WO2014168435A1 - Group iii nitride semiconductor element - Google Patents

Group iii nitride semiconductor element Download PDF

Info

Publication number
WO2014168435A1
WO2014168435A1 PCT/KR2014/003121 KR2014003121W WO2014168435A1 WO 2014168435 A1 WO2014168435 A1 WO 2014168435A1 KR 2014003121 W KR2014003121 W KR 2014003121W WO 2014168435 A1 WO2014168435 A1 WO 2014168435A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
group iii
iii nitride
semiconductor layer
type
Prior art date
Application number
PCT/KR2014/003121
Other languages
French (fr)
Korean (ko)
Inventor
황성민
조인성
임원택
김두수
Original Assignee
주식회사 소프트에피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 소프트에피 filed Critical 주식회사 소프트에피
Publication of WO2014168435A1 publication Critical patent/WO2014168435A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Definitions

  • the present disclosure generally relates to a group III nitride semiconductor device, and more particularly, to a group III nitride semiconductor device having a light scattering surface.
  • the group III nitride semiconductor means a compound semiconductor layer made of Al (x) Ga (y) In (1-xy) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the group III nitride semiconductor may be used for manufacturing a light emitting device such as a light emitting diode and a light receiving device such as a photodiode.
  • the group III nitride semiconductor may be applied to various fields such as the manufacture of diodes, transistors, and electrical devices.
  • the group III nitride semiconductor element includes a light emitting element and a light receiving element.
  • the group nitride semiconductor layer 300 includes an active layer 400 grown on the n-type group III nitride semiconductor layer 300 and a p-type group III nitride semiconductor layer 500 grown on the active layer 400.
  • the protrusions 110 are formed on the substrate 100, and the protrusions 110 improve the grain quality of the group III nitride semiconductor layers 300, 400, and 500 grown on the substrate 100, and at the active layer 400. It functions as a scattering surface to improve the efficiency of emitting the generated light to the outside of the light emitting device.
  • FIGS. 2 and 3 are diagrams illustrating an example of the group III nitride semiconductor light emitting device shown in International Patent Publication No. 2010-110608, wherein the group III nitride semiconductor light emitting device is grown on the substrate 100 and the substrate 100.
  • the n-type group III nitride semiconductor layer 300, the active layer 400 grown on the n-type group III nitride semiconductor layer 300, and the p-type group III nitride semiconductor layer 500 grown on the active layer 400 are included.
  • a protrusion 120 is formed on the substrate 100, and a cavity 130 (cavity) is formed by growing the group III nitride semiconductor layers 300, 400, and 500 on the upper surface of the protrusion 120.
  • the scattering surface between the group III nitride semiconductor layers 300, 400, 500 and the substrate 100 is increased. It's a skill. However, as shown in FIG. 3, the group III nitride semiconductor layers 300, 400, and 500 actually grown on the protrusions 120, unlike the expectation, merely form the scattering surface 131 having a very small curvature. Meanwhile, in addition to using the cavity 130 thus formed as a scattering surface, the substrate 100 and the group III nitride semiconductor layers 300, 400, and 500 are used as a channel into which an etchant is input during separation by wet etching, or by laser separation. In the case of lift-off, the separation surface by the laser is reduced, and the impact caused by the group III nitride semiconductor layers 300, 400, and 500 can be reduced by using it as a movement path of the gas generated during the laser separation.
  • FIG. 4 is a diagram illustrating an example of a group III nitride semiconductor laminate disclosed in US Patent Publication No. 2005-0156175, wherein the group III nitride semiconductor laminate includes a c-plane sapphire substrate 100 and a c-plane sapphire substrate 100.
  • a Group III nitride semiconductor template 210 previously formed thereon, a growth prevention film 150 made of SiO 2 formed on the Group III nitride semiconductor template 210, and a Group III nitride semiconductor layer 310 selectively grown thereon.
  • the group III nitride semiconductor template 210 is conventionally formed by a method of growing a group III nitride semiconductor on the c-plane sapphire substrate 100.
  • a seed layer is formed at a growth temperature of about 550 ° C. and a hydrogen atmosphere, and then formed to a thickness of 1 to 3 ⁇ m by a method of growing GaN at a growth temperature of 1050 ° C.
  • Reference numeral 180 denotes defects, and development of defects under the growth prevention film 150 is blocked, resulting in an improvement in crystallinity as a whole.
  • this method requires the growth of the group III nitride semiconductor template 210 before the formation of the growth barrier film 150, and the lattice constant and thermal expansion coefficient between the group III nitride semiconductor template 210 and the c-plane sapphire substrate 100. This results in substrate bending due to the difference.
  • This substrate warpage then interferes with the photolithography process required to form the growth barrier film 150, and is typically on the c-side sapphire substrate 100 having diameters of 2 inches, 4 inches, 6 inches, and 8 inches. There is a problem that makes it difficult to uniformly proceed the process.
  • This attempt on m-plane substrates has been described in P. de Mierry et al., Improved semipolar (11-22) GaN quality using asymmetric lateral epitaxy, Applied Physics Letters 94, 191903 (2009).
  • FIG. 5 is a view showing another example of the group III nitride semiconductor laminate disclosed in US Patent Publication No. 2005-0156175, wherein the group III nitride semiconductor laminate is a c-plane sapphire substrate 100, a c-plane sapphire substrate 100 A growth prevention film 150 made of SiO 2 formed on the substrate), and a group III nitride semiconductor layer 310 selectively grown thereon. Since the group III nitride semiconductor layer 310 grown at about 1050 ° C. cannot be grown on the c-plane sapphire substrate 100 and the growth preventing film 150, the group III nitride semiconductor layer 310 is 550 ° C. as in the group III nitride semiconductor template 210 of FIG. 4.
  • the material forming the seed layer 200 may also be formed on the growth barrier 150.
  • GaN GaN polycrystals are formed, which makes it difficult to form the group III nitride semiconductor layer 310 having excellent crystallinity.
  • FIG. 18 is a view showing another example of a conventional Group III nitride semiconductor light emitting device, wherein the Group III nitride semiconductor light emitting device includes an n-type Group III nitride semiconductor layer 300 (eg, n-type GaN), electrons, and the like.
  • An active layer 400 that generates light through recombination of holes (e.g., an InGaN / GaN multiquantum well structure) and a p-type group III nitride semiconductor layer 500 (e.g., p-type GaN) are sequentially deposited, where n A metal reflective film 910 is formed to reflect light onto the type III group nitride semiconductor layer 300, and an electrode 940 is formed on the support substrate 930 side.
  • the metal reflective film 910 and the support substrate 930 are bonded by the wafer bonding layer 920.
  • a current spreading electrode 700 eg, ITO
  • ITO current spreading electrode
  • the n-type group III nitride semiconductor layer 300 from which the substrate is removed by laser lift-off or the like is formed with a rough surface 301 which scatters light through etching, and serves as a bonding pad thereon. ) Is formed.
  • n-type group III nitride semiconductor layers 300 eg n-type GaN
  • active layers 400 eg InGaN / GaN multiquantum wells. Structure
  • the p-type group III nitride semiconductor layer 500 for example, p-type GaN. Therefore, the n-type group III nitride semiconductor layer 300 (eg, n-type GaN) is positioned on the side from which the substrate is removed, and the n-type group III nitride semiconductor layer 300 (eg, n-type GaN) is roughened by wet etching. Formation of surface 301 is possible.
  • p-type III-nitride semiconductor layers 500 eg, p-type GaN
  • the active layer 400 eg, InGaN / GaN multi-quantum well structure
  • the group III nitride semiconductor light emitting device includes a substrate 100, a buffer layer 200, and an n-type Group III nitride semiconductor layer. 300, an active layer 400, a p-type group III nitride semiconductor layer 500, an electrode 800, and an electrode 900.
  • a rough surface 301 is formed on the p-type III-nitride semiconductor layer 500, and the rough surface 301 may be formed by controlling growth conditions during the growth of the p-type III-nitride semiconductor layer 500.
  • the p-type dopant Mg and Zn are mainly used.
  • an upper surface of a p-type III-nitride semiconductor layer is provided, and an upper surface of the p-type III-nitride semiconductor layer is a (11-22) plane.
  • This (11-22) surface has a light scattering surface formed by wet etching, and has an unevenness due to cavities formed during growth in the lower portion, and an n-type nitride between the unevenness and the p-type III-nitride semiconductor layer
  • a plurality of group III nitride semiconductor layers comprising a semiconductor layer; And a first electrode electrically connected to the p-type nitride semiconductor layer; And a second electrode electrically connected to the n-type nitride semiconductor layer.
  • FIG. 1 is a view showing an example of a group III nitride semiconductor light emitting device shown in US Patent Publication No. 2003-0057444;
  • FIGS. 2 and 3 are views showing an example of a group III nitride semiconductor light emitting device shown in International Publication No. 2010-110608;
  • FIG. 4 is a view showing an example of a group III nitride semiconductor laminate shown in US Patent Publication No. 2005-0156175,
  • FIG. 5 is a view showing still another example of the group III nitride semiconductor laminate shown in US Patent Publication No. 2005-0156175,
  • FIG. 6 is a view showing an example of a group III nitride semiconductor laminate according to the present disclosure
  • FIG. 7 is a view showing an example of a method of growing a group III nitride semiconductor on the seed layer in accordance with the present disclosure
  • FIG. 8 illustrates another example of a method for growing a group III nitride semiconductor over a seed layer in accordance with the present disclosure
  • FIG. 10 is a view showing still another example of the group III nitride semiconductor laminate according to the present disclosure.
  • FIG. 11 is a view showing still another example of the group III nitride semiconductor laminate according to the present disclosure.
  • FIG. 12 is a cross-sectional image of the group III nitride semiconductor laminate of FIG. 6 grown in the structure of FIG.
  • FIG. 13 is a cross-sectional image of the group III nitride semiconductor laminate of FIG. 6 grown with the structure of FIG. 8, FIG.
  • 15 is a photograph showing a seed layer grown in accordance with the present disclosure.
  • 16 and 17 illustrate an example of a method of growing a group III nitride semiconductor according to the present disclosure
  • FIG. 19 is a view showing an example of a group III nitride semiconductor light emitting device shown in US Patent No. 6,441,403;
  • 21 is a view showing an example of a group III nitride semiconductor light emitting device according to the present disclosure.
  • 24 is a view showing still another example of the group III nitride semiconductor device according to the present disclosure.
  • 25 is a view illustrating an example of a process of manufacturing a vertical group III nitride semiconductor light emitting device according to the present disclosure
  • FIG. 26 is a diagram illustrating an example of a group III nitride semiconductor device manufactured according to the method illustrated in FIG. 25;
  • FIG. 27 is a view showing an example of a group III nitride semiconductor device manufactured according to the method shown in FIGS. 22 and 26.
  • FIG. 6 is a diagram illustrating an example of a group III nitride semiconductor laminate according to the present disclosure, wherein the group III nitride semiconductor laminate is positioned on an m-plane substrate 10 and an m-plane substrate 10.
  • a growth prevention film 15 having a plurality of windows 16a and 16b for growth, a seed layer 20 formed on the m surface substrate 10 in a region corresponding to the plurality of windows 16a and 16b, and a seed
  • a Group III nitride semiconductor layer 31 which is grown from the layer 20 and developed in the a-axis direction and the c-axis direction and coalesces, and is developed in the c-axis direction in one window 16a.
  • a group III nitride semiconductor layer 31 which forms a cavity 13 with the group III nitride semiconductor 31b that is developed above the growth preventing film 15 and extends in the a-axis direction in the adjacent window 16b. It includes.
  • a representative material of the m-plane substrate 10 is hexagonal sapphire.
  • the c plane is (0001)
  • the m plane is (1-100)
  • the a plane is (11-20).
  • the a axis is defined as an axis perpendicular to the a plane
  • the c axis is defined as an axis perpendicular to the c plane.
  • an accurate m-plane substrate 10 is used, but a substrate cut at an angle slightly off from the m-plane can be used, here collectively referred to as m-plane substrate 10.
  • Group III nitride semiconductors eg, GaN, InGaN, AlGaN, InN, AlN, InGaAlN
  • the group III nitride semiconductor may be doped with a material such as Si and Mg.
  • SiO 2 is mainly used as the growth prevention film 15, but SiN x and TiO 2 may be used, and any material may be used as long as it is a material for preventing the growth of the group III nitride semiconductor. It is also possible to form the growth preventing film 15 in a DBR structure of SiO 2 / TiO 2 . For example, a SiO 2 film of 100 nm to 300 nm thickness may be used.
  • the growth prevention film 15 may be formed as a stripe in the a plane direction of the m surface sapphire substrate, and the gap between the growth prevention film 15 and the window 16a may be appropriately adjusted.
  • the present inventors experimented using the mask (unit is um) of 17: 1, 16: 2, 13: 1, 14: 2, 7: 3, 6: 2 for the space
  • the planarization of the group III nitride semiconductor layer 31 is performed at 7 ⁇ m or less (that is, the height of the cavity 13 is 7 ⁇ m or less). . Therefore, according to the group III nitride semiconductor growth method according to the present disclosure, the group III nitride semiconductor layer 31 can be planarized before an excessive height (for example, 10 ⁇ m).
  • the seed layer 20 (eg, GaN) is formed at a high temperature of 650 ° C. or higher, preferably 800 ° C. or higher, unlike a GaN buffer layer formed at about 500 ° C. (eg, 550 ° C.). Generally not well formed. It is possible to form a better seed layer 20 at a temperature above 800 ° C., but to grow at a temperature above 900 ° C. for rapid transfer to growth conditions for the Group III nitride semiconductor layer 31 grown at a higher temperature. In this regard, it is desirable to grow at a temperature of 900 °C or more. As the carrier gas, N 2 is used instead of H 2 which is conventionally used.
  • FIG. 14 is a photograph showing seed layers grown at a low temperature and seed layers grown at a hydrogen atmosphere. When grown at a low temperature as shown in (a), the polycrystals cover the growth prevention layer, and (b) When grown in a hydrogen atmosphere at high temperatures as shown in FIG. 1, the growth is poor and some very large nuclei are formed.
  • the growth conditions of the seed layer 20 were as follows.
  • SiO 2 was deposited by PECVD, and then grown using MOCVD.
  • the atmosphere gas in the MOCVD reactor was changed to N 2 , and then injected into the reactor with a NH 3 flow rate of 8000 sccm (Standard Cubic Cm per Min.) From 450 ° C., and the temperature was increased to 1050 ° C. This was for the nitriding treatment of the sapphire surface.
  • GaN nuclei were grown at a rate of 0.5 nm / sec using TMGa at 1050 ° C. At this time, the pressure of the reactor was 100 mbar.
  • FIG. 7 is a view showing an example of a method for growing a group III nitride semiconductor on a seed layer according to the present disclosure, wherein the group III nitride semiconductor 31a and the group III nitride semiconductor 31b are joined to a junction.
  • the group III nitride semiconductor 31e grown on the seed layer 20 of the m-plane substrate 10 is grown clockwise, having the c plane, the a plane, and the -c plane.
  • either side can be made wider or one side can be omitted, but the lateral development in the a-axis direction is basically suppressed relative to the lateral development in the c-axis direction.
  • crystal defects 32 (exactly stacking faults) develop in the a-axis direction. Therefore, the crystal is developed in the a-axis direction until the point 33 at which the group III nitride semiconductor 31a grown in the window 16a and the group III nitride semiconductor 31b grown in the adjacent window 16b is joined is determined.
  • the region n in which the defects 32 are formed is developed in the c-axis direction and formed narrower than the region m in which the crystal defects 32 are not formed, so that the crystals in the entire group III nitride semiconductors 31a and 31b are formed. The defects can be reduced.
  • the a surface of the group III nitride semiconductors 31a and 31b, which are developed in the a-axis direction, is gradually reduced, and the point bonding is optimally achieved.
  • the group III nitride semiconductor developed in the a-axis direction is reduced by reducing the c plane of the group III nitride semiconductor 31a developed in the c-axis direction up to the point 33 to be joined, so that the point bonding is optimally performed. It helps to join or planarize the 31-nitride semiconductor 31a and 31b which are developed in the c-axis direction.
  • the bonding thereof is not easy or is not bonded, and growth is performed in parallel.
  • the group III nitride semiconductors 31a and 31b have a growth prevention region because the lateral growth development of the group III nitride semiconductor developed in the c-axis direction is faster than the lateral growth development of the group III nitride semiconductor developed in the a-axis direction.
  • the growth-developed sub-group III nitride semiconductor chunks 31f and 31g and / or both the a-plane and the c-plane are preliminarily formed and then grown.
  • the sub group III nitride semiconductor previously developed on the growth prevention film 15. It is good to make a mass (31f, 31g).
  • subgroup III nitride semiconductor agglomerates 31f and 31g in advance as a preliminary form for forming such a form.
  • the group III nitride semiconductor layer 31 is thick. Coalescence may be performed at 7 ⁇ m or less, where subgroup III nitride semiconductor agglomerates 31f and 31g are one useful tool for achieving this. After growing the seed layer 20, the atmosphere gas is changed to hydrogen.
  • the subgroup III nitride semiconductor agglomerates 31f and 31g of about 500 nm to 1300 nm are grown at a rate of NH 3 at 4000 sccm, pressure at 100 mbar, temperature at 1050 ° C., and growth rate at 0.6 nm / sec. Thereafter, the temperature was lowered to 920 ° C., the pressure was 250 mbar, and NH 3 was grown to 12,000 sccm.
  • the crystal defect 32 is formed by allowing the region n to have only about 5% of the entire surface. Can be significantly reduced. Further, by growing the sub-group III nitride semiconductor agglomerates 31f and 31g by 1300 nm, a structure as shown in FIG. 8 to be described later is formed, and the crystal defects 32 can be prevented from penetrating the surface. Comparing the growth conditions of the two layers, when the subgroup III nitride semiconductor chunks 31f and 31g are grown at relatively low pressure and high temperature, the group III nitride after the subgroup III nitride semiconductor chunks 31f and 31g grow. In the case of the semiconductors 31a and 31b, growth was relatively less sensitive to temperature.
  • FIG. 8 is a view showing another example of a method for growing a group III nitride semiconductor on a seed layer according to the present disclosure, wherein the group III nitride semiconductor 31a and the group III nitride semiconductor 31b are different from each other until the junction.
  • the crystal defect 32 of the group III nitride semiconductor 31b developed in the a-axis direction is blocked by the group III nitride semiconductor 31a.
  • the point 3 is developed in the a-axis direction by optimum point bonding.
  • the bonding or planarization of the group nitride semiconductor 31a and the group III nitride semiconductor 31a developed in the c-axis direction is assisted, and the development of the defect 32 is prevented.
  • the seed layer 20 includes the growth prevention layer 15 and the m surface substrate. It is located between 10. That is, the seed layer 20 is first formed before the growth barrier 15 is formed. In the case of forming the semiconductor layer first, there may be a problem pointed out in relation to FIG. 4, but by limiting the height of the seed layer 20, it is possible to solve this problem. In the case of this embodiment, the seed layer 20 may be formed of a conventional buffer layer.
  • FIG. 10 is a view showing another example of the group III nitride semiconductor laminate according to the present disclosure, and unlike the group III nitride semiconductor laminate shown in FIG. 6, prior to the growth of the group III nitride semiconductor 31, a growth prevention film (15) is removed. Therefore, the region 15a of the m surface substrate 10 on which the seed layer 20 is not formed serves as a growth prevention region. Since there is no seed layer 20 in the region 15a, growth of the group III nitride semiconductor layer 31 does not occur. Therefore, the group III nitride semiconductor layer 31 is grown from the seed layer 20 as in FIG.
  • the group III nitride semiconductor 31a that is developed in the c-axis direction in the window 16a is developed above the region 15a, and the group III nitride semiconductor 31b that is developed in the a-axis direction in the adjacent window 16b. (13; Cavity) grows.
  • the growth prevention film 15 Prior to the growth of the group III nitride semiconductor layer 31, the growth prevention film 15 is removed, so that even when polycrystals are formed in the formation process of the seed layer 20 on the growth prevention film 15, the group III nitride semiconductor is not problematic. It is possible to grow the layer 31.
  • FIG. 11 is a view showing another example of the group III nitride semiconductor laminate according to the present disclosure, wherein the group III nitride semiconductor laminate has an additional growth prevention film 17, and has a cavity (on the additional growth prevention film 17). 13) is formed.
  • the growth of the group III nitride semiconductor 31c is stopped on the seed layer 20, and an additional growth prevention layer 17 is formed so that the surface 31d of the group III nitride semiconductor 31c developed in the c-axis direction is exposed again. Thereafter, the group III nitride semiconductor 31a and the group III nitride semiconductor 31b are grown from the surfaces 31d and 31d to form the cavity 13.
  • the region where the Group III nitride semiconductor 31c is developed in the c-axis direction on the growth prevention film 15 is a region where there are almost no defects (see FIG. 12), and therefore the Group III nitride semiconductor layer formed thereon ( The crystal defect in 31 can be greatly reduced.
  • FIG. 12 is a cross-sectional image of the group III nitride semiconductor laminate of FIG. 6 grown in the structure of FIG. 8, the right side is a Scanning Transmission Electronic Microscope (STEM) image, and the left side is a Transmission Electronic Microscope (TEM) image.
  • STEM image it can be seen that the defect developed in the group III nitride semiconductor 31b is blocked by the group III nitride semiconductor 31a based on the bonding surface A, while the group III nitride semiconductor 31a, In other words, it can be seen that the Group III nitride semiconductor developed in the c-axis direction has almost no crystal defects. This property can be used for growth of the group III nitride semiconductor laminate shown in FIG. Through the TEM image, the blocking of defects can be seen better.
  • FIG. 13 is a cross-sectional image of the group III nitride semiconductor laminate of FIG. 6 grown in the structure of FIG. 8,
  • (a) is a cathode luminescence (CL) image
  • (b) is a scanning electron microscope (SEM) image
  • c) is an optical microscope image.
  • CL image what appears to be a groove tilted upwards is a defect, and you can see that it no longer develops.
  • the cavity is well shown in the SEM image and is formed across the substrate. What appears to be a defect in the upper right corner of the cavity is scratching while cutting the cross section.
  • the bright side is the cavity, and the surface is clean so that the inside of the group III nitride semiconductor layer can be seen.
  • the group III nitride semiconductor 312 has a plane a.
  • the growth is possible by making the growth rates in the direction and c plane direction similar, and making these growth rates relatively faster than the growth rates in the (11-22) plane direction.
  • the group III nitride semiconductor 313 can be grown by adjusting the growth rate in the order of (11-22) plane direction> c plane direction> a plane direction.
  • the group III nitride semiconductor 314 can be grown by controlling the growth rate in the order of (11-22) plane direction> a plane direction> c plane direction.
  • the group III nitride semiconductor 315 adjusts the growth rate in the order of c plane direction> (11-22) plane direction> a plane direction, but increases the growth rate in the c plane direction than the growth rate in the (11-22) plane direction. By controlling a little bit faster, growth is possible.
  • the group III nitride semiconductor 316 is controlled in the order of c plane direction> a plane direction> (11-22) plane direction, but growth is possible by controlling the growth rate in the c plane direction slightly faster than the growth rate in the a plane direction. . FIG.
  • FIG. 17 shows a process of incorporating a group III nitride semiconductor 312, a group III nitride semiconductor 315, and a group III nitride semiconductor 316 having a (11-22) plane which is easy to planarize.
  • the c surface remains after the coalescence, and therefore, it can be seen that the group III nitride semiconductor 312 and the group III nitride semiconductor 316 can be planarized at a low height.
  • the group III nitride semiconductor 312 and then growing the group III nitride semiconductor 315 that is, forming the region n shown in FIG. 7 to be narrower than the region m, and then It is also possible to block (n).
  • the group III nitride semiconductor laminate may be manufactured as a light emitting device (LED, LED) or a light emitting device (Photo Diode) through a chip process.
  • the group III nitride semiconductor layer 31 can be doped as needed.
  • the n-type III-nitride semiconductor layer 30 and the p-type III-nitride semiconductor layer 50 may be formed of various layers, and materials such as AlGaN, GaN, InGaN, and the like may be used.
  • FIG. 21 is a diagram illustrating an example of a Group III nitride semiconductor light emitting device according to the present disclosure.
  • An n-side electrode 80 is formed on an n-type Group III nitride semiconductor layer 30 that is etched and exposed.
  • the p-side electrode 90 is formed on the group nitride semiconductor layer 50.
  • the n-side electrode 80 and the p-side electrode 90 function as a bonding pad.
  • branch electrodes extending from the n-side electrode 80 and the p-side electrode 90 may be further provided.
  • a current spreading electrode 70 eg, ITO
  • ITO current spreading electrode
  • the current diffusion electrode 70 by forming the current diffusion electrode 70 with an opaque metal, it is also possible to construct a so-called flip chip in which light generated in the active layer 40 is emitted to the substrate 10 side.
  • positions of the n-type Group III nitride semiconductor layer 30 and the p-type Group III nitride semiconductor layer 50 may be changed.
  • FIG. 22 and 23 show still another example of the group III nitride semiconductor laminate according to the present disclosure, and the rough surface 31 is formed on the p-type group III nitride semiconductor layer 50.
  • the upper surface of the p-type group III nitride semiconductor layer 50 formed on the m-plane substrate 10 is a (11-22) surface, which is easily etched by a wet etching solution such as KOH, thereby providing a rough surface 31.
  • a wet etching solution such as KOH
  • An example of the rough surface formed by etching in FIG. 23 is illustrated.
  • the 4-M KOH solution was irradiated with ultraviolet rays at 60 ° C. for 1 minute by a photoenhanced chemical (PEC) wet etching method. This wet etching is generally not much different from the n-GaN roughening method in vertical LEDs.
  • PEC photoenhanced chemical
  • FIG. 24 is a view showing still another example of the group III nitride semiconductor device according to the present disclosure, and shows a group III nitride semiconductor device to which the rough surface 51 shown in FIG. 22 is applied.
  • the group III nitride semiconductor device includes a group III nitride semiconductor light emitting device and a group III nitride semiconductor light receiving device.
  • the current diffusion electrode 70 is provided with a light transmissive material (eg, ITO, Ni / Au) or an opaque metal (eg, Ag, Al).
  • the structure under the group III nitride semiconductor layer 31 is not limited to FIG. 6, and the structure shown in FIGS. 9 to 11 may be introduced.
  • FIG. 25 is a view illustrating an example of a process of manufacturing a vertical structured group III nitride semiconductor light emitting device according to the present disclosure, and a support substrate 93 is coupled to a p-type group III nitride semiconductor layer 50.
  • the wafer bonding layer 92 is provided.
  • the support substrate 93 may be formed through deposition.
  • the support substrate 93 is made of a light transmissive material (eg, Al 2 O 3 , GaN)
  • the wafer bonding layer 92 may also be formed of a light transmissive material. If necessary, the current diffusion electrode 70 and the metal reflective film 91 may be provided.
  • the substrate 10 is separated from the group III nitride semiconductor layer 31 side by laser lift-off or wet etching.
  • the cavity 13 prevents separation of the substrate 10 and the group III nitride semiconductor layer 31.
  • the cavity 13 also serves as a passage for solutions in removing the growth barrier film 15 and / or in the separation of the substrate 10.
  • FIG. 26 is a view showing an example of a group III nitride semiconductor device manufactured according to the method shown in FIG. 25, wherein the substrate 10 of FIG. 25 is removed, and the rough surface, irregularities or light scattering surfaces are removed by the cavity 13. Is formed, and the electrode 80 is formed thereon.
  • the group III nitride semiconductor element is a light emitting diode
  • the active layer 40 generates light by recombination of electrons and holes.
  • the active layer 40 converts light into a current. Function as a layer to switch
  • FIG. 27 is a diagram illustrating an example of a Group III nitride semiconductor device manufactured according to the methods illustrated in FIGS. 22 and 26, and unlike the Group III nitride semiconductor device illustrated in FIG. 26, the p-type Group III nitride semiconductor layer ( The rough surface 51 is formed in 50 as a light scattering surface.
  • the substrate can be easily separated from the group III nitride semiconductor through wet etching or using a laser.
  • the substrate and the group III nitride semiconductor are mostly separated from each other, separation can be performed more easily.
  • the formation of a seed layer the formation of sub-group III nitride semiconductor mass, the formation of a group III nitride semiconductor, the incorporation of a group III nitride semiconductor, the formation of a cavity, a method of reducing crystal defects, a method of planarization at a low height
  • the formation of the rough surface on the p-type group III nitride semiconductor layer individually constitutes the spirit of the present disclosure. That is, when someone implements the seed layer in a different way than the method of forming the seed layer according to the present disclosure, other technical ideas according to the present disclosure may be combined with this other seed layer individually and / or in combination. It will be understood by those skilled in the art. In this regard, the present disclosure relates to the following.
  • a p-type III-nitride semiconductor layer is provided on the upper surface, and the upper surface of the p-type III-nitride semiconductor layer is a (11-22) plane, and the (11-22) plane is a light scattering surface formed by wet etching.
  • a plurality of group III nitride semiconductor layers having irregularities due to cavities formed at the bottom thereof and having an n-type nitride semiconductor layer between the irregularities and the p-type group III nitride semiconductor layer; And a first electrode electrically connected to the p-type nitride semiconductor layer; And a second electrode electrically connected to the n-type nitride semiconductor layer.
  • the layer such as the active layer may be formed by the bonding of the p-type group III nitride semiconductor layer and the n-type group III nitride semiconductor layer, and is not necessarily provided separately.
  • the light scattering surface is a representation in the functional aspect of the rough surface 51 of FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

Disclosed is a group III nitride semiconductor element characterized by comprising: a plurality of group III nitride semiconductor layers provided, on the upper part, with a p-type group III nitride semiconductor layer, the upper surface of which is a (11-22) plane, a light-scattering surface formed by wet-etching the (11-22) plane, a concave/convex portion on the lower part due to cavities formed during the growth, and an n-type nitride semiconductor layer between the concave/convex portion and the p-type group III nitride semiconductor layer; a first electrode electrically connected to the p-type nitride semiconductor layer; and a second electrode electrically connected to the n-type nitride semiconductor layer.

Description

3족 질화물 반도체 소자Group III nitride semiconductor element
본 개시(Disclosure)는 전체적으로 3족 질화물 반도체 소자에 관한 것으로, 특히 광 산란면을 구비하는 3족 질화물 반도체 소자에 관한 것이다.The present disclosure generally relates to a group III nitride semiconductor device, and more particularly, to a group III nitride semiconductor device having a light scattering surface.
여기서, 3족 질화물 반도체는 Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 화합물 반도체층을 의미하며, 3족 질화물 반도체는 발광다이오드와 같은 발광소자의 제조 및 포토다이오드와 같은 수광소자의 제조에 이용될 수 있으며, 광소자 이외에도, 다이오드, 트랜지스터와 전기 소자의 제조 등 다양한 분야에 적용될 수 있다. 3족 질화물 반도체 소자는 발광소자와 수광소자를 포함한다.Here, the group III nitride semiconductor means a compound semiconductor layer made of Al (x) Ga (y) In (1-xy) N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1). In addition, the group III nitride semiconductor may be used for manufacturing a light emitting device such as a light emitting diode and a light receiving device such as a photodiode. In addition to the optical device, the group III nitride semiconductor may be applied to various fields such as the manufacture of diodes, transistors, and electrical devices. The group III nitride semiconductor element includes a light emitting element and a light receiving element.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).This section provides background information related to the present disclosure which is not necessarily prior art.
도 1은 미국 공개특허공보 제2003-0057444호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 발광소자는 기판(100), 기판(100) 위에 성장되는 n형 3족 질화물 반도체층(300), n형 3족 질화물 반도체층(300) 위에 성장되는 활성층(400), 활성층(400) 위에 성장되는 p형 3족 질화물 반도체층(500)을 포함한다. 기판(100)에는 돌기(110)가 형성되어 있으며, 돌기(110)는 기판(100) 위에 성장되는 3족 질화물 반도체층(300,400,500)의 결정질(Growth Quality)을 향상시키는 한편, 활성층(400)에서 생성되는 빛을 발광소자 외부로 방출하는 효율을 향상시키는 산란면으로 기능한다.1 is a view showing an example of a group III nitride semiconductor light emitting device shown in US Patent Publication No. 2003-0057444, in which the group III nitride semiconductor light emitting device is grown on a substrate 100 and the substrate 100. The group nitride semiconductor layer 300 includes an active layer 400 grown on the n-type group III nitride semiconductor layer 300 and a p-type group III nitride semiconductor layer 500 grown on the active layer 400. The protrusions 110 are formed on the substrate 100, and the protrusions 110 improve the grain quality of the group III nitride semiconductor layers 300, 400, and 500 grown on the substrate 100, and at the active layer 400. It functions as a scattering surface to improve the efficiency of emitting the generated light to the outside of the light emitting device.
도 2 및 도 3은 국제 공개특허공보 제2010-110608호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 발광소자는 기판(100), 기판(100) 위에 성장되는 n형 3족 질화물 반도체층(300), n형 3족 질화물 반도체층(300) 위에 성장되는 활성층(400), 활성층(400) 위에 성장되는 p형 3족 질화물 반도체층(500)을 포함한다. 기판(100)에는 돌기(120)가 형성되어 있으며, 돌기(120)의 상면에서 3족 질화물 반도체층(300,400,500)을 성장시킴으로써, 공동(130; Cavity)을 형성하였다. 공동(130; 공기의 굴절률은 1임)을 이용함으로써, 3족 질화물 반도체층(300,400,500)과 기판(100; 사파이어 기판의 경우에 대략 1.7) 사이의 산란면을 이용하는 경우에 비해 산란의 효과를 높이고자 하는 기술이다. 그러나, 도 3에 도시된 바와 같이, 돌기(120) 위에서 실제 성장된 3족 질화물 반도체층(300,400,500)은 기대와 달리, 아주 작은 곡률을 가지는 산란면(131)을 형성시키는데 그친다. 한편, 이렇게 형성된 공동(130)을 산란면으로 이용하는 외에, 기판(100)과 3족 질화물 반도체층(300,400,500)의 습식 식각에 의한 분리시 식각액이 투입되는 채널로서 이용하거나, 레이저에 의한 분리(Laser Lift-off)시 레이저에 의한 분리면을 감소시키고, 레이저 분리시 발생하는 가스의 이동통로로 사용함으로써 3족 질화물 반도체층(300,400,500)이 받는 충격을 줄일 수 있다. 2 and 3 are diagrams illustrating an example of the group III nitride semiconductor light emitting device shown in International Patent Publication No. 2010-110608, wherein the group III nitride semiconductor light emitting device is grown on the substrate 100 and the substrate 100. The n-type group III nitride semiconductor layer 300, the active layer 400 grown on the n-type group III nitride semiconductor layer 300, and the p-type group III nitride semiconductor layer 500 grown on the active layer 400 are included. A protrusion 120 is formed on the substrate 100, and a cavity 130 (cavity) is formed by growing the group III nitride semiconductor layers 300, 400, and 500 on the upper surface of the protrusion 120. By using the cavity 130 (the refractive index of air is 1), the scattering surface between the group III nitride semiconductor layers 300, 400, 500 and the substrate 100 (approximately 1.7 in the case of the sapphire substrate) is increased. It's a skill. However, as shown in FIG. 3, the group III nitride semiconductor layers 300, 400, and 500 actually grown on the protrusions 120, unlike the expectation, merely form the scattering surface 131 having a very small curvature. Meanwhile, in addition to using the cavity 130 thus formed as a scattering surface, the substrate 100 and the group III nitride semiconductor layers 300, 400, and 500 are used as a channel into which an etchant is input during separation by wet etching, or by laser separation. In the case of lift-off, the separation surface by the laser is reduced, and the impact caused by the group III nitride semiconductor layers 300, 400, and 500 can be reduced by using it as a movement path of the gas generated during the laser separation.
도 4는 미국 공개특허공보 제2005-0156175호에 제시된 3족 질화물 반도체 적층체의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 적층체는 c면 사파이어 기판(100), c면 사파이어 기판(100) 위에 미리 형성된 3족 질화물 반도체 템플릿(210), 3족 질화물 반도체 템플릿(210) 위에 형성된 SiO2로 된 성장 방지막(150), 그리고, 그 위에 선택 성장된(selectively grown) 3족 질화물 반도체층(310)을 포함한다. 3족 질화물 반도체 템플릿(210)은 종래에 c면 사파이어 기판(100)에 3족 질화물 반도체를 성장하는 방법에 의해 형성된다. 즉, 550℃ 부근의 성장온도와 수소 분위기에서, 씨앗층을 형성한 다음, 1050℃의 성장온도에서 GaN을 성장하는 방법에 의해 1~3um의 두께로 형성된다. 도면 부호 180은 결함(Defecsts)을 나타내며, 성장 방지막(150) 아래의 결함의 전개가 차단됨으로써, 전체적으로 결정성의 향상을 가져오게 된다. 그러나 이러한 방법은 성장 방지막(150)의 형성 이전에 3족 질화물 반도체 템플릿(210)의 성장을 필요로 하며, 3족 질화물 반도체 템플릿(210)과 c면 사파이어 기판(100) 간의 격자 상수 및 열팽창 계수 차이로 인한 기판 휨 현상(Bowing)을 가져온다. 이 기판 휨 현상은 이후 성장 방지막(150) 형성에 요구되는 포토리소그라피(Photolithography) 공정을 방해하며, 통상 2인치, 4인치, 6인치, 8인치의 직경을 가지는 c면 사파이어 기판(100) 위에서의 상기 공정의 균일한 진행을 어렵게 하는 문제점이 있다. m면 기판 위에서의 이러한 시도로 P. de Mierry 등의 논문(Improved semipolar (11-22) GaN quality using asymmetric lateral epitaxy, Applied Physics Letters 94, 191903 (2009))이 있다.4 is a diagram illustrating an example of a group III nitride semiconductor laminate disclosed in US Patent Publication No. 2005-0156175, wherein the group III nitride semiconductor laminate includes a c-plane sapphire substrate 100 and a c-plane sapphire substrate 100. A Group III nitride semiconductor template 210 previously formed thereon, a growth prevention film 150 made of SiO 2 formed on the Group III nitride semiconductor template 210, and a Group III nitride semiconductor layer 310 selectively grown thereon. ). The group III nitride semiconductor template 210 is conventionally formed by a method of growing a group III nitride semiconductor on the c-plane sapphire substrate 100. That is, a seed layer is formed at a growth temperature of about 550 ° C. and a hydrogen atmosphere, and then formed to a thickness of 1 to 3 μm by a method of growing GaN at a growth temperature of 1050 ° C. Reference numeral 180 denotes defects, and development of defects under the growth prevention film 150 is blocked, resulting in an improvement in crystallinity as a whole. However, this method requires the growth of the group III nitride semiconductor template 210 before the formation of the growth barrier film 150, and the lattice constant and thermal expansion coefficient between the group III nitride semiconductor template 210 and the c-plane sapphire substrate 100. This results in substrate bending due to the difference. This substrate warpage then interferes with the photolithography process required to form the growth barrier film 150, and is typically on the c-side sapphire substrate 100 having diameters of 2 inches, 4 inches, 6 inches, and 8 inches. There is a problem that makes it difficult to uniformly proceed the process. This attempt on m-plane substrates has been described in P. de Mierry et al., Improved semipolar (11-22) GaN quality using asymmetric lateral epitaxy, Applied Physics Letters 94, 191903 (2009).
도 5는 미국 공개특허공보 제2005-0156175호에 제시된 3족 질화물 반도체 적층체의 또 다른 예를 나타내는 도면으로서, 3족 질화물 반도체 적층체는 c면 사파이어 기판(100), c면 사파이어 기판(100) 위에 형성된 SiO2로 된 성장 방지막(150), 그리고, 그 위에 선택 성장된(selectively grown) 3족 질화물 반도체층(310)을 포함한다. 1050℃ 정도에서 성장되는 3족 질화물 반도체층(310)은 c면 사파이어 기판(100) 및 성장 방지막(150) 위에서 성장이 불가능하므로, 도 4의 3족 질화물 반도체 템플릿(210)에서와 마찬가지로 550℃의 성장온도에서 먼저 씨앗층(200; 통상 버퍼층이라고도 불린다.)을 형성해야 한다. 그러나, 이렇게 실제 3족 질화물 반도체의 성장 온도(GaN의 경우에 통상 1000℃ 이상)보다 많이 낮은 온도에서 씨앗층(200)을 형성하면, 성장 방지막(150) 위에도 씨앗층(200)을 이루는 물질(주로, GaN)의 다결정이 형성되어, 결정성이 우수한 3족 질화물 반도체층(310)의 형성이 어렵게 되는 문제점이 있다.5 is a view showing another example of the group III nitride semiconductor laminate disclosed in US Patent Publication No. 2005-0156175, wherein the group III nitride semiconductor laminate is a c-plane sapphire substrate 100, a c-plane sapphire substrate 100 A growth prevention film 150 made of SiO 2 formed on the substrate), and a group III nitride semiconductor layer 310 selectively grown thereon. Since the group III nitride semiconductor layer 310 grown at about 1050 ° C. cannot be grown on the c-plane sapphire substrate 100 and the growth preventing film 150, the group III nitride semiconductor layer 310 is 550 ° C. as in the group III nitride semiconductor template 210 of FIG. 4. At the growth temperature of the first seed layer 200 (commonly referred to as buffer layer) must be formed. However, if the seed layer 200 is formed at a temperature much lower than the growth temperature of the Group III nitride semiconductor (in the case of GaN, in general, 1000 ° C. or more), the material forming the seed layer 200 may also be formed on the growth barrier 150. Mainly, GaN) polycrystals are formed, which makes it difficult to form the group III nitride semiconductor layer 310 having excellent crystallinity.
도 18은 종래의 3족 질화물 반도체 발광소자의 또 다른 예(Vertical Chip)를 나타내는 도면으로서, 3족 질화물 반도체 발광소자는 n형 3족 질화물 반도체층(300; 예: n형 GaN), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(400; 예: InGaN/GaN 다중양자우물 구조), p형 3족 질화물 반도체층(500; 예: p형 GaN)이 순차로 증착되어 있으며, 여기에 n형 3족 질화물 반도체층(300)으로 빛을 반사시키기 위한 금속 반사막(910)이 형성되어 있고, 지지 기판(930) 측에 전극(940)이 형성되어 있다. 금속 반사막(910)과 지지 기판(930)은 웨이퍼 본딩층(920)에 의해 결합된다. 바람직하게는 오믹 접촉과 전류 확산을 위해 전류 확산 전극(700; 예: ITO)이 구비되어 있다. 레이저 리프트-오프 등의 방법으로 기판이 제거된 n형 3족 질화물 반도체층(300)에는 식각을 통해 빛을 산란시키는 거친 표면(301)이 형성되어 있고, 그 위에 본딩 패드로 기능하는 전극(800)이 형성되어 있다.FIG. 18 is a view showing another example of a conventional Group III nitride semiconductor light emitting device, wherein the Group III nitride semiconductor light emitting device includes an n-type Group III nitride semiconductor layer 300 (eg, n-type GaN), electrons, and the like. An active layer 400 that generates light through recombination of holes (e.g., an InGaN / GaN multiquantum well structure) and a p-type group III nitride semiconductor layer 500 (e.g., p-type GaN) are sequentially deposited, where n A metal reflective film 910 is formed to reflect light onto the type III group nitride semiconductor layer 300, and an electrode 940 is formed on the support substrate 930 side. The metal reflective film 910 and the support substrate 930 are bonded by the wafer bonding layer 920. Preferably, a current spreading electrode 700 (eg, ITO) is provided for ohmic contact and current spreading. The n-type group III nitride semiconductor layer 300 from which the substrate is removed by laser lift-off or the like is formed with a rough surface 301 which scatters light through etching, and serves as a bonding pad thereon. ) Is formed.
상용 수직 구조 칩은 주로 c면 기판(예: c면 사파이어 기판) 위에서 성장되며, n형 3족 질화물 반도체층(300; 예: n형 GaN), 활성층(400; 예: InGaN/GaN 다중양자우물 구조), p형 3족 질화물 반도체층(500; 예: p형 GaN)의 순으로 성장된다. 따라서 기판이 제거된 측에 n형 3족 질화물 반도체층(300; 예: n형 GaN)이 위치하게 되며, n형 3족 질화물 반도체층(300; 예: n형 GaN)에는 습식 식각에 의해 거친 표면(301)의 형성이 가능하다. 그러나, c면 기판 위에 성장된 p형 3족 질화물 반도체층(500; 예: p형 GaN)은 습식 식각이 쉽지 않은 것으로 알려져 있다. 한편, p형 3족 질화물 반도체층(500; 예: p형 GaN)을 건식 식각하는 경우에, 그 아래에 놓이는 활성층(400; 예: InGaN/GaN 다중양자우물 구조)이 손상될 우려가 있다.Commercial vertical structure chips are mainly grown on c-plane substrates (eg c-plane sapphire substrates), n-type group III nitride semiconductor layers 300 (eg n-type GaN), active layers 400 (eg InGaN / GaN multiquantum wells). Structure), and the p-type group III nitride semiconductor layer 500 (for example, p-type GaN). Therefore, the n-type group III nitride semiconductor layer 300 (eg, n-type GaN) is positioned on the side from which the substrate is removed, and the n-type group III nitride semiconductor layer 300 (eg, n-type GaN) is roughened by wet etching. Formation of surface 301 is possible. However, it is known that p-type III-nitride semiconductor layers 500 (eg, p-type GaN) grown on c-plane substrates are not easily wet-etched. On the other hand, in the case of dry etching the p-type III-nitride semiconductor layer 500 (eg, p-type GaN), the active layer 400 (eg, InGaN / GaN multi-quantum well structure) underlying it may be damaged.
도 19는 미국 등록특허공보 제6,441,403호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 발광소자는 기판(100), 버퍼층(200), n형 3족 질화물 반도체층(300), 활성층(400), p형 3족 질화물 반도체층(500), 전극(800) 및 전극(900)을 포함한다. p형 3족 질화물 반도체층(500)에는 거친 표면(301)이 형성되어 있으며, 거친 표면(301)은 p형 3족 질화물 반도체층(500)의 성장 동안에, 성장 조건을 조절함으로써 형성될 수 있다. p형 도펀트로는 주로 Mg, Zn가 이용된다.19 is a view showing an example of a group III nitride semiconductor light emitting device shown in US Patent No. 6,441,403. The group III nitride semiconductor light emitting device includes a substrate 100, a buffer layer 200, and an n-type Group III nitride semiconductor layer. 300, an active layer 400, a p-type group III nitride semiconductor layer 500, an electrode 800, and an electrode 900. A rough surface 301 is formed on the p-type III-nitride semiconductor layer 500, and the rough surface 301 may be formed by controlling growth conditions during the growth of the p-type III-nitride semiconductor layer 500. . As the p-type dopant, Mg and Zn are mainly used.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.This is described later in the section titled 'Details of the Invention.'
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all, provided that this is a summary of the disclosure. of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 상부에 p형 3족 질화물 반도체층을 구비하며, p형 3족 질화물 반도체층의 상면은 (11-22)면이고, 이 (11-22)면이 습식 식각되어 형성된 광 산란면을 구비하며, 하부에 성장시 형성되는 공동(Cavtity)에 의한 요철을 구비하고, 요철과 p형 3족 질화물 반도체층 사이에 n형 질화물 반도체층을 구비하는 복수의 3족 질화물 반도체층; 그리고, p형 질화물 반도체층에 전기적으로 연결되는 제1 전극; 그리고, n형 질화물 반도체층에 전기적으로 연결되는 제2 전극;을 포함하는 것을 특징으로 하는 3족 질화물 반도체 소자가 제공된다.According to one aspect of the present disclosure, an upper surface of a p-type III-nitride semiconductor layer is provided, and an upper surface of the p-type III-nitride semiconductor layer is a (11-22) plane. This (11-22) surface has a light scattering surface formed by wet etching, and has an unevenness due to cavities formed during growth in the lower portion, and an n-type nitride between the unevenness and the p-type III-nitride semiconductor layer A plurality of group III nitride semiconductor layers comprising a semiconductor layer; And a first electrode electrically connected to the p-type nitride semiconductor layer; And a second electrode electrically connected to the n-type nitride semiconductor layer.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.This is described later in the section titled 'Details of the Invention.'
도 1은 미국 공개특허공보 제2003-0057444호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,1 is a view showing an example of a group III nitride semiconductor light emitting device shown in US Patent Publication No. 2003-0057444;
도 2 및 도 3은 국제 공개특허공보 제2010-110608호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,2 and 3 are views showing an example of a group III nitride semiconductor light emitting device shown in International Publication No. 2010-110608;
도 4는 미국 공개특허공보 제2005-0156175호에 제시된 3족 질화물 반도체 적층체의 일 예를 나타내는 도면,4 is a view showing an example of a group III nitride semiconductor laminate shown in US Patent Publication No. 2005-0156175,
도 5는 미국 공개특허공보 제2005-0156175호에 제시된 3족 질화물 반도체 적층체의 또 다른 예를 나타내는 도면,5 is a view showing still another example of the group III nitride semiconductor laminate shown in US Patent Publication No. 2005-0156175,
도 6은 본 개시에 따른 3족 질화물 반도체 적층체의 일 예를 나타내는 도면,6 is a view showing an example of a group III nitride semiconductor laminate according to the present disclosure;
도 7은 본 개시에 따라 씨앗층 위에 3족 질화물 반도체를 성장하는 방법의 일 예를 나타내는 도면,7 is a view showing an example of a method of growing a group III nitride semiconductor on the seed layer in accordance with the present disclosure,
도 8은 본 개시에 따라 씨앗층 위에 3족 질화물 반도체를 성장하는 방법의 다른 예를 나타내는 도면,8 illustrates another example of a method for growing a group III nitride semiconductor over a seed layer in accordance with the present disclosure;
도 9는 본 개시에 따른 3족 질화물 반도체 적층체의 다른 예를 나타내는 도면,9 shows another example of the group III nitride semiconductor laminate according to the present disclosure;
도 10은 본 개시에 따른 3족 질화물 반도체 적층체의 또 다른 예를 나타내는 도면,10 is a view showing still another example of the group III nitride semiconductor laminate according to the present disclosure;
도 11은 본 개시에 따른 3족 질화물 반도체 적층체의 또 다른 예를 나타내는 도면,11 is a view showing still another example of the group III nitride semiconductor laminate according to the present disclosure;
도 12는 도 8의 구조로 성장된 도 6의 3족 질화물 반도체 적층체의 단면 이미지들,12 is a cross-sectional image of the group III nitride semiconductor laminate of FIG. 6 grown in the structure of FIG.
도 13은 도 8의 구조로 성장된 도 6의 3족 질화물 반도체 적층체의 단면 이미지들,FIG. 13 is a cross-sectional image of the group III nitride semiconductor laminate of FIG. 6 grown with the structure of FIG. 8, FIG.
도 14는 낮은 온도에서 성장된 씨앗층 및 수소 분위기에서 성장된 씨앗층을 나타내는 사진,14 is a photograph showing the seed layer grown at a low temperature and the seed layer grown in a hydrogen atmosphere,
도 15는 본 개시에 따라 성장된 씨앗층을 나타내는 사진,15 is a photograph showing a seed layer grown in accordance with the present disclosure;
도 16 및 도 17은 본 개시에 따른 3족 질화물 반도체를 성장시키는 방법의 일 예를 설명하는 도면,16 and 17 illustrate an example of a method of growing a group III nitride semiconductor according to the present disclosure;
도 18은 종래의 3족 질화물 반도체 발광소자의 또 다른 예(Vertical Chip)를 나타내는 도면,18 is a view showing still another example (Vertical Chip) of a conventional Group III nitride semiconductor light emitting device,
도 19는 미국 등록특허공보 제6,441,403호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,19 is a view showing an example of a group III nitride semiconductor light emitting device shown in US Patent No. 6,441,403;
도 20은 본 개시에 따른 3족 질화물 반도체 적층체의 또 다른 예를 나타내는 도면,20 is a view showing still another example of the group III nitride semiconductor laminate according to the present disclosure;
도 21은 본 개시에 따른 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,21 is a view showing an example of a group III nitride semiconductor light emitting device according to the present disclosure;
도 22 및 도 23은 본 개시에 따른 3족 질화물 반도체 적층체의 또 다른 예를 나타내는 도면,22 and 23 show still another example of the Group III nitride semiconductor laminate according to the present disclosure;
도 24는 본 개시에 따른 3족 질화물 반도체 소자의 또 다른 예를 나타내는 도면,24 is a view showing still another example of the group III nitride semiconductor device according to the present disclosure;
도 25는 본 개시에 따라 수직 구조형 3족 질화물 반도체 발광소자를 제조하는 과정의 일 예를 나타내는 도면,25 is a view illustrating an example of a process of manufacturing a vertical group III nitride semiconductor light emitting device according to the present disclosure;
도 26은 도 25에 도시된 방법에 따라 제조된 3족 질화물 반도체 소자의 일 예를 나타내는 도면,FIG. 26 is a diagram illustrating an example of a group III nitride semiconductor device manufactured according to the method illustrated in FIG. 25;
도 27은 도 22 및 도 26에 도시된 방법에 따라 제조된 3족 질화물 반도체 소자의 일 예를 나타내는 도면.FIG. 27 is a view showing an example of a group III nitride semiconductor device manufactured according to the method shown in FIGS. 22 and 26.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).The present disclosure will now be described in detail with reference to the accompanying drawing (s).
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)). The present disclosure will now be described in detail with reference to the accompanying drawing (s).
도 6은 본 개시에 따른 3족 질화물 반도체 적층체의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 적층체는 m면 기판(10), m면 기판(10) 위에 위치하며, 3족 질화물 반도체의 성장을 위한 복수의 윈도우(16a,16b)를 가지는 성장 방지막(15), 복수의 윈도우(16a,16b)에 해당하는 영역에서 m면 기판(10) 상에 형성되는 씨앗층(20) 그리고, 씨앗층(20)으로부터 성장되며, a축 방향과 c축 방향으로 전개되어 합체(coalescence)되는 3족 질화물 반도체층(31)으로서, 하나의 윈도우(16a)에서 c축 방향으로 전개되는 3족 질화물 반도체(31a)가 성장 방지막(15) 위로 전개되어 이웃한 윈도우(16b)에서 a축 방향으로 전개되는 3족 질화물 반도체(31b)와 공동(13; Cavity)을 형성하는 3족 질화물 반도체층(31)을 포함한다. FIG. 6 is a diagram illustrating an example of a group III nitride semiconductor laminate according to the present disclosure, wherein the group III nitride semiconductor laminate is positioned on an m-plane substrate 10 and an m-plane substrate 10. A growth prevention film 15 having a plurality of windows 16a and 16b for growth, a seed layer 20 formed on the m surface substrate 10 in a region corresponding to the plurality of windows 16a and 16b, and a seed A Group III nitride semiconductor layer 31 which is grown from the layer 20 and developed in the a-axis direction and the c-axis direction and coalesces, and is developed in the c-axis direction in one window 16a. A group III nitride semiconductor layer 31 which forms a cavity 13 with the group III nitride semiconductor 31b that is developed above the growth preventing film 15 and extends in the a-axis direction in the adjacent window 16b. It includes.
m면 기판(10)의 대표적인 물질은 육방정계인 사파이어이며, c면을 (0001)로 할 때, m면은 (1-100)이며, a면은 (11-20)이다. 여기서 a축은 a면에 수직한 축으로 정의하고, c축은 c면에 수직한 축으로 정의한다. 바람직하게는 정확한 m면 기판(10)이 사용되지만, m면으로부터 약간 off된 각으로 잘려진 기판이 사용될 수 있으며, 여기서 이들을 통칭하여 m면 기판(10)이라 한다. 사파이어 이외에도, 3족 질화물 반도체(예: GaN, InGaN, AlGaN, InN, AlN, InGaAlN)의 성장이 가능하고, m면을 가지는 물질이라면 사용이 가능하다. 3족 질화물 반도체는 Si, Mg과 같은 물질이 도핑될 수 있다.A representative material of the m-plane substrate 10 is hexagonal sapphire. When the c plane is (0001), the m plane is (1-100) and the a plane is (11-20). Here, the a axis is defined as an axis perpendicular to the a plane, and the c axis is defined as an axis perpendicular to the c plane. Preferably an accurate m-plane substrate 10 is used, but a substrate cut at an angle slightly off from the m-plane can be used, here collectively referred to as m-plane substrate 10. In addition to sapphire, Group III nitride semiconductors (eg, GaN, InGaN, AlGaN, InN, AlN, InGaAlN) can be grown, and m-plane materials can be used. The group III nitride semiconductor may be doped with a material such as Si and Mg.
성장 방지막(15)으로는 SiO2가 주로 사용되지만, SiNx, TiO2가 사용되어도 좋고, 이외에도 3족 질화물 반도체의 성장을 방지하는 물질이라면, 어떠한 물질이 사용되어도 좋다. 또한 성장 방지막(15)을 SiO2/TiO2의 DBR 구조로 형성하는 것도 가능하다. 예를 들어, 100nm~300nm 두께의 SiO2 막이 사용될 수 있다. 성장 방지막(15)은 m면 사파이어 기판의 a면 방향으로 스트라이프(stripe)로 형성될 수 있으며, 성장 방지막(15)과 윈도우(16a)와의 간격은 적절히 조절될 수 있다. 본 발명자들은 성장 방지막(15)과 윈도우(16a)의 간격을 17:1, 16:2, 13:1, 14:2, 7:3, 6:2 의 마스크(단위는 um)를 사용하여 실험해 보았으며, 성장 방지막(15)이 가장 넓은 17um의 경우에도 3족 질화물 반도체층(31; GaN)의 평탄화가 7um이하에서 이루어졌다(즉, 공동(13)의 높이가 7um이하가 된다.). 따라서 본 개시에 따른 3족 질화물 반도체 성장 방법에 의하면, 지나친 높이(예를 들어, 10um) 이전에 3족 질화물 반도체층(31)을 평탄화할 수 있게 된다.SiO 2 is mainly used as the growth prevention film 15, but SiN x and TiO 2 may be used, and any material may be used as long as it is a material for preventing the growth of the group III nitride semiconductor. It is also possible to form the growth preventing film 15 in a DBR structure of SiO 2 / TiO 2 . For example, a SiO 2 film of 100 nm to 300 nm thickness may be used. The growth prevention film 15 may be formed as a stripe in the a plane direction of the m surface sapphire substrate, and the gap between the growth prevention film 15 and the window 16a may be appropriately adjusted. The present inventors experimented using the mask (unit is um) of 17: 1, 16: 2, 13: 1, 14: 2, 7: 3, 6: 2 for the space | interval of the growth prevention film 15 and the window 16a. Even in the case of 17 um where the growth prevention film 15 is the widest, the planarization of the group III nitride semiconductor layer 31 (GaN) is performed at 7 μm or less (that is, the height of the cavity 13 is 7 μm or less). . Therefore, according to the group III nitride semiconductor growth method according to the present disclosure, the group III nitride semiconductor layer 31 can be planarized before an excessive height (for example, 10 μm).
씨앗층(20; 예: GaN)은 종래 500℃ 부근(예: 550℃)에서 형성되는 GaN 버퍼층과 달리, 650℃이상의 높은 온도, 바람직하게는 800℃이상의 온도에서 형성되며, 1150℃이상의 온도에서는 일반적으로 잘 형성되지 않는다. 800℃이상의 온도에서 더 좋은 씨앗층(20)의 형성이 가능하지만, 이후 더 높은 온도에서 성장되는 3족 질화물 반도체층(31)에 대한 성장 조건으로의 빠른 이동을 위해, 900℃이상의 온도에서 성장할 수 있으며, 이러한 관점에서 900℃이상의 온도에서 성장하는 것이 바람직하다. 그리고, 캐리어 가스로서 종래 사용되던 H2가 아니라 N2가 사용된다. 앞에서 지적하였듯이, 종래의 버퍼층과 같은 방식을 사용하면, 성장 방지막(15) 위에 다결정이 형성되어, 결정성이 좋은 3족 질화물 반도체층(31)을 얻는데 어려움이 생긴다. 따라서, 본 실시예의 씨앗층(20)은 종래 3족 질화물 반도체층의 성장에 사용되던 버퍼층과는 형성의 개념을 달리한다는 것을 알 수 있다. 도 14는 낮은 온도에서 성장된 씨앗층 및 수소 분위기에서 성장된 씨앗층을 나타내는 사진으로서, (a)에 도시된 바와 같이 낮은 온도에서 성장된 경우에, 다결정이 성장 방지막까지도 덮게 되고, (b)에 도시된 바와 같이 높은 온도로 수소 분위기에서 성장된 경우에, 성장이 잘 되지 않으며, 일부 아주 큰 핵들이 형성된다. 도 15는 본 개시에 따라 성장된 씨앗층을 나타내는 사진으로, 윈도우(16a)에만 씨앗층(20)이 형성되어 있음을 알 수 있다. 씨앗층(20)의 성장은 좁은 윈도우(16a) 영역에서 이루어지므로, 성장 막지막(15)이 없는 상태의 성장 조건을 사용하면, 윈도우(16a)에 지나치게 빠르게 씨앗층(20)이 형성될 수 있으므로, 윈도우(16a)의 크기에 맞추어 성장 속도를 조절할 필요가 있다. 씨앗층(20)은 Al(x)Ga(y)In(1-x-y)N (0=x=1, 0=y=1, 0=x+y=1)로 된 화합물 반도체, 바람직하게는 GaN으로 이루어진다. 도 15에서 씨앗층(20)의 성장 조건은 다음과 같았다. m면 사파이어 기판을 유기세정한 후 SiO2를 PECVD법으로 증착한 후, MOCVD를 이용하여 성장하였다. MOCVD 반응기 내의 분위기 기체를 N2로 한 후 450℃부터 NH3 유량을 8000sccm(Standard Cubic Cm per Min.)로 하여 반응기에 주입하였고, 1050℃까지 승온하였다. 이는 사파이어 표면의 질화 처리를 위해서였다. 1050℃에서 TMGa를 이용하여 GaN 핵을 0.5nm/sec의 속도로 성장시켰다. 이때 반응기의 압력은 100mbar로 하였다.The seed layer 20 (eg, GaN) is formed at a high temperature of 650 ° C. or higher, preferably 800 ° C. or higher, unlike a GaN buffer layer formed at about 500 ° C. (eg, 550 ° C.). Generally not well formed. It is possible to form a better seed layer 20 at a temperature above 800 ° C., but to grow at a temperature above 900 ° C. for rapid transfer to growth conditions for the Group III nitride semiconductor layer 31 grown at a higher temperature. In this regard, it is desirable to grow at a temperature of 900 ℃ or more. As the carrier gas, N 2 is used instead of H 2 which is conventionally used. As pointed out above, by using the same method as the conventional buffer layer, polycrystals are formed on the growth prevention film 15, which makes it difficult to obtain the Group 3 nitride semiconductor layer 31 having good crystallinity. Therefore, it can be seen that the seed layer 20 of the present embodiment differs from the concept of formation of the buffer layer used for the growth of the group III nitride semiconductor layer. FIG. 14 is a photograph showing seed layers grown at a low temperature and seed layers grown at a hydrogen atmosphere. When grown at a low temperature as shown in (a), the polycrystals cover the growth prevention layer, and (b) When grown in a hydrogen atmosphere at high temperatures as shown in FIG. 1, the growth is poor and some very large nuclei are formed. 15 is a photograph showing a seed layer grown according to the present disclosure, and it can be seen that the seed layer 20 is formed only in the window 16a. Since the growth of the seed layer 20 is performed in the narrow window 16a region, the growth of the seed layer 20 may be formed too quickly in the window 16a using growth conditions without the growth barrier 15. Therefore, it is necessary to adjust the growth rate in accordance with the size of the window 16a. The seed layer 20 is a compound semiconductor of Al (x) Ga (y) In (1-xy) N (0 = x = 1, 0 = y = 1, 0 = x + y = 1), preferably Made of GaN. In FIG. 15, the growth conditions of the seed layer 20 were as follows. After m-sapphire substrates were organically cleaned, SiO 2 was deposited by PECVD, and then grown using MOCVD. The atmosphere gas in the MOCVD reactor was changed to N 2 , and then injected into the reactor with a NH 3 flow rate of 8000 sccm (Standard Cubic Cm per Min.) From 450 ° C., and the temperature was increased to 1050 ° C. This was for the nitriding treatment of the sapphire surface. GaN nuclei were grown at a rate of 0.5 nm / sec using TMGa at 1050 ° C. At this time, the pressure of the reactor was 100 mbar.
도 7은 본 개시에 따라 씨앗층 위에 3족 질화물 반도체를 성장하는 방법의 일 예를 나타내는 도면으로서, 3족 질화물 반도체(31a)와 3족 질화물 반도체(31b)가 접합에 이르기까지의 과정의 일 예를 설명한다. 도 7의 좌측에서와 같이, m면 기판(10)의 씨앗층(20)에서 성장되는 3족 질화물 반도체(31e)는 시계 방향으로, c면, a면, 그리고 -c면을 가지면서 성장될 수 있다. 성장 조건에 따라, 어느 면을 넓게 하거나, 어느 면을 생략하거나 할 수 있지만, 기본적으로 a축 방향으로의 횡방향 전개는 c축 방향으로의 횡방향 전개에 비해 상대적으로 억제된다. 그리고 가운데 그림에 나타낸 바와 같이, 결정 결함(32; 정확히는 적층 결함(stacking faults))은 a축 방향으로 전개된다. 따라서, 윈도우(16a)에서 성장되는 3족 질화물 반도체(31a)와 이웃한 윈도우(16b)에서 성장되는 3족 질화물 반도체(31b)가 접합되는 지점(33)에 이르기까지 a축 방향으로 전개되어 결정 결함(32)이 형성되는 영역(n)을 c축 방향으로 전개되어 결정 결함(32)이 형성되지 않은 영역(m)에 비해 좁게 형성함으로써, 3족 질화물 반도체(31a,31b) 전체에 있어서 결정 결함을 줄일 수 있게 된다. 접합을 위해, a축 방향으로 전개되는 3족 질화물 반도체(31a,31b)의 a면은 점점 감소되며, 최적으로는 점 접합을 이루게 된다. 또한 접합되는 지점(33)에 이르기까지, c축 방향으로 전개되는 3족 질화물 반도체(31a)의 c면을 감소시킴으로써, 최적으로는 점 접합이 되게 함으로써, a축 방향으로 전개되는 3족 질화물 반도체(31b)와 c축 방향으로 전개되는 3족 질화물 반도체(31a)의 접합 내지는 평탄화를 돕는다. 접합되는 지점(33)에서, 3족 질화물 반도체(31b)의 -c면과 3족 질화물 반도체(31a)의 c면이 만나게 되면, 이들의 접합이 쉽지 않거나, 접합되지 않고, 평행하게 성장이 이루어진다. 바람직하게는 3족 질화물 반도체(31a,31b)는, c축 방향으로 전개되는 3족 질화물 반도체의 횡방향 성장전개가 a축 방향으로 전개되는 3족 질화물 반도체의 횡방향 성장전개보다 빨라 성장 방지 영역 위로 성장전개된 서브 3족 질화물 반도체 덩어리(31f,31g) 및/또는 a면과 c면이 모두 살아있는 서브 3족 질화물 반도체 덩어리(31f,31g)를 미리 형성한 다음에 성장된다. 성장의 초기부터 역사다리꼴 형태의 3족 질화물 반도체를 만드는 경우에, 접합되는 지점(33)에 이르기까지 지나치게 반도체의 높이가 높아질 수 있기 때문에, 미리 성장 방지막(15)에 전개된 서브 3족 질화물 반도체 덩어리(31f,31g)를 만들어 두는 것이 좋다. 또한 역사다리꼴로 3족 질화물 반도체(31a,31b)를 접합시키는 것이 쉽지 만은 않으므로, 이러한 형태를 만들기 위한 예비 형태로서, 서브 3족 질화물 반도체 덩어리(31f,31g)를 미리 만들어 두는 것이 바람직하다. 전술한 바와 같이, 본 개시에 따른 3족 질화물 반도체의 성장 방법에 의하면, 성장 방지막(15)과 윈도우(16a)의 폭을 17:1로 한 경우에도, 3족 질화물 반도체층(31)를 두께 7um이하에서 합체(coalescence)할 수 있으며, 여기에서 서브 3족 질화물 반도체 덩어리(31f,31g)는 이를 달성하는 유용한 도구의 하나이다. 씨앗층(20)을 성장시킨 후, 분위기 기체를 수소로 바꾼다. 그 후 NH3는 4000sccm, 압력은 100mbar, 온도는 1050℃, 성장속도는 0.6nm/sec의 속도로 500nm~1300nm정도의 서브 3족 질화물 반도체 덩어리(31f,31g)를 성장시킨다. 이후, 온도를 920℃로 낮춘 후 압력은 250mbar, NH3는 12,000sccm으로 하여 성장시켰다. 예를 들어, 서브 3족 질화물 반도체 덩어리(31f,31g)를 500nm 성장시킴으로써, 도 7에서와 같은 구조를 만들고, 영역(n)이 전체 표면의 5% 정도만을 갖게 함으로써, 결정 결함(32)을 현저히 줄일 수 있게 된다. 또한 서브 3족 질화물 반도체 덩어리(31f,31g)를 1300nm 성장시킴으로써, 후술할 도 8에서와 같은 구조를 만들고, 결정 결함(32)이 표면을 뚫고 나오지 못하게 차단할 수 있게 된다. 두 층의 성장 조건을 상대적으로 비교해 보면, 서브 3족 질화물 반도체 덩어리(31f,31g)가 상대적으로 낮은 압력과 높은 온도에서 성장되면, 서브 3족 질화물 반도체 덩어리(31f,31g) 성장 후의 3족 질화물 반도체(31a,31b)의 경우에 온도에 대해 상대적으로 덜 민감한 성장을 보였다.FIG. 7 is a view showing an example of a method for growing a group III nitride semiconductor on a seed layer according to the present disclosure, wherein the group III nitride semiconductor 31a and the group III nitride semiconductor 31b are joined to a junction. Explain the example. As shown in the left side of FIG. 7, the group III nitride semiconductor 31e grown on the seed layer 20 of the m-plane substrate 10 is grown clockwise, having the c plane, the a plane, and the -c plane. Can be. Depending on the growth conditions, either side can be made wider or one side can be omitted, but the lateral development in the a-axis direction is basically suppressed relative to the lateral development in the c-axis direction. And as shown in the middle figure, crystal defects 32 (exactly stacking faults) develop in the a-axis direction. Therefore, the crystal is developed in the a-axis direction until the point 33 at which the group III nitride semiconductor 31a grown in the window 16a and the group III nitride semiconductor 31b grown in the adjacent window 16b is joined is determined. The region n in which the defects 32 are formed is developed in the c-axis direction and formed narrower than the region m in which the crystal defects 32 are not formed, so that the crystals in the entire group III nitride semiconductors 31a and 31b are formed. The defects can be reduced. For the bonding, the a surface of the group III nitride semiconductors 31a and 31b, which are developed in the a-axis direction, is gradually reduced, and the point bonding is optimally achieved. Further, the group III nitride semiconductor developed in the a-axis direction is reduced by reducing the c plane of the group III nitride semiconductor 31a developed in the c-axis direction up to the point 33 to be joined, so that the point bonding is optimally performed. It helps to join or planarize the 31- nitride semiconductor 31a and 31b which are developed in the c-axis direction. At the point 33 to be bonded, when the -c surface of the group III nitride semiconductor 31b and the c surface of the group III nitride semiconductor 31a meet, the bonding thereof is not easy or is not bonded, and growth is performed in parallel. . Preferably, the group III nitride semiconductors 31a and 31b have a growth prevention region because the lateral growth development of the group III nitride semiconductor developed in the c-axis direction is faster than the lateral growth development of the group III nitride semiconductor developed in the a-axis direction. The growth-developed sub-group III nitride semiconductor chunks 31f and 31g and / or both the a-plane and the c-plane are preliminarily formed and then grown. In the case of making an inverted trapezoidal group III nitride semiconductor from the beginning of growth, since the height of the semiconductor can be too high up to the point 33 to be joined, the sub group III nitride semiconductor previously developed on the growth prevention film 15. It is good to make a mass (31f, 31g). In addition, since it is not easy to join group III nitride semiconductors 31a and 31b in an inverted trapezoid, it is preferable to make subgroup III nitride semiconductor agglomerates 31f and 31g in advance as a preliminary form for forming such a form. As described above, according to the method for growing a group III nitride semiconductor according to the present disclosure, even when the width of the growth prevention film 15 and the window 16a is set to 17: 1, the group III nitride semiconductor layer 31 is thick. Coalescence may be performed at 7 μm or less, where subgroup III nitride semiconductor agglomerates 31f and 31g are one useful tool for achieving this. After growing the seed layer 20, the atmosphere gas is changed to hydrogen. Subsequently, the subgroup III nitride semiconductor agglomerates 31f and 31g of about 500 nm to 1300 nm are grown at a rate of NH 3 at 4000 sccm, pressure at 100 mbar, temperature at 1050 ° C., and growth rate at 0.6 nm / sec. Thereafter, the temperature was lowered to 920 ° C., the pressure was 250 mbar, and NH 3 was grown to 12,000 sccm. For example, by growing the subgroup III nitride semiconductor agglomerates 31f and 31g at 500 nm, a structure as shown in FIG. 7 is formed, and the crystal defect 32 is formed by allowing the region n to have only about 5% of the entire surface. Can be significantly reduced. Further, by growing the sub-group III nitride semiconductor agglomerates 31f and 31g by 1300 nm, a structure as shown in FIG. 8 to be described later is formed, and the crystal defects 32 can be prevented from penetrating the surface. Comparing the growth conditions of the two layers, when the subgroup III nitride semiconductor chunks 31f and 31g are grown at relatively low pressure and high temperature, the group III nitride after the subgroup III nitride semiconductor chunks 31f and 31g grow. In the case of the semiconductors 31a and 31b, growth was relatively less sensitive to temperature.
도 8은 본 개시에 따라 씨앗층 위에 3족 질화물 반도체를 성장하는 방법의 다른 예를 나타내는 도면으로서, 3족 질화물 반도체(31a)와 3족 질화물 반도체(31b)가 접합에 이르기까지의 과정의 다른 예를 설명한다. a축 방향으로 전개되는 3족 질화물 반도체(31b)의 결정 결함(32)은 3족 질화물 반도체(31a)에 의해 차단된다. 마찬가지로, 접합이 완료되는 지점(33)에 이르기까지, c축 방향으로 전개되는 3족 질화물 반도체(31a)의 c면을 감소시킴으로써, 최적으로는 점 접합이 되게 함으로써, a축 방향으로 전개되는 3족 질화물 반도체(31b)와 c축 방향으로 전개되는 3족 질화물 반도체(31a)의 접합 내지는 평탄화를 도우며, 결함(32)의 전개를 막는다.8 is a view showing another example of a method for growing a group III nitride semiconductor on a seed layer according to the present disclosure, wherein the group III nitride semiconductor 31a and the group III nitride semiconductor 31b are different from each other until the junction. Explain the example. The crystal defect 32 of the group III nitride semiconductor 31b developed in the a-axis direction is blocked by the group III nitride semiconductor 31a. Similarly, by reducing the c plane of the group III nitride semiconductor 31a developed in the c-axis direction until the point at which the bonding is completed, the point 3 is developed in the a-axis direction by optimum point bonding. The bonding or planarization of the group nitride semiconductor 31a and the group III nitride semiconductor 31a developed in the c-axis direction is assisted, and the development of the defect 32 is prevented.
도 9는 본 개시에 따른 3족 질화물 반도체 적층체의 다른 예를 나타내는 도면으로서, 도 6에 도시된 3족 질화물 반도체 적층체와 달리, 씨앗층(20)이 성장 방지막(15)과 m면 기판(10) 사이에 위치한다. 즉, 성장 방지막(15)을 형성하기에 앞서, 씨앗층(20)이 먼저 형성되어 있다. 반도체층을 먼저 형성하는 경우에, 도 4와 관련하여 지적된 문제점을 가질 수 있지만, 씨앗층(20)의 높이를 제한함으로써, 이러한 문제점을 해소하는 것이 가능하다. 이 실시예의 경우에, 씨앗층(20)은 종래의 버퍼층으로 형성하는 것도 가능하다.9 is a view illustrating another example of the group III nitride semiconductor laminate according to the present disclosure. Unlike the group III nitride semiconductor laminate illustrated in FIG. 6, the seed layer 20 includes the growth prevention layer 15 and the m surface substrate. It is located between 10. That is, the seed layer 20 is first formed before the growth barrier 15 is formed. In the case of forming the semiconductor layer first, there may be a problem pointed out in relation to FIG. 4, but by limiting the height of the seed layer 20, it is possible to solve this problem. In the case of this embodiment, the seed layer 20 may be formed of a conventional buffer layer.
도 10은 본 개시에 따른 3족 질화물 반도체 적층체의 또 다른 예를 나타내는 도면으로서, 도 6에 도시된 3족 질화물 반도체 적층체와 달리, 3족 질화물 반도체(31)의 성장에 앞서, 성장 방지막(15)이 제거된다. 따라서, 씨앗층(20)이 형성되지 않은 m면 기판(10)의 영역(15a)이 성장 방지 영역으로 기능한다. 영역(15a)에는 씨앗층(20)이 없어 3족 질화물 반도체층(31)의 성장이 일어나지 않는다. 따라서 씨앗층(20)으로부터 3족 질화물 반도체층(31)이 도 6에서와 마찬가지로 성장된다. 즉, 윈도우(16a)에서 c축 방향으로 전개되는 3족 질화물 반도체(31a)가 영역(15a) 위로 전개되어 이웃한 윈도우(16b)에서 a축 방향으로 전개되는 3족 질화물 반도체(31b)와 공동(13; Cavity)을 형성하면서 성장된다. 3족 질화물 반도체층(31)의 성장에 앞서, 성장 방지막(15)이 제거되므로, 성장 방지막(15)에 씨앗층(20)의 형성 과정에서 다결정이 형성되는 경우에라도, 문제없이 3족 질화물 반도체층(31)을 성장하는 것이 가능해진다.FIG. 10 is a view showing another example of the group III nitride semiconductor laminate according to the present disclosure, and unlike the group III nitride semiconductor laminate shown in FIG. 6, prior to the growth of the group III nitride semiconductor 31, a growth prevention film (15) is removed. Therefore, the region 15a of the m surface substrate 10 on which the seed layer 20 is not formed serves as a growth prevention region. Since there is no seed layer 20 in the region 15a, growth of the group III nitride semiconductor layer 31 does not occur. Therefore, the group III nitride semiconductor layer 31 is grown from the seed layer 20 as in FIG. That is, the group III nitride semiconductor 31a that is developed in the c-axis direction in the window 16a is developed above the region 15a, and the group III nitride semiconductor 31b that is developed in the a-axis direction in the adjacent window 16b. (13; Cavity) grows. Prior to the growth of the group III nitride semiconductor layer 31, the growth prevention film 15 is removed, so that even when polycrystals are formed in the formation process of the seed layer 20 on the growth prevention film 15, the group III nitride semiconductor is not problematic. It is possible to grow the layer 31.
도 11은 본 개시에 따른 3족 질화물 반도체 적층체의 또 다른 예를 나타내는 도면으로서, 3족 질화물 반도체 적층체는 추가의 성장 방지막(17)을 구비하며, 추가의 성장 방지막(17) 위에 공동(13)이 형성되어 있다. 씨앗층(20) 위에 3족 질화물 반도체(31c)를 성장시키다 중단하고, 다시 c축 방향으로 전개된 3족 질화물 반도체(31c)의 면(31d)이 노출되도록 추가의 성장 방지막(17)을 형성한 후, 면(31d,31d)으로부터 3족 질화물 반도체(31a)와 3족 질화물 반도체(31b)를 성장시켜 공동(13)을 형성한다. 전술 및 후술하는 바와 같이, 3족 질화물 반도체(31c)가 성장 방지막(15) 위에서 c축 방향으로 전개된 영역은 결함이 거의 없는 영역이므로(도 12 참조), 그 위에서 형성된 3족 질화물 반도체층(31)의 결정 결함을 크게 축소시킬 수 있게 된다.FIG. 11 is a view showing another example of the group III nitride semiconductor laminate according to the present disclosure, wherein the group III nitride semiconductor laminate has an additional growth prevention film 17, and has a cavity (on the additional growth prevention film 17). 13) is formed. The growth of the group III nitride semiconductor 31c is stopped on the seed layer 20, and an additional growth prevention layer 17 is formed so that the surface 31d of the group III nitride semiconductor 31c developed in the c-axis direction is exposed again. Thereafter, the group III nitride semiconductor 31a and the group III nitride semiconductor 31b are grown from the surfaces 31d and 31d to form the cavity 13. As described above and later, the region where the Group III nitride semiconductor 31c is developed in the c-axis direction on the growth prevention film 15 is a region where there are almost no defects (see FIG. 12), and therefore the Group III nitride semiconductor layer formed thereon ( The crystal defect in 31 can be greatly reduced.
도 12는 도 8의 구조로 성장된 도 6의 3족 질화물 반도체 적층체의 단면 이미지들로서, 우측은 STEM(Scanning Transmission Electronic Microscope) 이미지이며, 좌측은 TEM(Transmission Electronic Microscope) 이미지이다. STEM 이미지에서, 접합면(A)을 기준으로, 3족 질화물 반도체(31b)에서 전개된 결함이 3족 질화물 반도체(31a)에 의해 막혀 있는 것을 알 수 있는 한편, 3족 질화물 반도체(31a), 즉 c축 방향으로 전개된 3족 질화물 반도체에는 결정 결함이 거의 없음을 알 수 있다. 이러한 특성을 도 11에 도시된 3족 질화물 반도체 적층체의 성장에 이용할 수 있다. TEM 이미지를 통해, 결함의 차단을 더 잘 볼 수 있다.12 is a cross-sectional image of the group III nitride semiconductor laminate of FIG. 6 grown in the structure of FIG. 8, the right side is a Scanning Transmission Electronic Microscope (STEM) image, and the left side is a Transmission Electronic Microscope (TEM) image. In the STEM image, it can be seen that the defect developed in the group III nitride semiconductor 31b is blocked by the group III nitride semiconductor 31a based on the bonding surface A, while the group III nitride semiconductor 31a, In other words, it can be seen that the Group III nitride semiconductor developed in the c-axis direction has almost no crystal defects. This property can be used for growth of the group III nitride semiconductor laminate shown in FIG. Through the TEM image, the blocking of defects can be seen better.
도 13은 도 8의 구조로 성장된 도 6의 3족 질화물 반도체 적층체의 단면 이미지들로서, (a)는 CL(Cathod Luminescence) 이미지이며, (b)는 SEM(Scanning Electron Microscope) 이미지이고, (c)는 광학현미경 이미지이다. CL 이미지에서 우측 상방으로 기울어진 홈으로 보이는 것이 결함이며, 더 이상 전개되지 못하는 것을 볼 수 있다. SEM 이미지에 공동(Cavity)이 잘 나타나 있으며, 기판을 가로질러 형성된다. 공동 우측 상방에 결함처럼 보이는 것은 단면을 자르면서 생긴 흠집이다. 광학현미경 이미지에서 밝은 쪽이 공동이며, 표면이 깨끗해서 3족 질화물 반도체층 내부가 보인다.FIG. 13 is a cross-sectional image of the group III nitride semiconductor laminate of FIG. 6 grown in the structure of FIG. 8, (a) is a cathode luminescence (CL) image, (b) is a scanning electron microscope (SEM) image, and c) is an optical microscope image. In the CL image, what appears to be a groove tilted upwards is a defect, and you can see that it no longer develops. The cavity is well shown in the SEM image and is formed across the substrate. What appears to be a defect in the upper right corner of the cavity is scratching while cutting the cross section. In the light microscope image, the bright side is the cavity, and the surface is clean so that the inside of the group III nitride semiconductor layer can be seen.
도 16 및 도 17은 본 개시에 따라 3족 질화물 반도체를 성장시키는 방법의 일 예를 설명하는 도면으로서, 3족 질화물 반도체(311)를 기준으로 할 때, 3족 질화물 반도체(312)는 a면 방향 및 c면 방향의 성장 속도를 비슷하게 하고, 이들의 성장 속도를 (11-22)면 방향의 성장 속도보다 상대적으로 빠르게 함으로써 성장이 가능하다. 3족 질화물 반도체(313)는 (11-22)면 방향 > c면 방향 > a면 방향의 순으로 성장 속도를 조절함으로써 성장이 가능하다. 3족 질화물 반도체(314)는 (11-22)면 방향 > a면 방향 > c면 방향의 순으로 성장 속도를 조절함으로써 성장이 가능하다. 3족 질화물 반도체(315)는 c면 방향 > (11-22)면 방향 > a면 방향의 순으로 성장 속도를 조절하되, c면 방향의 성장 속도를 (11-22)면 방향의 성장 속도보다 약간 빠르게 조절함으로써 성장이 가능하다. 3족 질화물 반도체(316)는 c면 방향 > a면 방향 > (11-22)면 방향 순으로 조절하되, c면 방향의 성장 속도를 a면 방향의 성장 속도보다 약간 빠르게 조절함으로써 성장이 가능하다. 도 17은 평탄화가 용이한, 즉 (11-22)면을 가지는 3족 질화물 반도체(312), 3족 질화물 반도체(315), 3족 질화물 반도체(316)의 합체 과정을 나타내며, 3족 질화물 반도체(315)의 경우에는, 합체 후에도 c면이 남게 되며, 따라서, 3족 질화물 반도체(312)와 3족 질화물 반도체(316)가 낮은 높이에서 평탄화가 가능함을 알 수 있다. 또한 3족 질화물 반도체(312)을 형성한 다음, 3족 질화물 반도체(315)를 성장하는 방법에 의해, 즉, 도 7에 도시된 영역(n)을 영역(m)보다 좁게 형성한 다음, 영역(n)을 차단하는 것도 가능하다.16 and 17 illustrate an example of a method for growing a group III nitride semiconductor according to the present disclosure. When the group III nitride semiconductor 311 is referenced, the group III nitride semiconductor 312 has a plane a. The growth is possible by making the growth rates in the direction and c plane direction similar, and making these growth rates relatively faster than the growth rates in the (11-22) plane direction. The group III nitride semiconductor 313 can be grown by adjusting the growth rate in the order of (11-22) plane direction> c plane direction> a plane direction. The group III nitride semiconductor 314 can be grown by controlling the growth rate in the order of (11-22) plane direction> a plane direction> c plane direction. The group III nitride semiconductor 315 adjusts the growth rate in the order of c plane direction> (11-22) plane direction> a plane direction, but increases the growth rate in the c plane direction than the growth rate in the (11-22) plane direction. By controlling a little bit faster, growth is possible. The group III nitride semiconductor 316 is controlled in the order of c plane direction> a plane direction> (11-22) plane direction, but growth is possible by controlling the growth rate in the c plane direction slightly faster than the growth rate in the a plane direction. . FIG. 17 shows a process of incorporating a group III nitride semiconductor 312, a group III nitride semiconductor 315, and a group III nitride semiconductor 316 having a (11-22) plane which is easy to planarize. In the case of 315, the c surface remains after the coalescence, and therefore, it can be seen that the group III nitride semiconductor 312 and the group III nitride semiconductor 316 can be planarized at a low height. Further, by forming the group III nitride semiconductor 312 and then growing the group III nitride semiconductor 315, that is, forming the region n shown in FIG. 7 to be narrower than the region m, and then It is also possible to block (n).
도 20은 본 개시에 따른 3족 질화물 반도체 적층체의 또 다른 예를 나타내는 도면으로서, 3족 질화물 반도체 적층체는 3족 질화물 반도체층(31) 위에, n형 3족 질화물 반도체층(30: n형 GaN, Si-doped GaN), 활성층(40; InGaN/GaN 다중양자우물 구조), p형 3족 질화물 반도체층(50; p형 GaN, Mg-doped GaN)이 구비되어 있다. 이러한 3족 질화물 반도체 적층체는 칩 공정을 거쳐 발광소자(LED, LED) 또는 수광소자(Photo Diode) 등으로 제조될 수 있다. 3족 질화물 반도체층(31)에는 필요에 따라 도핑을 할 수 있다. n형 3족 질화물 반도체층(30) 및 p형 3족 질화물 반도체층(50)이 여러 층으로 구성될 수 있음은 물론이며, AlGaN, GaN, InGaN 등의 물질이 사용될 수 있다.20 is a view showing still another example of the group III nitride semiconductor laminate according to the present disclosure, in which the group III nitride semiconductor laminate is placed on the group III nitride semiconductor layer 31 and has an n-type group III nitride semiconductor layer 30: n. Type GaN, Si-doped GaN), an active layer 40 (InGaN / GaN multi-quantum well structure), and a p-type group III nitride semiconductor layer 50 (p-type GaN, Mg-doped GaN). The group III nitride semiconductor laminate may be manufactured as a light emitting device (LED, LED) or a light emitting device (Photo Diode) through a chip process. The group III nitride semiconductor layer 31 can be doped as needed. The n-type III-nitride semiconductor layer 30 and the p-type III-nitride semiconductor layer 50 may be formed of various layers, and materials such as AlGaN, GaN, InGaN, and the like may be used.
도 21은 본 개시에 따른 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 식각되어 노출된 n형 3족 질화물 반도체층(30) 위에 n측 전극(80)이 형성되어 있으며, p형 3족 질화물 반도체층(50) 위에 p측 전극(90)이 형성되어 있다. n측 전극(80)과 p측 전극(90)은 본딩 패드로서 기능한다. 추가적으로, n측 전극(80)과 p측 전극(90)으로부터 뻗어 있는 가지 전극이 더 구비될 수 있다. 바람직하게는 p형 3족 질화물 반도체층(50)과 p측 전극(90) 사이에 전류 확산을 위한 전류 확산 전극(70; 예: ITO)이 구비된다. 한편, 전류 확산 전극(70)을 불투명의 금속으로 형성함으로써, 활성층(40)에서 생성된 빛이 기판(10) 측으로 방출되는 소위 플립 칩을 구성하는 것도 가능하다. 일반적이지 않지만, n형 3족 질화물 반도체층(30)과 p형 3족 질화물 반도체층(50)은 그 위치가 바뀔 수 있다.FIG. 21 is a diagram illustrating an example of a Group III nitride semiconductor light emitting device according to the present disclosure. An n-side electrode 80 is formed on an n-type Group III nitride semiconductor layer 30 that is etched and exposed. The p-side electrode 90 is formed on the group nitride semiconductor layer 50. The n-side electrode 80 and the p-side electrode 90 function as a bonding pad. In addition, branch electrodes extending from the n-side electrode 80 and the p-side electrode 90 may be further provided. Preferably, a current spreading electrode 70 (eg, ITO) is provided between the p-type group III nitride semiconductor layer 50 and the p-side electrode 90 to spread current. On the other hand, by forming the current diffusion electrode 70 with an opaque metal, it is also possible to construct a so-called flip chip in which light generated in the active layer 40 is emitted to the substrate 10 side. Although not common, positions of the n-type Group III nitride semiconductor layer 30 and the p-type Group III nitride semiconductor layer 50 may be changed.
도 22 및 도 23은 본 개시에 따른 3족 질화물 반도체 적층체의 또 다른 예를 나타내는 도면으로서, p형 3족 질화물 반도체층(50)에 거친 표면(31)이 형성되어 있다. m면 기판(10)에 형성된 p형 3족 질화물 반도체층(50)의 상면은 (11-22)면이며, 이 면은 KOH와 같은 습식 식각용 용액에 의해 쉽게 에칭되어, 거친 표면(31)을 형성한다. 도 23에 이렇게 에칭되어 형성된 거친 표면의 일 예를 나타내었다. 예를 들어, 다음과 같은 식각 조건이 사용될 수 있다. 4-M KOH 용액을 Photoenhanced Chemical(PEC) wet etching 방법으로 60℃에서 자외선을 조사하며 1분간 진행하였다. 이러한 습식 식각은 일반적으로 수직형 LED에서 n-GaN roughening 방법과 크게 다르지 않다.22 and 23 show still another example of the group III nitride semiconductor laminate according to the present disclosure, and the rough surface 31 is formed on the p-type group III nitride semiconductor layer 50. The upper surface of the p-type group III nitride semiconductor layer 50 formed on the m-plane substrate 10 is a (11-22) surface, which is easily etched by a wet etching solution such as KOH, thereby providing a rough surface 31. To form. An example of the rough surface formed by etching in FIG. 23 is illustrated. For example, the following etching conditions may be used. The 4-M KOH solution was irradiated with ultraviolet rays at 60 ° C. for 1 minute by a photoenhanced chemical (PEC) wet etching method. This wet etching is generally not much different from the n-GaN roughening method in vertical LEDs.
도 24는 본 개시에 따른 3족 질화물 반도체 소자의 또 다른 예를 나타내는 도면으로서, 도 22에 도시된 거친 표면(51)이 적용된 3족 질화물 반도체 소자가 제시되어 있다. 3족 질화물 반도체 소자는 3족 질화물 반도체 발광소자와 3족 질화물 반도체 수광소자를 포함한다. 필요에 따라, 전류 확산 전극(70)으로 투광성 물질(예: ITO, Ni/Au) 또는 불투명 금속(예: Ag, Al)이 구비된다. 3족 질화물 반도체층(31) 하부의 구조는 도 6에 한하지 않으며, 도 9 내지 도 11에 제시된 구조가 도입될 수 있음은 물론이다.FIG. 24 is a view showing still another example of the group III nitride semiconductor device according to the present disclosure, and shows a group III nitride semiconductor device to which the rough surface 51 shown in FIG. 22 is applied. The group III nitride semiconductor device includes a group III nitride semiconductor light emitting device and a group III nitride semiconductor light receiving device. As necessary, the current diffusion electrode 70 is provided with a light transmissive material (eg, ITO, Ni / Au) or an opaque metal (eg, Ag, Al). The structure under the group III nitride semiconductor layer 31 is not limited to FIG. 6, and the structure shown in FIGS. 9 to 11 may be introduced.
도 25는 본 개시에 따라 수직 구조형 3족 질화물 반도체 발광소자를 제조하는 과정의 일 예를 나타내는 도면으로서, p형 3족 질화물 반도체층(50) 측에 지지 기판(93)이 결합되어 있다. 이 결합에 웨이퍼 본딩법이 이용되는 경우에, 웨이퍼 본딩층(92)이 구비된다. 또한 지지 기판(93)은 증착을 통해 형성되는 것도 가능하다. 지지 기판(93)이 투광성 물질(예: Al2O3, GaN)로 이루어지는 경우에 웨이퍼 본딩층(92)도 투광성 물질로 형성될 수 있다. 필요에 따라, 전류 확산 전극(70)과 금속 반사막(91)이 구비될 수 있다. 이후, 기판(10)을 제거하는 공정에서, 기판(10)은 레이저 리프트-오프 또는 습식 식각에 의해 3족 질화물 반도체층(31) 측과 분리된다. 이 때, 공동(13)에 의해 이미 기판(10)과 3족 질화물 반도체층(31)은 일부만 접촉하고 있으므로, 공동(13)은 기판(10)과 3족 질화물 반도체층(31)의 분리를 용이하게 한다. 또한 공동(13)은 성장 방지막(15) 제거 및/또는 기판(10)의 분리에 있어서 용액들의 통로로 기능한다.FIG. 25 is a view illustrating an example of a process of manufacturing a vertical structured group III nitride semiconductor light emitting device according to the present disclosure, and a support substrate 93 is coupled to a p-type group III nitride semiconductor layer 50. When the wafer bonding method is used for this bonding, the wafer bonding layer 92 is provided. In addition, the support substrate 93 may be formed through deposition. When the support substrate 93 is made of a light transmissive material (eg, Al 2 O 3 , GaN), the wafer bonding layer 92 may also be formed of a light transmissive material. If necessary, the current diffusion electrode 70 and the metal reflective film 91 may be provided. Subsequently, in the process of removing the substrate 10, the substrate 10 is separated from the group III nitride semiconductor layer 31 side by laser lift-off or wet etching. At this time, since only part of the substrate 10 and the group III nitride semiconductor layer 31 are already in contact with the cavity 13, the cavity 13 prevents separation of the substrate 10 and the group III nitride semiconductor layer 31. To facilitate. The cavity 13 also serves as a passage for solutions in removing the growth barrier film 15 and / or in the separation of the substrate 10.
도 26은 도 25에 도시된 방법에 따라 제조된 3족 질화물 반도체 소자의 일 예를 나타내는 도면으로서, 도 25의 기판(10)이 제거되고 공동(13)에 의해 거친 표면, 요철 내지는 광 산란면이 형성되어 있고, 그 위에 전극(80)이 형성되어 있다. 3족 질화물 반도체 소자가 발광 다이오드인 경우에, 활성층(40)은 전자와 정공의 재결합을 이용해 빛을 생성하며, 3족 질화물 반도체 소자가 수광 소자인 경우에, 활성층(40)은 빛을 전류로 전환하는 층으로 기능한다.FIG. 26 is a view showing an example of a group III nitride semiconductor device manufactured according to the method shown in FIG. 25, wherein the substrate 10 of FIG. 25 is removed, and the rough surface, irregularities or light scattering surfaces are removed by the cavity 13. Is formed, and the electrode 80 is formed thereon. When the group III nitride semiconductor element is a light emitting diode, the active layer 40 generates light by recombination of electrons and holes. When the group III nitride semiconductor element is a light receiving element, the active layer 40 converts light into a current. Function as a layer to switch
도 27은 도 22 및 도 26에 도시된 방법에 따라 제조된 3족 질화물 반도체 소자의 일 예를 나타내는 도면으로서, 도 26에 도시된 3족 질화물 반도체 소자와 달리, p형 3족 질화물 반도체층(50)에 광 산란면으로서 거친 표면(51)이 형성되어 있다.FIG. 27 is a diagram illustrating an example of a Group III nitride semiconductor device manufactured according to the methods illustrated in FIGS. 22 and 26, and unlike the Group III nitride semiconductor device illustrated in FIG. 26, the p-type Group III nitride semiconductor layer ( The rough surface 51 is formed in 50 as a light scattering surface.
본 개시에 따른 하나의 3족 질화물 반도체 적층체에 의하면, 공동을 구비한 3족 질화물 반도체 적층체를 형성할 수 있게 된다. 3족 질화물 반도체 적층체로 발광 다이오드를 만드는 경우에, 이 공동은 광을 산란하는 산란면으로 기능할 수 있다. 이 공동을 길게 뻗은 채널 형태로 구성하여, 습식 식각을 통해 또는 레이저를 이용하여 기판을 3족 질화물 반도체와 쉽게 분리할 수 있게 된다. 특히 도 10의 형태와 같은 3족 질화물 반도체 적층체를 구성하는 경우에, 기판과 3족 질화물 반도체가 대부분 떨어져 있기 때문에 더욱 쉽게 분리가 가능하다. 도 6의 형태와 같이 3족 질화물 반도체 적층체를 구성하는 경우에도, 성장 방지막을 습식 식각으로 제거한 후에, 마찬가지로 쉽게 분리가 가능하다. 또한 기판이 분리되어 노출되는 면은 (11-22)면으로 습식 식각(wet etching)이 잘 되는 면이므로, c면 수직 구조 LED 비해 용이하게 거친 표면을 만들 수 있게 된다.According to one group III nitride semiconductor laminate according to the present disclosure, it is possible to form a group III nitride semiconductor laminate having a cavity. When a light emitting diode is made of a group III nitride semiconductor laminate, this cavity can function as a scattering surface for scattering light. By forming the cavity in the form of an elongated channel, the substrate can be easily separated from the group III nitride semiconductor through wet etching or using a laser. In particular, in the case of constituting the group III nitride semiconductor laminate as shown in FIG. 10, since the substrate and the group III nitride semiconductor are mostly separated from each other, separation can be performed more easily. Also in the case of constituting a group III nitride semiconductor laminate as in the embodiment of FIG. 6, after the growth prevention film is removed by wet etching, separation can be easily performed similarly. In addition, since the substrate is separated and exposed to the (11-22) surface, the surface is wet etched (wet etching) well, so that it is easier to make a rough surface than the c-plane vertical structure LED.
또한 본 개시에 따른 다른 3족 질화물 반도체 적층체에 의하면, m면 기판 위에 결정성이 우수한 3족 질화물 반도체를 성장할 수 있게 된다.Further, according to another group III nitride semiconductor laminate according to the present disclosure, it is possible to grow a group III nitride semiconductor having excellent crystallinity on the m-plane substrate.
본 개시에 있어서, 씨앗층의 형성, 서브 3족 질화물 반도체 덩어리의 형성, 3족 질화물 반도체의 형성, 3족 질화물 반도체의 합체, 공동의 형성, 결정 결함을 감소시키는 방법, 낮은 높이에서 평탄화하는 방법, p형 3족 질화물 반도체층에 거친 표면 형성은 개별적으로 본 개시의 사상을 이루는 것으로 이해되어야 한다. 즉, 누군가 본 개시에 따른 씨앗층을 형성하는 방법을 다른 방법으로 씨앗층을 구현하는 경우에, 본 개시에 따른 다른 기술 사상들은 개별적으로 및/또는 조합된 형태로 이 다른 씨앗층에 결합될 수 있다는 것은 당업자는 이해할 수 있을 것이다. 이러한 관점에 본 개시는 다음과 같은 것에 관한 것이다.In the present disclosure, the formation of a seed layer, the formation of sub-group III nitride semiconductor mass, the formation of a group III nitride semiconductor, the incorporation of a group III nitride semiconductor, the formation of a cavity, a method of reducing crystal defects, a method of planarization at a low height It should be understood that the formation of the rough surface on the p-type group III nitride semiconductor layer individually constitutes the spirit of the present disclosure. That is, when someone implements the seed layer in a different way than the method of forming the seed layer according to the present disclosure, other technical ideas according to the present disclosure may be combined with this other seed layer individually and / or in combination. It will be understood by those skilled in the art. In this regard, the present disclosure relates to the following.
(1) 성장 방지막이 형성된 m면 기판 위에, 씨앗층을 형성하는 방법 및 이를 구비하는 3족 질화물 반도체 적층체(1) A method of forming a seed layer on an m-plane substrate having a growth prevention film formed thereon, and a group III nitride semiconductor laminate comprising the same.
(2) 성장 방지막이 형성된 m면 기판에 3족 질화물 반도체층을 합체 또는 평탄화시키는 방법 및 이를 이용하는 3족 질화물 반도체 적층체(2) A method of incorporating or planarizing a group III nitride semiconductor layer on an m surface substrate having a growth prevention film formed thereon, and a group III nitride semiconductor laminate using the same.
(3) 성장 방지막이 형성된 m면 기판 위에, 결정 결함이 감소된 3족 질화물 반도체를 성장하는 방법 및 이를 이용하는 3족 질화물 반도체 적층체(3) A method of growing a group III nitride semiconductor having reduced crystal defects on an m surface substrate having a growth prevention film formed thereon, and a group III nitride semiconductor laminate using the same.
(4) 성장 방지막이 형성된 m면 기판 위에, 공동이 구비된 3족 질화물 반도체를 성장하는 방법 및 이를 이용하는 3족 질화물 반도체 적층체, 특히, 평탄화에 이르까지, 공동을 형성하기까지 지나친 두께를 가지는 않은 형태 및/또는 공동을 구비하면서도 결정 결함이 감소된 형태.(4) A method of growing a group III nitride semiconductor with a cavity on an m-plane substrate on which a growth prevention film is formed, and a group III nitride semiconductor laminate using the same, in particular, having an excessive thickness until forming a cavity, until planarization Unshaven and / or cavities with reduced crystal defects.
(5) p형 3족 질화물 반도체층에 광 산란면을 형성한 3족 질화물 반도체 소자.(5) A group III nitride semiconductor element in which a light scattering surface is formed on a p-type group III nitride semiconductor layer.
(6) 상기 방법 및 적층체의 조합(6) Combination of the above method and laminate
(6) 상기 방법, 상기 적층체, 이들의 조합을 이용한 소자. 특히, pn접합을 이용하는 반도체 소자(예: 수직 구조 LED, 도 1 내지 도 4와 관련한 언급된 종래기술에 기술된 반도체 소자)(6) An element using the method, the laminate, or a combination thereof. In particular, semiconductor devices using pn junctions (e.g. vertical structure LEDs, semiconductor devices described in the prior art mentioned in connection with FIGS. 1 to 4).
(7) 상부에 p형 3족 질화물 반도체층을 구비하며, p형 3족 질화물 반도체층의 상면은 (11-22)면이고, 이 (11-22)면이 습식 식각되어 형성된 광 산란면을 구비하며, 하부에 성장시 형성되는 공동(Cavtity)에 의한 요철을 구비하고, 요철과 p형 3족 질화물 반도체층 사이에 n형 질화물 반도체층을 구비하는 복수의 3족 질화물 반도체층; 그리고, p형 질화물 반도체층에 전기적으로 연결되는 제1 전극; 그리고, n형 질화물 반도체층에 전기적으로 연결되는 제2 전극;을 포함하는 것을 특징으로 하는 3족 질화물 반도체 소자. 여기서, 활성층과 같은 층은 p형 3족 질화물 반도체층과 n형 3족 질화물 반도체층의 접합에 의해 형성될 수 있으므로, 반드시 별도로 구비되어야 하는 것은 아니다. 여기서, 광 산란면은 도 22의 거친 표면(51)의 기능적인 측면에서의 표현이다.(7) A p-type III-nitride semiconductor layer is provided on the upper surface, and the upper surface of the p-type III-nitride semiconductor layer is a (11-22) plane, and the (11-22) plane is a light scattering surface formed by wet etching. A plurality of group III nitride semiconductor layers having irregularities due to cavities formed at the bottom thereof and having an n-type nitride semiconductor layer between the irregularities and the p-type group III nitride semiconductor layer; And a first electrode electrically connected to the p-type nitride semiconductor layer; And a second electrode electrically connected to the n-type nitride semiconductor layer. Here, the layer such as the active layer may be formed by the bonding of the p-type group III nitride semiconductor layer and the n-type group III nitride semiconductor layer, and is not necessarily provided separately. Here, the light scattering surface is a representation in the functional aspect of the rough surface 51 of FIG.

Claims (10)

  1. 상부에 p형 3족 질화물 반도체층을 구비하며, p형 3족 질화물 반도체층의 상면은 (11-22)면이고, 이 (11-22)면이 습식 식각되어 형성된 광 산란면을 구비하며, 하부에 성장시 형성되는 공동(Cavtity)에 의한 요철을 구비하고, 요철과 p형 3족 질화물 반도체층 사이에 n형 질화물 반도체층을 구비하는 복수의 3족 질화물 반도체층; 그리고,The upper portion of the p-type group III nitride semiconductor layer is provided on the top, the upper surface of the p-type group III nitride semiconductor layer is a (11-22) surface, the (11-22) surface is provided with a light scattering surface formed by wet etching, A plurality of group III nitride semiconductor layers having concavities and convexities due to cavities formed in the lower part and having an n-type nitride semiconductor layer between the concavities and convexities and the p-type group III nitride semiconductor layer; And,
    p형 질화물 반도체층에 전기적으로 연결되는 제1 전극; 그리고,a first electrode electrically connected to the p-type nitride semiconductor layer; And,
    n형 질화물 반도체층에 전기적으로 연결되는 제2 전극;을 포함하는 것을 특징으로 하는 3족 질화물 반도체 소자.A group III nitride semiconductor device comprising a; second electrode electrically connected to the n-type nitride semiconductor layer.
  2. 청구항 1에 있어서,The method according to claim 1,
    요철 측에 위치하는 m면 기판;을 포함하는 것을 특징으로 하는 3족 질화물 반도체 소자.Group III nitride semiconductor device comprising a; m surface substrate located on the uneven side.
  3. 청구항 2에 있어서,The method according to claim 2,
    제2 전극은 n형 3족 질화물 반도체층이 식각되어 노출된 영역에 형성되는 것을 특징으로 하는 3족 질화물 반도체 소자.The second electrode is a group III nitride semiconductor device, characterized in that formed in the region exposed by etching the n-type Group III nitride semiconductor layer.
  4. 청구항 1에 있어서,The method according to claim 1,
    광 산란면 측에 위치하는 지지 기판;을 포함하는 것을 특징으로 하는 3족 질화물 반도체 소자.A group III nitride semiconductor device comprising a; support substrate located on the light scattering surface side.
  5. 청구항 4에 있어서,The method according to claim 4,
    제2 전극은 요철에 형성되는 것을 특징으로 하는 3족 질화물 반도체 소자.The group 3 nitride semiconductor device, characterized in that the second electrode is formed in the unevenness.
  6. 청구항 1에 있어서,The method according to claim 1,
    p형 3족 질화물 반도체층과 n형 3족 질화물 반도체층 사이에 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층;을 포함하는 것을 특징으로 하는 3족 질화물 반도체 소자.and a p-type III-nitride semiconductor layer and an n-type III-nitride semiconductor layer, an active layer for generating light by recombination of electrons and holes.
  7. 청구항 1에 있어서,The method according to claim 1,
    p형 3족 질화물 반도체층은 p형 GaN인 것을 특징으로 하는 3족 질화물 반도체 소자.The p-type III-nitride semiconductor layer is a p-type GaN group III semiconductor device.
  8. 청구항 2에 있어서,The method according to claim 2,
    m면 기판은 사파이어 기판인 것을 특징으로 하는 3족 질화물 반도체 소자.The m-plane substrate is a sapphire substrate, group III nitride semiconductor element.
  9. 청구항 1에 있어서,The method according to claim 1,
    요철 측에 위치하는 m면 기판;을 포함하며,It includes; m surface substrate located on the uneven side,
    제2 전극은 n형 3족 질화물 반도체층이 식각되어 노출된 영역에 형성되고,The second electrode is formed in the region where the n-type group III nitride semiconductor layer is etched and exposed,
    p형 3족 질화물 반도체층과 n형 3족 질화물 반도체층 사이에 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층;을 포함하며,and an active layer that generates light by recombination of electrons and holes between the p-type III-nitride semiconductor layer and the n-type III-nitride semiconductor layer.
    p형 3족 질화물 반도체층은 p형 GaN인 이고,The p-type group III nitride semiconductor layer is p-type GaN,
    m면 기판은 사파이어 기판인 것을 특징으로 하는 3족 질화물 반도체 소자.The m-plane substrate is a sapphire substrate, group III nitride semiconductor element.
  10. 청구항 1에 있어서,The method according to claim 1,
    광 산란면 측에 위치하는 지지 기판;을 포함하고,It includes; a support substrate located on the light scattering surface side,
    제2 전극은 요철에 형성되며,The second electrode is formed in the unevenness,
    p형 3족 질화물 반도체층과 n형 3족 질화물 반도체층 사이에 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층;을 포함하며,and an active layer that generates light by recombination of electrons and holes between the p-type III-nitride semiconductor layer and the n-type III-nitride semiconductor layer.
    p형 3족 질화물 반도체층은 p형 GaN인 것을 특징으로 하는 3족 질화물 반도체 소자.The p-type III-nitride semiconductor layer is a p-type GaN group III semiconductor device.
PCT/KR2014/003121 2013-04-10 2014-04-10 Group iii nitride semiconductor element WO2014168435A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130039359A KR101389462B1 (en) 2013-04-10 2013-04-10 Iii-nitride semiconductor device
KR10-2013-0039359 2013-04-10

Publications (1)

Publication Number Publication Date
WO2014168435A1 true WO2014168435A1 (en) 2014-10-16

Family

ID=50658768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003121 WO2014168435A1 (en) 2013-04-10 2014-04-10 Group iii nitride semiconductor element

Country Status (2)

Country Link
KR (1) KR101389462B1 (en)
WO (1) WO2014168435A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060049672A (en) * 2004-06-24 2006-05-19 에피스타 코포레이션 Light-emitting device
US20120104412A1 (en) * 2007-11-30 2012-05-03 The Regents Of The University Of California High light extraction efficiency nitride based light emitting diode by surface roughening
KR20120095080A (en) * 2011-02-18 2012-08-28 한국광기술원 Non-polar or semi-polar group iii-nitride based light emitting diode and fabrication method thereof
JP2012164701A (en) * 2011-02-03 2012-08-30 Sharp Corp Photoelectric conversion element, and method of manufacturing photoelectric conversion element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101233328B1 (en) * 2011-04-13 2013-02-14 한국광기술원 Non-polar or Semi-polar Group III-Nitride Based Virtical-Type Light Emitting Diode and Fabrication Method Thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060049672A (en) * 2004-06-24 2006-05-19 에피스타 코포레이션 Light-emitting device
US20120104412A1 (en) * 2007-11-30 2012-05-03 The Regents Of The University Of California High light extraction efficiency nitride based light emitting diode by surface roughening
JP2012164701A (en) * 2011-02-03 2012-08-30 Sharp Corp Photoelectric conversion element, and method of manufacturing photoelectric conversion element
KR20120095080A (en) * 2011-02-18 2012-08-28 한국광기술원 Non-polar or semi-polar group iii-nitride based light emitting diode and fabrication method thereof

Also Published As

Publication number Publication date
KR101389462B1 (en) 2014-04-28

Similar Documents

Publication Publication Date Title
KR100580307B1 (en) Semiconductor laser and semiconductor apparatus
US7943494B2 (en) Method for blocking dislocation propagation of semiconductor
US7763907B2 (en) Semiconductor light emitting element
WO2011046292A2 (en) High-quality nonpolar or semipolar semiconductor device on porous nitride semiconductor and fabrication method thereof
US8247249B2 (en) Semi-polar nitride-based light emitting structure and method of forming same
JP2000040858A (en) Optical semiconductor device, manufacture thereof and semiconductor wafer
KR101246832B1 (en) Non-polar or Semi-polar Group III-Nitride Based Light Emitting Diode and Fabrication Method Thereof
US9660135B2 (en) Enhanced performance active pixel array and epitaxial growth method for achieving the same
JP2000331937A (en) Semiconductor base material and manufacture thereof
JP4106516B2 (en) Method for growing nitride semiconductor substrate
WO2017155215A1 (en) Near-ultraviolet light-emitting semiconductor light-emitting element and group iii nitride semiconductor template used therefor
JP2001345282A (en) Method of manufacturing nitride-based iii group compound semiconductor and nitride-based iii group compound semiconductor element
WO2014168435A1 (en) Group iii nitride semiconductor element
KR20140131891A (en) Iii-nitride semiconductor stacked structure
JP2004158500A (en) Nitride semiconductor, nitride semiconductor substrate, nitride semiconductor device, and method of manufacturing them
WO2014168436A1 (en) Group iii nitride semiconductor stacked body
KR101189165B1 (en) Light emitting device and method of making semiconductor layer therefor
JP3471687B2 (en) Semiconductor substrate and manufacturing method thereof
WO2014084667A1 (en) Group iii nitride semiconductor laminate
WO2023027086A1 (en) Method and device for producing semiconductor device
US10707375B2 (en) Light emitting device
KR101504731B1 (en) Iii-nitride semiconductor stacked structure
KR101660735B1 (en) method for growing nitride semiconductor film
JP2003243776A (en) Method for peeling supporting substrate
WO2014168437A1 (en) Group iii nitride semiconductor stacked body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/01/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14783057

Country of ref document: EP

Kind code of ref document: A1