WO2014171139A1 - Measurement abnormality detection method and surface plasmon-field enhanced fluorescence measurement device - Google Patents

Measurement abnormality detection method and surface plasmon-field enhanced fluorescence measurement device Download PDF

Info

Publication number
WO2014171139A1
WO2014171139A1 PCT/JP2014/002145 JP2014002145W WO2014171139A1 WO 2014171139 A1 WO2014171139 A1 WO 2014171139A1 JP 2014002145 W JP2014002145 W JP 2014002145W WO 2014171139 A1 WO2014171139 A1 WO 2014171139A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
light
substance
measurement abnormality
conductor film
Prior art date
Application number
PCT/JP2014/002145
Other languages
French (fr)
Japanese (ja)
Inventor
幸司 宮崎
正貴 松尾
正徳 塚越
武志 和田
直樹 日影
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015512312A priority Critical patent/JP6292226B2/en
Publication of WO2014171139A1 publication Critical patent/WO2014171139A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence

Definitions

  • the present invention relates to a method for detecting a measurement abnormality in measurement using surface plasmon excitation enhanced fluorescence spectroscopy, and a surface plasmon excitation enhanced fluorescence measurement apparatus for executing the measurement abnormality detection method.
  • SPFS Surface Plasmon-field enhanced Fluorescence Spectroscopy
  • Patent Documents 1 and 2 disclose a surface plasmon resonance fluorescence measuring apparatus for measuring a substance to be measured using SPFS.
  • a sensor having a prism made of a dielectric, a conductor film (for example, a metal film) formed on one surface of the prism, and a capturing body (for example, an antibody) fixed on the conductor film.
  • a tip is attached.
  • the sample liquid containing the substance to be measured is provided on the conductor film
  • the substance to be measured is captured by the capturing body (primary reaction).
  • the captured substance to be detected is further labeled with a fluorescent substance (secondary reaction).
  • Patent Document 3 discloses a method of detecting a biomolecule using a white interference method.
  • a biomolecule is detected by detecting a change in a three-dimensional shape on the surface of a substrate (biosensor) on which a probe biomolecule is fixed using a white interference method.
  • Patent Document 3 also describes that quality control of a biosensor is performed by measuring the three-dimensional shape of the biosensor surface using white interference.
  • the measurement of the substance to be measured using SPFS is very sensitive. For this reason, various factors such as changes in the sensor chip or sample solution due to storage and nonspecific adsorption of contaminants in the sample solution (for example, blood cell components when the sample solution is blood) greatly affect the measurement results. Resulting in. Therefore, from the viewpoint of improving the reliability of the measurement result, it is preferable that various abnormalities such as an abnormality of the sensor chip and an abnormality occurring during the measurement can be detected.
  • An object of the present invention is to provide a measurement abnormality detection method in measurement using SPFS.
  • a method for detecting a measurement abnormality is a method for detecting a measurement abnormality in measurement by surface plasmon excitation enhanced fluorescence spectroscopy, comprising: (a-1) from a dielectric And (b-1) preparing a sensor chip having a prism, a conductor film disposed on the surface of the prism, and a capturing body fixed on the conductor film; Irradiating the conductor film with light from the prism side so as to be totally reflected at the interface with the body film, and measuring an optical characteristic value for detecting a measurement abnormality; and (b-2) the optical characteristic. Detecting a measurement abnormality based on the value.
  • a surface plasmon excitation enhanced fluorescence measurement device is a surface plasmon excitation enhanced fluorescence measurement that measures a substance to be measured using surface plasmon excitation enhanced fluorescence spectroscopy.
  • the apparatus detects a measurement abnormality in measurement using surface plasmon excitation enhanced fluorescence spectroscopy by the above-described measurement abnormality detection method.
  • the reliability of measurement results using SPFS can be improved. Further, according to the present invention, by detecting a measurement abnormality at an early stage of measurement, it is possible to reduce losses such as reagents and measurement time due to the measurement abnormality.
  • FIG. 1 is a schematic diagram showing a configuration of a surface plasmon excitation enhanced fluorescence measuring apparatus.
  • FIG. 2 is a cross-sectional view of the sensor chip.
  • FIG. 3 is a flowchart showing an example of the measurement procedure.
  • 4A to 4G are flowcharts showing an example of a measurement procedure when a measurement abnormality is inspected in measurement using SPFS.
  • FIGS. 5A to 5C are flowcharts showing an example of a measurement procedure when a measurement abnormality is inspected in measurement using SPFS.
  • FIG. 6 is a photograph of the gold thin film surface after the storage environment acceleration test.
  • FIG. 7A is a graph showing the relationship between the area ratio of circular ridges and the amount of plasmon scattered light.
  • FIG. 7B is a graph showing the relationship between the area ratio of circular ridges and the reflectance at resonance.
  • FIG. 7C is a graph showing the relationship between the area ratio of the circular ridges and the blank light amount.
  • FIG. 8A is a graph showing the relationship between the incident angle of excitation light and the reflectance.
  • FIG. 8B is a graph showing the relationship between the incident angle of excitation light and the amount of scattered light.
  • FIG. 1 is a schematic diagram showing a configuration of a surface plasmon excitation enhanced fluorescence measuring apparatus 100 according to an embodiment of the present invention.
  • the measurement apparatus 100 includes a pretreatment chamber 110, a measurement chamber 120, a liquid feeding unit 130, a chip transport unit 140, a light source unit 150, an excitation light optical system 160, a chip holder 170, and a measurement light optical system. 180, a measurement light detection unit 190, a reflected light detection unit 200, a control calculation unit 210, and a display unit 220.
  • the substance to be measured is measured with the sensor chip 300 mounted on the chip holder 170.
  • “measuring the substance to be measured” means performing at least one of detecting the presence of the substance to be measured and detecting the amount of the substance to be measured.
  • the sensor chip 300 includes a prism 310 having an incident surface 312, a reflecting surface 314, and an emitting surface 316, a conductor film 320 formed on the reflecting surface 314, and a trap disposed on the conductor film 320. And a flow path member 340 disposed on the conductor film 320 (see FIG. 2).
  • the sensor chip 300 is disposed in the pretreatment chamber 110 when a liquid such as a sample solution, a fluorescent labeling solution, or a buffer solution is injected into the flow path 342 (indicated by a two-dot chain line in FIG. 1), and is measured in the measurement chamber. 120 (shown by a solid line in FIG. 1).
  • a liquid such as a sample solution, a fluorescent labeling solution, or a buffer solution
  • the excitation light ⁇ emitted from the light source unit 150 is guided to the sensor chip 300 by the excitation light optical system 160. While the excitation light ⁇ is incident on the sensor chip 300, the measurement light ⁇ and the reflected light ⁇ are emitted from the sensor chip 300. The measurement light ⁇ is guided to the measurement light detection unit 190 by the measurement light optical system 180. The reflected light ⁇ is guided to the reflected light detection unit 200.
  • the liquid feeding unit 130 injects a liquid such as a sample liquid, a fluorescent labeling liquid, or a cleaning liquid into the flow path 342 of the sensor chip 300, or causes the liquid in the flow path 342 to flow outside the flow path 342.
  • the liquid feeding unit 130 includes, for example, a liquid feeding pump 132 and a liquid feeding pump transport unit 134.
  • a reagent chip 136 into which a sample solution, a fluorescent labeling solution, a cleaning solution, etc. are dispensed is also arranged.
  • the liquid feed pump 132 sucks the liquid from the reagent chip 136 or the sensor chip 300 and discharges the liquid to the reagent chip 136 or the sensor chip 300.
  • the liquid feed pump 132 sucks liquid from one well of the reagent chip 136 and discharges the liquid into the flow path 342 of the sensor chip 300.
  • the liquid feed pump 132 may suck liquid from one well of the reagent chip 136 and discharge the liquid to another well of the reagent chip 136.
  • the liquid feed pump transport unit 134 moves the liquid feed pump 132 onto the reagent chip 136 or the sensor chip 300 according to the operation of the liquid feed pump 132.
  • the chip transport unit 140 transports the sensor chip 300 into the pretreatment chamber 110 during preprocessing, and transports the sensor chip 300 into the measurement chamber 120 during measurement.
  • the sensor chip 300 conveyed into the measurement chamber 120 is held by the chip holder 170.
  • the light source unit 150 is collimated and emits excitation light ⁇ having a constant wavelength and light amount.
  • the light source unit 150 includes, for example, a laser diode as an excitation light source, a collimator that collimates the excitation light ⁇ emitted from the laser diode, and a temperature adjustment circuit for making the wavelength and the light amount of the excitation light ⁇ constant. (Both are not shown).
  • the wavelength and light amount of the excitation light ⁇ emitted from the laser diode varies with temperature.
  • the temperature adjustment circuit monitors the amount of light branched from the collimated excitation light ⁇ with a photodiode, etc., and adjusts the temperature of the laser diode so that the wavelength and the amount of the excitation light ⁇ are constant. To do.
  • the excitation light ⁇ emitted from the laser diode is usually linearly polarized light.
  • the type of light source included in the light source unit 150 is not particularly limited, and may not be a laser diode.
  • Examples of light sources include light emitting diodes, mercury lamps, and other laser light sources.
  • the light emitted from the light source is not a beam, the light emitted from the light source is converted into a beam by a lens, a mirror, a slit, or the like.
  • the light emitted from the light source is not monochromatic light, the light emitted from the light source is converted into monochromatic light by a diffraction grating or the like.
  • the light emitted from the light source is not linearly polarized light, the light emitted from the light source is converted into linearly polarized light by a polarizer or the like.
  • the excitation light optical system 160 adjusts various parameters of the excitation light ⁇ emitted from the light source unit 150 and then totally reflects the excitation light ⁇ at the interface between the prism 310 and the conductor film 320 (the reflection surface 314 of the prism 310). As shown, the excitation light ⁇ is guided to the sensor chip 300. As illustrated in FIG. 1, the excitation light optical system 160 includes, for example, a first wave adjuster 162, a polarization direction adjustment unit 164, a shaping optical system 166, and an incident angle adjustment unit 168.
  • the first wave shaper 162 waves the excitation light ⁇ .
  • the first wave adjuster 162 includes, for example, a first band pass filter, a linear polarization filter, and a neutral density filter (all not shown).
  • the first bandpass filter turns the excitation light ⁇ into narrowband light having only the center wavelength.
  • the linearly polarizing filter turns the excitation light ⁇ into completely linearly polarized light.
  • the neutral density filter adjusts the amount of excitation light ⁇ .
  • the polarization direction adjusting unit 164 adjusts the polarization direction of the excitation light ⁇ so that the P wave component is mainly incident on the conductor film 320.
  • the polarization direction adjusting unit 164 includes, for example, a half-wave plate and a half-wave plate rotating unit (both not shown). The half-wave plate is rotated by a half-wave plate rotating unit. The polarization direction of the excitation light ⁇ that passes through the half-wave plate is adjusted by the rotation angle of the half-wave plate.
  • the shaping optical system 166 adjusts the beam diameter, contour shape, and the like of the excitation light ⁇ so that the shape of the irradiation spot at the interface between the prism 310 and the conductor film 320 (the surface of the conductor film 320) is a predetermined size.
  • the shaping optical system 166 is, for example, a slit or a zoom optical system.
  • the incident angle adjusting unit 168 adjusts the incident angle ⁇ (see FIG. 1) of the excitation light ⁇ to the interface between the prism 310 and the conductor film 320 (the reflecting surface 314 of the prism 310).
  • the incident angle adjusting unit 168 includes, for example, a reflecting mirror, a reflecting mirror angle adjusting unit, and a reflecting mirror position adjusting unit (all not shown).
  • the reflecting mirror angle adjustment unit adjusts the incident angle ⁇ of the excitation light ⁇ by rotating the reflecting mirror.
  • the reflecting mirror position adjustment unit moves the reflecting mirror so as to cancel the movement of the irradiation spot due to the change in the incident angle ⁇ . Thereby, only incident angle (theta) can be adjusted, without changing the position of an irradiation spot.
  • the chip holder 170 holds the sensor chip 300 in the measurement chamber 120.
  • the sensor chip 300 is irradiated with the excitation light ⁇ from the excitation light optical system 160 while being held by the chip holder 170.
  • measurement light ⁇ such as scattered light having the same wavelength as the excitation light ⁇ and fluorescence emitted from the fluorescent material is emitted upward from the surface of the conductor film 320 that does not face the prism 310.
  • the excitation light ⁇ reflected at the interface between the prism 310 and the conductor film 320 is emitted from the emission surface 316 as reflected light ⁇ (see FIG. 2).
  • the measurement light optical system 180 guides the measurement light ⁇ emitted upward from the sensor chip 300 to the measurement light detection unit 190.
  • the measuring light optical system 180 is disposed so as to face a surface of the conductor film 320 of the sensor chip 300 held by the chip holder 170 that does not face the prism 310. More specifically, the measurement light optical system 180 is arranged on a straight line that passes through the irradiation spot of the excitation light ⁇ on the surface of the conductor film 320 and is perpendicular to the surface of the conductor film 320.
  • the measurement light optical system 180 includes, for example, a condenser lens, a second wave rectifier, and an imaging lens (all not shown).
  • the condensing lens and the imaging lens constitute a conjugate optical system that is not easily affected by stray light.
  • the light traveling between the condenser lens and the imaging lens is substantially parallel light.
  • the condenser lens and the imaging lens form an image of the measurement light ⁇ (for example, a fluorescent image) on the conductive film 320 on the light receiving surface of the measurement light detection unit 190.
  • the second wave shaper is disposed so as to be positioned between the condenser lens and the imaging lens.
  • the second wave shaper blocks light having the wavelength of the excitation light ⁇ , thereby allowing light other than the wavelength of the fluorescence (for example, leakage light from the light source unit 150 or light having the same wavelength as the excitation light ⁇ from the conductor film 320). (Scattered light or the like) is prevented from reaching the measurement light detector 190. That is, the second wave rectifier removes a noise component from the light reaching the measurement light detection unit 190, and contributes to improvement in fluorescence detection accuracy and sensitivity.
  • the second wave shaper includes, for example, a second band pass filter and an insertion / extraction unit.
  • the position of the second band pass filter is switched by the insertion / extraction unit.
  • the second band pass filter is inserted into the optical path of the measurement light ⁇ .
  • the second bandpass filter is removed from the optical path of the measurement light ⁇ .
  • the insertion / extraction unit may further insert / remove a neutral density filter between the condenser lens and the imaging lens.
  • the neutral density filter is removed from the optical path of the measurement light ⁇ .
  • the neutral density filter is inserted into the optical path of the measurement light ⁇ .
  • the measurement light detection unit 190 acquires an image of the measurement light ⁇ on the conductor film 320 and measures the amount of the measurement light ⁇ . For example, the measurement light detection unit 190 measures the amount of fluorescent light on the conductor film 320 and the amount of plasmon scattered light.
  • the measurement light detection unit 190 is, for example, a photomultiplier tube or a cooled charge coupled device (CCD) camera.
  • the reflected light detection unit 200 measures the amount of reflected light ⁇ .
  • the reflected light detection unit 200 is, for example, a photomultiplier tube or a cooled charge coupled device (CCD) camera.
  • the control calculation unit 210 performs control of each driving unit, quantification of the amount of light received by the measurement light detection unit 190 and the reflected light detection unit 200, and the like.
  • the control arithmetic unit 210 is, for example, a computer that executes software.
  • the display unit 220 is connected to the control calculation unit 210 and displays a measurement status, a measurement result, and the like.
  • FIG. 2 is a cross-sectional view of the sensor chip 300.
  • the sensor chip 300 includes a prism 310, a conductor film 320, a capturing body 330, and a flow path member 340.
  • the sensor chip 300 is normally replaced for each measurement of the substance to be measured.
  • the sensor chip 300 is preferably a structure having a length of several mm to several cm for each piece, but is a smaller structure or a larger structure not included in the category of “chip”. Also good.
  • the prism 310 is made of a dielectric that is transparent to the excitation light ⁇ .
  • the prism 310 includes an incident surface 312 that allows the excitation light ⁇ from the excitation light optical system 160 to enter the prism 310, a reflection surface 314 that reflects the excitation light ⁇ incident on the prism 310, and a reflection surface 314 that reflects the reflection surface 314. And an emission surface 316 for emitting the excited excitation light ⁇ to the outside of the prism 310.
  • the shape of the prism 310 is not particularly limited.
  • the prism 310 is a column having a trapezoidal bottom surface.
  • the surface corresponding to one base of the trapezoid is the reflecting surface 314, the surface corresponding to one leg is the entrance surface 312, and the surface corresponding to the other leg is the exit surface 316.
  • the trapezoid serving as the bottom surface is preferably an isosceles trapezoid.
  • the entrance surface 312 and the exit surface 316 are symmetric, and the S wave component of the reflected light ⁇ is less likely to stay in the prism 310.
  • the angle between the incident surface 312 and the reflecting surface 314 and the angle between the reflecting surface 314 and the emitting surface 316 are both about 80 °.
  • the material of the prism 310 include resin and glass.
  • the material of the prism 310 is preferably a resin having a refractive index of 1.4 to 1.6 and a small birefringence.
  • the conductor film 320 is formed on the reflection surface 314 of the prism 310.
  • the conductor film 320 amplifies evanescent light (enhanced electric field) generated when the excitation light ⁇ is totally reflected by the reflecting surface 314 of the prism 310. That is, by generating surface plasmon resonance in the conductive film 320 on the reflective surface 314, the excitation light ⁇ is totally reflected on the surface without the conductive film 320 (reflective surface 314) to generate evanescent light. , The formed evanescent light can be amplified.
  • the material of the conductor film 320 is not particularly limited as long as surface plasmon resonance can be generated.
  • Examples of the material of the conductor film 320 include metals such as gold, silver, copper, and aluminum, and alloys thereof.
  • the method for forming the conductor film 320 is not particularly limited. Examples of the method for forming the conductor film 320 include sputtering, vapor deposition, and plating.
  • the thickness of the conductor film 320 is not particularly limited, but is preferably in the range of 30 to 70 nm.
  • the capturing body 330 is fixed on a surface of the conductive film 320 that does not face the prism 310, and captures the substance to be measured.
  • the capturing body 330 is uniformly fixed to a predetermined region on the conductor film 320.
  • the type of the capturing body is not particularly limited as long as the substance to be measured can be specifically captured.
  • the capturing body is an antibody or a fragment thereof that specifically binds to the substance to be measured.
  • the flow path member 340 is disposed on the surface of the conductor film 320 that does not face the prism 310.
  • the flow path member 340 may be disposed on the reflection surface 314.
  • the flow path member 340 and the conductor film 320 (and the prism 310) form a flow path 342 through which a liquid such as a sample liquid flows.
  • a reaction chamber 344 exists in the middle of the flow path 342.
  • the capturing body 330 is exposed to the reaction chamber 344. Both ends of the channel 342 are connected to an inlet 346 and an outlet 348 formed on the upper surface of the channel member 340, respectively.
  • the flow path member 340 is made of a material that is transparent to the measurement light ⁇ (for example, fluorescence or plasmon scattered light).
  • An example of the material of the flow path member 340 includes a resin.
  • the flow path member 340 is bonded to the conductor film 320 or the prism 310 by, for example, adhesion using an adhesive, laser welding, ultrasonic welding, or pressure bonding using a clamp member.
  • the excitation light ⁇ guided to the prism 310 enters the prism 310 from the incident surface 312.
  • the excitation light ⁇ incident on the prism 310 is totally reflected by the reflection surface 314 (interface between the prism 310 and the conductor film 320) to become reflected light ⁇ .
  • the reflected light ⁇ is emitted from the emission surface 316 to the outside of the prism 310.
  • measurement light ⁇ (for example, fluorescence or plasmon scattered light) is emitted from the conductor film 320 and the capturing body 330 in the direction of the measurement light optical system 180.
  • the excitation light ⁇ is incident on the reflecting surface 314 while satisfying the total reflection condition, and the evanescent light oozing out from the reflecting surface 314 and the plasmon in the conductor film 320 resonate, the electric field of the evanescent light is caused by the conductor film 320. Is increased, and the amount of fluorescence and plasmon scattered light is increased.
  • FIG. 3 is a flowchart illustrating an example of a measurement procedure of the measurement apparatus 100.
  • step S10 preparation for measurement is performed (step S10). Specifically, the sensor chip 300 and the reagent chip 136 are prepared and installed at predetermined locations in the pretreatment chamber 110, respectively.
  • the control calculation unit 210 controls the liquid feeding unit 130 to prepare a sample solution, a fluorescent labeling solution, and the like as necessary, and dispense them into the reagent chip 136.
  • the control calculation unit 210 causes the liquid feeding unit 130 to inject the sample liquid into the flow path 342 of the sensor chip 300.
  • the sample liquid comes into contact with the capturing body 330.
  • the substance to be measured exists in the sample liquid, at least a part of the substance to be measured is captured by the capturing body 330.
  • the inside of the flow path 342 is washed with a buffer solution or the like, and the substances not captured by the capturing body 330 are removed.
  • the kind of sample liquid is not specifically limited. Examples of the sample liquid include body fluids such as blood, serum, plasma, urine, nasal fluid, saliva, semen, and diluted solutions thereof.
  • the control calculation unit 210 causes the liquid feeding unit 130 to inject the fluorescent labeling solution into the flow path 342 of the sensor chip 300.
  • the fluorescent labeling solution is, for example, a buffer solution containing an antibody (secondary antibody) labeled with a fluorescent substance.
  • the fluorescent labeling liquid comes into contact with the capturing body 330.
  • the substance to be measured is captured by the capturing body 330, at least a part of the substance to be measured is labeled with a fluorescent substance. Thereafter, the inside of the flow path 342 is washed with a buffer solution or the like to remove free fluorescent substances.
  • the sensor chip 300 is transported into the measurement chamber 120 (step S40). Specifically, the control calculation unit 210 causes the chip transfer unit 140 to transfer the sensor chip 300 into the measurement chamber 120. The sensor chip 300 is attached to the chip holder 170.
  • the control calculation unit 210 includes the light source unit 150 and the excitation light optical system 160 so that the excitation light ⁇ is totally reflected on the reflection surface 314 (the interface between the prism 310 and the conductor film 320) of the sensor chip 300. To emit excitation light ⁇ . Thereby, the fluorescence (measurement light ⁇ ) emitted from the fluorescent material excited by the evanescent light is emitted above the sensor chip 300.
  • control calculation unit 210 causes the measurement light detection unit 190 to measure the amount of fluorescence (measurement light ⁇ ).
  • the control calculation unit 210 stores the detected value and displays it on the display unit 220 (step S60). The amount of fluorescent light is converted into the amount and concentration of the substance to be measured as necessary.
  • control calculation unit 210 initializes the entire measuring apparatus 100 and ends a series of measurements (step S70). At this time, the movable object such as the incident angle adjustment unit 168 is returned to the initial position.
  • the presence of the substance to be measured in the sample solution or the amount of the substance to be measured can be detected.
  • the optimum incident angle ⁇ (excitation light ⁇ ) (before the primary reaction (step S20) or between the primary reaction (step S20) and the secondary reaction (step S30) is used. It is preferable to determine (hereinafter also referred to as “measurement angle ⁇ m”) (see Patent Documents 1 and 2). Specifically, while measuring the incident angle ⁇ of the excitation light ⁇ with respect to the conductor film 320, the measurement light ⁇ or the reflected light ⁇ having the same wavelength as the excitation light ⁇ is measured to determine the enhancement angle or the resonance angle (enhancement). The definition of the angle and the resonance angle will be described later). This enhancement angle or resonance angle may be directly used as the measurement angle ⁇ m, or a value obtained by correcting the enhancement angle or resonance angle may be used as the measurement angle ⁇ m.
  • the position of the irradiation spot of the excitation light ⁇ is optimized, and the excitation light ⁇ It is also preferable to optimize the polarization direction and measure the amount of autofluorescence (see Patent Documents 1 and 2).
  • the step of labeling the substance to be measured with a fluorescent substance is performed.
  • secondary reaction, step S30 is performed.
  • the timing for labeling the substance to be measured with the fluorescent substance is not particularly limited. For example, before injecting the sample liquid into the flow path 342 of the sensor chip 300, a fluorescent substance may be added to the sample liquid and the substance to be measured may be labeled with the fluorescent substance in advance. Further, the sample solution and the fluorescent material may be simultaneously injected into the flow path 342 of the sensor chip 300.
  • both the primary reaction and the secondary reaction can be completed by injecting the sample liquid into the flow path 342 of the sensor chip 300 (one-step method).
  • the measurement abnormality detection method can detect measurement abnormality in measurement using SPFS.
  • “measurement abnormality” means an event that reduces the reliability of measurement using SPFS.
  • Examples of measurement abnormalities include defects in the conductor film in the sensor chip, abnormalities on the surface of the sensor region, abnormal reactions in the sensor region, and the like. First, measurement abnormality will be described with reference to the sensor chip 300 (FIG. 2).
  • the defect of the conductor film is, for example, a circular bulge of the conductor film 320 (see FIG. 6) or peeling of the conductor film 320. These defects occur, for example, due to storage of the sensor chip 300 or liquid feeding into the flow path 342. When defects occur in the conductor film 320 in this way, variations in the electric field at the time of measurement, an increase in background light, a decrease in the capture rate of the substance to be measured, and the like occur, and the reliability of the measurement results decreases.
  • Abnormalities on the surface of the sensor region include, for example, corrosion of a layer made of the capturing body 330 or an intermediate layer provided on the conductive film 320 to support this layer, or sensor region (the conductive film 320 and the capturing body 330). For example, adhesion of foreign matter to the surface. These abnormalities are caused by, for example, generation of mold or adhesion of foreign matters during storage of the sensor chip 300, lack of cleaning in the flow path 342, or the like. When abnormality occurs on the surface of the sensor region in this way, variations in the electric field at the time of measurement, a decrease in the capture rate of the substance to be measured, and the like occur, and the reliability of the measurement result decreases.
  • the abnormality in the reaction in the sensor region is, for example, adhesion of foreign matters derived from the sample liquid to the surface of the sensor region. These abnormalities occur, for example, due to non-specific adsorption of contaminants accompanying the injection of the sample liquid into the flow path 342, lack of cleaning in the flow path 342, and the like.
  • the “contaminant” means a protein or glycolipid other than the substance to be measured contained in the sample solution.
  • the sample solution is blood or a diluted solution thereof, the blood cell component is contained in the contaminants.
  • the measurement abnormality detection method includes (a-1) a step of preparing the sensor chip 300, and (b-1) a step of irradiating the sensor chip 300 with light to measure a predetermined optical characteristic value. And (b-2) detecting a measurement abnormality based on the optical characteristic value measured in step (b-1).
  • the measurement abnormality detection method includes (b-3) a step of interrupting measurement when a measurement abnormality is detected in step (b-2), or (b-3 ′) the step ( It is preferable to further include a step of notifying the measurement abnormality when the measurement abnormality is detected in b-2) and continuing the measurement and displaying the measurement result.
  • step (a-1) the aforementioned sensor chip 300 is prepared.
  • the sensor chip 300 may be manufactured, or the sensor chip 300 may be purchased.
  • step (b-1) light is applied to the conductor film 320 from the prism 310 side so as to be totally reflected at the interface between the prism 310 and the conductor film 320, and an optical characteristic value for detecting a measurement abnormality is obtained. taking measurement.
  • the type of optical characteristic value measured in this step is not particularly limited as long as a measurement abnormality can be detected. Examples of the optical characteristic value include a plasmon scattered light amount, an enhancement angle, a resonance angle, a reflected light amount, and a blank light amount. Only one type of these optical characteristic values may be measured, or two or more types may be measured in combination. The type of optical characteristic value to be measured can be appropriately selected according to the type of measurement abnormality to be detected (see Table 1).
  • the “plasmon scattered light amount” measured to detect a measurement abnormality is a sensor when excitation light ⁇ is incident on the conductive film 320 from the prism 310 side at a specific incident angle ⁇ . This means the amount of scattered light having the same wavelength as the excitation light ⁇ emitted above the chip 300. The plasmon scattered light amount is measured by the measurement light detection unit 190.
  • the “enhancement angle” measured to detect measurement abnormality is the scattered light having the same wavelength as the excitation light ⁇ emitted above the sensor chip 300 when the incident angle ⁇ of the excitation light ⁇ is scanned. This means the incident angle when the amount of light reaches the maximum.
  • the incident angle ⁇ of the excitation light ⁇ is adjusted by the incident angle adjusting unit 168.
  • the “resonance angle” measured to detect measurement abnormality is the minimum amount of reflected light ⁇ emitted from the emission surface 316 of the sensor chip 300 when the incident angle ⁇ of the excitation light ⁇ is scanned. Means the incident angle. The incident angle ⁇ of the excitation light ⁇ is adjusted by the incident angle adjusting unit 168.
  • the “reflected light amount” measured to detect a measurement abnormality is the minimum amount of reflected light ⁇ emitted from the emission surface 316 of the sensor chip 300 when the incident angle ⁇ of the excitation light ⁇ is scanned. Mean value.
  • the amount of reflected light is measured by the reflected light detection unit 200. When the resonance angle is the measurement angle ⁇ m, the amount of reflected light is the same as the amount of reflected light ⁇ during fluorescence measurement.
  • the “blank light amount” measured to detect a measurement abnormality means the amount of background light emitted above the sensor chip 300 during fluorescence measurement.
  • the blank light quantity is measured by the measurement light detection unit 190 under the same optical conditions as those during fluorescence measurement before performing the secondary reaction.
  • step (b-2) a measurement abnormality is detected based on the optical characteristic value measured in step (b-1). For example, when the plasmon scattered light amount, reflected light amount, or blank light amount exceeds ⁇ 50% from the reference value, it is determined that a measurement abnormality has occurred. If the enhancement angle or resonance angle exceeds ⁇ 0.1 ° from the reference value, it is determined that a measurement abnormality has occurred.
  • the reference value can be appropriately set according to the equipment used, the type of sample, the required measurement accuracy, and the like.
  • step (b-3) if a measurement abnormality is detected in step (b-2), the subsequent steps are canceled and the measurement is interrupted. At this time, the fact that the measurement is interrupted may be displayed on the display unit 220 together with the reason. Further, step (b-3 ') may be performed instead of step (b-3). In step (b-3 '), if a measurement abnormality is detected in step (b-2), the measurement is continued thereafter, but a notification that a measurement abnormality has occurred is displayed when the measurement result is displayed. For example, you may display on the display part 220 that a measurement abnormality was detected during a measurement with a measurement result.
  • the measurement abnormality detection method may be implemented in combination with measurement of a substance to be measured.
  • the measurement of the substance to be measured is the “two-step method” including the primary reaction and the secondary reaction described above
  • the measurement of the substance to be measured includes (a-1) a step of preparing the sensor chip 300, a-2) a step of binding the substance to be measured in the sample solution and the capturing body 330 (primary reaction), and (a-3) a step of labeling the substance to be measured bound to the capturing body 330 with a fluorescent substance ( Secondary reaction) and (a-4) a step of measuring the amount of fluorescence emitted from the fluorescent substance that labels the substance to be measured (fluorescence measurement).
  • the measurement abnormality inspection including the steps (b-1) and (b-2) may be performed between the sensor chip preparation (a-1) and the primary reaction (a-2). It may be performed between the primary reaction (a-2) and the secondary reaction (a-3), or between the secondary reaction (a-3) and the fluorescence measurement (a-4). May be done.
  • the measurement of the substance to be measured includes (a-1) a step of preparing the sensor chip 300 and (a-2 ′) a label with a fluorescent substance.
  • a step of binding the substance to be measured and the trap 330 (hereinafter also simply referred to as “reaction”), and (a-4) a step of measuring the amount of fluorescence emitted from the fluorescent substance that labels the substance to be measured. (Fluorescence measurement).
  • step (a-2 ′) a sample containing a substance to be measured that has been previously labeled with a fluorescent substance is brought into contact with the capturing body 330 to bind the substance to be measured that has been labeled with the fluorescent substance and the capturing body 330.
  • the sample and the fluorescent substance are brought into contact with the capturing body 330 to label the target substance with the fluorescent substance, and the target substance and the capturing body 330 are combined.
  • the measurement abnormality inspection may be performed between the preparation of the sensor chip (a-1) and the reaction (a-2 ′), or the reaction (a-2 ′) and the fluorescence measurement (a ⁇ 4).
  • the sensor chip 300 is removed from the pretreatment chamber 110 by the chip transfer unit 140 before the step (b-1). It is transferred into the measurement chamber 120.
  • the fact may be displayed on the display unit 220 or the subsequent process may be canceled.
  • the measurement abnormality inspection may be performed a plurality of times.
  • the measurement abnormality may be inspected using the same optical characteristic value each time, or the measurement abnormality may be inspected using different optical characteristic values each time.
  • FIG. 4 is a flowchart showing an example of a measurement procedure when a measurement abnormality is inspected in a two-step measurement using SPFS.
  • FIG. 4A shows an example in which the measurement abnormality test (b-1) is performed once before the primary reaction (a-2).
  • FIG. 4B shows an example in which a measurement abnormality test (b-1) is performed once between the primary reaction (a-2) and the secondary reaction (a-3).
  • FIG. 4C shows an example in which a measurement abnormality test (b-1) is performed once between the secondary reaction (a-3) and the fluorescence measurement (a-4).
  • FIG. 4D shows a measurement abnormality test (b-1) before the primary reaction (a-2) and between the primary reaction (a-2) and the secondary reaction (a-3).
  • FIG. 4E shows that the measurement abnormality test (b-1) is performed twice before the primary reaction (a-2) and between the secondary reaction (a-3) and the fluorescence measurement (a-4).
  • FIG. 4F shows the measurement abnormality between the primary reaction (a-2) and the secondary reaction (a-3), and between the secondary reaction (a-3) and the fluorescence measurement (a-4).
  • FIG. 4G shows before primary reaction (a-2), between primary reaction (a-2) and secondary reaction (a-3), secondary reaction (a-3) and fluorescence measurement ( An example is shown in which the measurement abnormality inspection (b-1) is performed three times with respect to a-4).
  • step S20 shown in FIG. 3
  • step S20 shown in FIG. 3
  • step S20 shown in FIG. 3
  • step S20 shown in FIG. 3
  • fluorescence measurement shown in FIG. 3
  • FIG. 5 is a flowchart showing an example of a measurement procedure when a measurement abnormality is inspected in a one-step measurement using SPFS.
  • FIG. 5A shows an example in which the measurement abnormality test (b-1) is performed once before the reaction (a-2 ').
  • FIG. 5B shows an example in which the measurement abnormality test (b-1) is performed once between the reaction (a-2 ') and the fluorescence measurement (a-4).
  • FIG. 5C shows an example in which the measurement abnormality test (b-1) is performed twice before the reaction (a-2 ′) and between the reaction (a-2 ′) and the fluorescence measurement (a-4). Indicates.
  • the steps other than the reaction injection of the sample liquid containing the measurement target substance labeled with the fluorescent substance or the sample liquid and the fluorescent substance into the flow path 342 of the sensor chip 300
  • the measurement of the fluorescence are as follows. It is omitted for convenience of explanation.
  • the circular bulge of the conductor film 320 can be detected with high sensitivity by measuring the plasmon scattered light amount, the reflected light amount, or the blank light amount as an optical characteristic value for detecting a measurement abnormality.
  • the circular bulge of the conductor film 320 can be detected by performing the inspection at any timing shown in FIGS. 4A to 4G and FIGS. 5A to 5C.
  • the loss of the sample solution, the reagent, and the like can be reduced by performing the inspection before the (primary) reaction.
  • FIGS. 4B, 4C, and 5B by performing an inspection after the (primary or secondary) reaction, it is possible to detect a circular ridge generated by liquid feeding.
  • foreign matter adhesion to the surface of the sensor region can be detected with high sensitivity by measuring the enhancement angle or the resonance angle as an optical characteristic value for detecting a measurement abnormality.
  • the adhesion of foreign matter derived from the sample liquid to the surface of the sensor region can be detected with high sensitivity by measuring the enhancement angle or the resonance angle as an optical characteristic value for detecting measurement abnormality.
  • Table 1 shows the types of measurement abnormalities that can be detected and their detection sensitivities for each optical characteristic value.
  • indicates that it can be detected
  • indicates that it can be detected with high sensitivity.
  • the sensor chip 300 prepared in the step (a-1) may have information on the optical characteristic value in a normal state.
  • the sensor chip 300 may be provided with a barcode, character information, or the like including information related to the optical characteristic value in a normal state.
  • the optical property value in the normal state is compared with the measured optical property value to detect the presence or absence of measurement abnormality.
  • the measurement abnormality detection method can detect a measurement abnormality before or during measurement in measurement using SPFS, thereby improving the reliability of the measurement result. Can be made.
  • the measurement abnormality detection method according to the present embodiment can detect a measurement abnormality at an early stage of measurement, the measurement time loss due to the measurement abnormality can be shortened.
  • Example 1 In Example 1, an example in which a defect in a conductor film of a sensor chip is detected will be described.
  • a prism made of transparent resin was prepared.
  • the shape of the prism is a column having an isosceles trapezoid as a bottom surface.
  • a thin gold film having a thickness of 45 nm was formed on the largest plane of the prism by sputtering.
  • the starting point of the organic reaction was formed on the surface of the gold thin film by forming a self-assembled monolayer made of thiol having an amino group.
  • a hydrophilic polymer was bonded by an amide coupling reaction to form a support layer on the surface of the gold thin film.
  • the antibody was immobilized on the support layer using chemical bonding to produce a sensor chip.
  • FIG. 6 is an optical microscope image of the gold thin film surface after the storage environment acceleration test. It can be seen that a circular ridge is generated on the surface of the gold thin film.
  • a laser beam (excitation light) with a wavelength of 635 nm was irradiated onto the gold thin film from the prism side.
  • the incident angle on the gold thin film was scanned, and the relationship between the incident angle and the amount of scattered light having the same wavelength above the gold thin film was examined.
  • the incident angle at which the amount of scattered light was maximum was defined as “enhancement angle”
  • the amount of scattered light at the enhancement angle was defined as “plasmon scattered light amount”.
  • the incident angle with respect to the gold thin film was scanned, and the relationship between the incident angle, the amount of light reflected by the gold thin film, and the amount of scattered light having a wavelength of 650 nm or more above the gold thin film was examined.
  • the incident angle at which the amount of reflected light is the minimum was defined as “resonance angle”
  • the ratio of the reflected light amount to the excitation light amount when the incident angle was the resonance angle was defined as “resonance reflectance”.
  • the amount of scattered light having a wavelength of 650 nm or more when the incident angle is the resonance angle was defined as “blank light amount”.
  • FIG. 7A is a graph showing the relationship between the area ratio of circular ridges and the amount of plasmon scattered light (arbitrary unit).
  • FIG. 7B is a graph showing the relationship between the area ratio of circular ridges and the reflectance at resonance.
  • FIG. 7C is a graph showing the relationship between the area ratio of the circular ridges and the blank light quantity (arbitrary unit).
  • a sensor chip having a circular ridge area ratio of 0% is a normal sensor chip that has not been subjected to a storage environment acceleration test.
  • a sensor chip having a circular ridge area ratio of 0.5 to 10% is a sensor chip having a defect in a gold thin film, which was subjected to a storage environment acceleration test.
  • the plasmon scattered light amount of the normal sensor chip was 20000 or less, whereas the plasmon scattered light amount of the sensor chip having a defect in the gold thin film exceeded 120,000.
  • the resonance reflectance of the normal sensor chip was 1.8% or less, whereas the resonance reflectance of the sensor chip having a defect in the gold thin film was 1. It was over 8%.
  • the blank light amount of a normal sensor chip was 7000 or less, whereas the blank light amount of a sensor chip having a defect in a gold thin film exceeded 8000. From these results, it is understood that the presence or absence of abnormality in the gold thin film of the sensor chip can be detected by examining the plasmon scattered light amount, the resonance reflectance, or the blank light amount.
  • Example 2 In Example 2, the result of simulating whether or not adhesion of foreign matter on the surface of the conductor film can be detected will be described.
  • a foreign substance adheres to the surface of the conductor film a foreign substance layer having a different refractive index is formed on the conductor film. Therefore, in this simulation, the adhesion of foreign matters was simulated by arranging layers having different refractive indexes on the conductor film.
  • a prism made of a material transparent to excitation light (refractive index 1.72), a gold thin film (conductor film; refractive index 0.1726 + 3.4218i) having a thickness of 50.0 nm, and a thickness 1.00 nm
  • a layered body of protein layers (capture layer; refractive index 1.45) was assumed. It was assumed that a layer having a refractive index of 1.235 to 1.435 was disposed as a foreign substance layer on the protein layer.
  • the refractive index of water is 1.335.
  • the gold thin film was irradiated with excitation light from the prism side. Scanning the angle of incidence on the gold thin film, incident angle, reflectance (ratio of the amount of light reflected by the gold thin film to the amount of excitation light) and scattered light (the amount of scattered light of the same wavelength above the gold thin film) The relationship was calculated.
  • FIG. 8A is a graph showing the relationship between the incident angle of excitation light and the reflectance.
  • FIG. 8B is a graph showing the relationship between the incident angle of excitation light and the amount of scattered light (arbitrary unit).
  • the numerical value given to each curve means the refractive index (n) of the foreign material layer.
  • the incident angle at which the reflectance is minimum corresponds to the “resonance angle”.
  • the incident angle at which the amount of scattered light is maximum corresponds to the “enhancement angle” for each curve.
  • the scattered light amount at this enhancement angle is referred to as “plasmon scattered light amount”.
  • the resonance angle and the enhancement angle increase as the refractive index of the foreign material layer increases (the amount of foreign matter attached increases). Therefore, it can be seen that the adhesion of foreign matter to the conductor film of the sensor chip can be detected by examining the resonance angle or the enhancement angle.
  • the measurement abnormality detection method and the surface plasmon excitation enhanced fluorescence measurement apparatus according to the present invention can measure a substance to be measured with high reliability, and are useful for clinical examinations, for example.
  • DESCRIPTION OF SYMBOLS 100 Surface plasmon excitation enhanced fluorescence measuring apparatus 110 Pretreatment chamber 120 Measurement chamber 130 Liquid feeding part 132 Liquid feeding pump 134 Liquid feeding pump conveyance part 136 Reagent chip 140 Chip conveyance part 150 Light source unit 160 Excitation light optical system 162 First wave shaper 164 Polarization direction adjusting unit 166 Shaping optical system 168 Incident angle adjusting unit 170 Chip holder 180 Measuring light optical system 190 Measuring light detecting unit 200 Reflected light detecting unit 210 Control calculating unit 220 Display unit 300 Sensor chip 310 Prism 312 Incident surface 314 Reflecting surface 316 Emission surface 320 Conductor film 330 Capture body 340 Channel member 342 Channel 344 Reaction chamber 346 Inlet 348 Outlet

Abstract

The present invention pertains to a method for detecting measurement abnormalities in measurements made using surface plasmon-field enhanced fluorescence spectroscopy. A sensor chip is provided that has a prism comprising a dielectric, a conductor film disposed on a surface of the prism, and a capturing body fixed onto the conductor film. Light is irradiated from the prism side to the conductor film so as to be totally reflected at the interface of the prism and the conductor film, and optical characteristic values for detecting measurement abnormalities are measured. Measurement abnormalities are detected on the basis of the optical characteristic values.

Description

測定異常の検出方法および表面プラズモン励起増強蛍光測定装置Measurement abnormality detection method and surface plasmon excitation enhanced fluorescence measurement apparatus
 本発明は、表面プラズモン励起増強蛍光分光法を利用した測定における測定異常の検出方法、および前記測定異常の検出方法を実行する表面プラズモン励起増強蛍光測定装置に関する。 The present invention relates to a method for detecting a measurement abnormality in measurement using surface plasmon excitation enhanced fluorescence spectroscopy, and a surface plasmon excitation enhanced fluorescence measurement apparatus for executing the measurement abnormality detection method.
 従来、タンパク質やDNAなどの被測定物質を高感度に測定する方法として、表面プラズモン励起増強蛍光分光法(Surface Plasmon-field enhanced Fluorescence Spectroscopy:以下「SPFS」と略記する)が知られている(例えば、特許文献1,2参照)。 Conventionally, surface plasmon excitation enhanced fluorescence spectroscopy (Surface Plasmon-field enhanced Fluorescence Spectroscopy: hereinafter abbreviated as “SPFS”) is known as a method for measuring a substance to be measured such as protein and DNA with high sensitivity (for example, “SPFS”). Patent Documents 1 and 2).
 特許文献1,2には、SPFSを利用して被測定物質の測定を行う表面プラズモン共鳴蛍光測定装置が開示されている。これらの装置には、誘電体からなるプリズムと、プリズムの1面上に形成された導電体膜(例えば金属膜)と、導電体膜上に固定された捕捉体(例えば抗体)とを有するセンサチップが装着される。導電体膜上に被測定物質を含む試料液を提供すると、被測定物質が捕捉体により捕捉される(1次反応)。捕捉された被検出物質は、さらに蛍光物質で標識される(2次反応)。 Patent Documents 1 and 2 disclose a surface plasmon resonance fluorescence measuring apparatus for measuring a substance to be measured using SPFS. In these devices, a sensor having a prism made of a dielectric, a conductor film (for example, a metal film) formed on one surface of the prism, and a capturing body (for example, an antibody) fixed on the conductor film. A tip is attached. When the sample liquid containing the substance to be measured is provided on the conductor film, the substance to be measured is captured by the capturing body (primary reaction). The captured substance to be detected is further labeled with a fluorescent substance (secondary reaction).
 この状態で、プリズムと導電体膜との界面において全反射するように、プリズム側から導電体膜に励起光を照射すると、界面で励起光が反射する時に導電体膜からエバネッセント光がしみ出し、導電体膜中のプラズモンとエバネッセント光とが干渉する。界面への励起光の入射角が共鳴角に設定され、プラズモンとエバネッセント光とが共鳴する場合に、エバネッセント光の電場は著しく増強される。表面プラズモン励起蛍光分光法(SPFS)においては、この増強された電場が用いられ、この電場は、被測定物質を標識する蛍光物質を励起する。したがって、導電体膜上に被測定物質が存在する場合は、蛍光物質から放出された蛍光が観察される。測定装置は、蛍光の光量を測定して、被測定物質の存在またはその量を検出する。 In this state, when the excitation light is applied to the conductor film from the prism side so as to be totally reflected at the interface between the prism and the conductor film, evanescent light oozes from the conductor film when the excitation light is reflected at the interface. Plasmons in the conductive film interfere with evanescent light. When the incident angle of the excitation light to the interface is set to the resonance angle and the plasmon and the evanescent light resonate, the electric field of the evanescent light is remarkably enhanced. In surface plasmon excitation fluorescence spectroscopy (SPFS), this enhanced electric field is used, and this electric field excites a fluorescent substance that labels the substance to be measured. Therefore, when the substance to be measured exists on the conductor film, the fluorescence emitted from the fluorescent substance is observed. The measuring device measures the amount of fluorescence and detects the presence or amount of the substance to be measured.
 一方、特許文献3には、白色干渉法を利用して生体分子を検出する方法が開示されている。この方法では、プローブ用生体分子を固定した基板(バイオセンサ)表面における3次元形状の変化を白色干渉法を利用して検出することで、生体分子を検出する。特許文献3には、白色干渉法を利用してバイオセンサ表面の3次元形状を計測することで、バイオセンサの品質管理を行うことも記載されている。 On the other hand, Patent Document 3 discloses a method of detecting a biomolecule using a white interference method. In this method, a biomolecule is detected by detecting a change in a three-dimensional shape on the surface of a substrate (biosensor) on which a probe biomolecule is fixed using a white interference method. Patent Document 3 also describes that quality control of a biosensor is performed by measuring the three-dimensional shape of the biosensor surface using white interference.
国際公開第2012/042805号International Publication No. 2012/042805 国際公開第2012/108323号International Publication No. 2012/108323 特開2007-10557号公報JP 2007-10557 A
 SPFSを利用する被測定物質の測定は、非常に高感度である。このため、保管によるセンサチップまたは試料液の変化や、試料液中の夾雑物(例えば、試料液が血液の場合における血球成分など)の非特異的吸着などの各種要因が、測定結果に大きく影響してしまう。したがって、測定結果の信頼性を向上させる観点からは、センサチップの異常や、測定中に生じた異常などの各種異常を検出できることが好ましい。 The measurement of the substance to be measured using SPFS is very sensitive. For this reason, various factors such as changes in the sensor chip or sample solution due to storage and nonspecific adsorption of contaminants in the sample solution (for example, blood cell components when the sample solution is blood) greatly affect the measurement results. Resulting in. Therefore, from the viewpoint of improving the reliability of the measurement result, it is preferable that various abnormalities such as an abnormality of the sensor chip and an abnormality occurring during the measurement can be detected.
 本発明の目的は、SPFSを利用した測定における測定異常の検出方法を提供することである。 An object of the present invention is to provide a measurement abnormality detection method in measurement using SPFS.
 上記課題を解決するため、本発明の一実施の形態に係る測定異常の検出方法は、表面プラズモン励起増強蛍光分光法による測定における測定異常の検出方法であって、(a-1)誘電体からなるプリズムと、前記プリズムの面上に配置された導電体膜と、前記導電体膜上に固定された捕捉体とを有するセンサチップを準備する工程と、(b-1)前記プリズムと前記導電体膜との界面において全反射するように、前記プリズム側から前記導電体膜に光を照射し、測定異常の検出のための光学特性値を測定する工程と、(b-2)前記光学特性値に基づき、測定異常を検出する工程と、を含む。 In order to solve the above problems, a method for detecting a measurement abnormality according to an embodiment of the present invention is a method for detecting a measurement abnormality in measurement by surface plasmon excitation enhanced fluorescence spectroscopy, comprising: (a-1) from a dielectric And (b-1) preparing a sensor chip having a prism, a conductor film disposed on the surface of the prism, and a capturing body fixed on the conductor film; Irradiating the conductor film with light from the prism side so as to be totally reflected at the interface with the body film, and measuring an optical characteristic value for detecting a measurement abnormality; and (b-2) the optical characteristic. Detecting a measurement abnormality based on the value.
 また、上記課題を解決するため、本発明の一実施の形態に係る表面プラズモン励起増強蛍光測定装置は、表面プラズモン励起増強蛍光分光法を利用して被測定物質を測定する表面プラズモン励起増強蛍光測定装置であって、上記の測定異常の検出方法により、表面プラズモン励起増強蛍光分光法を利用した測定における測定異常を検出する。 In order to solve the above problems, a surface plasmon excitation enhanced fluorescence measurement device according to an embodiment of the present invention is a surface plasmon excitation enhanced fluorescence measurement that measures a substance to be measured using surface plasmon excitation enhanced fluorescence spectroscopy. The apparatus detects a measurement abnormality in measurement using surface plasmon excitation enhanced fluorescence spectroscopy by the above-described measurement abnormality detection method.
 本発明によれば、SPFSを利用した測定結果の信頼性を向上させることができる。また、本発明によれば、測定の早い段階において測定異常を検出することで、測定異常による試薬や測定時間などの損失を低減することができる。 According to the present invention, the reliability of measurement results using SPFS can be improved. Further, according to the present invention, by detecting a measurement abnormality at an early stage of measurement, it is possible to reduce losses such as reagents and measurement time due to the measurement abnormality.
図1は、表面プラズモン励起増強蛍光測定装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a surface plasmon excitation enhanced fluorescence measuring apparatus. 図2は、センサチップの断面図である。FIG. 2 is a cross-sectional view of the sensor chip. 図3は、測定手順の一例を示すフローチャートである。FIG. 3 is a flowchart showing an example of the measurement procedure. 図4A~Gは、SPFSを利用した測定において測定異常の検査を行う場合の、測定手順の一例を示すフローチャートである。4A to 4G are flowcharts showing an example of a measurement procedure when a measurement abnormality is inspected in measurement using SPFS. 図5A~Cは、SPFSを利用した測定において測定異常の検査を行う場合の、測定手順の一例を示すフローチャートである。FIGS. 5A to 5C are flowcharts showing an example of a measurement procedure when a measurement abnormality is inspected in measurement using SPFS. 図6は、保存環境加速試験後の金薄膜表面の写真である。FIG. 6 is a photograph of the gold thin film surface after the storage environment acceleration test. 図7Aは、円形隆起の面積率とプラズモン散乱光量との関係を示すグラフである。図7Bは、円形隆起の面積率と共鳴時反射率との関係を示すグラフである。図7Cは、円形隆起の面積率とブランク光量との関係を示すグラフである。FIG. 7A is a graph showing the relationship between the area ratio of circular ridges and the amount of plasmon scattered light. FIG. 7B is a graph showing the relationship between the area ratio of circular ridges and the reflectance at resonance. FIG. 7C is a graph showing the relationship between the area ratio of the circular ridges and the blank light amount. 図8Aは、励起光の入射角と反射率との関係を示すグラフである。図8Bは、励起光の入射角と散乱光量との関係を示すグラフである。FIG. 8A is a graph showing the relationship between the incident angle of excitation light and the reflectance. FIG. 8B is a graph showing the relationship between the incident angle of excitation light and the amount of scattered light.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 [表面プラズモン励起増強蛍光測定装置]
 (測定装置の構成)
 まず、SPFSを利用して被測定物質を測定する表面プラズモン励起増強蛍光測定装置(以下「測定装置」ともいう)について説明する。図1は、本発明の一実施の形態に係る表面プラズモン励起増強蛍光測定装置100の構成を示す模式図である。
[Surface plasmon excitation enhanced fluorescence measurement device]
(Configuration of measuring device)
First, a surface plasmon excitation enhanced fluorescence measuring apparatus (hereinafter also referred to as “measuring apparatus”) that measures a substance to be measured using SPFS will be described. FIG. 1 is a schematic diagram showing a configuration of a surface plasmon excitation enhanced fluorescence measuring apparatus 100 according to an embodiment of the present invention.
 図1に示されるように、測定装置100は、前処理室110、測定室120、送液部130、チップ搬送部140、光源ユニット150、励起光光学系160、チップホルダー170、測定光光学系180、測定光検出部190、反射光検出部200、制御演算部210および表示部220を有する。 As shown in FIG. 1, the measurement apparatus 100 includes a pretreatment chamber 110, a measurement chamber 120, a liquid feeding unit 130, a chip transport unit 140, a light source unit 150, an excitation light optical system 160, a chip holder 170, and a measurement light optical system. 180, a measurement light detection unit 190, a reflected light detection unit 200, a control calculation unit 210, and a display unit 220.
 測定装置100では、チップホルダー170にセンサチップ300を装着した状態で、被測定物質の測定が行われる。ここで「被測定物質の測定」とは、被測定物質の存在の検出または被測定物質の量の検出の少なくとも一方を行うことを意味する。後述するように、センサチップ300は、入射面312、反射面314および出射面316を有するプリズム310と、反射面314に形成された導電体膜320と、導電体膜320上に配置された捕捉体330と、導電体膜320上に配置された流路部材340とを有する(図2参照)。センサチップ300は、試料液や蛍光標識液、緩衝液などの液体を流路342内に注入される時には前処理室110内に配置され(図1において二点鎖線で示す)、測定時には測定室120内に配置される(図1において実線で示す)。 In the measuring apparatus 100, the substance to be measured is measured with the sensor chip 300 mounted on the chip holder 170. Here, “measuring the substance to be measured” means performing at least one of detecting the presence of the substance to be measured and detecting the amount of the substance to be measured. As will be described later, the sensor chip 300 includes a prism 310 having an incident surface 312, a reflecting surface 314, and an emitting surface 316, a conductor film 320 formed on the reflecting surface 314, and a trap disposed on the conductor film 320. And a flow path member 340 disposed on the conductor film 320 (see FIG. 2). The sensor chip 300 is disposed in the pretreatment chamber 110 when a liquid such as a sample solution, a fluorescent labeling solution, or a buffer solution is injected into the flow path 342 (indicated by a two-dot chain line in FIG. 1), and is measured in the measurement chamber. 120 (shown by a solid line in FIG. 1).
 測定時には、光源ユニット150から出射された励起光αは、励起光光学系160によりセンサチップ300へ導かれる。センサチップ300に励起光αが入射している間は、センサチップ300から測定光βおよび反射光γが出射される。測定光βは、測定光光学系180により測定光検出部190へ導かれる。反射光γは、反射光検出部200へ導かれる。 During measurement, the excitation light α emitted from the light source unit 150 is guided to the sensor chip 300 by the excitation light optical system 160. While the excitation light α is incident on the sensor chip 300, the measurement light β and the reflected light γ are emitted from the sensor chip 300. The measurement light β is guided to the measurement light detection unit 190 by the measurement light optical system 180. The reflected light γ is guided to the reflected light detection unit 200.
 以下、表面プラズモン励起増強蛍光測定装置100の各構成要素について説明する。 Hereinafter, each component of the surface plasmon excitation enhanced fluorescence measuring apparatus 100 will be described.
 送液部130は、前処理室110内において、センサチップ300の流路342内に試料液や蛍光標識液、洗浄液などの液体を注入するか、または流路342内の液体を流路342外に排出する。送液部130は、例えば、送液ポンプ132および送液ポンプ搬送部134を有する。また、前処理室110内には、試料液や蛍光標識液、洗浄液などが分注された試薬チップ136も配置されている。送液ポンプ132は、試薬チップ136またはセンサチップ300から液体を吸引し、試薬チップ136またはセンサチップ300に液体を吐出する。たとえば、送液ポンプ132は、試薬チップ136の1つのウェルから液体を吸引し、センサチップ300の流路342内に液体を吐出する。場合によっては、送液ポンプ132は、試薬チップ136の1つのウェルから液体を吸引し、試薬チップ136の別のウェルに液体を吐出することもある。送液ポンプ搬送部134は、送液ポンプ132の動作に応じて、送液ポンプ132を試薬チップ136上またはセンサチップ300上に移動させる。 In the pretreatment chamber 110, the liquid feeding unit 130 injects a liquid such as a sample liquid, a fluorescent labeling liquid, or a cleaning liquid into the flow path 342 of the sensor chip 300, or causes the liquid in the flow path 342 to flow outside the flow path 342. To discharge. The liquid feeding unit 130 includes, for example, a liquid feeding pump 132 and a liquid feeding pump transport unit 134. In the pretreatment chamber 110, a reagent chip 136 into which a sample solution, a fluorescent labeling solution, a cleaning solution, etc. are dispensed is also arranged. The liquid feed pump 132 sucks the liquid from the reagent chip 136 or the sensor chip 300 and discharges the liquid to the reagent chip 136 or the sensor chip 300. For example, the liquid feed pump 132 sucks liquid from one well of the reagent chip 136 and discharges the liquid into the flow path 342 of the sensor chip 300. In some cases, the liquid feed pump 132 may suck liquid from one well of the reagent chip 136 and discharge the liquid to another well of the reagent chip 136. The liquid feed pump transport unit 134 moves the liquid feed pump 132 onto the reagent chip 136 or the sensor chip 300 according to the operation of the liquid feed pump 132.
 チップ搬送部140は、前処理時にはセンサチップ300を前処理室110内に搬送し、測定時にはセンサチップ300を測定室120内に搬送する。測定室120内に搬送されたセンサチップ300は、チップホルダー170に保持される。 The chip transport unit 140 transports the sensor chip 300 into the pretreatment chamber 110 during preprocessing, and transports the sensor chip 300 into the measurement chamber 120 during measurement. The sensor chip 300 conveyed into the measurement chamber 120 is held by the chip holder 170.
 光源ユニット150は、コリメートされ、波長および光量が一定の励起光αを出射する。光源ユニット150は、例えば、励起光源としてのレーザーダイオードと、レーザーダイオードから出射された励起光αをコリメートするコリメーターと、励起光αの波長および光量を一定にするための温度調整回路とを有する(いずれも不図示)。レーザーダイオードから出射される励起光αの波長および光量は、温度によって変化する。このため、温度調整回路は、コリメートされた後の励起光αから分岐させた光の光量をフォトダイオードなどにより監視し、励起光αの波長および光量が一定となるようにレーザーダイオードの温度を調整する。レーザーダイオードから出射される励起光αは、通常、直線偏光である。 The light source unit 150 is collimated and emits excitation light α having a constant wavelength and light amount. The light source unit 150 includes, for example, a laser diode as an excitation light source, a collimator that collimates the excitation light α emitted from the laser diode, and a temperature adjustment circuit for making the wavelength and the light amount of the excitation light α constant. (Both are not shown). The wavelength and light amount of the excitation light α emitted from the laser diode varies with temperature. For this reason, the temperature adjustment circuit monitors the amount of light branched from the collimated excitation light α with a photodiode, etc., and adjusts the temperature of the laser diode so that the wavelength and the amount of the excitation light α are constant. To do. The excitation light α emitted from the laser diode is usually linearly polarized light.
 光源ユニット150に含まれる光源の種類は、特に限定されず、レーザーダイオードでなくてもよい。光源の例には、発光ダイオード、水銀灯、その他のレーザー光源が含まれる。光源から出射される光がビームでない場合は、光源から出射される光は、レンズや鏡、スリットなどによりビームに変換される。また、光源から出射される光が単色光でない場合は、光源から出射される光は、回折格子などにより単色光に変換される。さらに、光源から出射される光が直線偏光でない場合は、光源から出射される光は、偏光子などにより直線偏光の光に変換される。 The type of light source included in the light source unit 150 is not particularly limited, and may not be a laser diode. Examples of light sources include light emitting diodes, mercury lamps, and other laser light sources. When the light emitted from the light source is not a beam, the light emitted from the light source is converted into a beam by a lens, a mirror, a slit, or the like. When the light emitted from the light source is not monochromatic light, the light emitted from the light source is converted into monochromatic light by a diffraction grating or the like. Furthermore, when the light emitted from the light source is not linearly polarized light, the light emitted from the light source is converted into linearly polarized light by a polarizer or the like.
 励起光光学系160は、光源ユニット150から出射された励起光αの各種パラメータを調整した上で、プリズム310と導電体膜320の界面(プリズム310の反射面314)で励起光αが全反射されるように、励起光αをセンサチップ300に導く。図1に示されるように、励起光光学系160は、例えば、第1整波器162、偏光方向調整部164、整形光学系166および入射角調整部168を有する。 The excitation light optical system 160 adjusts various parameters of the excitation light α emitted from the light source unit 150 and then totally reflects the excitation light α at the interface between the prism 310 and the conductor film 320 (the reflection surface 314 of the prism 310). As shown, the excitation light α is guided to the sensor chip 300. As illustrated in FIG. 1, the excitation light optical system 160 includes, for example, a first wave adjuster 162, a polarization direction adjustment unit 164, a shaping optical system 166, and an incident angle adjustment unit 168.
 第1整波器162は、励起光αを整波する。第1整波器162は、例えば、第1バンドパスフィルタ、直線偏光フィルタおよび減光フィルタを含む(いずれも不図示)。第1バンドパスフィルタは、励起光αを中心波長のみの狭帯域光にする。直線偏光フィルタは、励起光αを完全な直線偏光の光にする。減光フィルタは、励起光αの光量を調整する。 The first wave shaper 162 waves the excitation light α. The first wave adjuster 162 includes, for example, a first band pass filter, a linear polarization filter, and a neutral density filter (all not shown). The first bandpass filter turns the excitation light α into narrowband light having only the center wavelength. The linearly polarizing filter turns the excitation light α into completely linearly polarized light. The neutral density filter adjusts the amount of excitation light α.
 偏光方向調整部164は、導電体膜320に主にP波成分が入射するように励起光αの偏光方向を調整する。偏光方向調整部164は、例えば、半波長板および半波長板回転部を含む(いずれも不図示)。半波長板は、半波長板回転部により回転させられる。半波長板を透過する励起光αの偏光方向は、半波長板の回転角により調整される。 The polarization direction adjusting unit 164 adjusts the polarization direction of the excitation light α so that the P wave component is mainly incident on the conductor film 320. The polarization direction adjusting unit 164 includes, for example, a half-wave plate and a half-wave plate rotating unit (both not shown). The half-wave plate is rotated by a half-wave plate rotating unit. The polarization direction of the excitation light α that passes through the half-wave plate is adjusted by the rotation angle of the half-wave plate.
 整形光学系166は、プリズム310と導電体膜320の界面(導電体膜320表面)における照射スポットの形状が所定サイズの円形となるように、励起光αのビーム径や輪郭形状などを調整する。整形光学系166は、例えばスリットやズーム光学系などである。 The shaping optical system 166 adjusts the beam diameter, contour shape, and the like of the excitation light α so that the shape of the irradiation spot at the interface between the prism 310 and the conductor film 320 (the surface of the conductor film 320) is a predetermined size. . The shaping optical system 166 is, for example, a slit or a zoom optical system.
 入射角調整部168は、プリズム310と導電体膜320の界面(プリズム310の反射面314)への励起光αの入射角θ(図1参照)を調整する。入射角調整部168は、例えば、反射鏡、反射鏡角度調整部および反射鏡位置調整部を含む(いずれも不図示)。反射鏡角度調整部は、反射鏡を回転させることで、励起光αの入射角θを調整する。反射鏡位置調整部は、入射角θの変化による照射スポットの移動を相殺するように、反射鏡を移動させる。これにより、照射スポットの位置を変えることなく、入射角θのみを調整することができる。 The incident angle adjusting unit 168 adjusts the incident angle θ (see FIG. 1) of the excitation light α to the interface between the prism 310 and the conductor film 320 (the reflecting surface 314 of the prism 310). The incident angle adjusting unit 168 includes, for example, a reflecting mirror, a reflecting mirror angle adjusting unit, and a reflecting mirror position adjusting unit (all not shown). The reflecting mirror angle adjustment unit adjusts the incident angle θ of the excitation light α by rotating the reflecting mirror. The reflecting mirror position adjustment unit moves the reflecting mirror so as to cancel the movement of the irradiation spot due to the change in the incident angle θ. Thereby, only incident angle (theta) can be adjusted, without changing the position of an irradiation spot.
 チップホルダー170は、測定室120内においてセンサチップ300を保持する。センサチップ300は、チップホルダー170に保持された状態で、励起光光学系160からの励起光αを照射される。このとき、導電体膜320のプリズム310と対向しない面からは、励起光αと同一波長の散乱光や蛍光物質から放出された蛍光などの測定光βが上方に放出される。また、プリズム310と導電体膜320の界面で反射した励起光αは、反射光γとして出射面316から出射される(図2参照)。 The chip holder 170 holds the sensor chip 300 in the measurement chamber 120. The sensor chip 300 is irradiated with the excitation light α from the excitation light optical system 160 while being held by the chip holder 170. At this time, measurement light β such as scattered light having the same wavelength as the excitation light α and fluorescence emitted from the fluorescent material is emitted upward from the surface of the conductor film 320 that does not face the prism 310. Further, the excitation light α reflected at the interface between the prism 310 and the conductor film 320 is emitted from the emission surface 316 as reflected light γ (see FIG. 2).
 測定光光学系180は、センサチップ300から上方に出射される測定光βを測定光検出部190に導く。測定光光学系180は、チップホルダー170に保持されたセンサチップ300の導電体膜320のプリズム310と対向しない面に対向するように配置されている。より具体的には、測定光光学系180は、導電体膜320表面における励起光αの照射スポットを通り、かつ導電体膜320表面に垂直な直線上に配置されている。測定光光学系180は、例えば、集光レンズ、第2整波器および結像レンズを含む(いずれも不図示)。 The measurement light optical system 180 guides the measurement light β emitted upward from the sensor chip 300 to the measurement light detection unit 190. The measuring light optical system 180 is disposed so as to face a surface of the conductor film 320 of the sensor chip 300 held by the chip holder 170 that does not face the prism 310. More specifically, the measurement light optical system 180 is arranged on a straight line that passes through the irradiation spot of the excitation light α on the surface of the conductor film 320 and is perpendicular to the surface of the conductor film 320. The measurement light optical system 180 includes, for example, a condenser lens, a second wave rectifier, and an imaging lens (all not shown).
 集光レンズおよび結像レンズは、迷光の影響を受けにくい共役光学系を構成する。集光レンズと結像レンズとの間を進行する光は、略平行光となる。集光レンズおよび結像レンズは、導電体膜320上の測定光βの像(例えば、蛍光像)を測定光検出部190の受光面上に結像させる。 The condensing lens and the imaging lens constitute a conjugate optical system that is not easily affected by stray light. The light traveling between the condenser lens and the imaging lens is substantially parallel light. The condenser lens and the imaging lens form an image of the measurement light β (for example, a fluorescent image) on the conductive film 320 on the light receiving surface of the measurement light detection unit 190.
 第2整波器は、集光レンズおよび結像レンズの間に位置するように配置される。第2整波器は、励起光αの波長の光を遮ることで、蛍光の波長以外の光(例えば、光源ユニット150からの漏れ光や、導電体膜320からの励起光αと同一波長の散乱光など)が測定光検出部190に到達することを防ぐ。すなわち、第2整波器は、測定光検出部190に到達する光からノイズ成分を除去し、蛍光の検出精度および感度の向上に寄与する。第2整波器は、例えば、第2バンドパスフィルタおよび挿抜部を含む。第2バンドパスフィルタの位置は、挿抜部により切り替えられる。蛍光の光量を測定する場合は、第2バンドパスフィルタは、測定光βの光路へ挿入される。一方、励起光αと同一波長の散乱光(後述するプラズモン散乱光)の光量を測定する場合は、第2バンドパスフィルタは、測定光βの光路から抜去される。 The second wave shaper is disposed so as to be positioned between the condenser lens and the imaging lens. The second wave shaper blocks light having the wavelength of the excitation light α, thereby allowing light other than the wavelength of the fluorescence (for example, leakage light from the light source unit 150 or light having the same wavelength as the excitation light α from the conductor film 320). (Scattered light or the like) is prevented from reaching the measurement light detector 190. That is, the second wave rectifier removes a noise component from the light reaching the measurement light detection unit 190, and contributes to improvement in fluorescence detection accuracy and sensitivity. The second wave shaper includes, for example, a second band pass filter and an insertion / extraction unit. The position of the second band pass filter is switched by the insertion / extraction unit. When measuring the amount of fluorescent light, the second band pass filter is inserted into the optical path of the measurement light β. On the other hand, when measuring the amount of scattered light having the same wavelength as the excitation light α (plasmon scattered light described later), the second bandpass filter is removed from the optical path of the measurement light β.
 挿抜部は、さらに集光レンズおよび結像レンズの間に減光フィルタを挿抜してもよい。蛍光の光量を測定する場合は、減光フィルタは、測定光βの光路から抜去される。一方、励起光αと同一波長の散乱光(プラズモン散乱光)の光量を測定する場合は、減光フィルタは、測定光βの光路へ挿入される。これにより、測定光検出部190へ導かれる蛍光およびプラズモン散乱光の光量の差が小さくなるため、測定光検出部190における光量の測定が容易になる。 The insertion / extraction unit may further insert / remove a neutral density filter between the condenser lens and the imaging lens. When measuring the amount of fluorescent light, the neutral density filter is removed from the optical path of the measurement light β. On the other hand, when measuring the amount of scattered light (plasmon scattered light) having the same wavelength as the excitation light α, the neutral density filter is inserted into the optical path of the measurement light β. As a result, the difference between the light amounts of the fluorescence and the plasmon scattered light guided to the measurement light detection unit 190 becomes small, and the measurement of the light amount in the measurement light detection unit 190 becomes easy.
 測定光検出部190は、導電体膜320上の測定光βの像を取得し、測定光βの光量を測定する。たとえば、測定光検出部190は、導電体膜320上の蛍光の光量およびプラズモン散乱光の光量を測定する。測定光検出部190は、例えば、光電子増倍管や冷却電荷結合素子(CCD)カメラなどである。 The measurement light detection unit 190 acquires an image of the measurement light β on the conductor film 320 and measures the amount of the measurement light β. For example, the measurement light detection unit 190 measures the amount of fluorescent light on the conductor film 320 and the amount of plasmon scattered light. The measurement light detection unit 190 is, for example, a photomultiplier tube or a cooled charge coupled device (CCD) camera.
 反射光検出部200は、反射光γの光量を測定する。反射光検出部200は、例えば、光電子増倍管や冷却電荷結合素子(CCD)カメラなどである。 The reflected light detection unit 200 measures the amount of reflected light γ. The reflected light detection unit 200 is, for example, a photomultiplier tube or a cooled charge coupled device (CCD) camera.
 制御演算部210は、各駆動部の制御や、測定光検出部190および反射光検出部200における受光量の定量化などを一元的に行う。制御演算部210は、例えば、ソフトウェアを実行するコンピュータである。 The control calculation unit 210 performs control of each driving unit, quantification of the amount of light received by the measurement light detection unit 190 and the reflected light detection unit 200, and the like. The control arithmetic unit 210 is, for example, a computer that executes software.
 表示部220は、制御演算部210と接続されており、測定状況や測定結果などを表示する。 The display unit 220 is connected to the control calculation unit 210 and displays a measurement status, a measurement result, and the like.
 (センサチップの構成)
 次に、測定装置100のチップホルダー170に装着されるセンサチップ300について説明する。図2は、センサチップ300の断面図である。
(Configuration of sensor chip)
Next, the sensor chip 300 attached to the chip holder 170 of the measuring apparatus 100 will be described. FIG. 2 is a cross-sectional view of the sensor chip 300.
 図2に示されるように、センサチップ300は、プリズム310、導電体膜320、捕捉体330および流路部材340を有する。センサチップ300は、通常、被測定物質の測定ごとに交換される。センサチップ300は、好ましくは、各片の長さが数mm~数cmである構造物であるが、「チップ」の範疇に含まれないより小型の構造物またはより大型の構造物であってもよい。 2, the sensor chip 300 includes a prism 310, a conductor film 320, a capturing body 330, and a flow path member 340. The sensor chip 300 is normally replaced for each measurement of the substance to be measured. The sensor chip 300 is preferably a structure having a length of several mm to several cm for each piece, but is a smaller structure or a larger structure not included in the category of “chip”. Also good.
 プリズム310は、励起光αに対して透明な誘電体からなる。プリズム310は、励起光光学系160からの励起光αをプリズム310の内部に入射させる入射面312と、プリズム310の内部に入射した励起光αを反射する反射面314と、反射面314で反射した励起光αをプリズム310の外部に出射させる出射面316とを有する。プリズム310の形状は、特に限定されないが、例えば台形を底面とする柱体である。この場合、台形の一方の底辺に対応する面が反射面314であり、一方の脚に対応する面が入射面312であり、他方の脚に対応する面が出射面316である。底面となる台形は、等脚台形であることが好ましい。これにより、入射面312と出射面316とが対称になり、反射光γのS波成分がプリズム310内に滞留しにくくなる。たとえば、入射面312と反射面314との角度および反射面314と出射面316との角度は、いずれも約80°である。プリズム310の材料の例には、樹脂およびガラスが含まれる。プリズム310の材料は、好ましくは、屈折率が1.4~1.6であり、かつ複屈折が小さい樹脂である。 The prism 310 is made of a dielectric that is transparent to the excitation light α. The prism 310 includes an incident surface 312 that allows the excitation light α from the excitation light optical system 160 to enter the prism 310, a reflection surface 314 that reflects the excitation light α incident on the prism 310, and a reflection surface 314 that reflects the reflection surface 314. And an emission surface 316 for emitting the excited excitation light α to the outside of the prism 310. The shape of the prism 310 is not particularly limited. For example, the prism 310 is a column having a trapezoidal bottom surface. In this case, the surface corresponding to one base of the trapezoid is the reflecting surface 314, the surface corresponding to one leg is the entrance surface 312, and the surface corresponding to the other leg is the exit surface 316. The trapezoid serving as the bottom surface is preferably an isosceles trapezoid. Thereby, the entrance surface 312 and the exit surface 316 are symmetric, and the S wave component of the reflected light γ is less likely to stay in the prism 310. For example, the angle between the incident surface 312 and the reflecting surface 314 and the angle between the reflecting surface 314 and the emitting surface 316 are both about 80 °. Examples of the material of the prism 310 include resin and glass. The material of the prism 310 is preferably a resin having a refractive index of 1.4 to 1.6 and a small birefringence.
 導電体膜320は、プリズム310の反射面314上に形成されている。導電体膜320は、励起光αがプリズム310の反射面314で全反射することにより生じるエバネッセント光(増強電場)を増幅させる。すなわち、反射面314上の導電体膜320に表面プラズモン共鳴を生じさせることにより、導電体膜320の無い面(反射面314)で励起光αを全反射させてエバネッセント光を生じさせる場合に比べ、形成されるエバネッセント光を増幅させることができる。導電体膜320の材料は、表面プラズモン共鳴を生じさせることができれば特に限定されない。導電体膜320の材料の例には、金や銀、銅、アルミニウムなどの金属、これらの合金が含まれる。導電体膜320の形成方法は、特に限定されない。導電体膜320の形成方法の例には、スパッタリング、蒸着、メッキが含まれる。導電体膜320の厚みは、特に限定されないが、30~70nmの範囲内が好ましい。 The conductor film 320 is formed on the reflection surface 314 of the prism 310. The conductor film 320 amplifies evanescent light (enhanced electric field) generated when the excitation light α is totally reflected by the reflecting surface 314 of the prism 310. That is, by generating surface plasmon resonance in the conductive film 320 on the reflective surface 314, the excitation light α is totally reflected on the surface without the conductive film 320 (reflective surface 314) to generate evanescent light. , The formed evanescent light can be amplified. The material of the conductor film 320 is not particularly limited as long as surface plasmon resonance can be generated. Examples of the material of the conductor film 320 include metals such as gold, silver, copper, and aluminum, and alloys thereof. The method for forming the conductor film 320 is not particularly limited. Examples of the method for forming the conductor film 320 include sputtering, vapor deposition, and plating. The thickness of the conductor film 320 is not particularly limited, but is preferably in the range of 30 to 70 nm.
 捕捉体330は、導電体膜320のプリズム310と対向しない面上に固定されており、被測定物質を捕捉する。捕捉体330は、導電体膜320上の所定の領域に均一に固定されている。捕捉体の種類は、被測定物質を特異的に捕捉することができれば特に限定されない。たとえば、捕捉体は、被測定物質に特異的に結合する抗体またはその断片である。 The capturing body 330 is fixed on a surface of the conductive film 320 that does not face the prism 310, and captures the substance to be measured. The capturing body 330 is uniformly fixed to a predetermined region on the conductor film 320. The type of the capturing body is not particularly limited as long as the substance to be measured can be specifically captured. For example, the capturing body is an antibody or a fragment thereof that specifically binds to the substance to be measured.
 流路部材340は、導電体膜320のプリズム310と対向しない面上に配置されている。導電体膜320がプリズム310の反射面314の一部にのみ形成されている場合は、流路部材340は、反射面314上に配置されていてもよい。流路部材340は、導電体膜320(およびプリズム310)と共に、試料液などの液体が流れる流路342を形成する。流路342の途中には、反応室344が存在する。捕捉体330は、反応室344に露出している。流路342の両端は、流路部材340の上面に形成された注入口346および排出口348とそれぞれ接続されている。流路342内へ試料液や蛍光標識液などの液体が注入されると、反応室344内において、これらの液体は捕捉体330に接触する。流路部材340は、測定光β(例えば、蛍光やプラズモン散乱光など)に対して透明な材料からなる。流路部材340の材料の例には、樹脂が含まれる。流路部材340は、例えば、接着剤による接着や、レーザー溶着、超音波溶着、クランプ部材を用いた圧着などにより導電体膜320またはプリズム310に接合されている。 The flow path member 340 is disposed on the surface of the conductor film 320 that does not face the prism 310. When the conductor film 320 is formed only on a part of the reflection surface 314 of the prism 310, the flow path member 340 may be disposed on the reflection surface 314. The flow path member 340 and the conductor film 320 (and the prism 310) form a flow path 342 through which a liquid such as a sample liquid flows. A reaction chamber 344 exists in the middle of the flow path 342. The capturing body 330 is exposed to the reaction chamber 344. Both ends of the channel 342 are connected to an inlet 346 and an outlet 348 formed on the upper surface of the channel member 340, respectively. When liquid such as sample liquid or fluorescent labeling liquid is injected into the flow path 342, these liquids come into contact with the capturing body 330 in the reaction chamber 344. The flow path member 340 is made of a material that is transparent to the measurement light β (for example, fluorescence or plasmon scattered light). An example of the material of the flow path member 340 includes a resin. The flow path member 340 is bonded to the conductor film 320 or the prism 310 by, for example, adhesion using an adhesive, laser welding, ultrasonic welding, or pressure bonding using a clamp member.
 図2に示されるように、プリズム310へ導かれた励起光αは、入射面312からプリズム310内に入射する。プリズム310内に入射した励起光αは、反射面314(プリズム310と導電体膜320との界面)で全反射され、反射光γとなる。反射光γは、出射面316からプリズム310外に出射される。一方、導電体膜320および捕捉体330からは、測定光β(例えば、蛍光やプラズモン散乱光など)が、測定光光学系180の方向へ出射される。反射面314に励起光αが全反射条件を満たして入射し、かつ反射面314からしみ出すエバネッセント光と導電体膜320中のプラズモンとが共鳴する場合は、導電体膜320によりエバネッセント光の電場が増強され、蛍光およびプラズモン散乱光の光量が増加する。 As shown in FIG. 2, the excitation light α guided to the prism 310 enters the prism 310 from the incident surface 312. The excitation light α incident on the prism 310 is totally reflected by the reflection surface 314 (interface between the prism 310 and the conductor film 320) to become reflected light γ. The reflected light γ is emitted from the emission surface 316 to the outside of the prism 310. On the other hand, measurement light β (for example, fluorescence or plasmon scattered light) is emitted from the conductor film 320 and the capturing body 330 in the direction of the measurement light optical system 180. When the excitation light α is incident on the reflecting surface 314 while satisfying the total reflection condition, and the evanescent light oozing out from the reflecting surface 314 and the plasmon in the conductor film 320 resonate, the electric field of the evanescent light is caused by the conductor film 320. Is increased, and the amount of fluorescence and plasmon scattered light is increased.
 (測定の手順)
 次に、測定装置100の測定動作について説明する(特許文献1,2も参照)。図3は、測定装置100の測定手順の一例を示すフローチャートである。
(Measurement procedure)
Next, the measurement operation of the measurement apparatus 100 will be described (see also Patent Documents 1 and 2). FIG. 3 is a flowchart illustrating an example of a measurement procedure of the measurement apparatus 100.
 まず、測定の準備をする(工程S10)。具体的には、センサチップ300および試薬チップ136を準備し、それぞれ前処理室110内の所定の場所に設置する。制御演算部210は、送液部130を制御して、試料液や蛍光標識液などを必要に応じて調製して、試薬チップ136に分注する。 First, preparation for measurement is performed (step S10). Specifically, the sensor chip 300 and the reagent chip 136 are prepared and installed at predetermined locations in the pretreatment chamber 110, respectively. The control calculation unit 210 controls the liquid feeding unit 130 to prepare a sample solution, a fluorescent labeling solution, and the like as necessary, and dispense them into the reagent chip 136.
 次いで、試料液中の被測定物質と捕捉体330とを反応させる(1次反応、工程S20)。具体的には、制御演算部210は、送液部130に、センサチップ300の流路342に試料液を注入させる。試料液が流路342に注入されると、試料液が捕捉体330に接触する。試料液中に被測定物質が存在する場合は、被測定物質の少なくとも一部は捕捉体330により捕捉される。この後、流路342内を緩衝液などで洗浄し、捕捉体330に捕捉されなかった物質を除去する。試料液の種類は、特に限定されない。試料液の例には、血液や血清、血漿、尿、鼻孔液、唾液、精液などの体液およびその希釈液が含まれる。 Next, the substance to be measured in the sample solution and the capturing body 330 are reacted (primary reaction, step S20). Specifically, the control calculation unit 210 causes the liquid feeding unit 130 to inject the sample liquid into the flow path 342 of the sensor chip 300. When the sample liquid is injected into the flow path 342, the sample liquid comes into contact with the capturing body 330. When the substance to be measured exists in the sample liquid, at least a part of the substance to be measured is captured by the capturing body 330. Thereafter, the inside of the flow path 342 is washed with a buffer solution or the like, and the substances not captured by the capturing body 330 are removed. The kind of sample liquid is not specifically limited. Examples of the sample liquid include body fluids such as blood, serum, plasma, urine, nasal fluid, saliva, semen, and diluted solutions thereof.
 次いで、捕捉体330に捕捉された被測定物質を蛍光物質で標識する(2次反応、工程S30)。具体的には、制御演算部210は、送液部130に、センサチップ300の流路342に蛍光標識液を注入させる。蛍光標識液は、例えば、蛍光物質で標識された抗体(2次抗体)を含む緩衝液である。蛍光標識液が流路342に注入されると、蛍光標識液が捕捉体330に接触する。被測定物質が捕捉体330に捕捉されている場合は、被測定物質の少なくとも一部は、蛍光物質で標識される。この後、流路342内を緩衝液などで洗浄し、遊離の蛍光物質などを除去する。 Next, the substance to be measured captured by the capturing body 330 is labeled with a fluorescent material (secondary reaction, step S30). Specifically, the control calculation unit 210 causes the liquid feeding unit 130 to inject the fluorescent labeling solution into the flow path 342 of the sensor chip 300. The fluorescent labeling solution is, for example, a buffer solution containing an antibody (secondary antibody) labeled with a fluorescent substance. When the fluorescent labeling liquid is injected into the flow path 342, the fluorescent labeling liquid comes into contact with the capturing body 330. When the substance to be measured is captured by the capturing body 330, at least a part of the substance to be measured is labeled with a fluorescent substance. Thereafter, the inside of the flow path 342 is washed with a buffer solution or the like to remove free fluorescent substances.
 次いで、センサチップ300を測定室120内に搬送する(工程S40)。具体的には、制御演算部210は、チップ搬送部140に、センサチップ300を測定室120内に搬送させる。センサチップ300は、チップホルダー170に装着される。 Next, the sensor chip 300 is transported into the measurement chamber 120 (step S40). Specifically, the control calculation unit 210 causes the chip transfer unit 140 to transfer the sensor chip 300 into the measurement chamber 120. The sensor chip 300 is attached to the chip holder 170.
 次いで、所定の入射角θとなるように励起光αをセンサチップ300に照射して、蛍光物質から放出される蛍光の光量を測定する(工程S50)。具体的には、制御演算部210は、センサチップ300の反射面314(プリズム310と導電体膜320との界面)において励起光αが全反射するように、光源ユニット150および励起光光学系160に励起光αを出射させる。これにより、エバネッセント光で励起された蛍光物質から放出された蛍光(測定光β)が、センサチップ300の上方に放出される。同時に、制御演算部210は、測定光検出部190に蛍光(測定光β)の光量を測定させる。また、制御演算部210は、検出値を記憶すると共に、表示部220に表示させる(工程S60)。蛍光の光量は、必要に応じて、被測定物質の量や濃度などに換算される。 Next, the sensor chip 300 is irradiated with the excitation light α so as to have a predetermined incident angle θ, and the amount of fluorescence emitted from the fluorescent material is measured (step S50). Specifically, the control calculation unit 210 includes the light source unit 150 and the excitation light optical system 160 so that the excitation light α is totally reflected on the reflection surface 314 (the interface between the prism 310 and the conductor film 320) of the sensor chip 300. To emit excitation light α. Thereby, the fluorescence (measurement light β) emitted from the fluorescent material excited by the evanescent light is emitted above the sensor chip 300. At the same time, the control calculation unit 210 causes the measurement light detection unit 190 to measure the amount of fluorescence (measurement light β). In addition, the control calculation unit 210 stores the detected value and displays it on the display unit 220 (step S60). The amount of fluorescent light is converted into the amount and concentration of the substance to be measured as necessary.
 最後に、制御演算部210は、測定装置100全体を初期化して、一連の測定を終了する(工程S70)。このとき、入射角調整部168などの可動物は、初期位置に復帰させられる。 Finally, the control calculation unit 210 initializes the entire measuring apparatus 100 and ends a series of measurements (step S70). At this time, the movable object such as the incident angle adjustment unit 168 is returned to the initial position.
 以上の手順により、試料液中の被測定物質の存在または被測定物質の量を検出することができる。 By the above procedure, the presence of the substance to be measured in the sample solution or the amount of the substance to be measured can be detected.
 なお、今回は特に説明しないが、1次反応(工程S20)の前、または1次反応(工程S20)と2次反応(工程S30)との間に、励起光αの最適な入射角θ(以下「測定角θm」ともいう)を決定しておくことが好ましい(特許文献1,2参照)。具体的には、導電体膜320に対する励起光αの入射角θを走査しつつ、励起光αと同一波長の測定光βまたは反射光γを測定し、増強角または共鳴角を決定する(増強角および共鳴角の定義について後述する)。この増強角または共鳴角をそのまま測定角θmとしてもよいし、増強角または共鳴角を補正した値を測定角θmとしてもよい。 Although not specifically described this time, the optimum incident angle θ (excitation light α) (before the primary reaction (step S20) or between the primary reaction (step S20) and the secondary reaction (step S30) is used. It is preferable to determine (hereinafter also referred to as “measurement angle θm”) (see Patent Documents 1 and 2). Specifically, while measuring the incident angle θ of the excitation light α with respect to the conductor film 320, the measurement light β or the reflected light γ having the same wavelength as the excitation light α is measured to determine the enhancement angle or the resonance angle (enhancement). The definition of the angle and the resonance angle will be described later). This enhancement angle or resonance angle may be directly used as the measurement angle θm, or a value obtained by correcting the enhancement angle or resonance angle may be used as the measurement angle θm.
 また、1次反応(工程S20)の前、または1次反応(工程S20)と2次反応(工程S30)との間に、励起光αの照射スポットの位置の最適化や、励起光αの偏光方向の最適化、自家蛍光の光量の測定なども行うことが好ましい(特許文献1,2参照)。 Further, before the primary reaction (step S20) or between the primary reaction (step S20) and the secondary reaction (step S30), the position of the irradiation spot of the excitation light α is optimized, and the excitation light α It is also preferable to optimize the polarization direction and measure the amount of autofluorescence (see Patent Documents 1 and 2).
 また、上記の説明では、被測定物質と捕捉体330とを反応させる工程(1次反応、工程S20)の後に、被測定物質を蛍光物質で標識する工程(2次反応、工程S30)を行った(2工程方式)。しかしながら、被測定物質を蛍光物質で標識するタイミングは、特に限定されない。たとえば、センサチップ300の流路342に試料液を注入する前に、試料液に蛍光物質を添加して被測定物質を予め蛍光物質で標識しておいてもよい。また、センサチップ300の流路342に試料液と蛍光物質を同時に注入してもよい。前者の場合は、センサチップ300の流路342に試料液を注入することで、蛍光物質で標識されている被測定物質が捕捉体330により捕捉される。後者の場合は、被測定物質が蛍光物質で標識されるとともに、被測定物質が捕捉体330により捕捉される。いずれの場合も、センサチップ300の流路342に試料液を注入することで、1次反応および2次反応の両方を完了することができる(1工程方式)。 In the above description, after the step of reacting the substance to be measured and the capturing body 330 (primary reaction, step S20), the step of labeling the substance to be measured with a fluorescent substance (secondary reaction, step S30) is performed. (2-step method). However, the timing for labeling the substance to be measured with the fluorescent substance is not particularly limited. For example, before injecting the sample liquid into the flow path 342 of the sensor chip 300, a fluorescent substance may be added to the sample liquid and the substance to be measured may be labeled with the fluorescent substance in advance. Further, the sample solution and the fluorescent material may be simultaneously injected into the flow path 342 of the sensor chip 300. In the former case, the sample substance is injected into the flow path 342 of the sensor chip 300, whereby the measurement target substance labeled with the fluorescent substance is captured by the capturing body 330. In the latter case, the substance to be measured is labeled with a fluorescent substance, and the substance to be measured is captured by the capturing body 330. In any case, both the primary reaction and the secondary reaction can be completed by injecting the sample liquid into the flow path 342 of the sensor chip 300 (one-step method).
 [測定異常の検出方法]
 本発明に係る測定異常の検出方法は、SPFSを利用した測定における測定異常を検出することができる。ここで「測定異常」とは、SPFSを利用した測定の信頼性を低下させる事象を意味する。測定異常の例には、センサチップにおける導電体膜の欠陥や、センサ領域表面の異常、センサ領域における反応の異常などが含まれる。まず、上述のセンサチップ300(図2)を参照して、測定異常について説明する。
[Measurement anomaly detection method]
The measurement abnormality detection method according to the present invention can detect measurement abnormality in measurement using SPFS. Here, “measurement abnormality” means an event that reduces the reliability of measurement using SPFS. Examples of measurement abnormalities include defects in the conductor film in the sensor chip, abnormalities on the surface of the sensor region, abnormal reactions in the sensor region, and the like. First, measurement abnormality will be described with reference to the sensor chip 300 (FIG. 2).
 導電体膜の欠陥は、例えば、導電体膜320の円形隆起(図6参照)や導電体膜320の剥離などである。これらの欠陥は、例えば、センサチップ300の保管や流路342内への送液などにより生じる。このように導電体膜320に欠陥が発生すると、測定時における電場のバラつきや、背景光の増大、被測定物質の捕捉率の低下などが生じ、測定結果の信頼性が低下してしまう。 The defect of the conductor film is, for example, a circular bulge of the conductor film 320 (see FIG. 6) or peeling of the conductor film 320. These defects occur, for example, due to storage of the sensor chip 300 or liquid feeding into the flow path 342. When defects occur in the conductor film 320 in this way, variations in the electric field at the time of measurement, an increase in background light, a decrease in the capture rate of the substance to be measured, and the like occur, and the reliability of the measurement results decreases.
 センサ領域表面の異常は、例えば、捕捉体330からなる層またはこの層を支持するために導電体膜320上に設けられた中間層の腐食や、センサ領域(導電体膜320および捕捉体330)表面への異物の付着などである。これらの異常は、例えば、センサチップ300の保管中におけるカビの発生または異物の付着、流路342内の洗浄不足などにより生じる。このようにセンサ領域表面に異常が発生すると、測定時における電場のバラつきや、被測定物質の捕捉率の低下などが生じ、測定結果の信頼性が低下してしまう。 Abnormalities on the surface of the sensor region include, for example, corrosion of a layer made of the capturing body 330 or an intermediate layer provided on the conductive film 320 to support this layer, or sensor region (the conductive film 320 and the capturing body 330). For example, adhesion of foreign matter to the surface. These abnormalities are caused by, for example, generation of mold or adhesion of foreign matters during storage of the sensor chip 300, lack of cleaning in the flow path 342, or the like. When abnormality occurs on the surface of the sensor region in this way, variations in the electric field at the time of measurement, a decrease in the capture rate of the substance to be measured, and the like occur, and the reliability of the measurement result decreases.
 センサ領域における反応の異常は、例えば、試料液に由来する異物のセンサ領域表面への付着などである。これらの異常は、例えば、流路342内への試料液の注入に伴う夾雑物の非特異的吸着や、流路342内の洗浄不足などにより生じる。ここで「夾雑物」とは、試料液に含まれる被測定物質以外のタンパク質や糖脂質などを意味する。たとえば、試料液が血液またはその希釈液の場合、血球成分は夾雑物に含まれる。このようにセンサ領域における反応の異常が発生すると、測定時に電場のロスが生じてしまい、測定結果の信頼性が低下してしまう。 The abnormality in the reaction in the sensor region is, for example, adhesion of foreign matters derived from the sample liquid to the surface of the sensor region. These abnormalities occur, for example, due to non-specific adsorption of contaminants accompanying the injection of the sample liquid into the flow path 342, lack of cleaning in the flow path 342, and the like. Here, the “contaminant” means a protein or glycolipid other than the substance to be measured contained in the sample solution. For example, when the sample solution is blood or a diluted solution thereof, the blood cell component is contained in the contaminants. When a reaction abnormality occurs in the sensor region in this way, an electric field loss occurs during measurement, and the reliability of the measurement result decreases.
 次に、SPFSを利用した測定における測定異常の検出方法について説明する。 Next, a measurement abnormality detection method in measurement using SPFS will be described.
 本実施の形態に係る測定異常の検出方法は、(a-1)センサチップ300を準備する工程と、(b-1)センサチップ300に光を照射し、所定の光学特性値を測定する工程と、(b-2)工程(b―1)で測定された光学特性値に基づき、測定異常を検出する工程と、を含む。また、本実施の形態に係る測定異常の検出方法は、(b-3)工程(b-2)において測定異常を検出した場合、測定を中断する工程、または(b-3’)前記工程(b-2)において測定異常を検出した場合、測定を継続し、かつ測定結果を表示する時に測定異常を通知する工程、をさらに含むことが好ましい。 The measurement abnormality detection method according to the present embodiment includes (a-1) a step of preparing the sensor chip 300, and (b-1) a step of irradiating the sensor chip 300 with light to measure a predetermined optical characteristic value. And (b-2) detecting a measurement abnormality based on the optical characteristic value measured in step (b-1). In addition, the measurement abnormality detection method according to the present embodiment includes (b-3) a step of interrupting measurement when a measurement abnormality is detected in step (b-2), or (b-3 ′) the step ( It is preferable to further include a step of notifying the measurement abnormality when the measurement abnormality is detected in b-2) and continuing the measurement and displaying the measurement result.
 工程(a-1)では、前述のセンサチップ300を準備する。たとえば、センサチップ300を作製してもよいし、センサチップ300を購入してもよい。 In step (a-1), the aforementioned sensor chip 300 is prepared. For example, the sensor chip 300 may be manufactured, or the sensor chip 300 may be purchased.
 工程(b-1)では、プリズム310と導電体膜320との界面において全反射するように、プリズム310側から導電体膜320に光を照射し、測定異常の検出のための光学特性値を測定する。この工程で測定する光学特性値の種類は、測定異常を検出することができれば特に限定されない。光学特性値の例には、プラズモン散乱光量、増強角、共鳴角、反射光量、ブランク光量が含まれる。これらの光学特性値は、1種類のみを測定してもよいし、2種類以上を組み合わせて測定してもよい。測定する光学特性値の種類は、検出する測定異常の種類に応じて適宜選択されうる(表1参照)。 In step (b-1), light is applied to the conductor film 320 from the prism 310 side so as to be totally reflected at the interface between the prism 310 and the conductor film 320, and an optical characteristic value for detecting a measurement abnormality is obtained. taking measurement. The type of optical characteristic value measured in this step is not particularly limited as long as a measurement abnormality can be detected. Examples of the optical characteristic value include a plasmon scattered light amount, an enhancement angle, a resonance angle, a reflected light amount, and a blank light amount. Only one type of these optical characteristic values may be measured, or two or more types may be measured in combination. The type of optical characteristic value to be measured can be appropriately selected according to the type of measurement abnormality to be detected (see Table 1).
 本願明細書において、測定異常を検出するために測定される「プラズモン散乱光量」とは、プリズム310側から導電体膜320に対し特定の入射角θで励起光αを入射させた場合に、センサチップ300の上方に放出される、励起光αと同一波長の散乱光の光量を意味する。プラズモン散乱光量は、測定光検出部190により測定される。 In the specification of the present application, the “plasmon scattered light amount” measured to detect a measurement abnormality is a sensor when excitation light α is incident on the conductive film 320 from the prism 310 side at a specific incident angle θ. This means the amount of scattered light having the same wavelength as the excitation light α emitted above the chip 300. The plasmon scattered light amount is measured by the measurement light detection unit 190.
 また、測定異常を検出するために測定される「増強角」とは、励起光αの入射角θを走査した場合に、センサチップ300の上方に放出される励起光αと同一波長の散乱光の光量が最大となるときの、入射角を意味する。励起光αの入射角θは、入射角調整部168により調整される。 Further, the “enhancement angle” measured to detect measurement abnormality is the scattered light having the same wavelength as the excitation light α emitted above the sensor chip 300 when the incident angle θ of the excitation light α is scanned. This means the incident angle when the amount of light reaches the maximum. The incident angle θ of the excitation light α is adjusted by the incident angle adjusting unit 168.
 また、測定異常を検出するために測定される「共鳴角」とは、励起光αの入射角θを走査した場合に、センサチップ300の出射面316から出射される反射光γの光量が最小となるときの、入射角を意味する。励起光αの入射角θは、入射角調整部168により調整される。 Further, the “resonance angle” measured to detect measurement abnormality is the minimum amount of reflected light γ emitted from the emission surface 316 of the sensor chip 300 when the incident angle θ of the excitation light α is scanned. Means the incident angle. The incident angle θ of the excitation light α is adjusted by the incident angle adjusting unit 168.
 また、測定異常を検出するために測定される「反射光量」とは、励起光αの入射角θを走査した場合に、センサチップ300の出射面316から出射される反射光γの光量の最小値を意味する。反射光量は、反射光検出部200により測定される。共鳴角を測定角θmとした場合、反射光量は、蛍光測定時における反射光γの光量と同じである。 In addition, the “reflected light amount” measured to detect a measurement abnormality is the minimum amount of reflected light γ emitted from the emission surface 316 of the sensor chip 300 when the incident angle θ of the excitation light α is scanned. Mean value. The amount of reflected light is measured by the reflected light detection unit 200. When the resonance angle is the measurement angle θm, the amount of reflected light is the same as the amount of reflected light γ during fluorescence measurement.
 また、測定異常を検出するために測定される「ブランク光量」とは、蛍光測定時においてセンサチップ300の上方に放出される背景光の光量を意味する。ブランク光量は、2次反応を行う前に、蛍光測定時と同一の光学条件で測定光検出部190により測定される。 Also, the “blank light amount” measured to detect a measurement abnormality means the amount of background light emitted above the sensor chip 300 during fluorescence measurement. The blank light quantity is measured by the measurement light detection unit 190 under the same optical conditions as those during fluorescence measurement before performing the secondary reaction.
 工程(b-2)では、工程(b-1)で測定した光学特性値に基づき、測定異常を検出する。たとえば、プラズモン散乱光量、反射光量またはブランク光量が基準値から±50%を超えた場合、測定異常が生じたと判定する。また、増強角または共鳴角が基準値から±0.1°を超えた場合、測定異常が生じたと判定する。基準値は、使用する機材や試料の種類、要求される測定精度などに応じて適宜設定されうる。 In step (b-2), a measurement abnormality is detected based on the optical characteristic value measured in step (b-1). For example, when the plasmon scattered light amount, reflected light amount, or blank light amount exceeds ± 50% from the reference value, it is determined that a measurement abnormality has occurred. If the enhancement angle or resonance angle exceeds ± 0.1 ° from the reference value, it is determined that a measurement abnormality has occurred. The reference value can be appropriately set according to the equipment used, the type of sample, the required measurement accuracy, and the like.
 工程(b-3)では、工程(b-2)において測定異常を検出した場合、その後の工程を取り止めて測定を中断する。このとき、測定を中断した旨をその理由と共に表示部220に表示してもよい。また、工程(b-3)の代わりに工程(b-3’)を行ってもよい。工程(b-3’)では、工程(b-2)において測定異常を検出した場合、その後も測定を継続するが、測定結果を表示する時に測定異常が生じたことを通知する。たとえば、測定中に測定異常を検出した旨を測定結果と共に表示部220に表示してもよい。 In step (b-3), if a measurement abnormality is detected in step (b-2), the subsequent steps are canceled and the measurement is interrupted. At this time, the fact that the measurement is interrupted may be displayed on the display unit 220 together with the reason. Further, step (b-3 ') may be performed instead of step (b-3). In step (b-3 '), if a measurement abnormality is detected in step (b-2), the measurement is continued thereafter, but a notification that a measurement abnormality has occurred is displayed when the measurement result is displayed. For example, you may display on the display part 220 that a measurement abnormality was detected during a measurement with a measurement result.
 本実施の形態に係る測定異常の検出方法(以下「測定異常の検査」ともいう)は、被測定物質の測定と組み合せて実施されてもよい。たとえば、被測定物質の測定が前述の1次反応および2次反応を含む「2工程方式」である場合、被測定物質の測定は、(a-1)センサチップ300を準備する工程と、(a-2)試料液中の被測定物質と捕捉体330とを結合させる工程(1次反応)と、(a-3)捕捉体330に結合された被測定物質を蛍光物質で標識する工程(2次反応)と、(a-4)被測定物質を標識する蛍光物質から放出される蛍光の光量を測定する工程(蛍光測定)と、を含む。この場合、工程(b-1)および工程(b―2)を含む測定異常の検査は、センサチップの準備(a-1)と1次反応(a-2)との間に行われてもよいし、1次反応(a-2)と2次反応(a-3)との間に行われてもよいし、2次反応(a-3)と蛍光測定(a-4)との間に行われてもよい。 The measurement abnormality detection method according to the present embodiment (hereinafter also referred to as “measurement abnormality inspection”) may be implemented in combination with measurement of a substance to be measured. For example, when the measurement of the substance to be measured is the “two-step method” including the primary reaction and the secondary reaction described above, the measurement of the substance to be measured includes (a-1) a step of preparing the sensor chip 300, a-2) a step of binding the substance to be measured in the sample solution and the capturing body 330 (primary reaction), and (a-3) a step of labeling the substance to be measured bound to the capturing body 330 with a fluorescent substance ( Secondary reaction) and (a-4) a step of measuring the amount of fluorescence emitted from the fluorescent substance that labels the substance to be measured (fluorescence measurement). In this case, the measurement abnormality inspection including the steps (b-1) and (b-2) may be performed between the sensor chip preparation (a-1) and the primary reaction (a-2). It may be performed between the primary reaction (a-2) and the secondary reaction (a-3), or between the secondary reaction (a-3) and the fluorescence measurement (a-4). May be done.
 また、被測定物質の測定が前述の「1工程方式」である場合、被測定物質の測定は、(a-1)センサチップ300を準備する工程と、(a-2’)蛍光物質で標識されている被測定物質と捕捉体330とを結合させる工程(以下単に「反応」ともいう)と、(a-4)被測定物質を標識する蛍光物質から放出される蛍光の光量を測定する工程(蛍光測定)と、を含む。工程(a-2’)では、予め蛍光物質で標識されている被測定物質を含む試料を捕捉体330に接触させて、蛍光物質で標識されている被測定物質と捕捉体330とを結合させるか、または、試料および蛍光物質を捕捉体330に接触させて、蛍光物質で前記被測定物質を標識するとともに、被測定物質と捕捉体330とを結合させる。この場合、測定異常の検査は、センサチップの準備(a-1)と反応(a-2’)との間に行われてもよいし、反応(a-2’)と蛍光測定(a-4)との間に行われてもよい。 When the measurement of the substance to be measured is the above-described “one-step method”, the measurement of the substance to be measured includes (a-1) a step of preparing the sensor chip 300 and (a-2 ′) a label with a fluorescent substance. A step of binding the substance to be measured and the trap 330 (hereinafter also simply referred to as “reaction”), and (a-4) a step of measuring the amount of fluorescence emitted from the fluorescent substance that labels the substance to be measured. (Fluorescence measurement). In step (a-2 ′), a sample containing a substance to be measured that has been previously labeled with a fluorescent substance is brought into contact with the capturing body 330 to bind the substance to be measured that has been labeled with the fluorescent substance and the capturing body 330. Alternatively, the sample and the fluorescent substance are brought into contact with the capturing body 330 to label the target substance with the fluorescent substance, and the target substance and the capturing body 330 are combined. In this case, the measurement abnormality inspection may be performed between the preparation of the sensor chip (a-1) and the reaction (a-2 ′), or the reaction (a-2 ′) and the fluorescence measurement (a− 4).
 いずれの場合であっても、工程(b-1)は、測定室120内において行われるため、工程(b-1)の前に、センサチップ300は、チップ搬送部140により前処理室110から測定室120内に搬送される。前述のとおり、検査において異常を検出した場合は、その旨を表示部220に表示したり、その後の工程を取り止めたりしてもよい。 In any case, since the step (b-1) is performed in the measurement chamber 120, the sensor chip 300 is removed from the pretreatment chamber 110 by the chip transfer unit 140 before the step (b-1). It is transferred into the measurement chamber 120. As described above, when an abnormality is detected in the inspection, the fact may be displayed on the display unit 220 or the subsequent process may be canceled.
 また、測定異常の検査は、複数回行われてもよい。この場合、各回で同一の光学特性値を用いて測定異常を検査してもよいし、各回で異なる光学特性値を用いて測定異常を検査してもよい。 Also, the measurement abnormality inspection may be performed a plurality of times. In this case, the measurement abnormality may be inspected using the same optical characteristic value each time, or the measurement abnormality may be inspected using different optical characteristic values each time.
 図4は、SPFSを利用した2工程方式の測定において測定異常の検査を行う場合の、測定手順の一例を示すフローチャートである。図4Aは、1次反応(a-2)の前に測定異常の検査(b-1)を1回行う例を示す。図4Bは、1次反応(a-2)と2次反応(a-3)との間に測定異常の検査(b-1)を1回行う例を示す。図4Cは、2次反応(a-3)と蛍光測定(a-4)との間に測定異常の検査(b-1)を1回行う例を示す。図4Dは、1次反応(a-2)の前と、1次反応(a-2)と2次反応(a-3)との間とで、測定異常の検査(b-1)を2回行う例を示す。図4Eは、1次反応(a-2)の前と、2次反応(a-3)と蛍光測定(a-4)との間とで、測定異常の検査(b-1)を2回行う例を示す。図4Fは、1次反応(a-2)と2次反応(a-3)との間と、2次反応(a-3)と蛍光測定(a-4)との間とで、測定異常の検査(b-1)を2回行う例を示す。図4Gは、1次反応(a-2)の前と、1次反応(a-2)と2次反応(a-3)との間と、2次反応(a-3)と蛍光測定(a-4)との間とで、測定異常の検査(b-1)を3回行う例を示す。これらの図では、図3に示される各工程のうち、1次反応(図3に示される工程S20)、2次反応(図3に示される工程S20)、蛍光の測定(図3に示される工程S50)以外の工程については、説明の便宜上省略されている。 FIG. 4 is a flowchart showing an example of a measurement procedure when a measurement abnormality is inspected in a two-step measurement using SPFS. FIG. 4A shows an example in which the measurement abnormality test (b-1) is performed once before the primary reaction (a-2). FIG. 4B shows an example in which a measurement abnormality test (b-1) is performed once between the primary reaction (a-2) and the secondary reaction (a-3). FIG. 4C shows an example in which a measurement abnormality test (b-1) is performed once between the secondary reaction (a-3) and the fluorescence measurement (a-4). FIG. 4D shows a measurement abnormality test (b-1) before the primary reaction (a-2) and between the primary reaction (a-2) and the secondary reaction (a-3). An example of performing this time is shown. FIG. 4E shows that the measurement abnormality test (b-1) is performed twice before the primary reaction (a-2) and between the secondary reaction (a-3) and the fluorescence measurement (a-4). An example is shown. FIG. 4F shows the measurement abnormality between the primary reaction (a-2) and the secondary reaction (a-3), and between the secondary reaction (a-3) and the fluorescence measurement (a-4). An example of performing the inspection (b-1) twice will be shown. FIG. 4G shows before primary reaction (a-2), between primary reaction (a-2) and secondary reaction (a-3), secondary reaction (a-3) and fluorescence measurement ( An example is shown in which the measurement abnormality inspection (b-1) is performed three times with respect to a-4). In these figures, among the steps shown in FIG. 3, the primary reaction (step S20 shown in FIG. 3), the secondary reaction (step S20 shown in FIG. 3), and the fluorescence measurement (shown in FIG. 3). Steps other than step S50) are omitted for convenience of explanation.
 図5は、SPFSを利用した1工程方式の測定において測定異常の検査を行う場合の、測定手順の一例を示すフローチャートである。図5Aは、反応(a-2’)の前に測定異常の検査(b-1)を1回行う例を示す。図5Bは、反応(a-2’)と蛍光測定(a-4)との間に測定異常の検査(b-1)を1回行う例を示す。図5Cは、反応(a-2’)の前と、反応(a-2’)と蛍光測定(a-4)との間とで、測定異常の検査(b-1)を2回行う例を示す。これらの図でも、反応(センサチップ300の流路342への、蛍光物質で標識された被測定物質を含む試料液、または試料液および蛍光物質の注入)、蛍光の測定以外の工程については、説明の便宜上省略されている。 FIG. 5 is a flowchart showing an example of a measurement procedure when a measurement abnormality is inspected in a one-step measurement using SPFS. FIG. 5A shows an example in which the measurement abnormality test (b-1) is performed once before the reaction (a-2 '). FIG. 5B shows an example in which the measurement abnormality test (b-1) is performed once between the reaction (a-2 ') and the fluorescence measurement (a-4). FIG. 5C shows an example in which the measurement abnormality test (b-1) is performed twice before the reaction (a-2 ′) and between the reaction (a-2 ′) and the fluorescence measurement (a-4). Indicates. Also in these drawings, the steps other than the reaction (injection of the sample liquid containing the measurement target substance labeled with the fluorescent substance or the sample liquid and the fluorescent substance into the flow path 342 of the sensor chip 300) and the measurement of the fluorescence are as follows. It is omitted for convenience of explanation.
 たとえば、導電体膜320の円形隆起は、測定異常を検出するための光学特性値として、プラズモン散乱光量、反射光量またはブランク光量を測定することで、高感度に検出されうる。この場合、図4A~Gおよび図5A~Cに示されるいずれのタイミングで検査を行っても、導電体膜320の円形隆起を検出することができる。図4Aおよび図5Aに示されるように、(1次)反応の前に検査を行うことで、試料液や試薬などの損失を低減することができる。一方、図4B,Cおよび図5Bに示されるように、(1次または2次)反応の後に検査を行うことで、送液により発生した円形隆起を検出することができる。 For example, the circular bulge of the conductor film 320 can be detected with high sensitivity by measuring the plasmon scattered light amount, the reflected light amount, or the blank light amount as an optical characteristic value for detecting a measurement abnormality. In this case, the circular bulge of the conductor film 320 can be detected by performing the inspection at any timing shown in FIGS. 4A to 4G and FIGS. 5A to 5C. As shown in FIGS. 4A and 5A, the loss of the sample solution, the reagent, and the like can be reduced by performing the inspection before the (primary) reaction. On the other hand, as shown in FIGS. 4B, 4C, and 5B, by performing an inspection after the (primary or secondary) reaction, it is possible to detect a circular ridge generated by liquid feeding.
 また、センサ領域表面への異物付着は、測定異常を検出するための光学特性値として、増強角または共鳴角を測定することで、高感度に検出されうる。この場合、図4Aおよび図5Aに示されるように、(1次)反応の前に検査を行うことが好ましい。 Also, foreign matter adhesion to the surface of the sensor region can be detected with high sensitivity by measuring the enhancement angle or the resonance angle as an optical characteristic value for detecting a measurement abnormality. In this case, as shown in FIG. 4A and FIG. 5A, it is preferable to perform the inspection before the (primary) reaction.
 また、試料液に由来する異物のセンサ領域表面への付着は、測定異常を検出するための光学特性値として、増強角または共鳴角を測定することで、高感度に検出されうる。この場合、図4Dおよび図5Cに示されるように、(1次)反応の前および(1次)反応の後に光学特性値を測定して検査を行うことが好ましい。 Further, the adhesion of foreign matter derived from the sample liquid to the surface of the sensor region can be detected with high sensitivity by measuring the enhancement angle or the resonance angle as an optical characteristic value for detecting measurement abnormality. In this case, as shown in FIG. 4D and FIG. 5C, it is preferable to perform an inspection by measuring optical property values before (primary) reaction and after (primary) reaction.
 各光学特性値について、検出できる測定異常の種類と、その検出感度を表1に示す。表1において、「△」は検出できることを示し、「○」は高感度に検出できることを示している。 Table 1 shows the types of measurement abnormalities that can be detected and their detection sensitivities for each optical characteristic value. In Table 1, “Δ” indicates that it can be detected, and “◯” indicates that it can be detected with high sensitivity.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、工程(a-1)で準備するセンサチップ300は、正常状態における光学特性値に係る情報を有していてもよい。たとえば、センサチップ300は、正常状態における光学特性値に係る情報を含むバーコードや文字情報などが付与されていてもよい。この場合、工程(b-2)では、正常状態における光学特性値と、測定された光学特性値とを比較して、測定異常の有無を検出する。 Note that the sensor chip 300 prepared in the step (a-1) may have information on the optical characteristic value in a normal state. For example, the sensor chip 300 may be provided with a barcode, character information, or the like including information related to the optical characteristic value in a normal state. In this case, in step (b-2), the optical property value in the normal state is compared with the measured optical property value to detect the presence or absence of measurement abnormality.
 以上のように、本実施の形態に係る測定異常の検出方法は、SPFSを利用した測定において、測定の前または測定の間に測定異常を検出することができるため、測定結果の信頼性を向上させることができる。また、本実施の形態に係る測定異常の検出方法は、測定の早い段階において測定異常を検出することができるため、測定異常による測定時間の損失を短くすることができる。 As described above, the measurement abnormality detection method according to the present embodiment can detect a measurement abnormality before or during measurement in measurement using SPFS, thereby improving the reliability of the measurement result. Can be made. In addition, since the measurement abnormality detection method according to the present embodiment can detect a measurement abnormality at an early stage of measurement, the measurement time loss due to the measurement abnormality can be shortened.
 以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
 [実施例1]
 実施例1では、センサチップの導電体膜の欠陥を検出した例について説明する。
[Example 1]
In Example 1, an example in which a defect in a conductor film of a sensor chip is detected will be described.
 (1)センサチップの作製
 透明樹脂からなるプリズムを準備した。プリズムの形状は、等脚台形を底面とする柱体である。このプリズムの一番大きな平面上に、厚み45nmの金薄膜をスパッタリングで形成した。
(1) Production of sensor chip A prism made of transparent resin was prepared. The shape of the prism is a column having an isosceles trapezoid as a bottom surface. A thin gold film having a thickness of 45 nm was formed on the largest plane of the prism by sputtering.
 アミノ基を有するチオールからなる自己組織化単分子膜を形成することで、金薄膜の表面に有機反応の起点を形成した。次いで、親水性高分子をアミドカップリング反応により結合させて、金薄膜の表面に支持体層を形成した。最後に、抗体を化学結合を用いて支持体層上に固定化して、センサチップを作製した。 The starting point of the organic reaction was formed on the surface of the gold thin film by forming a self-assembled monolayer made of thiol having an amino group. Next, a hydrophilic polymer was bonded by an amide coupling reaction to form a support layer on the surface of the gold thin film. Finally, the antibody was immobilized on the support layer using chemical bonding to produce a sensor chip.
 一部のセンサチップを、80℃の水に浸漬して、金薄膜に欠陥(円形隆起)を生じさせた(保存環境加速試験)。図6は、保存環境加速試験後の金薄膜表面の光学顕微鏡像である。金薄膜の表面に円形隆起が発生していることがわかる。 Some sensor chips were immersed in water at 80 ° C. to cause defects (circular bulging) in the gold thin film (storage environment acceleration test). FIG. 6 is an optical microscope image of the gold thin film surface after the storage environment acceleration test. It can be seen that a circular ridge is generated on the surface of the gold thin film.
 (2)光学特性値の測定
 円形隆起を形成していないセンサチップまたは円形隆起を形成したセンサチップを、表面プラズモン励起増強蛍光測定装置のチップホルダーに装着した(図1参照)。
(2) Measurement of optical characteristic value A sensor chip not formed with a circular ridge or a sensor chip formed with a circular ridge was mounted on a chip holder of a surface plasmon excitation enhanced fluorescence measuring apparatus (see FIG. 1).
 波長635nmのレーザー光(励起光)をプリズム側から金薄膜に照射した。金薄膜に対する入射角を走査し、入射角と金薄膜の上方における同一波長の散乱光の光量との関係を調べた。各センサチップについて、散乱光量が最大となる入射角を「増強角」とし、増強角における散乱光量を「プラズモン散乱光量」とした。 A laser beam (excitation light) with a wavelength of 635 nm was irradiated onto the gold thin film from the prism side. The incident angle on the gold thin film was scanned, and the relationship between the incident angle and the amount of scattered light having the same wavelength above the gold thin film was examined. For each sensor chip, the incident angle at which the amount of scattered light was maximum was defined as “enhancement angle”, and the amount of scattered light at the enhancement angle was defined as “plasmon scattered light amount”.
 また、金薄膜に対する入射角を走査し、入射角と、金薄膜で反射した光の光量および金薄膜の上方における波長650nm以上の散乱光の光量との関係を調べた。各センサチップについて、反射光量が最小となる入射角を「共鳴角」とし、入射角が共鳴角のときの反射光量の励起光量に対する割合を「共鳴時反射率」とした。さらに、入射角が共鳴角のときの波長650nm以上の散乱光の光量を「ブランク光量」とした。 Also, the incident angle with respect to the gold thin film was scanned, and the relationship between the incident angle, the amount of light reflected by the gold thin film, and the amount of scattered light having a wavelength of 650 nm or more above the gold thin film was examined. For each sensor chip, the incident angle at which the amount of reflected light is the minimum was defined as “resonance angle”, and the ratio of the reflected light amount to the excitation light amount when the incident angle was the resonance angle was defined as “resonance reflectance”. Further, the amount of scattered light having a wavelength of 650 nm or more when the incident angle is the resonance angle was defined as “blank light amount”.
 (3)測定結果
 各センサチップの光学特性値の測定結果を図7に示す。図7Aは、円形隆起の面積率とプラズモン散乱光量(任意単位)との関係を示すグラフである。図7Bは、円形隆起の面積率と共鳴時反射率との関係を示すグラフである。図7Cは、円形隆起の面積率とブランク光量(任意単位)との関係を示すグラフである。これらのグラフにおいて、円形隆起の面積率が0%のセンサチップは、保存環境加速試験を行っていない、正常なセンサチップである。一方、円形隆起の面積率が0.5~10%のセンサチップは、保存環境加速試験を行った、金薄膜に欠陥を有するセンサチップである。
(3) Measurement result The measurement result of the optical characteristic value of each sensor chip is shown in FIG. FIG. 7A is a graph showing the relationship between the area ratio of circular ridges and the amount of plasmon scattered light (arbitrary unit). FIG. 7B is a graph showing the relationship between the area ratio of circular ridges and the reflectance at resonance. FIG. 7C is a graph showing the relationship between the area ratio of the circular ridges and the blank light quantity (arbitrary unit). In these graphs, a sensor chip having a circular ridge area ratio of 0% is a normal sensor chip that has not been subjected to a storage environment acceleration test. On the other hand, a sensor chip having a circular ridge area ratio of 0.5 to 10% is a sensor chip having a defect in a gold thin film, which was subjected to a storage environment acceleration test.
 図7Aに示されるように、正常なセンサチップのプラズモン散乱光量は、20000以下であったのに対し、金薄膜に欠陥を有するセンサチップのプラズモン散乱光量は、120000を超えていた。また、図7Bに示されるように、正常なセンサチップの共鳴時反射率は、1.8%以下であったのに対し、金薄膜に欠陥を有するセンサチップの共鳴時反射率は、1.8%を超えていた。また、図7Cに示されるように、正常なセンサチップのブランク光量は、7000以下であったのに対し、金薄膜に欠陥を有するセンサチップのブランク光量は、8000を超えていた。これらの結果から、プラズモン散乱光量、共鳴時反射率またはブランク光量を調べることで、センサチップの金薄膜における異常の有無を検出できることがわかる。 As shown in FIG. 7A, the plasmon scattered light amount of the normal sensor chip was 20000 or less, whereas the plasmon scattered light amount of the sensor chip having a defect in the gold thin film exceeded 120,000. Further, as shown in FIG. 7B, the resonance reflectance of the normal sensor chip was 1.8% or less, whereas the resonance reflectance of the sensor chip having a defect in the gold thin film was 1. It was over 8%. Further, as shown in FIG. 7C, the blank light amount of a normal sensor chip was 7000 or less, whereas the blank light amount of a sensor chip having a defect in a gold thin film exceeded 8000. From these results, it is understood that the presence or absence of abnormality in the gold thin film of the sensor chip can be detected by examining the plasmon scattered light amount, the resonance reflectance, or the blank light amount.
 [実施例2]
 実施例2では、導電体膜の表面における異物付着を検出できるか否かをシミュレーションした結果について説明する。導電体膜の表面に異物が付着すると、導電体膜の上に屈折率の異なる異物層が形成される。そこで本シミュレーションでは、導電体膜の上に屈折率の異なる層を配置することで、異物の付着を模擬した。
[Example 2]
In Example 2, the result of simulating whether or not adhesion of foreign matter on the surface of the conductor film can be detected will be described. When a foreign substance adheres to the surface of the conductor film, a foreign substance layer having a different refractive index is formed on the conductor film. Therefore, in this simulation, the adhesion of foreign matters was simulated by arranging layers having different refractive indexes on the conductor film.
 (1)シミュレーション条件
 励起光の波長は、633nmとした。以下の説明において「屈折率」とは、波長633nmの光についての屈折率を意味する。
(1) Simulation conditions The wavelength of the excitation light was 633 nm. In the following description, “refractive index” means a refractive index for light having a wavelength of 633 nm.
 センサチップとして、励起光に対して透明な材料(屈折率1.72)からなるプリズム、厚さ50.0nmの金薄膜(導電体膜;屈折率0.1726+3.4218i)および厚さ1.00nmのタンパク質層(捕捉体層;屈折率1.45)の積層体を想定した。タンパク質層の上に、異物層として屈折率が1.235~1.435の層が配置されていると想定した。なお、水の屈折率は1.335である。 As a sensor chip, a prism made of a material transparent to excitation light (refractive index 1.72), a gold thin film (conductor film; refractive index 0.1726 + 3.4218i) having a thickness of 50.0 nm, and a thickness 1.00 nm A layered body of protein layers (capture layer; refractive index 1.45) was assumed. It was assumed that a layer having a refractive index of 1.235 to 1.435 was disposed as a foreign substance layer on the protein layer. The refractive index of water is 1.335.
 上記条件において、励起光をプリズム側から金薄膜に照射した。金薄膜に対する入射角を走査し、入射角と、反射率(励起光の光量に対する金薄膜で反射した光の光量の割合)および散乱光量(金薄膜の上方における同一波長の散乱光の光量)との関係を計算した。 Under the above conditions, the gold thin film was irradiated with excitation light from the prism side. Scanning the angle of incidence on the gold thin film, incident angle, reflectance (ratio of the amount of light reflected by the gold thin film to the amount of excitation light) and scattered light (the amount of scattered light of the same wavelength above the gold thin film) The relationship was calculated.
 (2)シミュレーション結果
 シミュレーション結果を図8に示す。図8Aは、励起光の入射角と反射率との関係を示すグラフである。図8Bは、励起光の入射角と散乱光量(任意単位)との関係を示すグラフである。図8Aおよび図8Bにおいて、各曲線に付された数値は、異物層の屈折率(n)を意味する。図8Aのグラフでは、各曲線について、反射率が最小となる入射角が「共鳴角」に相当する。図8Bのグラフでは、各曲線について、散乱光量が最大となる入射角が「増強角」に相当する。ここでは、この増強角における散乱光量を「プラズモン散乱光量」とする。
(2) Simulation results The simulation results are shown in FIG. FIG. 8A is a graph showing the relationship between the incident angle of excitation light and the reflectance. FIG. 8B is a graph showing the relationship between the incident angle of excitation light and the amount of scattered light (arbitrary unit). 8A and 8B, the numerical value given to each curve means the refractive index (n) of the foreign material layer. In the graph of FIG. 8A, for each curve, the incident angle at which the reflectance is minimum corresponds to the “resonance angle”. In the graph of FIG. 8B, the incident angle at which the amount of scattered light is maximum corresponds to the “enhancement angle” for each curve. Here, the scattered light amount at this enhancement angle is referred to as “plasmon scattered light amount”.
 図8Aおよび図8Bのグラフから、異物層の屈折率が大きくなるほど(異物の付着量が多くなるほど)、共鳴角および増強角が大きくなることがわかる。したがって、共鳴角または増強角を調べることで、センサチップの導電体膜への異物の付着を検出できることがわかる。 8A and 8B that the resonance angle and the enhancement angle increase as the refractive index of the foreign material layer increases (the amount of foreign matter attached increases). Therefore, it can be seen that the adhesion of foreign matter to the conductor film of the sensor chip can be detected by examining the resonance angle or the enhancement angle.
 本出願は、2013年4月16日出願の特願2013-085580に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2013-085580 filed on April 16, 2013. The contents described in the application specification and the drawings are all incorporated herein.
 本発明に係る測定異常の検出方法および表面プラズモン励起増強蛍光測定装置は、被測定物質を高い信頼性で測定することができるため、例えば臨床検査などに有用である。 The measurement abnormality detection method and the surface plasmon excitation enhanced fluorescence measurement apparatus according to the present invention can measure a substance to be measured with high reliability, and are useful for clinical examinations, for example.
 100 表面プラズモン励起増強蛍光測定装置
 110 前処理室
 120 測定室
 130 送液部
 132 送液ポンプ
 134 送液ポンプ搬送部
 136 試薬チップ
 140 チップ搬送部
 150 光源ユニット
 160 励起光光学系
 162 第1整波器
 164 偏光方向調整部
 166 整形光学系
 168 入射角調整部
 170 チップホルダー
 180 測定光光学系
 190 測定光検出部
 200 反射光検出部
 210 制御演算部
 220 表示部
 300 センサチップ
 310 プリズム
 312 入射面
 314 反射面
 316 出射面
 320 導電体膜
 330 捕捉体
 340 流路部材
 342 流路
 344 反応室
 346 注入口
 348 排出口
 
DESCRIPTION OF SYMBOLS 100 Surface plasmon excitation enhanced fluorescence measuring apparatus 110 Pretreatment chamber 120 Measurement chamber 130 Liquid feeding part 132 Liquid feeding pump 134 Liquid feeding pump conveyance part 136 Reagent chip 140 Chip conveyance part 150 Light source unit 160 Excitation light optical system 162 First wave shaper 164 Polarization direction adjusting unit 166 Shaping optical system 168 Incident angle adjusting unit 170 Chip holder 180 Measuring light optical system 190 Measuring light detecting unit 200 Reflected light detecting unit 210 Control calculating unit 220 Display unit 300 Sensor chip 310 Prism 312 Incident surface 314 Reflecting surface 316 Emission surface 320 Conductor film 330 Capture body 340 Channel member 342 Channel 344 Reaction chamber 346 Inlet 348 Outlet

Claims (12)

  1.  表面プラズモン励起増強蛍光分光法による測定における測定異常の検出方法であって、
     (a-1)誘電体からなるプリズムと、前記プリズムの面上に配置された導電体膜と、前記導電体膜上に固定された捕捉体とを有するセンサチップを準備する工程と、
     (b-1)前記プリズムと前記導電体膜との界面において全反射するように、前記プリズム側から前記導電体膜に光を照射し、測定異常の検出のための光学特性値を測定する工程と、
     (b-2)前記光学特性値に基づき、測定異常を検出する工程と、
     を含む、測定異常の検出方法。
    A method for detecting a measurement abnormality in measurement by surface plasmon excitation enhanced fluorescence spectroscopy,
    (A-1) preparing a sensor chip having a prism made of a dielectric, a conductor film disposed on a surface of the prism, and a capturing body fixed on the conductor film;
    (B-1) A step of irradiating light from the prism side to the conductor film so as to totally reflect at the interface between the prism and the conductor film, and measuring an optical characteristic value for detecting a measurement abnormality When,
    (B-2) detecting a measurement abnormality based on the optical characteristic value;
    A method for detecting a measurement abnormality, including:
  2.  前記工程(b-2)の後に、
     (b-3)前記工程(b-2)において測定異常を検出した場合、測定を中断する工程、または
     (b-3’)前記工程(b-2)において測定異常を検出した場合、測定を継続し、かつ測定結果を表示する時に測定異常を通知する工程、
     をさらに含む、請求項1に記載の測定異常の検出方法。
    After the step (b-2),
    (B-3) If a measurement abnormality is detected in the step (b-2), stop the measurement, or (b-3 ′) If a measurement abnormality is detected in the step (b-2), measure the measurement. A process of notifying measurement abnormality when continuing and displaying the measurement result,
    The method for detecting a measurement abnormality according to claim 1, further comprising:
  3.  前記センサチップは、正常状態における光学特性値に係る情報を有しており、
     前記工程(b-2)では、前記正常状態における光学特性値と、前記測定された光学特性値とを比較して、測定異常の有無を検出する、
     請求項1または請求項2に記載の測定異常の検出方法。
    The sensor chip has information relating to optical characteristic values in a normal state,
    In the step (b-2), the optical property value in the normal state is compared with the measured optical property value to detect the presence or absence of measurement abnormality.
    The method for detecting a measurement abnormality according to claim 1 or 2.
  4.  前記工程(a-1)の後に、
     (a-2)試料を前記捕捉体に接触させて、前記試料に含まれる被測定物質と前記捕捉体とを結合させる工程と、
     (a-3)前記捕捉体に結合された前記被測定物質を蛍光物質で標識する工程と、
     (a-4)前記プリズムと前記導電体膜との界面において全反射するように、前記プリズム側から前記導電体膜に励起光を照射し、前記被測定物質を標識する前記蛍光物質から放出される蛍光の光量を測定する工程と、
     をさらに含み、
     前記工程(b-1)は、前記工程(a-1)と前記工程(a-2)との間、前記工程(a-2)と前記工程(a-3)との間、または前記工程(a-3)と前記工程(a-4)との間に実施される、
     請求項1~3のいずれか一項に記載の測定異常の検出方法。
    After the step (a-1),
    (A-2) bringing the sample into contact with the capturing body and binding the substance to be measured and the capturing body contained in the sample;
    (A-3) labeling the substance to be measured bound to the capture body with a fluorescent substance;
    (A-4) Excitation light is emitted from the prism side to the conductor film so as to be totally reflected at the interface between the prism and the conductor film, and is emitted from the fluorescent substance that labels the substance to be measured. Measuring the amount of fluorescent light,
    Further including
    The step (b-1) is performed between the step (a-1) and the step (a-2), between the step (a-2) and the step (a-3), or Performed between (a-3) and step (a-4),
    The method for detecting a measurement abnormality according to any one of claims 1 to 3.
  5.  前記工程(a-1)の後に、
     (a-2’)予め蛍光物質で標識されている被測定物質を含む試料を前記捕捉体に接触させて、前記蛍光物質で標識されている被測定物質と前記捕捉体とを結合させるか、または、試料および蛍光物質を前記捕捉体に接触させて、前記蛍光物質で前記被測定物質を標識するとともに、前記被測定物質と前記捕捉体とを結合させる工程と、
     (a-4)前記プリズムと前記導電体膜との界面において全反射するように、前記プリズム側から前記導電体膜に励起光を照射し、前記被測定物質を標識する前記蛍光物質から放出される蛍光の光量を測定する工程と、
     をさらに含み、
     前記工程(b-1)は、前記工程(a-1)と前記工程(a-2’)との間、または前記工程(a-2’)と前記工程(a-4)との間に実施される、
     請求項1~3のいずれか一項に記載の測定異常の検出方法。
    After the step (a-1),
    (A-2 ′) contacting a sample containing a substance to be measured that has been labeled with a fluorescent substance in advance with the capture body to bind the substance to be measured labeled with the fluorescent substance and the capture body; Or a step of bringing a sample and a fluorescent substance into contact with the capturing body, labeling the target substance with the fluorescent substance, and binding the target substance and the capturing body;
    (A-4) Excitation light is emitted from the prism side to the conductor film so as to be totally reflected at the interface between the prism and the conductor film, and is emitted from the fluorescent substance that labels the substance to be measured. Measuring the amount of fluorescent light,
    Further including
    The step (b-1) is performed between the step (a-1) and the step (a-2 ′) or between the step (a-2 ′) and the step (a-4). Carried out,
    The method for detecting a measurement abnormality according to any one of claims 1 to 3.
  6.  前記光学特性値は、プラズモン散乱光量である、請求項1~5のいずれか一項に記載の測定異常の検出方法。 The method for detecting a measurement abnormality according to any one of claims 1 to 5, wherein the optical characteristic value is a plasmon scattered light amount.
  7.  前記光学特性値は、増強角である、請求項1~5のいずれか一項に記載の測定異常の検出方法。 6. The method for detecting a measurement abnormality according to claim 1, wherein the optical characteristic value is an enhancement angle.
  8.  前記光学特性値は、共鳴角である、請求項1~5のいずれか一項に記載の測定異常の検出方法。 The method for detecting a measurement abnormality according to any one of claims 1 to 5, wherein the optical characteristic value is a resonance angle.
  9.  前記光学特性値は、反射光量である、請求項1~5のいずれか一項に記載の測定異常の検出方法。 The method for detecting a measurement abnormality according to any one of claims 1 to 5, wherein the optical characteristic value is a reflected light amount.
  10.  前記光学特性値は、ブランク光量である、請求項1~5のいずれか一項に記載の測定異常の検出方法。 The method for detecting a measurement abnormality according to any one of claims 1 to 5, wherein the optical characteristic value is a blank light amount.
  11.  前記センサチップは、前記情報を含むバーコードが付与されている、請求項3に記載の測定異常の検出方法。 4. The measurement abnormality detection method according to claim 3, wherein the sensor chip is provided with a barcode including the information.
  12.  表面プラズモン励起増強蛍光分光法を利用して被測定物質を測定する表面プラズモン励起増強蛍光測定装置であって、
     請求項1~11のいずれか一項に記載の測定異常の検出方法により、表面プラズモン励起増強蛍光分光法を利用した測定における測定異常を検出する、
     表面プラズモン励起増強蛍光測定装置。
    A surface plasmon excitation-enhanced fluorescence measuring apparatus that measures a substance to be measured using surface plasmon excitation-enhanced fluorescence spectroscopy,
    A measurement abnormality in measurement using surface plasmon excitation enhanced fluorescence spectroscopy is detected by the measurement abnormality detection method according to any one of claims 1 to 11.
    Surface plasmon excitation enhanced fluorescence measuring device.
PCT/JP2014/002145 2013-04-16 2014-04-15 Measurement abnormality detection method and surface plasmon-field enhanced fluorescence measurement device WO2014171139A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015512312A JP6292226B2 (en) 2013-04-16 2014-04-15 Measurement abnormality detection method and surface plasmon excitation enhanced fluorescence measurement apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-085580 2013-04-16
JP2013085580 2013-04-16

Publications (1)

Publication Number Publication Date
WO2014171139A1 true WO2014171139A1 (en) 2014-10-23

Family

ID=51731101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002145 WO2014171139A1 (en) 2013-04-16 2014-04-15 Measurement abnormality detection method and surface plasmon-field enhanced fluorescence measurement device

Country Status (2)

Country Link
JP (2) JP6292226B2 (en)
WO (1) WO2014171139A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147774A1 (en) * 2015-03-18 2016-09-22 コニカミノルタ株式会社 Measuring method and measuring device
WO2018105607A1 (en) * 2016-12-09 2018-06-14 コニカミノルタ株式会社 Measuring device, measurement abnormality detecting method, and program
WO2019064754A1 (en) * 2017-09-26 2019-04-04 コニカミノルタ株式会社 Analysis method and analysis device
JP2019066204A (en) * 2017-09-28 2019-04-25 富士フイルム株式会社 Fluorescence detecting device using surface plasmon resonance and method for operating the same
CN113981546A (en) * 2021-12-24 2022-01-28 北京百奥纳芯生物科技有限公司 Packaged biological chip

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022196713A1 (en) * 2021-03-19 2022-09-22

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173786A (en) * 2005-12-16 2007-07-05 Asml Netherlands Bv Lithographic device and method
JP2011163839A (en) * 2010-02-08 2011-08-25 Toshiba Corp Method and device for inspecting substrate
WO2011130625A1 (en) * 2010-04-16 2011-10-20 Claros Diagnostics, Inc. Feedback control in microfluidic systems
JP2012117931A (en) * 2010-12-01 2012-06-21 Konica Minolta Holdings Inc Analysis support device and surface plasmon resonance fluorescence analyzer having the same
JP2013002858A (en) * 2011-06-14 2013-01-07 Konica Minolta Holdings Inc Measuring device and measuring method
JP2013057580A (en) * 2011-09-08 2013-03-28 Konica Minolta Holdings Inc Measuring device and method for performing measuring

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330560A (en) * 2000-03-16 2001-11-30 Fuji Photo Film Co Ltd Measuring method using total reflection attenuation and its device
JP2006189397A (en) * 2005-01-07 2006-07-20 Fuji Photo Film Co Ltd Measuring apparatus using total reflection attenuation, and method for identifying sensor unit thereof
WO2008073255A2 (en) * 2006-12-08 2008-06-19 Opti Medical Systems Spreading layer and humidity control layer for enhancing sensor performance
JP5807645B2 (en) * 2011-02-09 2015-11-10 コニカミノルタ株式会社 Surface plasmon excitation fluorescence measurement apparatus and surface plasmon excitation fluorescence measurement method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173786A (en) * 2005-12-16 2007-07-05 Asml Netherlands Bv Lithographic device and method
JP2011163839A (en) * 2010-02-08 2011-08-25 Toshiba Corp Method and device for inspecting substrate
WO2011130625A1 (en) * 2010-04-16 2011-10-20 Claros Diagnostics, Inc. Feedback control in microfluidic systems
JP2012117931A (en) * 2010-12-01 2012-06-21 Konica Minolta Holdings Inc Analysis support device and surface plasmon resonance fluorescence analyzer having the same
JP2013002858A (en) * 2011-06-14 2013-01-07 Konica Minolta Holdings Inc Measuring device and measuring method
JP2013057580A (en) * 2011-09-08 2013-03-28 Konica Minolta Holdings Inc Measuring device and method for performing measuring

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147774A1 (en) * 2015-03-18 2016-09-22 コニカミノルタ株式会社 Measuring method and measuring device
JPWO2016147774A1 (en) * 2015-03-18 2017-12-28 コニカミノルタ株式会社 Measuring method and measuring device
WO2018105607A1 (en) * 2016-12-09 2018-06-14 コニカミノルタ株式会社 Measuring device, measurement abnormality detecting method, and program
JPWO2018105607A1 (en) * 2016-12-09 2019-10-24 コニカミノルタ株式会社 Measurement apparatus, measurement abnormality detection method, and program
JP7034087B2 (en) 2016-12-09 2022-03-11 大塚製薬株式会社 Measuring equipment, measurement anomaly detection method, and program
US11397150B2 (en) 2016-12-09 2022-07-26 Otsuka Pharmaceutical Co., Ltd. Measuring device, measurement abnormality detecting method, and program
WO2019064754A1 (en) * 2017-09-26 2019-04-04 コニカミノルタ株式会社 Analysis method and analysis device
JPWO2019064754A1 (en) * 2017-09-26 2020-09-03 コニカミノルタ株式会社 Analytical method and analyzer
JP7114611B2 (en) 2017-09-26 2022-08-08 大塚製薬株式会社 Analysis method and analyzer
US11630071B2 (en) 2017-09-26 2023-04-18 Otsuka Pharmaceutical Co., Ltd. Analysis method and analysis device
JP2019066204A (en) * 2017-09-28 2019-04-25 富士フイルム株式会社 Fluorescence detecting device using surface plasmon resonance and method for operating the same
CN113981546A (en) * 2021-12-24 2022-01-28 北京百奥纳芯生物科技有限公司 Packaged biological chip

Also Published As

Publication number Publication date
JPWO2014171139A1 (en) 2017-02-16
JP6292226B2 (en) 2018-03-14
JP6597814B2 (en) 2019-10-30
JP2018091861A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP6597814B2 (en) Measurement abnormality detection method and surface plasmon excitation enhanced fluorescence measurement apparatus
JP6369533B2 (en) Measuring method and measuring device
JP6536413B2 (en) Surface plasmon resonance fluorescence analyzer and surface plasmon resonance fluorescence analysis method
JP6635168B2 (en) Surface plasmon resonance fluorescence analysis method
EP3153845B1 (en) Surface-plasmon enhanced fluorescence measurement method and surface-plasmon enhanced fluorescence measurement device
WO2017057136A1 (en) Surface plasmon-field enhanced fluorescence spectroscopy and measurement kit
JP6421821B2 (en) Detection device
US11224879B2 (en) Inspection chip and inspection system
US10895535B2 (en) Measurement method, and measuring chip and measuring kit used for the same
JP5733151B2 (en) Method for measuring and measuring device
JP2013137272A (en) Surface plasmon-field enhanced fluorescence measuring apparatus and method for setting measuring condition thereof
JP6943262B2 (en) Liquid feeding system, inspection system and liquid feeding method
JP6481371B2 (en) Detection method and detection kit
JP6702046B2 (en) Detection method and detection device
WO2020179611A1 (en) Detecting method
WO2021009995A1 (en) Detection device and detection method
JPWO2016152707A1 (en) Measuring method, measuring device and measuring chip
JP6493412B2 (en) Detection apparatus and detection method
JP6221785B2 (en) Detection apparatus and detection method
WO2016147774A1 (en) Measuring method and measuring device
JP6350541B2 (en) Surface plasmon resonance fluorescence analysis method, surface plasmon resonance fluorescence analyzer, and surface plasmon resonance fluorescence analysis system
JP2015087297A (en) Analysis chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015512312

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785144

Country of ref document: EP

Kind code of ref document: A1