WO2014173102A1 - 预拉-预扭型全桥式2d电液比例换向阀 - Google Patents

预拉-预扭型全桥式2d电液比例换向阀 Download PDF

Info

Publication number
WO2014173102A1
WO2014173102A1 PCT/CN2013/086319 CN2013086319W WO2014173102A1 WO 2014173102 A1 WO2014173102 A1 WO 2014173102A1 CN 2013086319 W CN2013086319 W CN 2013086319W WO 2014173102 A1 WO2014173102 A1 WO 2014173102A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve core
hole
pressure hole
port
Prior art date
Application number
PCT/CN2013/086319
Other languages
English (en)
French (fr)
Inventor
阮健
励伟
孟彬
左强
陈莹
Original Assignee
浙江工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江工业大学 filed Critical 浙江工业大学
Priority to US14/781,454 priority Critical patent/US9970464B1/en
Publication of WO2014173102A1 publication Critical patent/WO2014173102A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/043Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves
    • F15B13/0433Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves the pilot valves being pressure control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0401Valve members; Fluid interconnections therefor
    • F15B13/0406Valve members; Fluid interconnections therefor for rotary valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
    • F16K11/0716Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides with fluid passages through the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/078Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted and linearly movable closure members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/52Mechanical actuating means with crank, eccentric, or cam
    • F16K31/524Mechanical actuating means with crank, eccentric, or cam with a cam
    • F16K31/52475Mechanical actuating means with crank, eccentric, or cam with a cam comprising a sliding valve
    • F16K31/52483Mechanical actuating means with crank, eccentric, or cam with a cam comprising a sliding valve comprising a multiple-way sliding valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/30575Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve in a Wheatstone Bridge arrangement (also half bridges)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/8667Reciprocating valve
    • Y10T137/86694Piston valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/8667Reciprocating valve
    • Y10T137/86694Piston valve
    • Y10T137/86702With internal flow passage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/8667Reciprocating valve
    • Y10T137/86694Piston valve
    • Y10T137/8671With annular passage [e.g., spool]

Definitions

  • the invention belongs to an electro-hydraulic proportional valve in the field of fluid transmission and control, and more particularly to an electro-hydraulic proportional reversing valve.
  • Electro-hydraulic servo control technology combines the advantages of fluid transmission control technology and information electronics technology, and has been applied in important national strategic military industries such as aerospace, cutting-edge weapons, steel, and electric power generation, and has achieved rapid success.
  • the electro-hydraulic servo valve also has defects such as poor anti-pollution capability, large pressure loss in the valve (7 MPa), high manufacturing cost and maintenance cost, and large loss of system energy consumption.
  • electro-hydraulic servo valves Because of the many shortcomings of electro-hydraulic servo valves, their fast response performance cannot be widely used in general industrial equipment.
  • the traditional electro-hydraulic switch control can not meet the requirements of high-quality control systems required by modern industrial production. Therefore, it is desirable to have an electro-hydraulic control technology that is low in production and maintenance cost, safe and reliable, and has control accuracy and response characteristics that can meet the actual needs of industrial control systems.
  • electro-hydraulic proportional technology has been proposed.
  • the electro-hydraulic proportional valve is designed on the basis of a conventional industrial hydraulic valve using a reliable and inexpensive electro-mechanical converter (proportional electromagnet, etc.) and a corresponding valve. This results in a proportional control element that has the same oil quality requirements as a general industrial valve, has less pressure loss in the valve, and meets most industrial control requirements.
  • the electro-hydraulic proportional valve can be combined with the electronic control device, it is very convenient to operate and process various input and output signals to realize complex control functions. At the same time, it has the advantages of anti-pollution, low cost and fast response. Widely used in industrial production, such as ceramic floor brick presses, strip steel constant tension control, pressure vessel fatigue life tester, hydraulic elevator movement and control system, metal cutting machine table movement Control, rolling mill pressure and control systems, hydraulic presses, pipe benders, plastic injection molding machines, etc.
  • the electro-hydraulic proportional valve is both an electro-hydraulic conversion element and a power amplifying element. It plays an important role in the performance of the system and is the core component of the proportional control system.
  • proportional electromagnets as electro-mechanical converters.
  • the proportional electromagnet has the advantages of simple and reliable structure, good processability, large output force and displacement, and convenient use and maintenance.
  • the proportional solenoid can also be used as an output stage for direct drive of low power.
  • a direct-acting proportional valve that balances the position of the solenoid with the force of the electromagnet and the spring force is only suitable for small flow applications.
  • the maximum working flow for practical applications is generally 15L/min (maximum working pressure is 21MPa).
  • the direct-acting proportional directional control valve or flow valve adopts a slide valve structure, which is susceptible to the phenomenon of “stuck” caused by friction and oil contamination.
  • LVDT linear displacement sensor
  • the electric feedback direct-acting proportional valve can be applied to the closed-loop control of the hydraulic system like a servo valve, but it is limited by magnetic saturation, and the proportional electromagnet output force. Limited, it is impossible to fundamentally solve the problem of the influence of hydraulic power under high pressure and large flow rate, and flow saturation will still occur under the working conditions of high pressure (large differential pressure) and large flow.
  • pilot control pilot control
  • American engineer Harry Vickers could not solve the pressure control problem of high pressure and high flow systems in order to solve the direct acting relief valve due to the influence of hydraulic power.
  • the basic idea of the pilot-controlled relief valve is to use a pilot valve with a small diameter to control the static pressure and drive the main spool to move. This hydraulic thrust is much larger than the hydraulic force generated when the oil flows through the valve port. Eliminate its adverse effects on the movement and control of the main spool.
  • the idea of guidance and control was later widely used in the design of other hydraulic valves, making the high pressure and large flow control of the hydraulic system a reality. Later, various electro-hydraulic servo control components also followed the design concept of pilot control. Electro-hydraulic proportional valves were no exception, and many structural principles of servo valves were borrowed.
  • the invention has the advantages of large flow rate and high working pressure, and can be realized like a direct-acting proportional valve under zero pressure (loss of pressure).
  • the pre-tensioned-pre-twist type full-bridge 2D electro-hydraulic proportional directional control valve of the present invention comprises a 2D valve, linear electro-mechanical converters 2 at both ends, and a compression-torque coupling between them. .
  • the pre-tensioning-pre-twist type full-bridge 2D electro-hydraulic proportional directional control valve comprises a 2D valve composed of a valve body 9 and a valve body 8, and the valve core 9 is rotatably and axially slidably disposed in the inner hole of the valve body 8.
  • the left and right ends of the valve core 9 are respectively provided with end shoulders, and the inner hole of the valve body between the end shoulders is sequentially provided with a T port, an A port, a P port, a B port, and a T port, wherein P
  • the mouth is the inlet port
  • the pressure is the system pressure
  • the end of the end shoulder is provided with two middle shoulders, and the two middle shoulders are respectively located at the A and B ports
  • the shoulder is slidably sealed with the body bore; the feature is:
  • Both ends of the 2D valve are connected to the linear electric motor through the compression and compression coupling and the cylindrical compression springs 23, 21. - mechanical converter 2, 16;
  • the end portions of the spool 9 end, the end covers 4 and 19 and the valve body 8 form the sensitive chambers h and j at the left and right ends;
  • a pair of high and low pressure holes namely a first high pressure hole b, a first low pressure hole d and a second high pressure hole c, a second low pressure hole e; a first high pressure hole b and a second high pressure are respectively disposed on the end shoulders of the valve core
  • the hole c is a through hole, and communicates with the P port through the hole a and the inner hole k of the valve core respectively, and the first low pressure hole d and the second low pressure hole e respectively communicate with the T port through the groove on the inner side of the shoulder of the end of the valve core;
  • a pair of axisymmetric sensing channels (, and gi, g 2 ) are respectively disposed at two ends of the valve body wall, and are respectively communicated with the left sensitive cavity h and the right sensitive cavity j;
  • the pair of high and low pressure holes are arranged on both sides of one of the sensing channels, and each intersects the sensing channel to form two tiny opening areas, which are connected in series to form a hydraulic resistance half bridge, the sensitivity
  • the pressure of the chamber is controlled by the hydraulic resistance half bridge at both ends;
  • the compression and compression coupling is mounted by a sliding wedge 20, two rolling bearings 14, 38 mounted on the end of a pin 18 passing through the end of the valve core,
  • the linear bearings 13 and 32 on the sliding wedge, the pins 10 and 22 for restricting the rotation of the sliding wedge;
  • the cylindrical compression spring 21 is installed between the valve body 8 and the sliding wedge 20, and the pre-compression amount is slightly larger than the valve core stroke;
  • the sliding wedge is slidably sleeved on the pins 10, 22 parallel to the axis of the spool through the linear bearings 13, 32;
  • the sliding wedge is provided with a first inclined surface and a second inclined surface respectively located on two sides of the axial line, and the first inclined surface and the second inclined surface are respectively along two parallel to the axial line Extending in a plane of symmetry, the first inclined surface and the second inclined surface are inversely symmetric according to the axial line, and the two rolling bearings respectively roll on the first inclined surface and the second inclined surface, so that the spool is on the shaft
  • the torsion occurs when moving; the slopes of the sliding wedges at both ends cooperate to make the torsion angle of the spool have a certain correspondence with the position of the spool along the axis line.
  • the inclined surfaces on the sliding wedges at the opposite ends of the axial line respectively abut against the bearings on the same side of the valve core from the two sides of the valve core in the direction of rotation.
  • the compression-coupling coupling is a structure that realizes a linear motion of a linear electro-mechanical converter and a torsional motion of the spool.
  • the torsional moment of the rotation of the spool is amplified, so that the adverse effects of the nonlinear factors such as the friction between the spool and the spool hole are minimized.
  • the electromagnetic thrust outputted by the linear electro-mechanical converter rotates the spool through the compression and compression coupling, so that the pressure of the valve sensitive chamber changes to drive the axial movement of the spool.
  • the spool rotates in the opposite direction, which is sensitive.
  • the pressure of the cavity gradually returns to the original value, the spool reaches a new equilibrium position, and the displacement of the spool is proportional to the thrust of the proportional electromagnet.
  • the beneficial effects of the invention are mainly as follows: 1. For the proportional electromagnet due to the limited output thrust of the magnetic saturation, a compression-torque amplifying driving technique is proposed, which amplifies the driving force of the proportional electromagnet to the valve core, effectively eliminating the valve core and the valve. The adverse effects of nonlinear factors such as friction between the core holes on the proportional characteristics; 2.
  • the pilot-controlled electro-hydraulic proportional commutation (throttle) valve function is realized by the double motion freedom of the rotation and sliding of the valve core. The valve core rotates to change the output pressure of the hydraulic resistance bridge, which in turn generates static pressure to drive the axial movement of the valve core.
  • the 2D reversing (throttle) valve, compression and compression coupling and proportional electromagnet are coaxially connected to form a simple structure, advanced principle 2D
  • the electro-hydraulic proportional reversing (throttle) valve not only has the characteristics of large flow rate and high working pressure of the common pilot-controlled electro-hydraulic proportional valve, but also can be like direct-acting under zero pressure (loss of pressure). EXAMPLE achieved as proportional control valve.
  • Figure 1 is a schematic view of the structure of a pre-tensioned-pre-twisted full-bridge 2D electro-hydraulic proportional directional control valve.
  • Figure 2 is a schematic view of the valve body assembly of the pre-tensioned-pre-twisted full-bridge 2D electro-hydraulic proportional directional control valve.
  • Figure 3 is a schematic view of the structure of the spool.
  • Figure 4 is a cross-sectional view showing the internal structure of the spool.
  • Figure 5 is a cross-sectional view of the valve body.
  • Figure 6 is a side view of the valve body.
  • Figure 7 is a schematic view of the assembly of the spool and the rolling bearing.
  • Figure 8 is a schematic view of the structure of the top cover.
  • Figure 9 is a schematic view showing the outer side structure of the sliding wedge.
  • Figure 10 is a schematic view showing the inner side structure of the sliding wedge.
  • FIG. 11 Schematic diagram of the hydraulically guided full bridge.
  • Figure 12-14 shows the force analysis and motion diagram of the pre-tensioned-pre-twisted full-bridge 2D electro-hydraulic proportional directional control valve.
  • a pre-tensioned-pre-twist type full-bridge 2D electro-hydraulic proportional directional control valve includes screws 1, 3, 12, 30, 33, linear electro-mechanical converters 2, 16, and end caps 4 , 19, linear bearings 5, 13, 31, 32, cylindrical compression springs 21, 23, 0 type seals 6, 11, 15, 29, pins 7, 10, 22, 24, valve body 8, spool 9, rolling bearings 14, 27, 36, 38, top cover 17, 28, pin 18, 26, wedge 20, 25, screw 34, steel ball 35, sleeve 37, 39 ⁇
  • Pre-tensioned-pre-twisted full-bridge 2D electro-hydraulic proportional directional control valve consists of a 2D valve, a linear electro-mechanical converter at both ends 2, 16, a compression-coupling coupling between them, and the like.
  • the pre-tensioning-pre-twist type full-bridge 2D electro-hydraulic proportional directional control valve comprises a 2D valve composed of a valve body 9 and a valve body 8, and the valve core 9 is rotatably and axially slidably disposed in the inner hole of the valve body 8.
  • the left and right ends of the valve core 9 are respectively provided with end shoulders, and the inner hole of the valve body between the end shoulders is opened with a mouth, a mouth, a P port, a B port, a T port, wherein P
  • the mouth is the inlet port, the pressure is the system pressure;
  • the end of the end shoulder is provided with two middle shoulders, and the two middle shoulders are respectively located at the A and B ports;
  • the shoulder is slidably sealingly fitted with the inner hole of the valve body 8;
  • Both ends of the 2D valve are connected to the linear electro-mechanical converter 2, 16 through a compression-coil coupling and a cylindrical compression spring 23, 21;
  • the end of the spool, the end caps 4 and 19 and the valve body 8 form a sensitive cavity h, j at the left and right ends;
  • a pair of high and low pressure holes that is, a first high pressure hole b, a first low pressure hole d, a second high pressure hole c, and a second low pressure hole e are respectively disposed on the end of the valve core end;
  • the first high pressure hole b and the second high pressure hole c are through holes, respectively communicate with the P port through the hole a and the inner hole k of the valve core, and the first low pressure hole d and the second low pressure hole e respectively pass through the inner side of the shoulder end of the valve core
  • the groove is connected to the T port;
  • the first high pressure hole b and the second high pressure hole c are two on the shoulder of the end of the valve core, and are axially symmetric with each other;
  • the first low pressure hole d and the second low pressure hole e are There are two shoulders on the end of the spool, which are axially symmetric with each other.
  • both ends of the hole in the wall of the valve body defines a respective feelings axisymmetric channels (and ⁇ 1, g 2), are sensitive chamber communicating with the left and right h J sensitive chamber;
  • the pair of high and low pressure holes are arranged on both sides of one of the sensing channels, and each intersects with the sensing channel to form two tiny opening areas, which are connected in series to form a hydraulic resistance half.
  • the pressure of the sensitive chamber is controlled by the hydraulic resistance half bridge at both ends; the compression and compression coupling is fixed by the sliding wedge 20 on one end of the pin 18 passing through the end of the valve core
  • the rolling bearings 14, 38, the linear bearings 13, 32 installed in the sliding wedge holes p, q, and the pins 10, 22 for restricting the rotation of the sliding wedge;
  • the cylindrical compression spring 21 is mounted between the valve body and the sliding wedge, and the pre-compression amount thereof Slightly larger than the valve core stroke;
  • the sliding wedge is slidably sleeved on the pin parallel to the axial line of the valve core through the linear bearing;
  • the sliding wedge is provided with a first inclined surface and a second inclined surface respectively located on two sides of the axial line, and the first inclined surface and the second inclined surface are respectively along two parallel to the axial line Extending in a plane of symmetry, the first inclined surface and the second inclined surface are inversely symmetric according to the axial line, and the two rolling bearings respectively roll on the first inclined surface and the second inclined surface, so that the spool is on the shaft
  • the torsion occurs when moving; the slopes of the sliding wedges at both ends cooperate to make the torsion angle of the spool have a certain correspondence with the position of the spool along the axis line.
  • the compression-coupling coupling is a structure that realizes the linear motion of the linear electro-mechanical converter to the torsional motion of the spool.
  • the torsional moment of the spool rotation is amplified, so that the spool and the spool
  • the adverse effects of nonlinear factors such as friction between the holes on the proportional characteristics are minimized.
  • the 0-rings 6, 11 are used to seal between the end cap and the valve body; the 0-rings 15, 29 are used to seal between the end cap and the linear electro-mechanical converter;
  • the large cylindrical end n of the top cover 17, 28 is connected to the inner bore of the sliding wedges 20, 25 by an interference fit, and the force of the push rod output of the linear electromechanical converter acts on the small cylindrical end m of the top cover, and the shaft Pass to the slip wedge.
  • the linear bearings 5, 31 and 13, 32 are respectively symmetrically mounted in the upper and lower holes p, q of the sliding wedge to reduce the frictional force when the sliding wedge slides on the pin; the tightening screw 34 will be steel
  • the ball 35 is placed on one end surface of the inner hole k of the valve core for sealing one end of the inner hole k of the valve core; one end of the sleeves 37, 39 is placed on the valve core, and the other end is placed on the rolling bearing 36, 38 On the inner ring, it acts as a support bearing.
  • the high and low pressure holes are circular in shape, and if the axial movement of the spool is required to have a fast response to the rotational motion, a rectangular window of a large area gradient may be employed.
  • the linear electro-mechanical converter is a wet high pressure type proportional electromagnet, and other wet high pressure type linear electro-mechanical converters are also available.
  • the axial force of the sliding wedge at both ends is opposite to the axial force of the valve core, so in the equilibrium position, the spool is in a pre-tensioned and pre-twisted state.
  • the proportional electromagnet at one end of the 2D electro-hydraulic proportional valve is energized, the generated thrust F m acts on the wedge not only to unbalance the axial force of the spool, but also to unbalance the torque of the spool, the spool Turn.
  • the proportional electromagnet at the left end is energized, an electromagnetic thrust to the right is generated, so that the left end of the sliding wedge is opposite to the valve core.
  • the force is reduced, the axial force and torque received at both ends of the valve core are out of balance, and the spool is subjected to a rightward axial driving force and a counterclockwise torque (from left to right).
  • the axial driving force is equivalent to the driving force of the direct-acting proportional valve.
  • the axial movement of the spool cannot be directly driven due to the presence of hydraulic power and friction.
  • a larger tangential force can be obtained sufficient to drive the spool counterclockwise against the friction of the spool.
  • the sliding wedges at both ends are constrained by the circumferential direction of the pin, with the pin as the guiding shaft and the linear bearing as the support sliding to the right, the compression of the right end spring is reduced, and the compression of the left end spring is increased, resulting in an additional spring.
  • the force balance is proportional to the thrust of the electromagnet (see Figure 13).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

预拉-预扭型全桥式2D电液比例换向阀,2D阀的两端都通过压扭联轴器和弹簧连接线性电-机械转换器(2,16),圆柱压缩弹簧(21,23)安装在阀体(8)与滑楔(20,25)之间,其预压缩量略大于阀芯(9)行程;阀芯(9)端部台肩、滑楔(20,25)与阀体(8)之间形成左、右敏感腔;阀芯(9)端部台肩上各开设有一对高、低压孔(b,d和c,e),分别通过阀芯内孔与P口和T口相通;在阀体(8)内孔壁上两端各开设有一感受通道(f和g),分别与左右敏感腔(h和i)相通;端部台肩上的高、低压孔(b,d和c,e)与感受通道相交,形成两个微小的开口面积,串联构成液压阻力半桥,两端敏感腔的压力分别受控于两端的液压阻力半桥。该阀具有流量大、工作压力高等特点。

Description

预拉-预扭型全桥式 2D电液比例换向阀 技术领域
本发明属于流体传动及控制领域中的电液比例阀, 尤其涉及一种电 液比例换向阀。
背景技术
电液伺服控制技术有机结合了流体传动控制技术与信息电子技术 的优势, 在航空航天、 尖端武器、 钢铁、 电力发电等重要的国家战略性 军工业领域得到应用, 并迅速取得成功。 但是电液伺服阀同时也存在着 抗污染能力差, 阀内压力损失大 (7MPa), 制造成本及维护成本高, 系统 能耗损失大等缺陷。 因为电液伺服阀存在的诸多缺陷, 使得其所具有的 快速响应性能在一般工业设备中无法广泛使用。 同时传统的电液开关控 制又不能满足现代工业生产所需要的高质量控制系统的要求。 因此, 人 们希望有一种生产及维护成本低、 安全可靠、 控制精度及响应特性均能 满足工业控制系统实际需求的电液控制技术。
基于上述原因, 人们提出了电液比例技术。 作为电液比例技术的代 表, 电液比例阀是在传统工业用液压阀的基础上, 采用可靠价廉的电- 机械转换器 (比例电磁铁等) 和与之相应的阀进行设计。 从而获得对油 质要求与一般工业阀相同、 阀内压力损失少、 性能又能满足大部分工业 控制要求的比例控制元件。
由于电液比例阀能与电子控制装置组合在一起, 可以十分方便地对 各种输入、 输出信号进行运算和处理, 实现复杂的控制功能。 同时它又 具有抗污染、 低成本以及响应较快的优点。 在工业生产中获得了广泛的 应用, 如陶瓷地板砖制坯压力机、 带钢轧的带钢恒张力控制、 压力容器 疲劳寿命试验机、 液压电梯运动及控制系统、 金属切削机床工作台运动 控制、 轧钢机压力及控制系统、液压冲床、 弯管机、 塑料注射成形机等。 在比例控制系统中, 电液比例阀既是电-液压转换元件, 同时也是功 率放大元件。 它对系统的性能起重要的作用, 是比例控制系统的核心元 件。
电液比例阀最显著的特征和最成功之处在于采用比例电磁铁作为 电-机械转换器。与动圈式和动铁式力矩马达相比, 比例电磁铁具有结构 简单可靠、工艺性好、能输出较大的力和位移以及使用维护方便等优点。 比例电磁铁除用作驱动先导阀外, 还可用作直接驱动小功率的输出级。 比如, 按照电磁铁推力与弹簧力相平衡控制阀芯位置原理的直动式比例 阀,只适用于小流量场合,实际应用的最大工作流量一般在 15L/min (最 大工作压力为 21MPa) 以下。 此外, 为了实现轴向静压力的平衡, 直动 式比例换向阀或流量阀皆采用滑阀结构, 容易受到摩擦力及油液污染的 影响出现 "卡滞"现象。
采用线性位移传感器 (LVDT) 对阀芯位置进行测量和闭环控制, 构成电反馈型直动比例换向阀, 可以在很大程度上提高阀芯的定位刚度 和控制精度, 同时, 人们也在其模型、 非线性及系统应用方面进行了大 量的理论研究工作, 最终使电反馈直动比例阀可以像伺服阀那样应用于 液压系统的闭环控制,但终因受到磁饱和限制, 比例电磁铁输出力有限, 无法从根本上解决高压、大流量下液动力的影响问题, 在高压(压差大) 和大流量的工作状态下仍然会出现流量饱和现象。
消除液动力影响、 提高液压阀的过流能力, 最根本的办法是采用 导控 (先导控制) 技术。 早在 1936年美国工程师 Harry Vickers为了解决 因液动力影响直动溢流阀无法实现高压、 大流量系统的压力控制问题发 明了导控溢流阀, 其基本思想是采用一通径较小的导阀控制静压力, 驱 动主阀芯运动, 因该液压推力比油液流经阀口时所产生液动力大得多, 足以消除其对主阀芯运动与控制产生的不利影响。 导控的思想后来也被 广泛地应用于其它液压阀的设计, 使液压系统高压、 大流量控制成为了 现实。 后来的各种电液伺服控制元件也是沿用了先导控制的设计思想, 电液比例阀也不例外, 并且借用了伺服阀许多结构原理。
发明内容:
为了克服已有电液比例阀的易受摩擦力、 液动力及油液污染影响而 出现 "卡滞"现象及导控级油路失压或压力太低使整个阀无法正常工作 和导控级泄漏流量较大的不足, 本发明提供一种不仅具有普通的导控型 电液比例阀流量大、 工作压力高等特点, 而且在零压 (失压) 下也可以 像直动式比例阀那样实现比例控制功能的预拉-预扭型全桥式 2D电液比 例换向阀。
本发明所述的预拉-预扭型全桥式 2D电液比例换向阀, 由 2D阀、 两端的线性电 -机械转换器 2、 16、 处于它们之间的压扭联轴器等构成。 预拉-预扭型全桥式 2D电液比例换向阀, 包括一个由阀芯 9、 阀体 8组成的 2D阀, 阀芯 9可转动并可轴向滑动地设置在阀体 8内孔内, 阀芯 9左右两端各设有端部台肩, 所述的端部台肩之间的阀体内孔上依 次开有 T口、 A口、 P口、 B口、 T口, 其中 P口是进液口, 该处压力 是系统压力; 所述的端部台肩之间的的阀芯上设有两个中部台肩, 两个 中部台肩分别位于 A口和 B口; 各台肩与阀体内孔可滑动地密封配合; 其特征在于:
2D阀的两端都通过压扭联轴器和圆柱压缩弹簧 23、 21连接线性电 -机械转换器 2、 16;
阀芯 9端部台肩、 端盖 4和 19与阀体 8之间形成左、 右两端的敏 感腔 h和 j ;
阀芯端部台肩上各开设有一对高、 低压孔, 即第一高压孔 b、 第一 低压孔 d和第二高压孔 c、 第二低压孔 e; 第一高压孔 b和第二高压孔 c 为通孔, 分别通过孔 a和阀芯内孔 k与 P口相通, 第一低压孔 d、 第二 低压孔 e分别通过阀芯端部台肩内侧的沟槽与 T口相通;
在阀体内孔壁上的两端各开设有一对轴对称的感受通道 ( 、 和 gi, g2), 分别与左敏感腔 h和右敏感腔 j相通;
所述的的一对高、 低压孔分列在所述的感受通道之一的两侧, 并且 各自与感受通道相交, 形成两个微小的开口面积, 串联构成液压阻力半 桥, 所述的敏感腔的压力分别受控于两端的液压阻力半桥; 压扭联轴器由滑楔 20、固定在一根穿过阀芯端部的销轴 18端部上的 两个滚动轴承 14、 38、 安装于滑楔上的直线轴承 13和 32、 限制滑楔转 动的销钉 10和 22构成;圆柱压缩弹簧 21安装在阀体 8与滑楔 20之间, 其预压缩量略大于阀心行程; 所述的滑楔通过直线轴承 13、 32可滑动 地套在平行于阀芯的轴心线的销钉 10、 22上;
所述的滑楔上设有分别位于所述的轴心线的两侧的第一斜面和第 二斜面, 所述的第一斜面和第二斜面各自沿平行于所述的轴心线的两个 对称平面内延伸, 所述的第一斜面和第二斜面依照所述的轴心线反相对 称, 所述的两个滚动轴承分别滚动在第一斜面和第二斜面上, 以便阀芯 在轴向运动时发生扭转; 两端的滑楔的斜面相互配合使阀芯的扭转角度 与阀芯沿所述的轴心线的位置具有确定的对应关系。 位于所述的轴心线同侧的两端的滑楔上的斜面分别从阀芯的旋转 方向的进、 退两面分别抵靠所述的阀芯两端的同侧的轴承。
所述压扭联轴器是实现线性电-机械转换器的直线运动转为阀芯的 扭转运动的结构。在这个过程中, 可以充分利用 2D阀液压导控桥路压力 增益大 (微小的转角即可使敏感腔的压力发生较大变化) 的特点, 通过 对压扭联轴器的合理设计, 将驱动阀芯转动的扭转力矩放大, 使阀芯与 阀芯孔之间的摩擦力等非线性因素对比例特性的不利影响降低到最小 程度。
线性电-机械转换器输出的电磁推力通过压扭联轴器使阀芯转动,进 而使阀敏感腔的压力发生变化驱动阀芯轴向移动, 在移动的过程中阀芯 反向转动, 其敏感腔的压力又逐渐恢复为原来的值, 阀芯到达一个新的 平衡位置, 阀芯移动的位移与比例电磁铁的推力成比例关系。
本发明的有益效果主要表现在: 1、 针对比例电磁铁因磁饱和输出 推力有限, 提出了压扭放大驱动技术, 将比例电磁铁对阀芯的驱动力放 大, 有效地消除了阀芯和阀芯孔之间的摩擦力等非线性因素对比例特性 所造成的不利影响; 2、 用阀芯的旋转和滑动的双运动自由度实现导控 型电液比例换向 (节流) 阀功能, 由阀芯转动使液压阻力桥路输出压力 发生变化, 进而产生静压力驱动阀芯轴向运动, 在高压、 大流量下可以 有效地克服液动力 (伯努利力) 所造成的不利影响, 有效提高了阀芯的 轴向定位 (主阀开口) 精度; 3、 将 2D换向 (节流) 阀、 压扭联轴器和 比例电磁铁三者共轴联结, 构成结构简单、 原理先进的 2D电液比例换 向 (节流) 阀, 不仅具有普通的导控型电液比例阀流量大、 工作压力高 特点, 而且在零压 (失压) 下也可以像直动式比例阀那样实现比例控制 功能。 附图说明
图 1为预拉-预扭型全桥式 2D电液比例换向阀的结构示意图。
图 2为预拉-预扭型全桥式 2D电液比例换向阀的阀芯阀体装配示意 图。
图 3为阀芯的结构示意图。
图 4为阀芯内部结构剖视图。
图 5为阀体的剖视图。
图 6为阀体的侧面示意图。
图 7为阀芯与滚动轴承装配示意图。
图 8为顶盖的结构示意图。
图 9为滑楔的外侧面结构示意图。
图 10为滑楔的内侧面结构示意图。
图 11液压导控全桥示意图。
图 12-14为预拉-预扭型全桥式 2D电液比例换向阀受力分析与运动 过程图。
具体实施方式
下面结合附图对本发明作进一步描述。
参照图 1~图 10, 一种预拉-预扭型全桥式 2D电液比例换向阀包括 螺钉 1、 3、 12、 30、 33、 线性电 -机械转换器 2、 16、 端盖 4、 19、 直线 轴承 5、 13、 31、 32、 圆柱压缩弹簧 21、 23、 0型密封圈 6、 11、 15、 29、 销钉 7、 10、 22、 24、 阀体 8、 阀芯 9、 滚动轴承 14、 27、 36、 38、 顶盖 17、 28、 销轴 18、 26、 滑楔 20、 25、 紧钉螺钉 34、 钢球 35、 套筒 37、 39ο
预拉-预扭型全桥式 2D电液比例换向阀, 由 2D阀、 两端的线性电- 机械转换器 2、 16、 处于它们之间的压扭联轴器等构成。 预拉-预扭型全桥式 2D电液比例换向阀, 包括一个由阀芯 9、 阀体 8 组成的 2D阀, 阀芯 9可转动并可轴向滑动地设置在阀体 8内孔内, 阀 芯 9左右两端各设有端部台肩, 所述的端部台肩之间的阀体内孔上依次 开有 Τ口、 Α口、 P口、 B口、 T口, 其中 P口是进液口, 该处压力是 系统压力; 所述的端部台肩之间的的阀芯上设有两个中部台肩, 两个中 部台肩分别位于 A口和 B口; 各台肩与阀体 8内孔可滑动地密封配合; 其特征在于:
2D阀的两端都通过压扭联轴器和圆柱压缩弹簧 23、 21连接线性电 -机械转换器 2、 16;
阀芯端部台肩、 端盖 4和 19与阀体 8之间形成左、 右两端的敏感 腔 h, j ;
如图 3、 图 4所示, 阀芯端部台肩上各开设有一对高、 低压孔, 即 第一高压孔 b、 第一低压孔 d和第二高压孔 c、 第二低压孔 e; 第一高压 孔 b和第二高压孔 c为通孔, 分别通过孔 a和阀芯内孔 k与 P口相通, 第一低压孔 d、 第二低压孔 e分别通过阀芯端部台肩内侧的沟槽与 T口 相通; 第一高压孔 b和第二高压孔 c在阀芯端部的台肩上有两个,相互呈轴 对称分布; 第一低压孔 d、 第二低压孔 e在阀芯端部的台肩上有两个, 相互呈轴对称分布。 如图 5、 图 6所示, 在阀体内孔壁上的两端各开设有一对轴对称的 感受通道 ( 、 和§1、 g2), 分别与左敏感腔 h和右敏感腔 j相通; 如图 11所示, 所述的的一对高、 低压孔分列在所述的感受通道之一 的两侧, 并且各自与感受通道相交, 形成两个微小的开口面积, 串联构 成液压阻力半桥, 所述的敏感腔的压力分别受控于两端的液压阻力半 桥; 压扭联轴器由滑楔 20、固定在一根穿过阀芯端部的销轴 18端部上的 两个滚动轴承 14、 38、 安装于滑楔孔 p, q内的直线轴承 13、 32、 限制 滑楔转动的销钉 10、 22构成; 圆柱压缩弹簧 21安装在阀体与滑楔之间, 其预压缩量略大于阀心行程; 所述的滑楔通过直线轴承可滑动地套在平 行于阀芯的轴心线的销钉上;
所述的滑楔上设有分别位于所述的轴心线的两侧的第一斜面和第 二斜面, 所述的第一斜面和第二斜面各自沿平行于所述的轴心线的两个 对称平面内延伸, 所述的第一斜面和第二斜面依照所述的轴心线反相对 称, 所述的两个滚动轴承分别滚动在第一斜面和第二斜面上, 以便阀芯 在轴向运动时发生扭转; 两端的滑楔的斜面相互配合使阀芯的扭转角度 与阀芯沿所述的轴心线的位置具有确定的对应关系。
位于所述的轴心线同侧的两端的滑楔上的斜面分别从阀芯的旋转 方向的进、 退两面分别抵靠所述的阀芯两端的同侧的轴承。
压扭联轴器是实现线性电 -机械转换器的直线运动转为阀芯的扭转 运动的结构。在这个过程中, 可以充分利用 2D阀液压导控桥路压力增益 大 (微小的转角即可使敏感腔的压力发生较大变化) 的特点, 通过对压 扭联轴器的合理设计, 将驱动阀芯转动的扭转力矩放大, 使阀芯与阀芯 孔之间的摩擦力等非线性因素对比例特性的不利影响降低到最小程度。 所述 0型密封圈 6、 11用来对端盖和阀体之间进行密封;所述 0型 密封圈 15、 29用来对端盖和线性电-机械转换器之间进行密封; 所述顶 盖 17、 28的大圆柱端 n与滑楔 20、 25的中心内孔过盈配合相连, 线性 电-机械转换器的推杆输出的力作用在顶盖的小圆柱端 m上, 并轴向传 递至滑楔。 所述直线轴承 5、 31和 13、 32分别对称地安装在滑楔上下 两个孔 p、 q 内, 用以减小滑楔在销钉上滑动时的摩擦力; 所述紧钉螺 钉 34将钢球 35顶在阀芯内孔 k的一个端面上, 用来对阀芯内孔 k的一 端进行密封; 所述套筒 37、 39 的一端顶在阀芯上, 另一端顶在滚动轴 承 36、 38的内圈上, 起到支撑轴承的作用。
所述高、 低压孔形状为圆形, 如果要求阀芯的轴向运动对旋转运动 具有快速响应能力, 则可采用大面积梯度的矩形窗口。
所述线性电-机械转换器为湿式耐高压型比例电磁铁,也可选用其它 湿式耐高压型线性电-机械转换器。
本实施例的工作原理: 如图 12所示, 当 2D电液比例阀两端的比例电 磁铁不通电时, 弹簧对滑楔产生向外的推力 (左端和右端分别由下标 " / "和 " r "表示)通过滑楔的两个轴对称的斜面与两个滚动轴承相接 触的位置传递至阀芯。 由于斜面的作用, 阀芯除承受轴向拉力 外, 还 承受切向力 的作用, 同一端两个接触位置的切向力大小相等、 方向相 反, 构成力偶。 两端的滑楔对阀芯的轴向作用力和力偶方向相反, 因而 在平衡位置时, 阀芯处于预拉与预扭的状态。 当 2D电液比例阀某端的比 例电磁铁通电时, 其产生的推力 Fm作用于滑楔时不仅使阀芯的轴向力失 去平衡, 而且也使阀芯所受的扭矩失去平衡, 阀芯转动。 例如当左端的 比例电磁铁通电时, 产生向右的电磁推力 , 使得左端的滑楔对阀芯的 作用力减小, 阀芯两端所受的轴向力与扭矩皆失去平衡, 阀芯受到向右 的轴向驱动力和逆时针方向的转矩 (从左往右看)。 轴向驱动力相当于 直动式比例阀的驱动力, 在高压力大流量的工况下, 由于存在液动力和 摩擦力无法直接驱动阀芯轴向运动。 但是, 通过合理地选择较小的滑楔 斜面角度 和较大的滚动轴承分布圆直径, 可以得到较大的切向力, 使 其足以克服阀芯的摩擦力驱动阀芯逆时针转动。 与此同时, 两端的滑楔 由于受到销钉的周向约束, 以销钉为导向轴、 以直线轴承为支承向右滑 动, 右端弹簧的压缩量减小、 左端弹簧压缩量增加, 所产生额外的弹簧 力平衡比例电磁铁的推力 (见图 13 )。 在这过程中, 由于阀芯逆时针转 动, 阀左敏感腔的压力升高, 右敏感腔的压力降低, 阀芯向右运动, 在 运动过程中由于其两端的滚动轴承受到两端滑楔斜面的约束, 阀芯在向 右移动的同时也往回转动 (顺时针转动), 阀芯两端敏感腔的压力又重 新恢复为稳态的平衡值, 阀芯到达一个与比例电磁铁推力大小对应的新 平衡位置 (见图 14)。 需要特别指出的是, 当阀的 P口的压力为零 (与 T 口压力相等), 此时, 无法通过两端敏感腔压力的变化驱动阀芯轴向移 动, 但由于阀腔内无油液流动, 阀芯不受液动力和卡紧力的作用, 因而, 比例电磁铁通电后所产生的轴向推力可以直接驱动阀芯运动,这时 2D电 液比例阀的工作原理与直动式比例阀一致。
上述具体实施方式用来解释本发明, 而不是对本发明进行限制, 在 本发明的精神和权利要求的保护范围内, 对本发明作出的任何修改和改 变, 都落入本发明的保护范围。

Claims

权 利 要 求 书
1.预拉-预扭型全桥式 2D电液比例换向阀, 包括一个由阀芯、 阀体 组成的 2D 阀, 阀芯可转动并可轴向滑动地设置在阀体内孔内, 阀芯 左右两端各设有端部台肩, 所述的端部台肩之间的阀体内孔上依次开 有 T口、 A口、 P口、 B口、 T口, 其中 P口是进液口, 该处压力是 系统压力; 所述的端部台肩之间的的阀芯上设有两个中部台肩, 两个 中部台肩分别位于 A口和 B口;各台肩与阀体内孔可滑动地密封配合; 其特征在于:
2D 阀的两端都通过压扭联轴器和圆柱压缩弹簧连接线性电 -机械 转换器;
阀芯端部台肩、 端盖与阀体之间形成左、 右两端的敏感腔; 阀芯端部台肩上各开设有一对高、 低压孔, 即第一高压孔 b、 第 一低压孔 d和第二高压孔 c、第二低压孔 e; 第一高压孔 b和第二高压 孔 c通过阀芯内孔与 P口相通, 第一低压孔 d、 第二低压孔 e分别通 过阀芯端部台肩内侧的沟槽与 T口相通;
在阀体内孔壁上的两端各开设有一对轴对称的感受通道 ( 、 f2gl、 g2), 分别与左敏感腔 h和右敏感腔 j相通;
所述的的一对高、 低压孔分列在所述的感受通道之一的两侧, 并 且各自与感受通道相交, 形成两个微小的开口面积, 串联构成液压阻 力半桥, 所述的敏感腔的压力分别受控于两端的液压阻力半桥; 压扭联轴器由滑楔、固定在一根穿过阀芯端部的销轴两端的两个滚 动轴承、 安装于滑楔上的直线轴承、 限制滑楔转动的销钉构成; 弹簧 安装在阀体与滑楔之间, 其预压缩量略大于阀心行程; 所述的滑楔通 过直线轴承可滑动地套在平行于阀芯的轴心线的销钉上;
所述的滑楔上设有分别位于所述的轴心线的两侧的第一斜面和第 二斜面, 所述的第一斜面和第二斜面各自沿平行于所述的轴心线的两 个对称平面内延伸, 所述的第一斜面和第二斜面依照所述的轴心线反 相对称, 所述的两个滚动轴承分别滚动在第一斜面和第二斜面上, 以 便阀芯在轴向运动时发生扭转; 两端的滑楔的斜面相互配合使阀芯的 扭转角度与阀芯沿所述的轴心线的位置具有确定的对应关系。
2.如权利要求 1所述的比例换向阀, 其特征在于: 位于所述的轴心 线同侧的两端的滑楔上的斜面分别从阀芯的旋转方向的进、 退两面分 别抵靠所述的阀芯两端的同侧的轴承。
3. 如权利要求 1或 2所述的比例换向阀, 其特征在于: 第一高压 孔 b和第二高压孔 c在阀芯端部的台肩上有两个,相互呈轴对称分布; 第一低压孔 d、 第二低压孔 e在阀芯端部的台肩上有两个, 相互呈轴 对称分布; 第一高压孔 b和第二高压孔 c为通孔, 分别通过阀芯内孔 与 P口相通。
4. 如权利要求 3所述的比例换向阀, 其特征在于: 所述高、 低压 孔采用大面积梯度的矩形窗口以便阀芯的轴向运动对旋转运动具有快 速响应能力。
PCT/CN2013/086319 2013-04-27 2013-10-31 预拉-预扭型全桥式2d电液比例换向阀 WO2014173102A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/781,454 US9970464B1 (en) 2013-04-27 2013-10-31 Pre-tensioning-pre-twisting full-bridge 2D electro-hydraulic proportional directional valve

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2013101567043A CN103256401A (zh) 2013-04-27 2013-04-27 预拉-预扭型全桥式2d电液比例换向阀
CN201310156704.3 2013-04-27
CN201310497667.2A CN103615573B (zh) 2013-04-27 2013-10-21 预拉-预扭型全桥式2d电液比例换向阀
CN201310497667.2 2013-10-21

Publications (1)

Publication Number Publication Date
WO2014173102A1 true WO2014173102A1 (zh) 2014-10-30

Family

ID=48960518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086319 WO2014173102A1 (zh) 2013-04-27 2013-10-31 预拉-预扭型全桥式2d电液比例换向阀

Country Status (3)

Country Link
US (1) US9970464B1 (zh)
CN (2) CN103256401A (zh)
WO (1) WO2014173102A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105465420A (zh) * 2016-01-25 2016-04-06 左强 双向高精密型电液比例换向阀
CN113107919A (zh) * 2021-04-23 2021-07-13 温州大学 转阀内嵌式半桥导控机构及流体控制阀
CN113915376A (zh) * 2021-11-04 2022-01-11 哈尔滨工业大学 一种数字阀的传动转换器

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103256401A (zh) * 2013-04-27 2013-08-21 浙江工业大学 预拉-预扭型全桥式2d电液比例换向阀
CN103711945B (zh) * 2013-09-17 2016-03-09 浙江工业大学 单端式预拉-预扭型全桥式2d电液比例换向阀
CN104791316B (zh) * 2015-01-30 2016-11-23 浙江工业大学 一种压力直接检测式手调溢流阀
CN104819178B (zh) * 2015-03-18 2017-04-12 北京航空航天大学 压力随动伺服阀
JP5876185B1 (ja) * 2015-08-27 2016-03-02 憲平 山路 電磁比例制御弁システム
CN105508336B (zh) * 2016-01-25 2018-01-12 浙江大学城市学院 位移可放大型电液比例换向阀
CN105526203B (zh) * 2016-01-25 2017-08-29 浙江申达机器制造股份有限公司 带传递轴弹性压扭联轴器型半桥式2d电液比例换向阀
CN105465454B (zh) * 2016-01-25 2018-04-13 杭州博忆科技有限公司 双向大流量型电液比例换向阀
CN105465086B (zh) * 2016-01-25 2017-12-08 浙江大学城市学院 用于软土盾构机的力反馈型电液比例换向阀
CN105465083B (zh) * 2016-01-25 2017-08-25 浙江大学城市学院 对称全桥双向型2d电液比例换向阀
CN105465084B (zh) * 2016-01-25 2017-12-01 浙江工业职业技术学院 全桥式力反馈弹性压扭联轴器型2d电液比例换向阀
CN105526204B (zh) * 2016-01-25 2018-02-16 浙江申达机器制造股份有限公司 两端独立导控式电液比例换向阀
CN105465085B (zh) * 2016-01-25 2017-09-01 浙江大学城市学院 位移缩小式压扭联轴器型2d电液比例换向阀
CN105526205B (zh) * 2016-01-25 2017-10-03 浙江大学城市学院 一体式压扭联轴器型2d电液比例换向阀
CN105570222B (zh) * 2016-02-17 2017-09-22 武汉市汉诺优电控有限责任公司 一种数控旋芯式比例插装阀
CN110617246B (zh) * 2018-09-17 2024-03-26 浙江工业大学 基于Halbach阵列双向磁悬浮联轴节的二维半桥式电液比例换向阀
CN109578355B (zh) * 2018-11-12 2020-09-22 温州大学苍南研究院 一种全桥式先导控制开关阀
CN109555741B (zh) * 2018-11-12 2020-09-22 温州大学 一种阻尼半桥式先导控制开关阀
CN111457130B (zh) * 2019-01-22 2024-06-11 浙江工业大学 一种微型集成式二维电磁开关阀
CN110131229B (zh) * 2019-05-23 2020-08-04 浙江大学城市学院 一种力矩马达直接控制型插装式二维电液比例换向阀
CN110296119B (zh) * 2019-08-05 2024-03-29 安徽理工大学 一种2d阀芯往复摆动和连续转动切换结构
CN110319067B (zh) * 2019-08-05 2024-03-22 安徽理工大学 一种基于双电机的比例流量控制和高速开关两用阀
CN110285238B (zh) * 2019-08-05 2024-04-12 安徽理工大学 一种基于十字限位口的旋转阀芯切换机构
CN110332168B (zh) * 2019-08-05 2024-03-22 安徽理工大学 一种基于二自由度电机的比例流量控制和高速开关两用阀
CN110873207B (zh) * 2019-11-28 2021-10-22 河南航天液压气动技术有限公司 一种二维电磁阀
CN112762042A (zh) * 2021-01-26 2021-05-07 中国矿业大学(北京) 一种具有特殊密封阀芯结构的滑阀式液压换向阀
CN113236818B (zh) * 2021-04-09 2022-03-08 山东大学 一种低能耗高频响的控制阀及控制方法
CN113236620A (zh) * 2021-04-15 2021-08-10 中国矿业大学 一种三位四通电液比例换向阀
CN113162313B (zh) * 2021-04-15 2023-06-23 浙大城市学院 一种二维电机及伺服阀
CN113217492B (zh) * 2021-04-15 2023-10-24 浙大城市学院 一种压转联轴型电液比例阀
CN114427611A (zh) * 2021-12-22 2022-05-03 哈尔滨理工大学 一种具有组合槽的减振滑阀阀芯结构
CN115978234B (zh) * 2023-01-05 2023-07-14 宁波克泰液压有限公司 一种节流型三位五通电磁阀

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6585004B1 (en) * 2002-01-17 2003-07-01 Delaware Capital Formation, Inc. Multi-stage flow control
CN201288712Y (zh) * 2008-10-17 2009-08-12 上海立新液压有限公司 电磁先导控制换向阀
CN101666341A (zh) * 2009-09-25 2010-03-10 浙江工业大学 高频大流量2d数字伺服阀
CN101737371A (zh) * 2010-02-09 2010-06-16 浙江工业大学 2d数字伺服阀的零位保持机构
CN102913496A (zh) * 2012-10-24 2013-02-06 浙江工业大学 双向全桥2d电液比例方向阀
CN103256401A (zh) * 2013-04-27 2013-08-21 浙江工业大学 预拉-预扭型全桥式2d电液比例换向阀
CN103277531A (zh) * 2013-04-27 2013-09-04 浙江工业大学 预拉-预扭型简化全桥式2d电液比例换向阀

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650305B (zh) * 2012-05-02 2015-01-28 浙江工业大学 2d液压助力电液比例换向阀
CN102878135A (zh) * 2012-09-18 2013-01-16 浙江工业大学 直动式2d电液比例数字阀

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6585004B1 (en) * 2002-01-17 2003-07-01 Delaware Capital Formation, Inc. Multi-stage flow control
CN201288712Y (zh) * 2008-10-17 2009-08-12 上海立新液压有限公司 电磁先导控制换向阀
CN101666341A (zh) * 2009-09-25 2010-03-10 浙江工业大学 高频大流量2d数字伺服阀
CN101737371A (zh) * 2010-02-09 2010-06-16 浙江工业大学 2d数字伺服阀的零位保持机构
CN102913496A (zh) * 2012-10-24 2013-02-06 浙江工业大学 双向全桥2d电液比例方向阀
CN103256401A (zh) * 2013-04-27 2013-08-21 浙江工业大学 预拉-预扭型全桥式2d电液比例换向阀
CN103277531A (zh) * 2013-04-27 2013-09-04 浙江工业大学 预拉-预扭型简化全桥式2d电液比例换向阀

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105465420A (zh) * 2016-01-25 2016-04-06 左强 双向高精密型电液比例换向阀
CN113107919A (zh) * 2021-04-23 2021-07-13 温州大学 转阀内嵌式半桥导控机构及流体控制阀
CN113915376A (zh) * 2021-11-04 2022-01-11 哈尔滨工业大学 一种数字阀的传动转换器
CN113915376B (zh) * 2021-11-04 2024-04-30 哈尔滨工业大学 一种数字阀的传动转换器

Also Published As

Publication number Publication date
CN103615573A (zh) 2014-03-05
CN103256401A (zh) 2013-08-21
CN103615573B (zh) 2016-01-20
US9970464B1 (en) 2018-05-15

Similar Documents

Publication Publication Date Title
WO2014173102A1 (zh) 预拉-预扭型全桥式2d电液比例换向阀
CN102650305B (zh) 2d液压助力电液比例换向阀
CN103615572B (zh) 预拉-预扭型简化全桥式2d电液比例换向阀
CN103711945B (zh) 单端式预拉-预扭型全桥式2d电液比例换向阀
CN102913496B (zh) 双向全桥2d电液比例方向阀
CN104534124B (zh) 位移可放大2d电液比例换向阀
CN203641579U (zh) 单端式预拉-预扭型全桥式2d电液比例换向阀
CN111075785B (zh) 基于双向磁悬浮联轴节的大流量二维半桥式电液比例换向阀
JP3638286B2 (ja) パイロット操作サーボ弁
CN108799236B (zh) 耐高压数字式旋转电机驱动伺服阀
CN111140562B (zh) 带静压支撑的插装式二维磁悬浮伺服比例阀
CN109630491A (zh) 一种电控补偿二通比例流量阀
CN110617246B (zh) 基于Halbach阵列双向磁悬浮联轴节的二维半桥式电液比例换向阀
CN112984198B (zh) 基于推杆中置式滚子联轴节的二维半桥电液比例换向阀
CN111749939B (zh) 一种大流量的二维活塞式流量伺服阀
CN113107918B (zh) 基于间隙补偿位移放大联轴节的二维半桥电液比例换向阀
CN111005907A (zh) 一种可调控流量增益的电液控制阀
CN203627917U (zh) 预拉-预扭型全桥式2d电液比例换向阀
CN212899209U (zh) 基于永磁式环形气隙磁悬浮联轴节的二维电液伺服比例阀
CN112983916A (zh) 一种二维插装式负载敏感阀
CN105864491B (zh) 一种直驱阀用超磁致伸缩驱动及位移放大装置
CN112065797A (zh) 基于永磁式环形气隙磁悬浮联轴节的二维电液伺服比例阀
CN203286051U (zh) 预拉-预扭型简化全桥式2d电液比例换向阀
CN211778286U (zh) 带静压支撑的插装式二维磁悬浮伺服比例阀
CN202040140U (zh) 一种浮动式伺服阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14781454

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13883120

Country of ref document: EP

Kind code of ref document: A1