为。
26、 根据权利要求 25所述的节点, 其特征在于, 还包括: 发送模块, 用于通过与所述控制器之间的控制通道向所述控制器发送所 支持的原子行为。
27、 一种控制器, 其特征在于, 包括:
接收器, 用于接收路径的控制请求消息;
处理器, 用于根据传送网的拓朴信息和所述传送网中各节点支持的原子 行为, 确定所述路径所经过的传送网中至少一个节点以及所述至少一个节点 所需执行的至少一个原子行为;
发送器, 用于向所述至少一个节点对应发送包含原子行为的路径配置消 息, 以使各节点对传送平面进行配置以执行所述消息中所包含的原子行为, 以实现所述控制请求消息中所请求的传送功能;
其中, 所述原子行为为组成节点所能完成的功能的基本动作。
28、 根据权利要求 27 所述的控制器, 其特征在于, 所述处理器, 还 用于获取所述传送网的拓朴信息和所述传送网中各节点支持的原子行为。
29、 根据权利要求 28所述的控制器, 其特征在于, 所述处理器, 具体 用于接收用户输入的所述传送网的拓朴信息和所述传送网中各节点支持的原 子行为; 或者,
通过与传送网中各节点之间建立的控制通道获取所述传送网的拓朴信息 和所述传送网中各节点支持的原子行为。
30、 根据权利要求 29所述的控制器, 其特征在于, 所述处理器, 具 体用于建立到所述传送网中各节点的控制通道; 通过所述控制通道釆集所述 传送网的拓朴信息;
所述接收器, 还用于通过所述控制通道接收所述传送网中各节点发送的 所支持的原子行为。
31、 根据权利要求 27〜30中任一项所述的控制器, 其特征在于, 所述处 理器, 具体用于根据所述控制请求消息调用控制插件, 所述控制插件用于根 据所述传送网的拓朴信息计算出所述路径所经过的至少一个节点;
用于根据所述传送网中各节点支持的原子行为, 确定所述至少一个节点 所需执行的至少一个原子行为。
32、 根据权利要求 27〜31 中任一项所述的控制器, 其特征在于, 所述处 理器, 还用于维护通过控制插件接口安装的控制插件。
33、 根据权利要求 27〜32中任一项所述的控制器, 其特征在于, 所述接 收器, 具体用于接收网管配置的路径的控制请求消息; 或者,
接收应用层驱动的路径的控制请求消息; 或者,
接收传送网驱动的路径的控制请求消息。
34、 根据权利要求 27〜33中任一项所述的控制器, 其特征在于, 所述路 径的控制请求消息, 包括:
路径的建立请求消息、 路径的修改请求消息、 路径的删除请求消息、 或 者路径的重路由请求消息。
35、 根据权利要求 27〜34中任一项所述的控制器, 其特征在于, 所述发 送器, 具体用于向所述至少一个节点对应发送包含原子行为配置的位置和配 置的内容的消息, 以使各节点根据所述原子行为配置的位置和配置的内容进 行传送平面的配置。
36、 根据权利要求 27〜35中任一项所述的控制器, 其特征在于, 所述路 径配置消息为开放流 OF消息或者可扩展标记语言 XML消息。
37、 根据权利要求 27〜35中任一项所述的控制器, 其特征在于, 所述传 送网, 包括下述任一种:
同步数字体系 SDH、 同步光纤网 SONET、 光传送网 OTN、 波分复用 WDM。
38、 一种节点, 其特征在于, 包括:
接收器, 用于接收控制器发送的包含原子行为的路径配置消息; 处理器, 用于根据所述路径配置消息对传送平面进行配置, 并执行所述 消息中包含的原子行为。
39、 根据权利要求 38所述的节点, 其特征在于, 还包括:
发送器, 用于通过与所述控制器之间的控制通道向所述控制器发送所支 持的原子行为。
PCT/CN2013/074961 2013-04-28 2013-04-28 传送网控制方法、控制器和节点 WO2014176729A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380000442.XA CN103547337B (zh) 2013-04-28 2013-04-28 传送网控制方法、控制器和节点
PCT/CN2013/074961 WO2014176729A1 (zh) 2013-04-28 2013-04-28 传送网控制方法、控制器和节点
EP13883411.4A EP2983317B1 (en) 2013-04-28 2013-04-28 Controlling method, controller, and node in transport network
ES13883411.4T ES2632608T3 (es) 2013-04-28 2013-04-28 Método de control, controlador y nodo en una red de transporte
US14/925,757 US10084695B2 (en) 2013-04-28 2015-10-28 Transport network control method, controller and node

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/074961 WO2014176729A1 (zh) 2013-04-28 2013-04-28 传送网控制方法、控制器和节点

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/925,757 Continuation US10084695B2 (en) 2013-04-28 2015-10-28 Transport network control method, controller and node

Publications (1)

Publication Number Publication Date
WO2014176729A1 true WO2014176729A1 (zh) 2014-11-06

Family

ID=49970068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074961 WO2014176729A1 (zh) 2013-04-28 2013-04-28 传送网控制方法、控制器和节点

Country Status (5)

Country Link
US (1) US10084695B2 (zh)
EP (1) EP2983317B1 (zh)
CN (1) CN103547337B (zh)
ES (1) ES2632608T3 (zh)
WO (1) WO2014176729A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111314802B (zh) * 2018-12-12 2023-05-16 中兴通讯股份有限公司 光纤割接方法、装置、sdn控制器、系统及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034351A1 (en) * 2006-09-15 2008-03-27 Huawei Technologies Co., Ltd. Ason/gmpls architecture extension for reservation based and time based automatic bandwidth service
CN101155070A (zh) * 2006-09-28 2008-04-02 华为技术有限公司 一种智能光网络中的业务管理方法
CN102868624A (zh) * 2011-07-07 2013-01-09 株式会社日立制作所 光电复合型网络节点的控制装置、控制系统及控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8467382B1 (en) * 2005-12-22 2013-06-18 At&T Intellectual Property Ii, L.P. Method and apparatus for providing a control plane across multiple optical network domains
CN101170497A (zh) * 2007-11-20 2008-04-30 中兴通讯股份有限公司 报送网络资源信息数据的方法及装置
CN101668317B (zh) * 2008-09-04 2012-07-11 华为技术有限公司 一种网络资源预留的方法、系统和装置
CN101729376B (zh) * 2008-10-27 2011-12-21 华为技术有限公司 一种路径计算方法、节点设备及路径计算单元
CN101420383A (zh) * 2008-12-12 2009-04-29 北京邮电大学 一种mpls-tp分组传送网络中的ecmp路径软恢复方法
CN101860473B (zh) * 2009-04-08 2012-11-07 华为技术有限公司 一种路径计算方法
US8295201B2 (en) * 2009-07-14 2012-10-23 Verizon Patent And Licensing Inc. System and method for providing lower-layer path validation for higher-layer autonomous systems
JP5640982B2 (ja) * 2009-09-14 2014-12-17 日本電気株式会社 通信システム、転送ノード、経路管理サーバ、通信方法およびプログラム
CN102036132B (zh) * 2009-09-30 2013-04-24 华为技术有限公司 时隙端口号分配方法、装置及系统
WO2011108205A1 (ja) * 2010-03-05 2011-09-09 日本電気株式会社 通信システム、経路制御装置、パケット転送装置および経路制御方法
US9071532B2 (en) * 2011-10-24 2015-06-30 Ciena Corporation Method for discovery and load balancing of path computation elements based on transport plane link metrics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034351A1 (en) * 2006-09-15 2008-03-27 Huawei Technologies Co., Ltd. Ason/gmpls architecture extension for reservation based and time based automatic bandwidth service
CN101155070A (zh) * 2006-09-28 2008-04-02 华为技术有限公司 一种智能光网络中的业务管理方法
CN102868624A (zh) * 2011-07-07 2013-01-09 株式会社日立制作所 光电复合型网络节点的控制装置、控制系统及控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Characteristics of optical transport network hierarchy equipment functional blocks.", ITU-T G.798., 31 December 2012 (2012-12-31), XP055255450 *
See also references of EP2983317A4 *

Also Published As

Publication number Publication date
US10084695B2 (en) 2018-09-25
EP2983317B1 (en) 2017-06-07
CN103547337B (zh) 2017-06-20
ES2632608T3 (es) 2017-09-14
EP2983317A4 (en) 2016-04-13
EP2983317A1 (en) 2016-02-10
CN103547337A (zh) 2014-01-29
US20160050143A1 (en) 2016-02-18

Similar Documents

Publication Publication Date Title
US10148349B2 (en) Joint IP/optical layer restoration after a router failure
US7352758B2 (en) Dynamic bandwidth management using signaling protocol and virtual concatenation
US8582582B2 (en) In-band control plane and management functionality in optical level one virtual private networks
US20070274224A1 (en) Path setting method, node device, and monitoring/control device
US8233487B2 (en) Communication network system that establishes communication path by transferring control signal
JP2010193184A (ja) 光リングネットワークシステム及び光伝送装置
WO2011110110A1 (zh) 一种建立标签交换路径的方法、系统和节点设备
Alvizu et al. Can open flow make transport networks smarter and dynamic? An overview on transport SDN
JP4205953B2 (ja) 通信ネットワークにおける及びそれに関係する改良
JP2004524784A5 (zh)
EP1146682A2 (en) Two stage, hybrid logical ring protection with rapid path restoration over mesh networks
WO2010028586A1 (zh) 一种有阻边界节点及有阻边界节点间建立连接的方法
JP6160211B2 (ja) 伝送装置
WO2011017863A1 (zh) 光数据单元环路共享保护控制方法与装置
WO2014176729A1 (zh) 传送网控制方法、控制器和节点
WO2018054209A1 (zh) 一种传输多协议分组段层tms的处理方法、装置及系统
US9451342B2 (en) Method and apparatus for managing link on multi-layer networks
JP6324179B2 (ja) 通信装置、光伝送システムおよび光伝送装置
CN101621448A (zh) 一种保证网络带宽的方法、装置和系统
JP2009111477A (ja) ノード装置および通信路制御方法
US9929939B2 (en) Systems, apparatuses, and methods for rerouting network traffic
WO2017066923A1 (zh) 一种业务路径建立的方法、网络控制器和系统
Gao et al. Bod service with VCAT/LCAS and GMPLS signalling
Alicherry et al. FASTeR: Sub‐50 ms shared restoration in mesh networks
JP2004180067A (ja) ノード制御方法およびノード制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013883411

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013883411

Country of ref document: EP