WO2014175344A1 - Aqueous coating material, heat-dissipating member, metallic part, and electronic device - Google Patents

Aqueous coating material, heat-dissipating member, metallic part, and electronic device Download PDF

Info

Publication number
WO2014175344A1
WO2014175344A1 PCT/JP2014/061459 JP2014061459W WO2014175344A1 WO 2014175344 A1 WO2014175344 A1 WO 2014175344A1 JP 2014061459 W JP2014061459 W JP 2014061459W WO 2014175344 A1 WO2014175344 A1 WO 2014175344A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
filler
based paint
polyurethane
heat
Prior art date
Application number
PCT/JP2014/061459
Other languages
French (fr)
Japanese (ja)
Inventor
雅子 日夏
武 藤原
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Priority to KR1020157033606A priority Critical patent/KR20160004341A/en
Priority to CN201480023790.3A priority patent/CN105143370A/en
Priority to JP2015513809A priority patent/JP6365532B2/en
Publication of WO2014175344A1 publication Critical patent/WO2014175344A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Definitions

  • the present invention relates to a water-based paint.
  • the present invention relates to a water-based paint capable of forming a film having heat dissipation properties.
  • a heat sink is known as a member that is attached to a mechanical / electrical part that generates heat and aims to lower the temperature by radiating heat.
  • heat sinks are mainly made of metal such as aluminum or copper, which easily conducts heat.
  • a method of anodizing the surface by anodizing is known as a method for further enhancing the heat dissipation effect.
  • alumite processing needs to change a bathtub for every process, such as a degreasing process, water washing, and an anodizing process.
  • many fine pores exist in the film obtained by the anodic oxidation treatment, and these fine pores cause cracks and corrosion. Therefore, a sealing treatment is required as a subsequent process.
  • anodizing has a problem that many processes are required and productivity is poor.
  • Patent Document 1 discloses an aqueous composition and a coating composition containing an alkali metal silicate and water and a specific metal compound as a liquid phase for the purpose of lowering the temperature by heat dissipation. It is disclosed. However, in addition to high heat dissipation and high productivity, a member for heat dissipation is required to have close contact with a heat source and heat resistance in order to improve heat transfer.
  • an object of the present invention is to provide a water-based paint that is easy to handle and can form a film excellent in heat dissipation, heat resistance, and adhesion.
  • an aqueous dispersion (dispersion liquid) containing polyurethane resin fine particles and orthorhombic silicate mineral can be an aqueous paint capable of forming a film having high heat dissipation properties.
  • the water-based paint according to the first aspect of the present invention includes polyurethane resin fine particles; a first filler formed of an orthorhombic silicate mineral that emits far infrared rays; the polyurethane resin fine particles and the first
  • the filler contains dispersed water.
  • the “silicate mineral” may be either natural or artificial, and includes aluminosilicate minerals and silicate compounds other than minerals. If comprised in this way, since it is a water-based paint, handling and conveyance of application
  • the water-based paint according to the second aspect of the present invention is the water-based paint according to the first aspect of the present invention, wherein the material constituting the polyurethane resin fine particles is polycarbonate polyurethane, polyester polyurethane, aliphatic polyurethane, fatty acid-modified polyurethane. , At least one selected from the group consisting of aromatic polyurethane and polyether polyurethane.
  • Polycarbonate polyurethane refers to a polyurethane resin having a polycarbonate skeleton in the main chain.
  • Polyyester polyurethane refers to a polyurethane resin having a polyester skeleton in the main chain.
  • “Aliphatic polyurethane” refers to a polyurethane resin having an aliphatic chain in the main chain.
  • “Fatty acid-modified polyurethane” refers to a polyurethane resin having a modified fatty acid skeleton in the main chain.
  • “Aromatic polyurethane” refers to a polyurethane resin having an aromatic group in the main chain.
  • Polyether polyurethane refers to a polyurethane resin having a polyether skeleton in the main chain. If comprised in this way, it will become the water-based coating material which can form the film
  • the water-based paint according to the third aspect of the present invention is the water-based paint according to the second aspect of the present invention, wherein at least one of the materials constituting the polyurethane resin fine particles is polycarbonate polyurethane or polyester polyurethane. If comprised in this way, it will become the water-based coating material which can form the film
  • the water-based paint according to the fourth aspect of the present invention is the water-based paint according to any one of the first to third aspects of the present invention, wherein the polyurethane resin fine particles have an average particle size of 10 to 500 nm.
  • the average particle diameter is 10 to 500 nm” is not limited to the primary particle diameter, and may be an aggregated particle diameter. With this configuration, the polyurethane resin fine particles can be easily dispersed in water.
  • the average particle size is based on particle size distribution measurement by a laser diffraction / scattering method. That is, when the powder is divided into two from a certain particle size by the wet method using the analysis based on the Franhofer diffraction theory and Mie's scattering theory, the larger side and the smaller side are equivalent (volume basis). Was the median diameter.
  • the water-based paint according to the fifth aspect of the present invention is the water-based paint according to any one of the first to fourth aspects of the present invention described above, wherein the polyurethane resin fine particles include the polyurethane resin fine particles and water.
  • the solid obtained by drying the dispersion liquid has a glass transition point of ⁇ 80 ° C. to ⁇ 20 ° C. If comprised in this way, the film
  • the water-based paint according to the sixth aspect of the present invention is the water-based paint according to any one of the first to fifth aspects of the present invention, wherein the orthorhombic silicate mineral is: Cordierite and / or mullite.
  • the orthorhombic silicate mineral is: Cordierite and / or mullite.
  • the water-based paint according to the seventh aspect of the present invention is the water-based paint according to any one of the first to sixth aspects of the present invention, wherein boron nitride, aluminum nitride, silicon carbide, silica, alumina And a second filler formed of at least one selected from the group consisting of zinc oxide, titanium oxide, titanium black and graphite. If comprised in this way, since the heat conductivity of the film
  • the water-based paint according to the eighth aspect of the present invention is the water-based paint according to the seventh aspect of the present invention, wherein the first filler and the second filler are added in an amount of 5 to 100 parts by weight based on 100 parts by weight of the polyurethane resin fine particles.
  • the second filler is 1 to 150 parts by weight with respect to 100 parts by weight of the first filler
  • the first filler and the second filler are powders, and have an average particle size Is 0.01 to 30 ⁇ m.
  • the “average particle diameter of 0.01 to 30 ⁇ m” is not limited to the primary particle diameter, and may be an aggregated particle diameter. If comprised in this way, since an average particle diameter is 0.01 micrometer or more, thermal conductivity does not worsen. Further, since the thickness is 30 ⁇ m or less, the surface of the formed film is not uneven, the coating liquid is easy to handle, and the adhesion to the substrate is not impaired.
  • the water-based paint according to the ninth aspect of the present invention is the water-based paint according to any one of the first to eighth aspects of the present invention, wherein the 5% mass loss temperature of the solid after drying is 270 ° C or higher. If comprised in this way, it will become the water-based paint which can form the film
  • the water-based paint according to the tenth aspect of the present invention is the antifoaming agent having foam breaking property or foam-suppressing property in the water-based paint according to any one of the first to ninth aspects of the present invention. including. If comprised in this way, the water-based coating material which has the effect of destroying the foam once produced
  • the heat dissipating member according to the eleventh aspect of the present invention is formed by drying after applying the water-based paint according to any one of the first to tenth aspects of the present invention. If comprised in this way, the film
  • a metal part according to a twelfth aspect of the present invention comprises: a metal part body; and after applying the water-based paint according to any one of the first to tenth aspects of the present invention to the metal part body, A film formed by drying is provided.
  • the “metal component body” may be a metal plate.
  • the “metal part body” may be a heat radiating member, or may be a part of the target product itself. If comprised in this way, the heat
  • the metal part according to a thirteenth aspect of the present invention is the metal part according to the twelfth aspect of the present invention, wherein the metal part main body is selected from the group consisting of copper, iron, magnesium, aluminum and alloys thereof. It is formed including at least one kind. If comprised in this way, since these metals have especially high thermal conductivity, they can improve the heat dissipation effect.
  • An electronic apparatus comprises: the metal component according to the twelfth aspect or the thirteenth aspect of the present invention; and an electronic device having a heat generating portion; The electronic device is disposed so as to be in contact with the heat generating portion.
  • the “heat generating part” refers to a part that transfers heat to a metal part. If comprised in this way, the heat which an electronic device has will be easily transmitted to a metal component, and will be emitted as far infrared rays.
  • the water-based paint of the present invention is easy to handle because it is water-based, and the film formed from this paint has high heat dissipation and is also excellent in heat resistance and adhesion.
  • FIG. 10 It is sectional drawing of the heat radiating member 14 which consists of the film
  • FIG. The film 10 includes a first filler 11 and a second filler 12. It is a flowchart which shows the preparation process (S01) of a water-based coating material, and the formation process (S02, S03) of a film
  • FIG. 1 is a schematic view of a motor 50 in which a heat radiation member 10 is formed on an outer surface 41 of a motor body 40.
  • 1 is a schematic view of a battery 70 in which a heat radiating member 10 is formed on the outer surface of a battery body 60.
  • the water-based paint according to the first embodiment of the present invention includes: polyurethane resin fine particles; a first filler formed of an orthorhombic silicate mineral that emits far infrared rays; Water containing dispersed particles and the first filler is included.
  • polyurethane resin dispersed particles examples include at least one particle selected from the group consisting of polycarbonate polyurethane, polyester polyurethane, aliphatic polyurethane, fatty acid-modified polyurethane, aromatic polyurethane, and polyether polyurethane.
  • Polyurethane is preferable because it is excellent in heat resistance and adhesion to metals, and the above polyurethane is particularly preferable because it can form a film excellent in heat resistance / adhesion.
  • polycarbonate polyurethane and / or polyester polyurethane is contained in the constituent elements of the polyurethane resin fine particles.
  • the average particle diameter of the polyurethane resin fine particles is preferably 10 to 500 nm. More preferably, it is 10 to 100 nm. When the average particle size is 10 nm or more, aggregation in water hardly occurs. Moreover, dispersion
  • the glass transition temperature of a solid obtained by drying a dispersion containing polyurethane resin fine particles and water is preferably ⁇ 80 to ⁇ 20 ° C. More preferably, it is ⁇ 55 to ⁇ 30 ° C.
  • the glass transition temperature is ⁇ 80 ° C. or higher, the coating film strength can be maintained, so that scratches are difficult to occur and the drying property is excellent.
  • the temperature is ⁇ 20 ° C. or lower, an effect of preventing cracks can be obtained due to appropriate flexibility. Note that the lower the glass transition temperature, the more preferable the film formed from the water-based paint because the adhesion with other substances (for example, metals) is improved.
  • orthorhombic silicate mineral examples include mullite, cordierite, enstatite, hemimorphite, zoisite, sillimanite, and columbite. These fillers are excellent in heat conduction and far-infrared radiation effects, and improve the heat dissipation of a film formed from an aqueous paint.
  • cordierite and mullite are preferable in that they have a high infrared emission effect, are lightweight and chemically stable, and have a high affinity with resins.
  • the orthorhombic silicate mineral may be either natural or artificial.
  • the water-based paint contains at least one of these fillers.
  • the crystal system of the silicate mineral used in the present invention is orthorhombic, but in the case of naturally occurring minerals, monoclinic and triclinic minerals, and even cubic minerals May be contained as an impurity.
  • mica, montmorillonite, graphite (including graphite), kaolin, bentonite, and the like may be included as minerals as long as the effects of the present invention are not significantly impaired.
  • the second filler may be added in the form of addition to the first filler.
  • the second filler is preferably at least one selected from the group consisting of boron nitride, aluminum nitride, silicon carbide, silica, alumina, zinc oxide, titanium oxide, titanium black and graphite.
  • boron nitride, alumina, and zinc oxide are preferable because they have high thermal conductivity and can further improve the heat dissipation effect of a film formed from an aqueous paint.
  • Silica is preferable because it can adjust the viscosity of the water-based paint and has an effect of preventing dripping.
  • Titanium oxide is preferably dispersed uniformly in the paint and can be colored white, and titanium black and graphite are preferred because they can be uniformly dispersed in the paint and colored in black to enhance the design. It is also possible to add a plurality of first fillers having different particle sizes instead of the second filler. At this time, the first filler may be the same filler or different.
  • the shape of the first filler and the second filler is preferably powder, paste, wire shape, or the like.
  • the average particle size is preferably 0.01 to 30 ⁇ m. More preferably, it is 0.05 to 25 ⁇ m. More preferably, it is 0.08 to 20 ⁇ m.
  • the viscosity of the water-based paint does not become too high, and the workability of the coating process is good. Further, the thermal conductivity is not deteriorated.
  • the thickness is 30 ⁇ m or less, the surface of the film formed from the water-based paint is not uneven. Also, the sedimentation of the filler is fast and the storage stability of the water-based paint does not deteriorate. Furthermore, it is preferable to make the average particle diameters of the first filler and the second filler larger than the average particle diameter of the polyurethane resin fine particles because the fillers easily come into contact with each other and the thermal conductivity is improved. In addition, when adding the second filler for coloring purposes, if particles having an average particle size smaller than that of the first filler are used, it is easy to disperse uniformly and does not hinder the contact between the first fillers. The conductivity is preferred without being impaired.
  • the total amount of the first filler and the second filler is 5 to 150 parts by weight with respect to 100 parts by weight of the polyurethane resin fine particles, a good heat dissipation effect can be obtained.
  • the total amount of the first filler and the second filler is preferably 10 to 120 parts by weight with respect to the polyurethane resin fine particles.
  • the heat dissipation characteristics of the filler can be sufficiently obtained.
  • the amount is 150 parts by weight or less, the viscosity of the paint does not increase so much that the operability is not impaired, and the problem that the filler aggregates in the aqueous paint does not occur.
  • the second filler is preferably mixed in an amount of 1 to 150 parts by weight with respect to 100 parts by weight of the first filler.
  • a dispersant / antifoaming agent / color pigment / silane coupling agent / surface conditioning agent may be further added to the water-based paint as an additive.
  • Dispersants include hydroxyl group-containing carboxylic acid esters, long chain polyaminoamide and high molecular weight acid ester salts, high molecular weight polycarboxylic acid salts, long chain polyaminoamide and polar acid ester salts, high molecular weight unsaturated acid esters, Molecular copolymer, modified urea, modified polyurethane, modified polyacrylate, polyether ester type anionic activator, naphthalene sulfonic acid formalin condensate salt, aromatic sulfonic acid formalin condensate salt, polyoxyethylene alkyl phosphate ester, poly Oxyethylene nonyl phenyl ether, polyoxylene monoalkyl ether, and stearylamine acetate are used.
  • Antifoaming agents include silicone-based antifoaming agent, modified silicone-based antifoaming agent, silica-based antifoaming agent, wax, polysiloxane, polyether-modified polydimethylsiloxane, foam-breaking polymer, paraffinic oil, foam-breaking fat Group derivatives and the like. Addition of 0.01 to 5 parts by weight with respect to 100 parts by weight of the water-based paint exhibits antifoaming properties and improves the workability of the water-based paint application process.
  • an antifoaming agent By adding an antifoaming agent, it is possible to obtain a water-based paint having the effect of destroying the foam once formed (bubble breaking) or suppressing the foam formation (foam suppression). ) Can be improved.
  • Organic pigments and inorganic pigments can be used as the color pigment. Inorganic pigments are preferred.
  • a commercially available coupling agent is used for the silane coupling agent. Among these, silane coupling agent Silaace (registered trademark) (S330, S510, S520, S530) manufactured by JNC Corporation is preferable. By adding 1 to 10 parts by weight with respect to 100 parts by weight of the polyurethane resin fine particles, the adhesion between the metal plate and the film formed from the water-based paint can be improved.
  • Examples of the surface conditioner include organic modified polysiloxane, alkyl modified polysiloxane, acrylic copolymer, surface active polymer, acrylic copolymer, silicon modified acrylic, alcohol alkoxylate and the like. Addition of 0.001 to 10 parts by weight with respect to 100 parts by weight of the water-based paint shows a leveling effect, improved wettability, slip properties, etc., and improves workability and film characteristics of the water-based paint application process.
  • the water-based paint is prepared by adding the powder of the first filler (and, if necessary, the second filler) to the water dispersion (dispersion liquid) containing the polyurethane resin fine particles. Stirring and defoaming is performed using a stirrer, and the mixture is mixed to such an extent that aggregation of filler is eliminated (FIG. 2, S01). For example, after stirring for 10 minutes at a rotational speed of 2000 rpm, defoaming is performed for 10 minutes at a rotational speed of 2200 rpm. During mixing, an additive such as a dispersant may be added as necessary, or a second filler may be added to adjust the viscosity of the water-based paint according to the coating method.
  • a dispersant may be added as necessary, or a second filler may be added to adjust the viscosity of the water-based paint according to the coating method.
  • the amount may be any amount that can disperse the polyurethane resin fine particles. For example, 40 weight parts or more can be mentioned with respect to 100 weight parts of polyurethane resin fine particles.
  • the water-based paint of the present application uses water as a solvent, it is easier to handle and transport as a paint than an organic solvent. Furthermore, it can also be a measure against VOC (Volatile Organic Compounds / volatile organic compounds).
  • the solvent of the water-based paint of the present invention is water, it can be used on a resin surface that is soluble in an organic solvent. The water-based paint of the present invention can easily form a film having heat dissipation properties by drying after application.
  • the heat radiating member according to the second embodiment of the present invention is a film made of the water-based paint according to the first embodiment of the present invention.
  • membrane as the heat radiating member 10 as shown in FIG. 1 can be easily obtained by making it dry after apply
  • a wet coating method for uniformly coating the water-based paint As the method for applying the water-based paint (FIG. 2, S02), it is preferable to use a wet coating method for uniformly coating the water-based paint.
  • a spin coating method that allows simple and homogeneous film formation is preferable when a small amount is prepared.
  • gravure coating, die coating, bar coating, reverse coating, roll coating, slit coating, dipping, spray coating, kiss coating, reverse kiss coating, air knife coating Method, curtain coating method, rod coating method and the like are preferable.
  • the wet coating method can be appropriately selected according to the required film thickness, viscosity, drying conditions and the like from these methods.
  • the film thickness after drying is 0.1 to 1000 ⁇ m. More preferably, it is 10 to 100 ⁇ m, and further preferably 20 to 50 ⁇ m. If the thickness is 10 ⁇ m or more, the emissivity increases as the thickness increases, and the heat dissipation effect increases. When it is 100 ⁇ m or less, the heat transfer coefficient increases as the thickness decreases. Therefore, an appropriate film thickness is selected according to the application.
  • the coating film is dried to remove moisture, and the aqueous paint is solidified to form a film (FIG. 3, S03). Drying may be natural drying at room temperature, hot air blowing from a dryer or the like, or heat drying by a machine such as a drying furnace. Drying requires that water be removed to such an extent that the aqueous paint loses fluidity.
  • the formed film contains an orthorhombic silicate mineral having high thermal conductivity and high thermal radiation. Therefore, when a film is formed on a metal having a high thermal conductivity such as that used for a heat sink, the heat radiation from the metal surface can be increased and the temperature of the metal itself can be lowered. A metal such as a heat sink can move the internal heat sufficiently, but if the heat transfer coefficient with the adjacent material is low, it becomes difficult to transfer the heat to the material (for example, air). Therefore, by applying the water-based paint of the present application having high thermal radiation, it is possible to radiate far infrared rays into the atmosphere or the like and efficiently release heat. Further, the membrane includes a polyurethane resin. Therefore, it is excellent in heat resistance and the mass loss temperature of 5% is 270 ° C. or higher. Furthermore, it has excellent adhesion to the metal surface. Moreover, since it is excellent in ductility, processing after painting is also possible.
  • membrane formed from the water-based coating material of this application functions as a heat radiating member.
  • a film is formed on a metal or a nonmetal having a lower emissivity than the film, the heat of the metal or the nonmetal is sucked up, converted into far infrared rays, and radiated to the outside to lower the temperature.
  • the water-based paint of the present application may be applied on the metal component main body and dried to form a metal component having a heat-radiating film.
  • the metal to be applied include copper, iron, magnesium, aluminum, and alloys thereof. These metals are particularly preferable because of their high thermal conductivity.
  • the metal component main body may be a metal plate 13 having a high thermal conductivity.
  • the heat dissipation member 14 having the metal plate can be formed.
  • the thickness of the metal plate of the heat radiating member 14 is 0.03 to 100 mm, preferably 0.1 to 10 mm, and more preferably 0.2 to 2 mm.
  • the heat source is small and the area of the metal plate is sufficiently large, the thicker the heat dissipation effect is. If it is 0.03 mm or more, the heat dissipation effect is excellent.
  • FIG. 3 is a schematic cross-sectional view of an electronic component 30 as an electronic device in which the heat dissipation member 14 is placed so that the metal plate 13 of the heat dissipation member 14 is in contact with the sealing body 26 of the electronic device 20.
  • the heat dissipation member 14 is placed on the upper surface of the electronic device 20 and functions. That is, the heat radiating member 14 is placed on the surface of the sealing body 26 and removes heat from the electronic device 20 by releasing heat transmitted from the sealing body 26 to the outside.
  • the thickness of the metal plate 13 is 0.01 to 100 mm.
  • the thickness is preferably 0.03 to 10 mm, more preferably 0.1 to 2 mm.
  • the thickness of the film 10 of the heat radiating member 14 is 0.1 to 1000 ⁇ m.
  • the thickness is preferably 10 to 100 ⁇ m, more preferably 20 to 50 ⁇ m.
  • a certain amount of thickness is preferable because the heat radiating effect is enhanced.
  • the heat dissipating member 14 covering the entire sealing body 26 can more efficiently release the heat transferred from the inside of the electronic device to the sealing body 26 to the outside.
  • the heat dissipation member 14 is bonded to the electronic device 20 using an adhesive.
  • the adhesive is preferably an acrylic, silicon, or epoxy adhesive.
  • the heat radiating member 14 may be fixed to the electronic device 20 by using screws or metal fittings.
  • any metal plate 13 provided in the heat dissipation member 14 may be used as long as it can be fixed to the electronic device 20 in close contact.
  • FIG. 3 is a usage example of the heat dissipation member 14 in which the film 10 is formed on the flat metal plate 13.
  • the shapes of the metal plate 13 and the film 10 are not limited to this, and the area in contact with the outside air may be increased as a shape having a larger surface area.
  • the metal component main body may be an existing metal heat dissipation member such as the heat sink 13.
  • the performance of the heat sink 13 can be improved (the film 10 is not shown).
  • the metal plate is applied to the aqueous paint adjusted to an appropriate concentration by using an aqueous paint adjusted to have a low viscosity. Paint by dipping method.
  • the metal part body itself may be part of the product.
  • the metal component main body may be the outer surface of the electric vehicle motor 50.
  • FIG. 5 is a schematic diagram of a motor 50 for an electric vehicle in which a film 10 as a heat radiating member is disposed on the outer surface 41 of the motor body 40 by directly applying and drying the aqueous paint of the present application.
  • the motor body 40 that converts electrical energy into mechanical energy generates heat during operation, and it is necessary to discharge this heat to the outside of the motor.
  • the film 10 functions by being formed on the outer surface 41 of the motor body 40.
  • the film 10 sucks up the heat transmitted from the outer surface 41 of the motor body 40, the heat is transmitted into the film, and further radiated into the outside air as far infrared rays, thereby generating heat generated in the motor body 40. Dissipate heat.
  • the water-based paint may be applied not only to the outer surface of the motor 50 but also to the inner surface. If it does in this way, the film
  • the metal component main body may be a metal plate, and the heat radiating member 14 (see FIG. 1) having the metal plate may be placed on the outer surface of the motor main body 40.
  • the thickness of the metal plate provided in the heat radiating member 14 is usually 0.01 to 100 mm.
  • the thickness is preferably 0.03 to 10 mm, more preferably 0.1 to 2 mm.
  • the film thickness of the heat dissipating member 14 is normally 0.1 to 1000 ⁇ m.
  • the thickness is preferably 10 to 100 ⁇ m, more preferably 20 to 50 ⁇ m.
  • the motor of an electric vehicle Since the motor of an electric vehicle has a large output and is always rotated during traveling, the motor generates a large amount of heat and is efficiently removed by the heat dissipating member of the present application.
  • the heat radiating member of this application is not restricted to the motor for electric vehicles, The use to a general motor is also possible.
  • the use of the heat dissipating member of the present application is effective when it is desired to make the motor light and small.
  • the metal part body itself may be part of the product.
  • the metal component main body may be an outer surface of an electric vehicle battery 70 that starts an engine and operates electrical components normally.
  • FIG. 6 is a schematic view of a battery 70 in which a film 10 as a heat radiating member is disposed on the outer surface of the battery body 60 by directly applying and drying the aqueous paint of the present application.
  • the battery main body 60 in which self-heating at the time of charging or discharging becomes a problem needs to discharge the heat to the outside of the battery main body.
  • the film 10 functions by being formed on the outer surface of the battery body 60.
  • the film 10 sucks up heat transferred from the surface of the battery body 60, and the heat is transferred into the film and further radiated to the outside air as far infrared rays, thereby radiating the heat generated in the battery body 60.
  • the water-based paint may be applied not only to the outer surface of the battery 70 but also to the inner surface. If it does in this way, the film
  • the battery body 60 may be a battery cell or an assembly thereof.
  • the battery body 60 may be, for example, an electric vehicle battery that starts an engine and operates electrical components normally.
  • the metal component main body may be a metal plate, and the heat dissipation member 14 (see FIG. 1) having the metal plate may be placed on the outer surface of the battery main body 60.
  • the thickness of the metal plate provided in the heat radiating member 14 is usually 0.01 to 100 mm.
  • the thickness is preferably 0.03 to 10 mm, more preferably 0.1 to 2 mm.
  • the film thickness of the heat dissipating member 14 is normally 0.1 to 1000 ⁇ m.
  • the thickness is preferably 10 to 100 ⁇ m, more preferably 20 to 50 ⁇ m.
  • the heat radiating member of this application is not restricted to the battery for electric vehicles, You may use for the battery from which the self-heating at the time of charge or discharge becomes a problem.
  • heat radiating members 10 and 14 can also be used for articles such as CPUs and batteries of devices such as smartphones and PCs, batteries, lighting fixtures, machine tools and other self-heating devices, and machines, and provide a high heat dissipation effect.
  • the heat dissipating member of the present invention has a high heat dissipating effect by a film obtained by drying an aqueous dispersion containing polyurethane resin fine particles and a filler, or by a combination of a film and a metal plate. Moreover, since the heat radiating member and the article can be manufactured by division of labor and the heat radiating member can be easily placed on the article, the manufacturing is easy and the production efficiency can be increased.
  • the component material which comprises the heat radiating member used for the Example of this invention is as follows. ⁇ Aqueous polyurethane resin dispersion liquid> ⁇ Polyester-polyurethane resin dispersion liquid: PESU1: Sumika Bayer Urethane Co., Ltd. (trade name) Bihydrol UH2342 (containing 1% by weight of 1-methyl-2-pyrrolidone) PESU2: Sumika Bayer Urethane Co., Ltd. (trade name) Bihydrol UH650 ⁇ Polycarbonate-polyurethane resin dispersion liquid: PCU1: Sumika Bayer Urethane Co., Ltd.
  • the average particle diameter (median diameter) of each particle was measured using a laser diffraction scattering type particle size distribution measuring apparatus LA-950V2 manufactured by Horiba. That is, using the analysis based on the Franchoffer diffraction theory and Mie's scattering theory, when measuring by a wet method and dividing the powder into two from a certain particle size, the larger side and the smaller side are equivalent (volume basis) ) Is the median diameter.
  • the measurement was performed using a wet method, a solution in which a sample was dispersed after adding a small amount of a measurement sample (about one earpick) in pure water and then treating in an ultrasonic cleaner for 3 minutes. The concentration of the slurry at the time of measurement was adjusted so that the laser transmittance was 80%.
  • Example preparation> Using an autorotation / revolution mixer (Shinky Awatori Rentaro ARE250), the aqueous polyurethane resin dispersion liquid and filler powder were stirred for 10 minutes at a rotational speed of 2000 rpm, and then defoamed for 10 minutes at a rotational speed of 2200 rpm. As a result, the following samples were prepared.
  • Example 1 100 parts by weight and 15 parts by weight of PESU1 and synthetic cordierite (SS-1000) with an average particle size of 1.7 ⁇ m were weighed, put into a polypropylene container, and mixed by a rotating / revolving mixer. The sample of Example 1 was obtained.
  • Example 2 >> 100 parts by weight and 21.4 parts by weight of PESU2 and synthetic cordierite (SS-1000) with an average particle size of 1.7 ⁇ m were weighed and placed in a polypropylene container, and mixed with a rotating / revolving mixer. A sample of Example 2 was obtained.
  • Examples 3 to 5 Samples of Examples 3 to 5 were prepared in the same manner as in Example 1 except that the type of the aqueous polyurethane resin dispersion liquid was different.
  • ⁇ Comparative example 1 Acrylic resin (water-based) paint and synthetic cordierite (SS-1000) with an average particle size of 1.7 ⁇ m are weighed in 100 parts by weight and 15 parts by weight, respectively, and placed in a polypropylene container. The sample of Comparative Example 1 was mixed.
  • ⁇ Comparative example 2 100 parts by weight and 42.9 parts by weight of acrylic resin (thermosetting) and synthetic cordierite (SS-1000) with an average particle size of 1.7 ⁇ m were weighed and placed in a polypropylene container.
  • Comparative Example 3 100 parts by weight and 15.9 parts by weight of alkyd resin paint (oil-based) and synthetic cordierite (SS-1000) with an average particle size of 1.7 ⁇ m are weighed and put into a polypropylene container.
  • the sample of Comparative Example 3 was prepared by mixing with a mixer.
  • ⁇ Comparative Example 4 Epoxy resin (photocurable), synthetic cordierite (SS-200) having an average particle diameter of 7.5 ⁇ m, methyl ethyl ketone (MEK), and CPI-210S were respectively 70 parts by weight, 30 parts by weight, 30 parts by weight, 0 parts.
  • Example 6 100 parts by weight and 35 parts by weight of PECU 1 and synthetic cordierite (SS-1000) with an average particle diameter of 1.7 ⁇ m were weighed, put into a polypropylene container, and mixed by a rotating / revolving mixer. The sample of Example 6 was obtained.
  • Comparative Examples 5 and 6 Samples of Comparative Examples 5 and 6 were used in the same manner as in Example 6 except that the type of filler was different.
  • Comparative Example 7 >> Only PECU1 was used as a sample. «Comparative Example 8» Only black alumite treatment was used (in the following [1.
  • Examples 7 to 27 Furthermore, in order to adjust the color and enhance the heat dissipation effect, an average particle size of 7.5 ⁇ m cordierite (SS-200) and a second filler were added as the first filler. The ratio of the addition amount of the aqueous polyurethane resin dispersion and the filler is shown below.
  • the sample preparation procedure is the same as in Example 6.
  • cordierite having a particle size different from that of the first filler is used in combination, and the second filler is not included. Cordierite with different particle diameters is described in the filler column.
  • the heat radiating member according to Comparative Example 2 is a heat radiating member having an aluminum plate prepared by applying the prepared sample by spin coating on an aluminum plate having a thickness of 40 ⁇ 40 mm and a thickness of 0.4 mm, followed by curing with a 190 ° hot plate. Formed.
  • the heat radiating member according to Comparative Example 4 was prepared by applying the prepared sample to an aluminum plate having a thickness of 40 mm ⁇ 40 mm by spin coating, followed by curing with an ultraviolet irradiator to form a heat radiating member having an aluminum plate. did.
  • the heat dissipating member according to Comparative Example 7 is one in which only PECU 1 is applied to an aluminum plate and then dried.
  • the heat radiating member according to Comparative Example 8 does not have a resin and is obtained by performing black alumite treatment on one side of an aluminum plate.
  • the heat dissipating member to which this transistor is attached is left in the center of a thermostatic chamber set at 40 ° C., and after confirming that the temperature of the transistor has become constant at 40 ° C., a 1.18 V voltage is applied to the transistor using a DC stabilized power supply. Was applied, and the temperature change of the transistor surface was measured.
  • Heat radiating members were prepared using the samples of Examples 1 to 5 and Comparative Examples 1 to 4, and their heat radiating characteristics were evaluated. The evaluation results are shown below.
  • the type of resin is particularly preferably polycarbonate-polyurethane, polyester-polyurethane, or polyester-polycarbonate-polyurethane.
  • the heat dissipating member attached with this heater is placed in the center of a thermostatic chamber set at 40 ° C., and after confirming that the temperature of the ceramic heater is constant at 40 ° C., the ceramic heater is 14V using a DC stabilized power supply. Was applied, and the temperature change of the ceramic heater surface was measured. Since the ceramic heater generates a certain amount of heat, the higher the heat dissipation effect of the attached heat dissipation member, the lower the temperature of the ceramic heater. That is, it can be said that the heat dissipation member having a lower temperature of the ceramic heater has a higher heat dissipation effect.
  • Heat radiating members were prepared using the samples of Examples 6 to 27 and Comparative Examples 5 to 11, and their heat radiating characteristics were evaluated. The evaluation results are shown below.
  • the heat dissipating member using the water-based paint of the present invention has an excellent heat dissipating property. From the results shown in Table 9, the heat dissipating member using the water-based paint of the present invention does not impair the heat dissipating performance even when the second filler is added.
  • boron nitride and alumina have high thermal conductivity. This is preferable because the heat dissipation effect of the film formed from the aqueous paint can be further improved.
  • Titanium oxide is preferable because it can be uniformly dispersed in the coating and the coating can be colored white. Titanium black is preferable because it can be uniformly dispersed in the coating and the coating can be colored black.
  • the coating film made of the aqueous paint of the present invention has excellent heat resistance. For this reason, use in a higher temperature range is possible. Further, when Example 1 containing a co-solvent is compared with Examples 2 to 5 not containing a co-solvent, those containing no co-solvent are preferable. Examples 2 to 5 and Comparative Examples 1, 3 and 4 are In comparison, Examples 2-5 are preferred, with the polyester-polyurethane of Example 2, the polycarbonate-polyurethane of Example 3 or the polyester-polycarbonate-polyurethane of Examples 4 and 5 being particularly preferred. In addition, the thermosetting acrylic paint cured film (Comparative Example 2) has excellent heat resistance, but is not preferable because the volumetric shrinkage due to heating is large and cracks are removed from the substrate.
  • the coating film made of the water-based paint of the present invention has very excellent bending resistance in any of Examples 2 to 4. For this reason, it is possible to perform punching or bending after coating on the substrate.
  • the polycarbonate-polyurethane of Example 3 and the polyester-polycarbonate-polyurethane of Example 4 have excellent scratch hardness despite having flexibility. For this reason, it is hard to be damaged.
  • the coating film made of the water-based paint of the present invention is excellent as an exterior paint since the scratches once alleviated and the scratches are not noticeable.
  • a thermosetting acrylic paint cured film (comparative example 2), although scratch hardness is excellent, since adhesiveness with a base material is weak and peels off from a base material, it is unpreferable.
  • Example 28 >> PESU2, PECU1, and synthetic cordierite (SS-1000) with an average particle size of 1.7 ⁇ m were weighed in 75 parts by weight, 25 parts by weight, and 19.8 parts by weight, respectively, and placed in a polypropylene container for rotation. -It mixed with the revolution mixer and it was set as the sample of Example 28.
  • Examples 29 to 33 >> Samples of Examples 29 to 33 were prepared in the same manner as in Example 28 except that the type of the aqueous polyurethane resin dispersion liquid and the mixing ratio of the aqueous polyurethane resin dispersion liquid and the filler were different.
  • the coating film made of the aqueous paint of the present invention has high heat resistance. For this reason, use in a higher temperature range is possible.
  • Examples 28 to 33 show that the heat resistance can be improved by adding the polyester-polyurethane.
  • the coating film made of the aqueous paint of the present invention is excellent in adhesion. Further, it is preferable to add 25% or more of polycarbonate-polyurethane having a low glass transition point and good adhesion to the coating material because the adhesion between the substrate and the coating film is further improved. By mixing the polyurethane resin fine particles, the characteristics of each polyurethane coating film can be expressed.
  • the coating film made of the water-based paint of the present invention has very excellent bending resistance in any of Examples 28 to 33. For this reason, it is possible to perform punching or bending after coating on the substrate.
  • the coating film made of the water-based paint of the present invention has excellent scratch hardness despite having excellent bending resistance. For this reason, it is hard to be damaged. Further, it is preferable to add 50% or more of polycarbonate-polyurethane because scratch hardness is further improved and scratches are hardly formed. In addition, the coating film made of the water-based paint of the present invention is excellent as an exterior paint since the scratches once alleviated and the scratches are not noticeable.
  • Example 34 100 parts by weight, 15 parts by weight, and 1.72 parts by weight of PECU 1, synthetic cordierite (SS-1000) having an average particle diameter of 1.7 ⁇ m, and ANTI-TERRA-250 were respectively measured, and a container made of polypropylene. And mixed with a rotation / revolution mixer to obtain a sample of Example 34.
  • Examples 35 to 40 Samples of Examples 35 to 40 were prepared in the same manner as in Example 34 except that the types and amounts of additives were different.
  • ANTI-TERRA-250 was a rheology control agent, and the sedimentation rate of the filler could be reduced, but the filler could not be redispersed by shaking. From this, it is considered that ANTI-TERRA-250 can reduce the sedimentation rate of the filler when used in combination with other dispersants.
  • DISPERBYK-191 and DISPERBYK-2012 were able to reduce the amount of filler that settled, but took some time to disperse by shaking. From this, it was found that dispersion was possible up to a filler having a relatively large particle size. With DISPERBYK-199, the amount of filler that settled was almost the same as that without additive, but the filler was easily dispersed by shaking.
  • Example 40 (see Table 19), which was an embodiment in which an antifoaming agent was added, was produced in order to give a further adhesion effect to the aluminum plate. .
  • the defoaming effect is higher than in Example 4, and the adhesion (film forming property of the coating film) is further excellent. That is, when the filler is precipitated in the water-based paint, it is effective to add an antifoaming agent when it is necessary to disperse the filler again by shaking and stirring the paint. The test was conducted as follows.
  • Example 40 and Example 4 30 g of the sample of Example 40 and Example 4 was packed in a 50 ml glass sample bottle, shaken for 3 minutes by shaking the glass sample bottle up and down by hand, and left for 10 minutes immediately after the end of shaking to check for the presence of bubbles. confirmed.
  • 30 ⁇ m of a coating material that was allowed to stand for 10 minutes after shaking on an aluminum plate having a thickness of 0.4 mm was formed, and the appearance of unevenness in the coating film was observed.
  • the paint to which BYK-1710 of Example 40 was added no macro bubbles were generated after shaking, and it was confirmed that all the micro bubbles generated slightly disappeared after 10 minutes.
  • thermocouple ST-50 manufactured by Rika Kogyo Co., Ltd.
  • ST-50 manufactured by Rika Kogyo Co., Ltd.
  • the heat dissipating member to which this transistor is attached is left in the center of a thermostatic chamber set at 40 ° C., and after confirming that the temperature of the transistor has become constant at 40 ° C., a 1.18 V voltage is applied to the transistor using a DC stabilized power supply. Was applied, and the temperature change of the transistor surface was measured. The evaluation results are shown below.
  • the heat dissipating member using the water-based paint of Example 40 of the present invention has substantially the same heat dissipating property as that of Example 4. From this, it can be seen that the antifoaming agent does not adversely affect the heat dissipation characteristics. Rather, it is possible to avoid such risks by adding defoaming agents, as bubbles may be formed in the coating film or unevenness may occur in the coating film due to bubbles, which may adversely affect the heat dissipation characteristics. can do.

Abstract

According to the present invention, an aqueous coating material can be produced, which is easy to handle and enables the formation of a film having excellent heat-dissipating performance, heat resistance and adhesiveness. The aqueous coating material according to the present invention comprises: polyurethane resin microparticles; a first filler which comprises an orthorhombic silicate mineral capable of releasing a far-infrared ray; and water in which the polyurethane resin microparticles and the first filler are dispersed.

Description

水性塗料、放熱部材、金属部品、電子機器Water-based paint, heat dissipation member, metal parts, electronic equipment
 本発明は、水性塗料に関する。特に、放熱性を有する膜が形成可能な水性塗料に関する。 The present invention relates to a water-based paint. In particular, the present invention relates to a water-based paint capable of forming a film having heat dissipation properties.
 発熱する機械・電気部品に取り付けて、熱の放散によって温度を下げることを目的にした部材として、ヒートシンク(heat sink)が知られている。ヒートシンクには、主に熱が伝導しやすいアルミニウムや銅などの金属が材料として用いられることが多い。
 アルミニウム製のヒートシンクでは、放熱効果をより高める方法として、陽極酸化処理をして表面をアルマイト加工する方法が知られている。しかし、アルマイト加工は脱脂処理、水洗および陽極酸化処理とそれぞれの工程毎に浴槽を変える必要がある。また陽極酸化処理で得られる皮膜には微細孔が多数存在し、この微細孔がクラックや腐食の原因となるため、さらに後工程として封孔処理が必要となる。このように、アルマイト加工は多くの工程を必要として生産性が悪いという問題がある。
2. Description of the Related Art A heat sink is known as a member that is attached to a mechanical / electrical part that generates heat and aims to lower the temperature by radiating heat. In many cases, heat sinks are mainly made of metal such as aluminum or copper, which easily conducts heat.
In an aluminum heat sink, a method of anodizing the surface by anodizing is known as a method for further enhancing the heat dissipation effect. However, alumite processing needs to change a bathtub for every process, such as a degreasing process, water washing, and an anodizing process. In addition, many fine pores exist in the film obtained by the anodic oxidation treatment, and these fine pores cause cracks and corrosion. Therefore, a sealing treatment is required as a subsequent process. Thus, anodizing has a problem that many processes are required and productivity is poor.
 熱の放散によって温度を下げることを目的としたものとして、特許文献1には、液相としてアルカリ金属ケイ酸塩及び水と、特定の金属化合物とを含有する水性組成物および塗膜組成物が開示されている。
 しかし、放熱を目的とした部材には、放熱性の高さおよび生産性の高さ以外に、熱伝達性を高めるために熱源との密着性や耐熱性も求められる。
Patent Document 1 discloses an aqueous composition and a coating composition containing an alkali metal silicate and water and a specific metal compound as a liquid phase for the purpose of lowering the temperature by heat dissipation. It is disclosed.
However, in addition to high heat dissipation and high productivity, a member for heat dissipation is required to have close contact with a heat source and heat resistance in order to improve heat transfer.
特開2004-002813号公報JP 2004-002813 A
 そこで本発明は、扱いが容易な水性塗料であって、放熱性、耐熱性および密着性にも優れた膜を形成可能な水性塗料を提供することを課題とする。 Therefore, an object of the present invention is to provide a water-based paint that is easy to handle and can form a film excellent in heat dissipation, heat resistance, and adhesion.
 本発明者らは、上記課題を解決するために鋭意検討を行った。その結果、ポリウレタン樹脂微粒子と斜方晶系のケイ酸塩鉱物を含む水性の分散液(ディスパージョン液)は、高い放熱性を有する膜の形成が可能な水性塗料となり得ることを見出し、本発明を完成させた。 The present inventors have intensively studied to solve the above problems. As a result, it has been found that an aqueous dispersion (dispersion liquid) containing polyurethane resin fine particles and orthorhombic silicate mineral can be an aqueous paint capable of forming a film having high heat dissipation properties. Was completed.
 本発明の第1の態様に係る水性塗料は、ポリウレタン樹脂微粒子と;遠赤外線を放出する斜方晶系のケイ酸塩鉱物で形成された第一のフィラーと;前記ポリウレタン樹脂微粒子と前記第一のフィラーが分散した水を含む。
 「ケイ酸塩鉱物」とは、天然、人工のいずれであってもよく、アルミノケイ酸塩鉱物や、さらには鉱物以外のケイ酸塩化合物をも含む。
 このように構成すると、水性塗料であるため、塗布等の扱いや運搬が容易となる。さらに、ポリウレタンをベースとした塗料であるため、アクリルやエポキシをベースとした塗料と比べて、金属表面への密着性や耐熱性に優れた、延性の高い膜の形成が可能となる。さらに、斜方晶系のケイ酸塩鉱物を含有しているため、形成された膜は熱を遠赤外線に変換して放出することができ、高い放熱性を有する。
The water-based paint according to the first aspect of the present invention includes polyurethane resin fine particles; a first filler formed of an orthorhombic silicate mineral that emits far infrared rays; the polyurethane resin fine particles and the first The filler contains dispersed water.
The “silicate mineral” may be either natural or artificial, and includes aluminosilicate minerals and silicate compounds other than minerals.
If comprised in this way, since it is a water-based paint, handling and conveyance of application | coating etc. become easy. Furthermore, since it is a paint based on polyurethane, it is possible to form a highly ductile film having excellent adhesion to metal surfaces and heat resistance compared to paints based on acrylic or epoxy. Furthermore, since it contains an orthorhombic silicate mineral, the formed film can convert heat into far infrared rays and release it, and has high heat dissipation.
 本発明の第2の態様に係る水性塗料は、上記本発明の第1の態様に係る水性塗料において、前記ポリウレタン樹脂微粒子を構成する材料は、ポリカーボネートポリウレタン、ポリエステルポリウレタン、脂肪族ポリウレタン、脂肪酸変性ポリウレタン、芳香族ポリウレタン、ポリエーテルポリウレタンからなる群から選ばれる少なくとも1種である。なお、「ポリカーボネートポリウレタン」とは、主鎖にポリカーボーネート骨格を有するポリウレタン樹脂を示す。「ポリエステルポリウレタン」とは、主鎖にポリエステル骨格を有するポリウレタン樹脂を示す。「脂肪族ポリウレタン」とは、主鎖に脂肪族鎖を有するポリウレタン樹脂を示す。「脂肪酸変性ポリウレタン」とは、主鎖に変性脂肪酸骨格を有するポリウレタン樹脂を示す。「芳香族ポリウレタン」とは、主鎖に芳香族基を有するポリウレタン樹脂を示す。「ポリエーテルポリウレタン」とは、主鎖にポリエーテル骨格を有するポリウレタン樹脂を示す。
 このように構成すると、密着性と耐熱性がより優れた膜が形成可能な水性塗料となる。
The water-based paint according to the second aspect of the present invention is the water-based paint according to the first aspect of the present invention, wherein the material constituting the polyurethane resin fine particles is polycarbonate polyurethane, polyester polyurethane, aliphatic polyurethane, fatty acid-modified polyurethane. , At least one selected from the group consisting of aromatic polyurethane and polyether polyurethane. “Polycarbonate polyurethane” refers to a polyurethane resin having a polycarbonate skeleton in the main chain. “Polyester polyurethane” refers to a polyurethane resin having a polyester skeleton in the main chain. “Aliphatic polyurethane” refers to a polyurethane resin having an aliphatic chain in the main chain. “Fatty acid-modified polyurethane” refers to a polyurethane resin having a modified fatty acid skeleton in the main chain. “Aromatic polyurethane” refers to a polyurethane resin having an aromatic group in the main chain. “Polyether polyurethane” refers to a polyurethane resin having a polyether skeleton in the main chain.
If comprised in this way, it will become the water-based coating material which can form the film | membrane with more excellent adhesiveness and heat resistance.
 本発明の第3の態様に係る水性塗料は、上記本発明の第2の態様に係る水性塗料において、前記ポリウレタン樹脂微粒子を構成する材料の少なくとも1種は、ポリカーボネートポリウレタンまたはポリエステルポリウレタンである。
 このように構成すると、密着性が特に優れた膜が形成可能な水性塗料となる。
The water-based paint according to the third aspect of the present invention is the water-based paint according to the second aspect of the present invention, wherein at least one of the materials constituting the polyurethane resin fine particles is polycarbonate polyurethane or polyester polyurethane.
If comprised in this way, it will become the water-based coating material which can form the film | membrane excellent in adhesiveness especially.
 本発明の第4の態様に係る水性塗料は、上記本発明の第1の態様~第3の態様のいずれか1の態様に係る水性塗料において、前記ポリウレタン樹脂微粒子の平均粒径は、10~500nmである。なお、「平均粒径は、10~500nm」とは、一次粒子径に限られず、凝集状態の粒子径であってもよい。
 このように構成すると、ポリウレタン樹脂微粒子は水中への分散が容易になる。
 なお、平均粒径は、レーザー回折・散乱法による粒度分布測定に基づく。すなわち、フランホーファー回折理論およびミーの散乱理論による解析を利用して、湿式法により、粉体をある粒子径から2つに分けたとき、大きい側と小さい側が等量(体積基準)となる径をメジアン径とした。
The water-based paint according to the fourth aspect of the present invention is the water-based paint according to any one of the first to third aspects of the present invention, wherein the polyurethane resin fine particles have an average particle size of 10 to 500 nm. “The average particle diameter is 10 to 500 nm” is not limited to the primary particle diameter, and may be an aggregated particle diameter.
With this configuration, the polyurethane resin fine particles can be easily dispersed in water.
The average particle size is based on particle size distribution measurement by a laser diffraction / scattering method. That is, when the powder is divided into two from a certain particle size by the wet method using the analysis based on the Franhofer diffraction theory and Mie's scattering theory, the larger side and the smaller side are equivalent (volume basis). Was the median diameter.
 本発明の第5の態様に係る水性塗料は、上記本発明の第1の態様~第4の態様のいずれか1の態様に係る水性塗料において、前記ポリウレタン樹脂微粒子は、前記ポリウレタン樹脂微粒子と水との分散液を乾燥させて得られる固形物が、-80℃~-20℃のガラス転移点を有する。
 このように構成すると、水性塗料から形成された膜は柔軟性および密着性に優れる。
The water-based paint according to the fifth aspect of the present invention is the water-based paint according to any one of the first to fourth aspects of the present invention described above, wherein the polyurethane resin fine particles include the polyurethane resin fine particles and water. The solid obtained by drying the dispersion liquid has a glass transition point of −80 ° C. to −20 ° C.
If comprised in this way, the film | membrane formed from the aqueous coating material is excellent in a softness | flexibility and adhesiveness.
 本発明の第6の態様に係る水性塗料は、上記本発明の第1の態様~第5の態様のいずれか1の態様に係る水性塗料において、前記斜方晶系のケイ酸塩鉱物は、コーディエライトおよび/またはムライトである。
 このように構成すると、コーディエライトおよび/またはムライトは特に遠赤外線の放出効果が高いため、放熱効果のより優れた膜を形成可能な水性塗料となる。
The water-based paint according to the sixth aspect of the present invention is the water-based paint according to any one of the first to fifth aspects of the present invention, wherein the orthorhombic silicate mineral is: Cordierite and / or mullite.
When configured in this manner, cordierite and / or mullite has a particularly high effect of emitting far infrared rays, and therefore, it becomes an aqueous paint capable of forming a film having a better heat dissipation effect.
 本発明の第7の態様に係る水性塗料は、上記本発明の第1の態様~第6の態様のいずれか1の態様に係る水性塗料において、窒化ホウ素、窒化アルミニウム、炭化珪素、シリカ、アルミナ、酸化亜鉛、酸化チタン、チタンブラックおよび黒鉛からなる群から選ばれる少なくとも1種で形成された第二のフィラーをさらに含む。
 このように構成すると、水性塗料から形成された膜の熱伝導性を向上させることができるため、膜の放熱効果をさらに高めることができる。
The water-based paint according to the seventh aspect of the present invention is the water-based paint according to any one of the first to sixth aspects of the present invention, wherein boron nitride, aluminum nitride, silicon carbide, silica, alumina And a second filler formed of at least one selected from the group consisting of zinc oxide, titanium oxide, titanium black and graphite.
If comprised in this way, since the heat conductivity of the film | membrane formed from the water-based coating material can be improved, the thermal radiation effect of a film | membrane can further be improved.
 本発明の第8の態様に係る水性塗料は、上記本発明の第7の態様に係る水性塗料において、前記第一のフィラーおよび前記第二のフィラーをポリウレタン樹脂微粒子100重量部に対して5~150重量部含有し、前記第二のフィラーは前記第一のフィラー100重量部に対して1~150重量部であり、前記第一のフィラーおよび前記第二のフィラーは粉末であり、平均粒径が0.01~30μmである。なお、「平均粒径が0.01~30μm」とは、一次粒子径に限られず、凝集状態の粒子径であってもよい。
 このように構成すると、平均粒径が0.01μm以上であるため熱伝導率が悪くなることがない。また30μm以下であるため形成された膜の表面に凹凸ができることもなく塗液の取り扱いが容易で、かつ基材との密着性を損なうこともない。
The water-based paint according to the eighth aspect of the present invention is the water-based paint according to the seventh aspect of the present invention, wherein the first filler and the second filler are added in an amount of 5 to 100 parts by weight based on 100 parts by weight of the polyurethane resin fine particles. 150 parts by weight, the second filler is 1 to 150 parts by weight with respect to 100 parts by weight of the first filler, the first filler and the second filler are powders, and have an average particle size Is 0.01 to 30 μm. The “average particle diameter of 0.01 to 30 μm” is not limited to the primary particle diameter, and may be an aggregated particle diameter.
If comprised in this way, since an average particle diameter is 0.01 micrometer or more, thermal conductivity does not worsen. Further, since the thickness is 30 μm or less, the surface of the formed film is not uneven, the coating liquid is easy to handle, and the adhesion to the substrate is not impaired.
 本発明の第9の態様に係る水性塗料は、上記本発明の第1の態様~第8の態様のいずれか1の態様に係る水性塗料において、乾燥後の固形物の5%質量損失温度は、270℃以上である。
 このように構成すると、耐熱性の優れた膜を形成可能な水性塗料となり、より高い温度領域での使用が可能になるため、発熱量の多い部材への使用ができる。
The water-based paint according to the ninth aspect of the present invention is the water-based paint according to any one of the first to eighth aspects of the present invention, wherein the 5% mass loss temperature of the solid after drying is 270 ° C or higher.
If comprised in this way, it will become the water-based paint which can form the film | membrane excellent in heat resistance, and since it can be used in a higher temperature range, it can be used for the member with much calorific value.
 本発明の第10の態様に係る水性塗料は、上記本発明の第1の態様~第9の態様のいずれか1の態様に係る水性塗料において、破泡性または抑泡性を有する消泡剤を含む。
 このように構成すると、一度生成した泡を破壊する(破泡)または泡の生成を抑制する(抑泡)効果を有する水性塗料を得ることができる。
The water-based paint according to the tenth aspect of the present invention is the antifoaming agent having foam breaking property or foam-suppressing property in the water-based paint according to any one of the first to ninth aspects of the present invention. including.
If comprised in this way, the water-based coating material which has the effect of destroying the foam once produced | generated (bubble breaking) or suppressing the production | generation of foam (foam suppression) can be obtained.
 本発明の第11の態様に係る放熱部材は、上記本発明の第1の態様~第10の態様のいずれか1の態様に係る水性塗料を塗布後、乾燥してなる。
 このように構成すると、塗布が容易な水性塗料を乾燥することにより、容易に放熱性に優れた膜(例えば図1の放熱部材10)を形成することができる。このように本発明は、乾燥により製膜できるため、水性塗料であっても熱硬化工程や活性エネルギー線硬化工程が必要となる樹脂を含んだ水性塗料に比べ製膜が極めて容易である。
The heat dissipating member according to the eleventh aspect of the present invention is formed by drying after applying the water-based paint according to any one of the first to tenth aspects of the present invention.
If comprised in this way, the film | membrane (For example, the heat radiating member 10 of FIG. 1) excellent in heat dissipation can be easily formed by drying the water-based paint with easy application | coating. As described above, since the present invention can form a film by drying, film formation is extremely easy even in the case of an aqueous paint, compared to an aqueous paint containing a resin that requires a heat curing step or an active energy ray curing step.
 本発明の第12の態様に係る金属部品は、金属部品本体と;上記本発明の第1の態様~第10の態様のいずれか1の態様に係る水性塗料を前記金属部品本体に塗布後、乾燥して形成された膜を備える。なお「金属部品本体」は、金属板であってもよい。また「金属部品本体」は、放熱部材であってもよく、それ自身が目的の製品の部品であってもよい。
 このように構成すると、金属部品本体に伝わった熱は、容易に膜に伝わりさらに膜から容易に遠赤外線として放出される。
A metal part according to a twelfth aspect of the present invention comprises: a metal part body; and after applying the water-based paint according to any one of the first to tenth aspects of the present invention to the metal part body, A film formed by drying is provided. The “metal component body” may be a metal plate. The “metal part body” may be a heat radiating member, or may be a part of the target product itself.
If comprised in this way, the heat | fever transmitted to the metal component main body will be easily transmitted to a film | membrane, and is further discharge | released as a far infrared ray from a film | membrane.
 本発明の第13の態様に係る金属部品は、上記本発明の第12の態様に係る金属部品において、前記金属部品本体は、銅、鉄、マグネシウム、アルミニウムおよびそれらの合金からなる群から選ばれる少なくとも1種を含んで形成される。
 このように構成すると、これらの金属は熱伝導率が特に高いため、放熱効果を向上させることができる。
The metal part according to a thirteenth aspect of the present invention is the metal part according to the twelfth aspect of the present invention, wherein the metal part main body is selected from the group consisting of copper, iron, magnesium, aluminum and alloys thereof. It is formed including at least one kind.
If comprised in this way, since these metals have especially high thermal conductivity, they can improve the heat dissipation effect.
 本発明の第14の態様に係る電子機器は、上記本発明の第12の態様または第13の態様に係る金属部品と;発熱部を有する電子デバイスとを備え;前記金属部品の金属部品本体は、前記発熱部に接触するように前記電子デバイスに配置される。なお「発熱部」とは、金属部品に熱を伝達するものをいう。
 このように構成すると、電子デバイスが有する熱が、容易に金属部品に伝わりさらに遠赤外線として放出される。
An electronic apparatus according to a fourteenth aspect of the present invention comprises: the metal component according to the twelfth aspect or the thirteenth aspect of the present invention; and an electronic device having a heat generating portion; The electronic device is disposed so as to be in contact with the heat generating portion. The “heat generating part” refers to a part that transfers heat to a metal part.
If comprised in this way, the heat which an electronic device has will be easily transmitted to a metal component, and will be emitted as far infrared rays.
 本発明の水性塗料は、水性であるため扱いが容易であり、この塗料から形成された膜は、高い放熱性を有し、さらに耐熱性および密着性にも優れる。 The water-based paint of the present invention is easy to handle because it is water-based, and the film formed from this paint has high heat dissipation and is also excellent in heat resistance and adhesion.
本願の水性塗料から形成された膜10および金属板13からなる放熱部材14の断面図である。なお、本願の水性塗料から形成された膜10は単独で、放熱部材10として用いてもよい。膜10は、第一のフィラー11および第二のフィラー12を含む。It is sectional drawing of the heat radiating member 14 which consists of the film | membrane 10 and the metal plate 13 which were formed from the water-based paint of this application. In addition, you may use the film | membrane 10 formed from the water-based coating material of this application independently as the heat radiating member 10. FIG. The film 10 includes a first filler 11 and a second filler 12. 水性塗料の調製工程(S01)、および膜の形成工程(S02、S03)を示すフロー図である。It is a flowchart which shows the preparation process (S01) of a water-based coating material, and the formation process (S02, S03) of a film | membrane. 放熱部材14を備えた電子部品30の概略断面図である。2 is a schematic cross-sectional view of an electronic component 30 including a heat dissipation member 14. FIG. ヒートシンクとしての金属板13の形状を例示する図である。It is a figure which illustrates the shape of the metal plate 13 as a heat sink. モーター本体40の外表面41に放熱部材10を製膜したモーター50の略図である。1 is a schematic view of a motor 50 in which a heat radiation member 10 is formed on an outer surface 41 of a motor body 40. バッテリー本体60の外表面に放熱部材10を製膜したバッテリー70の略図である。1 is a schematic view of a battery 70 in which a heat radiating member 10 is formed on the outer surface of a battery body 60.
 この出願は、日本国で2013年4月26日に出願された特願2013-094439号に基づいており、その内容は本出願の内容として、その一部を形成する。本発明は以下の詳細な説明によりさらに完全に理解できるであろう。本発明のさらなる応用範囲は、以下の詳細な説明により明らかとなろう。しかしながら、詳細な説明および特定の実例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、本発明の精神と範囲内で、当業者にとって明らかであるからである。出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。 This application is based on Japanese Patent Application No. 2013-094439 filed on April 26, 2013 in Japan, the contents of which form part of the present application. The present invention will be more fully understood from the following detailed description. Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, the detailed description and specific examples are preferred embodiments of the present invention and are described for illustrative purposes only. From this detailed description, various changes and modifications will be apparent to those skilled in the art within the spirit and scope of the invention. The applicant does not intend to contribute any of the described embodiments to the public, and modifications and alternatives that may not be included in the scope of the claims within the scope of the claims are also subject to equivalence. As part of the invention.
 以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一または相当する部分には同一あるいは類似の符号を付し、重複した説明は省略する。また、本発明は、以下の実施の形態に制限されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same or similar reference numerals, and redundant description is omitted. Further, the present invention is not limited to the following embodiments.
<水性塗料>
 本発明の第1の実施の形態に係る水性塗料は、ポリウレタン樹脂微散粒子と;遠赤外線を放出する斜方晶系のケイ酸塩鉱物で形成された第一のフィラーと;前記ポリウレタン樹脂微散粒子と前記第一のフィラーが分散した水を含む。
<Water-based paint>
The water-based paint according to the first embodiment of the present invention includes: polyurethane resin fine particles; a first filler formed of an orthorhombic silicate mineral that emits far infrared rays; Water containing dispersed particles and the first filler is included.
≪ポリウレタン樹脂分散粒子≫
 ポリウレタン樹脂微粒子は、ポリカーボネートポリウレタン、ポリエステルポリウレタン、脂肪族ポリウレタン、脂肪酸変性ポリウレタン、芳香族ポリウレタン、ポリエーテルポリウレタンからなる群から選ばれる少なくとも1種の粒子を挙げることができる。
 ポリウレタンは、耐熱性、金属等との密着性に優れているため好ましく、上記ポリウレタンは特に耐熱性/密着性に優れた膜を形成できるため好ましい。これらの中でもポリウレタン樹脂微粒子の構成要素にポリカーボネートポリウレタンおよび/またはポリエステルポリウレタンが含まれていることが最も好ましい。
≪Polyurethane resin dispersed particles≫
Examples of the polyurethane resin fine particles include at least one particle selected from the group consisting of polycarbonate polyurethane, polyester polyurethane, aliphatic polyurethane, fatty acid-modified polyurethane, aromatic polyurethane, and polyether polyurethane.
Polyurethane is preferable because it is excellent in heat resistance and adhesion to metals, and the above polyurethane is particularly preferable because it can form a film excellent in heat resistance / adhesion. Among these, it is most preferable that polycarbonate polyurethane and / or polyester polyurethane is contained in the constituent elements of the polyurethane resin fine particles.
 ポリウレタン樹脂微粒子の平均粒径は、10~500nmであることが好ましい。より好ましくは、10~100nmである。平均粒径が10nm以上であると、水中での凝集が起こりにくい。また、500nm以下であると、水中での分散が可能となる。 The average particle diameter of the polyurethane resin fine particles is preferably 10 to 500 nm. More preferably, it is 10 to 100 nm. When the average particle size is 10 nm or more, aggregation in water hardly occurs. Moreover, dispersion | distribution in water is attained as it is 500 nm or less.
 ポリウレタン樹脂微粒子と水とを含む分散液を乾燥させて得られる固形物のガラス転移温度は、-80~-20℃であることが好ましい。より好ましくは、-55~-30℃である。ガラス転移温度が-80℃以上であると、塗膜強度が維持できるため傷ができにくく、乾燥性に優れる。-20℃以下であると、適度な柔軟性によりクラックの防止効果が得られる。なお、ガラス転移温度が低いほど、水性塗料から形成された膜は他の物質(例えば金属)との密着性が向上するため好ましい。 The glass transition temperature of a solid obtained by drying a dispersion containing polyurethane resin fine particles and water is preferably −80 to −20 ° C. More preferably, it is −55 to −30 ° C. When the glass transition temperature is −80 ° C. or higher, the coating film strength can be maintained, so that scratches are difficult to occur and the drying property is excellent. When the temperature is −20 ° C. or lower, an effect of preventing cracks can be obtained due to appropriate flexibility. Note that the lower the glass transition temperature, the more preferable the film formed from the water-based paint because the adhesion with other substances (for example, metals) is improved.
≪斜方晶系のケイ酸塩鉱物≫
 第一のフィラーとしての斜方晶系のケイ酸塩鉱物は、ムライト、コーディエライト、エンスタタイト、ヘミモルファイト、ゾイサイト、シリマナイト、紅柱石を挙げることができる。これらのフィラーは、熱伝導、遠赤外線の放射効果に優れ、水性塗料から形成された膜の放熱性を向上させる。特に、赤外線の放出効果が高く、軽量で化学的に安定であり樹脂との親和性も高いという点でコーディエライト、ムライトが好ましい。なお、斜方晶系のケイ酸塩鉱物は天然、人工のいずれであってもよい。水性塗料は、これらのフィラーの少なくとも1種を含有する。なお、保存安定性や耐候性の面においては、耐水性を有し加水分解が生じにくいフィラーが好ましい。本発明で使用するケイ酸塩鉱物の結晶系は斜方晶系であるが、天然に産する鉱物の場合は、単斜晶系や三斜晶系の鉱物、さらには立方晶系等の鉱物を不純物として含んでいてもよい。また、本発明の効果が著しく損なわれなければ、鉱物として、マイカ、モンモリロナイト、黒鉛(グラファイト含む)、カオリン、ベントナイト等が含まれていてもよい。人工的に得る場合の結晶成長方法は限定がなく、公知の方法が利用できる。人工的に結晶成長を行なう場合、遠赤外線の放出特性を妨げない範囲で、着色や放出エネルギー量の増加効果を期待して、微量金属を添加することも可能である。
≪Orthogonal silicate mineral≫
Examples of the orthorhombic silicate mineral as the first filler include mullite, cordierite, enstatite, hemimorphite, zoisite, sillimanite, and columbite. These fillers are excellent in heat conduction and far-infrared radiation effects, and improve the heat dissipation of a film formed from an aqueous paint. In particular, cordierite and mullite are preferable in that they have a high infrared emission effect, are lightweight and chemically stable, and have a high affinity with resins. The orthorhombic silicate mineral may be either natural or artificial. The water-based paint contains at least one of these fillers. In addition, in terms of storage stability and weather resistance, a filler that has water resistance and is unlikely to undergo hydrolysis is preferable. The crystal system of the silicate mineral used in the present invention is orthorhombic, but in the case of naturally occurring minerals, monoclinic and triclinic minerals, and even cubic minerals May be contained as an impurity. In addition, mica, montmorillonite, graphite (including graphite), kaolin, bentonite, and the like may be included as minerals as long as the effects of the present invention are not significantly impaired. There are no limitations on the method of crystal growth when it is obtained artificially, and known methods can be used. In the case of artificially growing a crystal, it is possible to add a trace amount metal in the range that does not interfere with the far-infrared emission characteristics and expects an effect of increasing the amount of coloring and emission energy.
 第一のフィラーに追加する形で、第二のフィラーを加えてもよい。第二のフィラーとしては、窒化ホウ素、窒化アルミニウム、炭化珪素、シリカ、アルミナ、酸化亜鉛、酸化チタン、チタンブラックおよび黒鉛からなる群から選ばれる少なくとも1種が好ましい。特に窒化ホウ素、アルミナ、酸化亜鉛は熱伝導率が高く、水性塗料から形成された膜の放熱効果をさらに向上させることができるため好ましい。また、シリカは、水性塗料の粘度を調節でき、液垂れ防止効果を有するため好ましい。酸化チタンは、塗料中に均一に分散し白色に着色でき、チタンブラックおよび黒鉛は、塗料中に均一に分散し黒色に着色でき、意匠性を高めることができるため好ましい。なお、第二のフィラーとしてではなく、複数の粒径の異なる第一のフィラーを添加することも可能である。このとき、第一のフィラーは、同一のフィラーであってもよいし、異なっていても良い。 The second filler may be added in the form of addition to the first filler. The second filler is preferably at least one selected from the group consisting of boron nitride, aluminum nitride, silicon carbide, silica, alumina, zinc oxide, titanium oxide, titanium black and graphite. In particular, boron nitride, alumina, and zinc oxide are preferable because they have high thermal conductivity and can further improve the heat dissipation effect of a film formed from an aqueous paint. Silica is preferable because it can adjust the viscosity of the water-based paint and has an effect of preventing dripping. Titanium oxide is preferably dispersed uniformly in the paint and can be colored white, and titanium black and graphite are preferred because they can be uniformly dispersed in the paint and colored in black to enhance the design. It is also possible to add a plurality of first fillers having different particle sizes instead of the second filler. At this time, the first filler may be the same filler or different.
 第一のフィラーおよび第二のフィラーの形状は、粉末、ペースト、ワイヤ状等が好ましい。特に、水の分散液中において均一な状態が得られることから、粉末として水性塗料中に混合することが好ましい。粉末の場合、その平均粒径は、0.01~30μmであることが好ましい。より好ましくは、0.05~25μmである。さらに好ましくは、0.08~20μmである。0.01μm以上であると、水性塗料の粘度が高くなりすぎることがなく、塗布工程の作業性がよい。また熱伝導率が悪くなることもない。30μm以下であると、水性塗料から形成された膜の表面に凹凸ができることがない。また、フィラーの沈降が速くて水性塗料の保存安定性が悪くなるということがない。
 さらに、ポリウレタン樹脂微粒子の平均粒径よりも第一のフィラーおよび第二のフィラーの平均粒径を大きくすると、フィラーどうしが接触しやすくなり、熱伝導性が向上するため好ましい。また、第二のフィラーを着色用途で添加する場合、平均粒径が第一のフィラーよりも小さい粒子を用いると、均一に分散し易く、また第一のフィラーどうしの接触を阻害しないため、熱伝導性が損なわれることがなく好ましい。
The shape of the first filler and the second filler is preferably powder, paste, wire shape, or the like. In particular, since a uniform state can be obtained in an aqueous dispersion, it is preferable to mix it in the aqueous paint as a powder. In the case of powder, the average particle size is preferably 0.01 to 30 μm. More preferably, it is 0.05 to 25 μm. More preferably, it is 0.08 to 20 μm. When it is 0.01 μm or more, the viscosity of the water-based paint does not become too high, and the workability of the coating process is good. Further, the thermal conductivity is not deteriorated. When the thickness is 30 μm or less, the surface of the film formed from the water-based paint is not uneven. Also, the sedimentation of the filler is fast and the storage stability of the water-based paint does not deteriorate.
Furthermore, it is preferable to make the average particle diameters of the first filler and the second filler larger than the average particle diameter of the polyurethane resin fine particles because the fillers easily come into contact with each other and the thermal conductivity is improved. In addition, when adding the second filler for coloring purposes, if particles having an average particle size smaller than that of the first filler are used, it is easy to disperse uniformly and does not hinder the contact between the first fillers. The conductivity is preferred without being impaired.
 第一のフィラーおよび第二のフィラーの総量は、ポリウレタン樹脂微粒子100重量部に対して5~150重量部を混合させると良好な放熱効果が得られる。水性塗料を塗布する工程の作業効率を考慮すると、第一のフィラーおよび第二のフィラーの総量は、ポリウレタン樹脂微粒子に対して10~120重量部であることが好ましい。フィラーの総量が5重量部以上であると、フィラーの放熱特性を十分に得ることができる。また、150重量部以下であると、塗料の粘度が上がりすぎて操作性が損なわれることがなく、フィラーが水性塗料中で凝集する等の問題も生じない。なお、第二のフィラーを混合する場合、第二のフィラーは第一のフィラー100重量部に対して1~150重量部混合させることが好ましい。 When the total amount of the first filler and the second filler is 5 to 150 parts by weight with respect to 100 parts by weight of the polyurethane resin fine particles, a good heat dissipation effect can be obtained. Considering the work efficiency of the step of applying the water-based paint, the total amount of the first filler and the second filler is preferably 10 to 120 parts by weight with respect to the polyurethane resin fine particles. When the total amount of the filler is 5 parts by weight or more, the heat dissipation characteristics of the filler can be sufficiently obtained. When the amount is 150 parts by weight or less, the viscosity of the paint does not increase so much that the operability is not impaired, and the problem that the filler aggregates in the aqueous paint does not occur. When the second filler is mixed, the second filler is preferably mixed in an amount of 1 to 150 parts by weight with respect to 100 parts by weight of the first filler.
≪添加剤≫
 水性塗料には添加剤として、さらに分散剤/消泡剤/着色顔料/シランカップリング剤/表面調整剤を加えてもよい。
 分散剤には、水酸基含有カルボン酸エステル、長鎖ポリアミノアミドと高分子量酸エステルの塩、高分子量ポリカルボン酸の塩、長鎖ポリアミノアミドと極性酸エステルの塩、高分子量不飽和酸エステル、高分子共重合物、変性ウレア、変性ポリウレタン、変性ポリアクリレート、ポリエーテルエステル型アニオン系活性剤、ナフタレンスルホン酸ホルマリン縮合物塩、芳香族スルホン酸ホルマリン縮合物塩、ポリオキシエチレンアルキルリン酸エステル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシレンモノアルキルエーテル、ステアリルアミンアセテートを用いる。フィラー100重量部に対して1~35重量部添加して使用することで、フィラーの凝集を防ぎ、水性塗料の保存安定性を向上させることができる。
 消泡剤には、シリコーン系消泡剤、変性シリコーン系消泡剤、シリカ系消泡剤、ワックス、ポリシロキサン、ポリエーテル変性ポリジメチルシロキサン、破泡性ポリマー、パラフィン系オイル、破泡性脂肪族誘導体などを挙げることができる。水性塗料100重量部に対して0.01~5重量部添加することで消泡性を示し、水性塗料の塗布工程の作業性が向上する。消泡剤の添加により、一度生成した泡を破壊する(破泡)または泡の生成を抑制する(抑泡)効果を有する水性塗料を得ることができるため、密着性(塗膜の成膜性)を向上させることができる。
 着色顔料には、有機系顔料と無機顔料が使用できる。無機系顔料が好ましい。
 シランカップリング剤には、市販のカップリング剤を用いる。その中でも、JNC(株)社製のシランカップリング剤サイラエース(登録商標)(S330、S510、S520、S530)が好ましい。ポリウレタン樹脂微粒子100重量部に対して1~10重量部添加して使用することで、金属板と水性塗料から形成された膜との密着性を向上させることができる。
 表面調整剤には、有機変性ポリシロキサン、アルキル変性ポリシロキサン、アクリル系共重合物、表面活性ポリマー、アクリルコポリマー、シリコン変性アクリル、アルコールアルコキシレートなどを挙げることができる。水性塗料100重量部に対して0.001~10重量部添加することでレベリング効果や濡れ性の向上、スリップ性などを示し、水性塗料の塗布工程の作業性および膜特性が向上する。
≪Additives≫
A dispersant / antifoaming agent / color pigment / silane coupling agent / surface conditioning agent may be further added to the water-based paint as an additive.
Dispersants include hydroxyl group-containing carboxylic acid esters, long chain polyaminoamide and high molecular weight acid ester salts, high molecular weight polycarboxylic acid salts, long chain polyaminoamide and polar acid ester salts, high molecular weight unsaturated acid esters, Molecular copolymer, modified urea, modified polyurethane, modified polyacrylate, polyether ester type anionic activator, naphthalene sulfonic acid formalin condensate salt, aromatic sulfonic acid formalin condensate salt, polyoxyethylene alkyl phosphate ester, poly Oxyethylene nonyl phenyl ether, polyoxylene monoalkyl ether, and stearylamine acetate are used. By adding 1 to 35 parts by weight with respect to 100 parts by weight of the filler, aggregation of the filler can be prevented, and the storage stability of the aqueous paint can be improved.
Antifoaming agents include silicone-based antifoaming agent, modified silicone-based antifoaming agent, silica-based antifoaming agent, wax, polysiloxane, polyether-modified polydimethylsiloxane, foam-breaking polymer, paraffinic oil, foam-breaking fat Group derivatives and the like. Addition of 0.01 to 5 parts by weight with respect to 100 parts by weight of the water-based paint exhibits antifoaming properties and improves the workability of the water-based paint application process. By adding an antifoaming agent, it is possible to obtain a water-based paint having the effect of destroying the foam once formed (bubble breaking) or suppressing the foam formation (foam suppression). ) Can be improved.
Organic pigments and inorganic pigments can be used as the color pigment. Inorganic pigments are preferred.
A commercially available coupling agent is used for the silane coupling agent. Among these, silane coupling agent Silaace (registered trademark) (S330, S510, S520, S530) manufactured by JNC Corporation is preferable. By adding 1 to 10 parts by weight with respect to 100 parts by weight of the polyurethane resin fine particles, the adhesion between the metal plate and the film formed from the water-based paint can be improved.
Examples of the surface conditioner include organic modified polysiloxane, alkyl modified polysiloxane, acrylic copolymer, surface active polymer, acrylic copolymer, silicon modified acrylic, alcohol alkoxylate and the like. Addition of 0.001 to 10 parts by weight with respect to 100 parts by weight of the water-based paint shows a leveling effect, improved wettability, slip properties, etc., and improves workability and film characteristics of the water-based paint application process.
 水性塗料の調製は、ポリウレタン樹脂微粒子を含有する水の分散液(ディスパージョン液)に、第一のフィラー(必要に応じてさらに第二のフィラー)の粉末を添加し、自転・公転ミキサー等の撹拌機を用いて撹拌・脱泡し、フィラーの凝集が解消される程度まで混合させる(図2、S01)。例えば、回転数2000rpmで10分間撹拌後、回転数2200rpmで10分間脱泡する。
 混合の際、必要に応じて分散剤等の添加剤を加えてもよく、第二のフィラーを加えて水性塗料の粘度を塗布方法に応じて調整してもよい。ポリウレタン樹脂微粒子の水中への分散を助けるために、さらに1-メチル-2-ピロリドン(NMP)やグリコール類等の少量の有機溶媒を加えて混合してもよい。
 なお、ポリウレタン樹脂微粒子を含有する水の分散液(ディスパージョン液)中の水分量は、樹脂の特性に応じて適宜変更すればよい。すなわち、ポリウレタン樹脂微粒子を分散させることのできる量であればよい。例えば、ポリウレタン樹脂微粒子100重量部に対して40重量部以上を挙げることができる。
The water-based paint is prepared by adding the powder of the first filler (and, if necessary, the second filler) to the water dispersion (dispersion liquid) containing the polyurethane resin fine particles. Stirring and defoaming is performed using a stirrer, and the mixture is mixed to such an extent that aggregation of filler is eliminated (FIG. 2, S01). For example, after stirring for 10 minutes at a rotational speed of 2000 rpm, defoaming is performed for 10 minutes at a rotational speed of 2200 rpm.
During mixing, an additive such as a dispersant may be added as necessary, or a second filler may be added to adjust the viscosity of the water-based paint according to the coating method. In order to help disperse the polyurethane resin fine particles in water, a small amount of an organic solvent such as 1-methyl-2-pyrrolidone (NMP) or glycols may be added and mixed.
In addition, what is necessary is just to change suitably the moisture content in the dispersion liquid (dispersion liquid) containing the polyurethane resin microparticles | fine-particles according to the characteristic of resin. That is, the amount may be any amount that can disperse the polyurethane resin fine particles. For example, 40 weight parts or more can be mentioned with respect to 100 weight parts of polyurethane resin fine particles.
 以上のとおり、本願の水性塗料は溶剤として水を使用しているため、有機溶剤に比べ塗料として扱いやすくまた運搬も容易となる。さらに、VOC(Volatile Organic Compounds/揮発性有機化合物)対策にもなり得る。また、本発明の水性塗料は溶剤が水であるため、有機溶剤に可溶な樹脂表面などにも使用が可能である。本発明の水性塗料は、塗布後乾燥することにより、容易に放熱性を有する膜を形成することができる。 As described above, since the water-based paint of the present application uses water as a solvent, it is easier to handle and transport as a paint than an organic solvent. Furthermore, it can also be a measure against VOC (Volatile Organic Compounds / volatile organic compounds). Moreover, since the solvent of the water-based paint of the present invention is water, it can be used on a resin surface that is soluble in an organic solvent. The water-based paint of the present invention can easily form a film having heat dissipation properties by drying after application.
<放熱部材10>
 本発明の第2の実施の形態に係る放熱部材は、本発明の第1の実施の形態に係る水性塗料からなる膜である。図1に示すような放熱部材10としての膜は、水性塗料を塗布後、乾燥させることで容易に得ることができる。
<Heat dissipation member 10>
The heat radiating member according to the second embodiment of the present invention is a film made of the water-based paint according to the first embodiment of the present invention. The film | membrane as the heat radiating member 10 as shown in FIG. 1 can be easily obtained by making it dry after apply | coating an aqueous coating material.
 水性塗料を塗布する方法(図2、S02)は、水性塗料を均一にコーティングするウェットコーティング法を用いることが好ましい。ウェットコーティング法のうち、少量を作成する場合には簡便で均質な製膜が可能であるスピンコート法が好ましい。生産性を重視する場合には、グラビアコート法、ダイコート法、バーコート法、リバースコート法、ロールコート法、スリットコート法、ディッピング法、スプレーコート法、キスコート法、リバースキスコート法、エアーナイフコート法、カーテンコート法、ロッドコート法などが好ましい。ウェットコーティング法は、これらの方法から必要とする膜厚、粘度や乾燥条件等に応じて適宜選択することができる。 As the method for applying the water-based paint (FIG. 2, S02), it is preferable to use a wet coating method for uniformly coating the water-based paint. Among the wet coating methods, a spin coating method that allows simple and homogeneous film formation is preferable when a small amount is prepared. When productivity is important, gravure coating, die coating, bar coating, reverse coating, roll coating, slit coating, dipping, spray coating, kiss coating, reverse kiss coating, air knife coating Method, curtain coating method, rod coating method and the like are preferable. The wet coating method can be appropriately selected according to the required film thickness, viscosity, drying conditions and the like from these methods.
 なお、乾燥後の膜厚が、0.1~1000μmとなるように水性塗料を塗布するのが好ましい。より好ましくは、10~100μmであり、さらに好ましくは20~50μmである。10μm以上であると、厚いほど放射率が高くなるため放熱効果は大きくなる。100μm以下であると、薄いほど熱伝達率が大きくなる。したがって、用途に応じて適切な膜厚を選択する。 In addition, it is preferable to apply the water-based paint so that the film thickness after drying is 0.1 to 1000 μm. More preferably, it is 10 to 100 μm, and further preferably 20 to 50 μm. If the thickness is 10 μm or more, the emissivity increases as the thickness increases, and the heat dissipation effect increases. When it is 100 μm or less, the heat transfer coefficient increases as the thickness decreases. Therefore, an appropriate film thickness is selected according to the application.
 塗布後、塗膜を乾燥させて水分を除去し、水性塗料を固化させ膜を形成する(図3、S03)。乾燥は、常温での自然乾燥、ドライヤ等からの熱風の送風のほか、乾燥炉等の機械による加熱乾燥であってもよい。乾燥は、水性塗料が流動性を失う程度に水分が除去されることが必要である。 After coating, the coating film is dried to remove moisture, and the aqueous paint is solidified to form a film (FIG. 3, S03). Drying may be natural drying at room temperature, hot air blowing from a dryer or the like, or heat drying by a machine such as a drying furnace. Drying requires that water be removed to such an extent that the aqueous paint loses fluidity.
 なお、形成された膜(固形物)は、高熱伝導率、高熱放射性を有する斜方晶系のケイ酸塩鉱物を含んでいる。そのため、ヒートシンクに用いられるような熱伝導率の高い金属等上に製膜すると、金属表面からの熱放射性を高め、金属自体の温度を下げることができる。ヒートシンクのような金属は、内部の熱は十分に移動できるが、隣接する物質との熱伝達率が低いとその物質に熱を伝えることが困難になる(たとえば空気等)。したがって、高熱放射性を有する本願の水性塗料を塗布することにより、大気中等へ遠赤外線を放射して効率よく熱を放出することができる。
 さらに膜は、ポリウレタン樹脂を含んでいる。そのため、耐熱性に優れ、5%の質量損失温度は270℃以上である。さらに、金属表面への密着性に優れる。また、延性にも優れるため、塗装後の加工も可能となる。
The formed film (solid material) contains an orthorhombic silicate mineral having high thermal conductivity and high thermal radiation. Therefore, when a film is formed on a metal having a high thermal conductivity such as that used for a heat sink, the heat radiation from the metal surface can be increased and the temperature of the metal itself can be lowered. A metal such as a heat sink can move the internal heat sufficiently, but if the heat transfer coefficient with the adjacent material is low, it becomes difficult to transfer the heat to the material (for example, air). Therefore, by applying the water-based paint of the present application having high thermal radiation, it is possible to radiate far infrared rays into the atmosphere or the like and efficiently release heat.
Further, the membrane includes a polyurethane resin. Therefore, it is excellent in heat resistance and the mass loss temperature of 5% is 270 ° C. or higher. Furthermore, it has excellent adhesion to the metal surface. Moreover, since it is excellent in ductility, processing after painting is also possible.
 上記のとおり、本願の水性塗料から形成された膜は、放熱部材として機能する。膜を金属や当該膜よりも放射率の低い非金属上に形成すると、金属や非金属が有する熱を吸い上げ遠赤外線に変換して外部に放射することで温度を下げる。
 例えば、金属部品本体上に本願の水性塗料を塗布し、これを乾燥させて、放熱性を有する膜を備えた金属部品を形成してもよい。塗布対象となる金属には、銅、鉄、マグネシウム、アルミニウム、およびそれらの合金が例示できる。これらの金属は、熱伝導率が高く特に好ましい。
As above-mentioned, the film | membrane formed from the water-based coating material of this application functions as a heat radiating member. When a film is formed on a metal or a nonmetal having a lower emissivity than the film, the heat of the metal or the nonmetal is sucked up, converted into far infrared rays, and radiated to the outside to lower the temperature.
For example, the water-based paint of the present application may be applied on the metal component main body and dried to form a metal component having a heat-radiating film. Examples of the metal to be applied include copper, iron, magnesium, aluminum, and alloys thereof. These metals are particularly preferable because of their high thermal conductivity.
 図1に示すように金属部品本体は、熱伝導率の高い金属板13であってもよい。金属板13上に製膜すると、金属板を有する放熱部材14を形成できる。
 放熱部材14の金属板の厚さは、0.03~100mmであり、好ましくは0.1~10mm、さらに好ましくは0.2~2mmである。熱源が小さく金属板の面積が充分大きい場合には、厚いほど放熱効果が高い。0.03mm以上であれば放熱効果に優れる。また、100mm以下であると、軽量である点で好ましい。
As shown in FIG. 1, the metal component main body may be a metal plate 13 having a high thermal conductivity. When the film is formed on the metal plate 13, the heat dissipation member 14 having the metal plate can be formed.
The thickness of the metal plate of the heat radiating member 14 is 0.03 to 100 mm, preferably 0.1 to 10 mm, and more preferably 0.2 to 2 mm. When the heat source is small and the area of the metal plate is sufficiently large, the thicker the heat dissipation effect is. If it is 0.03 mm or more, the heat dissipation effect is excellent. Moreover, it is preferable at a point which is lightweight as it is 100 mm or less.
 例えば図3は、電子デバイス20の封止体26に放熱部材14の金属板13が接触するように放熱部材14を載置した、電子機器としての電子部品30の概略断面図である。このように放熱部材14は、電子デバイス20の上面に載置され機能する。すなわち、放熱部材14は、封止体26の表面に載置され、封止体26から伝達される熱を外部へ放出することにより、電子デバイス20を除熱する。放熱部材14を電子デバイス20のような電子機器に用いる場合、金属板13の厚さは0.01~100mmである。好ましくは、0.03~10mmであり、より好ましくは0.1~2mmである。放熱部材14の膜10の厚さは0.1~1000μmである。好ましくは、10~100μmであり、より好ましくは20~50μmである。放熱部材14を電子デバイス用の放熱板として用いる場合は、ある程度の厚みがあると放熱効果が高くなるため好ましい。
 また、放熱部材14を封止体26の表面を覆うように貼り付けてもよい。封止体26全体を被う放熱部材14により、電子デバイスの内部から封止体26に伝達された熱をより効率よく外部へ放出させることができる。
For example, FIG. 3 is a schematic cross-sectional view of an electronic component 30 as an electronic device in which the heat dissipation member 14 is placed so that the metal plate 13 of the heat dissipation member 14 is in contact with the sealing body 26 of the electronic device 20. Thus, the heat dissipation member 14 is placed on the upper surface of the electronic device 20 and functions. That is, the heat radiating member 14 is placed on the surface of the sealing body 26 and removes heat from the electronic device 20 by releasing heat transmitted from the sealing body 26 to the outside. When the heat radiating member 14 is used in an electronic device such as the electronic device 20, the thickness of the metal plate 13 is 0.01 to 100 mm. The thickness is preferably 0.03 to 10 mm, more preferably 0.1 to 2 mm. The thickness of the film 10 of the heat radiating member 14 is 0.1 to 1000 μm. The thickness is preferably 10 to 100 μm, more preferably 20 to 50 μm. When the heat radiating member 14 is used as a heat radiating plate for an electronic device, a certain amount of thickness is preferable because the heat radiating effect is enhanced.
Moreover, you may affix the heat radiating member 14 so that the surface of the sealing body 26 may be covered. The heat dissipating member 14 covering the entire sealing body 26 can more efficiently release the heat transferred from the inside of the electronic device to the sealing body 26 to the outside.
 なお、放熱部材14は、接着剤を用いて電子デバイス20に接着させる。接着剤は、アクリル系、シリコン系、またはエポキシ系の接着剤が好ましい。または、ビス止めや金具等を用いて、放熱部材14を電子デバイス20に固定してもよい。すなわち、放熱部材14の備える金属板13を電子デバイス20に密着させて固定できるものであればよい。
 図3は、平板状の金属板13上に膜10を形成した放熱部材14の使用例である。しかし、金属板13および膜10の形状は、これに限られるものではなく、より表面積が大きくなるような形状として、外気に接触する面積を増大させてもよい。
The heat dissipation member 14 is bonded to the electronic device 20 using an adhesive. The adhesive is preferably an acrylic, silicon, or epoxy adhesive. Alternatively, the heat radiating member 14 may be fixed to the electronic device 20 by using screws or metal fittings. In other words, any metal plate 13 provided in the heat dissipation member 14 may be used as long as it can be fixed to the electronic device 20 in close contact.
FIG. 3 is a usage example of the heat dissipation member 14 in which the film 10 is formed on the flat metal plate 13. However, the shapes of the metal plate 13 and the film 10 are not limited to this, and the area in contact with the outside air may be increased as a shape having a larger surface area.
 図4に示すように金属部品本体は、ヒートシンク13のような既存の金属製の放熱部材であってもよい。ヒートシンク13の表面上に製膜すると、ヒートシンク13の性能を向上させることができる(膜10は不図示)。
 なお、図4に示すような形状の金属板に本願の水性塗料を塗布する場合は、低粘度になるように調整した水性塗料をスプレー法により、または適切な濃度に調整した水性塗料に金属板を浸すディップ法により塗装する。
As shown in FIG. 4, the metal component main body may be an existing metal heat dissipation member such as the heat sink 13. When the film is formed on the surface of the heat sink 13, the performance of the heat sink 13 can be improved (the film 10 is not shown).
In addition, when applying the aqueous paint of this application to the metal plate of the shape as shown in FIG. 4, the metal plate is applied to the aqueous paint adjusted to an appropriate concentration by using an aqueous paint adjusted to have a low viscosity. Paint by dipping method.
 金属部品本体は、それ自体が製品の一部であってもよい。
 例えば図5に示すように、金属部品本体は、電気自動車用モーター50の外表面であってもよい。図5は、モーター本体40の外表面41に本願の水性塗料を直接塗布し乾燥させた放熱部材としての膜10を配置した電気自動車用モーター50の略図である。電気エネルギーを機械エネルギーに変換するモーター本体40は、運転に伴い熱が発生し、この熱をモーター外へ排出させる必要がある。膜10は、モーター本体40の外表面41に製膜され機能する。すなわち、モーター本体40の外表面41から伝達される熱を膜10が吸い上げ、当該熱が膜内に伝達され、さらに遠赤外線として外気中に放射されることにより、モーター本体40内に生じた熱を放熱する。
 また、モーター50の外表面だけでなく内表面にも水性塗料を塗布してもよい。このようにすると、内表面上に形成された膜が、モーター50内部の熱源から発生した遠赤外線を内側から吸収するように機能し、さらに放熱効果を高める。
The metal part body itself may be part of the product.
For example, as shown in FIG. 5, the metal component main body may be the outer surface of the electric vehicle motor 50. FIG. 5 is a schematic diagram of a motor 50 for an electric vehicle in which a film 10 as a heat radiating member is disposed on the outer surface 41 of the motor body 40 by directly applying and drying the aqueous paint of the present application. The motor body 40 that converts electrical energy into mechanical energy generates heat during operation, and it is necessary to discharge this heat to the outside of the motor. The film 10 functions by being formed on the outer surface 41 of the motor body 40. That is, the film 10 sucks up the heat transmitted from the outer surface 41 of the motor body 40, the heat is transmitted into the film, and further radiated into the outside air as far infrared rays, thereby generating heat generated in the motor body 40. Dissipate heat.
Further, the water-based paint may be applied not only to the outer surface of the motor 50 but also to the inner surface. If it does in this way, the film | membrane formed on the inner surface will function so that the far-infrared rays which generate | occur | produced from the heat source inside the motor 50 may be absorbed from the inside, and also the heat dissipation effect is improved.
 または、金属部品本体が金属板であって、金属板を有する放熱部材14(図1参照)をモーター本体40の外表面に載置してもよい。放熱部材14を電気自動車用モーターのような機器に用いる場合、放熱部材14の備える金属板の厚さは通常0.01~100mmである。好ましくは、0.03~10mmであり、より好ましくは0.1~2mmである。放熱部材14の備える膜の厚さは通常0.1~1000μmである。好ましくは、10~100μmであり、より好ましくは20~50μmである。電気自動車のモーターは、出力が大きく走行中は常時回転させるものであるため、発熱量が大きく、本願の放熱部材により効率よく除熱される。
 なお、本願の放熱部材は、電気自動車用モーターに限られず、一般的なモーターへの使用も可能である。特に、モーターを軽く小型にしたい場合に本願の放熱部材の使用は有効である。
Alternatively, the metal component main body may be a metal plate, and the heat radiating member 14 (see FIG. 1) having the metal plate may be placed on the outer surface of the motor main body 40. When the heat radiating member 14 is used in a device such as an electric vehicle motor, the thickness of the metal plate provided in the heat radiating member 14 is usually 0.01 to 100 mm. The thickness is preferably 0.03 to 10 mm, more preferably 0.1 to 2 mm. The film thickness of the heat dissipating member 14 is normally 0.1 to 1000 μm. The thickness is preferably 10 to 100 μm, more preferably 20 to 50 μm. Since the motor of an electric vehicle has a large output and is always rotated during traveling, the motor generates a large amount of heat and is efficiently removed by the heat dissipating member of the present application.
In addition, the heat radiating member of this application is not restricted to the motor for electric vehicles, The use to a general motor is also possible. In particular, the use of the heat dissipating member of the present application is effective when it is desired to make the motor light and small.
 金属部品本体は、それ自体が製品の一部であってもよい。
 例えば図6に示すように、金属部品本体は、エンジンを始動させ電装品を正常に動作させる電気自動車用バッテリー70の外表面であってもよい。図6は、バッテリー本体60の外表面に本願の水性塗料を直接塗布し乾燥させた放熱部材としての膜10を配置したバッテリー70の略図である。充電時または放電時の自己発熱が問題となるバッテリー本体60は、その熱をバッテリー本体外へ排出させる必要がある。膜10は、バッテリー本体60の外表面に製膜され機能する。すなわち、バッテリー本体60の表面から伝達される熱を膜10が吸い上げ、当該熱は膜内に伝達され、さらに遠赤外線として外気に放射されることにより、バッテリー本体60内に生じた熱を放熱する。
 また、バッテリー70の外表面だけでなく内表面にも水性塗料を塗布してもよい。このようにすると、内表面上に形成された膜が、バッテリー70の内部の熱を遠赤外線として内側から吸収するように機能し、さらに放熱効果を高める。
 なお、バッテリー本体60は、バッテリーセルであってもその集合体であってもよい。
 また、バッテリー本体60は、例えば、エンジンを始動させ電装品を正常に動作させる電気自動車用バッテリーであってもよい。
The metal part body itself may be part of the product.
For example, as shown in FIG. 6, the metal component main body may be an outer surface of an electric vehicle battery 70 that starts an engine and operates electrical components normally. FIG. 6 is a schematic view of a battery 70 in which a film 10 as a heat radiating member is disposed on the outer surface of the battery body 60 by directly applying and drying the aqueous paint of the present application. The battery main body 60 in which self-heating at the time of charging or discharging becomes a problem needs to discharge the heat to the outside of the battery main body. The film 10 functions by being formed on the outer surface of the battery body 60. That is, the film 10 sucks up heat transferred from the surface of the battery body 60, and the heat is transferred into the film and further radiated to the outside air as far infrared rays, thereby radiating the heat generated in the battery body 60. .
Further, the water-based paint may be applied not only to the outer surface of the battery 70 but also to the inner surface. If it does in this way, the film | membrane formed on the inner surface functions to absorb the heat inside the battery 70 from the inside as far infrared rays, and further enhances the heat dissipation effect.
The battery body 60 may be a battery cell or an assembly thereof.
The battery body 60 may be, for example, an electric vehicle battery that starts an engine and operates electrical components normally.
 または、金属部品本体が金属板であって、金属板を有する放熱部材14(図1参照)をバッテリー本体60の外表面に載置してもよい。放熱部材14を電気自動車用バッテリーのような機器に用いる場合、放熱部材14の備える金属板の厚さは通常0.01~100mmである。好ましくは、0.03~10mmであり、より好ましくは0.1~2mmである。放熱部材14の備える膜の厚さは通常0.1~1000μmである。好ましくは、10~100μmであり、より好ましくは20~50μmである。
 なお、本願の放熱部材は、電気自動車用バッテリーに限られず、充電時または放電時の自己発熱が問題になるバッテリーに使用してもよい。
Alternatively, the metal component main body may be a metal plate, and the heat dissipation member 14 (see FIG. 1) having the metal plate may be placed on the outer surface of the battery main body 60. When the heat radiating member 14 is used in a device such as an electric vehicle battery, the thickness of the metal plate provided in the heat radiating member 14 is usually 0.01 to 100 mm. The thickness is preferably 0.03 to 10 mm, more preferably 0.1 to 2 mm. The film thickness of the heat dissipating member 14 is normally 0.1 to 1000 μm. The thickness is preferably 10 to 100 μm, more preferably 20 to 50 μm.
In addition, the heat radiating member of this application is not restricted to the battery for electric vehicles, You may use for the battery from which the self-heating at the time of charge or discharge becomes a problem.
 その他、放熱部材10、14は、スマートフォンやPC等の機器のCPUやバッテリー、照明器具、工作機械等の自己発熱する器具、機械等の物品にも利用でき、高い放熱効果を提供する。 In addition, the heat radiating members 10 and 14 can also be used for articles such as CPUs and batteries of devices such as smartphones and PCs, batteries, lighting fixtures, machine tools and other self-heating devices, and machines, and provide a high heat dissipation effect.
 本発明の放熱部材は、ポリウレタン樹脂微粒子とフィラーを含有した水の分散液を乾燥することにより得られる膜により、または膜と金属板との組み合わせにより、高い放熱効果を有する。また、放熱部材と物品とを分業で製造し、容易に物品に放熱部材を載置できるため、製造がし易く、生産効率を上げることができる。 The heat dissipating member of the present invention has a high heat dissipating effect by a film obtained by drying an aqueous dispersion containing polyurethane resin fine particles and a filler, or by a combination of a film and a metal plate. Moreover, since the heat radiating member and the article can be manufactured by division of labor and the heat radiating member can be easily placed on the article, the manufacturing is easy and the production efficiency can be increased.
 以下に本発明を、実施例を用いて詳細に説明する。しかし本発明は、以下の実施例に記載された内容に限定されるものではない。 Hereinafter, the present invention will be described in detail using examples. However, the present invention is not limited to the contents described in the following examples.
 本発明の実施例に用いた、放熱部材を構成する成分材料は次のとおりである。
<水性ポリウレタン樹脂ディスパージョン液>
・ポリエステル-ポリウレタン樹脂ディスパージョン液:
 PESU1:住化バイエルウレタン(株)(商品名)バイヒドロールUH2342(1-メチル-2-ピロリドン5重量%含有)
 PESU2:住化バイエルウレタン(株)(商品名)バイヒドロールUH650
・ポリカーボネート-ポリウレタン樹脂ディスパージョン液:
 PCU1:住化バイエルウレタン(株)(商品名)バイヒドロールUH2606
・ポリエステル-ポリカーボネート-ポリウレタン樹脂ディスパージョン液:
 PECU1:住化バイエルウレタン(株)(商品名)バイヒドロールUHXP2648
 PECU2:住化バイエルウレタン(株)(商品名)バイヒドロールUHXP2648/1
(バイヒドロールは登録商標)
The component material which comprises the heat radiating member used for the Example of this invention is as follows.
<Aqueous polyurethane resin dispersion liquid>
・ Polyester-polyurethane resin dispersion liquid:
PESU1: Sumika Bayer Urethane Co., Ltd. (trade name) Bihydrol UH2342 (containing 1% by weight of 1-methyl-2-pyrrolidone)
PESU2: Sumika Bayer Urethane Co., Ltd. (trade name) Bihydrol UH650
・ Polycarbonate-polyurethane resin dispersion liquid:
PCU1: Sumika Bayer Urethane Co., Ltd. (trade name) Bihydrol UH2606
・ Polyester-polycarbonate-polyurethane resin dispersion liquid:
PECU1: Sumika Bayer Urethane Co., Ltd. (trade name) Bihydrol UHXP2648
PECU2: Sumika Bayer Urethane Co., Ltd. (trade name) Bihydrol UHXP2648 / 1
(Bihydrol is a registered trademark)
 実施例に用いた水性ポリウレタン樹脂ディスパージョン液のカタログ値を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
The catalog value of the water-based polyurethane resin dispersion liquid used for the Example is shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例に用いた水性ポリウレタン樹脂ディスパージョン液の測定値を示す。
Figure JPOXMLDOC01-appb-T000003
<比較樹脂または樹脂ディスパージョン液>
・アクリル樹脂(水性):和信ペイント(株)(商品名)水溶性つやだしニス 
・アクリル樹脂(熱硬化性):東亜合成(株)(商品名)アロニックスM-305
・アルキド(ポリエステル)樹脂(油性):和信ペイント(株)(商品名)クリヤーラッカー
・エポキシ樹脂(光硬化性):(株)ダイセル(商品名)セロキサイド2021P
<フィラー>
・合成コーディエライト:丸ス釉薬合資会社(商品名)SS-200(平均粒径7.5μm)SS-1000(平均粒径1.7μm)SS-5000(平均粒径0.6μm)
・窒化ホウ素:電気化学工業(株)デンカボロンナイトライド(商品名)SGP
・二酸化ケイ素(シリカ):富士シリシア(株)(商品名)サイリシア
・酸化アルミニウム(アルミナ):昭和電工(株)(商品名)AL-47H
・酸化チタン:石原産業(株)(商品名)タイペークCR-50
・炭化珪素:Sigma-Aldrich Japan(商品名)Silicon carbide
・黒鉛:日本黒鉛工業(株)(商品名)鱗状黒鉛粉末 F#2
・チタンブラック:三菱マテリアル(株)製、13M-C
(アロニックス、セロキサイド、デンカボロンナイトライド、タイペークは登録商標)
<カチオン発生剤>
・CPI-210S:サンアプロ(株)
The measured value of the water-based polyurethane resin dispersion liquid used for the Example is shown.
Figure JPOXMLDOC01-appb-T000003
<Comparison resin or resin dispersion liquid>
・ Acrylic resin (water-based): Wasin Paint Co., Ltd. (trade name) Water-soluble glossy varnish
Acrylic resin (thermosetting): Toa Gosei Co., Ltd. (trade name) Aronix M-305
・ Alkyd (polyester) resin (oil-based): Wasin Paint Co., Ltd. (trade name) clear lacquer ・ Epoxy resin (photo-curing): Daicel (trade name) Celoxide 2021P
<Filler>
Synthetic cordierite: Marusu glaze joint stock company (trade name) SS-200 (average particle size 7.5 μm) SS-1000 (average particle size 1.7 μm) SS-5000 (average particle size 0.6 μm)
Boron nitride: Denkaboron nitride (trade name) SGP, Electrochemical Industry
・ Silicon dioxide (silica): Fuji Silysia Co., Ltd. (trade name) Silicia ・ Aluminum oxide (alumina): Showa Denko Co., Ltd. (trade name) AL-47H
・ Titanium oxide: Ishihara Sangyo Co., Ltd. (trade name) Taipei CR-50
・ Silicon carbide: Sigma-Aldrich Japan (trade name) Silicon carbide
・ Graphite: Nihon Graphite Industry Co., Ltd. (trade name) scale-like graphite powder F # 2
・ Titanium Black: 13M-C, manufactured by Mitsubishi Materials Corporation
(Aronix, Celoxide, Denkaboron Nightride, and Taipei are registered trademarks)
<Cation generator>
・ CPI-210S: Sun Apro Co., Ltd.
<粒度分布の測定法>
 各粒子の平均粒径(メジアン径)は、堀場製作所製レーザー回折散乱式粒度分布測定装置LA-950V2を用いて測定した。すなわち、フランホーファー回折理論およびミーの散乱理論による解析を利用して、湿式法にて測定を行い、粉体をある粒子径から2つに分けたとき、大きい側と小さい側が等量(体積基準)となる径をメジアン径とした。測定は湿式法、純水中に測定試料少量(耳かき一杯程度)を加えた後、超音波洗浄機中で3分間処理し、試料が分散した溶液を用いた。測定時のスラリーの濃度は、レーザーの透過率が80%になるように調整した。
<Measurement method of particle size distribution>
The average particle diameter (median diameter) of each particle was measured using a laser diffraction scattering type particle size distribution measuring apparatus LA-950V2 manufactured by Horiba. That is, using the analysis based on the Franchoffer diffraction theory and Mie's scattering theory, when measuring by a wet method and dividing the powder into two from a certain particle size, the larger side and the smaller side are equivalent (volume basis) ) Is the median diameter. The measurement was performed using a wet method, a solution in which a sample was dispersed after adding a small amount of a measurement sample (about one earpick) in pure water and then treating in an ultrasonic cleaner for 3 minutes. The concentration of the slurry at the time of measurement was adjusted so that the laser transmittance was 80%.
<試料作製>
 自転・公転ミキサー((株)シンキー製あわとり錬太郎 ARE250)を使用して、水性ポリウレタン樹脂ディスパージョン液およびフィラーの粉末を回転数2000rpmで10分間撹拌した後に、回転数2200rpmで10分間脱泡することにより、以下の試料を調製した。
<Sample preparation>
Using an autorotation / revolution mixer (Shinky Awatori Rentaro ARE250), the aqueous polyurethane resin dispersion liquid and filler powder were stirred for 10 minutes at a rotational speed of 2000 rpm, and then defoamed for 10 minutes at a rotational speed of 2200 rpm. As a result, the following samples were prepared.
≪実施例1≫
 PESU1、および平均粒径1.7μmの合成コーディエライト(SS-1000)を、それぞれ100重量部、15重量部を秤量して、ポリプロピレン製の容器に入れ、自転・公転ミキサーで混合し、実施例1の試料とした。
≪実施例2≫
 PESU2、および平均粒径1.7μmの合成コーディエライト(SS-1000)を、それぞれ100重量部、21.4重量部を秤量して、ポリプロピレン製の容器に入れ、自転・公転ミキサーで混合し、実施例2の試料とした。
≪実施例3~5≫
 水性ポリウレタン樹脂ディスパージョン液の種類が異なる以外は、実施例1と同様に、実施例3~5の試料とした。
≪比較例1≫
 アクリル樹脂(水性)塗料、および平均粒径1.7μmの合成コーディエライト(SS-1000)を、それぞれ100重量部、15重量部を秤量してポリプロピレン製の容器に入れ、自転・公転ミキサーで混合し、比較例1の試料とした。
≪比較例2≫
 アクリル樹脂(熱硬化性)、および平均粒径1.7μmの合成コーディエライト(SS-1000)を、それぞれ100重量部、42.9重量部を秤量してポリプロピレン製の容器に入れ、自転・公転ミキサーで混合し、比較例2の試料とした。
≪比較例3≫
 アルキド樹脂塗料(油性)、および平均粒径1.7μmの合成コーディエライト(SS-1000)を、それぞれ100重量部、15.9重量部を秤量してポリプロピレン製の容器に入れ、自転・公転ミキサーで混合し、比較例3の試料とした。
≪比較例4≫
 エポキシ樹脂(光硬化性)、平均粒径7.5μmの合成コーディエライト(SS-200)、メチルエチルケトン(MEK)、およびCPI-210Sを、それぞれ70重量部、30重量部、30重量部、0.3重量部を秤量して、ポリプロピレン製の容器に入れ、自転・公転ミキサーで混合し、比較例4の試料とした。
Figure JPOXMLDOC01-appb-T000004
≪実施例6≫
 PECU1、および平均粒径1.7μmの合成コーディエライト(SS-1000)を、それぞれ100重量部、35重量部を秤量して、ポリプロピレン製の容器に入れ、自転・公転ミキサーで混合し、実施例6の試料とした。
≪比較例5、6≫
 フィラーの種類が異なる以外は、実施例6と同様に、比較例5および6の試料とした。
≪比較例7≫
 PECU1のみを試料とした。
≪比較例8≫
 黒色アルマイト処理のみとした(下記[1.放熱特性の評価]では使用するアルミニウム板の片面を黒色アルマイト処理したものを用いた)。
Figure JPOXMLDOC01-appb-T000005
≪実施例7~27≫
 さらに、色味の調整や放熱効果を高めるために、第一のフィラーとして平均粒径7.5μmコーディエライト(SS-200)と第二のフィラーを添加した。水性ポリウレタン樹脂ディスパージョン液およびフィラーの添加量の割合を下記に示す。試料の作製手順は実施例6と同様である。なお実施例7、14、21において、第一のフィラーとは異なる粒径のコーディエライトを併用しており、実質第二のフィラーを含む構成ではないが、便宜的に表6において、第二のフィラー欄に粒径の異なるコーディエライトを記載した。
≪比較例9~11≫
 第一のフィラーとしてアルミナと第二のフィラーとして酸化チタンを添加した。水性ポリウレタン樹脂ディスパージョン液および追加フィラーの添加量の割合を下記に示す。試料の作製手順は実施例6と同様である。
Figure JPOXMLDOC01-appb-T000006
Example 1
100 parts by weight and 15 parts by weight of PESU1 and synthetic cordierite (SS-1000) with an average particle size of 1.7 μm were weighed, put into a polypropylene container, and mixed by a rotating / revolving mixer. The sample of Example 1 was obtained.
<< Example 2 >>
100 parts by weight and 21.4 parts by weight of PESU2 and synthetic cordierite (SS-1000) with an average particle size of 1.7 μm were weighed and placed in a polypropylene container, and mixed with a rotating / revolving mixer. A sample of Example 2 was obtained.
<< Examples 3 to 5 >>
Samples of Examples 3 to 5 were prepared in the same manner as in Example 1 except that the type of the aqueous polyurethane resin dispersion liquid was different.
≪Comparative example 1≫
Acrylic resin (water-based) paint and synthetic cordierite (SS-1000) with an average particle size of 1.7 μm are weighed in 100 parts by weight and 15 parts by weight, respectively, and placed in a polypropylene container. The sample of Comparative Example 1 was mixed.
≪Comparative example 2≫
100 parts by weight and 42.9 parts by weight of acrylic resin (thermosetting) and synthetic cordierite (SS-1000) with an average particle size of 1.7 μm were weighed and placed in a polypropylene container. The sample was mixed with a revolution mixer to obtain a sample of Comparative Example 2.
«Comparative Example 3»
100 parts by weight and 15.9 parts by weight of alkyd resin paint (oil-based) and synthetic cordierite (SS-1000) with an average particle size of 1.7 μm are weighed and put into a polypropylene container. The sample of Comparative Example 3 was prepared by mixing with a mixer.
<< Comparative Example 4 >>
Epoxy resin (photocurable), synthetic cordierite (SS-200) having an average particle diameter of 7.5 μm, methyl ethyl ketone (MEK), and CPI-210S were respectively 70 parts by weight, 30 parts by weight, 30 parts by weight, 0 parts. .3 parts by weight were weighed, placed in a polypropylene container, and mixed by a rotation / revolution mixer to obtain a sample of Comparative Example 4.
Figure JPOXMLDOC01-appb-T000004
Example 6
100 parts by weight and 35 parts by weight of PECU 1 and synthetic cordierite (SS-1000) with an average particle diameter of 1.7 μm were weighed, put into a polypropylene container, and mixed by a rotating / revolving mixer. The sample of Example 6 was obtained.
<< Comparative Examples 5 and 6 >>
Samples of Comparative Examples 5 and 6 were used in the same manner as in Example 6 except that the type of filler was different.
<< Comparative Example 7 >>
Only PECU1 was used as a sample.
«Comparative Example 8»
Only black alumite treatment was used (in the following [1. Evaluation of heat radiation characteristics], one side of the aluminum plate used was treated with black alumite).
Figure JPOXMLDOC01-appb-T000005
<< Examples 7 to 27 >>
Furthermore, in order to adjust the color and enhance the heat dissipation effect, an average particle size of 7.5 μm cordierite (SS-200) and a second filler were added as the first filler. The ratio of the addition amount of the aqueous polyurethane resin dispersion and the filler is shown below. The sample preparation procedure is the same as in Example 6. In Examples 7, 14, and 21, cordierite having a particle size different from that of the first filler is used in combination, and the second filler is not included. Cordierite with different particle diameters is described in the filler column.
<< Comparative Examples 9 to 11 >>
Alumina was added as the first filler and titanium oxide was added as the second filler. The ratio of the addition amount of the aqueous polyurethane resin dispersion liquid and the additional filler is shown below. The sample preparation procedure is the same as in Example 6.
Figure JPOXMLDOC01-appb-T000006
[1.放熱特性の評価]
 実施例および比較例について、放熱特性の評価を示す。
[1-1 放熱部材の調製]
 スピンコーターを用いて、実施例および比較例の各試料を40×40(mm)四方で厚み0.4mmのアルミニウム板に塗布した。スピンコーターの回転数は、それぞれの実施例および比較例の塗膜が約30μmになるように調整した。膜厚は、Nikon社製 DIGIMICRO MFC-101Aを使用して測定した。
 ホットプレートを用いて、130度で3分間加熱し、塗布した実施例および比較例の各試料を乾燥させ、アルミニウム板を有する放熱部材を形成した。
 比較例2に係る放熱部材は、調製した試料を40×40(mm)四方で厚み0.4mmのアルミニウム板にスピンコートで塗布した後に190度のホットプレートで硬化させ、アルミニウム板を有する放熱部材を形成した。
 比較例4に係る放熱部材は、調製した試料を40×40(mm)四方で厚み0.4mmのアルミニウム板にスピンコートで塗布した後に紫外線照射器で硬化させ、アルミニウム板を有する放熱部材を形成した。
 比較例7に係る放熱部材は、PECU1のみをアルミニウム板に塗布した後に乾燥させたものである。比較例8に係る放熱部材は、樹脂を有さず、アルミニウム板の片面を黒色アルマイト処理したものである。
[1. Evaluation of heat dissipation characteristics]
About an Example and a comparative example, evaluation of the thermal radiation characteristic is shown.
[1-1 Preparation of heat dissipation member]
Using a spin coater, each sample of the example and the comparative example was applied to an aluminum plate having a thickness of 40 mm × 40 mm and a thickness of 0.4 mm. The rotation speed of the spin coater was adjusted so that the coating films of the respective examples and comparative examples were about 30 μm. The film thickness was measured using a DIGIMICRO MFC-101A manufactured by Nikon.
Heating was performed at 130 degrees for 3 minutes using a hot plate, and the applied samples of Examples and Comparative Examples were dried to form a heat dissipation member having an aluminum plate.
The heat radiating member according to Comparative Example 2 is a heat radiating member having an aluminum plate prepared by applying the prepared sample by spin coating on an aluminum plate having a thickness of 40 × 40 mm and a thickness of 0.4 mm, followed by curing with a 190 ° hot plate. Formed.
The heat radiating member according to Comparative Example 4 was prepared by applying the prepared sample to an aluminum plate having a thickness of 40 mm × 40 mm by spin coating, followed by curing with an ultraviolet irradiator to form a heat radiating member having an aluminum plate. did.
The heat dissipating member according to Comparative Example 7 is one in which only PECU 1 is applied to an aluminum plate and then dried. The heat radiating member according to Comparative Example 8 does not have a resin and is obtained by performing black alumite treatment on one side of an aluminum plate.
[1-2 放熱特性の評価I]
 放熱部材のアルミ面側とトランジスタ(東芝トランジスタ製 シリコンNPN 三重拡散形 2SD2012)を両面テープ(住友スリーエム(株)製 熱伝導性接着剤転写テープNo.9885)を用いて貼り合わせた。トランジスタの放熱部材を貼り合わせる面の裏面にK熱電対(理化工業(株)製ST-50)を取り付け、データロガーを用いてパソコンにてその温度を記録した。このトランジスタを取り付けた放熱部材を40℃に設定した恒温槽中央に静置し、トランジスタの温度が40℃で一定になったことを確認した後、トランジスタに直流安定化電源を用いて1.18Vを印加し、トランジスタ表面の温度変化を測定した。
[1-2 Evaluation of heat dissipation characteristics I]
The aluminum surface side of the heat radiating member and a transistor (silicon NPN triple diffusion type 2SD2012 manufactured by Toshiba Transistor) were bonded together using a double-sided tape (thermal conductive adhesive transfer tape No. 9885 manufactured by Sumitomo 3M Co., Ltd.). A K thermocouple (ST-50 manufactured by Rika Kogyo Co., Ltd.) was attached to the back side of the surface to which the heat radiating member of the transistor was bonded, and the temperature was recorded with a personal computer using a data logger. The heat dissipating member to which this transistor is attached is left in the center of a thermostatic chamber set at 40 ° C., and after confirming that the temperature of the transistor has become constant at 40 ° C., a 1.18 V voltage is applied to the transistor using a DC stabilized power supply. Was applied, and the temperature change of the transistor surface was measured.
 実施例1~5および比較例1~4の試料を用いて放熱部材を調製し、その放熱特性を評価した。評価結果を下記に示す。
Figure JPOXMLDOC01-appb-T000007
Heat radiating members were prepared using the samples of Examples 1 to 5 and Comparative Examples 1 to 4, and their heat radiating characteristics were evaluated. The evaluation results are shown below.
Figure JPOXMLDOC01-appb-T000007
 表7の示す結果から、本発明の実施例1~5の水性塗料を用いた放熱部材は、比較例1~4と比較して優れた放熱性を有していることがわかる。また、実施例1~5の水性塗料を用いた放熱試験結果から、樹脂の種類はポリカーボネート-ポリウレタン、ポリエステル-ポリウレタン、ポリエステル-ポリカーボネート-ポリウレタンが特に好ましい。 From the results shown in Table 7, it can be seen that the heat dissipating members using the aqueous paints of Examples 1 to 5 of the present invention have excellent heat dissipating properties as compared with Comparative Examples 1 to 4. Further, from the results of the heat dissipation test using the water-based paints of Examples 1 to 5, the type of resin is particularly preferably polycarbonate-polyurethane, polyester-polyurethane, or polyester-polycarbonate-polyurethane.
[1-3 放熱特性の評価II]
 放熱部材の金属面側とセラミックヒーター(坂口電熱(株)製マイクロセラミックヒーターMS-3)を両面テープ(住友スリーエム(株)製 熱伝導性接着剤転写テープNo.9885)を用いて貼り合わせた。セラミックヒーターの放熱部材を貼り合わせる面の裏面にK熱電対(理化工業(株)製ST-50)を取り付け、データロガーを用いてパソコンにてその温度を記録した。このヒーターを取り付けた放熱部材を40℃に設定した恒温槽中央に静置し、セラミックヒーターの温度が40℃で一定になったことを確認した後、セラミックヒーターに直流安定化電源を用いて14Vを印加し、セラミックヒーター表面の温度変化を測定した。セラミックヒーターは一定の熱量を発生しているので、取り付けてある放熱部材の放熱効果が高いほど、セラミックヒーターの温度は低下する。すなわち、セラミックヒーターの温度が低くなる放熱部材ほど放熱効果が高いといえる。
[1-3 Evaluation of heat dissipation characteristics II]
The metal surface side of the heat dissipating member and the ceramic heater (Sakaguchi Electric Heat Co., Ltd. micro ceramic heater MS-3) were bonded together using a double-sided tape (Sumitomo 3M Co., Ltd. heat conductive adhesive transfer tape No. 9885). . A K thermocouple (ST-50 manufactured by Rika Kogyo Co., Ltd.) was attached to the back surface of the surface to which the heat radiating member of the ceramic heater was bonded, and the temperature was recorded with a personal computer using a data logger. The heat dissipating member attached with this heater is placed in the center of a thermostatic chamber set at 40 ° C., and after confirming that the temperature of the ceramic heater is constant at 40 ° C., the ceramic heater is 14V using a DC stabilized power supply. Was applied, and the temperature change of the ceramic heater surface was measured. Since the ceramic heater generates a certain amount of heat, the higher the heat dissipation effect of the attached heat dissipation member, the lower the temperature of the ceramic heater. That is, it can be said that the heat dissipation member having a lower temperature of the ceramic heater has a higher heat dissipation effect.
 実施例6~27および比較例5~11の試料を用いて放熱部材を調製し、その放熱特性を評価した。評価結果を下記に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Heat radiating members were prepared using the samples of Examples 6 to 27 and Comparative Examples 5 to 11, and their heat radiating characteristics were evaluated. The evaluation results are shown below.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表8の示す結果から、本発明の水性塗料を用いた放熱部材は、優れた放熱性を有していることがわかる。表9の示す結果から、本発明の水性塗料を用いた放熱部材は、第二のフィラーを添加しても放熱性能が損なわれることはなく、特に窒化ホウ素、アルミナは熱伝導率が高いため、水性塗料から形成された膜の放熱効果をより向上させることができるため好ましい。また、酸化チタンは塗料中に均一に分散し、塗膜を白に着色できるため好ましい。チタンブラックは塗料中に均一に分散し、塗膜を黒に着色できるため好ましい。 From the results shown in Table 8, it can be seen that the heat dissipating member using the water-based paint of the present invention has an excellent heat dissipating property. From the results shown in Table 9, the heat dissipating member using the water-based paint of the present invention does not impair the heat dissipating performance even when the second filler is added. In particular, boron nitride and alumina have high thermal conductivity. This is preferable because the heat dissipation effect of the film formed from the aqueous paint can be further improved. Titanium oxide is preferable because it can be uniformly dispersed in the coating and the coating can be colored white. Titanium black is preferable because it can be uniformly dispersed in the coating and the coating can be colored black.
[2.膜物性の評価]
 実施例および比較例について、膜物性の評価を示す。[2.膜物性の評価]で用いた試料は、[1.放熱特性の評価]で用いたものと同様である。
[2. Evaluation of film properties]
About an Example and a comparative example, evaluation of a film physical property is shown. [2. Samples used in the evaluation of film properties] are [1. This is the same as that used in the evaluation of heat dissipation characteristics.
[2-1 耐熱性の評価]
 アルミカップに試料を流し込み、常温で24時間乾燥した。なお、塗膜の厚さは乾燥後に1mmとなるよう調整した。この塗膜を切り取り、示差熱熱重量同時測定装置EXSTAR TG/DTA6000シリーズ(SIIナノテクノロジー(株)社製)を用いて、塗膜の5%質量損失温度を測定した。
Figure JPOXMLDOC01-appb-T000010
[2-1 Evaluation of heat resistance]
The sample was poured into an aluminum cup and dried at room temperature for 24 hours. The thickness of the coating film was adjusted to 1 mm after drying. The coating film was cut out, and the 5% mass loss temperature of the coating film was measured using a differential thermothermal gravimetric simultaneous measurement apparatus EXSTAR TG / DTA6000 series (manufactured by SII Nanotechnology Co., Ltd.).
Figure JPOXMLDOC01-appb-T000010
 上記の結果から、本発明の水性塗料からなる塗膜は、優れた耐熱性を有することがわかる。このため、より高い温度領域での使用が可能である。また、助溶剤を含有する実施例1と、助溶剤を含有しない実施例2~5を比較すると、助溶剤が入っていないものが好ましく、実施例2~5と比較例1、3および4を比較すると、実施例2~5が好ましく、実施例2のポリエステル-ポリウレタン、実施例3のポリカーボネート-ポリウレタンもしくは実施例4および5のポリエステル-ポリカーボネート-ポリウレタンが特に好ましい。また、熱硬化性アクリル塗料硬化膜(比較例2)については、耐熱性は非常に優れているが、加熱による体積収縮率が大きくクラックが入って基材から剥がれ落ちてしまうため好ましくない。 From the above results, it can be seen that the coating film made of the aqueous paint of the present invention has excellent heat resistance. For this reason, use in a higher temperature range is possible. Further, when Example 1 containing a co-solvent is compared with Examples 2 to 5 not containing a co-solvent, those containing no co-solvent are preferable. Examples 2 to 5 and Comparative Examples 1, 3 and 4 are In comparison, Examples 2-5 are preferred, with the polyester-polyurethane of Example 2, the polycarbonate-polyurethane of Example 3 or the polyester-polycarbonate-polyurethane of Examples 4 and 5 being particularly preferred. In addition, the thermosetting acrylic paint cured film (Comparative Example 2) has excellent heat resistance, but is not preferable because the volumetric shrinkage due to heating is large and cracks are removed from the substrate.
[2-2 塗膜密着性の評価]
 厚さ0.4mmのアルミニウム板、厚さ0.4mmの銅版、厚さ1.2mmのマグネシウム板および厚さ0.2mmのステンレス板のそれぞれに試料をスピンコーターで塗装し、130℃で3分加熱乾燥した。なお、塗膜の厚さは乾燥後に30μmとなるよう調整した。密着性試験は、JIS-K5600-5-6に準じ、10×10で100マスの切り込みを付け、TQC ISO付着テープ/STANDARD(コーテック(株)社製)を用い、塗膜の剥離の有無を判定した。全く剥離しなかった場合を◎、剥離しなかったマスの数が90マス以上の場合を○、70マス以上90マス未満の場合を△、70マス未満の場合を×とした。
[2-2 Evaluation of coating film adhesion]
A sample was applied to each of an aluminum plate having a thickness of 0.4 mm, a copper plate having a thickness of 0.4 mm, a magnesium plate having a thickness of 1.2 mm, and a stainless steel plate having a thickness of 0.2 mm using a spin coater, and the coating was performed at 130 ° C. for 3 minutes. Heat dried. The thickness of the coating film was adjusted to 30 μm after drying. The adhesion test was performed in accordance with JIS-K5600-5-6 with a 100 × 10 incision of 10 × 10, and using TQC ISO Adhesive Tape / STANDARD (manufactured by Cortec Co., Ltd.) Judged. The case where no separation occurred was marked with ◎, the case where the number of cells not peeled off was 90 squares or more, ◯, the case where 70 squares or more and less than 90 squares, Δ, and the case where it was less than 70 squares, x.
 実施例2~4および比較例1~4で作製した試料を用いて、製膜した塗膜の密着性試験を行った結果を下記に示す。
Figure JPOXMLDOC01-appb-T000011
The results of the adhesion test of the formed coating films using the samples prepared in Examples 2 to 4 and Comparative Examples 1 to 4 are shown below.
Figure JPOXMLDOC01-appb-T000011
 上記の結果から、本発明の水性塗料からなる塗膜は、いずれも優れた基材密着性を有することがわかる。また、ポリカーボネート-ポリウレタンおよびポリエステル-ポリウレタンの塗膜はいずれの基材に対しても密着性が極めて優れており特に好ましい。基材との密着性に優れているため、発熱部から効率よく熱が伝わり高い放熱性能を得ることができる。 From the above results, it can be seen that all the coating films made of the aqueous paint of the present invention have excellent substrate adhesion. Polycarbonate-polyurethane and polyester-polyurethane coatings are particularly preferred because they have excellent adhesion to any substrate. Since the adhesiveness with the base material is excellent, heat is efficiently transmitted from the heat generating portion, and high heat dissipation performance can be obtained.
[2-3 耐屈曲性の評価]
 実施例2~4および比較例1~4で作製した試料を用いて、製膜した塗膜の耐屈曲性試験を行った結果を下記に示す。厚さ0.4mmのアルミニウム板に試料をスピンコーターで塗装し、130℃で3分加熱乾燥した。なお、塗膜の厚さは乾燥後に30μmとなるよう調整した。耐屈曲性試験は、アルミニウム板を、塗膜面を外側にして90度折り曲げたとき、塗膜に亀裂ができなかったものを○、亀裂ができたものを×とした。
Figure JPOXMLDOC01-appb-T000012
[2-3 Evaluation of bending resistance]
The results of a bending resistance test of the formed coating films using the samples prepared in Examples 2 to 4 and Comparative Examples 1 to 4 are shown below. A sample was coated on a 0.4 mm thick aluminum plate with a spin coater and dried by heating at 130 ° C. for 3 minutes. The thickness of the coating film was adjusted to 30 μm after drying. In the bending resistance test, when the aluminum plate was bent 90 degrees with the coating surface facing outward, the coating film could not be cracked, and the cracked coating was rated as x.
Figure JPOXMLDOC01-appb-T000012
 上記の結果から、本発明の水性塗料からなる塗膜は、実施例2~4のいずれも、非常に優れた耐屈曲性を有することがわかる。このため、基材への塗装後に打ち抜きや曲げ加工なども可能となる。 From the above results, it can be seen that the coating film made of the water-based paint of the present invention has very excellent bending resistance in any of Examples 2 to 4. For this reason, it is possible to perform punching or bending after coating on the substrate.
[2-4 引っかき硬度の評価]
 実施例2~4で作製した試料を用いて、製膜した塗膜の塗膜硬度の評価を行った結果を下記に示。厚さ0.4mmのアルミニウム板に試料をスピンコーターで塗装し、130℃で3分加熱乾燥した。なお、塗膜の厚さは乾燥後に30μmとなるよう調整した。引っかき硬度テストの方法は、JIS-K-5-4に準じた。
Figure JPOXMLDOC01-appb-T000013
[2-4 Evaluation of scratch hardness]
The results of evaluating the coating film hardness of the formed coating film using the samples prepared in Examples 2 to 4 are shown below. A sample was coated on a 0.4 mm thick aluminum plate with a spin coater and dried by heating at 130 ° C. for 3 minutes. The thickness of the coating film was adjusted to 30 μm after drying. The scratch hardness test method conformed to JIS-K-5-4.
Figure JPOXMLDOC01-appb-T000013
 上記の結果から、実施例3のポリカーボネート-ポリウレタンおよび実施例4のポリエステル-ポリカーボネート-ポリウレタンは、柔軟性を持つにもかかわらず優れた引っかき硬度を有していることがわかる。このため、傷がつきにくい。また、本発明の水性塗料からなる塗膜は、一度ついた傷が緩和され傷が目立たなくなることから、外装塗料としても優れている。熱硬化性アクリル塗料硬化膜(比較例2)については、引っかき硬度は優れているが、基材との密着性が弱く基材から剥がれ落ちてしまうため好ましくない。 From the above results, it can be seen that the polycarbonate-polyurethane of Example 3 and the polyester-polycarbonate-polyurethane of Example 4 have excellent scratch hardness despite having flexibility. For this reason, it is hard to be damaged. In addition, the coating film made of the water-based paint of the present invention is excellent as an exterior paint since the scratches once alleviated and the scratches are not noticeable. About a thermosetting acrylic paint cured film (comparative example 2), although scratch hardness is excellent, since adhesiveness with a base material is weak and peels off from a base material, it is unpreferable.
 各種ポリウレタン樹脂ディスパージョン液とフィラーからなる塗料を作製することで、塗膜の密着性、硬度、折り曲げ強度などの膜物性を調節することが可能である。 It is possible to adjust film physical properties such as adhesion, hardness, and bending strength of the coating film by preparing a coating composed of various polyurethane resin dispersion liquids and fillers.
[3.塗料物性の評価]
 各種ポリウレタン樹脂ディスパージョン液およびフィラーからなる塗料の物性についての評価を示す。[3.塗料物性の評価]で用いた試料は、[1.放熱特性の評価]で用いたものと同様である。
[3. Evaluation of paint properties]
The physical properties of paints composed of various polyurethane resin dispersions and fillers are evaluated. [3. The samples used in [Evaluation of paint properties] are [1. This is the same as that used in the evaluation of heat dissipation characteristics.
≪実施例28≫
 PESU2、PECU1、および平均粒径1.7μmの合成コーディエライト(SS-1000)を、それぞれ75重量部、25重量部、19.8重量部を秤量して、ポリプロピレン製の容器に入れ、自転・公転ミキサーで混合し、実施例28の試料とした。
≪実施例29~33≫
 水性ポリウレタン樹脂ディスパージョン液の種類、および水性ポリウレタン樹脂ディスパージョン液とフィラーの混合比が異なる以外は、実施例28と同様に実施例29~33の試料とした。
Figure JPOXMLDOC01-appb-T000014
<< Example 28 >>
PESU2, PECU1, and synthetic cordierite (SS-1000) with an average particle size of 1.7 μm were weighed in 75 parts by weight, 25 parts by weight, and 19.8 parts by weight, respectively, and placed in a polypropylene container for rotation. -It mixed with the revolution mixer and it was set as the sample of Example 28.
<< Examples 29 to 33 >>
Samples of Examples 29 to 33 were prepared in the same manner as in Example 28 except that the type of the aqueous polyurethane resin dispersion liquid and the mixing ratio of the aqueous polyurethane resin dispersion liquid and the filler were different.
Figure JPOXMLDOC01-appb-T000014
[3-1 耐熱性の評価]
 実施例28~33の試料を用いて製膜した塗膜の耐熱性を、[2-1 耐熱性の評価]と同様の手順で評価した。
Figure JPOXMLDOC01-appb-T000015
[3-1 Evaluation of heat resistance]
The heat resistance of the coating films formed using the samples of Examples 28 to 33 was evaluated in the same procedure as in [2-1 Evaluation of heat resistance].
Figure JPOXMLDOC01-appb-T000015
 上記の結果から、本発明の水性塗料からなる塗膜は、高い耐熱性を有することがわかる。このため、より高い温度領域での使用が可能である。また、実施例28~33から、ポリエステル-ポリウレタンの添加量により耐熱性の改善が可能であることがわかる。 From the above results, it can be seen that the coating film made of the aqueous paint of the present invention has high heat resistance. For this reason, use in a higher temperature range is possible. In addition, Examples 28 to 33 show that the heat resistance can be improved by adding the polyester-polyurethane.
[3-2 塗膜密着性の評価]
 実施例28~33の試料を用いて製膜した塗膜の密着性を、厚さ0.4mmのアルミニウム板を用いて、[2-2 塗膜密着性の評価]と同様の手順で評価した。なお全く剥離しなかった場合を◎、剥離しなかったマスの数が90マス以上の場合を○、70マス以上90マス未満の場合を△、70マス未満の場合を×とした。
Figure JPOXMLDOC01-appb-T000016
[3-2 Evaluation of coating film adhesion]
The adhesion of the coating films formed using the samples of Examples 28 to 33 was evaluated in the same procedure as [2-2 Evaluation of coating film adhesion] using an aluminum plate having a thickness of 0.4 mm. . In addition, the case where it did not peel at all was marked as ◎, the case where the number of cells not peeled off was 90 squares or more, ◯, the case where it was 70 squares or more and less than 90 squares, and the case where it was less than 70 squares.
Figure JPOXMLDOC01-appb-T000016
 上記の結果から、本発明の水性塗料からなる塗膜は、密着性に優れていることがわかる。また、ガラス転移点が低く密着性の良いポリカーボネート-ポリウレタンを25%以上塗料に添加すると、基材と塗膜の密着性がさらに向上し好ましい。ポリウレタン樹脂微粒子を混合することで、各ポリウレタン塗膜の特性を発現させることができる。 From the above results, it can be seen that the coating film made of the aqueous paint of the present invention is excellent in adhesion. Further, it is preferable to add 25% or more of polycarbonate-polyurethane having a low glass transition point and good adhesion to the coating material because the adhesion between the substrate and the coating film is further improved. By mixing the polyurethane resin fine particles, the characteristics of each polyurethane coating film can be expressed.
[3-3 耐屈曲性の評価]
 実施例28~33の試料を用いて製膜した塗膜の耐屈曲性を、[2-3 耐屈曲性の評価]と同様の手順で評価した。
Figure JPOXMLDOC01-appb-T000017
[3-3 Evaluation of bending resistance]
The bending resistance of the coating films formed using the samples of Examples 28 to 33 was evaluated in the same procedure as in [2-3 Evaluation of bending resistance].
Figure JPOXMLDOC01-appb-T000017
 上記の結果から、本発明の水性塗料からなる塗膜は、実施例28~33のいずれも、非常に優れた耐屈曲性を有することがわかる。このため、基材への塗装後に打ち抜きや曲げ加工なども可能となる。 From the above results, it can be seen that the coating film made of the water-based paint of the present invention has very excellent bending resistance in any of Examples 28 to 33. For this reason, it is possible to perform punching or bending after coating on the substrate.
[3-4 引っかき硬度の評価]
 実施例28~33の試料を用いて製膜した塗膜の引っかき硬度を、[2-4 引っかき硬度の評価]と同様の手順で評価した。
Figure JPOXMLDOC01-appb-T000018
[3-4 Evaluation of scratch hardness]
The scratch hardness of the coating film formed using the samples of Examples 28 to 33 was evaluated by the same procedure as [2-4 Evaluation of scratch hardness].
Figure JPOXMLDOC01-appb-T000018
 上記の結果から、本発明の水性塗料からなる塗膜は、優れた耐屈曲性を有しているにもかかわらず、優れた引っかき硬度を有していることがわかる。このため、傷がつきにくい。また、ポリカーボネート-ポリウレタンを50%以上添加することで引っかき硬度がさらに向上し傷がつきにくくなり好ましい。また、本発明の水性塗料からなる塗膜は、一度ついた傷が緩和され傷が目立たなくなることから、外装塗料としても優れている。 From the above results, it can be seen that the coating film made of the water-based paint of the present invention has excellent scratch hardness despite having excellent bending resistance. For this reason, it is hard to be damaged. Further, it is preferable to add 50% or more of polycarbonate-polyurethane because scratch hardness is further improved and scratches are hardly formed. In addition, the coating film made of the water-based paint of the present invention is excellent as an exterior paint since the scratches once alleviated and the scratches are not noticeable.
[4.塗料物性の評価]
 各種ポリウレタン樹脂ディスパージョン液とフィラーからなる塗料に分散剤、消泡剤などの各種の添加剤を加えることで、塗料のハンドリングおよび保存安定性を改善することが可能である。
 各種ポリウレタン樹脂ディスパージョン液、フィラー、および添加剤からなる塗料の物性についての評価を示す。[4.塗料物性の評価]に用いた試料を構成する成分材料は次のとおりである。
<分散剤>
・高分子量酸性ポリマーアルキロールアンモニウム塩溶液:ビックケミー・ジャパン(株)(商品名)ANTI-TERRA-250
・顔料親和性高分子量ブロック共重合物:ビックケミー・ジャパン(株)(商品名)DISPERBYK-190
・顔料親和性共重合物:ビックケミー・ジャパン(株)(商品名)DISPERBYK-191
・顔料親和性コポリマー:ビックケミー・ジャパン(株)(商品名)DISPERBYK-194N
・顔料親和性コポリマー:ビックケミー・ジャパン(株)(商品名)DISPERBYK-199
・顔料親和性アクリルコポリマー:ビックケミー・ジャパン(株)(商品名)DISPERBYK-2012
(ANTI-TERRA、DISPERBYKは登録商標)
<消泡剤>
・破泡性ポリマー/疎水性粒子混合物:ビックケミー・ジャパン(株)(商品名)BYK-1710
[4. Evaluation of paint properties]
By adding various additives such as a dispersant and an antifoaming agent to a paint composed of various polyurethane resin dispersion liquids and fillers, it is possible to improve the handling and storage stability of the paint.
The evaluation about the physical property of the coating material which consists of various polyurethane resin dispersion liquid, a filler, and an additive is shown. [4. The component materials constituting the sample used in the evaluation of paint physical properties are as follows.
<Dispersant>
・ High molecular weight acidic polymer alkylol ammonium salt solution: Big Chemie Japan Co., Ltd. (trade name) ANTI-TERRA-250
Pigment affinity high molecular weight block copolymer: Big Chemie Japan Co., Ltd. (trade name) DISPERBYK-190
Pigment affinity copolymer: Big Chemie Japan Co., Ltd. (trade name) DISPERBYK-191
Pigment affinity copolymer: Big Chemie Japan Co., Ltd. (trade name) DISPERBYK-194N
Pigment affinity copolymer: Big Chemie Japan Co., Ltd. (trade name) DISPERBYK-199
Pigment affinity acrylic copolymer: Big Chemie Japan Co., Ltd. (trade name) DISPERBYK-2012
(ANTI-TERRA and DISPERBYK are registered trademarks)
<Antifoaming agent>
-Bubble-breaking polymer / hydrophobic particle mixture: Big Chemie Japan Co., Ltd. (trade name) BYK-1710
≪実施例34≫
 PECU1、平均粒径1.7μmの合成コーディエライト(SS-1000)、およびANTI-TERRA-250を、それぞれ100重量部、15重量部、1.72重量部を秤量して、ポリプロピレン製の容器に入れ、自転・公転ミキサーで混合し、実施例34の試料とした。
≪実施例35~40≫
 添加剤の種類および添加量が異なる以外は、実施例34と同様に調製し、実施例35~40の試料とした。
Figure JPOXMLDOC01-appb-T000019
<< Example 34 >>
100 parts by weight, 15 parts by weight, and 1.72 parts by weight of PECU 1, synthetic cordierite (SS-1000) having an average particle diameter of 1.7 μm, and ANTI-TERRA-250 were respectively measured, and a container made of polypropylene. And mixed with a rotation / revolution mixer to obtain a sample of Example 34.
<< Examples 35 to 40 >>
Samples of Examples 35 to 40 were prepared in the same manner as in Example 34 except that the types and amounts of additives were different.
Figure JPOXMLDOC01-appb-T000019
[4-1 分散剤による効果]
 フィラーの沈降を防止するための分散剤の効果について評価結果を下記に示す。分散効果の確認は、実施例34~39および実施例4の試料30gを、50mlのガラスサンプル瓶に詰め5日間静置し、その後ガラスサンプル瓶を手で上下に振って振盪し、振盪開始直後から3分未満でフィラーが再分散したものを○、3分以上10分未満でフィラーが再分散したものを△、再分散しなかったものを×とした。
Figure JPOXMLDOC01-appb-T000020
[4-1 Effects of dispersant]
An evaluation result is shown below about the effect of the dispersing agent for preventing sedimentation of a filler. To confirm the dispersion effect, 30 g of the samples of Examples 34 to 39 and Example 4 were filled in a 50 ml glass sample bottle and allowed to stand for 5 days, and then the glass sample bottle was shaken up and down by hand and immediately after the start of shaking. The filler was redispersed in less than 3 minutes, and the filler was redispersed in 3 minutes or more and less than 10 minutes was evaluated as Δ.
Figure JPOXMLDOC01-appb-T000020
 ANTI-TERRA-250はレオロジーコントロール剤であり、フィラーの沈降速度は軽減できたが、振盪によってフィラーを再分散させることはできなかった。このことから、ANTI-TERRA-250は、他の分散剤と併用することで、フィラーの沈降速度を減速させることができると考えられる。DISPERBYK-191とDISPERBYK-2012は、沈降するフィラーの量を減らすことができたが、振盪による分散に少し時間がかかった。このことから、比較的粒径の大きいフィラーまで分散が可能であることが分かった。DISPERBYK-199は、沈降するフィラーの量は添加剤無しのものとほぼ変わらなかったが、振盪により容易にフィラーが分散した。このことから、フィラーどうしの凝集を防止するのに有効であることがわかった。
 一方、DISPERBYK-190は、ほぼ効果が見られず、DISPERBYK-194Nは、添加直後からポリウレタン樹脂微粒子が沈降または凝集してしまった。これは、DISPERBYK-194Nの酸価が他の分散剤と比較すると大きく、添加により分散液のpHが上昇したことに起因する。本発明の塗料に適した分散剤を選択することで、効果的にフィラーを分散させることが可能となり、放熱性能を効果的に発現させることができる。
[4-2 消泡剤による効果]
 以下に記載するのは、本発明のさらなる改良された態様である。実施例4の水性塗料は、十分な放熱効果を示しているが、アルミニウム板へのさらなる密着効果を与えるために、消泡剤を添加した態様である実施例40(表19参照)を製造した。実施例40は、実施例4に比べて消泡効果が高く、密着性(塗膜の成膜性)がさらに優れる。すなわち、水性塗料中にフィラーが沈殿した場合、塗料を振盪・撹拌して再度フィラーを分散させる必要が生じた場合には消泡剤の添加が有効である。試験は以下のように行った。
 実施例40および実施例4の試料30gを、50mlのガラスサンプル瓶に詰め、ガラスサンプル瓶を手で上下に振って3分間振盪し、振盪終了直後から10分間静置して、気泡の有無を確認した。また、成膜性の評価については、厚さ0.4mmのアルミニウム板に振盪後10分間静置した塗料を30μm製膜し、塗膜にムラが生じる様子を観察した。
 実施例40のBYK-1710を添加した塗料では、振盪後にマクロな気泡は生じず、僅かに生じたミクロな気泡も10分後にはすべて消えることが確認できた。また、製膜時にも気泡によるムラやはじきなどは生じず、均一な膜が形成できた。
[4-3 放熱特性の評価]
 実施例40の試料を用いて[4-2 消泡剤による効果]で作製した塗装済みアルミニウム板を放熱部材として用い、アルミ面側とトランジスタ(東芝トランジスタ製 シリコンNPN 三重拡散形 2SD2012)を両面テープ(住友スリーエム(株)製 熱伝導性接着剤転写テープNo.9885)を用いて貼り合わせた。トランジスタの放熱部材を貼り合わせる面の裏面にK熱電対(理化工業(株)製ST-50)を取り付け、データロガーを用いてパソコンにてその温度を記録した。このトランジスタを取り付けた放熱部材を40℃に設定した恒温槽中央に静置し、トランジスタの温度が40℃で一定になったことを確認した後、トランジスタに直流安定化電源を用いて1.18Vを印加し、トランジスタ表面の温度変化を測定した。その評価結果を下記に示す。
Figure JPOXMLDOC01-appb-T000021
 表21の示す結果から、本発明の実施例40の水性塗料を用いた放熱部材は、実施例4と比較してほぼ同程度の放熱性を有していることがわかる。このことから、消泡剤は放熱特性に悪影響を及ぼさないことが分かる。むしろ、塗膜中に気泡ができたり、気泡によって塗膜にムラが生じたりすることにより、放熱特性に悪影響を及ぼす可能性があるため、消泡剤を添加することでそのようなリスクを回避することができる。
ANTI-TERRA-250 was a rheology control agent, and the sedimentation rate of the filler could be reduced, but the filler could not be redispersed by shaking. From this, it is considered that ANTI-TERRA-250 can reduce the sedimentation rate of the filler when used in combination with other dispersants. DISPERBYK-191 and DISPERBYK-2012 were able to reduce the amount of filler that settled, but took some time to disperse by shaking. From this, it was found that dispersion was possible up to a filler having a relatively large particle size. With DISPERBYK-199, the amount of filler that settled was almost the same as that without additive, but the filler was easily dispersed by shaking. From this, it was found that it is effective to prevent the fillers from aggregating.
On the other hand, DISPERBYK-190 had almost no effect, and DISPERBYK-194N had polyurethane resin fine particles precipitated or aggregated immediately after addition. This is because the acid value of DISPERBYK-194N is larger than that of other dispersants, and the pH of the dispersion is increased by the addition. By selecting a dispersant suitable for the coating material of the present invention, it becomes possible to disperse the filler effectively, and the heat dissipation performance can be effectively expressed.
[4-2 Effect of antifoaming agent]
Described below are further improved embodiments of the present invention. Although the water-based paint of Example 4 showed a sufficient heat dissipation effect, Example 40 (see Table 19), which was an embodiment in which an antifoaming agent was added, was produced in order to give a further adhesion effect to the aluminum plate. . In Example 40, the defoaming effect is higher than in Example 4, and the adhesion (film forming property of the coating film) is further excellent. That is, when the filler is precipitated in the water-based paint, it is effective to add an antifoaming agent when it is necessary to disperse the filler again by shaking and stirring the paint. The test was conducted as follows.
30 g of the sample of Example 40 and Example 4 was packed in a 50 ml glass sample bottle, shaken for 3 minutes by shaking the glass sample bottle up and down by hand, and left for 10 minutes immediately after the end of shaking to check for the presence of bubbles. confirmed. In addition, for evaluation of film formability, 30 μm of a coating material that was allowed to stand for 10 minutes after shaking on an aluminum plate having a thickness of 0.4 mm was formed, and the appearance of unevenness in the coating film was observed.
In the paint to which BYK-1710 of Example 40 was added, no macro bubbles were generated after shaking, and it was confirmed that all the micro bubbles generated slightly disappeared after 10 minutes. In addition, there was no unevenness or repellency due to bubbles during film formation, and a uniform film could be formed.
[4-3 Evaluation of heat dissipation characteristics]
Using the coated aluminum plate produced in [4-2 Effect of antifoaming agent] using the sample of Example 40 as a heat radiating member, the aluminum surface side and the transistor (Toshiba Transistor's silicon NPN triple diffusion type 2SD2012) are double-sided tape (The Sumitomo 3M Co., Ltd. product heat conductive adhesive transcription | transfer tape No.9885) bonded together. A K thermocouple (ST-50 manufactured by Rika Kogyo Co., Ltd.) was attached to the back side of the surface to which the heat radiating member of the transistor was bonded, and the temperature was recorded with a personal computer using a data logger. The heat dissipating member to which this transistor is attached is left in the center of a thermostatic chamber set at 40 ° C., and after confirming that the temperature of the transistor has become constant at 40 ° C., a 1.18 V voltage is applied to the transistor using a DC stabilized power supply. Was applied, and the temperature change of the transistor surface was measured. The evaluation results are shown below.
Figure JPOXMLDOC01-appb-T000021
From the results shown in Table 21, it can be seen that the heat dissipating member using the water-based paint of Example 40 of the present invention has substantially the same heat dissipating property as that of Example 4. From this, it can be seen that the antifoaming agent does not adversely affect the heat dissipation characteristics. Rather, it is possible to avoid such risks by adding defoaming agents, as bubbles may be formed in the coating film or unevenness may occur in the coating film due to bubbles, which may adversely affect the heat dissipation characteristics. can do.
 本明細書中で引用する刊行物、特許出願および特許を含むすべての文献を、各文献を個々に具体的に示し、参照して組み込むのと、また、その内容のすべてをここで述べるのと同じ限度で、ここで参照して組み込む。 All publications, including publications, patent applications and patents cited herein are specifically incorporated by reference with reference to each reference individually, and the entire contents thereof are described herein. To the same extent, reference here is incorporated.
 本発明の説明に関連して(特に以下の請求項に関連して)用いられる名詞および同様な指示語の使用は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、単数および複数の両方に及ぶものと解釈される。語句「備える」、「有する」、「含む」および「包含する」は、特に断りのない限り、オープンエンドターム(すなわち「~を含むが限定しない」という意味)として解釈される。本明細書中の数値範囲の具陳は、本明細書中で特に指摘しない限り、単にその範囲内に該当する各値を個々に言及するための略記法としての役割を果たすことだけを意図しており、各値は、本明細書中で個々に列挙されたかのように、明細書に組み込まれる。本明細書中で説明されるすべての方法は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、あらゆる適切な順番で行うことができる。本明細書中で使用するあらゆる例または例示的な言い回し(例えば「など」)は、特に主張しない限り、単に本発明をよりよく説明することだけを意図し、本発明の範囲に対する制限を設けるものではない。明細書中のいかなる言い回しも、本発明の実施に不可欠である、請求項に記載されていない要素を示すものとは解釈されないものとする。 The use of nouns and similar directives used in connection with the description of the invention (especially in connection with the claims below) is not specifically pointed out herein or clearly contradicted by context. , And construed to cover both singular and plural. The phrases “comprising”, “having”, “including” and “including” are to be interpreted as open-ended terms (ie, including but not limited to), unless otherwise specified. The use of numerical ranges in this specification is intended only to serve as a shorthand for referring individually to each value falling within that range, unless otherwise indicated herein. Each value is incorporated into the specification as if it were individually listed herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. Any examples or exemplary phrases used herein (eg, “etc.”) are intended only to better describe the invention, unless otherwise stated, and to limit the scope of the invention. is not. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
 本明細書中では、本発明を実施するため本発明者が知っている最良の形態を含め、本発明の好ましい実施の形態について説明している。当業者にとっては、上記説明を読んだ上で、これらの好ましい実施の形態の変形が明らかとなろう。本発明者は、熟練者が適宜このような変形を適用することを期待しており、本明細書中で具体的に説明される以外の方法で本発明が実施されることを予定している。従って本発明は、準拠法で許されているように、本明細書に添付された請求項に記載の内容の修正および均等物をすべて含む。さらに、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、すべての変形における上記要素のいずれの組み合わせも本発明に包含される。 In this specification, preferred embodiments of the present invention are described, including the best mode known to the inventors for carrying out the invention. Variations of these preferred embodiments will become apparent to those skilled in the art after reading the above description. The present inventor expects skilled workers to apply such modifications as appropriate, and intends to implement the present invention in a manner other than that specifically described herein. . Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
10  放熱部材、膜
11  第一のフィラー
12  第二のフィラー
13  金属板
14  金属板を有する放熱部材
20  電子デバイス
21  ガラス基板
22  陽極
23  エレクトロルミネセンス層
24  陰極
25  乾燥剤
26  封止体
27  接着剤
30  電子部品
40  モーター本体
41  外表面
50  モーター
60  バッテリー本体
70  バッテリー
 
DESCRIPTION OF SYMBOLS 10 Heat radiating member, film | membrane 11 1st filler 12 2nd filler 13 Metal plate 14 Heat radiating member 20 which has a metal plate Electronic device 21 Glass substrate 22 Anode 23 Electroluminescent layer 24 Cathode 25 Desiccant 26 Sealing body 27 Adhesive 30 Electronic component 40 Motor body 41 Outer surface 50 Motor 60 Battery body 70 Battery

Claims (14)

  1.  ポリウレタン樹脂微粒子と;
     遠赤外線を放出する斜方晶系のケイ酸塩鉱物で形成された第一のフィラーと;
     前記ポリウレタン樹脂微粒子と前記第一のフィラーが分散した水を含む;
     水性塗料。
    Polyurethane resin fine particles;
    A first filler formed of an orthorhombic silicate mineral that emits far infrared radiation;
    Including water in which the polyurethane resin fine particles and the first filler are dispersed;
    Water-based paint.
  2.  前記ポリウレタン樹脂微粒子を構成する材料は、ポリカーボネートポリウレタン、ポリエステルポリウレタン、脂肪族ポリウレタン、脂肪酸変性ポリウレタン、芳香族ポリウレタン、ポリエーテルポリウレタンからなる群から選ばれる少なくとも1種である、
     請求項1に記載の水性塗料。
    The material constituting the polyurethane resin fine particles is at least one selected from the group consisting of polycarbonate polyurethane, polyester polyurethane, aliphatic polyurethane, fatty acid-modified polyurethane, aromatic polyurethane, and polyether polyurethane.
    The water-based paint according to claim 1.
  3.  前記ポリウレタン樹脂微粒子を構成する材料の少なくとも1種は、ポリカーボネートポリウレタンまたはポリエステルポリウレタンである、
     請求項2に記載の水性塗料。
    At least one of the materials constituting the polyurethane resin fine particles is polycarbonate polyurethane or polyester polyurethane.
    The water-based paint according to claim 2.
  4.  前記ポリウレタン樹脂微粒子の平均粒径は、10~500nmである、
     請求項1~3のいずれか1項に記載の水性塗料。
    The polyurethane resin fine particles have an average particle size of 10 to 500 nm.
    The water-based paint according to any one of claims 1 to 3.
  5.  前記ポリウレタン樹脂微粒子は、前記ポリウレタン樹脂微粒子と水との分散液を乾燥させて得られる固形物が、-80℃ ~-20℃のガラス転移点を有する、
     請求項1~4のいずれか1項に記載の水性塗料。
    The polyurethane resin fine particles have a glass transition point of −80 ° C. to −20 ° C., which is obtained by drying a dispersion of the polyurethane resin fine particles and water.
    The water-based paint according to any one of claims 1 to 4.
  6.  前記斜方晶系のケイ酸塩鉱物は、コーディエライトおよび/またはムライトである、
     請求項1~5のいずれか1項に記載の水性塗料。
    The orthorhombic silicate mineral is cordierite and / or mullite.
    The water-based paint according to any one of claims 1 to 5.
  7.  窒化ホウ素、窒化アルミニウム、炭化珪素、シリカ、アルミナ、酸化亜鉛、酸化チタン、チタンブラックおよび黒鉛からなる群から選ばれる少なくとも1種で形成された第二のフィラーをさらに含む、
     請求項1~6のいずれか1項に記載の水性塗料。
    A second filler formed of at least one selected from the group consisting of boron nitride, aluminum nitride, silicon carbide, silica, alumina, zinc oxide, titanium oxide, titanium black and graphite;
    The water-based paint according to any one of claims 1 to 6.
  8.  前記第一のフィラーおよび前記第二のフィラーをポリウレタン樹脂微粒子100重量部に対して5~150重量部含有し、
     前記第二のフィラーは、前記第一のフィラー100重量部に対して1~150重量部であり、
     前記第一のフィラーおよび前記第二のフィラーは粉末であり、平均粒径が0.01~30μmである、
     請求項7記載の水性塗料。
    Containing 5 to 150 parts by weight of the first filler and the second filler with respect to 100 parts by weight of the polyurethane resin fine particles;
    The second filler is 1 to 150 parts by weight with respect to 100 parts by weight of the first filler,
    The first filler and the second filler are powders and have an average particle size of 0.01 to 30 μm.
    The water-based paint according to claim 7.
  9.  乾燥後の固形物の5%質量損失温度は、270℃以上である、
     請求項1~8のいずれか1項に記載の水性塗料。
    The 5% mass loss temperature of the solid after drying is 270 ° C. or higher.
    The water-based paint according to any one of claims 1 to 8.
  10.  破泡性または抑泡性を有する消泡剤を含む、
     請求項1~9のいずれか1項に記載の水性塗料。
    Including an antifoaming agent having foam-breaking property or foam-reducing property,
    The water-based paint according to any one of claims 1 to 9.
  11.  請求項1~10のいずれか1項に記載の水性塗料を塗布後、乾燥してなる、
     放熱部材。
    A water-based paint according to any one of claims 1 to 10 is applied and then dried.
    Heat dissipation member.
  12.  金属部品本体と;
     請求項1~10のいずれか1項に記載の水性塗料を前記金属部品本体に塗布後、乾燥して形成された膜を備える;
     金属部品。
    With metal parts body;
    A film formed by applying the water-based paint according to any one of claims 1 to 10 to the metal component main body and then drying the coating;
    Metal parts.
  13.  前記金属部品本体は、銅、鉄、マグネシウム、アルミニウムおよびそれらの合金からなる群から選ばれる少なくとも1種を含んで形成された、
     請求項12に記載の金属部品。
    The metal component body is formed to include at least one selected from the group consisting of copper, iron, magnesium, aluminum, and alloys thereof.
    The metal part according to claim 12.
  14.  請求項12または請求項13に記載の金属部品と;
     発熱部を有する電子デバイスとを備え;
     前記金属部品の金属部品本体は、前記発熱部に接触するように前記電子デバイスに配置された;
     電子機器。
     
    A metal part according to claim 12 or claim 13;
    An electronic device having a heat generating part;
    A metal component body of the metal component is disposed in the electronic device so as to contact the heat generating portion;
    Electronics.
PCT/JP2014/061459 2013-04-26 2014-04-23 Aqueous coating material, heat-dissipating member, metallic part, and electronic device WO2014175344A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157033606A KR20160004341A (en) 2013-04-26 2014-04-23 Aqueous coating material, heat-dissipating member, metallic part and electronic device
CN201480023790.3A CN105143370A (en) 2013-04-26 2014-04-23 Aqueous coating material, heat-dissipating member, metallic part, and electronic device
JP2015513809A JP6365532B2 (en) 2013-04-26 2014-04-23 Water-based paint, heat dissipation member, metal parts, electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-094439 2013-04-26
JP2013094439 2013-04-26

Publications (1)

Publication Number Publication Date
WO2014175344A1 true WO2014175344A1 (en) 2014-10-30

Family

ID=51791912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061459 WO2014175344A1 (en) 2013-04-26 2014-04-23 Aqueous coating material, heat-dissipating member, metallic part, and electronic device

Country Status (5)

Country Link
JP (1) JP6365532B2 (en)
KR (1) KR20160004341A (en)
CN (1) CN105143370A (en)
TW (1) TWI615449B (en)
WO (1) WO2014175344A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014227530A (en) * 2013-05-27 2014-12-08 イズミ物産株式会社 Temperature suppression coating composition
JP2017128674A (en) * 2016-01-21 2017-07-27 たまき 野間 Heat radiation coating
JP2017137442A (en) * 2016-02-04 2017-08-10 株式会社リンレイ Floor glazing agent
US9859190B2 (en) 2016-02-24 2018-01-02 Panasonic Intellectual Property Management Co., Ltd. Resin structure, and electronic component and electronic device using the structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106118419A (en) * 2016-06-29 2016-11-16 海信集团有限公司 A kind of coating and preparation method thereof and components and parts
CN106587965B (en) * 2016-12-06 2019-12-06 武汉钢铁有限公司 low-temperature sintering high-thermal-conductivity ceramic coating suitable for metal substrate and preparation method and application thereof
CN114142416B (en) * 2021-12-07 2024-01-12 广西电网有限责任公司柳州供电局 Transformation method of novel anti-running device
KR102564781B1 (en) * 2023-04-21 2023-08-07 홍정애 Conductive Member Coated with Graphite Composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278466A (en) * 1994-04-07 1995-10-24 Nippon Paint Co Ltd Rust-proofing coating composition
JP2009153366A (en) * 2007-08-17 2009-07-09 Shinshu Univ Highly efficient heat dissipation coil and highly efficient heat dissipation motor employing thereof, highly efficient heat dissipation power supply device, highly efficient heat dissipation magnetron generator, and electronic apparatus, industrial apparatus, electrical home appliance, computer hard disk product, and electric vehicle employing the coil, motor and devices
JP2010189505A (en) * 2009-02-17 2010-09-02 Yokohama Rubber Co Ltd:The Thermoconductive emulsion
JP2010212043A (en) * 2009-03-10 2010-09-24 Toshin Denki Kk Fluorescent lamp type led lighting tube, and fluorescent lamp type led lighting device equipped with this lighting tube
JP2010232507A (en) * 2009-03-27 2010-10-14 Unitika Ltd Thermally conductive printed board, and method of manufacturing the same
JP2012062445A (en) * 2010-09-17 2012-03-29 Shinshu Univ Aqueous electrodeposition coating, method of manufacturing electrodeposition coating film, and electrodeposition coating film
JP2012246365A (en) * 2011-05-26 2012-12-13 Hitachi Chemical Co Ltd Thermal emission coating material, and light-emitting diode (led) illumination, heat sink, back sheet for solar cell module each coated therewith

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102061121B (en) * 2010-12-06 2016-05-25 老虎粉末涂料制造(太仓)有限公司 A kind of environmental-protection anti-corrosive heat-dissipation powder paint and its preparation method and application
CN102181212B (en) * 2011-01-28 2013-06-05 东莞市千虹五金制品有限公司 Radiating material and preparation method of radiating material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278466A (en) * 1994-04-07 1995-10-24 Nippon Paint Co Ltd Rust-proofing coating composition
JP2009153366A (en) * 2007-08-17 2009-07-09 Shinshu Univ Highly efficient heat dissipation coil and highly efficient heat dissipation motor employing thereof, highly efficient heat dissipation power supply device, highly efficient heat dissipation magnetron generator, and electronic apparatus, industrial apparatus, electrical home appliance, computer hard disk product, and electric vehicle employing the coil, motor and devices
JP2010189505A (en) * 2009-02-17 2010-09-02 Yokohama Rubber Co Ltd:The Thermoconductive emulsion
JP2010212043A (en) * 2009-03-10 2010-09-24 Toshin Denki Kk Fluorescent lamp type led lighting tube, and fluorescent lamp type led lighting device equipped with this lighting tube
JP2010232507A (en) * 2009-03-27 2010-10-14 Unitika Ltd Thermally conductive printed board, and method of manufacturing the same
JP2012062445A (en) * 2010-09-17 2012-03-29 Shinshu Univ Aqueous electrodeposition coating, method of manufacturing electrodeposition coating film, and electrodeposition coating film
JP2012246365A (en) * 2011-05-26 2012-12-13 Hitachi Chemical Co Ltd Thermal emission coating material, and light-emitting diode (led) illumination, heat sink, back sheet for solar cell module each coated therewith

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014227530A (en) * 2013-05-27 2014-12-08 イズミ物産株式会社 Temperature suppression coating composition
JP2017128674A (en) * 2016-01-21 2017-07-27 たまき 野間 Heat radiation coating
JP2017137442A (en) * 2016-02-04 2017-08-10 株式会社リンレイ Floor glazing agent
US9859190B2 (en) 2016-02-24 2018-01-02 Panasonic Intellectual Property Management Co., Ltd. Resin structure, and electronic component and electronic device using the structure

Also Published As

Publication number Publication date
JP6365532B2 (en) 2018-08-01
KR20160004341A (en) 2016-01-12
JPWO2014175344A1 (en) 2017-02-23
CN105143370A (en) 2015-12-09
TWI615449B (en) 2018-02-21
TW201510127A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP6365532B2 (en) Water-based paint, heat dissipation member, metal parts, electronic equipment
CN102471637B (en) Heat dissipation coating agent and heat-dissipating plate including same
CN104610864B (en) A kind of preparation method of the high heat loss through radiation coating of insulation suitable for a variety of base materials
JP6437702B2 (en) Thermally radiant paint, coating film and method for producing coated object
BR102013033687B1 (en) ARTICLE INCLUDING METALLIC SUPPORT AND CERAMIC COATING AND METHOD TO MANUFACTURE THE SAME
WO2015105106A1 (en) Resin composition for heat-conductive sheet, heat-conductive sheet, resin-coated metal, and electronic device
CN102250546A (en) Nano-sized carbon black heat dissipating paint and preparation method thereof
JP6334839B2 (en) Thermal radiation paint and heat dissipation member
CN103459139A (en) Functional article, article for transport equipment, article for construction, and composition for coating
JP2012246365A (en) Thermal emission coating material, and light-emitting diode (led) illumination, heat sink, back sheet for solar cell module each coated therewith
JP6517086B2 (en) Thermal radiation coating, light emitting diode (LED) illumination having the same, heat sink, back sheet for solar cell module
CN111849241A (en) Epoxy micaceous iron intermediate paint curing agent for low-temperature environment and preparation method thereof
JPWO2017038942A1 (en) Heat dissipating paint composition, heat dissipating member, article
KR101069950B1 (en) Steel Sheet Having Superior Electro-Conductivity and Resin Composition Therefor
CN105348958A (en) Two-component organic/inorganic hybrid aqueous matted coating varnish, preparation method and construction method thereof
JP2013209645A (en) Heat-dissipating coating material composition, heat-dissipating coating film and coated article
CN109705725A (en) A kind of heat radiating type polyamide powder coating
JP2012251100A (en) Silicone resin composition and thermal conductive sheet
KR101115745B1 (en) A Black Coloring Resin Coated Steel Sheet, Black Coloring Resin Composition Having Anti-Fingerprint Property and An Adhesive Resin Composition
JP6512352B2 (en) Thermal radiation paint and light emitting diode (LED) illumination coated with the same, heat sink, back sheet for solar cell module
CN109913004A (en) A kind of preparation method of ceramic coating
KR101091339B1 (en) Steel Sheet Having Superior Electro-Conductivity and Heat-Dissipating
JP6502183B2 (en) Coating for thermal radiation, and light emitting diode (LED) illumination having the coating, heat sink, back sheet for solar cell module
JP7317513B2 (en) water repellent particles
JPWO2019244531A1 (en) Manufacturing method of surface-treated aluminum nitride, surface-treated aluminum nitride, resin composition, and cured product

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480023790.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787921

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513809

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157033606

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14787921

Country of ref document: EP

Kind code of ref document: A1