WO2014173307A1 - 一种空间复用下的信道接入方法及站点 - Google Patents

一种空间复用下的信道接入方法及站点 Download PDF

Info

Publication number
WO2014173307A1
WO2014173307A1 PCT/CN2014/076104 CN2014076104W WO2014173307A1 WO 2014173307 A1 WO2014173307 A1 WO 2014173307A1 CN 2014076104 W CN2014076104 W CN 2014076104W WO 2014173307 A1 WO2014173307 A1 WO 2014173307A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
station
wireless signal
channel
transmission
Prior art date
Application number
PCT/CN2014/076104
Other languages
English (en)
French (fr)
Inventor
邢卫民
李楠
田开波
吕开颖
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/903,598 priority Critical patent/US9832793B2/en
Priority to EP14788354.0A priority patent/EP3007510B1/en
Publication of WO2014173307A1 publication Critical patent/WO2014173307A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0825Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems

Definitions

  • the present invention relates to a wireless local area network (WLAN) technology, and more particularly to a channel access method and station under spatial multiplexing.
  • WLAN wireless local area network
  • wireless local area networks are rapidly developing, and the demand for WLAN applications is increasing.
  • Institute of Electrical and Electronics Engineers Industry Code The IEEE 802.il group has defined a series of standards such as 802.11a/b/g/n, followed by other task groups that are working on the development of specifications related to 802.11 technology improvements.
  • the 802.11 ah task group focuses on unlicensed bands below the 1GHz band.
  • an access point AP, Access Point
  • a plurality of non-access point stations STAs, non-AP stations
  • BSS basic service set
  • the API and STA1 form a BSS
  • AP2 and STA2-STA4 form another BSS.
  • OBSS overlapping BSS
  • WLAN uses Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) as the basic mechanism for channel access, performs carrier sensing before transmission and has a random backoff function, ie only The data is transmitted when the channel is confirmed to be idle; in addition, in order to perform multiple frame exchanges, the transmitting and receiving parties can reserve a transmission opportunity (TXOP, Transmission Opportunity) for frame transmission to avoid transmitting collisions.
  • CSMA/CA Carrier Sense Multiple Access/Collision Avoidance
  • the API competes for the channel and sends a radio frame to STA1.
  • the API first sends a request to send frame (RTS, Request to send) to STA1 for channel reservation.
  • RTS carries the channel reservation time information (Date);
  • STA1 clears the transmission frame (CTS, Clear to send) to the API response for channel reservation confirmation, and also carries the channel reservation time information in the CTS, and the Duration information indicates that the reservation is to the TXOP.
  • the other listening station that receives the radio frame carrying the Duration information sets a network allocation vector (NAV, Network Allocation Vector) stored therein, and the value of the NAV is received as described above. The maximum value of the Duration information.
  • NAV Network Allocation Vector
  • the above-mentioned time reservation and NAV mechanism is called a virtual carrier detection mechanism.
  • the related art also defines a virtual carrier detection mechanism using response indication delay access (RID), the currently transmitted radio frame carries the frame type of the radio frame to be transmitted next, and the interception site is based on The frame type indicated by the currently transmitted radio frame selects the value of the backoff time update RID. When the timing value of the RID is 0, the station can compete for transmission.
  • RID response indication delay access
  • the related art proposes a scheme of spatial orthogonal transmission, which generally includes: when a listening station (such as an OBSS station or an access point) determines a sector beam of a current transmitting and receiving station The transmission and the data transmission to be performed by itself, when spatially orthogonal, the interception station can cancel the reservation time of the previously set virtual carrier detection, and perform data transmission.
  • a listening station such as an OBSS station or an access point
  • the interception station can cancel the reservation time of the previously set virtual carrier detection, and perform data transmission.
  • the API and STA1 first send omnidirectional radio frames or wireless signals, such as RTS/CTS to establish a connection and reserve TXOP to protect data transmission, and then use beams to align each other in TXOP for data transmission.
  • AP2 or STA3 receives the omnidirectional signal of the API and/or STA1, and updates the NAV and RID; however, AP2 or STA3 does not detect that the API and STA1 are aligned with each other, so AP2 and STA3 can consider their own transmission and API.
  • the space between the STA1 and the STA1 beam transmission is orthogonal, and AP2 and STA3 reset the NAV and RID to trigger their own frame transmission.
  • the sending time period is more than t2, then the listening station, such as STA4, cannot start the competition at time t2, but waits until AP2, STA3's transmission ends, and can only compete for the channel, while waiting for AP2, STA3 transmission.
  • the API and STA1 are likely to use spatial orthogonality to start new transmissions. Undoubtedly, channel access for sites such as STA4 or STA5 is very unfavorable and unfair, which also affects the effectiveness of data transmission at such sites. .
  • the embodiments of the present invention provide a channel access method and a station under spatial multiplexing, which can implement space multiplexing and ensure fairness of channel access between stations, thereby ensuring the effectiveness of site data transmission.
  • a channel access method under spatial multiplexing which includes:
  • the listening station detects the first wireless signal of the third party station, updates the local network allocation vector and/or the response frame indicates the delayed access time;
  • the trigger channel is contending for the access process, and the subsequent data transmission is completed within the time indicated after the update.
  • the method further includes: the listening station recovering the state of the random backoff process saved in the triggered channel contention to the current Random backoff process.
  • the first wireless signal is a wireless signal of a radio frame or a part of a radio frame receivable by the listening station;
  • the second wireless signal is a wireless signal of a radio frame or a part of a radio frame that is not receivable by the listening station.
  • the first wireless signal is transmitted in an omnidirectional manner
  • the second wireless signal is transmitted using orientation or sectorization or beamforming.
  • the trigger channel competition includes: saving a state of an existing backoff process; starting a new backoff process to compete for a channel to transmit.
  • the determining that the second wireless signal of the third-party station satisfies the spatial orthogonal condition is: in the preset time interval At after the interception station detects that the first wireless signal of the third-party station ends, the third-party site is not detected. The second wireless signal.
  • the method further includes: the listening station setting the channel carrier detection result to be idle.
  • the preset interval time At starts at a transition time of the omnidirectional beam and the sector beam; the length of the preset time interval At is one or more times of transmitting symbols; or, a short interframe space and a time interval The value of the sum of the slots, plus a value for the start delay of reception.
  • the time indicated by the update is: the time indicated by the updated local network allocation vector
  • the updating is that when the response frame indicates the delayed access time, the time indicated by the update is: the updated response frame indicates the time indicated by the delayed access time;
  • the time indicated by the update is a time indicated by the updated local network allocation vector; or, the updated local network allocation
  • the time indicated by the vector and the updated response frame indicate a time longer than the time indicated by the delayed access time.
  • the embodiment of the present invention further provides a station, configured to: when detecting the first wireless signal of the third-party station, update the local network allocation vector and/or the response frame to indicate the delayed access time; and determine the second wireless signal of the third-party station.
  • the trigger channel competes for the access process, and subsequent data transmission is completed within the updated time.
  • the station is further configured to, when the updated local network allocation vector or response frame indicates an end time of the delayed access time indication,
  • the first wireless signal is a wireless signal of a radio frame or a part of a radio frame receivable by the station, and is sent in an omnidirectional manner;
  • the second wireless signal is a wireless signal of a radio frame or a part of a radio frame that is unreachable by the station, and is transmitted by using a directional or sectorized or beamforming manner.
  • the trigger channel competes to save the state of the existing backoff process; a new backoff process is initiated to compete for the channel to transmit.
  • the determining that the second wireless signal of the third-party station satisfies the spatial orthogonal condition is: in the preset time interval At after the station detects that the first wireless signal of the third-party station ends, the third-party site is not detected. Two wireless signals.
  • the station is further configured to set the channel carrier detection result to idle.
  • the preset interval time At starts at a transition time of the omnidirectional beam and the sector beam; the length of the preset time interval At is one or more times of transmitting symbols; or, a short interframe space and a time interval The value of the sum of the slots, plus a value for the start delay of reception.
  • the technical solution of the present application provides a first wireless signal including a detection of a third-party site by a listening station, updating a local network allocation vector and/or a response frame indicating a delayed access time; determining that the second wireless signal of the third-party site satisfies the spatial orthogonal condition At the time, the trigger channel competes for the access process, and subsequent data transmission is completed within the time indicated by the update.
  • the competition is initiated to start spatial orthogonal transmission, which realizes spatial multiplexing and ensures the fairness of channel access between stations, thereby ensuring the effectiveness of site data transmission.
  • FIG. 1 is a schematic structural diagram of a BSS of a related WLAN
  • FIG. 2 is a schematic diagram of a related NAV virtual carrier mechanism
  • FIG. 3 is a schematic diagram of a frame interaction of a related beamforming sector
  • FIG. 4 is a flowchart of a channel access method in spatial multiplexing according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an embodiment of channel access in spatial multiplexing according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of another embodiment of channel access in spatial multiplexing according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a channel access method in spatial multiplexing according to an embodiment of the present invention. As shown in FIG. 4, the method includes:
  • Step 400 The listening station detects the first wireless signal of the third party station, updates the local network allocation vector and/or the response frame indicates the delayed access time.
  • the first wireless signal is a wireless signal that is received by the listening station as part of a radio frame or a radio frame, and is transmitted in an omnidirectional manner.
  • the listening site is a non-access point site
  • the third-party site is an access point site
  • the local network allocation vector is updated;
  • the listening site is an access point site and the third-party site is a non-access point site
  • the update is that the response frame indicates the delayed access time.
  • the updating means that the listening station updates the local network allocation vector and/or the response frame indicates the delayed access time according to the time indicated in the first wireless signal of the third party station, and the implementation of the update belongs to a well-known technology of those skilled in the art. The implementation is also not intended to limit the scope of protection of the embodiments of the invention.
  • the step further includes: the third-party site starts to send the data frame, and the partial preamble sequence in the frame header of the data frame is sent in an omnidirectional manner.
  • the other part of the data frame is transmitted by using the sector beam, and the third party station uses the sector beam to transmit in the remaining TXOP or access window;
  • the step further includes: the third-party site receives the data frame, and the partial preamble sequence of the data frame frame header is sent in an omnidirectional manner.
  • the preamble includes a response frame indication to set the value of the RID of the listening site, the other part of the data frame is transmitted by the sector beam, and the station transmitting the data frame to the third party station is in the remaining current TXOP or access window Both use sector beam transmission.
  • the listening site and the third-party site may also be access sites, or both are non-access sites.
  • Step 401 When it is determined that the second wireless signal of the third party station satisfies the spatial orthogonal condition, the trigger channel competes for the access process, and the subsequent data transmission is completed within the time indicated by the update.
  • the second wireless signal is a wireless signal that is not a radio frame or a part of the radio frame that is not receivable by the listening station, and is sent by using a directional or sectorized or beamforming transmission manner.
  • Updated time That is, the local network allocation vector or response frame updated in step 400 indicates the time indicated by the delayed access time. If the local network allocation vector and the response frame indicate that the delayed access time is updated, the updated time may be the time indicated by the updated local network allocation vector, or may be the updated local network allocation vector. The indicated time is one time longer than the time interval indicated by the updated response frame indicating the delayed access time.
  • the trigger channel competition in this step includes: saving the state of the existing backoff process, for example, saving the value of the backoff timer.
  • the new backoff process can use the same interframe space as the existing backoff process, the competition window and other competitive parameters, or use the new competitive parameters;
  • the method further includes: when the end time t2 of the updated NAV indication arrives, the listening station restores the saved backoff process state to the backoff process for channel competition, for example, using the saved value to restore the value of the backoff timer.
  • the trigger channel competition in this step includes: saving the state of the backoff process, for example, saving the value of the backoff timer; starting a new The backoff process is for the channel to transmit.
  • the new backoff process can use the same interframe space as the existing backoff process, the competition window and other competitive parameters, or use the new competitive parameters.
  • the method includes: when the updated response frame indicates that the end time t2 of the delayed access time indication comes, the listening station restores the saved backoff process state to the backoff process for channel competition, for example, using the saved value to restore the value of the backoff timer.
  • the determining that the second wireless signal of the third-party station satisfies the spatial orthogonal condition in the step is: in the preset time interval At after the interception station detects that the first wireless signal of the third-party station ends, the third-party site is not detected.
  • the second wireless signal. Further includes: the listening station sets the channel carrier detection result to be idle. among them,
  • the preset interval time At starts at the transition time of the omnidirectional beam and the sector beam. Preset time interval
  • the length of ⁇ t may be one or more times of transmitting symbols, such as one or more training sequence durations, where the training sequence duration is transmitted in units of symbols; the length of the preset time interval ⁇ t may also be A short interframe space (SIFS, Short Interframe Space) plus a slot (slot) plus a reception start delay time, where SIFS is between two radio frames
  • SIFS Short Interframe Space
  • slot slot
  • reception start delay time is from the signal detected by the physical layer to the radio frame to the MAC layer. The delay between receiving the start indication.
  • the network allocation vector or the response frame indicates that the transmission space to be delayed is to be orthogonal
  • the network allocation vector or the response frame indicates the delayed access time
  • the updated The network allocation vector or response frame indicates that the contention orthogonal transmission is initiated in the delayed access time, which realizes spatial multiplexing and ensures the fairness of channel access between stations, thereby ensuring the effectiveness of the data transmission of the station.
  • the third-party site is an API
  • the listening site is STA3.
  • the network topology of the first embodiment is as shown in FIG. 1. Taking the situation shown in FIG. 3 as an example, it is assumed that a third-party site, that is, an API, acquires a TXOP or an access window, and sends an RTS frame to STA1 in an omnidirectional manner, and STA1 is omnidirectional.
  • the CTS frame is sent, then the API sends the data frame 1, the partial preamble sequence of the data frame 1 frame header is transmitted in omnidirectional, the other part of the data frame 1 is transmitted by the sector beam, and the API is in the remaining TXOP or
  • the access windows are all sent using sector beams.
  • the RTS frame sent by the API and the CTS frame replied by STA1 may also use other omnidirectionally transmitted frames, such as the API, to send data frames in an omnidirectional manner, and STA1 omnidirectionally replies to the ACK frame.
  • STA3 listens to the RTS frame sent by the API and the partial preamble sequence of data frame 1 (that is, the part before the time t1 of the data frame 1), and updates the local NAV according to the content of the omnidirectional transmission, as shown in FIG.
  • the end time of the value of the NAV is t2; however, STA3 does not detect other parts of the data frame 1 in the preset time interval At after the time t1, and does not detect the radio frame such as the subsequent data frame 2, then, The STA3 determines that the sector transmission in the transmission initiated by the API is orthogonal to the transmission space to be performed by the STA. At this time, the STA3 initiates transmission before the value end of the NAV after the preset time interval At, that is, STA3 The transmission is within the time indicated by the updated NAV (TXOP of the API subscription).
  • the contention access of the STA3 includes: saving the state of the related backoff process, for example, saving the value of the backoff timer; starting a new backoff process to compete for the channel to transmit, and the new backoff process can use the same interframe as the original backoff process. Interval, competition window, etc. Competition parameters.
  • the STA 3 restores the saved backoff procedure state to the backoff procedure for channel contention, for example, using the saved value to restore the value of the backoff timer.
  • the station when the NAV is not 0, the station cannot perform the contention transmission.
  • the STA3 determines that the sector transmission in the transmission initiated by the API is to be sent by itself, When the space is orthogonal, STA3 ignores or resets the NAV and initiates a race to start spatial orthogonal transmission, and the initiated transmission is within the time range indicated by the updated NAV. This ensures that after the end of the TXOP protected by the NAV before resetting, all stations can still start the channel access competition fairly.
  • the third-party site is an API
  • the listening site is AP2.
  • the network topology of the second embodiment is as shown in FIG. 1. Taking the situation shown in FIG. 4 as an example, the STA1 competes for the channel, and sends the request polling frame or the trigger frame to the third-party site, that is, the API.
  • the request API sends data to STA1 itself, the API accepts the request and sends data frame 1 to STA1, the partial preamble sequence of the frame 1 frame header uses omnidirectional transmission and the preamble contains the response frame indication to set the listening site (such as STA3, The RID of AP2, STA5), the other part of data frame 1 is transmitted by sector beam, and the API uses sector beam to transmit in the remaining TXOP or access window.
  • the listening station that is, AP2 listens to the partial preamble sequence of the data frame 1 of the API (that is, the part before the time t1 of the data frame 1), and updates the local RID according to the content of the omnidirectional transmission, as shown in FIG. 4, assuming the RID The value end time is t2.
  • STA3 does not detect other parts of data frame 1 within the preset time interval At time after time t1, and does not detect the subsequent data frame 2 and other radio frames.
  • AP2 determines that the API initiates.
  • the transmission of the sector in the transmission is orthogonal to the transmission space to be performed by itself.
  • the AP2 transmits the contention channel before the end of the value of the RID after the preset time interval At, that is, the transmission of the AP2 is located in the updated RID.
  • the indicated time TXOP for API reservations).
  • the contention access of the AP2 includes: saving the state of the related backoff process, for example, saving the value of the backoff timer; starting a new backoff process to compete for the channel to transmit, and the new backoff process can use the same interframe as the original backoff process.
  • the competition parameters such as the interval and the competition window may also use the new competition parameters; thus, when the end time t2 of the updated NAV indication comes, the AP2 restores the saved backoff process state to the backoff process for channel competition, for example. Use the saved value to restore the value of the backoff timer.
  • the station cannot perform the contention transmission.
  • the AP2 determines the sector transmission in the transmission initiated by the API and the transmission to be performed by itself.
  • AP2 can ignore or reset the RID to initiate a race to start spatial orthogonal transmission, and the initiated transmission is indicated by the updated RID. This ensures that after the TXOP protected by the previous RID is reset, all stations can still start the channel access competition fairly.
  • the third-party site is an API
  • the listening site is STA3.
  • the network topology of the third embodiment is as shown in FIG. 1. Taking the situation shown in FIG. 6 as an example, in this embodiment, when the listening station detects the first wireless signal of the third-party station, the local network is allocated at the same time. The vector and response frames indicate that the delayed access time has been updated.
  • the third-party site that is, the API
  • acquires the TXOP or an access window and sends the RTS frame to the STA1 in an omnidirectional manner.
  • the STA1 sends the CTS frame omnidirectionally.
  • the API sends the data frame 1, and the partial preamble sequence of the data frame 1 frame header is used.
  • the other part of data frame 1 is transmitted by sector beam, and the API uses sector beam to transmit in the remaining TXOP or access window.
  • the RTS frame sent by the API and the CTS frame replied by the STA1 may also use other omnidirectionally transmitted frames, such as the API, to transmit data frames in an omnidirectional manner, and the STA1 omnidirectionally replies to the ACK frame.
  • the listening station that is, STA3
  • the listening station listens to the RTS frame sent by the API and the partial preamble sequence of the data frame 1 (that is, the part before the time t1 of the data frame 1), and updates the local NAV according to the RTS content of the omnidirectional transmission, according to the data.
  • the signaling in the partial preamble sequence of the omnidirectional transmission of the frame 1 updates the RID time value, assuming that the NAV value end time is t2 and the RID information end time is t3; the NAV indication is more accurate than the RID indication, when both are acquired In case of NAV information.
  • STA3 does not detect other parts of the data frame 1 in the preset time interval At after the time t1, and does not detect the radio frame such as the subsequent data frame 2, then the STA3 determines the sector transmission in the transmission initiated by the API and itself.
  • the transmission space to be performed is orthogonal.
  • STA3 initiates transmission before the value end of the NAV after the preset time interval At, and the transmission of STA3 is located at the time indicated by the updated NAV (TXOP of the API reservation). within.
  • the contention access of the STA3 includes: saving the state of the related backoff process, for example, saving the value of the backoff timer; starting a new backoff process to compete for the channel to transmit, and the new backoff process can use the same interframe as the original backoff process.
  • New competitive parameters can also be used for the competition parameters such as interval and competition window.
  • the station when the NAV is not 0, the station cannot perform the contention transmission.
  • the STA3 determines that the sector transmission in the transmission initiated by the API is to be sent by itself, When the space is orthogonal, STA3 ignores or resets the NAV and initiates a race to start spatial orthogonal transmission, and the initiated transmission is within the time range indicated by the updated NAV. This ensures that after the end of the TXOP protected by the NAV before resetting, all stations can still start the channel access competition fairly.
  • the embodiment of the present invention further provides a station, configured to: when detecting the first wireless signal of the third-party station, update the local network allocation vector or the response frame to indicate the delayed access time; and determine that the second wireless signal of the third-party station satisfies the space.
  • the channel is successfully transmitted during the updated time.
  • the first wireless signal is a part of a wireless frame or a wireless frame that is sent omnidirectionally;
  • the second wireless station is a non-access point site, and when the third-party site is an access point site, the local network allocation vector is updated;
  • the station is further configured to start transmitting a data frame, and a part of the preamble sequence at the head of the data frame is transmitted in an omnidirectional manner, and the other part of the data frame is transmitted by using a sector beam, and the third party station is in the remaining TXOP or
  • the access windows are all sent using sector beams.
  • the site is an access point site, and when the third-party site is a non-access point site, the update is a response frame indicating a delayed access time; and the third-party site is further configured to receive a data frame, and a partial preamble sequence of the data frame header
  • the omni-directional transmission is used and the response frame indication is included in the preamble to set the RID of the listening station, the other part of the frame is transmitted by the sector beam, and the station transmitting the data frame to the third-party station is in the remaining TXOP or
  • the access windows are all sent using sector beams.
  • the trigger channel competes as: saves the state of the existing backoff process, for example, saves the value of the backoff timer; starts a new one.
  • the backoff process is used to transmit the channel.
  • the new backoff process can use the same interframe space as the existing backoff process, the competition window and other competitive parameters, or use the new competitive parameters.
  • the own station also sets In order to arrive at the end time t2 of the updated NAV indication, the saved backoff process state is restored to the backoff process for channel competition, for example, using the saved value to recover the backoff timer. Value.
  • the trigger channel competes as: saving the state of the backoff process, for example, saving the value of the backoff timer; starting a new backoff process
  • the channel is transmitted.
  • the new backoff process can use the same interframe space as the existing backoff procedure, the competition window and other competitive parameters, or use the new competitive parameters.
  • the station is also set to The updated response frame indicates that the end time t2 of the delayed access time indication comes, and the saved backoff procedure state is restored to the backoff procedure for channel competition, for example, using the saved value to restore the value of the backoff timer.
  • the determining that the second wireless signal of the third-party station satisfies the spatial orthogonal condition is: in the preset time interval At after the station detects that the first wireless signal of the third-party station ends, the second wireless of the third-party station is not detected. signal. Including: The station sets the channel carrier detection result to idle.
  • the technical solution of the present application provides a first wireless signal including a detection of a third-party site by a listening station, updating a local network allocation vector and/or a response frame indicating a delayed access time; determining that the second wireless signal of the third-party site satisfies the spatial orthogonal condition At the time, the trigger channel competes for the access process, and subsequent data transmission is completed within the time indicated by the update.
  • the competition is initiated to start spatial orthogonal transmission, which realizes spatial multiplexing and ensures the fairness of channel access between stations, thereby ensuring the effectiveness of site data transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种空间复用下的信道接入方法及站点,包括侦听站点检测到第三方站点的第一无线信号,更新本地网络分配矢量和/或响应帧指示延迟接入时间;确定第三方站点的第二无线信号满足空间正交条件时,触发信道竞争接入过程,且后续数据传输在更新后的时间内完成。在网络分配矢量或响应帧指示延迟接入时间不为0的情况下,第三方站点在确定出站点所发起的传输中的扇区发送与自身要进行的发送空间正交时,忽略或重设网络分配矢量或响应帧指示延迟接入时间,而在更新后的网络分配矢量或响应帧指示延迟接入时间内发起竞争开始空间正交传输,实现了空间复用的同时也保证了站点间信道接入的公平性,从而保证了站点数据传输的有效性。

Description

一种空间复用下的信道接入方法及站点
技术领域
本发明涉及无线局域网 (WLAN )技术, 尤指一种空间复用下的信道接 入方法及站点。
背景技术
目前, 在无线网络领域, 无线局域网 (WLAN )快速发展, 对 WLAN的 应用需求日益增长。 电气和电子工程师协会工业规范 IEEE802.il组中, 先后 定义了 802.11a/b/g/n等一系列标准, 随后又陆续出现了其他任务组, 致力于 发展涉及相关 802.11技术改进的规范。例如, 802.11 ah任务组主要针对 1GHz 频段以下免许可频段。
在 WLAN中, 由一个接入点(AP, Access Point )以及与 AP相关联的多 个非接入点站点(STA, non-AP Station )组成了一个基本服务集(BSS, Basic Service Set )。如图 1所示,其中, API和 STA1组成一个 BSS, AP2和 STA2-STA4 组成另一个 BSS。 当两个 BSS使用同一个信道, 且彼此信号的覆盖范围有重 叠(overlapping )时, 两个 BSS互相为对方的 重叠 BSS ( OBSS, overlapping BSS )。 在这种空间复用下, WLAN 使用载波侦听多点接入 /冲突避免 ( CSMA/CA )作为信道接入的基本机制, 在发送前进行载波监听并具有随机 退避(backoff function ), 即仅在当确认信道为闲时发送数据; 另外, 为了进 行多次帧交换, 收发双方可以预约一段时间传输机会(TXOP, Transmission Opportunity )进行帧发送从而避免发送碰撞。
举例来讲, 如图 2所示, 假设 API竟争到信道并向 STA1发送无线帧, 在发送数据帧之前, API首先向 STA1发起发送请求发送帧(RTS, Request to send )以进行信道预约,在 RTS中携带有信道预约时间信息( Duration ); STA1 向 API响应清除发送帧(CTS, Clear to send )以进行信道预约确认, 在 CTS 中也携带有信道预约时间信息, Duration信息表明预约到 TXOP的结束。 其 他接收到携带有 Duration信息的无线帧的侦听站点设置自身存储有的一个网 络分配矢量(NAV, Network Allocation Vector ), NAV的取值为接收到的上述 Duration信息的最大值, 在该 NAV表示的时间内 , 即使物理载波检测为闲 , 侦听站点也不会发送数据。
上述有关时间预约和 NAV机制称为一种虚拟载波检测机制。 除了上述 NAV 机制, 相关技术还定义了利用响应指示延迟接入 (RID , Response Indication Deferrral ) 的虚拟载波检测机制, 当前发送的无线帧携带接下来将 要发送的无线帧的帧类型, 侦听站点根据当前发送的无线帧指示的帧类型选 择退避时间更新 RID的值, 在 RID的计时值为 0时, 站点才可以竟争发送。
在使用波束成形进行扇区发送的情况下, 相关技术提出了一种空间正交 传输的方案, 大致包括: 当侦听站点 (比如 OBSS的站点或接入点)判断当 前收发站点的扇区波束传输与自身将要进行的数据发送, 在空间上正交时, 侦听站点可以取消先前设置的虚拟载波检测的预约时间, 进行数据发送。 以 图 1 为例, 假设 API 和 STA1 首先发送全向的无线帧或无线信号, 例如 RTS/CTS建立连接并预约 TXOP对数据传输进行保护, 然后在 TXOP内使用 波束互相对准进行数据的传输, AP2或 STA3接收到了 API和 /或 STA1的全 向信号, 更新了 NAV和 RID; 然而 AP2或 STA3检测不到 API和 STA1相互 对准扇区波束, 那么, AP2和 STA3可以认为自身的传输与 API和 STA1波 束传输之间是空间正交, 则 AP2和 STA3重设 NAV和 RID, 触发自身的帧传 输。
相关扇区波束传输作为一种可选特性, 使得不同站点在接入公平性上存 在问题。以图 3和图 1所示为例,假设 API和 STA1使用扇区发送机制, AP2 , STA3 , STA5具有判断出空间正交并触发传输的扇区化能力, STA4不具有上 述能力; 在图 1所示的网络结构下, AP2, STA3在 API和 STA1釆用扇区波 束发送时, 即 tl时刻之后, 开始竟争发送; STA5虽然也具有扇区化能力但 是能够检测到 API和 STA1之间的扇区发送, 所以要等到 TXOP结束后才开 始竟争, 即 t2时刻以后; STA4不具有扇区化能力, 按照传统机制, 等到 t2 时刻以后才可以竟争信道。 使用空间正交复用进行无线资源共享应保证不会 对其他没有进行空间正交复用站点的接入或传输造成影响, 即上述场景下 AP2, STA3的传输, 不会影响侦听站点的接入。 但是相关技术对 AP2, STA3 的接入规则没有定义, AP2和 STA3间的传输可以超出图 3中所示扇区波束 发送时间期即超过 t2时刻, 那么实际上侦听站点如 STA4就不能在 t2时刻开 始竟争, 而是要等到 AP2, STA3 的传输结束后才可以竟争信道, 而在等待 AP2, STA3的传输结束时, API和 STA1很可能也利用空间正交性开始新的 传输, 无疑, 对于 STA4或 STA5这类站点的信道接入非常不利且不公平的, 也影响了这类站点数据传输的有效性。
发明内容
本发明实施例提供一种空间复用下的信道接入方法及站点, 能够实现空 间复用的同时保证站点间信道接入的公平性, 从而保证站点数据传输的有效 性。 为了解决上述技术问题, 本发明实施例公开了一种空间复用下的信道接 入方法, 包括:
侦听站点检测到第三方站点的第一无线信号, 更新本地网络分配矢量和 / 或响应帧指示延迟接入时间;
确定第三方站点的第二无线信号满足空间正交条件时, 触发信道竟争接 入过程, 且后续数据传输在更新后所指示的时间内完成。
当到达所述更新的本地网络分配矢量或响应帧指示延迟接入时间指示的 结束时刻, 该方法还包括: 所述侦听站点将触发信道竟争传输中保存的随机 退避过程状态恢复为当前的随机退避过程。
所述第一无线信号为所述侦听站点可接收到的无线帧或无线帧的一部分 的无线信号;
所述第二无线信号为所述侦听站点不可接收到的无线帧或无线帧的一部 分的无线信号。
所述第一无线信号使用全向方式发送;
所述第二无线信号使用定向或扇区化或波束成形方式发送。
所述触发信道竟争包括: 保存已有退避过程的状态; 开始新的退避过程 竟争信道进行发送。 所述确定第三方站点的第二无线信号满足空间正交条件为: 在所述侦听站点检测到第三方站点的第一无线信号结束后的预设时间间 隔 At内, 未检测到第三方站点的第二无线信号。
该方法还包括: 所述侦听站点设置信道载波检测结果为闲。
所述预设间隔时间 At开始于全向波束与扇区波束的转换时刻; 所述预设时间间隔 At的长度为一个或多个传输符号的时间; 或者, 为一 个短帧间间隔与一个时隙之和的值, 再加上一个接收开始延迟的值。
所述更新的是本地网络分配矢量时, 所述更新后所指示的时间内为: 更 新后的本地网络分配矢量所指示的时间内;
所述更新的是响应帧指示延迟接入时间时, 所述更新后所指示的时间内 为: 更新后的响应帧指示延迟接入时间所指示的时间内;
所述更新的是本地网络分配矢量和响应帧指示延迟接入时间时, 所述更 新后所指示的时间内为更新后的本地网络分配矢量所指示的时间内; 或者, 更新后的本地网络分配矢量所指示的时间与更新后的响应帧指示延迟接入时 间所指示的时间中时长更长的一个时间内。
本发明实施例还提供一种站点, 设置为在检测到第三方站点的第一无线 信号时, 更新本地网络分配矢量和 /或响应帧指示延迟接入时间; 确定第三方 站点的第二无线信号满足空间正交条件时, 触发信道竟争接入过程, 且后续 数据传输在更新后的时间内完成。
所述站点还设置为, 当到达所述更新的本地网络分配矢量或响应帧指示 延迟接入时间指示的结束时刻,
将所述触发信道竟争传输中保存的随机退避过程状态恢复为当前的随机 退避过程。
所述第一无线信号为所述站点可接收到的无线帧或无线帧的一部分的无 线信号, 使用全向方式发送;
所述第二无线信号为所述站点不可接收到的无线帧或无线帧的一部分的 无线信号, 使用定向或扇区化或波束成形方式发送。 所述触发信道竟争为保存已有退避过程的状态; 开始新的退避过程竟争 信道进行发送。
所述确定第三方站点的第二无线信号满足空间正交条件为: 在所述站点 检测到第三方站点的第一无线信号结束后的预设时间间隔 At内,未检测到第 三方站点的第二无线信号。
所述站点, 还设置为, 设置信道载波检测结果为闲。
所述预设间隔时间 At开始于全向波束与扇区波束的转换时刻; 所述预设时间间隔 At的长度为一个或多个传输符号的时间; 或者,为一 个短帧间间隔与一个时隙之和的值, 再加上一个接收开始延迟的值。
本申请技术方案提供包括侦听站点检测到第三方站点的第一无线信号, 更新本地网络分配矢量和 /或响应帧指示延迟接入时间; 确定第三方站点的第 二无线信号满足空间正交条件时, 触发信道竟争接入过程, 且后续数据传输 在更新后所指示的时间内完成。 在网络分配矢量或响应帧指示延迟接入时间 身要进行的发送空间正交时, 忽略或重设网络分配矢量或响应帧指示延迟接 入时间, 而在更新后的网络分配矢量或响应帧指示延迟接入时间内发起竟争 开始空间正交传输, 实现了空间复用的同时也保证了站点间信道接入的公平 性, 从而保证了站点数据传输的有效性。 附图概述
此处所说明的附图用来提供对本发明实施例的进一步理解, 构成本申请 的一部分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本 发明实施例的不当限定。 在附图中:
图 1为相关 WLAN的 BSS的组成结构示意图;
图 2为相关 NAV虚拟载波机制的示意图;
图 3为相关波束成形扇区发送帧交互的示意图;
图 4为本发明实施例空间复用下的信道接入方法的流程图;
图 5为本发明实施例空间复用下的信道接入的实施例的示意图; 图 6为本发明实施例空间复用下的信道接入的另一实施例的示意图。
本发明的较佳实施方式
图 4为本发明实施例空间复用下的信道接入方法的流程图,如图 4所示, 包括:
步骤 400: 侦听站点检测到第三方站点的第一无线信号, 更新本地网络 分配矢量和 /或响应帧指示延迟接入时间。
第一无线信号为侦听站点可接收到的无线帧或无线帧的一部分的无线信 号, 使用全向方式发送。 在侦听站点为非接入点站点, 第三方站点为接入点 站点时, 更新的是本地网络分配矢量; 在侦听站点为接入点站点, 第三方站 点为非接入点站点时, 更新的是响应帧指示延迟接入时间。 其中, 更新是指 侦听站点根据第三方站点的第一无线信号中指示的时间, 更新本地网络分配 矢量和 /或响应帧指示延迟接入时间, 更新的实现属于本领域技术人员的公知 技术, 其实现也不用于限定本发明实施例的保护范围。
在侦听站点为非接入点站点, 第三方站点为接入点站点时, 本步骤之前 还包括: 第三方站点开始发送数据帧, 在该数据帧帧头的部分前导序列釆用 全向发送, 该数据帧的其他部分釆用扇区波束发送, 且第三方站点在剩余的 本次 TXOP或接入窗口都使用扇区波束发送;
在侦听站点为接入点站点, 第三方站点为非接入点站点时, 本步骤之前 还包括: 第三方站点接收到数据帧, 该数据帧帧头的部分前导序列釆用全向 发送且前导中包含响应帧指示以设置侦听站点的 RID的值, 该数据帧的其他 部分釆用扇区波束发送, 且向第三方站点发送该数据帧的站点在剩余的本次 TXOP或接入窗口都使用扇区波束发送。
侦听站点与第三方站点也可以都为接入站点, 或者都为非接入站点。 步骤 401 : 确定第三方站点的第二无线信号满足空间正交条件时, 触发 信道竟争接入过程, 且后续数据传输在更新后所指示的时间内完成。
其中, 第二无线信号为侦听站点不可接收到的无线帧或无线帧的一部分 的无线信号, 使用定向或扇区化或波束成形发送方式发送。 更新后的时间内 就是步骤 400中更新的本地网络分配矢量或响应帧指示延迟接入时间所指示 的时间内。 如果本地网络分配矢量和响应帧指示延迟接入时间都更新的情况 下, 更新后的时间内可以是更新后的本地网络分配矢量所指示的时间内, 或 者可以是更新后的本地网络分配矢量所指示的时间与更新后的响应帧指示延 迟接入时间所指示的时间中时长更长的一个时间内。
在侦听站点为非接入点站点, 第三方站点为接入点站点时, 本步骤中的 触发信道竟争包括:保存已有退避过程的状态,例如保存退避计时器(backoff timer ) 的值; 开始新的退避过程竟争信道进行发送, 新的退避过程可以使用 与已有退避过程相同的帧间间隔、 竟争窗口等竟争参数, 也可以使用新的竟 争参数; 此时,
本步骤之后还包括: 当更新的 NAV指示的结束时刻 t2到来, 侦听站点 将保存的退避过程状态恢复到退避过程进行信道竟争, 例如使用保存的值恢 复退避计时器的值。
在侦听站点为接入点站点, 第三方站点为非接入点站点时, 本步骤中的 触发信道竟争包括: 保存现已有退避过程的状态, 例如保存退避计时器的值; 开始新的退避过程竟争信道进行发送, 新的退避过程可以使用与已有退避过 程相同的帧间间隔、 竟争窗口等竟争参数, 也可以使用新的竟争参数; 此时, 本步骤之后还包括: 当更新的响应帧指示延迟接入时间指示的结束时刻 t2到来, 侦听站点将保存的退避过程状态恢复到退避过程进行信道竟争, 例 如使用保存的值恢复退避计时器的值。
本步骤中的确定第三方站点的第二无线信号满足空间正交条件为: 在侦 听站点检测到第三方站点的第一无线信号结束后的预设时间间隔 At内,未检 测到第三方站点的第二无线信号。 进一步包括: 侦听站点设置信道载波检测 结果为闲。 其中,
预设间隔时间 At开始于全向波束与扇区波束的转换时刻。预设时间间隔
Δ t的长度可以为一个或多个传输符号的时间,比如可以为一个或多个训练序 列持续周期, 这里训练序列持续周期以传输符号为基本单位; 预设时间间隔 △ t的长度也可以为一个短帧间间隔( SIFS, Short Interframe Space )加上一个 时隙(slot )再加上一个接收开始延迟的时间, 其中, SIFS为两个无线帧之间 的最短时间间隔, 例如数据帧和其响应帧之间的间隔为 SIFS, 时隙 slot为一 个信道忙闲检测时隙, 接收开始延迟时间为从物理层检测到无线帧的信号到 MAC层收到接收开始指示之间的延迟时间。
从本发明实施例方法可见, 在网络分配矢量或响应帧指示延迟接入时间 要进行的发送空间正交时, 忽略或重设网络分配矢量或响应帧指示延迟接入 时间, 而在更新后的网络分配矢量或响应帧指示延迟接入时间内发起竟争开 始空间正交传输,实现了空间复用的同时也保证了站点间信道接入的公平性, 从而保证了站点数据传输的有效性。
第一实施例中, 第三方站点为 API , 侦听站点为 STA3。 第一实施例的网 络拓朴结构如图 1所示, 以图 3所示情况为例, 假设第三方站点即 API获取 TXOP或一个接入窗口, 并全向发送 RTS帧给 STA1 , STA1全向的发送 CTS 帧, 接下来 API发送数据帧 1 , 数据帧 1帧头的部分前导序列釆用全向发送, 数据帧 1的其他部分釆用扇区波束发送, 且 API在剩余的此次 TXOP或接入 窗口都使用扇区波束发送。 在实际使用中, API全向发送的 RTS帧和 STA1 回复的 CTS帧,也可以使用其他全向发送的帧如 API全向发送数据帧, STA1 全向回复 ACK帧。
当侦听站点即 STA3监听到 API全向发送的 RTS帧和数据帧 1的部分前 导序列 (即数据帧 1的 tl 时刻前的部分), 并根据全向发送的内容更新本地 NAV, 如图 3所示, 假设 NAV的值结束时刻为 t2; 但是, STA3在 tl时刻后 预设时间间隔 At内没有检测到数据帧 1的其他部分,也未检测到以后的数据 帧 2等无线帧, 那么, STA3判断出 API发起的传输中的扇区发送与自身要 进行的发送空间正交, 此时, STA3在预设时间间隔 At后 NAV的值结束时刻 t2前,竟争信道发起传输,即 STA3的传输位于更新的 NAV指示的时间( API 预约的 TXOP )之内。
其中, STA3的竟争接入包括: 保存相关退避过程的状态, 例如保存退避 计时器的值; 开始新的退避过程竟争信道进行发送, 新的退避过程可以使用 与原来退避过程相同的帧间间隔、 竟争窗口等竟争参数, 也可以使用新的竟 争参数。 这样, 在更新的 NAV指示的结束时刻 t2到来后, STA3将保存的退 避过程状态恢复到退避过程进行信道竟争, 例如使用保存值恢复退避计时器 的值。
相关系统中, 当 NAV不为 0时, 站点是不能进行竟争发送的, 本发明实 施例中, 在上述情况下, 当 STA3判断出 API发起的传输中的扇区发送与自 身要进行的发送空间正交时, STA3忽略或重设 NAV而发起竟争开始空间正 交传输, 并且发起的传输在更新后的 NAV指示的时间范围内。 这样保证了重 设前 NAV所保护的 TXOP结束后,所有站点仍然能公平的开始信道接入的竟 争。
第二实施例中, 第三方站点为 API , 侦听站点为 AP2。 第二实施例的网 络拓朴结构如图 1所示, 以图 4所示情况为例, 4叚设 STA1竟争到信道, 并 全向发送请求轮询帧或触发帧给第三方站点即 API 以请求 API发送数据给 STA1 自身, API接受请求并发送数据帧 1给 STA1 , 数帧 1帧头的部分前导 序列釆用全向发送且前导中包含响应帧指示以设置侦听站点 (比如 STA3 , AP2, STA5 ) 的 RID, 数据帧 1的其他部分釆用扇区波束发送, 且 API在剩 余的此次 TXOP或接入窗口都使用扇区波束发送。
当侦听站点即 AP2监听到 API的数据帧 1的部分前导序列 (即数据帧 1 的 tl时刻前的部分), 并根据全向发送的内容更新本地 RID, 如图 4所示, 假设 RID的值结束时刻为 t2; 但是, STA3在 tl时刻后预设时间间隔 At时间 内没有检测到数据帧 1的其他部分, 也未检测到以后的数据帧 2等无线帧, 那么, AP2判断出 API发起的传输中的扇区发送与自身要进行的发送空间正 交, 此时, AP2在预设时间间隔 At后 RID的值结束时刻 t2前, 竟争信道发 起传输, 即 AP2的传输位于更新的 RID指示的时间 ( API预约的 TXOP )之 内。
其中, AP2的竟争接入包括: 保存相关退避过程的状态, 例如保存退避 计时器的值; 开始新的退避过程竟争信道进行发送, 新的退避过程可以使用 与原来退避过程相同的帧间间隔、 竟争窗口等竟争参数, 也可以使用新的竟 争参数; 这样, 当更新的 NAV指示的结束时刻 t2到来后, AP2将保存的退 避过程状态恢复到退避过程进行信道竟争, 例如使用保存值恢复退避计时器 的值。 相关系统中, 当 RID不为 0时, 站点是不能进行竟争发送的, 本发明实 施例中, 在上述情况下, 当 AP2判断出 API发起的传输中的扇区发送与自身 要进行的发送空间正交时, AP2可以忽略或重设 RID而发起竟争开始空间正 交传输,并且发起的传输在更新后的 RID指示的时间。这样保证了重设前 RID 所保护的 TXOP结束后, 所有站点仍然能公平的开始信道接入的竟争。
第三实施例中, 第三方站点为 API , 侦听站点为 STA3。 第三实施例的网 络拓朴结构如图 1所示, 以图 6所示情况为例, 本实施例中, 在侦听站点检 测到第三方站点的第一无线信号时, 同时对本地网络分配矢量和响应帧指 示延迟接入时间进行了更新。 假设第三方站点即 API获取 TXOP或一个接 入窗口, 并全向发送 RTS帧给 STA1 , STA1全向的发送 CTS帧, 接下来 API 发送数据帧 1 , 数据帧 1帧头的部分前导序列釆用全向发送, 数据帧 1的其 他部分釆用扇区波束发送, 且 API在剩余的此次 TXOP或接入窗口都使用扇 区波束发送。在实际使用中, API全向发送的 RTS帧和 STA1回复的 CTS帧, 也可以使用其他全向发送的帧如 API全向发送数据帧, STA1全向回复 ACK 帧。
当侦听站点即 STA3监听到 API全向发送的 RTS帧和数据帧 1的部分前 导序列 (即数据帧 1的 tl时刻前的部分), 并根据全向发送的 RTS内容更新 本地 NAV,根据数据帧 1的全向发送的部分前导序列中的信令更新了 RID时 间值, 假设 NAV的值结束时刻为 t2, RID信息结束时刻为 t3; NAV的指示 比 RID指示准确, 当二者都获取了的情况下以 NAV信息为准。 STA3在 tl时 刻后预设时间间隔 At内没有检测到数据帧 1的其他部分,也未检测到以后的 数据帧 2等无线帧, 那么, STA3判断出 API发起的传输中的扇区发送与自 身要进行的发送空间正交, 此时, STA3在预设时间间隔 At后 NAV的值结束 时刻 t2前, 竟争信道发起传输, 即 STA3的传输位于更新的 NAV指示的时间 ( API预约的 TXOP )之内。
其中, STA3的竟争接入包括: 保存相关退避过程的状态, 例如保存退避 计时器的值; 开始新的退避过程竟争信道进行发送, 新的退避过程可以使用 与原来退避过程相同的帧间间隔、 竟争窗口等竟争参数, 也可以使用新的竟 争参数。 这样, 在更新的 NAV指示的结束时刻 t2到来后, STA3将保存的退 避过程状态恢复到退避过程进行信道竟争, 例如使用保存值恢复退避计时器 的值。
相关系统中, 当 NAV不为 0时, 站点是不能进行竟争发送的, 本发明实 施例中, 在上述情况下, 当 STA3判断出 API发起的传输中的扇区发送与自 身要进行的发送空间正交时, STA3忽略或重设 NAV而发起竟争开始空间正 交传输, 并且发起的传输在更新后的 NAV指示的时间范围内。 这样保证了重 设前 NAV所保护的 TXOP结束后,所有站点仍然能公平的开始信道接入的竟 争。
本发明实施例还提供一种站点, 设置为在检测到第三方站点的第一无线 信号时, 更新本地网络分配矢量或响应帧指示延迟接入时间; 确定第三方站 点的第二无线信号满足空间正交条件时, 在更新后的时间内触发信道竟争传 输。
其中, 第一无线信号为全向发送的无线帧或无线帧的一部分; 第二无线 站点为非接入点站点, 第三方站点为接入点站点时, 更新的是本地网络 分配矢量; 第三方站点, 还设置为开始发送数据帧, 在该数据帧帧头的部分 前导序列釆用全向发送, 该数据帧的其他部分釆用扇区波束发送, 且第三方 站点在剩余的本次 TXOP或接入窗口都使用扇区波束发送。
站点为接入点站点, 第三方站点为非接入点站点时, 更新的是响应帧指 示延迟接入时间; 第三方站点, 还设置为接收到数据帧, 该数据帧帧头的部 分前导序列釆用全向发送且前导中包含响应帧指示以设置侦听站点的 RID, 该帧的其他部分釆用扇区波束发送, 且向第三方站点发送该数据帧的站点在 剩余的本次 TXOP或接入窗口都使用扇区波束发送。
在站点为非接入点站点, 第三方站点为接入点站点时, 所述触发信道竟 争为: 保存已有退避过程的状态, 例如保存退避计时器(backoff timer )的值; 开始新的退避过程竟争信道进行发送, 新的退避过程可以使用与已有退避过 程相同的帧间间隔、 竟争窗口等竟争参数, 也可以使用新的竟争参数; 此时, 所属站点, 还设置为在更新的 NAV指示的结束时刻 t2到来, 将保存的退避 过程状态恢复到退避过程进行信道竟争, 例如使用保存的值恢复退避计时器 的值。
在站点为接入点站点, 第三方站点为非接入点站点时, 所述触发信道竟 争为: 保存现已有退避过程的状态, 例如保存退避计时器的值; 开始新的退 避过程竟争信道进行发送, 新的退避过程可以使用与已有退避过程相同的帧 间间隔、 竟争窗口等竟争参数, 也可以使用新的竟争参数; 此时, 所述站点, 还设置为在更新的响应帧指示延迟接入时间指示的结束时刻 t2到来, 将保存 的退避过程状态恢复到退避过程进行信道竟争, 例如使用保存的值恢复退避 计时器的值。
所述确定第三方站点的第二无线信号满足空间正交条件为: 在站点检测 到第三方站点的第一无线信号结束后的预设时间间隔 At内,未检测到第三方 站点的第二无线信号。 包括: 站点设置信道载波检测结果为闲。
以上所述, 仅为本发明的较佳实例而已, 并非用于限定本发明实施例的 保护范围。 凡在本发明实施例的精神和原则之内, 所做的任何修改、 等同替 换、 改进等, 均应包含在本发明实施例的保护范围之内。
工业实用性
本申请技术方案提供包括侦听站点检测到第三方站点的第一无线信号, 更新本地网络分配矢量和 /或响应帧指示延迟接入时间; 确定第三方站点的第 二无线信号满足空间正交条件时, 触发信道竟争接入过程, 且后续数据传输 在更新后所指示的时间内完成。 在网络分配矢量或响应帧指示延迟接入时间 身要进行的发送空间正交时, 忽略或重设网络分配矢量或响应帧指示延迟接 入时间, 而在更新后的网络分配矢量或响应帧指示延迟接入时间内发起竟争 开始空间正交传输, 实现了空间复用的同时也保证了站点间信道接入的公平 性, 从而保证了站点数据传输的有效性。

Claims

权 利 要 求 书
1、 一种空间复用下的信道接入方法, 包括:
侦听站点检测到第三方站点的第一无线信号, 更新本地网络分配矢量和 / 或响应帧指示延迟接入时间;
确定第三方站点的第二无线信号满足空间正交条件时, 触发信道竟争接 入过程, 且后续数据传输在更新后所指示的时间内完成。
2、 根据权利要求 1所述的信道接入方法, 其中, 当到达所述更新的本地 网络分配矢量或响应帧指示延迟接入时间指示的结束时刻, 该方法还包括: 所述侦听站点将触发信道竟争传输中保存的随机退避过程状态恢复为当前的 随机退避过程。
3、 根据权利要求 1或 2所述的信道接入方法, 其中, 所述第一无线信号 为所述侦听站点可接收到的无线帧或无线帧的一部分的无线信号;
所述第二无线信号为所述侦听站点不可接收到的无线帧或无线帧的一部 分的无线信号。
4、 根据权利要求 3所述的信道接入方法, 其中, 所述第一无线信号使用 全向方式发送;
所述第二无线信号使用定向或扇区化或波束成形方式发送。
5、 根据权利要求 1或 2所述的信道接入方法, 其中, 所述触发信道竟争 包括: 保存已有退避过程的状态; 开始新的退避过程竟争信道进行发送。
6、 根据权利要求 1或 2所述的信道接入方法, 其中, 所述确定第三方站 点的第二无线信号满足空间正交条件为: 在所述侦听站点检测到第三方站点的第一无线信号结束后的预设时间间 隔 At内, 未检测到第三方站点的第二无线信号。
7、 根据权利要求 6所述的信道接入方法, 其中, 该方法还包括: 所述侦 听站点设置信道载波检测结果为闲。
8、 根据权利要求 6所述的信道接入方法, 其中, 所述预设间隔时间 At 开始于全向波束与扇区波束的转换时刻; 所述预设时间间隔 At的长度为一个或多个传输符号的时间; 或者, 为一 个短帧间间隔与一个时隙之和的值, 再加上一个接收开始延迟的值。
9、 根据权利要求 1所述的信道接入方法, 其中, 所述更新的是本地网络 分配矢量时, 所述更新后所指示的时间内为: 更新后的本地网络分配矢量所 指示的时间内;
所述更新的是响应帧指示延迟接入时间时, 所述更新后所指示的时间内 为: 更新后的响应帧指示延迟接入时间所指示的时间内;
所述更新的是本地网络分配矢量和响应帧指示延迟接入时间时, 所述更 新后所指示的时间内为更新后的本地网络分配矢量所指示的时间内; 或者, 更新后的本地网络分配矢量所指示的时间与更新后的响应帧指示延迟接入时 间所指示的时间中时长更长的一个时间内。
10、 一种站点, 设置为在检测到第三方站点的第一无线信号时, 更新本 地网络分配矢量和 /或响应帧指示延迟接入时间; 确定第三方站点的第二无线 信号满足空间正交条件时, 触发信道竟争接入过程, 且后续数据传输在更新 后的时间内完成。
11、 根据权利要求 10所述的站点, 其中, 所述站点还设置为, 当到达所 述更新的本地网络分配矢量或响应帧指示延迟接入时间指示的结束时刻, 将所述触发信道竟争传输中保存的随机退避过程状态恢复为当前的随机 退避过程。
12、 根据权利要求 10或 11所述的站点, 其中, 所述第一无线信号为所 述站点可接收到的无线帧或无线帧的一部分的无线信号,使用全向方式发送; 所述第二无线信号为所述站点不可接收到的无线帧或无线帧的一部分的 无线信号, 使用定向或扇区化或波束成形方式发送。
13、 根据权利要求 10或 11所述的站点, 其中, 所述触发信道竟争为保 存已有退避过程的状态; 开始新的退避过程竟争信道进行发送。
14、 根据权利要求 10或 11所述的站点, 其中, 所述确定第三方站点的 第二无线信号满足空间正交条件为: 在所述站点检测到第三方站点的第一无 线信号结束后的预设时间间隔 At内, 未检测到第三方站点的第二无线信号。
15、根据权利要求 14所述的信道接入方法,其中, 所述站点,还设置为: 设置信道载波检测结果为闲。
16、 根据权利要求 14所述的信道接入方法, 其中, 所述预设间隔时间△ t开始于全向波束与扇区波束的转换时刻;
所述预设时间间隔 At的长度为一个或多个传输符号的时间; 或者, 为一 个短帧间间隔与一个时隙之和的值, 再加上一个接收开始延迟的值。
PCT/CN2014/076104 2013-07-12 2014-04-24 一种空间复用下的信道接入方法及站点 WO2014173307A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/903,598 US9832793B2 (en) 2013-07-12 2014-04-24 Method for accessing channel under spatial multiplexing and station
EP14788354.0A EP3007510B1 (en) 2013-07-12 2014-04-24 Method for accessing channel under spatial multiplexing and station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310292588.8 2013-07-12
CN201310292588.8A CN104284441B (zh) 2013-07-12 2013-07-12 一种空间复用下的信道接入方法及站点

Publications (1)

Publication Number Publication Date
WO2014173307A1 true WO2014173307A1 (zh) 2014-10-30

Family

ID=51791062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076104 WO2014173307A1 (zh) 2013-07-12 2014-04-24 一种空间复用下的信道接入方法及站点

Country Status (4)

Country Link
US (1) US9832793B2 (zh)
EP (1) EP3007510B1 (zh)
CN (1) CN104284441B (zh)
WO (1) WO2014173307A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016107597A1 (zh) * 2014-12-31 2016-07-07 中兴通讯股份有限公司 一种数据传输方法及站点
CN105813220A (zh) * 2014-12-31 2016-07-27 中兴通讯股份有限公司 一种数据传输方法及站点
CN106937403A (zh) * 2015-12-31 2017-07-07 华为技术有限公司 一种基于空间重用的退避方法及设备
CN107172714A (zh) * 2016-03-08 2017-09-15 中兴通讯股份有限公司 网络分配矢量nav的处理方法及装置
WO2018196642A1 (zh) * 2017-04-28 2018-11-01 中兴通讯股份有限公司 信道接入的方法及装置、存储介质

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2823674A2 (en) * 2012-03-06 2015-01-14 Interdigital Patent Holdings, Inc. Supporting a large number of devices in wireless communications
WO2015102540A1 (en) * 2013-12-31 2015-07-09 Agency For Science, Technology And Research Mobile radio communication devices and methods for controlling a mobile radio communication device
KR101890628B1 (ko) * 2014-05-01 2018-08-22 엘지전자 주식회사 무선랜 시스템에서 공간 재사용율을 높이기 위한 방법 및 이를 위한 장치
US9730238B2 (en) * 2014-06-10 2017-08-08 Electronics And Telecommunications Research Institute Communication apparatus and data frame transmission method of the same
CN106376093B (zh) 2015-07-24 2021-02-09 中兴通讯股份有限公司 一种避免数据碰撞的传输控制方法及装置
CN112491521B (zh) * 2015-10-20 2022-08-19 华为技术有限公司 传输数据的方法和装置
CN111787626B (zh) * 2015-12-08 2024-02-02 华为技术有限公司 一种数据传输保护方法及其装置
CN106941731B (zh) * 2016-01-04 2020-03-31 华为技术有限公司 无线通信系统中nav设置方法及相关设备
CN106961733B (zh) 2016-01-11 2020-11-10 华为技术有限公司 传输数据的方法和装置
CN107645788A (zh) * 2016-07-22 2018-01-30 中兴通讯股份有限公司 一种空间复用传输的方法及装置
US10834757B2 (en) * 2016-09-15 2020-11-10 Qualcomm Incorporated Methods and apparatus for channel reservation
CN108024353B (zh) * 2016-11-03 2021-10-19 中兴通讯股份有限公司 一种无线帧的处理方法及装置
JP6097983B1 (ja) * 2016-11-30 2017-03-22 サイレックス・テクノロジー株式会社 無線通信装置およびプログラム
WO2018121177A1 (zh) * 2016-12-30 2018-07-05 中兴通讯股份有限公司 空间复用的方法及装置
CN108271263B (zh) * 2016-12-30 2019-07-09 中兴通讯股份有限公司 空间复用的方法及装置
CN110418401A (zh) 2018-04-27 2019-11-05 慧与发展有限责任合伙企业 用于空间复用的信道调度
CN111050335B (zh) * 2018-10-15 2023-11-07 珠海市魅族科技有限公司 一种无线局域网络通信的方法、接入点及站点

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996908A (zh) * 2005-12-31 2007-07-11 中兴通讯股份有限公司 无线局域网中信道占用结束时刻更新及其状态检测的方法
CN103037531A (zh) * 2011-10-09 2013-04-10 中兴通讯股份有限公司 一种无线站点接入信道的方法及系统
CN103052077A (zh) * 2012-12-18 2013-04-17 东南大学 一种无线局域网obss站点空分干扰避免方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070297365A1 (en) 2006-06-27 2007-12-27 Li Guoqing C Control message exchange for wireless devices using directional and omni-directional transmissions
CN101589566B (zh) * 2007-06-18 2013-06-12 Lg电子株式会社 在无线通信系统中执行上行链路同步的方法
CN101682531B (zh) * 2007-06-22 2012-09-05 汤姆逊许可公司 基于竞争的网络中用于媒体访问的方法和设备
US8194604B2 (en) * 2008-09-08 2012-06-05 Motorola Mobility, Inc. Wireless local area network
US8355389B2 (en) * 2010-03-12 2013-01-15 Nokia Corporation Simultaneous transmissions during a transmission opportunity
WO2013013409A1 (en) * 2011-07-28 2013-01-31 Renesas Mobile Corporation Signaling and procedure design for cellular cluster contending on license-exempt bands
CN102665243B (zh) * 2012-04-01 2014-07-09 东南大学 一种超高速无线局域网中的信道聚合方法
US8995416B2 (en) * 2013-07-10 2015-03-31 Magnolia Broadband Inc. System and method for simultaneous co-channel access of neighboring access points

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996908A (zh) * 2005-12-31 2007-07-11 中兴通讯股份有限公司 无线局域网中信道占用结束时刻更新及其状态检测的方法
CN103037531A (zh) * 2011-10-09 2013-04-10 中兴通讯股份有限公司 一种无线站点接入信道的方法及系统
CN103052077A (zh) * 2012-12-18 2013-04-17 东南大学 一种无线局域网obss站点空分干扰避免方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016107597A1 (zh) * 2014-12-31 2016-07-07 中兴通讯股份有限公司 一种数据传输方法及站点
CN105813220A (zh) * 2014-12-31 2016-07-27 中兴通讯股份有限公司 一种数据传输方法及站点
CN105812091A (zh) * 2014-12-31 2016-07-27 中兴通讯股份有限公司 一种数据传输方法及站点
CN105813220B (zh) * 2014-12-31 2021-04-06 中兴通讯股份有限公司 一种数据传输方法及站点
CN106937403A (zh) * 2015-12-31 2017-07-07 华为技术有限公司 一种基于空间重用的退避方法及设备
CN106937403B (zh) * 2015-12-31 2020-01-31 华为技术有限公司 一种基于空间重用的退避方法及设备
EP3429300A4 (en) * 2016-03-08 2019-10-09 ZTE Corporation METHOD AND DEVICE FOR PROCESSING A NETWORK ALLOCATION VECTOR
CN107172714A (zh) * 2016-03-08 2017-09-15 中兴通讯股份有限公司 网络分配矢量nav的处理方法及装置
US11240822B2 (en) 2016-03-08 2022-02-01 Zte Corporation Method and device for processing network allocation vector
EP3982690A1 (en) * 2016-03-08 2022-04-13 ZTE Corporation Method and device for processing network allocation vector
CN107172714B (zh) * 2016-03-08 2022-07-15 中兴通讯股份有限公司 网络分配矢量nav的处理方法及装置
US11956812B2 (en) 2016-03-08 2024-04-09 Zte Corporation Method and device for processing network allocation vector
WO2018196642A1 (zh) * 2017-04-28 2018-11-01 中兴通讯股份有限公司 信道接入的方法及装置、存储介质
US11265913B2 (en) 2017-04-28 2022-03-01 Zte Corporation Channel access method and device, and storage medium

Also Published As

Publication number Publication date
EP3007510A1 (en) 2016-04-13
EP3007510A4 (en) 2016-06-01
CN104284441A (zh) 2015-01-14
EP3007510B1 (en) 2020-02-12
CN104284441B (zh) 2019-04-19
US9832793B2 (en) 2017-11-28
US20160174262A1 (en) 2016-06-16

Similar Documents

Publication Publication Date Title
WO2014173307A1 (zh) 一种空间复用下的信道接入方法及站点
KR102308351B1 (ko) 액세스 방법 및 장치
KR102517089B1 (ko) 데이터 전송을 위한 채널 접근 방법, 이를 이용한 무선 통신 방법 및 무선 통신 단말
EP3139680B1 (en) Channel access method, system and computer readable storage medium
WO2016062263A1 (zh) 一种数据传输方法及站点
US11337222B2 (en) Coordinated stations in a single BSS with shared TXOP in the frequency domain
US20070153830A1 (en) Methods and apparatus to provide fairness for wireless local area networks that use extended physical layer protection mechanisms
WO2013010430A1 (zh) 一种业务数据传输方法及系统
CN105830506B (zh) 在支持用于下行链路的信道的无线lan系统中的功率减少模式操作方法及其装置
KR101838080B1 (ko) 하향링크용 채널을 지원하는 무선랜 시스템에서 데이터 송수신 방법 및 이를 위한 장치
WO2013053296A1 (zh) 一种无线站点接入信道的方法及系统
WO2014011117A1 (en) Sectorized beam operation for wireless networks
WO2015021772A1 (zh) 一种信道接入的方法、装置和系统
WO2017050137A1 (zh) 一种多用户传输网络分配矢量设置方法和装置
WO2014186939A1 (zh) 一种同频组网无线局域网的通信方法及设备
WO2013159552A1 (zh) 无线帧的接收方法及装置
WO2022033283A1 (zh) 一种信道竞争方法及相关装置
WO2014173164A1 (zh) 一种信道接入的处理方法、装置和计算机可读存储介质
WO2017114040A1 (zh) 一种传输机会控制方法及装置
CN108141769A (zh) 基站装置、无线终端装置和无线通信方法
WO2017152727A1 (zh) 数据传输方法及装置
US10051656B2 (en) Operation method using downlink oriented channel in wireless LAN system
JP2015035744A (ja) 無線通信システム、無線端末および無線通信方法
WO2012155741A1 (zh) 无线帧发送的方法及装置、通信网元
US20160353417A1 (en) Method for transmitting and receiving data in wireless lan system supporting downlink frame transmission interval and device for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788354

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014788354

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14903598

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE