WO2014174783A1 - 無線電力伝送装置 - Google Patents

無線電力伝送装置 Download PDF

Info

Publication number
WO2014174783A1
WO2014174783A1 PCT/JP2014/002050 JP2014002050W WO2014174783A1 WO 2014174783 A1 WO2014174783 A1 WO 2014174783A1 JP 2014002050 W JP2014002050 W JP 2014002050W WO 2014174783 A1 WO2014174783 A1 WO 2014174783A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
power transmission
transmission device
resonance coil
Prior art date
Application number
PCT/JP2014/002050
Other languages
English (en)
French (fr)
Inventor
秀夫 大住
菅野 浩
坂田 勉
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201480021151.3A priority Critical patent/CN105122589A/zh
Priority to JP2015513518A priority patent/JP6160880B2/ja
Priority to US14/784,395 priority patent/US10020794B2/en
Publication of WO2014174783A1 publication Critical patent/WO2014174783A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks

Definitions

  • the present disclosure relates to a power transmission device, a power reception device, and a wireless power transmission device that are supplied with power energy from a power transmission device via a space.
  • matching adjustment is performed to match the impedance of the receiving antenna and the rectifying unit with respect to the matching unit of the power receiving apparatus in a state where the transmitted power is less than the specified power value W1a, and then the transmitted power having the specified power value W1a.
  • the impedance when the battery side is viewed from the specified position is the specified power value W1a.
  • the above-described conventional wireless power transmission apparatus has a problem in that when it is used for a battery having different impedances, an adjustment load having different impedances needs to be prepared. It was.
  • the power or voltage of the power transmission device fluctuates, there is a problem that the battery is damaged due to a transient phenomenon such as an abnormal output voltage applied to the battery.
  • the object of the present disclosure is to solve the above problems, prevent an abnormal voltage due to a transient phenomenon from being applied to the load, and supply a stable voltage to the load, a power receiving device, and wireless power transmission To provide an apparatus.
  • the power transmission device is: A power transmission device of a wireless power transmission device that electromagnetically couples a power transmission device resonance coil and a power reception device resonance coil to transmit power from the power transmission device to the power reception device, A control signal detector for generating and transmitting a control signal based on a voltage change of the voltage across the power transmission device resonance coil; And a switching circuit for resonating the power transmission device resonance coil based on the control signal.
  • the power receiving device is: A power receiving device of a wireless power transmission device that electromagnetically couples a power transmitting device resonance coil and a power receiving device resonance coil to transmit power from the power transmitting device to the power receiving device, A rectifier circuit that converts a predetermined AC voltage received from the power receiving device resonance coil into a predetermined DC voltage and outputs the DC voltage; First switching means for connecting the rectifier circuit and an actual load when the predetermined DC voltage is included in a predetermined voltage range; The rectifier circuit and an actual load are connected when the predetermined DC voltage is included in a predetermined voltage range, and the rectifier circuit and the actual load when the predetermined DC voltage is outside the predetermined voltage range. And switching means for shutting off.
  • the power transmission device the power reception device, and the wireless power transmission device according to the present disclosure, it is possible to prevent an abnormal voltage or the like due to a transient phenomenon from being applied to the load, and to supply a stable voltage to the load. It becomes.
  • FIG. 1 is a block diagram showing a wireless power transmission device 100 and its peripheral components according to a first embodiment of the present disclosure. It is a block diagram which shows the concrete component of the impedance conversion circuit 21 of FIG. 2 is a flowchart showing a wireless power transmission processing procedure of the wireless power transmission apparatus 100 of FIG. 6 is a flowchart illustrating a wireless power transmission processing procedure of the wireless power transmission device 100 of FIG. 1 according to a second embodiment of the present disclosure. It is a block diagram which shows 100 A of radio
  • FIG. 1 is a block diagram illustrating a wireless power transmission device 100 and peripheral components thereof according to the first embodiment of the present disclosure.
  • a wireless power transmission device 100 includes a power transmission device 1 and a power reception device 2 that supplies power to an actual load 31 connected to the power reception device 2.
  • the power transmission device 1 includes an input power source 11 configured by, for example, an AC / DC converter, a switching circuit 12 configured by, for example, an FET (field effect transistor), a power transmission side control unit 13, and a discharge circuit, for example.
  • a packet signal detection unit 14 including a peak hold circuit and a comparator circuit are included, and a resonance circuit 80 is included.
  • the resonance circuit 80 includes a power transmission device resonance capacitor 15 and a power transmission device resonance coil 16.
  • the power receiving device 2 includes a resonance circuit 90, a power receiving side control unit 22, for example, a diode and a capacitor, and a rectifying circuit 23 that rectifies and smoothes the power received from the power receiving device resonance coil 29.
  • the voltage adjustment load 25 such as a resistor, which is connected to the subsequent stage of the rectifier circuit 23 and adjusts the voltage value of the DC voltage output from the rectifier circuit, the voltage and current detection circuit 24, the power receiving device 2, and the actual load 31.
  • an actual load connection switch 26 for connecting the two.
  • the resonance circuit 90 includes an impedance conversion circuit 21, a power reception device resonance coil 29, and a power reception device resonance capacitor 28 connected in series with the power reception device resonance coil 29.
  • the power transmission device 1 and the power receiving device 2 transmit power from the power transmitting device 1 to the power receiving device 2 by electromagnetic induction in a contactless manner, and supply power to the actual load 31 connected to the power receiving device 2 It has become.
  • the power transmission device 1 of the present disclosure not only can power be supplied to a device that is the actual load 31 connected to the power reception device 2 with a preset voltage, but also transient phenomena peculiar to wireless power transmission, for example, startup and input power Since the power can be supplied to the device connected to the power receiving apparatus 2 after the transient phenomenon due to the fluctuation of the power is completed, the safety of the device can be further improved.
  • FIG. 2 is a block diagram showing specific components of the impedance conversion circuit 21 of FIG.
  • the impedance conversion circuit 21 includes switches 41 and 42 and a capacitor 43.
  • the input power supply 11 converts an AC voltage such as 100 V into a DC voltage V1 having an arbitrary voltage and outputs the DC voltage V1 to the switching circuit 12.
  • the power transmission side control unit 13 generates a switching timing signal S1 having a certain frequency component and outputs it to the switching circuit 12.
  • the switching circuit 12 switches the input DC voltage V1 to the AC voltage V2 by switching on / off with the duty ratio of the switching timing signal S1, based on the switching timing signal S1 input from the power transmission side control unit 13.
  • the AC voltage V2 is converted and output to the power transmission device resonance capacitor 15 and the power transmission device resonance coil 16.
  • the frequency and duty ratio of the switching timing signal S1 can be arbitrarily changed by the power transmission control unit 13.
  • the power transmission device resonance coil 16 is located opposite to the power reception device resonance coil 29, is electromagnetically coupled to the power reception device resonance coil 29 of the power reception device 2, and transmits the AC voltage V3 to the power reception device resonance coil 29 by electromagnetic induction. . Further, the rectifier circuit 23 converts the voltage value of the AC voltage V3 into a DC voltage V4 and supplies the converted DC voltage V4 to the voltage adjustment load 25 and the actual load 31.
  • the rectifier circuit 23 can be replaced with, for example, an AC / DC converter.
  • the voltage and current detection circuit 24 receives the DC voltage V4 from the rectifier circuit 23, detects the voltage value V41 and the current value I41 of the voltage and current DC voltage V4, and controls the voltage value V41 and the current value I41 on the power receiving side. To the unit 22.
  • the power receiving side control unit 22 determines that the voltage value V41 is within the allowable voltage range of the actual load 31, and the actual load connection switch 26. At the same time that the switch 41 and the switch 42 constituting the impedance conversion circuit 21 are turned off at the same time. If the voltage value V41 is outside the allowable voltage range of the actual load 31, the actual load connection switch 26 is turned off and at the same time the impedance conversion circuit At the same time, the switch 41 and the switch 42 constituting the system 21 are turned on.
  • the actual load connection switch 26 connects the rectifier circuit 23 and the actual load 31 when the predetermined DC voltage is included in the predetermined voltage range, and when the predetermined DC voltage is outside the predetermined voltage range. Switching means for cutting off the rectifier circuit 23 and the actual load 31.
  • the impedance conversion circuit 21 changes the impedance of the resonance circuit 90. Specifically, in FIG. 2, the impedance of the resonance circuit 90 is changed by simultaneously turning on the switch 41 and the switch 42 to connect the capacitor 43 to the power reception device resonance capacitor 28 and the power reception device resonance coil 29. That is, the capacitor 43 constituting the impedance conversion circuit 21, the power receiving device resonance coil 29, and the power receiving device resonance capacitor 28 are connected in series to change the voltage across the power transmission device resonance coil 16, and based on this change. Packet signal P1 is generated. That is, by repeatedly turning on / off the switches 41 and 42 of the impedance conversion circuit 21, the voltage fluctuation of the power transmission device resonance coil 16 is repeated, and the fluctuation is transmitted to the power transmission device 1 as the packet signal P1. Note that the circuit shown in FIG. 2 is an example of the impedance conversion circuit 21 and can be configured by various circuits using, for example, a resistor or a coil.
  • the packet signal detection unit 14 detects a change in the voltage between both ends of the power transmission device resonance coil 16 due to a change in the voltage between both ends of the power transmission device resonance coil 16 electromagnetically coupled to the power reception device resonance coil 29.
  • the signal P1 is demodulated and the packet signal P1 is transmitted to the power transmission side control unit 13. That is, the packet signal detection unit 14 is a control signal detection unit that generates and transmits a control signal based on the voltage change of the voltage across the power transmission device resonance coil.
  • the power transmission side control unit 13 receives the packet signal P1 from the packet signal detection unit 14, acquires the voltage value V41 generated in the voltage adjustment load 25 based on the packet signal P1, and uses the switching value 12 from the voltage value V41.
  • the switching signal S1 for controlling the signal is generated, and the switching signal S1 is output to the switching circuit 12. That is, the power transmission side control unit 13 receives the control signal from the packet signal detection unit 14, generates a switching timing signal S 1 having a predetermined frequency component, and controls the switching frequency of the switching circuit 12.
  • the power transmission side control unit 13 has a table including, for example, the DC voltage V4 of the power receiving device 2 and the switching frequency of the switching circuit 12, and based on the table, the voltage value V41 acquired from the packet signal P1 is obtained.
  • the switching frequency is changed so as to be within the allowable voltage range of the actual load 31, and the switching operation of the switching circuit 12 is controlled based on the changed switching frequency.
  • FIG. 3 is a flowchart showing a wireless power transmission processing procedure of the wireless power transmission apparatus 100 of FIG. This flowchart shows a processing flow from when the input power supply 11 is activated until electric power is supplied to the actual load 31.
  • the actual load connection switch 26 is always turned off (step S10).
  • a semiconductor element such as an FET or a photocoupler, a mechanical relay, or the like can be applied.
  • the power transmission side control unit 13 generates a switching timing signal S1 having a predetermined frequency, and operates the switching circuit 12 (step S11).
  • an AC voltage V ⁇ b> 2 is generated from the DC voltage V ⁇ b> 1 supplied from the input power supply 11, and the AC voltage V ⁇ b> 2 is output to the power transmission device resonance capacitor 15 and the power transmission device resonance coil 16.
  • the power transmission device resonance coil 16 is electromagnetically coupled to the power reception device resonance coil 29 of the power reception device 2, and the AC voltage V3 is transmitted to the power reception device resonance coil 29 by electromagnetic induction.
  • the AC voltage V3 is converted to the DC voltage V4 by the rectifier circuit 23. Converted.
  • the value of the converted DC voltage V4 is equal to the value of the voltage generated in the voltage adjustment load 25.
  • the on / off timing of the switching circuit 12 by changing the frequency of the switching timing signal S1 applied to the gate, the on / off timing is changed, and the AC voltage V3 and DC voltage of the power receiving device 2 are changed. Adjust the voltage value of V4.
  • the voltage value V41 of the DC voltage V4 generated in the voltage adjustment load 25 is detected by the voltage and current detection circuit 24 (step S12).
  • the detected voltage value V41 is transmitted to the power receiving side control unit 24.
  • the impedance of the voltage adjustment load 25 used in this embodiment does not need to match the impedance of the actual load 31.
  • the impedance of the mobile terminal becomes several ⁇ if the power consumption of the mobile terminal is large.
  • the power consumption of the voltage adjustment load 25 is 48W. It is not realistic to mount the voltage adjustment load 25 that can withstand 48 W of power consumption. Therefore, in this embodiment, for example, the impedance of the voltage adjustment load 25 is set to 300 ⁇ . As a result, the power consumption of the voltage adjustment load 25 can be set to 0.48 W, which can be easily realized.
  • the voltage value V41 of the DC voltage V4 is directly transmitted to the power receiving side control unit 24.
  • an AD converter provided in the voltage and current detection circuit 24, or the like
  • the voltage value V41 can be converted into digital data or the like, and the digital data can be transmitted to the power receiving side control unit 24.
  • the actual load connection switch 26 continues to be turned off by the power receiving side control unit 24, and the packet signal P1 is generated by the power receiving device resonance coil 29. (NO in step S13 and step S14).
  • the packet signal P1 includes information related to the voltage value V41, but can also include information used for other controls.
  • the specified voltage range is an allowable voltage range of the actual load 31. For example, when the input voltage range of the actual load 31 is 12V ⁇ 10%, the specified voltage range is 10.8V to 13.2V. .
  • the power receiving side control unit 22 operates the impedance conversion circuit 21 based on the voltage value V41 input from the voltage and current detection circuit 24 (step S15).
  • the packet signal detection unit 14 of the power transmission device 1 demodulates the packet signal P1 (step S16).
  • the processing until the packet signal P1 is demodulated is, for example, as follows.
  • the impedance conversion circuit 21 of the power reception device 2 operates, for example, the AC voltage V2 of the power transmission device resonance coil 16 changes.
  • the packet signal detection unit 14 demodulates the packet signal P ⁇ b> 1 and transmits the packet signal P ⁇ b> 1 to the power transmission side control unit 13.
  • the packet signal detection unit is composed of, for example, a peak hold circuit including a discharge circuit and a comparator circuit, detects the peak value of the AC voltage V2 by holding and discharging, and compares the peak value with a comparator.
  • the packet signal P1 can be demodulated.
  • the position of the packet signal detection unit 14 is not only the power transmission device resonance coil 16 in FIG. 1 but also the power reception device viewed from the power transmission device resonance coil 16 of the power transmission device 1 by the operation of the impedance conversion circuit 21 of the power reception device 2. Any position can be used as long as it can detect two impedance fluctuations. Further, when demodulating the packet signal P1 based on changes in DC voltage and current, the peak hold circuit can be eliminated.
  • the power transmission side control unit 13 of the power transmission device 1 takes in the voltage value V41 of the DC voltage V4 of the voltage adjustment load 31 included in the packet signal P1 (step S17).
  • the switching circuit 12 is controlled based on each value (step S18).
  • the switching timing signal S1 output from the power transmission side control unit 13 is given to the gate of the FET, and when the gate capacitance of the FET is charged, the FET is turned on and the gate capacitance of the FET is discharged. And the FET is turned off.
  • the on / off timing of the switching circuit 12 can be changed by changing the frequency of the switching timing signal S1 applied to the gate.
  • the AC voltage of the power receiving device 2 can be changed by changing the on / off timing.
  • V3 and DC voltage V4 can be adjusted.
  • the voltage value V41 of the DC voltage V4 generated in the voltage adjustment load 25 is changed by changing the switching frequency in step S18. If the voltage value V41 at this time is not within the specified voltage range, the processing from step S14 to step S18 is repeated again.
  • step S13 If the voltage value V41 of the DC voltage V4 generated in the voltage adjustment load 25 is within the specified voltage range (YES in step S13), a control signal for turning on the actual load connection switch 26 by the power receiving side control unit 22 of the power receiving device 2 Is output.
  • the output voltage VOUT is supplied to the actual load 31 (step S20).
  • the actual load connection switch 26 continues to be turned off until the DC voltage V4 falls within the specified voltage range, whereby the power fluctuation of the input power supply 11 when the power transmission device 1 starts to be activated with respect to the actual load 31.
  • the switching circuit 12 it is possible to prevent the switching circuit 12 from being affected by a transient response due to a sudden change in state such as when the operation of the switching circuit 12 starts.
  • the transient response characteristic of the output voltage VOUT based on the power fluctuation of the input power supply 11 was verified by simulation as follows.
  • FIG. 5 is a block diagram showing the wireless power transmission device 100A and its peripheral components used when verifying transient response characteristics based on power fluctuations of the input power supply 11 by simulation.
  • a wireless power transmission device 100A in FIG. 5 includes a resonance circuit 90A instead of the resonance circuit 90, as compared with the wireless power transmission device 100 in FIG.
  • the resonance circuit 90 ⁇ / b> A includes a power reception device resonance capacitor 28 ⁇ / b> A connected in parallel with the power reception device resonance coil 29 instead of the power reception device resonance capacitor 28 connected in series with the power reception device resonance coil 29, as compared with the resonance circuit 90. Composed.
  • FIG. 6 is a time axis waveform diagram showing a transient response characteristic of the output voltage VOUT of the wireless power transmission device 100A of FIG. For example, the result of verifying the transient response when the power of the input power supply 11 suddenly changes from 1 W to 100 W by simulation is shown.
  • the configuration of the wireless power transmission device 100A used in this simulation is shown in FIG. 5, the rectifier circuit 23 and the actual load 31 are connected.
  • the power receiving apparatus 2 and the actual load 31 are connected via the actual load connection switch 26, but the same applies to a configuration that does not include the actual load connection switch 26.
  • the vertical axis in FIG. 6 is the output voltage VOUT of the wireless power transmission apparatus 100A, and the horizontal axis is time t.
  • a transient phenomenon of the output voltage VOUT occurs due to a rapid fluctuation of the power of the input power supply 11. If the sudden fluctuation of the power supply of the input power supply 11 is intentional, the risk of the transient phenomenon can be reduced by delaying the transition of the fluctuation.
  • the power fluctuation of the input power supply 11 is a wireless power transmission. When it occurs unintentionally for the device 100A, it is difficult to prevent the occurrence of a transient phenomenon as shown in FIG.
  • the actual load connection switch 26 is turned on.
  • a stable output voltage VOUT can be supplied even to an actual load having a large impedance fluctuation (for example, fluctuation in power consumption).
  • step S21 After the output voltage VOUT is supplied to the actual load 31, the power receiving device resonance coil 29 generates the packet signal P2 (step S21).
  • the processing from step S21 to step S24 in FIG. 3 is the same as the processing from step S14 to step S17 in FIG. That is, the actual load connection switch 26 is kept on by the power receiving side control unit 24, the packet signal P2 is generated by the power receiving device resonance coil 29 (step S21), and the power receiving side control unit 22 detects the voltage and current. Based on the voltage value V41 input from the circuit 24, the impedance conversion circuit 21 is operated (step S22).
  • the packet signal detection unit 14 of the power transmission device 1 demodulates the packet signal P2 (step S23), and the power transmission side control unit 13 of the power transmission device 1 determines the DC voltage V4 of the voltage adjustment load 31 included in the packet signal P2.
  • the voltage value V41 is taken in (step S24). Further, by repeating the processing from step S21 to step S24 periodically even after power is supplied to the actual load 31, the voltage value of the output voltage VOUT due to impedance variation (for example, increase or decrease in power consumption) of the actual load 31. Even if VOUT1 may change, the voltage value VOUT1 can be kept constant by controlling the switching frequency of the switching circuit 12, so that not only a battery whose impedance hardly varies but also an actual load whose impedance varies. In contrast, a stable output voltage VOUT can be supplied.
  • the influence of the transient response due to the fluctuation of the input power source 11 when the power transmission device 1 starts to start or the sudden change of the state such as when the switching circuit 12 starts to operate is directly affected. Therefore, it is possible to prevent the actual load 31 from being applied.
  • the actual load connection switch 26 is turned on after confirming that the voltage value V41 of the DC voltage V4 generated in the voltage adjustment load 25 is within the specified voltage range. Therefore, a stable output voltage VOUT can be supplied not only to a battery having almost no impedance variation but also to an actual load having a large impedance variation (for example, power consumption variation).
  • the switching frequency of the switching circuit 12 of the power transmission device 1 can be controlled, after the supply of the output voltage VOUT to the actual load 31 is started (for example, Even if the impedance of the actual load 31 fluctuates due to increase or decrease in power consumption and the value of the output voltage VOUT changes, the voltage value VOUT can be kept constant. Therefore, the stable output voltage VOUT can be supplied not only to the battery having almost no impedance fluctuation but also to the actual load 31 having a large impedance fluctuation (for example, power consumption fluctuation).
  • the impedances of the power transmission device 1 and the power reception device 2 can be matched without having to replace the adjustment load 31 of the power reception device 2, thereby reducing the cost. can do.
  • the wireless power transmission process of the wireless power transmission device 100 according to the second embodiment is performed after supplying power to the actual load 31.
  • the output voltage VOUT can be kept constant even when the impedance of the load 31 varies.
  • FIG. 4 is a flowchart illustrating a wireless power transmission processing procedure of the wireless power transmission apparatus 100 of FIG. 1 according to the second embodiment of the present disclosure.
  • the present embodiment relates to the wireless power transmission apparatus 100 when the value of the output voltage VOUT falls outside the specified voltage range after supplying power to the actual load 31.
  • step S20 in FIG. 3 in which power is supplied to the actual load 31 after the input power supply 11 is started corresponds to step S31 in FIG.
  • the voltage value V41 of the DC voltage V4 generated in the voltage adjustment load 25 is detected by the voltage and current detection circuit 24 (step S32).
  • the voltage value V41 of the DC voltage V4 generated by the voltage adjustment load 25 becomes the voltage value VOUT1 of the output voltage VOUT via the actual load connection switch 26. Therefore, the resistance value of the actual load connection switch 26 is very small as compared with the impedance of the voltage adjustment load 25 and the actual load 31, and the voltage value V41 and the voltage value VOUT1 are almost the same value, so the voltage value V41 is used. There is no problem in operation. Further, if the on-resistance value of the actual load connection switch 26 is known, the voltage value VOUT1 can be calculated from the voltage value V41.
  • the voltage value V41 of the DC voltage V4 generated in the voltage adjustment load 25 is within the specified voltage range. It is also possible to use the calculated voltage value VOUT1 when determining whether it is within the range.
  • the processing from step S51 to step S54 is performed.
  • the processing from step S51 to step S54 in FIG. 4 is the same as the processing from step S21 to step S24 in FIG. Even after power is supplied to the actual load 31, the process from step S51 to step S54 is periodically repeated, so that the voltage value VOUT1 changes due to impedance variation (for example, increase or decrease in power consumption) of the actual load 31.
  • the voltage value VOUT1 of the output voltage VOUT can be kept constant, and stable output is possible not only for the battery but also for the actual load 31 whose state fluctuates.
  • the voltage VOUT can be supplied.
  • step S34 when the voltage value V41 of the voltage adjustment load 25 is outside the specified voltage range (NO in step S33), the actual load connection switch 26 is turned off (step S34).
  • Factors that cause the voltage value V41 to be out of the specified voltage range include abnormal fluctuations in the power of the input power supply 11, rapid fluctuations in the coupling state between the power transmission unit resonance coil 16 and the power reception unit resonance coil 29, and the like.
  • an abnormal voltage such as an overvoltage is not applied to the actual load 31, and damage to the actual load 31 can be prevented.
  • the power energy in the power receiving device 2 can be consumed by the voltage adjustment load 25, and damage to the power receiving device 2 due to resonance of the power energy can be prevented.
  • step S35 the packet signal P1 is generated by the power receiving device resonance coil 29 (step S35).
  • the processing from step S35 to step S39 in FIG. 4 is the same as the processing from step S14 to step S18 in FIG.
  • the voltage value V41 of the DC voltage V4 generated in the voltage adjustment load 25 changes.
  • the voltage value V41 of the DC voltage V4 generated in the voltage adjustment load 25 is detected (step S40).
  • the detected voltage value V41 is transmitted to the power receiving side control unit 24.
  • Voltage and Current it is assumed that the direct-current voltage value V41 is directly transmitted to the power receiving side control unit 24.
  • an AD converter provided in the voltage and current detection circuit 24, etc.
  • the voltage value V41 can be converted into digital data or the like, and the digital data can be transmitted to the power receiving side control unit 24.
  • the packet signal P1 is generated (NO in step S41 and step S35).
  • the packet signal P1 includes information related to the voltage value V41, but can also include information used for other controls.
  • the processing from step S35 to NO in step S41 is repeated until the voltage value V41 falls within the specified voltage range.
  • Step S41 a control signal for turning on the actual load connection switch 26 is output by the power receiving side control unit 22 of the power receiving device 2, and when the actual load connection switch 26 is turned on from off, the direct voltage VOUT is supplied to the actual load 31.
  • Step S42 the output voltage VOUT is supplied to the actual load 31 as stable power.
  • the actual load connection switch 26 continues to be turned off until the voltage value V41 falls within the specified voltage range, the fluctuation of the input power supply 11 when the power transmission device 1 starts to start and the operation of the switching circuit 12 start. It is possible to prevent the influence of the transient response due to the sudden change of the state such as time from being directly applied to the load.
  • the actual load connection switch 26 is turned on.
  • a stable output voltage VOUT can be supplied even to the actual load 31 having a large impedance fluctuation (for example, fluctuation in power consumption).
  • step S51 the power receiving device resonance coil 29 generates the packet signal P2 (S51).
  • the processing from step S51 to step S54 in FIG. 4 is the same as the processing from step S21 to step S24 in FIG.
  • the processing from step S51 to step S54 is repeated periodically, so that the voltage value VOUT1 of the output voltage VOUT varies due to impedance variation (for example, increase or decrease in power consumption) of the actual load.
  • the voltage value VOUT1 of the output voltage VOUT can be kept constant and stable not only for the battery but also for an actual load whose state fluctuates. A voltage can be supplied.
  • the voltage value VOUT1 of the output voltage VOUT due to abnormal fluctuations in the power of the input power supply 11 or changes in the coupling state of the power transmission device resonance coil 16 and the power reception device resonance coil 29 is obtained. Even when the voltage is out of the specified voltage range, the voltage outside the specified voltage range can be prevented from being directly applied to the load.
  • the actual load connection switch 26 is turned on after confirming that the voltage value V41 of the DC voltage V4 generated in the voltage adjustment load 25 is within the specified voltage range. Therefore, a stable output voltage VOUT can be supplied not only to a battery having almost no impedance variation but also to an actual load having a large impedance variation (for example, power consumption variation). Furthermore, even if the output voltage VOUT is connected to the actual load 31 and the supply of the output voltage VOUT is started, the voltage value VOUT1 of the output voltage VOUT may change due to impedance fluctuation (for example, increase or decrease in power consumption) of the actual load.
  • the voltage value VOUT1 can be kept constant, and is stable not only for a device with a small impedance variation (for example, a battery) but also a device with a large impedance variation (actual load 31).
  • the output voltage VOUT can be supplied.
  • the switching frequency of the switching circuit 12 of the power transmission device 1 can be controlled, after the supply of the output voltage VOUT to the actual load 31 is started (for example, Even if the impedance of the actual load 31 fluctuates due to increase or decrease in power consumption and the value of the output voltage VOUT changes, the voltage value VOUT can be kept constant. Therefore, the stable output voltage VOUT can be supplied not only to the battery having almost no impedance fluctuation but also to the actual load 31 having a large impedance fluctuation (for example, power consumption fluctuation).
  • Modification 1 The present disclosure is not limited to the configuration shown in the above embodiment, and for example, a wireless power transmission device 100B as illustrated in FIG. 7 may be used.
  • FIG. 7 is a block diagram showing a wireless power transmission device 100B and its peripheral components according to a modification of the first embodiment of the present disclosure.
  • the wireless power transmission device 100B of FIG. 7 includes a power receiving device 2B instead of the power receiving device 2, as compared with the wireless power transmission device 100 of FIG.
  • the power receiving device 2B further includes a voltage adjusting load connection switch 27 for turning on / off the connection between the voltage adjusting load 25 and the rectifier circuit 23, as compared with the power receiving device 2.
  • the same effect as that of the wireless power transmission device 100 described above can be obtained, and the voltage adjustment load connection switch 27 is turned on after the actual load connection switch 26 is turned on. Can be turned off, so that power consumption in the voltage regulating load 25 can be further reduced.
  • the present disclosure can be applied to various electronic devices that wirelessly transmit power (mobile terminals such as mobile phones and tablets, cameras, organic EL displays, and lighting).
  • the power transmission device As described above in detail, according to the power transmission device, the power reception device, and the wireless power transmission device according to the present disclosure, it is possible to prevent an abnormal voltage or the like due to a transient phenomenon from being applied to the load, and to provide a stable voltage. It becomes possible to supply the load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 送電装置共振コイル16と受電装置共振コイル29とを電磁的に結合させて送電装置1から受電装置2に対して電力を送電する無線電力伝送装置100の送電装置1であって、前記送電装置共振コイル16の両端間電圧の電圧変化に基づく制御信号P1を発生して送信する制御信号検出部14と、前記制御信号P1に基づいて、前記送電装置共振コイル16を共振させるスイッチング回路12とを備えた。

Description

無線電力伝送装置
 本開示は、送電装置から空間を介して電力エネルギーを供給される送電装置、受電装置及び無線電力伝送装置に関する。
 近年、携帯電話のバッテリーなどの充電手段として、無線電力伝送技術の活用が検討されている。このような無線電力伝送装置においては、送電装置と受電装置の共振コイルを対向させることにより電力を伝送させる技術が知られており、この種の無線電力伝送装置として、例えば特許文献1で知られている。
 特許文献1によると、送電電力が規定電力値W1a未満の状態で受電装置の整合部に対して受信アンテナと整流部とをインピーダンス整合させる整合調整が行われ、この後に規定電力値W1aの送電電力を受電する受電装置であって、整合調整時にバッテリーに代えて受電装置の整合部の後段側の規定位置に接続されて、規定位置からバッテリー側を見たときのインピーダンスを、規定電力値W1aの送電電力の受電状態で整流部がバッテリーに直流電圧Voを供給しているときに規定位置からバッテリー側を見たときのインピーダンスに一致させる調整用負荷を有することで、伝送効率の低下を防ぐ。
特開2012-195993号公報
 しかしながら、上述した従来の無線電力伝送装置においては、異なるインピーダンスを有したバッテリーに対して使用する場合には、異なるインピーダンスの調整用負荷を用意する必要があるので、コストアップになるという課題があった。また、送電装置の電力や電圧の変動が発生した場合、バッテリーに与えられる出力電圧が異常な値となるなどの過渡現象が発生してバッテリーが破損してしまうという課題があった。
 さらに、バッテリーのインピーダンス変動が大きい場合、受電装置の出力電圧の変化も大きくなるため、電力伝送開始時のバッテリーのインピーダンスが分からない場合は、バッテリーに接続したときの出力電圧の変化が大きくなり、バッテリーに対して安定した電圧にて電力を供給できない課題があった。
 本開示の目的は以上の課題を解決し、過渡現象による異常電圧などが負荷に与えられることを防止し、かつ、安定した電圧を負荷に供給することができる送電装置、受電装置及び無線電力伝送装置を提供することにある。
 第1の開示に係る送電装置は、
 送電装置共振コイルと受電装置共振コイルとを電磁的に結合させて送電装置から受電装置に対して電力を送電する無線電力伝送装置の送電装置であって、
 前記送電装置共振コイルの両端間電圧の電圧変化に基づく制御信号を発生して送信する制御信号検出部と、
 前記制御信号に基づいて、前記送電装置共振コイルを共振させるスイッチング回路とを備えた。
 また、第2の開示に係る受電装置は、
 送電装置共振コイルと受電装置共振コイルとを電磁的に結合させて送電装置から受電装置に対して電力を送電する無線電力伝送装置の受電装置であって、
 前記受電装置共振コイルから受電された所定の交流電圧を所定の直流電圧に変換して出力する整流回路と、
 前記所定の直流電圧が所定の電圧範囲内に含まれる場合に前記整流回路と実負荷とを接続する第1のスイッチング手段と、
 前記所定の直流電圧が所定の電圧範囲内に含まれる場合に前記整流回路と実負荷とを接続し、前記所定の直流電圧が前記所定の電圧範囲外にある場合は前記整流回路と実負荷とを遮断するスイッチング手段とを備えた。
 本開示に係る送電装置、受電装置及び無線電力伝送装置によれば、過渡現象による異常電圧などが負荷に与えられることを防止することができ、かつ、安定した電圧を負荷に供給することが可能となる。
本開示の第1の実施形態に係る無線電力伝送装置100及びその周辺の構成要素を示すブロック図である。 図1のインピーダンス変換回路21の具体的な構成要素を示すブロック図である。 図1の無線電力伝送装置100の無線電力伝送処理手順を示すフローチャートである。 本開示の第2の実施形態に係る、図1の無線電力伝送装置100の無線電力伝送処理手順を示すフローチャートである。 入力電源11の電力変動に基づく過渡応答特性をシミュレーションにより検証する時に用いた無線電力伝送装置100A及びその周辺の構成要素を示すブロック図である。 図5の無線電力伝送装置100Aの出力電圧VOUTの過渡応答特性を示す時間軸波形図である。 本開示の第1の実施形態の変形例に係る無線電力伝送装置100B及びその周辺の構成要素を示すブロック図である。
 以下、本開示に係る実施形態について図面を参照しながら説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付して説明を省略する。さらに、本開示は、以下の実施形態に限定されるものではない。
第1の実施形態.
 図1は、本開示の第1の実施形態に係る無線電力伝送装置100及びその周辺の構成要素を示すブロック図である。図1において、無線電力伝送装置100は、送電装置1と、受電装置2に接続された実負荷31に対して電力を供給する受電装置2とを備えて構成される。また、送電装置1は、例えばAC/DCコンバータなどで構成された入力電源11と、例えばFET(電界効果トランジスタ)などで構成されたスイッチング回路12と、送電側制御部13と、例えば放電回路を含んだピークホールド回路とコンパレータ回路で構成されたパケット信号検出部14と、共振回路80とを備えて構成される。また、共振回路80は、送電装置共振コンデンサ15と、送電装置共振コイル16とを備えて構成される。
 図1において、受電装置2は、共振回路90と、受電側制御部22と、例えばダイオードとコンデンサとから構成され、受電装置共振コイル29から受電された電力を整流及び平滑化する整流回路23と、当該整流回路23の後段に接続され、整流回路から出力される直流電圧の電圧値を調整する例えば抵抗などの電圧調整負荷25と、電圧及び電流検出回路24と、受電装置2と実負荷31とを接続する実負荷接続スイッチ26とを備えて構成される。また、共振回路90は、インピーダンス変換回路21と、受電装置共振コイル29と、受電装置共振コイル29と直列接続した受電装置共振コンデンサ28とを備えて構成される。ここで、送電装置1から受電装置2へ電磁誘導によって送電装置1と受電装置2とが非接触で電力を伝送し、受電装置2に接続された実負荷31に対して電力を供給する構成となっている。本開示の送電装置1によれば、あらかじめ設定した電圧で受電装置2に接続された実負荷31である機器に電力供給できるだけでなく、無線電力伝送特有の過渡現象、例えば、起動時や入力電力の変動などによる過渡現象が完了した後、受電装置2に接続された機器に電力を供給することができるため、当該機器の安全性を更に高めることができる。
 図2は、図1のインピーダンス変換回路21の具体的な構成要素を示すブロック図である。インピーダンス変換回路21は、スイッチ41、42とコンデンサ43とを備えて構成される。
 図1の送電装置1において、入力電源11は、例えば100Vなどの交流電圧を任意の電圧の直流電圧V1に変換し、直流電圧V1をスイッチング回路12に出力する。また、送電側制御部13はある周波数成分を有するスイッチングタイミング信号S1を発生してスイッチング回路12に出力する。さらに、スイッチング回路12は、送電側制御部13から入力されるスイッチングタイミング信号S1に基づいて、入力される直流電圧V1をスイッチングタイミング信号S1のデューティ比でオン/オフを切り替えることによって交流電圧V2に変換し、当該交流電圧V2を送電装置共振コンデサ15及び送電装置共振コイル16に出力する。なお、スイッチングタイミング信号S1の周波数、及びデューティ比は送電制御部13により任意に変更することができる。
 送電装置共振コイル16は、受電装置共振コイル29と対向して位置し、受電装置2の受電装置共振コイル29と電磁的に結合し、電磁誘導によって受電装置共振コイル29に交流電圧V3を伝送する。また、整流回路23は、交流電圧V3の電圧値を直流電圧V4に変換し、変換された直流電圧V4を電圧調整負荷25及び実負荷31に供給する。なお、整流回路23は、例えばAC/DCコンバータに置き換えることも可能である。
 電圧及び電流検出回路24は、整流回路23から直流電圧V4を入力し、当該電圧及び電流直流電圧V4の電圧値V41及び電流値I41を検出し、当該電圧値V41及び電流値I41を受電側制御部22に送信する。
 受電側制御部22は、電圧及び電流検出回路24から入力された電圧値V41もしくは電流値I41に基づいて、当該電圧値V41が実負荷31の許容できる電圧範囲内にあれば実負荷接続スイッチ26をオンすると同時にインピーダンス変換回路21を構成するスイッチ41及びスイッチ42を同時にオフし、当該電圧値V41が実負荷31の許容できる電圧範囲外にあれば実負荷接続スイッチ26をオフすると同時にインピーダンス変換回路21を構成するスイッチ41及びスイッチ42を同時にオンする。すなわち、実負荷接続スイッチ26は、所定の直流電圧が所定の電圧範囲内に含まれる場合に整流回路23と実負荷31とを接続し、所定の直流電圧が所定の電圧範囲外にある場合は整流回路23と実負荷31とを遮断するスイッチング手段である。
 インピーダンス変換回路21は、共振回路90のインピーダンスを変更する。詳細には、図2において、スイッチ41及びスイッチ42を同時にオンしコンデンサ43を受電装置共振コンデンサ28と受電装置共振コイル29とに接続させることによって共振回路90のインピーダンスを変更する。すなわち、インピーダンス変換回路21を構成するコンデンサ43と、受電装置共振コイル29と受電装置共振コンデンサ28とが直列接続されることによって、送電装置共振コイル16の両端間電圧を変化させ、この変化に基づいてパケット信号P1を発生させる。つまり、インピーダンス変換回路21のスイッチ41、42のオン/オフを繰り返すことで送電装置共振コイル16の電圧変動が繰り返されて、その変動がパケット信号P1として送電装置1に伝送される。なお、図2で示した回路はインピーダンス変換回路21の一例であり、その他にも例えば抵抗やコイルなどを使用する様々な回路で構成することができる。
 パケット信号検出部14は、受電装置共振コイル29と電磁的に結合された送電装置共振コイル16の両端間電圧の変化にともなう送電装置共振コイル16の両端間電圧の変化を検出することによって、パケット信号P1を復調して、当該パケット信号P1を送電側制御部13に送信する。すなわち、パケット信号検出部14は、送電装置共振コイルの両端間電圧の電圧変化に基づいて制御信号を発生して送信する制御信号検出部である。
 送電側制御部13は、パケット信号検出部14からパケット信号P1を受信して、当該パケット信号P1に基づいて電圧調整負荷25に発生する電圧値V41を取得し、当該電圧値V41からスイッチング回路12を制御するスイッチング信号S1を生成し、当該スイッチング信号S1をスイッチング回路12に出力する。すなわち、送電側制御部13は、パケット信号検出部14から制御信号を受信して、所定の周波数成分を有するスイッチングタイミング信号S1を発生してスイッチング回路12のスイッチング周波数を制御する。ここで、送電側制御部13は、例えば受電装置2の直流電圧V4とスイッチング回路12のスイッチング周波数とからなるテーブルを有し、当該テーブルに基づいて、パケット信号P1から取得された電圧値V41が実負荷31の許容できる電圧範囲内に含まれるようにスイッチング周波数を変更し、当該変更されたスイッチング周波数に基づいて、スイッチング回路12のスイッチング動作を制御する。
 次に、本開示の第1の実施形態に係る無線電力伝送装置100の動作について、図3を参照して説明する。
 図3は、図1の無線電力伝送装置100の無線電力伝送処理手順を示すフローチャートである。このフローチャートは、入力電源11が起動してから実負荷31に電力が供給されるまでの処理フローを示すものである。
 図3において、まず、送電装置1の起動前には、必ず実負荷接続スイッチ26はオフとする(ステップS10)。例えば実負荷接続スイッチ26として、FETやホトカプラなどの半導体素子やメカニカルリレーなどを適用することができる。
 次に、送電側制御部13において所定の周波数を有するスイッチングタイミング信号S1を発生させ、スイッチング回路12を動作させる(ステップS11)。スイッチング回路12のオン/オフを切り替えることで入力電源11から供給される直流電圧V1から交流電圧V2が生成され、交流電圧V2は送電装置共振コンデンサ15と送電装置共振コイル16とに出力される。送電装置共振コイル16は受電装置2の受電装置共振コイル29と電磁的に結合し、電磁誘導によって受電装置共振コイル29に交流電圧V3が伝送され、交流電圧V3は整流回路23により直流電圧V4に変換される。ここで、変換された直流電圧V4の値は電圧調整負荷25に発生する電圧の値と等しい。このときゲートに与えるスイッチングタイミング信号S1の周波数を変更することでスイッチング回路12のオン/オフのタイミングを変更することによって、オン/オフのタイミングを変更し、受電装置2の交流電圧V3、直流電圧V4の電圧値を調整する。
 次に、電圧及び電流検出回路24により電圧調整負荷25に発生する直流電圧V4の電圧値V41を検出する(ステップS12)。検出された電圧値V41は受電側制御部24に送信される。ここで、本実施形態で使用される電圧調整負荷25のインピーダンスは、実負荷31のインピーダンスに一致させる必要は無い。実負荷31としてモバイル端末等を想定し、モバイル端末等へ給電する場合は、モバイル端末の消費電力が大きければモバイル端末のインピーンダスは数Ωとなる。仮に、直流電圧V4の電圧値V41を12V、モバイル端末のインピーダンスを3Ωとし、電圧調整負荷25のインピーダンスをモバイル端末に合わせて3Ωとした場合、電圧調整負荷25の消費電力は48Wとなるが、48Wの消費電力に耐えうる電圧調整負荷25を実装することは現実的ではない。従って、本実施形態では、例えば電圧調整負荷25のインピーダンスを300Ωとする。これによって、電圧調整負荷25の消費電力を0.48Wとすることができ、容易に実現可能となる。なお、本実施形態では直流電圧V4の電圧値V41を直接受電側制御部24に送信することを想定しているが、これ以外の方法として、例えば電圧及び電流検出回路24に備えたADコンバータなどにより電圧値V41をディジタルデータなどに変換し、本ディジタルデータを受電側制御部24に送信する方法などによっても実現することが可能となる。
 次に、直流電圧V4の電圧値V41が規程電圧範囲内でなければ、受電側制御部24により実負荷接続スイッチ26はオフの状態を継続し、受電装置共振コイル29でパケット信号P1を生成する(ステップS13のNOとステップS14)。本パケット信号P1には、電圧値V41に関する情報が含まれるが、それ以外にも他の制御に使用される情報を含むことも可能である。ここで、規程電圧範囲とは実負荷31の許容できる電圧範囲のことで、例えば実負荷31の入力電圧範囲が12V±10%の場合は、10.8Vから13.2Vが規程電圧範囲となる。
 次に、受電側制御部22は、電圧及び電流検出回路24から入力された電圧値V41に基づいて、インピーダンス変換回路21を動作させる(ステップS15)。次に、送電装置1のパケット信号検出部14にてパケット信号P1を復調する(ステップS16)。パケット信号P1を復調するまでの処理は、例えば次のとおりである。送電装置1において、受電装置2のインピーダンス変換回路21が動作すると、例えば送電装置共振コイル16の交流電圧V2が変化する。ここで、パケット信号検出部14は、送電装置共振コイル16の両端間電圧の変化を検出すると、パケット信号P1を復調し、当該パケット信号P1を送電側制御部13に送信する。また、パケット信号検出部は、例えば放電回路を含んだピークホールド回路とコンパレータ回路で構成され、交流電圧V2のピーク値をホールド、放電することで検出し、当該ピーク値をコンパレータで比較することによってパケット信号P1を復調することができる。なお、パケット信号検出部14の位置は、図1における送電装置共振コイル16のみならず、受電装置2のインピーダンス変換回路21が動作することによる送電装置1の送電装置共振コイル16から見た受電装置2のインピーダンス変動を検出できる位置であればよい。また、直流電圧及び電流の変化に基づいてパケット信号P1を復調する場合には、前記ピークホールド回路を削除することができる。
 次に、送電装置1の送電側制御部13においてパケット信号P1に含まれる電圧調整負荷31の直流電圧V4の電圧値V41の値を取り込む(ステップS17)。次に、送電側制御部13にパケット信号P1の情報に含まれる直流電圧V4の電圧値V41及び電流値I41が送信されると、各々の値に基づいて、スイッチング回路12を制御する(ステップS18)。ここで、スイッチング回路12は、FETのゲートに送電側制御部13から出力されるスイッチングタイミング信号S1が与えられ、FETのゲート容量が充電されるとFETはオンとなりFETのゲート容量が放電されるとFETはオフとなる。このときゲートに与えるスイッチングタイミング信号S1の周波数を変更することでスイッチング回路12のオン/オフのタイミングを変更することができ、オン/オフのタイミングを変更することで、例えば受電装置2の交流電圧V3、直流電圧V4を調整することができる。
 ステップS18においてスイッチング周波数が変更されることで、電圧調整負荷25に発生する直流電圧V4の電圧値V41が変化する。このときの電圧値V41が規程電圧範囲内でなければ、再びステップS14からステップS18の処理を繰り返すことになる。
 次に、電圧調整負荷25に発生する直流電圧V4の電圧値V41が規程電圧範囲内であるとき(ステップS13のYES)の処理について説明する。
 電圧調整負荷25に発生する直流電圧V4の電圧値V41が規程電圧範囲内であれば(ステップS13のYES)、受電装置2の受電側制御部22により実負荷接続スイッチ26をオンにする制御信号が出力される。
 実負荷接続スイッチ26がオフからオンとなると、実負荷31に出力電圧VOUTが供給される(ステップS20)。このとき、直流電圧V4が規程電圧範囲内であることから、出力電圧VOUTは実負荷31に対して安定した電源として供給される。更には、直流電圧V4が規程電圧範囲内になるまで実負荷接続スイッチ26はオフ状態を継続することによって、実負荷31に対して、送電装置1が起動し始めるときの入力電源11の電力変動及びスイッチング回路12の動作開始時などの状態の急変による過渡応答の影響を受けることを防止することができる。ここで、入力電源11の電力変動に基づく出力電圧VOUTの過渡応答特性をシミュレーションにより以下に検証を行った。
 図5は、入力電源11の電力変動に基づく過渡応答特性をシミュレーションにより検証する時に用いた無線電力伝送装置100A及びその周辺の構成要素を示すブロック図である。図5の無線電力伝送装置100Aは、図1の無線電力伝送装置100に比較して、共振回路90の代わりに共振回路90Aを備えて構成される。また、共振回路90Aは、共振回路90と比較して、受電装置共振コイル29と直列接続した受電装置共振コンデンサ28の代わりに、受電装置共振コイル29と並列接続した受電装置共振コンデンサ28Aを備えて構成される。
 図6は、図5の無線電力伝送装置100Aの出力電圧VOUTの過渡応答特性を示す時間軸波形図である。例えば、入力電源11の電力が1Wから100Wに急変したときの過渡応答をシミュレーションにより検証した結果を示す。このシミュレーションで使用した無線電力伝送装置100Aの構成を図5に示しているが、整流回路23と実負荷31とは接続された状態となっている。図5では実負荷接続スイッチ26を介して受電装置2と実負荷31が接続されているが、実負荷接続スイッチ26を介さない構成でも同様である。図6の縦軸は無線電力伝送装置100Aの出力電圧VOUTであって、横軸は時間tである。ここで、入力電源11の電力の急激な変動により出力電圧VOUTの過渡現象が発生していることが分かる。この入力電源11の電源の急激な変動が意図的であれば、この変動の遷移を遅くすることにより過渡現象の危険性を下げることはできるが、例えば入力電源11の電力変動などが無線電力伝送装置100Aに対して非意図的に発生した場合には、図6のような過渡現象の発生を防ぐことは困難となる。
 更には、電圧調整負荷25に発生する直流電圧V4の電圧値V41が規程電圧範囲内にあることを確認してから実負荷接続スイッチ26をオンにすることで、インピーダンスがほとんど変動しないバッテリーのみならず、インピーダンス変動(例えば消費電力の変動)の大きい実負荷に対しても安定した出力電圧VOUTを供給することができる。
 次に、実負荷31に出力電圧VOUTが供給された後に受電装置共振コイル29でパケット信号P2を生成する(ステップS21)。図3におけるステップS21からステップS24までの処理は、図3におけるステップS14からステップS17までの処理と同様である。すなわち、受電側制御部24により実負荷接続スイッチ26はオンの状態を継続し、受電装置共振コイル29でパケット信号P2が生成されて(ステップS21)、受電側制御部22は、電圧及び電流検出回路24から入力された電圧値V41に基づいて、インピーダンス変換回路21を動作させる(ステップS22)。次に、送電装置1のパケット信号検出部14にてパケット信号P2を復調し(ステップS23)、送電装置1の送電側制御部13でパケット信号P2に含まれる電圧調整負荷31の直流電圧V4の電圧値V41の値を取り込む(ステップS24)。さらに、実負荷31に電力が供給された後も定期的にステップS21からステップS24までの処理を繰り返すことで、実負荷31のインピーダンス変動(例えば、消費電力の増減)により出力電圧VOUTの電圧値VOUT1が変化するようなことがあっても、スイッチング回路12のスイッチング周波数を制御することにより、電圧値VOUT1を一定に保つことでき、インピーダンスがほとんど変動しないバッテリーのみならずインピーダンスが変動する実負荷に対しても安定した出力電圧VOUTを供給することができる。
 以上の実施形態に係る無線電力伝送装置100によれば、送電装置1が起動し始めるときの入力電源11の変動や、スイッチング回路12の動作開始時などの状態の急変による過渡応答の影響が直接的に実負荷31に与えられるのを防止することができる。
 また、本実施形態に係る無線電力伝送装置100によれば、電圧調整負荷25に発生する直流電圧V4の電圧値V41が規程電圧範囲内にあることを確認してから実負荷接続スイッチ26をオンにするので、インピーダンス変動がほとんど無いバッテリーのみならず、インピーダンス変動(例えば消費電力の変動)が大きい実負荷に対しても安定した出力電圧VOUTを供給することができる。
 さらに、本実施形態に係る無線電力伝送装置100によれば、送電装置1のスイッチング回路12のスイッチング周波数を制御することができるので、出力電圧VOUTを実負荷31に供給を開始した後に(例えば、消費電力の増減などで)実負荷31のインピーダンスが変動し、出力電圧VOUTの値が変化しても電圧値VOUTの値を一定に保つことできる。従って、インピーダンス変動がほとんど無いバッテリーのみならず、インピーダンス変動(例えば消費電力の変動)が大きい実負荷31に対しても安定した出力電圧VOUTを供給することができる。
 またさらに、本実施形態に係る無線電力伝送装置100によれば、受電装置2の調整用負荷31を取り替える必要なしに送電装置1と受電装置2とのインピーダンスを整合することができるのでコストを削減することができる。
第2の実施形態.
 次に、本開示の第2の実施形態の無線電力伝送装置100の動作について、図4を参照して説明する。第2の実施形態に係る、無線電力伝送装置100の無線電力伝送処理は、第1の実施形態に係る無線電力伝送装置100の無線電力伝送処理と比較すると、実負荷31へ電力供給した後に実負荷31のインピーダンス変動があっても出力電圧VOUTを一定に保つことができることを特徴とする。
 図4は、本開示の第2の実施形態に係る、図1の無線電力伝送装置100の無線電力伝送処理手順を示すフローチャートである。本実施形態は、実負荷31に電力を供給した後に出力電圧VOUTの値が規程電圧範囲外となったときの無線電力伝送装置100に関するものである。
 本実施形態では、入力電源11が起動してから実負荷31に電力が供給された図3のステップS20は、図4のステップS31に相当する。
 まずは、電圧及び電流検出回路24により電圧調整負荷25に発生する直流電圧V4の電圧値V41を検出する(ステップS32)。ここで、電圧調整負荷25により発生する直流電圧V4の電圧値V41は、実負荷接続スイッチ26を経由して出力電圧VOUTの電圧値VOUT1となる。従って、実負荷接続スイッチ26の抵抗値は電圧調整負荷25や実負荷31のインピーダンスと比較して非常に小さく、電圧値V41と電圧値VOUT1とはほとんど同じ値となるため、電圧値V41を使用しても動作上問題ない。また、実負荷接続スイッチ26のオン抵抗値が既知であれば、電圧値V41から電圧値VOUT1を算出することができるため、電圧調整負荷25に発生する直流電圧V4の電圧値V41が規定電圧範囲内であるか判断するときには、算出した電圧値VOUT1を使用することも可能である。電圧値V41の検出結果が規程電圧範囲内の場合、ステップS51からステップS54までの処理を行う。図4におけるステップS51からステップS54までの処理は、図3におけるステップS21からステップS24までの処理と同様である。実負荷31に電力が供給された後も定期的にステップS51からステップS54までの処理を繰り返すことで、実負荷31のインピーダンス変動(例えば、消費電力の増減)により電圧値VOUT1が変化するようなことがあっても、スイッチング回路12のスイッチング周波数を制御することにより、出力電圧VOUTの電圧値VOUT1を一定に保つことでき、バッテリーのみならず状態が変動する実負荷31に対しても安定した出力電圧VOUTを供給することができる。
 次に、電圧調整負荷25の電圧値V41が規程電圧範囲外の場合(ステップS33のNO)、実負荷接続スイッチ26をオフとする(ステップS34)。電圧値V41が規程電圧範囲外となる要因として、入力電源11の電力の異常変動、送電部共振コイル16と受電部共振コイル29との結合状態の急激な変動などが挙げられる。このときに実負荷接続スイッチ26をオフにすることで、実負荷31に過電圧などの異常電圧が与えられなくなり、実負荷31の破損を防ぐことができる。また、このときに受電装置2にある電力エネルギーは、電圧調整負荷25により消費させることができ、電力エネルギーの共振による受電装置2の破損を防ぐことができる。
 次に、受電装置共振コイル29でパケット信号P1を生成する(ステップS35)。図4におけるステップS35からステップS39までの処理は、図3におけるステップS14からステップS18までの処理と同様である。ステップS39においてスイッチング回路12のスイッチング周波数が変更されることで、電圧調整負荷25に発生する直流電圧V4の電圧値V41が変化する。
 次に、電圧調整負荷25に発生する直流電圧V4の電圧値V41を検出する(ステップS40)。検出された電圧値V41は受電側制御部24に伝えられる。電圧及び電流なお、本実施形態では直流電圧値V41を直接受電側制御部24に送信することを想定しているが、これ以外の方法として、例えば電圧及び電流検出回路24に備えたADコンバータなどにより電圧値V41をディジタルデータなどに変換し、本ディジタルデータを受電側制御部24に送信する方法などによっても実現することが可能となる。
 次に、電圧調整抵抗25に発生する直流電圧V4の電圧値V41が規程電圧範囲内でなければ、受電側制御部24により実負荷接続スイッチ26はオフの状態を継続し、受電装置共振コイル29でパケット信号P1が生成される(ステップS41のNOとステップS35)。本パケット信号P1には、電圧値V41に関する情報が含まれるが、それ以外にも他の制御に使用される情報を含むことも可能である。ここで、電圧値V41が規程電圧範囲内となるまで、ステップS35からステップS41のNOまでの処理を繰り返すことになる。
 次に、電圧調整負荷25に発生する直流電圧V4の電圧値V41が規程電圧範囲内となったとき(ステップS41のYES)の処理について説明する。このとき、受電装置2の受電側制御部22により実負荷接続スイッチ26をオンにする制御信号が出力され、実負荷接続スイッチ26がオフからオンとなると、実負荷31に直流電圧VOUTが供給される(ステップS42)。このとき、電圧値V41が規程電圧範囲内であることから、出力電圧VOUTは実負荷31に対して安定した電力として供給される。更には、電圧値V41が規程電圧範囲内になるまで実負荷接続スイッチ26はオフ状態を継続することから、送電装置1が起動し始めるときの入力電源11の変動や、スイッチング回路12の動作開始時などの状態の急変による過渡応答の影響が、直接負荷に与えられることを防ぐことができる。
 更には、電圧調整負荷25に発生する直流電圧V4の電圧値V41が規程電圧範囲内にあることを確認してから実負荷接続スイッチ26をオンにすることで、インピーダンスがほとんど変動しないバッテリーのみならず、インピーダンス変動(例えば消費電力の変動)の大きい実負荷31に対しても安定した出力電圧VOUTを供給することができる。
 次に、実負荷31に出力電圧VOUTが供給された後に受電装置共振コイル29でパケット信号P2を生成する(S51)。図4におけるステップS51からステップS54までの処理は、図1におけるステップS21からステップS24までの処理と同様である。実負荷に電力が供給された後も定期的にステップS51からステップS54までの処理を繰り返すことで、実負荷のインピーダンス変動(例えば、消費電力の増減)により出力電圧VOUTの電圧値VOUT1が変動するようなことがあっても、スイッチング回路12のスイッチング周波数を制御することにより、出力電圧VOUTの電圧値VOUT1を一定に保つことでき、バッテリーのみならず状態が変動する実負荷に対しても安定した電圧を供給することができる。
 以上の実施形態に係る無線電力伝送装置100によれば、入力電源11の電力の異常変動や送電装置共振コイル16、受電装置共振コイル29の結合状態の変化などによる出力電圧VOUTの電圧値VOUT1が規定電圧範囲外となったときでも、規定電圧範囲外の電圧が直接負荷に与えられることを防ぐことができる。
 また、本実施形態に係る無線電力伝送装置100によれば、電圧調整負荷25に発生する直流電圧V4の電圧値V41が規程電圧範囲内にあることを確認してから実負荷接続スイッチ26をオンにするので、インピーダンス変動がほとんど無いバッテリーのみならず、インピーダンス変動(例えば消費電力の変動)が大きい実負荷に対しても安定した出力電圧VOUTを供給することができる。更には、実負荷31に接続して出力電圧VOUTの供給を開始した後に実負荷のインピーダンス変動(例えば、消費電力の増減)により出力電圧VOUTの電圧値VOUT1が変化するようなことがあっても、スイッチング回路12のスイッチング周波数を制御することにより、電圧値VOUT1を一定に保つことでき、インピーダンス変動の小さい機器(例えばバッテリーなど)のみならずインピーダンス変動の大きい機器(実負荷31)対しても安定した出力電圧VOUTを供給することができる。
 さらに、本実施形態に係る無線電力伝送装置100によれば、送電装置1のスイッチング回路12のスイッチング周波数を制御することができるので、出力電圧VOUTを実負荷31に供給を開始した後に(例えば、消費電力の増減などで)実負荷31のインピーダンスが変動し、出力電圧VOUTの値が変化しても電圧値VOUTの値を一定に保つことできる。従って、インピーダンス変動がほとんど無いバッテリーのみならず、インピーダンス変動(例えば消費電力の変動)が大きい実負荷31に対しても安定した出力電圧VOUTを供給することができる。
変形例1.
 本開示は上記の実施形態に示した構成に限定されず、例えば図7に図示したような無線電力伝送装置100Bを用いてもよい。
 図7は、本開示の第1の実施形態の変形例に係る無線電力伝送装置100B及びその周辺の構成要素を示すブロック図である。図7の無線電力伝送装置100Bは、図1の無線電力伝送装置100と比較して、受電装置2の代わりに受電装置2Bを備えてことを特徴とする。また、受電装置2Bは、受電装置2と比較して、電圧調整負荷25と整流回路23との接続をオン/オフする電圧調整負荷接続スイッチ27をさらに備えたことを特徴とする。
 以上の変形例に係る無線電力伝送装置100Bによれば、上述した無線電力伝送装置100と同様の効果を得ることができるとともに、実負荷接続スイッチ26をオンとした後、電圧調整負荷接続スイッチ27をオフにすることができるので、電圧調整負荷25における電力消費をさらに減少させることが可能となる。
 さらに、本開示の実施形態及び変形例では、受電装置2と実負荷31とを別々に構成された場合について説明したが、これに限定されるものではなく、例えば受電装置2と実負荷31とが一体となっている構成にも適用できる。この場合においても本開示の実施形態と同様の効果を得ることができる。またさらに、本開示は、無線で電力を伝送する様々な電子機器(携帯電話やタブレットなどのモバイル端末、カメラ、有機ELディスプレイや照明など)に適用することができる。
 以上詳述したように、本開示に係る送電装置、受電装置及び無線電力伝送装置によれば、過渡現象による異常電圧などが負荷に与えられることを防止することができ、かつ、安定した電圧を負荷に供給することが可能となる。
11…入力電源、
12…スイッチング回路、
13…送電側制御部、
14…パケット信号検出部、
15…送電装置共振コンデンサ、
16…送電装置共振コイル、
21…インピーダンス変換回路、
22…受電側制御部、
23…整流回路、
24…電圧及び電流検出回路、
25…電圧調整負荷、
26…実負荷接続スイッチ、
27…電圧調整負荷接続スイッチ、
28,28A…受電装置共振コンデンサ、
29…受電装置共振コイル、
2,2A,2B…受電装置、
31…実負荷、
80,90,90A…共振回路、
100,100A,100B…無線電力伝送装置、
41,42…スイッチ、
43…コンデンサ。

Claims (9)

  1.  送電装置共振コイルと受電装置共振コイルとを電磁的に結合させて送電装置から受電装置に対して電力を送電する無線電力伝送装置の送電装置であって、
     前記送電装置共振コイルの両端間電圧の電圧変化に基づく制御信号を発生して送信する制御信号検出部と、
     前記制御信号に基づいて、前記送電装置共振コイルを共振させるスイッチング回路とを備えた送電装置。
  2.  前記制御信号に基づいて、所定の周波数成分を有するスイッチングタイミング信号を発生し、前記スイッチングタイミング信号に基づいて前記スイッチング回路のスイッチング周波数を制御する送電側制御部をさらに備えた請求項1記載の送電装置。
  3.  前記送電装置共振コイルに接続されて共振回路を構成する送電装置共振コンデンサをさらに備えた請求項1または2記載の送電装置。
  4.  送電装置共振コイルと受電装置共振コイルとを電磁的に結合させて送電装置から受電装置に対して電力を送電する無線電力伝送装置の受電装置であって、
     前記受電装置共振コイルから受電された所定の交流電圧を所定の直流電圧に変換して出力する整流回路と、
     前記所定の直流電圧が所定の電圧範囲内に含まれる場合に前記整流回路と実負荷とを接続し、前記所定の直流電圧が前記所定の電圧範囲外にある場合は前記整流回路と実負荷とを遮断するスイッチング手段とを備えた受電装置。
  5.  前記共振回路は、前記共振回路のインピーダンスを変更するインピーダンス変換回路を備えた請求項4記載の受電装置。
  6.  前記インピーダンス変換回路は、コンデンサを含む請求項5記載の受電装置。
  7.  前記インピーダンス変換回路はさらに、前記コンデンサと前記受電装置共振コイルとを接続するための第2のスイッチング手段を含み、
     前記受電側制御部は、前記直流電圧が所定の電圧範囲外にある場合に前記第2のスイッチング手段をオンする請求項6記載の受電装置。
  8.  前記整流回路の後段に接続され、前記第1の直流電圧の電圧値を調整する電圧調整負荷をさらに備えた請求項4~7のうちのいずれか1つに記載の受電装置。
  9.  請求項1記載の送電装置と請求項4記載の受電装置とを備えた無線電力伝送装置。
PCT/JP2014/002050 2013-04-23 2014-04-09 無線電力伝送装置 WO2014174783A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480021151.3A CN105122589A (zh) 2013-04-23 2014-04-09 无线电力输送装置
JP2015513518A JP6160880B2 (ja) 2013-04-23 2014-04-09 無線電力伝送装置
US14/784,395 US10020794B2 (en) 2013-04-23 2014-04-09 Wireless power transmitter apparatus having power transmitter apparatus and power reception apparatus supplied with electric power energy via space

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-090258 2013-04-23
JP2013090258 2013-04-23

Publications (1)

Publication Number Publication Date
WO2014174783A1 true WO2014174783A1 (ja) 2014-10-30

Family

ID=51791372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002050 WO2014174783A1 (ja) 2013-04-23 2014-04-09 無線電力伝送装置

Country Status (4)

Country Link
US (1) US10020794B2 (ja)
JP (1) JP6160880B2 (ja)
CN (1) CN105122589A (ja)
WO (1) WO2014174783A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019208315A (ja) * 2018-05-29 2019-12-05 オムロン株式会社 非接触給電装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3200317B1 (en) * 2014-09-25 2019-08-28 Fujitsu Limited Power transmission system
JP6344182B2 (ja) * 2014-09-26 2018-06-20 パナソニックIpマネジメント株式会社 給電装置
DE112017002380T5 (de) * 2016-06-06 2019-01-24 Murata Manufacturing Co., Ltd. Drahtloses Leistungseinspeisungssystem, drahtloser Leistungsüberträger unddrahtloser Leistungsempfänger
KR102554457B1 (ko) * 2016-09-20 2023-07-11 주식회사 위츠 무선 전력 송신 장치 및 그의 제어 방법
WO2018198167A1 (ja) * 2017-04-24 2018-11-01 三菱電機エンジニアリング株式会社 共振型電力受信装置
CN107666187B (zh) * 2017-10-30 2018-08-21 华南理工大学 无线能量传输接收电路及应用该电路的无线能量传输系统
CN107659001B (zh) * 2017-10-30 2018-08-03 华南理工大学 一种生物医用的无线能量传输系统
JP6927113B2 (ja) * 2018-03-27 2021-08-25 オムロン株式会社 非接触給電装置
US11316381B2 (en) * 2018-04-19 2022-04-26 General Electric Company Receiver unit of a wireless power transfer system
TWI718391B (zh) 2018-07-09 2021-02-11 元太科技工業股份有限公司 無線供電裝置
CN110708095A (zh) * 2018-07-09 2020-01-17 元太科技工业股份有限公司 无线供电装置
CN109743551B (zh) * 2019-01-14 2020-11-10 李昂 一种用于无线视频监控的信号与能量同传系统
US20220149660A1 (en) * 2019-02-27 2022-05-12 Panasonic Intellectual Property Management Co., Ltd. Wireless power supply unit and power reception module
CN111030318B (zh) 2019-12-31 2022-04-12 华为数字能源技术有限公司 无线电能传输系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118587A (ja) * 2007-11-02 2009-05-28 Meleagros Corp 電力伝送装置
JP2013005699A (ja) * 2011-06-22 2013-01-07 Panasonic Corp 非接触式給電装置
WO2013031589A1 (ja) * 2011-09-01 2013-03-07 三洋電機株式会社 電池充電器と充電台、及び電池充電器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2414120B (en) * 2004-05-11 2008-04-02 Splashpower Ltd Controlling inductive power transfer systems
US8004235B2 (en) * 2006-09-29 2011-08-23 Access Business Group International Llc System and method for inductively charging a battery
US8674551B2 (en) * 2008-06-06 2014-03-18 University Of Florida Research Foundation, Inc. Method and apparatus for contactless power transfer
WO2010035546A1 (ja) * 2008-09-29 2010-04-01 株式会社村田製作所 無接点受電回路および無接点電力伝送システム
DE112011102539T5 (de) * 2010-07-29 2013-05-16 Kabushiki Kaisha Toyota Jidoshokki Berührungsloses Energieversorgungssystem der Resonanzbauart
US9219378B2 (en) * 2010-11-01 2015-12-22 Qualcomm Incorporated Wireless charging of devices
WO2012086051A1 (ja) * 2010-12-24 2012-06-28 トヨタ自動車株式会社 非接触給電システム、車両、給電設備および非接触給電システムの制御方法
JP5602069B2 (ja) * 2011-03-15 2014-10-08 長野日本無線株式会社 受電装置および非接触型電力伝送装置
US9425629B2 (en) * 2011-07-14 2016-08-23 Samsung Electronics Co., Ltd. Wireless power receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118587A (ja) * 2007-11-02 2009-05-28 Meleagros Corp 電力伝送装置
JP2013005699A (ja) * 2011-06-22 2013-01-07 Panasonic Corp 非接触式給電装置
WO2013031589A1 (ja) * 2011-09-01 2013-03-07 三洋電機株式会社 電池充電器と充電台、及び電池充電器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019208315A (ja) * 2018-05-29 2019-12-05 オムロン株式会社 非接触給電装置
US11329513B2 (en) 2018-05-29 2022-05-10 Omron Corporation Contactless power transmission apparatus
JP7102944B2 (ja) 2018-05-29 2022-07-20 オムロン株式会社 非接触給電装置

Also Published As

Publication number Publication date
CN105122589A (zh) 2015-12-02
US20160079951A1 (en) 2016-03-17
US10020794B2 (en) 2018-07-10
JPWO2014174783A1 (ja) 2017-02-23
JP6160880B2 (ja) 2017-07-12

Similar Documents

Publication Publication Date Title
JP6160880B2 (ja) 無線電力伝送装置
US9904306B2 (en) Voltage converter, wireless power reception device and wireless power transmission system including the same
KR101848097B1 (ko) 공진 방식 무선 전력 송신 장치용 과전압 보호 장치 및 그 제어 방법
JP5556943B2 (ja) 受電制御装置、集積回路装置、電子機器および無接点電力伝送システム並びに受電制御方法
US10128689B2 (en) Systems and methods for enabling a universal back-cover wireless charging solution
US9948144B2 (en) Power transmission system and power transmission device used for power transmission system
US20180041074A1 (en) Electric power receiving device and non-contact power supply system
AU2018424953B2 (en) Wireless charging receiving device and mobile terminal
US9973030B2 (en) Wireless charging device
US10547212B2 (en) Wireless power receiver, control method thereof, power receiving control circuit, and electronic apparatus
US9893568B2 (en) Wireless power transmitter, control circuit and control method thereof, and charger
KR20130042992A (ko) 무선 전력의 크기를 조정하는 무선 전력 수신기
AU2018424390B2 (en) Wireless charging receiving device and mobile terminal
JP2013240265A (ja) 送電装置、非接触電力伝送システム、及び、非接触電力伝送システムにおける送電電力の制御方法
US20140184154A1 (en) Electronic component, power receiving device, and power feeding system
KR102471450B1 (ko) 충전 방법 및 충전 장치
US8415821B2 (en) Electronic device and adapter thereof
KR20220114647A (ko) 전자 디바이스, 무선 충전 수신 장치, 제어 방법 및 무선 충전 시스템
KR20160121698A (ko) 주파수 선택이 가능한 led 전광판용 무선전력 전송 장치 및 그 방법
TW202002460A (zh) 微波充電管理電路及其方法
JP2014217116A (ja) 電子機器、電子機器送電システム及び受電制御方法
JP3191617U (ja) 電力フィードバック装置
KR101753281B1 (ko) 부하 가변형 무선충전장치
JP2020167834A (ja) ワイヤレス受電装置のコントロールic、電子機器
KR20140078126A (ko) 전원 공급 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480021151.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788357

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14784395

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015513518

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788357

Country of ref document: EP

Kind code of ref document: A1