JP2014227530A - Temperature suppression coating composition - Google Patents

Temperature suppression coating composition Download PDF

Info

Publication number
JP2014227530A
JP2014227530A JP2013110525A JP2013110525A JP2014227530A JP 2014227530 A JP2014227530 A JP 2014227530A JP 2013110525 A JP2013110525 A JP 2013110525A JP 2013110525 A JP2013110525 A JP 2013110525A JP 2014227530 A JP2014227530 A JP 2014227530A
Authority
JP
Japan
Prior art keywords
heat
temperature
coating composition
weight
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013110525A
Other languages
Japanese (ja)
Inventor
泰愃 峨家
Yasuyoshi Gaya
泰愃 峨家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IZUMI BUSSAN CO Ltd
Original Assignee
IZUMI BUSSAN CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IZUMI BUSSAN CO Ltd filed Critical IZUMI BUSSAN CO Ltd
Priority to JP2013110525A priority Critical patent/JP2014227530A/en
Publication of JP2014227530A publication Critical patent/JP2014227530A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature suppression coating composition more excellent than a conventional temperature suppression coating material mixed with a heat insulating pigment.SOLUTION: An aqueous emulsion resin coating material contains 20-70% of a nonconductive magnetic dissipating filler of which at least two or more particle sizes are 0.4 μm-1.5 μm. A temperature suppression coating composition has a composition ratio of alumina Al2O3 (10 wt.%), crystalline silica (10 wt.%), acrylic emulsion (50%) (40 wt.%), calcium bicarbonate (20 wt.%), silicate fine powder (20 wt.%), and an additive (0.5 wt.%).

Description

本発明は、住宅の屋根、壁や道路などの床に用いる以外に、エンジンやエンジンカバー、電柱のトランス等のような熱を発生する部位に使用することができる温度抑制型塗料組成物に関するものである。   TECHNICAL FIELD The present invention relates to a temperature-suppressing coating composition that can be used for a part that generates heat, such as an engine, an engine cover, a power pole transformer, etc., in addition to being used for a roof of a house, a wall or a road. It is.

従来から、環境問題へ対応等への観点から、遮熱・断熱効果を有する塗料を建物の屋根に塗布するといったことが行われている。この方法は他の方法に比べて大掛かりな工事が必要ないという利点を有している。   2. Description of the Related Art Conventionally, from the viewpoint of dealing with environmental problems, a paint having a heat shielding and heat insulating effect is applied to the roof of a building. This method has an advantage that a large-scale construction is not necessary as compared with other methods.

そして、従来 この種の塗料は断熱性の物質を加えることで断熱性能を持たせることが主体でたとえば特開2005−2327号公報(特許文献1)に中空セラミックを用いる塗料組成物が特開2004−175034号公報(特許文献2)にガラスビーズを混入した塗料組成物が提示されているが、これらの塗料組成物は温度蓄熱性が大きいという問題がある。   Conventionally, this type of paint mainly has a heat insulating property by adding a heat insulating substance, and for example, Japanese Patent Application Laid-Open No. 2005-2327 (Patent Document 1) discloses a paint composition using a hollow ceramic. JP-A-175034 (Patent Document 2) discloses a coating composition in which glass beads are mixed. However, these coating compositions have a problem of high thermal storage properties.

また、特開2011−219754号公報(特許文献3)にトルマリンの人工鉱石粉5〜30μmと酸化アルミニウを混合した塗料組成物が、特開2007−238906号公報(特許文献4)にシリコン或いは変性シリコンに絶縁高熱伝導性粉末と脱臭剤とでマイナスイオンを発生させる低線量の放射線物質を混在させた放熱材料が提示されているが、これらの塗料組成物は重金属を含むことから環境的な問題がある。   JP-A 2011-219754 (Patent Document 3) discloses a coating composition obtained by mixing 5-30 μm of tourmaline ore powder and aluminum oxide, and Japanese Patent Application Laid-Open No. 2007-238906 (Patent Document 4) uses silicon or a modified material. Although heat dissipation materials have been proposed in which silicon is mixed with a low-dose radiation material that generates negative ions with insulating high thermal conductive powder and deodorant, these coating compositions contain heavy metals and are therefore an environmental problem. There is.

更に、特開2009−286802号公報(特許文献5)に明度、彩度を規定した着色顔料が800〜2,100nmの波長領域における赤外線波長領域反射率が30%以上であるとしているが、漠然としていて実施が困難であり、特願2009−144264号公報(特許文献6)にSi金属粉を用いた酸性型アクリル樹脂使用した塗料組成物が提示されているが、耐候性が弱く、特開2007−16558号公報(特許文献7)に記載されているアルミニウム粉末で反射する塗料組成物はアルカリに分解してしまう。   Furthermore, in JP 2009-286802 A (Patent Document 5), the color pigment that defines brightness and saturation is said to have an infrared wavelength region reflectance of 30% or more in a wavelength region of 800 to 2,100 nm. However, it is difficult to implement, and Japanese Patent Application No. 2009-144264 (Patent Document 6) proposes a coating composition using an acidic acrylic resin using Si metal powder. The coating composition reflected by the aluminum powder described in KAI 2007-16558 (Patent Document 7) is decomposed into an alkali.

更にまた、特開2011−225705号公報(特許文献8)に水性無機質塗料に有機バルーンと脂肪酸を混合した塗料組成物が提示されているが、薄い膜では膜が破壊する。また、脂肪酸等添加は耐候性弱くなるという課題がある。尚、遮熱顔料と断熱材としてバルーンとの組み合わせでは、各社のレベルの差は少なく、限界に来ている。例えば、屋根に塗布して室内温度が1.7〜2.2℃下がる程度であり、遮熱塗料の日本工業規格JISK5602が制定され1.7〜2.2℃下がれば良いと規定しているのが現状である。   Furthermore, Japanese Patent Application Laid-Open No. 2011-225705 (Patent Document 8) presents a coating composition in which an organic balloon and a fatty acid are mixed with a water-based inorganic coating, but the film is broken in a thin film. Moreover, there exists a subject that addition of a fatty acid etc. becomes weak in a weather resistance. In addition, the combination of the heat-shielding pigment and the balloon as the heat insulating material has reached the limit because there is little difference in the level of each company. For example, when applied to the roof, the room temperature is about 1.7 to 2.2 ° C., and the Japanese Industrial Standard JISK5602 for thermal barrier coatings is enacted and stipulates that it should be 1.7 to 2.2 ° C. is the current situation.

特開2005−2327号公報JP 2005-2327 A 特開2004−175034号公報JP 2004-175034 A 特開2011−219754号公報JP 2011-219754 A 特開2011−219754号公報JP 2011-219754 A 特開2009−286802号公報JP 2009-286802 A 特願2009−144264号公報Japanese Patent Application No. 2009-144264 特開2007−16558号公報JP 2007-16558 A 特開2007−16558号公報JP 2007-16558 A

本発明は、前記課題を解決するためになされたものであり、従来の遮熱顔料を混入させた温度抑制塗料より優れた温度抑制塗料組成物を提供することを課題とする。   This invention is made | formed in order to solve the said subject, and makes it a subject to provide the temperature suppression coating composition superior to the temperature suppression coating material which mixed the conventional heat-shielding pigment.

前記課題を解決するためになされた本発明である温度抑制塗料組成物は、少なくとも2種類以上の粒度が0.4μm〜1.5μmである非電導磁性放熱用フイラー混入させてなることを特徴とする。   The temperature-suppressing coating composition according to the present invention made to solve the above problems is characterized in that at least two kinds of particle sizes are mixed with a non-conducting magnetic heat dissipation filler having a particle size of 0.4 μm to 1.5 μm. To do.

本発明によると、従来の遮熱顔料を混入させた温度抑制塗料では反射できない赤外線の熱をフイラーが吸収し、電磁波に熱エネルギー変換させ表面に逃すことにより温度を抑制する。   According to the present invention, the filler absorbs infrared heat that cannot be reflected by a temperature-suppressing paint mixed with a conventional heat-shielding pigment, converts the heat energy into electromagnetic waves, and releases it to the surface, thereby suppressing the temperature.

特に、前記非電導磁性放熱用フイラーが純度98%以上で熱線法にて、放熱量を調べる為の熱伝導率λが水性塗料にした場合3.0以上の熱伝導率λの値を示すものであると好ましい。   In particular, the non-conducting magnetic heat dissipating filler has a purity of 98% or more and exhibits a heat conductivity λ value of 3.0 or more when the heat conductivity λ for examining the amount of heat dissipated by a hot wire method is an aqueous paint. Is preferable.

また、前記非電導磁性放熱用フイラーが、アルミナAl、高抵抗・炭化ケイ素SiC,炭化ホウ素BN、酸化マグネシウムMgO,硅酸SiO、窒化アルミニウムAlN、窒化ケイ素SiN、酸化亜鉛、結晶シリカ、酸化チタン、マンガン・フェライト(FeMn)3,酸化第二鉄(Fee23),100nm前後のシリカ・ナノ粒子、アルミナ・ナノ粒子が使用可能である。 Further, the non-conductive magnetic heat dissipation filler is made of alumina Al 2 O 3 , high resistance silicon carbide SiC, boron carbide BN, magnesium oxide MgO, oxalic acid SiO 2 , aluminum nitride AlN, silicon nitride Si 3 N 4 , zinc oxide. Crystalline silica, titanium oxide, manganese / ferrite (FeMn) 2 O 3, ferric oxide (Fee 2 O 3 ), silica nanoparticles of around 100 nm, and alumina nanoparticles can be used.

本発明は、アルミナAlO(10重量%)、結晶性シリカ(10重量%)、アクリルエコルジョン(50%)(40重量%)、重炭酸カルシウム(20重量%)、硅石微粉(20重量%)添加剤(0.5重量%)の組成比率を有することを特徴とする請求項1,2または3記載の温度抑制塗料組成物アルミナ AlO(10部)、結晶性シリカ(10部)、アクリルエコルジョン(50%)(40部)、重炭酸カルシウム(20部)、硅石微粉(20部)添加剤(0.5部)の組成比率に配合すると好ましい。
更に、本発明は遮熱顔料を併用することにより温度抑制効果を向上させることが可能で、無機や有機系のバルーン、防錆顔料、防カビ剤、防藻剤、抗菌剤または撥水剤の少なくとも1つを混入させることで、各種の用途に対応させることも可能である。
The present invention comprises alumina Al 2 O 3 (10% by weight), crystalline silica (10% by weight), acrylic ecolurge (50%) (40% by weight), calcium bicarbonate (20% by weight), meteorite fine powder (20 The temperature-inhibiting coating composition alumina Al 2 O 3 (10 parts), crystalline silica (10 parts by weight), characterized in that it has a composition ratio of (wt%) additive (0.5 wt%) 10 parts), acrylic ecological (50%) (40 parts), calcium bicarbonate (20 parts), meteorite fine powder (20 parts) and additives (0.5 parts).
Furthermore, the present invention can improve the temperature suppression effect by using a heat-shielding pigment in combination, and can be used for inorganic or organic balloons, rust-preventing pigments, fungicides, algae-proofing agents, antibacterial agents or water-repellent agents. By mixing at least one, it is possible to cope with various uses.

本発明によれば、従来の遮熱顔料を混入させた温度抑制塗料では反射できない赤外線の熱をフイラーが吸収し、電磁波に熱エネルギー変換させ表面に逃すことにより優れた温度抑制効果を得ることができるものである。   According to the present invention, a filler absorbs infrared heat that cannot be reflected by a temperature-suppressing paint mixed with a conventional heat-shielding pigment, and an excellent temperature-suppressing effect can be obtained by converting the heat energy into electromagnetic waves and letting it escape to the surface. It can be done.

発生した熱が放熱する際のメカニズムを示す説明図である。It is explanatory drawing which shows the mechanism at the time of the generate | occur | producing heat radiating. 塗料の熱伝導度を測定する際の説明図である。It is explanatory drawing at the time of measuring the thermal conductivity of a coating material. 本発明の実施例についての各波長における反射率の測定データグラフであるIt is a measurement data graph of the reflectance in each wavelength about the example of the present invention.

本発明は非電導性放熱性フイラーを用いて、遮熱顔料で反射出来ない赤外線の熱をこのフイラーが吸収し、電磁波に熱エネルギー変換させ上部に逃す方法を取り入れた温度抑制塗料組成物であって、少なくとも2種類以上の粒度が0.4μm〜1.5μmである非電導磁性放熱用フイラー混入させてなることを特徴とする。   The present invention is a temperature-inhibiting coating composition using a non-conductive heat-dissipating filler and incorporating a method in which infrared heat that cannot be reflected by the heat-shielding pigment is absorbed by the filler, converted into electromagnetic energy and released to the top. Thus, at least two kinds of particle sizes of 0.4 μm to 1.5 μm are mixed with a nonconductive magnetic heat dissipation filler.

本発明において用いられる水性エマルジョン樹脂を用いて環境対策を講じた温度抑制水性塗料で、複数のエマルジョン樹脂を混合してもよいことを特徴とする。エマルジョンの種類は、オルガノシロキサン樹脂エマルジョン、水性ウレタンエマルジョン、水性アクリルシリコン等 全ての合成樹脂及びポリマーアロイを含むのである。複数のエマルジョン樹脂を混合してもよい。   A temperature-suppressing water-based paint in which environmental measures are taken using the water-based emulsion resin used in the present invention, and a plurality of emulsion resins may be mixed. The types of emulsions include all synthetic resins and polymer alloys such as organosiloxane resin emulsions, aqueous urethane emulsions and aqueous acrylic silicones. A plurality of emulsion resins may be mixed.

水性塗料のみならず、本発明の機能性塗料は、油性各種樹脂塗料、溶剤型各種樹脂塗料、無溶剤型シリコンやエポキシ系の塗料、紛体塗料、紫外線硬化樹脂塗料にも、本発明の対象である。   In addition to water-based paints, the functional paints of the present invention include various oil-based resin paints, solvent-based resin paints, solvent-free silicone and epoxy-based paints, powder paints, and UV-curable resin paints. is there.

また、本発明において用いられる非電導性放熱性フイラーとしては、アルミナAl、高抵抗・炭化ケイ素SiC,炭化ホウ素BN、酸化マグネシウムMgO,硅酸SiO、窒化アルミニウムAlN、窒化ケイ素SiN、酸化亜鉛、結晶シリカ、酸化チタン、マンガン・フェライト(FeMn)O3,酸化第二鉄(Fe2O3),100nm前後のシリカ・ナノ粒子、アルミナ・ナノ粒子等で一般的にはこれらの中で、2種類以上を混合した非電導性放熱フイラーが好ましく、水性塗料中に20〜70%含有させるのが本発明の特徴である。また、白色の場合は酸化チタン(ルチル型)とアルミナや酸化マグネシウム、酸化亜鉛などと併用し、その他の色の場合は遮熱顔料を用いる。 The non-conductive heat dissipation filler used in the present invention includes alumina Al 2 O 3 , high resistance / silicon carbide SiC, boron carbide BN, magnesium oxide MgO, oxalic acid SiO 2 , aluminum nitride AlN, silicon nitride Si 3. N 4 , zinc oxide, crystalline silica, titanium oxide, manganese ferrite (FeMn) 2 O 3, ferric oxide (Fe 2 O 3 ), silica nanoparticles around 100 nm, alumina nanoparticles, etc. Among these, a non-conductive heat radiating filler in which two or more kinds are mixed is preferable, and it is a feature of the present invention to contain 20 to 70% in the water-based paint. In the case of white, titanium oxide (rutile type) is used in combination with alumina, magnesium oxide, zinc oxide or the like, and in the case of other colors, a heat shielding pigment is used.

また、本発明は、放熱用フイラーの粒径が、平均粒度0.7μm〜1.2μm かつ、フイラーの純度98%以上で熱線法にて、放熱量を調べる為の熱伝導率λが水性塗料にした場合3.10以上の熱伝導率λの値を示す放熱フイラーでなければならない。以下に放熱のメカニズムとその対策手法について説明する。   In addition, the present invention provides a water-based paint having a thermal conductivity λ for examining the amount of heat release by the hot wire method when the particle size of the heat dissipating filler is 0.7 μm to 1.2 μm in average particle size and the purity of the filler is 98% or more. In this case, the heat dissipation filler must exhibit a value of thermal conductivity λ of 3.10 or more. The heat dissipation mechanism and countermeasures are described below.

[放熱方法]
熱対策を検討する上で、まず理解しておく基本は、発生した熱をどのように逃がすかという放熱のメカニズムであり、このメカニズムは一般的に図1に示すように、熱伝導、熱伝達(対流)、熱放射(輻射)という3つの方法が知られている。
[Heat dissipation method]
In considering heat countermeasures, the basic thing to understand first is the heat release mechanism of how the generated heat is released, and this mechanism is generally heat conduction and heat transfer as shown in FIG. Three methods are known: (convection) and thermal radiation (radiation).

まず一つ目の熱伝導とは、固体内での熱移動(物質の移動を伴わず高温側から低温への移動)を指します。二つ目の熱伝導とは、固体から液体(液体や気体)への熱移動をいうものであり、三つ目は電磁波を放射することによる熱移動であり、本発明では前記三つ目の電磁波を放射する熱移動に属します。
[放熱対策]
本発明は、前述のように、電磁波を放射する放熱のメカニズムを利用して熱対策が行われますが、その手法も大きく分けると三つの方法があり、まず、一つ目が「部材間の熱伝導を向上させる接着剤、グリス、封止剤などを使用する方法」であり、放熱塗料による熱対策は最後の方法となる。二つ目の熱伝導とは、固体から液体(液体や気体)への熱移動を指し、三つ目の熱放射とは、電磁波を放射することによる熱移動を指し、本発明における放熱塗料による熱対策は、三つ目の熱放射になる。
First, heat conduction refers to heat transfer within a solid (movement from the high temperature side to the low temperature without any material movement). The second heat conduction means heat transfer from a solid to a liquid (liquid or gas), and the third is heat transfer by radiating electromagnetic waves. It belongs to heat transfer that radiates electromagnetic waves.
[Heat dissipation measures]
In the present invention, as described above, heat countermeasures are performed using a heat dissipation mechanism that radiates electromagnetic waves. However, there are three main methods, and the first is “ This is a method of using an adhesive, grease, sealant or the like that improves heat conduction, and the heat countermeasure with the heat radiation paint is the last method. The second heat conduction refers to heat transfer from a solid to a liquid (liquid or gas), and the third heat radiation refers to heat transfer by radiating electromagnetic waves. The heat countermeasure is the third heat radiation.

表1に各放射メカニズムの意味、放熱手法、塗料・接着剤を示す。

Figure 2014227530
Table 1 shows the meaning of each radiation mechanism, heat dissipation method, paint and adhesive.
Figure 2014227530

次に、]耐久性温度抑制塗料組成物の熱伝導率λの測定方法について説明する。測定面は、三谷幸寛「熱伝導率測定の現状について」IIC REVIEW/2011/04 NO.45 及び臼田、小牧共著「接着の耐久性向上のための最新技術と評価法」情報機構(2012年10月)を参考にして塗料を1mm厚で塗り平滑にして測定する。測定方法については別に添付する。同じ物質でも、粒子が細かく、純度の高いもの程熱伝導率が良好であるので、このような1μm程度の製品を使用することが好ましい。   Next, a method for measuring the thermal conductivity λ of the durable temperature-suppressing coating composition will be described. Yukihiro Mitani “Current Status of Thermal Conductivity Measurement” IIC REVIEW / 2011/04 NO. 45, and Ueda and Komaki, “Latest Technology and Evaluation Method for Improving Adhesive Durability”, information system (October 2012), paint is coated with 1mm thickness and measured smoothly. The measurement method is attached separately. Even in the same substance, the finer the particles and the higher the purity, the better the thermal conductivity. Therefore, it is preferable to use such a product of about 1 μm.

次に、塗料の熱伝導率の測定について説明する。熱線法とは、熱線の発熱量と温度上昇値から熱伝導率を直接測定する方法である。図2に示すように、試料片の中央に細い金属線 (熱線、抵抗R )を置いて、金属線に電流Iを流すとジュール熱によって、金属線はI2Rの熱を発生し、金属線自身の温度が上昇する。 Next, measurement of the thermal conductivity of the paint will be described. The hot wire method is a method in which the thermal conductivity is directly measured from the calorific value of the hot wire and the temperature rise value. As shown in Fig. 2, when a thin metal wire (heat wire, resistance R) is placed in the center of the sample piece and current I is passed through the metal wire, the metal wire generates I 2 R heat by Joule heat, and the metal wire The temperature of the line itself increases.

試料片の熱伝導率が大きければ、発熱した熱は移動しやすく、試料片から熱が放出していくため金属線温度上昇は遅くなり、金属線の温度は上昇しにくくなる。 If the thermal conductivity of the sample piece is large, the generated heat is likely to move, and since the heat is released from the sample piece, the temperature rise of the metal wire becomes slow and the temperature of the metal wire is difficult to rise.

一方、熱伝導率が小さいと、熱は放出しにくく、試料片内部に熱が蓄積するため、金属線の温度上昇が速くなり、金属線の温度は上昇しやすくなる。   On the other hand, when the thermal conductivity is small, heat is difficult to release and heat accumulates inside the sample piece, so that the temperature of the metal wire increases rapidly and the temperature of the metal wire tends to increase.

このことから、金属線の温度上昇は試料片の熱伝導率に関係し、温度上昇dTは次式で与えられる。

Figure 2014227530
From this, the temperature rise of the metal wire is related to the thermal conductivity of the sample piece, and the temperature rise dT is given by the following equation.
Figure 2014227530

ここで、dT :金属線の加熱前後の温度差(℃)
dq :金属線の発熱量(W/cm)
γ0 :金属線の半径(cm)
T :加熱時間(sec)
A :定数
B :定数
次に、前記(1)式を変形する。すなわち、温度差を熱電対の起電力の変化(dE/dT)とし、SI単位系に換算すると、熱伝導率λ(W/m?K)は次式で与えられる。
Where dT: temperature difference before and after heating of metal wire (° C)
dq: Calorific value of metal wire (W / cm)
γ0: radius of metal wire (cm)
T: Heating time (sec)
A: Constant
B: Constant Next, the equation (1) is modified. That is, when the temperature difference is defined as a change in electromotive force of the thermocouple (dE / dT) and converted to an SI unit system, the thermal conductivity λ (W / m? K) is given by the following equation.


Figure 2014227530
Figure 2014227530

ここで、R0 :0℃おける熱電対の抵抗(Ω/m)
α :金属線の抵抗温度係数
T :金属線の測定時平均温度(℃)
dE/dT:熱電対の熱電能(mV/℃)、0.0405mV/℃
T :加熱電流(A)、2A
前記(2)式より、経過時間を対数値(logt)として横軸にとり、金属線に接した試料温度(熱起電力mV)を縦軸にとって、グラフ上にプロットすれば、logt対熱起電力mVは直線になる。この直線の購買を求めれば熱伝導率λの値が導かれる。
Where R 0 : resistance of thermocouple at 0 ° C (Ω / m)
α: Resistance temperature coefficient of metal wire
T: Average temperature during metal wire measurement (° C)
dE / dT: Thermocouple thermopower (mV / ° C), 0.0405 mV / ° C
T: heating current (A), 2A
From the above equation (2), if the elapsed time is taken as a logarithmic value (logt) on the horizontal axis and the sample temperature (thermoelectromotive force mV) in contact with the metal wire is plotted on the vertical axis, the plot vs. thermoelectromotive force mV is a straight line. Finding the purchase of this straight line leads to the value of thermal conductivity λ.

ここで、(2)式を
R20 :20℃における金属線の抵抗6.1Ω/m
1 、t2:(2)式が成立する範囲における任意の時間(t2 >t1
de :t1〜t2間の熱起電力差(e1 、e2
とおいて書き直すと、(3)式が導かれる。

Figure 2014227530
Here, equation (2)
R 20 : Resistance of metal wire at 20 ° C 6.1Ω / m
t 1 , t 2 : Arbitrary time within the range in which equation (2) holds (t 2 > t 1 )
de: t 1 ~t thermoelectromotive force difference between 2 (e 1, e 2)
If rewritten, equation (3) is derived.
Figure 2014227530

そして、(3)式に、実験で得られてデータ(温度差t2−t1、熱起電力差e2−e1)を代入すれば、熱抵抗率λを求めることができる。 Then, by substituting data (temperature difference t 2 −t 1 , thermoelectromotive force difference e 2 −e 1 ) obtained by experiments into equation (3), the thermal resistivity λ can be obtained.

尚、本発明は、遮熱顔料を混合することにより、遮熱顔料による遮熱効果も併有させることが可能である。遮熱顔料は各社有るが、赤外線波長を反射する全ての無機焼成顔料で、例えば、旭日産業(株)製ブラックBlack6350、Black6301、Blak6303、Blue1199,Blue1024,Blue1201,Blue Green1250,Green2500,Green2024,Yellow5000,Yellow5950,Brown4128,Brown4130,Brown4123,Violet7000,や石原産業(株)のチタンブラック等その他多くのメーカーがある。   In the present invention, it is also possible to have a heat shielding effect by the heat shielding pigment by mixing the heat shielding pigment. There are various heat shield pigments, but all inorganic calcined pigments that reflect infrared wavelengths, such as Black Black 6350, Black 6301, Black 6303, Blue 1199, Blue 1024, Blue 1201, Blue Green 1250, Green 2500, Green 2024, Yellow 5000, manufactured by Asahi Sangyo Co., Ltd. There are many other manufacturers such as Yellow 5950, Brown 4128, Brown 4130, Brown 4123, Violet 7000, and titanium black from Ishihara Sangyo Co., Ltd.

更に、本発明は各種の用途に用いるように他の要素を混合することが可能であり、例えば遮熱顔料同士の調色や耐久性の 有機顔料と混合して 調色や酸化チタン等他の無機顔料との調色もでき、無機や有機系のバルーンを混入することにより例えば住宅関連などの断熱性を要求される箇所に使用することができ、また、防錆顔料、防カビ剤、防藻剤、抗菌剤または撥水剤等を混入させることで各種の機能を発揮させる塗料組成物として使用させることもできる。   Furthermore, the present invention can be mixed with other elements so as to be used for various applications. For example, toning between heat-shielding pigments or mixing with durable organic pigments, other elements such as toning and titanium oxide are mixed. Toning with inorganic pigments is possible, and by mixing inorganic or organic balloons, it can be used in places where heat insulation is required, such as housing, etc. It can also be used as a coating composition that exhibits various functions by incorporating an algae, an antibacterial agent, a water repellent or the like.

重量%
アクリル樹脂50%エマルジョン 47.0
コロイダルシリカSiO 5.0
水 10.0
ノプコ 8034 消泡剤 0.1
バイオカット AF−40 3.0
酸化チタン 60% 分散液 10.0
炭化ケイ素 平均粒径 1μm 20.0
アルミナ 平均粒径 0.97μm 32.0
遮熱顔料50%分散液 黒色 18.0
シリコンエマルジョン(30%固形分) 13.0
―――――――――――――――――――――――――――――
合計 158.1

本実施例1によると、複数の粒度の細かい放熱フイラーがより良い放熱性を有する。又、樹脂は複数のエマルジョンを混合するとよく、熱伝導率λは、3.32W/m・K , 図3に示したスペクトルデータプリント レポートに示す。
weight%
Acrylic resin 50% emulsion 47.0
Colloidal silica SiO 2 5.0
Water 10.0
Nopco 8034 Antifoam 0.1
Biocut AF-40 3.0
Titanium oxide 60% Dispersion 10.0
Silicon carbide average particle size 1μm 20.0
Alumina average particle size 0.97μm 32.0
Thermal barrier pigment 50% dispersion Black 18.0
Silicone emulsion (30% solids) 13.0
―――――――――――――――――――――――――――――
Total 158.1

According to the first embodiment, a plurality of fine heat dissipation fillers with finer grain sizes have better heat dissipation. The resin may be a mixture of a plurality of emulsions, and the thermal conductivity λ is 3.32 W / m · K, as shown in the spectral data print report shown in FIG.

全日射反射率57%であり、近赤外線反射率69%であった。グレー色は一番色として反射率が低いが、市販の製品より、全日射反射率で12%も向上した。近赤外線反射率も4%程度向上した。   The total solar reflectance was 57%, and the near infrared reflectance was 69%. The gray color has the lowest reflectance, but the total solar reflectance is improved by 12% compared to the commercially available product. Near-infrared reflectance also improved by about 4%.

放熱性能が加わるので、実際は更に5℃程低下するので、熱抑制効果は非常に優れていることが明になった。   Since heat dissipation performance is added, the temperature is actually further lowered by about 5 ° C., and it has become clear that the heat suppression effect is very excellent.

重量%
アクリルエマルジョン(50%) 43.0
コロイダルシリカ(SiO) 6.0
酸化マグネシウム 10.0
アルミナ AL−471 10.0
ルチル型酸化チタン分散液(60%) 26.0
ブチセロ 9.0
ノプコ 8034 0.1
バイオカット AF−40(防かび剤) 0.3
増粘剤 SNシックナー621(30%) 5.0
水 30.0
シリコンエマルジョン樹脂(30%固形分) 13.0
―――――――――――――――――――――――――――――
合計 152.4

以上のエマルジョン塗料の熱伝導率λは、3.66W/m・Kであった。上記の塗料は、熱拡散型塗料として電気器具に使用して、良好な反射性能を示した。即ち、反射率96.5%であった。
weight%
Acrylic emulsion (50%) 43.0
Colloidal silica (SiO 2 ) 6.0
Magnesium oxide 10.0
Alumina AL-471 10.0
Rutile-type titanium oxide dispersion (60%) 26.0
Buticero 9.0
Nopco 8034 0.1
Biocut AF-40 (antifungal agent) 0.3
Thickener SN thickener 621 (30%) 5.0
Water 30.0
Silicon emulsion resin (30% solids) 13.0
―――――――――――――――――――――――――――――
Total 152.4

The thermal conductivity λ of the above emulsion paint was 3.66 W / m · K. The above-mentioned paints were used for electric appliances as heat diffusion paints and showed good reflection performance. That is, the reflectance was 96.5%.

重量%
サイビノール EL−7040 45%(サイデン化学製)50.0
シリコンレジン 3074(ダウコーニング製) 5.0
EPソルベント(イーストマン社製) 15.0
サンノプコ SNシックナー621(30%) 3.0
サンノプコ 8034 0.1
バイオカット AF−40(防カビ剤) 0.3
MgO (タテホ化学工業製) 15.0
アルミナ(Al) 5.0
酸化チタン分散液 (60%) 28.0
水 40.0
―――――――――――――――――――――――――――――――
合計 161.4
以上の配合をディゾルバー分散し、カーテンフローに用いることが出来る流動性の良い白色水性塗料を得た。熱伝導率λ=3.68W/m・Kであった。反射率97.2%で、電気用プラスチック反射板として有用であった。
weight%
Cybinol EL-7040 45% (manufactured by Seiden Chemical) 50.0
Silicone resin 3074 (Dow Corning) 5.0
EP Solvent (Eastman) 15.0
San Nopco SN thickener 621 (30%) 3.0
San Nopco 8034 0.1
Biocut AF-40 (antifungal agent) 0.3
MgO (made by Tateho Chemical Industry) 15.0
Alumina (Al 2 O 3 ) 5.0
Titanium oxide dispersion (60%) 28.0
Water 40.0
―――――――――――――――――――――――――――――――
Total 161.4
The above blend was dispersed in a dissolver to obtain a white water-based paint having good fluidity that can be used for curtain flow. The thermal conductivity was λ = 3.68 W / m · K. The reflectivity was 97.2% and it was useful as an electrical plastic reflector.

前記課題を解決するためになされた本発明である温度抑制塗料組成物は、少なくとも2種類以上の粒度が0.4μm〜1.5μmである非電導性放熱用フイラー混入させてなることを特徴とする。
Temperature inhibiting coating composition is a present invention has been made to solve the above problems, characterized in that at least two kinds of particle size is a non-conductivity of the radiating filler is mixed is 0.4μm~1.5μm And

特に、前記非電導性放熱用フイラーが純度98%以上で熱線法にて、放熱量を調べる為の熱伝導率λが水性塗料にした場合3.0以上の熱伝導率λの値を示すものであると好ましい。
In particular, shown in the non-conductivity of the heat releasing filler is hot wire method at 98% purity, the thermal conductivity for examining the heat radiation amount λ is the value of λ the thermal conductivity when 3.0 or more was water-based paint It is preferable that it is.

また、前記非電導性放熱用フイラーが、アルミナAl2O3、高抵抗・炭化ケイ素SiC,炭化ホウ素BN、酸化マグネシウムMgO,硅酸SiO2、窒化アルミニウムAlN、窒化ケイ素Si3N4、酸化亜鉛、結晶シリカ、酸化チタン、マンガン・フェライト(FeMn)2O3,酸化第二鉄(Fee2O3),100nm前後のシリカ・ナノ粒子、アルミナ・ナノ粒子が使用可能である。
Also, the non-conductivity of the heat releasing filler is alumina Al2O3, high resistance, silicon carbide SiC, boron carbide BN, magnesium oxide MgO, silicate SiO2, aluminum nitride AlN, silicon nitride Si3 N4, zinc oxide, crystalline silica, titanium oxide Manganese ferrite (FeMn) 2 O 3, ferric oxide (Fee 2 O 3), silica nanoparticles of around 100 nm, and alumina nanoparticles can be used.

本発明は非電導性放熱性フイラーを用いて、遮熱顔料で反射出来ない赤外線の熱をこのフイラーが吸収し、電磁波に熱エネルギー変換させ上部に逃す方法を取り入れた温度抑制塗料組成物であって、少なくとも2種類以上の粒度が0.4μm〜1.5μmである非電導性放熱用フイラー混入させてなることを特徴とする。
The present invention is a temperature-inhibiting coating composition using a non-conductive heat-dissipating filler and incorporating a method in which infrared heat that cannot be reflected by the heat-shielding pigment is absorbed by the filler, converted into electromagnetic energy and released to the top. Te, at least two types of particle size is characterized by comprising a is electroless-conductive heat radiating filler is mixed 0.4Myuemu~1.5Myuemu.

Claims (5)

水性エマルジョン樹脂塗料に少なくとも2種類以上の粒度が0.4μm〜1.5μmである非電導磁性放熱用フイラーを20〜70%含有させてなることを特徴とする温度抑制塗料組成物。   A temperature-suppressing coating composition comprising 20 to 70% of a non-conductive magnetic heat dissipation filler having a particle size of 0.4 to 1.5 μm in an aqueous emulsion resin coating. 前記非電導磁性放熱用フイラーが純度98%以上で熱線法にて、放熱量を調べる為の熱伝導率λが水性塗料にした場合3.0以上の熱伝導率λの値を示すものであることを特徴とする請求項1記載の温度抑制塗料塑性物。   When the non-conductive magnetic heat dissipation filler has a purity of 98% or more and the heat conductivity λ for examining the amount of heat released by a hot wire method is a water-based paint, the value of the heat conductivity λ is 3.0 or more. The temperature-suppressing paint plastic material according to claim 1. 前記非電導磁性放熱用フイラーが、アルミナAl、高抵抗・炭化ケイ素SiC,炭化ホウ素BN、酸化マグネシウムMgO,硅酸SiO、窒化アルミニウムAlN、窒化ケイ素SiN、酸化亜鉛、結晶シリカ、酸化チタン、マンガン・フェライト(FeMn)3,酸化第二鉄(Fee23),100nm前後のシリカ・ナノ粒子、アルミナ・ナノ粒子等であることを特徴とする請求項1または2記載の温度抑制塗料組成物。 The non-conductive magnetic heat dissipation filler is composed of alumina Al 2 O 3 , high resistance silicon carbide SiC, boron carbide BN, magnesium oxide MgO, oxalic acid SiO 2 , aluminum nitride AlN, silicon nitride Si 3 N 4 , zinc oxide, crystal 2. Silica, titanium oxide, manganese / ferrite (FeMn) 2 O 3, ferric oxide (Fee 2 O 3 ), silica nanoparticles around 100 nm, alumina nanoparticles, etc. 2. The temperature-suppressing coating composition according to 2. アルミナAlO(10重量%)、結晶性シリカ(10重量%)、アクリルエコルジョン(50%)(40重量%)、重炭酸カルシウム(20重量%)、硅石微粉(20重量%)添加剤(0.5重量%)の組成比率を有することを特徴とする請求項1,2または3記載の温度抑制塗料組成物。 Addition of alumina Al 2 O 3 (10% by weight), crystalline silica (10% by weight), acrylic eco-olsion (50%) (40% by weight), calcium bicarbonate (20% by weight), meteorite fine powder (20% by weight) The temperature-suppressing coating composition according to claim 1, 2 or 3, which has a composition ratio of an agent (0.5% by weight). 遮熱顔料、無機や有機系のバルーン、防錆顔料、防カビ剤、防藻剤、抗菌剤または撥水剤の少なくとも1つを混入させたことを特徴とする請求項1,2,3または4記載の温度抑制塗料組成物。   A heat shielding pigment, an inorganic or organic balloon, an antirust pigment, an antifungal agent, an antialgae agent, an antibacterial agent, or a water repellent agent is mixed, or 1, 2, 3 or 4. The temperature-suppressing coating composition according to 4.
JP2013110525A 2013-05-27 2013-05-27 Temperature suppression coating composition Pending JP2014227530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013110525A JP2014227530A (en) 2013-05-27 2013-05-27 Temperature suppression coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013110525A JP2014227530A (en) 2013-05-27 2013-05-27 Temperature suppression coating composition

Publications (1)

Publication Number Publication Date
JP2014227530A true JP2014227530A (en) 2014-12-08

Family

ID=52127697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013110525A Pending JP2014227530A (en) 2013-05-27 2013-05-27 Temperature suppression coating composition

Country Status (1)

Country Link
JP (1) JP2014227530A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104774508A (en) * 2015-05-01 2015-07-15 李亮军 Preparing method of modified heat insulating coating
EP3038052A1 (en) 2014-12-25 2016-06-29 Casio Computer Co., Ltd. Diagnosis support apparatus and image processing method in the same apparatus
WO2016129340A1 (en) * 2015-02-10 2016-08-18 宝栄産業株式会社 Emulsion type coating
JP2017088809A (en) * 2015-11-16 2017-05-25 住友精化株式会社 Aqueous dispersion liquid for forming heat dissipation coating film, heat dissipation coating film, and heat dissipation sheet
KR20180126250A (en) * 2017-05-17 2018-11-27 주식회사 알파머티리얼즈 composition of Heat-radiating paint
JP7178059B1 (en) 2021-05-31 2022-11-25 日本ペイントコーポレートソリューションズ株式会社 Coating composition and coating film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003326638A (en) * 2002-05-14 2003-11-19 Nippan Kenkyujo Co Ltd Heat insulating decorative material and manufacturing method therefor
JP2004300415A (en) * 2003-03-20 2004-10-28 Eco Cosmo:Kk Coating and manufacturing method thereof
JP2005120278A (en) * 2003-10-17 2005-05-12 Oki Electric Ind Co Ltd Optically reflective coating and optically reflective coated film formed therefrom
JP2005126561A (en) * 2003-10-23 2005-05-19 Dainichi Giken Kogyo Kk Composition for multi-functional coating
JP2010111714A (en) * 2008-11-04 2010-05-20 Yokohama Rubber Co Ltd:The Thermally conductive emulsion
JP2012036315A (en) * 2010-08-09 2012-02-23 Shimizu:Kk Colored resin composition for electrodeposition coating, water-based electrodeposition coating, coating method, and coated article
JP2012246365A (en) * 2011-05-26 2012-12-13 Hitachi Chemical Co Ltd Thermal emission coating material, and light-emitting diode (led) illumination, heat sink, back sheet for solar cell module each coated therewith
WO2014175344A1 (en) * 2013-04-26 2014-10-30 Jnc株式会社 Aqueous coating material, heat-dissipating member, metallic part, and electronic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003326638A (en) * 2002-05-14 2003-11-19 Nippan Kenkyujo Co Ltd Heat insulating decorative material and manufacturing method therefor
JP2004300415A (en) * 2003-03-20 2004-10-28 Eco Cosmo:Kk Coating and manufacturing method thereof
JP2005120278A (en) * 2003-10-17 2005-05-12 Oki Electric Ind Co Ltd Optically reflective coating and optically reflective coated film formed therefrom
JP2005126561A (en) * 2003-10-23 2005-05-19 Dainichi Giken Kogyo Kk Composition for multi-functional coating
JP2010111714A (en) * 2008-11-04 2010-05-20 Yokohama Rubber Co Ltd:The Thermally conductive emulsion
JP2012036315A (en) * 2010-08-09 2012-02-23 Shimizu:Kk Colored resin composition for electrodeposition coating, water-based electrodeposition coating, coating method, and coated article
JP2012246365A (en) * 2011-05-26 2012-12-13 Hitachi Chemical Co Ltd Thermal emission coating material, and light-emitting diode (led) illumination, heat sink, back sheet for solar cell module each coated therewith
WO2014175344A1 (en) * 2013-04-26 2014-10-30 Jnc株式会社 Aqueous coating material, heat-dissipating member, metallic part, and electronic device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3038052A1 (en) 2014-12-25 2016-06-29 Casio Computer Co., Ltd. Diagnosis support apparatus and image processing method in the same apparatus
WO2016129340A1 (en) * 2015-02-10 2016-08-18 宝栄産業株式会社 Emulsion type coating
JP2016148026A (en) * 2015-02-10 2016-08-18 株式会社オプティマス Emulsion type paint
CN104774508A (en) * 2015-05-01 2015-07-15 李亮军 Preparing method of modified heat insulating coating
CN104774508B (en) * 2015-05-01 2017-01-25 广州昊特建材有限公司 Preparing method of modified heat insulating coating
JP2017088809A (en) * 2015-11-16 2017-05-25 住友精化株式会社 Aqueous dispersion liquid for forming heat dissipation coating film, heat dissipation coating film, and heat dissipation sheet
KR20180126250A (en) * 2017-05-17 2018-11-27 주식회사 알파머티리얼즈 composition of Heat-radiating paint
KR102052386B1 (en) 2017-05-17 2019-12-05 주식회사 알파머티리얼즈 composition of Heat-radiating paint
JP7178059B1 (en) 2021-05-31 2022-11-25 日本ペイントコーポレートソリューションズ株式会社 Coating composition and coating film
WO2022255310A1 (en) * 2021-05-31 2022-12-08 日本ペイントコーポレートソリューションズ株式会社 Coating composition and coating film
JP2022183945A (en) * 2021-05-31 2022-12-13 日本ペイントコーポレートソリューションズ株式会社 Coating composition and coating film

Similar Documents

Publication Publication Date Title
JP2014227530A (en) Temperature suppression coating composition
JP6437702B2 (en) Thermally radiant paint, coating film and method for producing coated object
JP4765936B2 (en) Painted steel plate with excellent heat dissipation
JP6224943B2 (en) One-component solvent-free room temperature curable organosiloxane silicone resin adhesive and method for producing the same
US9120930B2 (en) Heat dissipating paint with high thermal radiating capability
JP2009067998A (en) Paint for heat radiation film and method for forming heat radiation film
JP2013249393A (en) Black pigment, and glaze and coating containing the same
JP2009152536A (en) Circuit board of electronic apparatus assuring highly efficient heat radiation, and electronic controller, computer system, electrical home appliance, and industrial apparatus product including the same
WO2016005397A1 (en) Thermal control coatings
JP5931719B2 (en) Transparent heat radiation coating composition
WO2014175344A1 (en) Aqueous coating material, heat-dissipating member, metallic part, and electronic device
TW201815573A (en) Photocatalyst laminate
JP2012246365A (en) Thermal emission coating material, and light-emitting diode (led) illumination, heat sink, back sheet for solar cell module each coated therewith
KR102052386B1 (en) composition of Heat-radiating paint
JP6517086B2 (en) Thermal radiation coating, light emitting diode (LED) illumination having the same, heat sink, back sheet for solar cell module
KR101232569B1 (en) Heterogeneous resin coated steel sheet improved thermal conductivity and heat-releaseproperty
KR102207890B1 (en) Manufacturing Method of Powder Coating Materials
JP2004359811A (en) Composition having excellent heat-releasing and heat-shielding properties, and film
TW202216601A (en) Magnesium oxide powder, filler composition, resin composition, and heat dissipation component
JP2013147571A (en) Heat-shielding coating
KR101069950B1 (en) Steel Sheet Having Superior Electro-Conductivity and Resin Composition Therefor
JP2008231367A (en) Composition for forming ultraviolet ray- and heat ray-shielding transparent layer, and transparent layer and use of the same
JP2009153366A (en) Highly efficient heat dissipation coil and highly efficient heat dissipation motor employing thereof, highly efficient heat dissipation power supply device, highly efficient heat dissipation magnetron generator, and electronic apparatus, industrial apparatus, electrical home appliance, computer hard disk product, and electric vehicle employing the coil, motor and devices
JP7209015B2 (en) Paint composition kit and its use
KR20220119042A (en) Compositions for Coating Overhead Conductors

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150804