WO2014171378A1 - 質量分析装置 - Google Patents

質量分析装置 Download PDF

Info

Publication number
WO2014171378A1
WO2014171378A1 PCT/JP2014/060311 JP2014060311W WO2014171378A1 WO 2014171378 A1 WO2014171378 A1 WO 2014171378A1 JP 2014060311 W JP2014060311 W JP 2014060311W WO 2014171378 A1 WO2014171378 A1 WO 2014171378A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
ions
introduction
mass spectrometer
ionization
Prior art date
Application number
PCT/JP2014/060311
Other languages
English (en)
French (fr)
Inventor
高宏 原田
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US14/768,683 priority Critical patent/US9721778B2/en
Priority to EP14784897.2A priority patent/EP2988316B1/en
Priority to CN201480022277.2A priority patent/CN105122422B/zh
Priority to JP2015512456A priority patent/JP6004093B2/ja
Publication of WO2014171378A1 publication Critical patent/WO2014171378A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/164Laser desorption/ionisation, e.g. matrix-assisted laser desorption/ionisation [MALDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers

Definitions

  • the present invention ionizes a sample by a matrix-assisted laser desorption ionization method (MALDI) or laser desorption ionization method (LDI) under an atmospheric pressure atmosphere or a gas pressure atmosphere close to atmospheric pressure,
  • MALDI matrix-assisted laser desorption ionization method
  • LBI laser desorption ionization method
  • the present invention relates to a mass spectrometer that transports generated ions to a high vacuum atmosphere and performs mass analysis.
  • ions generated by an atmospheric pressure MALDI ion source are captured by a quadrupole ion trap, cleaved in multiple stages as necessary, and subjected to mass spectrometry by TOFMS.
  • FIG. 6 is an overall configuration diagram of an atmospheric pressure MALDI mass spectrometer.
  • One direction horizontal to the ground is defined as an X direction
  • a direction horizontal to the ground and perpendicular to the X direction is defined as a Y direction
  • a direction perpendicular to the X direction and the Y direction is defined as a Z direction.
  • the atmospheric pressure MALDI mass spectrometer 201 ionizes the sample S under an atmospheric pressure atmosphere (for example, 10 5 Pa), and ion introduced from the ionization chamber 210 in a high vacuum atmosphere (for example, 10 ⁇ 3 Pa). To 10 ⁇ 4 Pa).
  • the mass analyzer 20 includes a first intermediate vacuum chamber 21 adjacent to the ionization chamber 210, a second intermediate vacuum chamber 22 adjacent to the first intermediate vacuum chamber 21, and an analysis chamber 23 adjacent to the second intermediate vacuum chamber 22. And are installed.
  • the inside of the casing of the ionization chamber 210 is in an atmospheric pressure atmosphere (for example, 10 5 Pa), and the inside of the first intermediate vacuum chamber 21 is evacuated to a low vacuum state (for example, 10 2 Pa) by the rotary pump 25.
  • the inside of the second intermediate vacuum chamber 22 is evacuated to a medium vacuum state (for example, 10 ⁇ 1 Pa to 10 ⁇ 2 Pa) by the turbo molecular pump 25, and the inside of the analysis chamber 23 is evacuated by the turbo molecular pump 25.
  • Vacuum evacuation is performed in a high vacuum state (for example, 10 ⁇ 3 Pa to 10 ⁇ 4 Pa). That is, the atmospheric pressure MALDI mass spectrometer 201 has a multistage differential exhaust system configuration in which the degree of vacuum is increased stepwise from the ionization chamber 210 toward the analysis chamber 23.
  • the ionization chamber 210 includes a chamber 11 (housing) having a rectangular parallelepiped shape (for example, width 60 cm ⁇ depth 60 cm ⁇ height 80 cm), a sample stage 50, an optical microscope 30, and a laser light source 41. As a result, a space is formed inside the chamber 11.
  • a sample stage 50 is installed on the lower surface inside the chamber 11.
  • the sample stage 50 includes a block-shaped sample table on which the sample S is placed, and a drive mechanism that drives the sample table in the X direction, the Y direction, and the Z direction.
  • the optical microscope 30 is disposed on the left inside the chamber 11.
  • the optical microscope 30 includes an epi-illumination light source unit 31 and an image acquisition device 33 installed at the upper part inside the chamber 11, and a transmission illumination light source unit 32 arranged at the lower part inside the chamber 11.
  • the light emitted from the epi-illumination light source unit 31 is irradiated from the ⁇ Z direction to the setting region of the sample S arranged at the predetermined observation position P 1 by the sample stage 50. It is like that. Then, the light reflected in the Z direction in the setting region of the sample S is guided to the image acquisition device 33.
  • the light emitted from the transmission illumination light source unit 32 is irradiated from the Z direction onto the setting region of the sample S arranged at the predetermined observation position P 1 by the sample stage 50. Then, the light transmitted in the Z direction in the setting region of the sample S is guided to the image acquisition device 33. As a result, the image acquisition device 33 displays an enlarged image of the set region of the sample S on a monitor or the like based on the detected light. As a result, the operator determines the analysis position (specific position) on the sample S while observing an enlarged image of the set region of the sample S.
  • the computer or the like moves the sample S from the observation position P 1 to the ionization position P 2 by the sample stage 50.
  • the epi-illumination light source unit 31 and the transmission illumination light source unit 32 are selectively used depending on the transparency of the substrate and the sample S or the like.
  • a laser light source 41 that emits a pulsed laser beam L is installed in the upper right part inside the chamber 11 so that matrix-assisted laser desorption / ionization is performed.
  • a heater block with a built-in temperature control mechanism is fixed to the right side wall of the chamber 11, and a circular pipe-shaped introduction pipe 12 is formed in the heater block.
  • the inside of the intermediate vacuum chamber 21 communicates with the introduction pipe 12.
  • the introduction pipe 12 has an L shape, and is arranged so that the introduction port faces downward ( ⁇ Z direction) and the outlet faces rightward (X direction) inside the first intermediate vacuum chamber 21. ing.
  • the laser light L emitted from the laser light source 41 is irradiated from above on the analysis position of the sample S arranged at the predetermined ionization position P 2 by the sample stage 50.
  • the target substance at the analysis position of the sample S is rapidly heated, vaporized, and ionized.
  • the air present in the chamber 11 flows into the first intermediate vacuum chamber 21 through the introduction pipe 12 due to the differential pressure between the chamber 11 and the first intermediate vacuum chamber 21.
  • the ions generated inside the chamber 11 by riding the air flow are also drawn into the introduction tube 12 and discharged into the first intermediate vacuum chamber 21.
  • a first ion lens is provided inside the first intermediate vacuum chamber 21.
  • the electric field generated by the first ion lens helps the ions to be drawn through the introduction tube 12 and converges the ions.
  • the ions introduced into the second intermediate vacuum chamber 22 are sent into the analysis chamber 23 by a three-dimensional quadrupole ion trap.
  • a flight tube and an ion detector 24 are provided in the analysis chamber 23, a flight tube and an ion detector 24 are provided. Then, ions having a predetermined mass (strictly speaking, the mass to charge ratio m / z) pass through the space of the flight tube in a predetermined time. Ions that have passed through the flight tube reach the ion detector 24, and the ion detector 24 outputs an ion intensity signal corresponding to the amount of ions reached as a detection signal.
  • an object of the present invention is to provide a mass spectrometer that prevents ions and fine particles that have not been drawn into the introduction tube from diffusing inside the chamber.
  • the mass spectrometer of the present invention made to solve the above-described problems includes an ionization chamber for ionizing an analysis position on a sample by irradiation with a laser beam, and an analysis chamber having a mass analyzer for detecting ions.
  • a mass spectrometer having an introduction tube or an introduction hole for introducing ions from the inside of the ionization chamber to the inside of the analysis chamber, and an exhaust pipe formed inside the case of the ionization chamber; And a fan that draws air into the exhaust pipe, and driving the fan causes air containing ions that have not been introduced into the introduction pipe or the introduction hole and / or fine particles generated from the sample to the exhaust pipe. It comes to suck.
  • the term “fine particles” refers to a collection of molecules of the target substance released from the sample by laser light irradiation, molecules other than the target substance, or a mixture of molecules of the target substance and molecules other than the target substance. It means the body.
  • the “introduction tube or introduction hole” is for introducing ions from the inside of the ionization chamber to the inside of the analysis chamber, and the degree of vacuum is increased stepwise between the ionization chamber and the analysis chamber.
  • an intermediate vacuum chamber serves as an introduction tube or introduction hole that communicates the inside of the casing of the ionization chamber and the inside of the intermediate vacuum chamber.
  • ions and fine particles (aerosol) that have not been drawn into the introduction pipe and the introduction hole are sucked into the exhaust pipe, so that they diffuse into the casing of the ionization chamber. Can be prevented, and the contaminated area can be limited.
  • by optimizing the air flow of the fan large size fine particles are strongly influenced by the gas flow and become difficult to be drawn into the introduction pipe or introduction hole, while small size ions are It is difficult to be affected and is easily drawn into the introduction pipe or introduction hole. As a result, it is possible to prevent the MS sensitivity from being affected.
  • the exhaust pipe communicates with the outside of the casing of the ionization chamber, and an air inflow path is formed in a wall of the ionization chamber, and the introduction pipe or the introduction hole Air containing ions and / or fine particles that have not been introduced into the ionization chamber may be discharged outside the casing of the ionization chamber.
  • a filter for removing dust may be arranged in the air inflow path. According to the mass spectrometer of the present invention, it is possible to suppress the intrusion of dust into the casing of the ionization chamber.
  • the exhaust pipe is connected to a recovery part, and ions and / or fine particles that have not been introduced into the introduction pipe or the introduction hole are recovered by the recovery part. May be.
  • the air containing ions and / or fine particles that have not been introduced into the introduction tube or the introduction hole is collected in the ionization chamber after the ions and / or fine particles are collected in the collection unit. It may be returned to the inside of the housing.
  • a filter having an antibacterial action may be disposed in the recovery unit.
  • the ionization method executed in the ionization chamber may be a matrix-assisted laser desorption ionization method or a laser desorption ionization method.
  • the size of the introduction port of the exhaust pipe is larger than the size of the introduction port of the introduction tube or the introduction hole, and the introduction tube or introduction hole is disposed inside the introduction port of the exhaust pipe. May be arranged.
  • FIG. 1 is an overall configuration diagram of an atmospheric pressure MALDI mass spectrometer according to an embodiment of the present invention.
  • the perspective view which shows the principal part structure of the ionization chamber which concerns on 1st embodiment.
  • the graph which shows the relationship between the air volume of an axial flow fan, and the ion yield detected with the ion detector.
  • the perspective view which shows the principal part structure of the ionization chamber which concerns on 2nd embodiment.
  • FIG. 1 is an overall configuration diagram of an atmospheric pressure MALDI mass spectrometer according to an embodiment of the present invention.
  • the sample S is, for example, a tissue section (biological sample) collected from a human, and is used by being placed on a conductive sample plate (for example, 76 mm ⁇ 26 mm ⁇ 1 mm).
  • the same reference numerals are assigned to the same components as those in the above-described atmospheric pressure MALDI mass spectrometer 201.
  • the atmospheric pressure MALDI mass spectrometer 1 includes an ionization chamber 10 for ionizing a sample S under an atmospheric pressure atmosphere (for example, 10 5 Pa), and ions introduced from the ionization chamber 10 in a high vacuum atmosphere (for example, 10 ⁇ 3 Pa). To 10 ⁇ 4 Pa).
  • FIG. 2 is a perspective view showing a configuration of a main part of the ionization chamber 10 according to the first embodiment. In addition, it cuts and shows in order to make part visible.
  • the ionization chamber 10 includes a chamber (housing) 11 having a rectangular parallelepiped shape (for example, width 60 cm ⁇ depth 60 cm ⁇ height 80 cm), a sample stage 50, an optical microscope 30, and a laser light source 41. As a result, a space is formed inside the chamber 11.
  • An exhaust duct (exhaust pipe) 13 having a circular pipe shape (diameter outer diameter 6 cm, inner diameter 5 cm) is formed in the upper right portion of the interior of the chamber 11 according to the first embodiment.
  • Exhaust duct 13 faces downward (-Z direction) above the sample S inlet 13a is disposed in a predetermined ionization position P 2, the exhaust openings are arranged such that the outside of the chamber 11.
  • an axial fan 15 for drawing air into the exhaust duct 13 in the Z direction (upward) is disposed.
  • the axial flow fan 15 can adjust the air volume.
  • a heater block with a built-in temperature control mechanism is fixed to the right side wall of the chamber 11, and a circular pipe-shaped introduction pipe 12 is formed in the heater block.
  • the introduction pipe 12 is L-shaped, the introduction port faces downward ( ⁇ Z direction), the introduction port is disposed in the center of the inside of the exhaust duct 13, and the vicinity of the outlet penetrates the side wall of the exhaust duct 13. After that, the outlet is arranged so as to face rightward (X direction) inside the first intermediate vacuum chamber 21.
  • a circular (for example, diameter 5 cm) air inflow path 19 is formed at the lower part of the left side wall of the chamber 11 according to the first embodiment.
  • a filter 19 a that can suppress the intrusion of dust into the chamber 11 is disposed.
  • the laser beam L emitted from the laser light source 41 is irradiated from above in the analysis position of the sample S arranged in a predetermined ionization position P 2 by the sample stage 50.
  • the target substance at the analysis position of the sample S is rapidly heated, vaporized, and ionized. Fine particles are also generated during this ionization.
  • the air present in the chamber 11 flows into the first intermediate vacuum chamber 21 through the introduction pipe 12 due to the differential pressure between the chamber 11 and the first intermediate vacuum chamber 21.
  • the ions generated inside the chamber 11 along with the flow are also drawn into the introduction tube 12 and discharged into the first intermediate vacuum chamber 21.
  • ions and fine particles that have not been introduced into the introduction tube 12 are discharged to the outside of the chamber 11 through the exhaust duct 13 together with a predetermined amount of air present inside the chamber 11.
  • FIG. 3 is a photograph for explaining the relationship between the air volume of the axial fan 15 and the amount of ions and fine particles diffused inside the chamber 11.
  • FIG. 3 is a photograph after analysis in which the “fluorescent substance” (sample) S is irradiated with laser light L having a laser irradiation diameter of 100 ⁇ m from the laser light source 41 for 34 hours, and the upper photograph is below the sample stage ( ⁇ The lower photograph shows the periphery of the sample plate on the sample stage.
  • Comparative Example 1 is a photograph when the axial fan 15 is not driven (air volume 0), and Example 1 is a photograph when the axial fan 15 is driven at an air volume of 0.025 m 3 / min.
  • Example 2 is a photograph when the axial flow fan 15 is driven at an air volume of 0.05 m 3 / min.
  • Comparative Example 1 a large amount of ions and fine particles are attached to the lower surface of the chamber 11 (below the sample plate) below the sample stage and also to the peripheral edge (lateral) of the sample plate on the sample stage. I understand.
  • Example 1 and Example 2 it can be seen that ions and fine particles are hardly attached to the lower surface of the chamber 11 below the sample stage and the peripheral part of the sample plate on the sample stage.
  • FIG. 4 is a graph for explaining the relationship between the air volume of the axial fan 15 and the yield of ions detected by the ion detector 25.
  • the graph of FIG. 4 shows the ion yield ratio when “Angiotensin II + DHB” is analyzed as the sample S, and the ion yield when the axial flow fan 15 is not driven is 1.0 as a reference.
  • Example 1 is an ion yield ratio when to drive the axial fan 15 in the air volume 0.025 m 3 / min, Example 2, was driven axial fan 15 in the air volume 0.05 m 3 / min
  • Example 3 is an ion yield ratio when the axial fan 15 is driven at an air volume of 0.4 m 3 / min.
  • the ion yield hardly changed.
  • the ion yield was low, and if the air volume when sucked into the exhaust duct 13 was increased too much, the ion yield was affected. I understand that
  • the atmospheric pressure MALDI mass spectrometer 1 of the present invention As described above, according to the atmospheric pressure MALDI mass spectrometer 1 of the present invention, ions and fine particles that have not been drawn into the introduction tube 12 are sucked into the exhaust duct 13, thereby preventing diffusion into the chamber 11. And the contaminated area can be limited. At this time, by optimizing the airflow of the axial fan 15, the ions are not easily affected by the gas flow and are easily drawn into the introduction pipe. As a result, it is possible to prevent the MS sensitivity from being affected.
  • FIG. 5 is a perspective view showing a configuration of a main part of the ionization chamber 110 according to the second embodiment.
  • description is abbreviate
  • the ionization chamber 110 includes a chamber (housing) 111 having a rectangular parallelepiped shape (for example, width 60 cm ⁇ depth 60 cm ⁇ height 80 cm), a sample stage 50, an optical microscope 30, and a laser light source 41. As a result, a space is formed inside the chamber 111.
  • Exhaust duct 113 faces downward (-Z direction) inlet 113a is above the sample S placed on a predetermined ionization position P 2, the left inside of the upper portion of the outlet 113b the chamber 111 (-X direction) It is arranged to face. Then, in the exhaust duct 113, an axial flow for drawing the air in the Z direction (upward) into the recovery unit 114 and the exhaust duct 13 and discharging it to the left ( ⁇ X direction) in the upper part inside the chamber 111. A fan 115 is disposed.
  • the recovery unit 114 has a square cylindrical housing and a filter inside the housing, and circulates air containing ions and fine particles that have not been introduced into the introduction tube 12 from one end to the inside of the housing. After the ions and fine particles are collected by the internal filter, the air from which the ions and fine particles have been removed can be discharged to the other end.
  • the filter preferably has an antibacterial action, and examples thereof include a separator / HEPA (High Efficiency Particulate Air) filter (trade name “Bactericidal / Enzyme Pac-Man”, manufactured by Nippon Cambridge Filter Co., Ltd.).
  • an ionization chamber 110 by driving the axial fan 115 with an appropriate air volume, a predetermined amount of air is sucked into the exhaust duct 113, passes through the recovery unit 114, and is discharged into the chamber 11. Is done. Then, the laser beam L emitted from the laser light source 41 is irradiated from above in the analysis position of the sample S arranged in a predetermined ionization position P 2 by the sample stage 50. When the laser beam L is irradiated to the analysis position of the sample S, the target substance at the analysis position of the sample S is rapidly heated, vaporized, and ionized. Fine particles are also generated during this ionization.
  • the air present in the chamber 111 flows into the first intermediate vacuum chamber 21 through the introduction pipe 12 due to a differential pressure between the chamber 111 and the first intermediate vacuum chamber 21 (see FIG. 1).
  • the ions generated inside the chamber 111 by riding this air flow are also drawn into the introduction tube 12 and discharged into the first intermediate vacuum chamber 21.
  • ions and fine particles that have not been introduced into the introduction pipe 12 are guided to the collection unit 114 through the exhaust duct 113 together with a predetermined amount of air present inside the chamber 111.
  • the recovery unit 114 circulates air containing ions and fine particles that have not been introduced into the introduction pipe 12 inside the housing, collects the ions and fine particles with a filter, and then removes the air from which the ions and fine particles have been removed into the chamber 111. To discharge.
  • ions and fine particles that are not drawn into the introduction tube 12 are sucked by the exhaust duct 113 and collected by the collection unit 114. Therefore, diffusion into the chamber 111 can be prevented, and the contaminated area can be limited to the collection unit 114 only.
  • the present invention ionizes a sample by a matrix-assisted laser desorption ionization method or a laser desorption ionization method under an atmospheric pressure atmosphere or a gas pressure atmosphere close to atmospheric pressure, and transports the generated ions to a high vacuum atmosphere. Therefore, it can be suitably used for an atmospheric pressure MALDI mass spectrometer for mass spectrometry.
  • Atmospheric pressure MALDI mass spectrometer 10 Ionization chamber 11 Chamber (housing) 12 Introduction pipe 13 Exhaust duct 15 Axial fan 21 First intermediate vacuum chamber 22 Second intermediate vacuum chamber 23 Analysis chamber 24 Ion detector (mass analyzer)

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

導入管又は導入孔に引き込まれなかったイオンや微粒子のチャンバ内部への拡散を防止した質量分析装置を提供する。レーザ光の照射により試料S上の分析位置をイオン化するためのイオン化室(10)と、イオンを検出する質量分析器(24)を有する分析室(23)と、イオン化室(10)と分析室(23)との間に配設された中間真空室(21、22)とを備え、イオン化室(10)の筐体(11)内部と中間真空室(21)の内部とを連通する導入管(12)又は導入孔が形成された質量分析装置(1)であって、排出管(13)と、排気管(13)に空気を引き込むファン(15)とを備え、ファン(15)を駆動させることにより、導入管(12)又は導入孔に導入されなかったイオン及び/又は微粒子を含む空気を排気管(13)に吸引するように構成する。

Description

質量分析装置
 本発明は、大気圧雰囲気下又は大気圧に近いガス圧雰囲気下でマトリックス支援レーザ脱離イオン化法(MALDI:Matrix Assisted Laser Desorption Ionization)やレーザ脱離イオン化法(LDI)等により試料をイオン化し、発生したイオンを、高真空雰囲気中まで輸送して質量分析する質量分析装置に関する。
 医学(新規バイオマーカの探索、病気の機構解明)や、薬学(薬物動態/安全性試験への応用)や、工学(材料開発/劣化解析への応用(有機EL、液晶、太陽電池))や、農学(異物検出(食品安全検査)、品種改良)等の分野では、試料をイオン化し、発生したイオンを質量分析することが行われている。薬物やペプチド等の試料を分析する場合には、例えば、大気圧MALDIイオン源と四重極イオントラップと飛行時間型質量分離器(TOFMS)とを備えたMALDI質量分析装置が使用されている(例えば特許文献1参照)。このような大気圧MALDI質量分析装置では、大気圧MALDIイオン源で発生したイオンを四重極イオントラップにより捕捉し、必要に応じて多段階に開裂させ、TOFMSで質量分析している。
 図6は、大気圧MALDI質量分析装置の全体構成図である。なお、地面に水平な一方向をX方向とし、地面に水平でX方向と垂直な方向をY方向とし、X方向とY方向とに垂直な方向をZ方向とする。
 大気圧MALDI質量分析装置201は、試料Sを大気圧雰囲気(例えば10Pa)下でイオン化するためのイオン化室210と、イオン化室210から導入されたイオンを高真空雰囲気(例えば10-3Pa~10-4Pa)中で検出する質量分析部20とから構成される。
 質量分析部20には、イオン化室210に隣接する第1中間真空室21と、第1中間真空室21に隣接する第2中間真空室22と、第2中間真空室22に隣接する分析室23とが設置されている。そして、イオン化室210の筐体内部は、大気圧雰囲気(例えば10Pa)になっており、第1中間真空室21の内部は、ロータリーポンプ25により低真空状態(例えば10Pa)に真空排気され、第2中間真空室22の内部は、ターボ分子ポンプ25により中真空状態(例えば10-1Pa~10-2Pa)に真空排気され、分析室23の内部は、ターボ分子ポンプ25により高真空状態(例えば10-3Pa~10-4Pa)に真空排気されるようになっている。すなわち、大気圧MALDI質量分析装置201は、イオン化室210から分析室23に向かって真空度を段階的に高くした多段差動排気系の構成となっている。
 イオン化室210は、直方体形状(例えば幅60cm×奥行き60cm×高さ80cm)のチャンバ11(筐体)と、試料ステージ50と、光学顕微鏡30と、レーザ光源41とを備える。これにより、チャンバ11の内部に空間が形成されることになる。
 チャンバ11の内部の下面には、試料ステージ50が設置されている。試料ステージ50は、試料Sが載置されるためのブロック状の試料台と、試料台をX方向とY方向とZ方向とに駆動させる駆動機構とを備える。
 チャンバ11の内部の左部には、光学顕微鏡30が配置されている。光学顕微鏡30は、チャンバ11の内部の上部に設置された落射照明用光源部31及び画像取得装置33と、チャンバ11の内部の下部に配置された透過照明用光源部32とを備える。
 このような光学顕微鏡30によれば、落射照明用光源部31から出射された光は、試料ステージ50によって所定の観察位置Pに配置された試料Sの設定領域に-Z方向から照射されるようになっている。そして、試料Sの設定領域でZ方向に反射した光が画像取得装置33に導かれる。また、透過照明用光源部32から出射された光は、試料ステージ50によって所定の観察位置Pに配置された試料Sの設定領域にZ方向から照射されるようになっている。そして、試料Sの設定領域でZ方向に透過した光が画像取得装置33に導かれる。その結果、画像取得装置33は、検出された光に基づいて、試料Sの設定領域の拡大像をモニタ等に表示している。これにより、オペレータは、試料Sの設定領域の拡大像を観察しながら、試料S上における分析位置(特定位置)の決定等を行うことになる。そして、分析位置(特定位置)の決定等が行われた情報に基づいて、コンピュータ等は試料ステージ50によって観察位置Pからイオン化位置Pに試料Sを移動させるようになっている。なお、落射照明用光源部31と透過照明用光源部32とは、基板や試料Sの透過性等によって使い分けられている。
 また、チャンバ11の内部の右上部には、パルス状のレーザ光Lを出射するレーザ光源41が設置され、マトリックス支援レーザ脱離イオン化法が実行されるようになっている。
 そして、チャンバ11の右側側壁には、温調機構が内蔵されたヒータブロックが固定してあり、ヒータブロックには、円管形状の導入管12が形成されており、チャンバ11の内部と第1中間真空室21の内部とは、導入管12を介して連通されている。なお、導入管12は、L字形状となっており、導入口が下方(-Z方向)を向き、出口が第1中間真空室21の内部で右方(X方向)を向くように配置されている。
 このようなイオン化室210では、レーザ光源41から出射されたレーザ光Lは、試料ステージ50によって所定のイオン化位置Pに配置された試料Sの分析位置に上方から照射される。レーザ光Lが試料Sの分析位置に照射されると、試料Sの分析位置の目的物質は急速に加熱され、気化してイオン化される。このとき、チャンバ11の内部に存在する空気は、チャンバ11の内部と第1中間真空室21の内部との差圧により、導入管12を通して第1中間真空室21の内部に流れ込むこととなり、この空気流に乗ってチャンバ11の内部で生成されたイオンも導入管12に引き込まれ、第1中間真空室21の内部に吐出されることになる。
 第1中間真空室21の内部には、第1イオンレンズが設けられている。第1イオンレンズにより発生する電場は、導入管12を介したイオンの引き込みを助けるとともに、イオンを収束させる。
 第2中間真空室22の内部には、1個の円環状のリング電極と、それを挟むように対向して配置された一対のエンドキャップ電極とからなる3次元四重極型のイオントラップが設けられている。そして、第2中間真空室22の内部に導入されたイオンは、3次元四重極型のイオントラップによって分析室23の内部へと送られるようになっている。
 分析室23の内部には、飛行管とイオン検出器24とが設けられている。そして、所定の質量(厳密には質量電荷比m/z)を有するイオンが飛行管の空間を所定の時間で通り抜ける。飛行管を通り抜けたイオンは、イオン検出器24に到達し、イオン検出器24では到達したイオン量に応じたイオン強度信号を検出信号として出力する。
特開2009-054441号公報
 しかしながら、上述したような大気圧MALDI質量分析装置201では、チャンバ11の内部で生成されたイオンは、空気流に乗って導入管12に引き込まれるようになっているが、一部のイオンやイオン化時に生じる微粒子は、導入管12に引き込まれず、チャンバ11内に拡散してチャンバ11の内部全体を汚染してしまうという問題点があった。特に試料Sにヒトや動物等から採取された組織切片等の生体サンプルを用いた場合には、生物学的安全性の観点から、イオンや微粒子(エアロゾル)を拡散させてしまうことには問題があった。
 そこで、本発明は、導入管に引き込まれなかったイオンや微粒子が、チャンバの内部に拡散することを防止した質量分析装置を提供することを目的とする。
 上記課題を解決するためになされた本発明の質量分析装置は、レーザ光の照射により試料上の分析位置をイオン化するためのイオン化室と、イオンを検出する質量分析器を有する分析室とを備え、前記イオン化室の筐体内部から前記分析室の内部にイオンを導くための導入管又は導入孔が形成された質量分析装置であって、前記イオン化室の筐体内部に形成された排気管と、前記排気管に空気を引き込むファンとを備え、前記ファンを駆動させることにより、前記導入管又は導入孔に導入されなかったイオン及び/又は前記試料から発生した微粒子を含む空気を前記排気管に吸引するようになっている。
 ここで、「微粒子」とは、レーザ光の照射によって試料から放出される目的物質の分子や、目的物質以外の分子や、目的物質の分子と目的物質以外の分子とが混ざったもの等の集合体のことをいう。
 また、「導入管又は導入孔」は、イオン化室の筐体内部から分析室の内部にイオンを導くためのものであり、イオン化室と分析室との間に、真空度を段階的に高くするための中間真空室が配設された場合には、イオン化室の筐体内部と中間真空室の内部とを連通する導入管又は導入孔となる。
 以上のように、本発明の質量分析装置によれば、導入管や導入孔に引き込まれなかったイオンや微粒子(エアロゾル)は、排気管に吸引されるため、イオン化室の筐体内部への拡散を防止することができ、汚染領域を限定することができる。このとき、ファンの風量を最適化することで、大きなサイズの微粒子はガス流の影響を強く受けて、導入管や導入孔に引き込まれにくくなり、その一方で、小さなサイズのイオンはガス流の影響を受けにくく、導入管や導入孔に引き込まれやすくなる。その結果、MS感度に影響を与えることを防止することができる。
(他の課題を解決するための手段及び効果)
 また、本発明の質量分析装置において、前記排気管は、前記イオン化室の筐体外部と連通し、前記イオン化室の器壁には、空気流入経路が形成されており、前記導入管又は導入孔に導入されなかったイオン及び/又は微粒子を含む空気は、前記イオン化室の筐体外部に排出されるようにしてもよい。
 また、本発明の質量分析装置において、前記空気流入経路中には、埃を除去するフィルタが配置されるようにしてもよい。
 本発明の質量分析装置によれば、イオン化室の筐体内部への埃の侵入を抑制することができる。
 また、本発明の質量分析装置において、前記排気管は、回収部と接続されており、前記導入管又は導入孔に導入されなかったイオン及び/又は微粒子は、前記回収部に回収されるようにしてもよい。
 また、本発明の質量分析装置において、前記の導入管又は導入孔に導入されなかったイオン及び/又は微粒子を含む空気は、前記回収部でイオン及び/又は微粒子が回収された後、前記イオン化室の筐体内部に戻されるようにしてもよい。
 また、本発明の質量分析装置において、前記回収部には、抗菌作用を有するフィルタが配置されるようにしてもよい。
 また、本発明の質量分析装置において、前記イオン化室で実行されるイオン化法は、マトリックス支援レーザ脱離イオン化法又はレーザ脱離イオン化法であるようにしてもよい。
 そして、本発明の質量分析装置において、前記排気管の導入口の大きさは、前記導入管又は導入孔の導入口の大きさより大きく、前記排気管の導入口の内部に前記導入管又は導入孔が配置されているようにしてもよい。
本発明の実施形態に係る大気圧MALDI質量分析装置の全体構成図。 第一実施形態に係るイオン化室の要部構成を示す斜視図。 軸流ファンの風量と、チャンバの内部に拡散されたイオンや微粒子の量との関係を説明する写真。 軸流ファンの風量と、イオン検出器で検出されたイオン収量との関係を示すグラフ。 第二実施形態に係るイオン化室の要部構成を示す斜視図。 従来の大気圧MALDI質量分析装置の全体構成図。
 以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれる。
<第一実施形態>
 図1は、本発明の実施形態に係る大気圧MALDI質量分析装置の全体構成図である。なお、試料Sは、例えばヒトから採取された組織切片(生体サンプル)等であり、導電性のサンプルプレート(例えば76mm×26mm×1mm)上に載置されて用いられることとする。また、上述した大気圧MALDI質量分析装置201と同様のものについては、同じ符号を付している。
 大気圧MALDI質量分析装置1は、試料Sを大気圧雰囲気(例えば10Pa)下でイオン化するためのイオン化室10と、イオン化室10から導入されたイオンを高真空雰囲気(例えば10-3Pa~10-4Pa)中で検出する質量分析部20とから構成される。
 ここで、図2は、第一実施形態に係るイオン化室10の要部の構成を示す斜視図である。なお、一部を見やすくするために切断して示している。
 イオン化室10は、直方体形状(例えば幅60cm×奥行き60cm×高さ80cm)のチャンバ(筐体)11と、試料ステージ50と、光学顕微鏡30と、レーザ光源41とを備える。これにより、チャンバ11の内部に空間が形成されることになる。
 そして、第一実施形態に係るチャンバ11の内部の右上部には、円管形状(直径外径6cm、内径5cm)の排気ダクト(排気管)13が形成されている。排気ダクト13は、導入口13aが所定のイオン化位置Pに配置された試料Sの上方で下方(-Z方向)を向き、排気口がチャンバ11の外部となるように配置されている。そして、排気ダクト13中には、排気ダクト13中に空気をZ方向(上方)に引き込むための軸流ファン15が配置されている。なお、軸流ファン15は、風量が調整可能となっている。
 チャンバ11の右側側壁には、温調機構が内蔵されたヒータブロックが固定してあり、ヒータブロックには、円管形状の導入管12が形成されている。導入管12は、L字形状となっており、導入口が下方(-Z方向)を向き、導入口付近が排気ダクト13の内部の中心に配置され、出口付近が排気ダクト13の側壁を貫通した後、出口が第1中間真空室21の内部で右方(X方向)を向くように配置されている。
 また、第一実施形態に係るチャンバ11の左側側壁の下部には、円形状(例えば直径5cm)の空気流入経路19が形成されている。そして、空気流入経路19中には、チャンバ11の内部への埃の侵入を抑制することができるフィルタ19aが配置されている。
 このようなイオン化室10によれば、軸流ファン15を適切な風量で駆動させることにより、所定量の空気が排気ダクト13に吸引されて、チャンバ11の外部に排出されるとともに、空気流入経路19からチャンバ11内部に所定量の空気が導入される。そして、レーザ光源41から出射されたレーザ光Lは、試料ステージ50によって所定のイオン化位置Pに配置された試料Sの分析位置に上方から照射される。レーザ光Lが試料Sの分析位置に照射されると、試料Sの分析位置の目的物質は急速に加熱され、気化してイオン化される。このイオン化時には微粒子も生じる。
 そして、チャンバ11の内部に存在する空気は、チャンバ11の内部と第1中間真空室21の内部との差圧により、導入管12を通して第1中間真空室21の内部に流れ込むこととなり、この空気流に乗ってチャンバ11の内部で生成されたイオンも導入管12に引き込まれ、第1中間真空室21の内部に吐出される。一方、導入管12に導入されなかったイオンや微粒子は、チャンバ11の内部に存在する所定量の空気とともに、排気ダクト13を通してチャンバ11の外部に排出される。
 ここで、軸流ファン15の風量と、チャンバ11の内部に拡散されたイオンや微粒子の量との関係について説明する。図3は、軸流ファン15の風量と、チャンバ11の内部に拡散されたイオンや微粒子の量との関係について説明するための写真である。
 図3は、レーザ光源41からレーザ照射直径100μmのレーザ光Lを、「蛍光物質」(試料)Sに34時間、照射した分析後の写真であり、上段の写真は、試料台の下方(-Z方向)となるチャンバ11の下面のものであり、下段の写真は、試料台上のサンプルプレートの周縁部を撮影したものである。
 比較例1は、軸流ファン15を駆動させなかったとき(風量0)の写真であり、実施例1は、軸流ファン15を風量0.025m/minで駆動させたときの写真であり、実施例2は、軸流ファン15を風量0.05m/minで駆動させたときの写真である。
 比較例1では、試料台の下方となるチャンバ11の下面(サンプルプレートの直下)にも、試料台上のサンプルプレートの周縁部(横)にも、多量のイオンや微粒子が付着していることがわかる。一方、実施例1及び実施例2では、試料台の下方となるチャンバ11の下面にも、試料台上のサンプルプレートの周縁部にも、イオンや微粒子がほとんど付着していないことがわかる。
 次に、軸流ファン15の風量と、イオン検出器24で検出されたイオン収量との関係について説明する。図4は、軸流ファン15の風量と、イオン検出器25で検出されたイオン収量との関係について説明するためのグラフである。
 なお、図4のグラフは、試料Sとして「AngiotensinII+DHB」を分析したときのイオン収量比であり、軸流ファン15を駆動させなかったときのイオン収量を基準の1.0としている。
 実施例1は、軸流ファン15を風量0.025m/minで駆動させたときのイオン収量比であり、実施例2は、軸流ファン15を風量0.05m/minで駆動させたときのイオン収量比であり、実施例3は、軸流ファン15を風量0.4m/minで駆動させたときのイオン収量比である。
 実施例1と実施例2とでは、イオン収量はほとんど変化しなかったが、実施例3では、イオン収量は低くなり、排気ダクト13に吸引する際の風量を強くしすぎると、イオン収量に影響することがわかる。
 以上のように、本発明の大気圧MALDI質量分析装置1によれば、導入管12に引き込まれなかったイオンや微粒子は、排気ダクト13に吸引されるため、チャンバ11内部への拡散を防止することができて、汚染領域を限定することができる。このとき、軸流ファン15の風量を最適化することで、イオンはガス流の影響を受けにくく、導入管に引き込まれやすくなる。その結果、MS感度に影響を与えることを防止することができる。
<第二実施形態>
 上述した大気圧MALDI質量分析装置1では、排気ダクト13の出口がチャンバ11の外部に配置されるような構成としたが、排気ダクト113中に回収部114が形成され、排気ダクト113の出口113bがチャンバ111の内部に配置されるような構成としてもよい。図5は、第二実施形態に係るイオン化室110の要部の構成を示す斜視図である。なお、上述した大気圧MALDI質量分析装置1と同様のものについては、同符号を付すことにより説明を省略する。
 イオン化室110は、直方体形状(例えば幅60cm×奥行き60cm×高さ80cm)のチャンバ(筐体)111と、試料ステージ50と、光学顕微鏡30と、レーザ光源41とを備える。これにより、チャンバ111の内部に空間が形成されることになる。
 そして、第二実施形態に係るチャンバ111の内部の右上部には、円管形状(直径外径6cm、内径5cm)の排気ダクト(排気管)113が形成されている。排気ダクト113は、導入口113aが所定のイオン化位置Pに配置された試料Sの上方で下方(-Z方向)を向き、出口113bがチャンバ111の内部の上部で左方(-X方向)を向くように配置されている。そして、排気ダクト113中には、回収部114と、排気ダクト13中に空気をZ方向(上方)に引き込み、チャンバ111の内部の上部で左方(-X方向)に排出するための軸流ファン115とが配置されている。
 回収部114は、四角筒形状の筐体と、筐体内部にフィルタとを有し、導入管12に導入されなかったイオンや微粒子を含む空気を一端部から筐体内部に流通させ、筐体内部のフィルタでイオンや微粒子を回収した後、イオンや微粒子が除去された空気を他端部に排出することが可能となっている。
 上記フィルタは、抗菌作用を有するものが好ましく、例えばセパレータ・HEPA(High Efficiency Particulate Air)フィルタ(商品名「殺菌・酵素パックマン」、日本ケンブリッジフィルター株式会社製)等が挙げられる。
 このようなイオン化室110によれば、軸流ファン115を適切な風量で駆動させることにより、所定量の空気が排気ダクト113に吸引されて、回収部114を通過した後にチャンバ11の内部へ排出される。そして、レーザ光源41から出射されたレーザ光Lは、試料ステージ50によって所定のイオン化位置Pに配置された試料Sの分析位置に上方から照射される。レーザ光Lが試料Sの分析位置に照射されると、試料Sの分析位置の目的物質は急速に加熱され、気化してイオン化される。このイオン化時には微粒子も生じる。
 そして、チャンバ111の内部に存在する空気は、チャンバ111の内部と第1中間真空室21(図1参照)の内部との差圧により、導入管12を通して第1中間真空室21の内部に流れ込むこととなり、この空気流に乗ってチャンバ111の内部で生成されたイオンも導入管12に引き込まれ、第1中間真空室21の内部に吐出される。一方、導入管12に導入されなかったイオンや微粒子は、チャンバ111の内部に存在する所定量の空気とともに、排気ダクト113を通して回収部114に導かれる。回収部114は、導入管12に導入されなかったイオンや微粒子を含む空気を筐体内部に流通させ、フィルタでイオンや微粒子を回収した後、イオンや微粒子が除去された空気をチャンバ111の内部に排出する。
 以上のように、本発明の第二実施形態に係る大気圧MALDI質量分析装置によれば、導入管12に引き込まれなかったイオンや微粒子は、排気ダクト113により吸引されて回収部114に回収されるため、チャンバ111内部への拡散を防止することができるとともに、汚染領域を回収部114のみに限定することができる。
<他の実施形態>
(1)上述した大気圧MALDI質量分析装置1では、マトリックス支援レーザ脱離イオン化法を用いた構成を示したが、レーザ脱離イオン化(Laser desorption ionization)や、帯電液滴を試料に吹き付ける脱離エレクトロスプレイイオン化(Desorption electrospray ionization)や、He等の準安定原子を用いたぺニングイオン化等のイオン化の手段を用いた構成としてもよい。
(2)上述した大気圧MALDI質量分析装置1では、試料S上における分析位置(特定位置)の決定等を行うために、光学顕微鏡30を備える構成を示したが、観察手段としてズームレンズ等を備えるような構成としてもよい。
(3)上述した大気圧MALDI質量分析装置1では、チャンバ11の右側側壁には、L字形状の円管形状の導入管12が形成されている構成を示したが、チャンバの右側側壁には、一直線形状の円管形状の導入管が形成されたり、円形状や四角形状の導入孔が形成されたりしているような構成としてもよい。
 本発明は、大気圧雰囲気下又は大気圧に近いガス圧雰囲気下でマトリックス支援レーザ脱離イオン化法やレーザ脱離イオン化法等により試料をイオン化し、発生したイオンを、高真空雰囲気中まで輸送して質量分析する大気圧MALDI質量分析装置等に好適に利用できる。
 1 大気圧MALDI質量分析装置
10 イオン化室
11 チャンバ(筐体)
12 導入管
13 排気ダクト
15 軸流ファン
21 第1中間真空室
22 第2中間真空室
23 分析室
24 イオン検出器(質量分析器)

Claims (8)

  1.  レーザ光の照射により試料上の分析位置をイオン化するためのイオン化室と、イオンを検出する質量分析器を有する分析室とを備え、
     前記イオン化室の筐体内部から前記分析室の内部にイオンを導くための導入管又は導入孔が形成された質量分析装置であって、
     前記イオン化室の筐体内部に形成された排気管と、
     前記排気管に空気を引き込むファンとを備え、
     前記ファンを駆動させることにより、前記導入管又は導入孔に導入されなかったイオン及び/又は前記試料から発生した微粒子を含む空気を前記排気管に吸引するようになっていることを特徴とする質量分析装置。
  2.  前記排気管は、前記イオン化室の筐体外部と連通し、
     前記イオン化室の器壁には、空気流入経路が形成されており、
     前記導入管又は導入孔に導入されなかったイオン及び/又は微粒子を含む空気は、前記イオン化室の筐体外部に排出されるようになっていることを特徴とする請求項1に記載の質量分析装置。
  3.  前記空気流入経路中には、埃を除去するフィルタが配置されていることを特徴とする請求項2に記載の質量分析装置。
  4.  前記排気管は、回収部と接続されており、
     前記導入管又は導入孔に導入されなかったイオン及び/又は微粒子は、前記回収部に回収されるようになっていることを特徴とする請求項1に記載の質量分析装置。
  5.  前記導入管又は導入孔に導入されなかったイオン及び/又は微粒子を含む空気は、前記回収部でイオン及び/又は微粒子が回収された後、前記イオン化室の筐体内部に戻されるようになっていることを特徴とする請求項4に記載の質量分析装置。
  6.  前記回収部には、抗菌作用を有するフィルタが配置されていることを特徴とする請求項4又は請求項5に記載の質量分析装置。
  7.  前記イオン化室で実行されるイオン化法は、マトリックス支援レーザ脱離イオン化法又はレーザ脱離イオン化法であることを特徴とする請求項1~請求項6のいずれか1項に記載の質量分析装置。
  8.  前記排気管の導入口の大きさは、前記導入管又は導入孔の導入口の大きさより大きくなっており、前記排気管の導入口の内部に、前記導入管又は導入孔が配置されていることを特徴とする請求項1~請求項7のいずれか1項に記載の質量分析装置。
PCT/JP2014/060311 2013-04-19 2014-04-09 質量分析装置 WO2014171378A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/768,683 US9721778B2 (en) 2013-04-19 2014-04-09 Mass spectrometer
EP14784897.2A EP2988316B1 (en) 2013-04-19 2014-04-09 Mass spectrometer
CN201480022277.2A CN105122422B (zh) 2013-04-19 2014-04-09 质谱分析装置
JP2015512456A JP6004093B2 (ja) 2013-04-19 2014-04-09 質量分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-088907 2013-04-19
JP2013088907 2013-04-19

Publications (1)

Publication Number Publication Date
WO2014171378A1 true WO2014171378A1 (ja) 2014-10-23

Family

ID=51731321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060311 WO2014171378A1 (ja) 2013-04-19 2014-04-09 質量分析装置

Country Status (5)

Country Link
US (1) US9721778B2 (ja)
EP (1) EP2988316B1 (ja)
JP (1) JP6004093B2 (ja)
CN (1) CN105122422B (ja)
WO (1) WO2014171378A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164025A1 (ja) 2017-03-10 2018-09-13 株式会社島津製作所 質量分析装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107706082B (zh) * 2016-08-08 2019-11-26 株式会社岛津制作所 用于质谱仪的限流离子引入接口装置
US20180076014A1 (en) * 2016-09-09 2018-03-15 Science And Engineering Services, Llc Sub-atmospheric pressure laser ionization source using an ion funnel
CN107910241B (zh) * 2017-11-14 2019-12-13 大连民族大学 一种激光焊接中等离子体羽辉微粒子成分的质谱分析装置
JP7051632B2 (ja) * 2018-07-30 2022-04-11 浜松ホトニクス株式会社 試料支持体、試料のイオン化方法、及び質量分析方法
CN110146587A (zh) * 2019-02-20 2019-08-20 温州医科大学附属第二医院、温州医科大学附属育英儿童医院 一种组织样品中挥发性代谢产物的在线便携质谱分析装置
KR102471250B1 (ko) * 2022-09-16 2022-11-25 주식회사 비츠로셀 Ipl을 이용하여 분말 재료를 균등 처리하는 장치 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676789A (ja) * 1992-08-26 1994-03-18 Hitachi Ltd Esi質量分析計
JPH10247471A (ja) * 1997-02-28 1998-09-14 Shimadzu Corp 質量分析装置
JP2007066903A (ja) * 2005-08-30 2007-03-15 Agilent Technol Inc ガス流を管理するための装置及び方法
JP2009054441A (ja) 2007-08-28 2009-03-12 Shimadzu Corp 大気圧maldi質量分析装置
JP2010537371A (ja) * 2007-08-15 2010-12-02 バリアン・インコーポレイテッド 真空以上の圧力での試料のイオン化
WO2012056730A1 (ja) * 2010-10-29 2012-05-03 アトナープ株式会社 分析装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965884A (en) * 1998-06-04 1999-10-12 The Regents Of The University Of California Atmospheric pressure matrix assisted laser desorption
DE202005001632U1 (de) * 2004-02-06 2005-06-02 Micromass Uk Ltd. Massenspektrometer
CN1933092A (zh) * 2005-01-21 2007-03-21 安捷伦科技有限公司 用于离子产生增强的设备和方法
WO2008097246A2 (en) * 2006-05-24 2008-08-14 Swce Extraction and detection system and method
JP2008058238A (ja) * 2006-09-01 2008-03-13 Hitachi Ltd ガスモニタリング装置及びガスモニタリング方法
IL193003A (en) * 2008-07-23 2011-12-29 Aviv Amirav Open probe method and device for sample introduction for mass spectrometry analysis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676789A (ja) * 1992-08-26 1994-03-18 Hitachi Ltd Esi質量分析計
JPH10247471A (ja) * 1997-02-28 1998-09-14 Shimadzu Corp 質量分析装置
JP2007066903A (ja) * 2005-08-30 2007-03-15 Agilent Technol Inc ガス流を管理するための装置及び方法
JP2010537371A (ja) * 2007-08-15 2010-12-02 バリアン・インコーポレイテッド 真空以上の圧力での試料のイオン化
JP2009054441A (ja) 2007-08-28 2009-03-12 Shimadzu Corp 大気圧maldi質量分析装置
WO2012056730A1 (ja) * 2010-10-29 2012-05-03 アトナープ株式会社 分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2988316A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164025A1 (ja) 2017-03-10 2018-09-13 株式会社島津製作所 質量分析装置
JPWO2018164025A1 (ja) * 2017-03-10 2019-11-07 株式会社島津製作所 質量分析装置
US11551920B2 (en) 2017-03-10 2023-01-10 Shimadzu Corporation Mass spectrometer

Also Published As

Publication number Publication date
CN105122422A (zh) 2015-12-02
EP2988316A1 (en) 2016-02-24
US9721778B2 (en) 2017-08-01
JPWO2014171378A1 (ja) 2017-02-23
EP2988316B1 (en) 2020-10-14
EP2988316A4 (en) 2016-11-23
US20150380229A1 (en) 2015-12-31
CN105122422B (zh) 2017-11-21
JP6004093B2 (ja) 2016-10-05

Similar Documents

Publication Publication Date Title
JP6004093B2 (ja) 質量分析装置
JP5521177B2 (ja) 質量分析装置
JP5555428B2 (ja) 無線周波数イオンガイド
JP5039342B2 (ja) Maldiサンプルプレート撮像ワークステーション
JP5454416B2 (ja) 質量分析装置
US20020003210A1 (en) Sampling and analysis of airborne particulate matter by glow discharge atomic emission and mass spectrometries
US20110147575A1 (en) Ion funnel for mass spectrometry
CN117419958A (zh) 捕获探针
WO2007020862A1 (ja) 質量分析装置
CN1916619A (zh) 一种基于膜进样的离子迁移谱仪
JP6625675B2 (ja) サンプルプローブの入口フローシステム
JP4303499B2 (ja) 化学剤の探知装置
JP2016510477A (ja) コンパクトな質量分析計
US7193222B2 (en) Secondary electron detector, especially in a scanning electron microscope
US10665446B2 (en) Surface layer disruption and ionization utilizing an extreme ultraviolet radiation source
JP3787116B2 (ja) 化学剤の探知方法
WO2019229465A1 (en) Bench-top time of flight mass spectrometer
CN112166255B (zh) 台式飞行时间质谱仪
WO2019116605A1 (ja) 電子線照射装置、分析システム
JP4126368B2 (ja) 極微量イオン検出装置
JP2020115444A (ja) 質量分析装置及びイオン引出電極清掃具
WO2012012657A2 (en) Substrate analysis inlet apparatuses, substrate analysis instruments, and substrate analysis methods
JP2009047710A (ja) 化学剤の探知方法
JP2010071829A (ja) 体外診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480022277.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14784897

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015512456

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014784897

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14768683

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE