WO2018196642A1 - 信道接入的方法及装置、存储介质 - Google Patents

信道接入的方法及装置、存储介质 Download PDF

Info

Publication number
WO2018196642A1
WO2018196642A1 PCT/CN2018/083187 CN2018083187W WO2018196642A1 WO 2018196642 A1 WO2018196642 A1 WO 2018196642A1 CN 2018083187 W CN2018083187 W CN 2018083187W WO 2018196642 A1 WO2018196642 A1 WO 2018196642A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frame
frame
spatial multiplexing
instruction information
obss
Prior art date
Application number
PCT/CN2018/083187
Other languages
English (en)
French (fr)
Inventor
张博
吕开颖
韩志强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020197035177A priority Critical patent/KR102315800B1/ko
Priority to EP18791907.1A priority patent/EP3618376A4/en
Priority to US16/609,065 priority patent/US11265913B2/en
Publication of WO2018196642A1 publication Critical patent/WO2018196642A1/zh
Priority to US17/682,881 priority patent/US12041652B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • H04W74/06Scheduled access using polling

Definitions

  • the embodiments of the present invention relate to the field of wireless communications technologies, and in particular, to a channel access method and apparatus, and a storage medium.
  • WLAN Wireless Local Area Networks
  • OFDMA Orthogonal-FDMA (Frequency Division Multiplexing Access)
  • Multiple access, spatial multiplexing and other technologies can access more WLAN devices with the same bandwidth, and also support long-distance access.
  • the spatial multiplexing technology enables different sites in the BSS (Basic Service Set) to simultaneously multiplex the same channel for transmission to improve network throughput.
  • the basic principle of spatial multiplexing is that when a frame of OBSS (Overlapping Basic Service Set) is received and the received power is less than a certain threshold, the frame can be ignored and the channel is considered idle. Competing access channels for data transmission.
  • multiple BSS networks are pre-configured as an SRG (Spatial Reuse Group), and a BSS site in the group uses a higher OBSS-PD (Power Detection).
  • the threshold is used for spatial multiplexing transmission to improve the transmission opportunity of spatial multiplexing. This technology is called SRG OBSS-PD based SR (Spatial Reuse) technology.
  • the transmission time of some frames is not expected to be multiplexed by the third-party sites in the OBSS. If it is multiplexed, the transmission effect may be deteriorated, and even subsequent data transmission may be affected, for example.
  • the site of the BSS transmits a channel measurement frame, and the channel measurement result is used as a basis for beamforming when the station subsequently transmits data. In the specific communication process, it is found that if the channel measurement result is used to beamform the subsequently transmitted data, the transmitted data may not be successfully received or decoded, or the transmission may be greatly interfered.
  • Embodiments of the present invention provide a channel access method and apparatus, and a storage medium, which solve the problem of large interference of beamforming.
  • a method for channel access comprising:
  • the radio frame After receiving the radio frame, determining that the radio frame is an overlapping basic service subset OBSS radio frame;
  • the OBSS radio frame is a radio frame of a specified type or determining whether the OBSS radio frame carries specific spatial multiplexing instruction information
  • the OBSS radio frame is a radio frame of a specified type or the OBSS radio frame carries specific spatial multiplexing instruction information, update the local network allocation vector according to the duration information carried in the radio frame;
  • Channel access is performed according to the local network allocation vector.
  • a device for channel access including:
  • a determining module configured to: after receiving the radio frame, determine that the radio frame is an overlapping basic service subset OBSS radio frame, and determine that the radio frame is a radio frame of a specified type or determine whether the radio frame carries a spatial multiplexing instruction information;
  • An update module configured to update a local network allocation vector according to duration information carried in the radio frame
  • An access module configured to perform channel access according to a local network allocation vector.
  • a device for channel access comprising a memory and a processor, wherein
  • the memory is configured to store an instruction
  • the processor is configured to execute the instruction stored in the memory, and can implement the foregoing access method of a channel.
  • a method for channel access comprising:
  • a radio frame is transmitted, the radio frame being a specified type of radio frame and/or carrying specific spatial multiplexing instruction information.
  • a device for channel access including:
  • a sending module configured to send a radio frame, where the radio frame is a specified type of radio frame or carries specific spatial multiplexing instruction information.
  • a device for channel access comprising a memory and a processor, wherein
  • the memory is configured to store an instruction
  • the processor is configured to execute the instruction stored in the memory to implement the foregoing access method of a channel.
  • a computer storage medium storing computer-executable instructions; after the instructions are executed, a method of channel access provided by one or more of the foregoing technical solutions can be implemented.
  • the embodiment of the present invention provides a channel access method and device, and a storage medium, where an OBSS station can detect a type of an OBSS radio frame or determine whether an OBSS radio frame carries a specific spatial multiplexing instruction information, which may be a forbidden space.
  • the multiplexed instruction information if the OBSS radio frame is a radio frame of a specified type that prohibits spatial multiplexing, or the OBSS radio frame carries specific spatial multiplexing instruction information that prohibits spatial multiplexing, indicating the corresponding OBSS radio frame It is forbidden to reuse spatially.
  • the station updates the local network allocation vector according to the duration information of the OBSS radio frame that prohibits spatial multiplexing, so that when the station initiates channel access according to the updated local network allocation vector, it automatically avoids the OBSS frame transmission in the prohibited spatial multiplexing.
  • the channel access is initiated because the channel corresponding to the OBSS radio frame has been occupied by other stations; thereby reducing the failure rate of channel access initiation and reducing the interference of the station to other data transmissions occupying the channel site.
  • FIG. 1 is a flowchart of a method for channel access according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an apparatus for channel access according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for channel access according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an apparatus for channel access according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a multiple BSS network according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a channel measurement sequence according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an NDP frame format according to an embodiment of the present invention.
  • the receiving station performs channel access, it is determined whether the channel is determined according to the local network allocation vector. Idle, if idle, contend for the access channel, otherwise perform backoff; in the embodiment of the present invention, in order to avoid spatial multiplexing, the transmission of the radio frame is interfered and affects the channel access of the receiving station, and the receiving station performs channel access before performing channel access.
  • the radio frame is an OBSS radio frame, and determining that the OBSS radio frame is a radio frame of a specified type or determining that the OBSS radio frame carries specific spatial multiplexing instruction information, and the information reconfigures a local network allocation vector; If the local network allocation vector is updated, it is equivalent to updating the access time of the channel that the site requests to access to the OBSS radio frame, thereby avoiding that the site continues when a site has occupied the channel. Request access, causing request access failure, and causing interference to data transmission at other sites question.
  • FIG. 1 is a flowchart of a method for receiving channel access at a receiving end according to an embodiment of the present invention. As shown in FIG. 1 , the method includes the following steps:
  • Step 11 After receiving the WLAN radio frame, the receiving station determines that the radio frame is an OBSS radio frame, and determines that the radio frame is a radio frame of a specified type or determines that the radio frame carries specific spatial multiplexing instruction information; To: determine whether the OBSS radio frame is a radio frame of a specified type or determine whether the OBSS radio frame carries specific spatial multiplexing instruction information; the specific spatial multiplexing instruction information may be instruction information that prohibits spatial multiplexing.
  • Step 12 Update a local network allocation vector (NAV) according to the duration information carried in the radio frame.
  • the step 12 may include: if the OBSS radio frame is a radio frame of a specified type or the OBSS
  • the radio frame carries the specific spatial multiplexing instruction information, indicating that the OBSS radio frame in the currently received radio frame is an OBSS radio frame that is prohibited from spatial multiplexing; therefore, in step 12, according to the duration information of the OBSS radio frame that prohibits spatial multiplexing.
  • Update the local network allocation vector may characterize the end time of the transmission opportunity where the OBSS radio frame for which spatial multiplexing is prohibited is located;
  • Step 13 Perform channel access according to the NAV.
  • the OBSS radio that prohibits spatial multiplexing is not requested before the end of the transmission opportunity of the OBSS radio frame in which the spatial multiplexing is prohibited.
  • the channel on which the frame is located thereby reducing the problem of requesting access failure, while reducing the request to access the data parameters of the station that has occupied the channel of the OBSS radio frame that prohibits spatial multiplexing, thereby reducing interference to other sites.
  • the duration information carried in the radio frame indicates the remaining transmission time of a Transmission Opportunity (TxOP).
  • TxOP Transmission Opportunity
  • the transmitting station and the receiving station can perform one or more radio frame exchanges. For example, if the transmitting station sends a radio frame and receives the radio frame received by the station acknowledgment response, it can be regarded as a radio frame exchange.
  • the receiving end receives the WLAN radio frame, and the determining that the radio frame is an OBSS radio frame includes:
  • the radio frame is an OBSS radio frame.
  • the method before the determining that the radio frame is a radio frame of a specified type, the method further includes:
  • the specific spatial multiplexing instruction information includes:
  • the spatially multiplexed instruction information or the delayed multiplexed instruction information is prohibited.
  • the instruction information for prohibiting spatial multiplexing is to prohibit spatial multiplexing based on OBSS signal detection threshold and/or to prohibit instruction information based on spatial multiplexing of spatial multiplexing parameters.
  • the receiving station receives the radio frame, and determines, by the BSS color, the frame from the OBSS network, and the length (Length) field and the space-time stream (Nsts) of the radio frame can be parsed from the physical layer.
  • the value of the domain satisfies a preset pairing relationship according to the value of the length field and the value of the space-time watershed, and determines whether the radio frame is a channel measurement frame.
  • the NAV is updated by using the value of the TXOP duration (Transmission Opportunity Duration) field in the physical layer, and spatial multiplexing is prohibited.
  • TXOP duration Transmission Opportunity Duration
  • the frame is not an NDP frame, view the spatial multiplexing domain, and determine whether the spatial multiplexing instruction and the physical layer frame type indication satisfy the judgment condition according to the spatial multiplexing instruction in the physical layer signaling and the frame type indication of the physical layer. If yes, the NAV is updated by using the duration information in the physical layer. If the spatial multiplexing instruction satisfies the decision condition and the physical layer frame type does not satisfy the decision condition, the specified frame type is determined from the media access layer data unit, if it is the specified frame type. Then, the duration information carried by the media access layer data unit is more shaped into a NAV.
  • the spatial multiplexing instruction decision condition is that the spatial multiplexing instruction indicates that the spatial multiplexing cannot be spatially set to SR-delay or SRP-Disallow or SRP/OBSS PD-Disallow during the frame, and the physical layer frame type is Trigger -based PPDU (Physical Packet Data Unit).
  • the frame is a Trigger-based PPDU according to the physical layer frame format. If yes, the NAV is updated by using the TXOP duration (Transmission Opportunity Duration) field in the physical layer, and spatial multiplexing is prohibited.
  • TXOP duration Transmission Opportunity Duration
  • the MAC (Medium Access Control) frame is further analyzed, and the first radio frame is determined to be NDPA by determining the type and/or subtype, or Trigger Beamforming report poll frame, or Beamforming feedback frame.
  • the specified type of radio frame type is determined from the MAC layer as a channel measurement announcement (NDPA) frame or a channel information feedback polling trigger frame or a channel information feedback frame.
  • NDPA channel measurement announcement
  • the updating the local network allocation vector according to the duration information carried in the radio frame comprises:
  • the transmission opportunity duration field of the radio frame is parsed from the physical layer, and the NAV is updated according to the parsed value of the transmission opportunity duration field, and channel access/spatial multiplexing is prohibited during a period in which the NAV is not zero.
  • the value in the time domain of the signaling domain is obtained from the media access layer parsing, and the NAV operation is updated according to the value.
  • the embodiment of the present invention can perform a channel access operation based on spatial multiplexing or a channel access operation based on non-spatial multiplexing.
  • the station can quickly identify the frame.
  • a channel measurement frame interaction sequence adopts a channel access mode with spatial multiplexing or a channel access mode with non-spatial multiplexing.
  • FIG. 2 is a schematic diagram of an apparatus for accessing a channel of a radio frame receiving station according to an embodiment of the present invention. As shown in FIG. 2, the apparatus in this embodiment includes:
  • a determining module configured to: after receiving the radio frame, determine that the radio frame is an overlapping basic service subset OBSS radio frame, and determine that the radio frame is a radio frame of a specified type or determine that the radio frame carries a specific spatial multiplexing instruction information;
  • An update module configured to update a local network allocation vector according to duration information carried in the radio frame
  • An access module configured to perform channel access according to a local network allocation vector.
  • the determining module is configured to determine that the radio frame is an OBSS radio frame, including: determining, according to basic service subset BSS identification information of a physical signaling domain of the radio frame, that the radio frame is OBSS radio frame.
  • the method before determining that the radio frame is a radio frame of a specified type, the method further includes: determining that the physical signaling domain of the radio frame carries specific spatial multiplexing instruction information, where the specific spatial multiplexing instruction information includes: The spatially multiplexed instruction information or the delayed multiplexed instruction information is prohibited, and the spatially multiplexed instruction information is forbidding spatial multiplexing based on the OBSS signal detection threshold and/or prohibiting spatial multiplexing based instruction information based on spatial multiplexing parameters .
  • the time domain corresponding to the OBSS radio frame indicates that it cannot be spatially multiplexed, indicating that the channel corresponding to the OBSS radio frame is prohibited from spatial multiplexing.
  • determining that the radio frame is a radio frame of a specified type is implemented by at least one of: determining, according to a parameter in a physical layer signaling domain, that the radio frame is a radio frame of a specified type; The parameters of the media access layer data unit's signaling domain determine that the radio frame is a specified type of radio frame.
  • determining, according to parameters in the physical layer signaling domain, the radio frame is a radio frame of a specified type, including: parsing a length field of the radio frame and a value of a space time domain from the physical layer, such as The value of the length field and the value of the space-time domain satisfy a preset pairing relationship, and the radio frame is determined to be a channel measurement frame; or the radio frame is determined to be a radio frame of a specified type according to the physical frame format indication information.
  • the determining module is configured to determine, according to parameters in a signaling domain of the medium access layer protocol data unit, that the radio frame is a specified type of radio frame, including: from a medium access control layer protocol data unit
  • the signaling domain parses the type field and/or the subtype field of the radio frame, and determines that the radio frame is a radio frame of a specified type according to the type field and/or the subtype field.
  • the determining module is configured to determine, according to the type field and/or the subtype domain, that the radio frame is a radio frame of a specified type, including: according to the type domain and/or subtype domain Determining that the radio frame is a channel measurement announcement frame, a channel information feedback polling trigger frame, or a channel information feedback frame.
  • the updating module is configured to update the local network allocation vector according to the duration information carried in the radio frame, including: according to a transmission opportunity duration carried in a physical layer signaling domain of the radio frame Information, updating the local network allocation vector, or updating the local network allocation vector according to the duration information carried in the medium access layer signaling domain of the radio frame.
  • An embodiment of the present invention further provides an apparatus for channel access, including a memory and a processor, where
  • the memory is configured to store, after receiving the radio frame, determining that the radio frame is an overlapping basic service subset OBSS radio frame, and determining that the radio frame is a specified type of radio frame or determining the radio frame Carrying specific spatial multiplexing instruction information;
  • the processor is configured to execute instructions stored by the memory.
  • an embodiment of the present invention provides a method for channel access.
  • the sending station belongs to an SRG network, and includes the following steps:
  • Step 21 Send a radio frame, where the radio frame is a radio frame of a specified type and carries specific spatial multiplexing instruction information.
  • a spatial multiplexing parameter information field of a physical layer signaling domain of the radio frame carries the specific spatial multiplexing instruction information, where the specific The spatial multiplexing instruction information is instruction information for delay spatial multiplexing.
  • the specified type of radio frame comprises any of the following frames:
  • the spatial multiplexing parameter carried by the medium access control layer protocol data unit is set to delay spatially multiplexed instruction information.
  • the embodiment provides a device for channel access, including:
  • a sending module configured to send a radio frame, where the radio frame is a specified type of radio frame or carries specific spatial multiplexing instruction information.
  • the sending module is configured to: when the radio frame that is sent is the radio frame of the specified type, the spatial multiplexing parameter information field of the physical signaling domain of the radio frame carries the specific space.
  • the instruction information is multiplexed, and the specific spatial multiplexing instruction information includes instruction information that prohibits spatial multiplexing or instruction information that is delayed multiplexed.
  • the specified type of radio frame comprises any one of the following: a channel measurement frame; a channel measurement claim frame; a channel information feedback polling trigger frame; a channel information feedback frame,
  • the spatial multiplexing parameter of the medium access control data unit is set to delay multiplexed instruction information.
  • An embodiment of the present invention further provides an apparatus for channel access, including a memory and a processor, where
  • the memory is configured to store an instruction to: send a radio frame, the radio frame is a radio frame of a specified type or carry specific spatial multiplexing instruction information;
  • the processor is configured to execute instructions stored by the memory.
  • a receiving end receives a radio frame and performs channel access.
  • a station in the BSS A receives a BSS in a wireless air interface.
  • the WLAN radio frame of B determines whether space multiplexing can be performed and performs new channel access, including the following steps:
  • Step 101 The wireless air interface receives the radio frame #1, and the physical layer checks the HE-SIG-A (High Efficiency Signal A) in the PPDU #1 to pass the L-SIG (Legacy signal) in the physical layer.
  • the length field and the space time domain of the signaling) determine whether the PPDU #1 is an NDP frame, if yes, go to step 103, otherwise go to step 102.
  • Step 102 in the physical layer through the SR domain in the HE-SIG-A to determine whether the instruction of the domain is SR-Delay, and if so, go to step 104, otherwise go to step 101;
  • Step 103 Obtain a TXOP duration in the TXOP duration (Transmission Opportunity Duration) field in the HE-SIG-A domain of the PPDU #2 in the physical layer.
  • the station updates the NAV through the TXOP, and performs non-spatial reconstruction during the NAV timing. Used EDCA channel access operation.
  • Step 104 Decompose the MAC layer data according to the MAC layer frame header information, and determine, by using the type and subtype information, that the specified frame type is satisfied.
  • the specified frame type includes: an NDPA frame, a channel information feedback polling trigger frame, and a channel information feedback frame.
  • Step 105 The received frame is an NDPA frame, and the channel information is fed back to the polling trigger frame.
  • the NAV of the station is updated by the Duration duration information in the MAC layer.
  • a receiving end receives a radio frame and performs channel access.
  • Two BSS networks as shown in FIG. 5, BSS1 and BSS2, and the BSS1 network has STA1, STA2, STA3, and AP1. There are STA A, STA B and AP2 in BSS2, where STA3 is in the overlapping area.
  • AP1 sends an NDPA (Null Data Packet Announcement) frame to initiate channel measurement frame sequence for measuring uplink channel information of STA2 and STA1, as shown in FIG. 6.
  • NDPA Null Data Packet Announcement
  • the frame is used for measuring downlink channel information by the station, and the frame is characterized by no data field, and only includes a preamble and a PE (frame extension);
  • the transmitting station sets the SR field in the signaling field HE-SIG-A in the physical layer PPDU in the NDPA and the NDP frame to SR-Delay, indicating that spatial multiplexing is prohibited during the frame length.
  • the NDP frame sent by the AP1 is used as an AP (Access Point) to the site channel measurement.
  • the destination station measures the channel information of the AP to the site through the HE-LTF domain, and feeds back to the AP.
  • the characteristics of the frame are There is no data field, the frame format is shown in Figure 7.
  • the total length of the NDP varies depending on the number of HE-LTFs, and the number of HE-LTFs can be obtained by the space-time domain of HE-SIG-A.
  • the station can determine the frame as an NDP frame according to the length and the number of HE-LTFs.
  • the lengths of different HE-LTF numbers are as shown in Table 1:
  • the channel information is fed back to the polling trigger frame, and the plurality of target stations are scheduled to send uplink channel information feedback, and the Trigger frame allocates bandwidth resources to multiple sites.
  • the station After receiving the NDPA frame, the station determines that the NDPA is determined by the frame type, and parses the STA info field to obtain the channel information that needs to be measured corresponding to the site;
  • the CSI (Channel State Information) feedback is sent.
  • the channel steering matrix V and the average SNR (signal-to-noise ratio) of each channel of the channel can be fed back.
  • the station in the BSS2 When the station in the BSS2 receives and recognizes that the frame is a valid WLAN signal of the BSS1 through the wireless air interface, and resolves the SR domain, and determines that it is an NDPA frame, the station updates the NAV according to the duration information in the MAC layer signaling domain.
  • the station STA3 in the BSS2 in this embodiment receives a WLAN radio frame, it is judged by the BSS color (BSS network color, network identification information) that the frame is from the OBSS network, that is, the WLAN radio frame from the BSS1, through After parsing the physical layer signaling, the space-time stream and the length field satisfy the above pairing, and then the frame is determined to be an NDP frame.
  • BSS color BSS network color, network identification information
  • the length of the remaining TXOP in the channel measurement sequence can be obtained by the TXOP duration field of the HE-SIG-A field in the NDP frame.
  • the OBSS station can determine that the frame interaction sequence is a channel measurement sequence. According to the TXOP duration field, if the remaining TXOP length is greater than the current site NAV value, the NAV is updated, the current backoff procedure is suspended, and subsequent multiplexing is not performed to transmit the radio frame. Therefore, it does not affect the channel measurement sequence performed by other stations.
  • the station STA1 in the BSS1 receives the WLAN radio frame from the BSS2 through the wireless air interface, and determines whether the frame is an NDPA frame by the following method, and determines whether to perform spatial multiplexing. Use, including the following steps:
  • Step 201 The receiving station STA1 receives the radio frame #1 in the wireless air interface, determines that the frame is from the BSS2 network WLAN frame, and checks whether the SR domain in the HE-SIG-A is SR- in the PPDU#1 in the physical layer. Delay, if yes, go to step 202, otherwise continue to step 201;
  • Step 202 the MAC layer data MPDU (Medium Packet Data Unit) is obtained, and the frame is determined to be an NDPA frame by using the type field and the subtype field. If yes, go to step 203, otherwise go to step 201;
  • MPDU Medium Packet Data Unit
  • step 203 the duration of the TXOP is obtained through the duration field of the MAC layer, and the NAV is updated, that is, channel access is not performed within the TXOP duration.
  • BSS1 includes STA#1, STA#2, STA#3, in BSS2.
  • STA A, STA B is included, where STA #3 is in the overlapping area.
  • AP1 sends an NDPA, initiates a channel measurement request, and measures the downlink channel quality of the AP to STA#3 and STA#2.
  • the STA A in the BSS2 receives the radio frame on the wireless air interface:
  • STA A detects the BSS network color of the physical layer of the frame, determines that the frame is a WLAN radio frame sent by the OBSS station, and then determines whether it is SR_Delay through the SR domain.
  • the SR domain is SR_Delay, and STA A continues to parse the MAC layer data, and determines the frame type by type and subtype.
  • the NAV is updated by the duration field in the MAC layer data, that is, the frame is maintained. No spatial multiplexing is performed within this duration.
  • the station STA1 in the BSS1 receives the radio frame from the BSS2, determines the NDP frame by performing the following method, and performs related operations, including the following steps:
  • Step 301 the wireless air interface receives the radio frame #1, the physical layer through the L-SIG length field and the space time domain to determine whether the PPDU #1 is an NDP frame, and if so, then proceeds to step 304, otherwise proceeds to step 302;
  • Step 302 The physical layer checks whether the SR domain in the PPDU #2 is a spatial multiplexing condition, if yes, go to step 303, otherwise go to step 301;
  • Step 303 The station performs spatial multiplexing, and sends a radio frame.
  • Step 304 The TXOP duration field in the HE-SIG-A of the PPDU #2 obtained by the physical layer obtains the TXOP duration, and the station updates the NAV through the TXOP, and does not perform spatial multiplexing within the duration.
  • the channel measurement process is an important means to ensure the correct transmission of data, so the station identifies the channel measurement sequence, so that the channel can be used with spatial multiplexing.
  • Incoming mode or non-spatial multiplexing channel access mode in the following scenario, there are two BSS networks, BSS1 has STA#1, #2, #3 and AP1, and BSS2 has STA A, STA B and AP2, as shown in FIG. 5. Shown.
  • AP1 sends NDPA, initiates channel measurement sequence frame interaction, and measures downlink channels of AP1 to STA#1 and STA#3, as shown in FIG. 6.
  • step 401 the station STA A in the BSS2 receives the radio frame #1 in the AP1 in the wireless air interface, and the STA A parses the physical layer signaling of the frame through the length length field in the L-SIG and the spatial stream of the HE-SIG-A.
  • the Nsts field determines whether the frame is an NDP frame. If it is a non-NDP frame, go to step 402. When the frame is an NDP frame, go to step 403.
  • Step 402 STA A parses the SR domain in the HE-SIG-A signaling at the physical layer.
  • the process goes to step 404. Otherwise, it is determined according to other SR commands. Corresponding operation.
  • Step 403 When the frame is NDP, STA A obtains the TXOP Duration in HE-SIG-A, STA A updates the NAV, and does not perform spatial multiplexing within the TXOP duration.
  • Step 404 STA A continues to parse the frame type of the MAC layer.
  • the frame is an NDPA frame
  • the NAV is updated by using the duration information of the length of the MAC layer.
  • the AP measures downlink channel information to Site 1 and Site 2.
  • Step 501 The AP sends an NDPA frame, carries the target station identifier information, and the channel information that needs to be measured corresponding to the target station, including: feedback steering matrix angle quantization, feedback bandwidth information, and feedback flow number.
  • Step 502 The AP sends a channel measurement frame NDP frame at a SIFS (Short Interframe Space) interval after the NDPA frame is sent, so that the designated station measures the downlink channel information of the AP to the designated station.
  • SIFS Short Interframe Space
  • Step 503 The AP sends a trigger frame, and the scheduling station 1 and the station 2 send the measured channel information, and set the spatial multiplexing instruction in the spatial multiplexing domain in the physical layer of the frame to be an SR-Delay.
  • the channel information may include the degree of quantization of the steering matrix, the average SNR of each spatial stream, the delta SNR of each subcarrier, and the like, the bandwidth of the channel information being declared in the NDPA range of the feedback bandwidth.
  • Step 504 After receiving the trigger frame, the site 1 and the site 2 send the Trigger-based PPDU to transmit the channel information of the AP to the station by using the UL OFDMA.
  • Step 505 the OBSS station STA A receives the BSS1 WLAN frame from the wireless air interface, and determines, by the BSS color, that the PPDU is a WLAN frame from the BSS 1.
  • Step 506 STA A determines that the predefined spatial multiplexing instruction SR-Delay is satisfied according to the spatial multiplexing instruction in the spatial multiplexing domain in the physical layer.
  • Step 507 The station STA A continues to parse the MAC frame.
  • the preset frame type is a channel feedback polling frame
  • the NAV is updated according to the duration information in the MAC frame.
  • the site of BSS1 receives a WLAN radio frame, and the frame is obtained from the OBSS network through the BSS network color field in the physical layer.
  • the SR domain is obtained by using the SR domain of the physical layer as the SR-delay, and then the PPDU frame format is determined.
  • the frame is a Trigger-based PPDU.
  • the station obtains the duration information in the TXOP duration field in the HE-SIG-A of the physical layer of the frame, updates the NAV of the site, and does not perform spatial multiplexing operations.
  • the site of the BSS receives a wifi radio frame, and the frame is obtained from the OBSS network through the BSS network color field in the physical layer.
  • the SR domain is obtained by using the SR domain of the physical layer, and then the SR-delay is obtained. Then, the PPDU frame format is determined, and the frame is a SU (Single User) frame format.
  • SU Single User
  • the station parses the MAC layer integer data to obtain the frame as a management frame, and the subtype is an Action (action frame) frame, and further obtains the frame as a channel information feedback frame.
  • the station sets the NAV of the site through the information in the Duration field in the MAC layer, and does not perform spatial multiplexing.
  • the OBSS site in the SRG network which belongs to the same administrable network as the BSS, is not spatially multiplexed, and the spatial multiplexing domain is set to delay spatial multiplexing.
  • the station receives a wireless signal, and by matching the signal characteristics, the frame is a WLAN frame, and parses the physical layer signaling field, and determines the frame as a frame in the OBSS network by using the BSS Color, and determines that the frame is obtained.
  • the frame is a Non SRG frame, that is, the network is not an SRG network, and the station directly resolves the signaling of the spatial multiplexing domain, and the signaling indication of the domain is SR-Disallow, then the site does not perform spatial complexion within the duration of the PPDU. Use and use the duration information to update the NAV of this site.
  • the embodiment of the present invention provides a computer storage medium, where the computer storage medium stores computer-executable instructions. After the instructions are executed, the channel access method provided by the foregoing one or more technical solutions can be implemented.
  • the computer storage medium provided in this embodiment may be various types of storage media, optionally a non-transitory storage medium.
  • the received radio frame includes an OBSS frame set by spatial multiplexing
  • the frame carries specific spatial multiplexing instruction information that prohibits spatial multiplexing; if the OBSS radio frame is a radio frame of a specified type or the OBSS radio frame carries specific spatial multiplexing instruction information, the OBSS is prohibited according to the space multiplexing.
  • the duration information of the radio frame updates the local allocation network vector, and when the channel request access is performed according to the updated local allocation network vector, the access is avoided on the OBSS radio frame that prohibits spatial multiplexing, thereby reducing request access.
  • the phenomenon of failure, and reduce the interference of the request access of the site to the data transmission of the other station on the channel has a positive industrial effect, is simple to implement, and can be widely used in the industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信道接入的方法,接收到无线帧后,确定所述无线帧为重叠基本服务子集OBSS无线帧,并且确定所述无线帧为指定类型的无线帧或者确定所述无线帧携带特定空间复用指令信息;根据所述无线帧中携带的持续时间信息更新本地网络分配矢量;根据所述本地网络分配矢量进行信道接入。一种信道接入的装置及计算机存储介质。

Description

信道接入的方法及装置、存储介质
相关申请的交叉引用
本申请基于申请号为201710293298.3、申请日为2017年04月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明实施例涉及无线通信技术领域,尤其涉及一种信道接入的方法及装置、存储介质。
背景技术
当前,无线通信系统中各种物联网设备的数量急剧增长,网络负荷越来越重,通信效率也随之下降。针对这类密集场景部署,WLAN(Wireless Local Area Networks,无线局域网络)以提升网络吞吐为目标,引入了OFDMA(Orthogonal-FDMA(Frequency Division Multiplexing Access,频分多址),正交频分多址)多址接入,空间复用等技术,能够在带宽不变的情况下,接入更多的WLAN设备,并且还支持远距离接入。
空间复用技术即能够使得不同的BSS(Basic Service Set,基本服务子集)下的站点同时复用同一信道进行传输从而提高网络的吞吐。空间复用的基本原理是当接收到OBSS(Overlapping Basic Service Set,重叠基本服务子集)的帧,检测到接收功率小于一定的阈值,则可以忽略该帧,认为信道是空闲的,进行退避并竞争接入信道,进行数据传输。在可管理网络中,多个BSS网络会被预先设置为一个SRG(Spatial Reuse Group,空间复用组),在该组内的某个BSS的站点使用更高OBSS-PD(Power Detection,电源检测)门限来进行空间复用传输,从而提高空间复用的传输机会,该技术称为SRG OBSS-PD based SR(Spatial Reuse,空间复用) 技术。
但是,对于本BSS中的发送方来说,某些帧的传输时间是不希望被OBSS中的第三方站点复用,如果被复用会使得传输效果变差,甚至影响后续的数据传输,例如本BSS的站点发送信道测量帧,信道测量结果是作为站点随后发送数据时用来进行波束赋形的依据。在具体的通信过程中发现,若依靠信道测量结果对随后发送的数据进行波束赋形,可能会导致传输的数据无法被成功接收或解码、或传输干扰很大的问题。
发明内容
本发明实施例提供一种信道接入的方法及装置、存储介质,解决波束赋形的干扰大的问题。
一种信道接入的方法,包括:
接收到无线帧后,确定所述无线帧为重叠基本服务子集OBSS无线帧;
确定所述OBSS无线帧为指定类型的无线帧或者确定所述OBSS无线帧是否携带特定空间复用指令信息;
若所述OBSS无线帧为指定类型的无线帧或者所述OBSS无线帧携带特定空间复用指令信息,根据所述无线帧中携带的持续时间信息更新本地网络分配矢量;
根据所述本地网络分配矢量进行信道接入。
一种信道接入的装置,其中,包括:
确定模块,配置为接收到无线帧后,确定所述无线帧为重叠基本服务子集OBSS无线帧,并且确定所述无线帧为指定类型的无线帧或者确定所述无线帧是否携带空间复用指令信息;
更新模块,配置为根据所述无线帧中携带的持续时间信息更新本地网络分配矢量;
接入模块,配置为根据本地网络分配矢量进行信道接入。
一种信道接入的装置,包括存储器和处理器,其中,
所述存储器,配置为存储有指令;
所述处理器,配置为执行所述存储器存储的指令,能够实现前述的信道的接入方法。
一种信道接入的方法,包括:
发送无线帧,所述无线帧为指定类型的无线帧和/或携带特定空间复用指令信息。
一种信道接入的装置,其中,包括:
发送模块,配置为发送无线帧,所述无线帧为指定类型的无线帧或携带特定空间复用指令信息。
一种信道接入的装置,包括存储器和处理器,其中,
所述存储器,配置为存储有指令;
所述处理器,配置为执行所述存储器存储的指令,实现前述的信道的接入方法。
一种计算机存储介质,所述计算机存储介质存储有计算机可执行的指令;所述指令被执行后,能够实现前述一个或多个技术方案提供的信道接入的方法。
综上,本发明实施例提供了一种信道接入的方法及装置、存储介质,OBSS站点可以检测接收OBSS无线帧的类型或者确定OBSS无线帧是否携带有特定空间复用指令信息可为禁止空间复用的指令信息;若该OBSS无线帧为禁止空间复用的指定类型的无线帧,或者,该OBSS无线帧携带有禁止空间复用的特定空间复用指令信息,则表明对应的OBSS无线帧是禁止空间复用的。站点会根据禁止空间复用的OBSS无线帧的持续时间信息更新本地网络分配矢量,如此站点根据更新后的本地网络分配矢量发起信道接入时,就会自动避开在禁止空间复用OBSS帧传输时发起信道接入,因为该OBSS无线帧对应的信道已经被其他站点占据了;从而减少信道接入发起的失败 率,并减少了本站点对其他占用该信道站点的数据传输的干扰。
附图说明
图1为本发明实施例提供的的一种信道接入的方法的流程图;
图2为本发明实施例提供的一种信道接入的装置的示意图;
图3为本发明实施例提供的一种信道接入的方法的流程图;
图4为本发明实施例提供的一种信道接入的装置的示意图;
图5为本发明实施例提供的多BSS网络的示意图;
图6为本发明实施例提供的信道测量序列的示意图;
图7是为本发明实施例提供的NDP帧格式的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
如果允许对无线帧进行空间复用,有可能影响到无线帧的传输,并且很有可能接下来数据传输也会受到影响,接收站点进行信道接入时,根据所述本地网络分配矢量判断信道是否空闲,若空闲,则竞争接入信道,否则进行退避;在本发明实施例中为了避免空间复用使得无线帧的传输受到干扰并且影响接收站点的信道接入,接收站点在进行信道接入之前,会确定所述无线帧为OBSS无线帧,并且确定所述OBSS无线帧为指定类型的无线帧或者确定所述OBSS无线帧携带特定空间复用指令信息,而这些信息重新配置本地网络分配矢量;若更新了本地网络分配矢量,相当于更新了本站点请求接入到所述OBSS无线帧占用的信道的接入时间,从而可以避免在 一个站点已经占用了该信道时,本站点还继续请求接入,导致请求接入失败,并对其他站点的数据传输造成干扰的问题。
图1为本发明实施例提供的一种接收端信道接入的方法的流程图,如图1所示,包括以下步骤:
步骤11、接收站点接收到WLAN无线帧后,确定所述无线帧为OBSS无线帧,并且确定所述无线帧为指定类型的无线帧或者确定所述无线帧携带特定空间复用指令信息;此处为:确定OBSS无线帧是否为指定类型的无线帧或者确定OBSS无线帧是否携带特定空间复用指令信息;该特定空间复用指令信息可为禁止空间复用的指令信息。
步骤12、根据所述无线帧中携带的持续时间信息更新本地网络分配矢量(Network Allocation Vector,简称NAV);所述步骤12可包括若所述OBSS无线帧为指定类型的无线帧或者所述OBSS无线帧携带特定空间复用指令信息,表明当前接收到的无线帧中的OBSS无线帧是禁止空间复用的OBSS无线帧;故在步骤12中根据禁止空间复用的OBSS无线帧的持续时间信息更新本地网络分配矢量。更新后的本地网络分配矢量可以表征禁止空间复用的OBSS无线帧所在的传输机会的结束时间;
步骤13、根据NAV进行信道接入。如此,根据考虑了空间复用对无线帧传输干扰的NAV进行接入,在禁止空间复用的OBSS无线帧的所在的传输机会结束时间之前都会不会请求接入该禁止空间复用的OBSS无线帧所在的信道,从而减少请求接入失败的问题,同时减少请求接入对已占用该禁止空间复用的OBSS无线帧的信道的站点的数据参数,从而降低对其他站点的干扰。
在一些实施例中,所述无线帧中携带的持续时间信息指示的是一个传输机会(Transmission Opportunity,即TxOP)的剩余传输时间的。一个传输机会内,发送站点和接收站点可以进行一个或多个无线帧交换。例如,发送站点发送一个无线帧,接收站点确认响应所接收到的无线帧,即可视为一个无线帧交换。
在一些实施例中,接收端接收到WLAN无线帧,所述确定所述无线帧为OBSS无线帧,包括:
根据所述无线帧的物理信令域的基本服务子集BSS标识信息来确定所述无线帧为OBSS无线帧。
在一些实施例中,所述确定所述无线帧为指定类型的无线帧前,还包括:
确定所述无线帧的物理信令域携带特定空间复用指令信息。
其中,所述特定空间复用指令信息包括:
禁止空间复用的指令信息或延迟复用的指令信息。
所述禁止空间复用的指令信息为禁止基于OBSS信号检测门限的空间复用和/或禁止基于空间复用参数的空间复用的指令信息
在一些实施例中,接收站点接收无线帧,通过BSS color(网络颜色),判断该帧来自OBSS网络,可以从物理层解析出所述无线帧的长度(Length)域和空时流(Nsts)域的值,根据长度域的值和空时流域的值满足预设的配对关系,确定所述无线帧是否为为信道测量帧。
如果该帧为NDP帧,采用物理层中的时长信息TXOP duration(Transmission Opportunity duration,传输机会时长)域的值更新NAV,并禁止空间复用;
如果该帧不是NDP帧,查看空间复用域,根据物理层信令中的空间复用指令与物理层的帧类型标示,判断该空间复用指令与物理层帧类型指示是否满足判决条件,如果是,则采用物理层中的时长信息,更新NAV,如果空间复用指令满足判决条件,物理层帧类型不满足判决条件,则从介质访问层数据单元判断指定的帧类型,若为指定帧类型,则采用介质访问层数据单元携带的时长信息更形NAV。
所述空间复用指令判决条件是该空间复用指令指示在该帧期间不能进行空间复用设置为SR-delay或者SRP-Disallow或者SRP/OBSS PD-Disallow,所述的物理层帧类型为Trigger-based PPDU(Physical Packet Data Unit,物理层帧数据单元)。
若是SR-Delay,则根据物理层帧格式判断该帧是否为Trigger-based PPDU,如果是,利用物理层中的TXOP duration(Transmission Opportunity  duration,传输机会时长)域更新NAV,并禁止空间复用。
若是SR-Delay,帧类型不是NDP帧或Trigger-based PPDU,则继续解析MAC(Medium Access Control,介质访问控制)帧,通过判断类型和/或子类型,判断第一无线帧是否为NDPA,或者Trigger Beamforming report poll(信道信息反馈轮询触发)帧,或者Beamforming feedback(信道信息反馈)帧。
所述指定类型的无线帧类型从MAC层判断为信道测量声明(NDPA)帧或者信道信息反馈轮询触发帧或信道信息反馈帧。
在一些实施例中,所述根据所述无线帧中携带的持续时间信息更新本地网络分配矢量,包括:
从物理层解析出所述无线帧的传输机会持续期域,根据解析出的所述传输机会持续期域的值更新NAV,在NAV不为零期间内禁止信道接入/空间复用。
可选地,从介质访问层解析得到信令域中的时长域中的值,根据该值更新NAV操作。
本发明实施例可以接收到OBSS站点发送的帧的类型过程中,做出基于空间复用的信道接入操作或是非空间复用的信道接入操作,采用本发明的方案,站点可以快速识别出一种信道测量帧交互序列,采用具有空间复用的信道接入方式或采用非空间复用的信道接入方式。
图2为本发明实施例的一种无线帧接收站点信道接入的装置的示意图,如图2所示,本实施例的装置包括:
确定模块,配置为接收到无线帧后,确定所述无线帧为重叠基本服务子集OBSS无线帧,并且确定所述无线帧为指定类型的无线帧或确定所述无线帧携带特定空间复用指令信息;
更新模块,配置为根据所述无线帧中携带的持续时间信息更新本地网络分配矢量;
接入模块,配置为根据本地网络分配矢量进行信道接入。
在一些实施例中,所述确定模块,配置为确定所述无线帧为OBSS无线 帧,包括:根据所述无线帧的物理信令域的基本服务子集BSS标识信息来确定所述无线帧为OBSS无线帧。
在一些实施例中,确定所述无线帧为指定类型的无线帧前,还包括:确定所述无线帧的物理信令域携带特定空间复用指令信息,所述特定空间复用指令信息包括:禁止空间复用的指令信息或延迟复用指令信息,所述禁止空间复用的指令信息为禁止基于OBSS信号检测门限的空间复用和/或禁止基于空间复用参数的空间复用的指令信息。此处,若一个OBSS无线帧,被禁止或延迟空间复用,则该OBSS无线帧对应的时域上表示不可以空间复用,表明该OBSS无线帧对应的信道禁止空间复用。
在一些实施例中,确定所述无线帧为指定类型的无线帧是通过以下至少之一方式实现的:根据物理层信令域中的参数来确定所述无线帧为指定类型的无线帧;根据介质访问层数据单元的信令域中的参数来确定所述无线帧为指定类型的无线帧。
在一些实施例中,根据物理层信令域中的参数来确定所述无线帧为指定类型的无线帧,包括:从物理层解析出所述无线帧的长度域和空时流域的值,如长度域的值和空时域域的值满足预设的配对关系,由确定所述无线帧为信道测量帧;或者根据物理帧格式指示信息确定所述无线帧为指定类型的无线帧。
在一些实施例中,所述确定模块,配置为根据介质访问层协议数据单元的信令域中的参数来确定所述无线帧为指定类型的无线帧,包括:从介质访问控制层协议数据单元信令域解析所述无线帧的类型域和/或子类型域,根据所述类型域和/或子类型域来确定所述无线帧为指定类型的无线帧。
在一些实施例中,所述确定模块,配置为根据所述类型域和/或子类型域来确定所述无线帧为指定类型的无线帧,包括:根据所述类型域和/或子类型域确定所述无线帧为信道测量声明帧、信道信息反馈轮询触发帧或信道信息反馈帧。
在一些实施例中,所述更新模块,配置为根据所述无线帧中携带的持续时间信息更新本地网络分配矢量,包括:根据所述无线帧的物理层信令域 中携带的传输机会持续期信息,更新本地网络分配矢量,或者根据所述无线帧的介质访问层信令域中携带的时长信息更新本地网络分配矢量。
本发明实施例还提供一种信道接入的装置,包括存储器和处理器,其中,
所述存储器,配置为存储有以下指令:接收到无线帧后,确定所述无线帧为重叠基本服务子集OBSS无线帧,并且确定所述无线帧为指定类型的无线帧或者确定所述无线帧携带特定空间复用指令信息;
所述处理器,配置为执行所述存储器存储的指令。
实施例三
如图3所示,本发明实施例提供一种信道接入的方法,对于发送站点,该发送站点属于SRG网络,包括以下步骤:
步骤21、发送无线帧,所述无线帧为指定类型的无线帧并携带特定空间复用指令信息。
在一些实施例中,所述无线帧为所述指定类型的无线帧时,所述无线帧的物理层信令域的空间复用参数信息域携带所述特定空间复用指令信息,所述特定空间复用指令信息为延迟空间复用的指令信息。
在一些实施例中,所述指定类型的无线帧包括以下帧中的任一种:
信道测量帧;
信道测量声明帧;
信道信息反馈轮询触发帧;
信道信息反馈帧。
在一些实施例中,如所述无线帧为信道反馈轮询帧,则将介质访问控制层协议数据单元携带的空间复用参数设置为延迟空间复用的指令信息。
如图4所示,本实施例提供一种信道接入的装置,包括:
发送模块,配置为发送无线帧,所述无线帧为指定类型的无线帧或携带特定空间复用指令信息。
在一些实施例中,所述发送模块,配置为发送的所述无线帧为所述指 定类型的无线帧时,所述无线帧的物理信令域的空间复用参数信息域携带所述特定空间复用指令信息,所述特定空间复用指令信息包括禁止空间复用的指令信息或延迟复用的指令信息。
在一些实施例中,所述指定类型的无线帧包括以下帧中的任一种:信道测量帧;信道测量声明帧;信道信息反馈轮询触发帧;信道信息反馈帧,
如所述无线帧为信道反馈轮询帧,则将介质访问控制数据单元的空间复用参数设置为延迟复用的指令信息。
本发明实施例还提供一种信道接入的装置,包括存储器和处理器,其中,
所述存储器,配置为存储有以下指令:发送无线帧,所述无线帧为指定类型的无线帧或携带特定空间复用指令信息;
所述处理器,配置为执行所述存储器存储的指令。
在本实施例中,提供了一种接收端接收无线帧并进行信道接入的实施方式,在无线通信系统中,特别是无线局域网(WLAN)中,BSS A中的站点在无线空口接收到BSS B的WLAN无线帧,判断是否可以空间复用,并进行新道接入,包括以下步骤:
步骤101、无线空口接收无线帧#1,在物理层查看该PPDU#1中HE-SIG-A(High Efficiency signal A,高效信令A域)中在物理层通过L-SIG(Legacy signal,传统信令)的长度域和空时流域判断PPDU#1是否为NDP帧,如是转到步骤103,否则转到步骤102。
步骤102、在物理层通过HE-SIG-A中的SR域判断该域的指令是否为SR-Delay,如是,跳转到步骤104,否则转步骤101;
步骤103、在物理层得到PPDU#2的HE-SIG-A域中TXOP duration(Transmission Opportunity duration,传输机会时长)域得到TXOP时长,该站点通过该TXOP更新NAV,在NAV计时期间进行非空间复用的EDCA信道接入操作。
步骤104,解MAC层数据根据MAC层帧头信息,通过类型和子类型信息,判断满足所述的指定帧类型。
所述的指定帧类型包括:NDPA帧,信道信息反馈轮询触发帧,信道信息反馈帧。
步骤105接收帧为NDPA帧,信道信息反馈轮询触发帧,信道信息反馈帧时,通过MAC层中的Duration时长信息更新本站点的NAV
在该实施例中,提供了一种接收端接收无线帧并进行信道接入的实施方式,两个BSS网络,如图5所示,BSS1和BSS2,BSS1网络中具有STA1,STA2,STA3和AP1,BSS2中具有STA A,STA B和AP2,其中STA3处在重叠区域。
在发送侧:
在BSS1中,AP1发送NDPA(Null Data Packet Announcement,信道测量声明帧)帧发起信道测量帧序列对于测量STA2和STA1的上行信道信息,如图6所示。
在AP1侧,依次发送以下的帧:
发送NDPA帧发起信道测量序列,里面携带了目标站点的信道测量信息;
发送NDP帧,该帧用于站点测量下行信道信息,该帧的特点是没有数据域,只包含了前导和PE(帧扩展);
发送站点在NDPA以及NDP帧中设置物理层PPDU中的信令字段HE-SIG-A中的SR域设置为SR-Delay,表示在该帧长期间,禁止空间复用。
AP1发送的NDP帧用来做AP(Access Point,接入节点)到站点信道测量,目的站点接收该帧以后通过HE-LTF域测量AP到站点的信道信息,并反馈给AP,该帧的特点就是没有数据域,帧格式如图7所示。
NDP的总长度是根据HE-LTF的个数不同而不同,HE-LTF的个数可以通过HE-SIG-A的空时流域得到。
根据L-SIG中长度域以及HE-LTF个数,站点特别是第三方OBSS站点,可根据长度和HE-LTF个数确定该帧为NDP帧。在采用4X HE-LTF的NDP中,不同的HE-LTF个数对应的长度如表1所示:
表1
Nsts域 HE-LTF个数 Length长度
1 1 22
2 2 34
3 4 58
4 4 58
5 6 82
6 6 82
7 8 106
8 8 106
发送信道信息反馈轮询触发帧,调度多个目标站点发送上行的信道信息反馈,Trigger帧给多个站点分配带宽资源。
在接收侧,在BSS1网络中:
在站点STA1/STA2侧,依次接收以下的帧:
站点接收到NDPA帧以后,通过帧类型判断出是NDPA,并解析STA info(信息)字段,获得本站点对应的需要测量的信道信息;
接收NDP帧,通过测量NDP中的HE-LTF得到信道信息;
接收信道信息反馈轮询触发帧,得到分配的信道资源;
发送CSI(Channel State Information,信道状态指示)反馈,依据NDPA中的反馈类型,可以反馈信道导向矩阵V,信道每个流平均SNR(信噪比)等信息。
当BSS2中的站点通过无线空口在物理层接收并识别出该帧是BSS1的有效WLAN信号,解得SR域,并判断是NDPA帧,站点根据MAC层信令域中的时长信息更新NAV。
在BSS2网络中的接收站点:
当该实施例中BSS2中的站点STA3,接收一个WLAN无线帧,通过BSS color(BSS网络颜色,注:网络标示信息)判断,该帧是来自OBSS网络,即来自BSS1中的WLAN无线帧,通过解析物理层信令后得到空时流和长度域满足上述配对,则确定该帧就是NDP帧。
站点STA3确认是NDP帧后,通过NDP帧中HE-SIG-A字段的TXOP时长 域可以得到信道测量序列中剩余TXOP的长度。
OBSS站点可以判断出该帧交互序列为信道测量序列,根据TXOP时长域,若剩余TXOP长度大于当前站点NAV的值,则更新NAV,挂起当前退避过程,不会进行后续的复用发送无线帧,从而不影响其他站点进行的信道测量序列。
在一个无线通信系统中,特别是无线局域网中,BSS1中的站点STA1通过无线空口接收来自BSS2的WLAN无线帧,通过以下所述方法判断出该帧是否为NDPA帧,并判断是否要进行空间复用,包括以下步骤:
步骤201、接收站点STA1在无线空口接收无线帧#1,通过BSS网络颜色判断该帧是来自BSS2网络WLAN帧,在物理层查看该PPDU#1中HE-SIG-A中SR域是否为SR-Delay,如是,则转步骤202,否则继续执行步骤201;
步骤202、解得MAC层数据MPDU(Medium Packet Data Unit,媒介层帧数据单元),通过类型域和子类型域判断该帧是否为NDPA帧,如是,则转步骤203,否则转步骤201;
步骤203、通过MAC层的时长域得到该TXOP时长,更新NAV,即在TXOP时长内不进行信道接入。
在无线局域网中,特别是在基于802.11ax协议的WLAN网络中,在具有两个BSS的区域中,如图5所示,BSS1中包含了STA#1,STA#2,STA#3,在BSS2中包含了STA A,STA B,其中STA#3在重叠区域。
在发送侧:
在BSS1中AP1发送NDPA,发起信道测量请求,测量AP到STA#3和STA#2的下行信道质量。
在接收侧:
BSS2中的站点STA A在无线空口接收到该无线帧:
首先STA A检测该帧物理层的BSS网络颜色,判断该帧为OBSS站点发送的WLAN无线帧,紧接着通过SR域判断是否为SR_Delay。
该SR域为SR_Delay,STA A继续解析MAC层数据,并通过类型和子类 型判断该帧类型,当该帧为信道信息反馈轮询触发帧时,通过MAC层数据中的时长域更新NAV,即保持在该时长内不进行空间复用。
在一个无线通信系统中,特别是无线局域网中,BSS1中的站点STA1接收来自BSS2的无线帧,通过以下所述方法判断出,以及判断NDP帧,并执行相关操作,包括以下步骤:
步骤301、无线空口接收无线帧#1,在物理层通过L-SIG的长度域和空时域判断PPDU#1是否为NDP帧,如是,则转步骤304,否则继续执行步骤302;
步骤302、物理层查看该PPDU#2中的SR域是否为满足空间复用条件,如是,则转步骤303,否则转步骤301;
步骤303、该站点进行空间复用,发送无线帧;
步骤304、在物理层得到PPDU#2的HE-SIG-A中TXOP时长域得到TXOP时长,该站点通过该TXOP更新NAV,并在时长内不进行空间复用。
在无线局域网(WLAN),特别是基于802.11ax WLAN的HE站点通信过程中,信道测量过程是一个保证数据正确传输的重要手段,因此站点识别信道测量序列,从而可以采用具有空间复用的信道接入方式或者非空间复用的信道接入方式,在以下场景中具有两个BSS网络,BSS1具有STA#1,#2,#3和AP1,BSS2具有STA A,STA B和AP2,如图5所示。
BSS1中AP1发送NDPA,发起信道测量序列帧交互,测量AP1到STA#1和STA#3的下行信道,如图6所示。
步骤401,BSS2中的站点STA A在无线空口接收到AP1中的无线帧#1,STA A解析该帧的物理层信令通过L-SIG中的长度length域和HE-SIG-A的空间流Nsts域确定该帧是否为NDP帧,如果是非NDP帧,转到步骤402,当该帧为NDP帧时,转到步骤403。
步骤402,STA A在物理层解析HE-SIG-A信令中的SR域,当SR域中具体SRP参数为SR-delay时,跳转到步骤404,否则,根据其他SR指令判断,做出对应的操作。
步骤403,当该帧为NDP时,STA A得到HE-SIG-A中的TXOP Duration, STA A更新NAV,在该TXOP时长内不进行空间复用。
步骤404,STA A继续解析MAC层的帧类型,根据类型和子类型该帧为NDPA帧,则使用MAC层的时长域时长信息,更新NAV。
在基于802.11ax的网络中,如图5在一个BSS网络中,AP测量到站点1和站点2的下行信道信息。
步骤501,AP发送NDPA帧,携带目标站点标示信息,以及对应目标站点的需要测量的信道信息,包括:反馈导向矩阵角度量化,反馈带宽信息,反馈流数等信息。
步骤502,AP在发送NDPA帧后SIFS(Short Interframe Space,短帧间间隔)间隔,发送信道测量帧NDP帧,用于让指定的站点测量AP到指定站点的下行信道信息。
步骤503,AP发送触发帧,调度站点1和站点2发送测量的信道信息,并设置了该帧的物理层中的空间复用域中的空间复用指令为SR-Delay。
所述信道信息可以包含导向矩阵的量化的度,每个空间流的平均SNR,每个子载波的delta SNR等信息,所述信道信息带宽在NDPA申明了反馈带宽的范围。
步骤504,站点1和站点2接收到触发帧后,SIFS间隔后通过UL OFDMA的方式发送Trigger-based PPDU反馈AP到站点的信道信息。
步骤505,OBSS站点STA A在无线空口接收到来自BSS1 WLAN帧,通过BSS color判断该PPDU是来自BSS 1的WLAN帧。
步骤506,STA A根据物理层中的空间复用域中的空间复用指令,判断满足预定义的空间复用指令SR-Delay。
步骤507,站点STA A继续解析MAC帧,所述预设的帧类型为信道反馈轮询帧时,根据MAC帧中的时长信息,更新NAV。
在一个WLAN网络中,BSS1的站点接收到一个WLAN无线帧,通过物理层中BSS网络颜色域得到该帧是来自OBSS网络。
通过物理层的SR域,得到所述的SR域为SR-delay,接着判断PPDU帧 格式,该帧为Trigger-based PPDU。
站点得到该帧物理层的HE-SIG-A中的TXOP时长域中的时长信息,更新本站点的NAV,并不进行空间复用操作。
在一个WLAN网络中,本BSS的站点接收到一个wifi无线帧,通过物理层中BSS网络颜色域得到该帧是来自OBSS网络。
通过物理层的SR域,得到所述的SR域为SR-delay,接着判断PPDU帧格式,该帧为SU(Single User,单用户)帧格式。
站点解析MAC层整数据得到该帧为管理帧,子类型为Action(动作帧)帧,进一步得到该帧为信道信息反馈帧。
站点通过MAC层中的Duration时长域中的信息,设置站点的NAV,并不进行空间复用。
站点/AP发送的无线帧时,使得SRG网络中,即与本BSS同属于一个可管理网络中的OBSS站点,不进行空间复用,设置空间复用域中信令为延迟空间复用。
在一个WLAN网络中,站点接收到一个无线信号,通过匹配信号特征,得到该帧是WLAN帧,并解析物理层信令字段,通过BSS Color判断该帧为OBSS网络中的帧,并且判断得到该帧为Non SRG帧,即与该网络不是一个SRG网络,站点直接解析空间复用域的信令,得到该域的信令指示为SR-Disallow,那么,站点在本PPDU时长内不进行空间复用,并使用时长信息更新本站点的NAV。
本发明实施例提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行的指令;所述指令被执行后,能够实现前述一个或多个技术方案提供的信道接入方法。
本实施例中提供的计算机存储介质可为各种类型的存储介质,可选地位非瞬间存储介质。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明不限制于任何特定形式的硬件和软件的结合。
以上仅为本发明的优选实施例,当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
工业实用性
本发明实施例公开的技术方案中,若接收到的无线帧中包括通过空间复用设置的OBSS帧,则会进一步检测该OBSS无线帧是否为禁止空间复用的指定类型的无线帧或者该OSBSS帧携带有禁止空间复用的特定空间复用指令信息;若所述OBSS无线帧为指定类型的无线帧或者所述OBSS无线帧携带特定空间复用指令信息,则会根据禁止空间复用的OBSS无线帧的持续时间信息更新本地分配网络矢量,根据更新后的本地分配网络矢量进行信道请求接入时,会避开在禁止空间复用的OBSS无线帧上请求接入,从而减少了请求接入失败的现象,并减少了本站点的请求接入对其他站点在该信道数据传输的干扰,故具有积极的工业效果,且实现简便,可以在工业上广泛推广使用。

Claims (31)

  1. 一种信道接入的方法,包括:
    接收到无线帧后,确定所述无线帧为重叠基本服务子集OBSS无线帧;
    确定所述OBSS无线帧为指定类型的无线帧或者确定所述OBSS无线帧是否携带特定空间复用指令信息;
    若所述OBSS无线帧为指定类型的无线帧或者所述OBSS无线帧携带特定空间复用指令信息,根据所述OBSS无线帧中携带的持续时间信息更新本地网络分配矢量;
    根据所述本地网络分配矢量进行信道接入。
  2. 如权利要求1所述的方法,其中:所述确定所述无线帧为OBSS无线帧,包括:
    根据所述无线帧的物理信令域的基本服务子集BSS标识信息来确定所述无线帧为OBSS无线帧。
  3. 如权利要求1所述的方法,其中:所述确定所述OBSS无线帧为指定类型的无线帧前,还包括:
    确定所述OBSS无线帧的物理信令域携带特定空间复用指令信息。
  4. 如权利要求1-3任一项所述的方法,其中:所述特定空间复用指令信息包括:
    禁止空间复用的指令信息或延迟空间复用的指令信息。
  5. 如权利要求4所述的方法,其中:
    所述禁止空间复用的指令信息为禁止基于OBSS信号检测门限的空间复用和/或禁止基于空间复用参数的空间复用的指令信息。
  6. 如权利要求1-3任一项所述的方法,其中:所述确定所述OBSS无线帧为指定类型的无线帧是通过以下至少之一方式实现的:
    根据物理层信令域中的参数来确定所述无线帧为指定类型的无线帧;
    根据介质访问层协议数据单元的信令域中的参数来确定所述无线帧为指定类型的无线帧。
  7. 如权利要求6所述的方法,其中:所述根据物理层信令域中的参数来确定所述无线帧为指定类型的无线帧,包括:
    从物理层信令域解析出所述无线帧的长度域和空时流域的值,如长度域的值和空时流域的值满足预设的关系,确定所述无线帧为指定类型的无线帧,或者
    根据物理帧格式指示信息确定所述无线帧为指定类型的无线帧。
  8. 如权利要求7所述的方法,其中:
    所述指定类型无线帧为信道测量帧或信道信息反馈帧。
  9. 如权利要求6所述的方法,其中:所述根据介质访问层协议数据单元的信令域中的参数来确定所述无线帧为指定类型的无线帧,包括:
    从介质访问控制层协议数据单元信令域解析所述无线帧的类型域和/或子类型域,根据所述类型域和/或子类型域来确定所述无线帧为指定类型的无线帧。
  10. 如权利要求9所述的方法,其中:所述根据所述类型域和/或子类型域来确定所述无线帧为指定类型的无线帧,包括:
    根据所述类型域和/或子类型域确定所述无线帧为信道测量声明帧、信道信息反馈轮询触发帧或信道信息反馈帧。
  11. 如权利要求1、2、3、5、7-10任一项所述的方法,其中:所述根据所述无线帧中携带的持续时间信息更新本地网络分配矢量,包括:
    根据所述无线帧的物理层信令域中携带的传输机会持续期信息,更新本地网络分配矢量,或者
    根据所述无线帧的介质访问层信令域中携带的时长信息更新本地网络分配矢量。
  12. 一种信道接入的装置,其中,包括:
    确定模块,配置为接收到无线帧后,确定所述无线帧为重叠基本服务子集OBSS无线帧,并且确定所述OBSS无线帧为指定类型的无线帧或者确定所述OBSS无线帧是否携带空间复用指令信息;
    更新模块,配置为若所述OBSS无线帧为指定类型的无线帧或者所述OBSS无线帧携带特定空间复用指令信息,根据所述无线帧中携带的持续时间信息更新本地网络分配矢量;
    接入模块,配置为根据本地网络分配矢量进行信道接入。
  13. 如权利要求12所述的装置,其中:
    所述确定模块,配置为根据所述无线帧的物理信令域的基本服务子集BSS标识信息来确定所述无线帧为OBSS无线帧。
  14. 如权利要求12所述的装置,其中:
    所述确定模块,配置为确定所述无线帧的物理信令域携带空间复用指令信息,所述空间复用指令信息包括:禁止空间复用的指令信息或延迟复用指令信息,所述禁止空间复用的指令信息为禁止基于OBSS信号检测门限的空间复用和/或禁止基于空间复用参数的空间复用的指令信息。
  15. 如权利要求12-14任一项所述的装置,其中:
    所述确定模块,配置为执行以下至少之一:根据物理层信令域中的参数来确定所述无线帧为指定类型的无线帧;根据介质访问层协议数据单元的信令域中的参数来确定所述无线帧为指定类型的无线帧。
  16. 如权利要求15所述的装置,其中:
    所述确定模块,配置为从物理层信令域解析出所述无线帧的长度域和空时流域的值,如长度域的值和空时流域的值满足预设的关系,确定所述无线帧为指定类型无线帧;或者根据物理帧格式指示信息确定所述无线帧为指定类型的无线帧。
  17. 如权利要求15所述的装置,其中:
    所述确定模块,配置为从介质访问控制层协议数据单元信令域解析所述无线帧的类型域和/或子类型域,根据所述类型域和/或子类型域来确定所述无线帧为指定类型的无线帧。
  18. 如权利要求17所述的装置,其中:
    所述确定模块,配置为根据所述类型域和/或子类型域确定所述无线帧为信道测量声明帧、信道信息反馈轮询触发帧或信道信息反馈帧。
  19. 如权利要求12-14、16-18任一项所述的装置,其中:
    所述更新模块,配置为根据所述无线帧的物理层信令域中携带的传输机会持续期信息,更新本地网络分配矢量,或者根据所述无线帧的介质访问层信令域中携带的时长信息更新本地网络分配矢量。
  20. 一种信道接入的装置,包括存储器和处理器,其中,
    所述存储器,配置为存储有指令;
    所述处理器,配置为执行所述存储器存储的指令,能够实现权利要求1-11任一项提供的信道接入的方法。
  21. 一种信道接入的方法,包括:
    发送无线帧,所述无线帧为指定类型的无线帧和/或携带特定空间复用指令信息。
  22. 如权利要求21所述的方法,其中:
    接收的OBSS无线帧为所述指定类型的无线帧时,所述无线帧的物理层信令域的空间复用参数信息域携带所述特定空间复用指令信息,所述特定空间复用指令信息包括禁止空间复用的指令信息或延迟空间复用的指令信息。
  23. 如权利要求21所述的方法,其中:所述指定类型的无线帧包括以下帧中的任一种:
    信道测量帧;
    信道测量声明帧;
    信道信息反馈轮询触发帧;
    信道信息反馈帧。
  24. 如权利要求23所述的方法,其中:
    如所述无线帧为信道反馈轮询帧,则将介质访问控制层协议数据单元携带的空间复用参数设置为禁止空间复用的指令信息或延迟空间复用的指令信息。
  25. 如权利要求22或24所述的方法,其中:所述禁止空间复用的指令信息为禁止基于OBSS信号检测门限的空间复用和/或禁止基于空间复用参数的空间复用的指令信息。
  26. 根据权利要求21或24所述的方法,其中:
    如果发送所述无线帧的发送站点属于特定的空间复用组,则所述特定空间复用指令信息设置为延迟空间复用指令。
  27. 一种信道接入的装置,其中,包括:
    发送模块,配置为发送无线帧,所述无线帧为指定类型的无线帧或携带特定空间复用指令信息。
  28. 如权利要求27所述的装置,其中:
    所述无线帧的物理信令域的空间复用参数信息域携带所述特定空间复用指令信息,所述特定空间复用指令信息包括禁止空间复用的指令信息或延迟复用的指令信息。
  29. 如权利要求27所述的装置,其中:
    所述指定类型的无线帧包括以下帧中的任一种:信道测量帧;信道测量声明帧;信道信息反馈轮询触发帧;信道信息反馈帧,
    如所述无线帧为信道反馈轮询帧,则将介质访问控制数据单元的空间 复用参数设置为禁止空间复用的指令信息或延迟复用的指令信息。
  30. 一种信道接入的装置,包括存储器和处理器,其中,
    所述存储器,配置为存储有指令
    所述处理器,配置为执行所述存储器存储的指令,能够实现21-26任一项提供的方法。
  31. 一种计算机存储介质,所述计算机存储介质存储有计算机可执行的指令;所述指令被执行后,能够实现权利要求1-11或21-26任一项提供的方法。
PCT/CN2018/083187 2017-04-28 2018-04-16 信道接入的方法及装置、存储介质 WO2018196642A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197035177A KR102315800B1 (ko) 2017-04-28 2018-04-16 채널 접속 방법 및 장치, 및 기억매체
EP18791907.1A EP3618376A4 (en) 2017-04-28 2018-04-16 METHOD AND DEVICE FOR ACCESSING A CHANNEL, AND STORAGE MEDIA
US16/609,065 US11265913B2 (en) 2017-04-28 2018-04-16 Channel access method and device, and storage medium
US17/682,881 US12041652B2 (en) 2017-04-28 2022-02-28 Channel access method and device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710293298.3 2017-04-28
CN201710293298.3A CN108811161B (zh) 2017-04-28 2017-04-28 一种信道接入的方法及装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/609,065 A-371-Of-International US11265913B2 (en) 2017-04-28 2018-04-16 Channel access method and device, and storage medium
US17/682,881 Continuation US12041652B2 (en) 2017-04-28 2022-02-28 Channel access method and device, and storage medium

Publications (1)

Publication Number Publication Date
WO2018196642A1 true WO2018196642A1 (zh) 2018-11-01

Family

ID=63919481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083187 WO2018196642A1 (zh) 2017-04-28 2018-04-16 信道接入的方法及装置、存储介质

Country Status (5)

Country Link
US (2) US11265913B2 (zh)
EP (1) EP3618376A4 (zh)
KR (1) KR102315800B1 (zh)
CN (2) CN108811161B (zh)
WO (1) WO2018196642A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11540135B2 (en) * 2020-05-07 2022-12-27 Cisco Technology, Inc. Characterizing intrusions using spatial reuse parameters

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3067186C (en) * 2018-05-02 2023-08-22 Lg Electronics Inc. Method for transmitting and receiving signal in wireless lan system, and apparatus therefor
CN111510264B (zh) * 2019-01-30 2023-09-12 华为技术有限公司 空间复用的指示方法及无线通信装置
CN112491498A (zh) * 2019-09-12 2021-03-12 中兴通讯股份有限公司 一种传输方法、装置及计算机可读存储介质
CN114696965B (zh) * 2020-12-28 2024-05-24 华为技术有限公司 一种信息上报方法及通信装置
JP2022188983A (ja) * 2021-06-10 2022-12-22 キヤノン株式会社 通信装置、通信方法、およびプログラム
CN116724613B (zh) * 2022-01-06 2024-09-03 北京小米移动软件有限公司 通信方法和通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103260168A (zh) * 2013-04-22 2013-08-21 东南大学 一种适用于集中式无线局域网的空分干扰抑制方法
WO2014173307A1 (zh) * 2013-07-12 2014-10-30 中兴通讯股份有限公司 一种空间复用下的信道接入方法及站点
CN105592476A (zh) * 2014-10-23 2016-05-18 中兴通讯股份有限公司 一种数据传输方法及站点
CN106376093A (zh) * 2015-07-24 2017-02-01 中兴通讯股份有限公司 一种避免数据碰撞的传输控制方法及装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8345732B2 (en) * 2005-06-28 2013-01-01 Broadcom Corporation Feedback of channel information in a closed loop beamforming wireless communication system
KR101296002B1 (ko) * 2009-08-27 2013-08-14 엘지전자 주식회사 무선랜 시스템에서의 변조 및 코딩 방식 설정 방법 및 이를 지원하는 장치
WO2011060326A1 (en) * 2009-11-13 2011-05-19 Marvell World Trade Ltd. Multi-channel wireless communications
CN104871630B (zh) * 2012-12-19 2019-03-22 Lg 电子株式会社 在无线lan系统的时隙型信道接入中的退避方法和装置
US9807794B2 (en) * 2013-10-23 2017-10-31 Qualcomm, Incorporated Systems, methods and devices for dynamically setting response indication deferral in wireless networks
CN106063368A (zh) * 2013-12-31 2016-10-26 新加坡科技研究局 移动无线电通信装置和用于控制移动无线电通信装置的方法
WO2016003056A1 (ko) * 2014-07-03 2016-01-07 엘지전자(주) 무선 통신 시스템에서 다중 사용자(multi-user) 상향링크 데이터 전송을 위한 방법 및 이를 위한 장치
US10158413B2 (en) * 2015-05-08 2018-12-18 Newracom, Inc. Uplink sounding for WLAN system
WO2017007266A1 (ko) * 2015-07-07 2017-01-12 엘지전자 주식회사 무선랜 시스템에서 사운딩 동작 방법 및 이를 위한 장치
ES2968739T3 (es) * 2015-07-17 2024-05-13 Huawei Tech Co Ltd Método para establecer NAV en sistema de comunicación inalámbrica, y dispositivo relacionado
WO2017026833A1 (ko) * 2015-08-12 2017-02-16 엘지전자 주식회사 무선랜 시스템에서 nav 동작 방법 및 이를 위한 스테이션 장치
WO2017030295A1 (ko) * 2015-08-19 2017-02-23 엘지전자(주) 무선 통신 시스템에서 채널 상태의 피드백 방법 및 이를 위한 장치
CN113365368B (zh) * 2015-09-28 2024-06-07 纽瑞科姆有限公司 用于phy报头中的txop持续时间字段的装置和方法
CN106851848B (zh) * 2015-12-07 2020-06-16 华为技术有限公司 一种并行传输数据的方法及装置
EP3780409A1 (en) * 2015-12-28 2021-02-17 Newracom, Inc. Multiple network allocation vector operation
US10201037B2 (en) * 2016-02-05 2019-02-05 Intel IP Corporation Spatial reuse signaling in the physical layer convergence procedure (PLCP) service data units (PSDUs)
EP3876657B1 (en) * 2016-11-02 2023-12-06 Sony Group Corporation Communication apparatus and communication method
WO2018116650A1 (ja) * 2016-12-20 2018-06-28 ソニー株式会社 通信装置及び通信方法
CN108271263B (zh) * 2016-12-30 2019-07-09 中兴通讯股份有限公司 空间复用的方法及装置
US11564243B2 (en) * 2020-07-27 2023-01-24 Newracom, Inc. Signaling method for multiplexing different amendment devices in an enhanced wireless local area network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103260168A (zh) * 2013-04-22 2013-08-21 东南大学 一种适用于集中式无线局域网的空分干扰抑制方法
WO2014173307A1 (zh) * 2013-07-12 2014-10-30 中兴通讯股份有限公司 一种空间复用下的信道接入方法及站点
CN105592476A (zh) * 2014-10-23 2016-05-18 中兴通讯股份有限公司 一种数据传输方法及站点
CN106376093A (zh) * 2015-07-24 2017-02-01 中兴通讯股份有限公司 一种避免数据碰撞的传输控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3618376A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11540135B2 (en) * 2020-05-07 2022-12-27 Cisco Technology, Inc. Characterizing intrusions using spatial reuse parameters

Also Published As

Publication number Publication date
EP3618376A4 (en) 2021-01-13
KR20200003071A (ko) 2020-01-08
KR102315800B1 (ko) 2021-10-21
CN108811161B (zh) 2023-12-29
US20200154470A1 (en) 2020-05-14
US20220256588A1 (en) 2022-08-11
EP3618376A1 (en) 2020-03-04
US11265913B2 (en) 2022-03-01
US12041652B2 (en) 2024-07-16
CN117769043A (zh) 2024-03-26
CN108811161A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2018196642A1 (zh) 信道接入的方法及装置、存储介质
US12069723B2 (en) Scheduling wireless stations within a target wake time service period
KR102373578B1 (ko) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
KR101978919B1 (ko) 무선랜에서 프레임을 전송하는 방법 및 장치
US10454650B2 (en) Method and apparatus for transmitting data in wireless communication system
US10349288B2 (en) Method and device for receiving frame
US20230308155A1 (en) Apparatus and methods for multi-ap joint transmission and reception
KR101973743B1 (ko) 프레임을 전송하는 방법 및 장치
US20180132278A1 (en) Methods, apparatus and systems for procedures for carrier sense multiple access and spatial reuse in sub-channelized wireless local area networks (wlans)
US20170149547A1 (en) Method and apparatus for receiving frame
US11997715B2 (en) Wireless frame transmission method and apparatus
JP2017502567A (ja) 無線lanにおけるアップリンクフレームを送信する方法及び装置
KR20170047259A (ko) 무선 통신 시스템에서 스테이션이 신호를 수신하는 방법 및 장치
US10362152B2 (en) Trigger-based single user uplink transmission
KR20170051439A (ko) 무선 통신 시스템에서 스테이션이 신호를 송신하는 방법 및 장치
KR102054052B1 (ko) 무선 통신 방법 및 무선 통신 단말
KR20170051338A (ko) 무선 랜 시스템에서 동작모드를 변경하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197035177

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018791907

Country of ref document: EP

Effective date: 20191128