WO2014168250A1 - 自由航走模型船試験方法及び自由航走模型船試験装置 - Google Patents

自由航走模型船試験方法及び自由航走模型船試験装置 Download PDF

Info

Publication number
WO2014168250A1
WO2014168250A1 PCT/JP2014/060555 JP2014060555W WO2014168250A1 WO 2014168250 A1 WO2014168250 A1 WO 2014168250A1 JP 2014060555 W JP2014060555 W JP 2014060555W WO 2014168250 A1 WO2014168250 A1 WO 2014168250A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
speed
model ship
propeller
auxiliary thrust
Prior art date
Application number
PCT/JP2014/060555
Other languages
English (en)
French (fr)
Inventor
道雄 上野
吉昭 塚田
克治 谷澤
泰士 北川
鈴木 良介
Original Assignee
独立行政法人海上技術安全研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人海上技術安全研究所 filed Critical 独立行政法人海上技術安全研究所
Priority to JP2015511321A priority Critical patent/JP6351045B2/ja
Publication of WO2014168250A1 publication Critical patent/WO2014168250A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • B63B71/10Designing vessels; Predicting their performance using computer simulation, e.g. finite element method [FEM] or computational fluid dynamics [CFD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the free-running model test is generally conducted not only for examining propulsion performance but also for the purpose of examining performance other than propulsion performance, such as a steering performance test.
  • the propeller rotation speed in the model test is set to either the model self-propelling point or the actual ship self-propelling point in both the restraint test including the towing test and the free running test. That is, the presence or absence of friction correction was exclusively the object of interest. Actually, even in a steering performance test using an auxiliary thrust device using nitrogen gas injection, an auxiliary thrust corresponding to friction correction in a steady straight traveling state is generated (Non-Patent Document 1).
  • auxiliary thrust using the rudder effective inflow speed that has the most dominant influence on the rudder direct pressure.
  • the flow that flows into the rudder is mainly determined by the ship speed and the propeller rotational speed, and the rudder effective inflow speed and rudder direct pressure are affected.
  • the calculation of the auxiliary thrust it is preferable to calculate on the basis of the dimensionless value u R 'in the front-rear direction component u R of the steering effective inflow velocity.
  • the dimensionless value u R ′ of the front-rear direction component u R is determined based on the propeller advance rate J.
  • u R longitudinal component of rudder effective inflow velocity
  • u longitudinal component of ship speed
  • 1-w wake coefficient
  • ratio of wake coefficient of rudder position to wake coefficient of propeller position
  • propeller It is preferable to obtain the ratio based on the ratio of the diameter and the rudder height
  • coefficient relating to the speed increasing rate of the propeller wake
  • K T thrust coefficient
  • J propeller advance rate.
  • the dimensionless value u R ′ of the longitudinal component u R is determined based on the propeller load degree ⁇ .
  • u R longitudinal component of rudder effective inflow velocity
  • u longitudinal component of ship speed
  • 1-w wake coefficient
  • ratio of wake coefficient of rudder position to wake coefficient of propeller position
  • propeller It is preferable to obtain the ratio based on the ratio of the diameter and the rudder height
  • coefficient relating to the speed increase rate of the propeller wake
  • KT thrust coefficient
  • propeller load degree.
  • auxiliary thrust coefficient f TA for friction modifying amount of the auxiliary thrust from dimensionless value u R 'of the front-rear direction component u R of both the actual ship and the model ship.
  • auxiliary thrust coefficient fTA is corrected by the speed of the model ship.
  • the speed of the model ship that changes under an external force is detected, the propeller rotation speed and the auxiliary thrust of the propeller of the model ship are controlled based on the speed of the actual ship, and the model under the external force is controlled. It is preferable that the steering effect considering the ship speed response is similar to that of the actual ship.
  • the propeller rotation speed of the model ship and the auxiliary are based on the two formulas. It is preferable that the thrust coefficient fTA is derived and the propeller rotation speed and auxiliary thrust of the model ship are controlled.
  • a free-running model ship test apparatus includes an auxiliary thrust adding means for adding an auxiliary thrust to a free-running model ship having a rudder, and a ship for detecting the speed of the model ship.
  • Speed detection means auxiliary thrust calculation means for calculating the auxiliary thrust based on the ship speed and the rudder effective inflow speed of the flow flowing into the rudder, and auxiliary thrust addition means according to the calculation result of the auxiliary thrust calculation means
  • auxiliary thrust based on the rudder effective inflow speed is added to the model ship.
  • the auxiliary thrust calculating means calculates the auxiliary thrust based on a dimensionless value u R ′ of the longitudinal component u R of the rudder effective inflow velocity.
  • auxiliary thrust coefficient f TA for friction modifying amount of the auxiliary thrust from dimensionless value u R 'of the front-rear direction component u R of both the model ship and the actual ship.
  • the auxiliary thrust is calculated by multiplying the auxiliary thrust coefficient fTA by the previously obtained frictional resistance correction amount.
  • a longitudinal speed component detecting means for ship speed is provided, and the auxiliary thrust is calculated based on the detected longitudinal speed component u of the ship speed.
  • control means execute the free-running model ship test method.
  • auxiliary thrust addition means is mounted on the model ship, tracking means for tracking the model ship is provided, the ship speed detection means is mounted on the tracking means, and the ship detected by the ship speed detection means It is preferable to control the auxiliary thrust adding means by feeding back the speed.
  • the auxiliary thrust adding means is provided in tracking means for tracking the model ship, and as the tracking means, a main carriage moving in the X-axis direction in an XYZ three-dimensional orthogonal coordinate system, and installed on the main carriage
  • a towing vehicle having a sub-car that moves in the Y-axis direction and a rotating disk that rotates around the Z-axis provided on the sub-car is used, and the main car and the sub-car depending on the position and orientation of the model ship It is preferable to control the carriage and the rotating disk.
  • a free-running model ship test method is a free-running model ship test method using a free-running model ship having a propeller and a rudder, wherein an auxiliary thrust is added to the model ship. Means is controlled according to the calculation result of the auxiliary thrust calculated based on the speed of the model ship so as to ensure the similarity of the steering effect, and the auxiliary thrust for ensuring the similarity of the steering effect to the model ship is controlled.
  • the auxiliary thrust is calculated using the rudder effective inflow speed that has the most dominant influence on the rudder straight pressure, thereby bringing the rudder effect on the model ship closer to the actual ship. be able to.
  • the auxiliary thrust is further calculated by the rudder effective By calculating based on the dimensionless value u R ′ of the longitudinal component u R of the inflow velocity, it becomes possible to bring the rudder effect on the model ship closer to the actual ship.
  • u R ′ of the longitudinal component u R of both the model ship and the actual ship is equal.
  • u Rs ' Longitudinal component of rudder effective inflow velocity of actual ship (dimensionless value u R ': Function of propeller rotation speed and ship speed)
  • u Rm ' Longitudinal component of rudder effective inflow velocity of model ship (none By calculating the auxiliary thrust based on the dimension value u R ': a function of the propeller rotational speed and the ship speed, it is possible to obtain a test result that also takes into account the effect on the model ship under external force.
  • the dimensionless value u R ′ of the front-rear direction component u R is determined based on the propeller advance rate J.
  • u R longitudinal component of rudder effective inflow velocity
  • u longitudinal component of ship speed
  • 1-w wake coefficient
  • ratio of wake coefficient of rudder position to wake coefficient of propeller position
  • propeller The ratio between the diameter and rudder height
  • Coefficient related to the speed increase rate of the propeller wake
  • KT Thrust coefficient
  • J The similarity between the model ship and the actual ship is taken into account This makes it possible to conduct a free-running model ship test that properly considers the influence of the rudder on the model ship.
  • the dimensionless value u R ′ of the longitudinal component u R is determined based on the propeller load degree ⁇ .
  • u R longitudinal component of rudder effective inflow velocity
  • u longitudinal component of ship speed
  • 1-w wake coefficient
  • ratio of wake coefficient of rudder position to wake coefficient of propeller position
  • propeller The ratio between the diameter and rudder height
  • Coefficient related to the acceleration rate of the wake of the propeller
  • KT Thrust coefficient
  • Based on the degree of propeller load, considering the similarity between the model ship and the actual ship This makes it possible to conduct a free-running model ship test that properly considers the influence of the rudder on the model ship.
  • the dimensionless value u R ′ of the longitudinal component u R is calculated based on the propeller slip ratio s.
  • u R Longitudinal component of rudder effective inflow velocity
  • Ratio of wake coefficient of rudder position to wake coefficient of propeller position
  • Ratio of propeller diameter and rudder height
  • Speed increase rate of propeller wake Coefficient
  • KT thrust coefficient
  • L ship length
  • g gravitational acceleration
  • P propeller pitch
  • D propeller diameter
  • n propeller rotation speed
  • s propeller slip ratio
  • the auxiliary thrust coefficient f TA for the frictional resistance correction amount of the auxiliary thrust from the dimensionless value u R ′ of the longitudinal component u R of both the model ship and the actual ship, the auxiliary thrust coefficient f A test result appropriately reflecting the influence of the rudder can be obtained by TA .
  • the influence of the rudder can be reflected by calculating the auxiliary thrust by multiplying the auxiliary thrust coefficient fTA by the frictional resistance correction amount.
  • auxiliary thrust coefficient fTA by correcting the auxiliary thrust coefficient fTA with the ship speed of the model ship, it becomes possible to select an appropriate auxiliary thrust coefficient fTA according to the ship speed of the model ship, and changes depending on the ship speed. Test results that properly take into account the effects of the rudder can be obtained.
  • the speed of the model ship that changes under an external force is detected, the propeller rotation speed and the auxiliary thrust of the propeller of the model ship are controlled based on the speed of the actual ship, and the model under the external force is controlled.
  • the propeller rotation speed and the auxiliary thrust of the model ship are further reduced.
  • u Rs ' Longitudinal component of rudder effective inflow speed of actual ship (Dimensionless value u R ': Function of propeller rotation speed and ship speed)
  • u Rm ' Longitudinal component of effective inflow velocity of model ship (Dimensionless value u R ': Function of propeller rotation speed and ship speed)
  • t s actual ship thrust reduction rate
  • T s ' actual ship propeller thrust (dimension value: function of propeller rotation speed and ship speed)
  • t m model ship thrust decrease rate
  • T m ' model ship Propeller thrust (dimension value: function of propeller rotation speed and ship speed)
  • f TA auxiliary thrust coefficient
  • T SFC ' force necessary for friction correction (dimension value: function of ship speed) that by which controlled based on the propeller speed and the auxiliary thrust coefficient f TA of the model ship was appropriately considering the effect of steering the freedom cruising model ship test a under the influence of external forces such as wind and waves Wataru A running test can
  • the propeller rotation speed of the model ship and the auxiliary are based on the two formulas. derives the thrust coefficient f TA, by a controlled propeller speed and auxiliary thrust of the model ship, propeller speed constant, propeller torque constant, under the influence of an external force of wind and waves, etc. in the propeller output certain conditions Even in such cases, it is possible to realize a cruise test that appropriately considers the influence of the rudder in the free-running model ship test.
  • a free-running model ship test apparatus includes an auxiliary thrust adding means for adding auxiliary thrust to a free-running model ship having a rudder, and a ship speed detecting means for detecting the ship speed of the model ship; Auxiliary thrust calculation means for calculating the auxiliary thrust based on the ship speed and the rudder effective inflow speed of the flow flowing into the rudder, and control for controlling the auxiliary thrust addition means according to the calculation result of the auxiliary thrust calculation means.
  • the auxiliary thrust calculation means calculates the auxiliary thrust based on the dimensionless value u R ′ of the longitudinal component u R of the rudder effective inflow velocity, thereby more effectively affecting the effect of the rudder on the model ship. Can be approached. For example, by determining the auxiliary thrust coefficient f TA for the frictional resistance correction amount of the auxiliary thrust from the dimensionless value u R ′ of the longitudinal component u R of both the model ship and the actual ship, or the auxiliary thrust coefficient f By calculating the auxiliary thrust by multiplying TA by the frictional resistance correction amount obtained in advance, a test result that appropriately reflects the influence of the rudder by the auxiliary thrust coefficient fTA can be obtained.
  • the effect of the rudder can be reflected by calculating the auxiliary thrust by multiplying the auxiliary thrust coefficient fTA by the friction resistance correction amount obtained in advance.
  • the rudder resistance correction amount can be reflected in the test by using the rudder effect according to the actual friction resistance by using a value obtained by experiment.
  • a test that includes a front-rear direction component detection means for the ship speed and appropriately considers the influence of the rudder that changes according to the ship speed by calculating the auxiliary thrust based on the detected front-rear direction component u of the ship speed. The result can be obtained.
  • the free-running model ship test apparatus includes an auxiliary thrust adding means for adding auxiliary thrust to a free-running model ship having a propeller and a rudder, and a ship speed detecting means for detecting a ship speed of the model ship.
  • Control means for controlling the propeller rotation speed of the propeller and the output of the auxiliary thrust addition means based on the estimated basic performance of the actual ship and the detected ship speed, and taking into account the ship speed response under the external force of the model ship By making the rudder effect similar to that of the actual ship, in particular, the control means can realize the free-running model ship test method by executing the free-running model ship test method. it can.
  • control unit by controlled and stores a relationship between the propeller speed of the previously determined the model ship and the ship speed of the auxiliary thrust coefficient f TA by the free cruising model ship test method, wind It is possible to realize a running test that appropriately considers the influence of the rudder in a free-running model ship test under the situation where the rudder force has a dominant influence even under the influence of external forces such as waves and waves it can.
  • the auxiliary thrust addition means is mounted on the model ship, tracking means for tracking the model ship is provided, the ship speed detection means is mounted on the tracking means, and the ship detected by the ship speed detection means By feeding back speed and controlling the auxiliary thrust adding means, or by mounting the auxiliary thrust adding means on the model ship and feeding back the ship speed of the model ship detected by the ship speed detecting means.
  • By controlling the auxiliary thrust addition means it is possible to perform a test while applying an appropriate auxiliary thrust to the model ship based on the motion information of the self-propelled model ship. In particular, it is possible to obtain a test result that appropriately considers the influence of the rudder that changes according to the ship speed.
  • the auxiliary thrust adding means is provided in tracking means for tracking the model ship, and as the tracking means, a main carriage moving in the X-axis direction in an XYZ three-dimensional orthogonal coordinate system, and installed on the main carriage
  • a towing vehicle having a sub-car that moves in the Y-axis direction and a rotating disk that rotates around the Z-axis provided on the sub-car is used, and the main car and the sub-car depending on the position and orientation of the model ship
  • By controlling the carriage and the rotating disk it is possible to perform a test while applying an appropriate auxiliary thrust to the model ship based on the movement information of the model ship that is self-propelled.
  • the thrust reduction coefficient has a specific value depending on the combination of the hull and the propeller.
  • Propeller thrust is determined by ship speed and propeller speed.
  • Total resistance is determined by ship speed.
  • the auxiliary thrust can be arbitrarily selected without depending on the ship speed and the propeller rotational speed. That is, if the auxiliary thrust is appropriately selected for a certain ship speed, the propeller rotational speed can be arbitrarily set. Further, it is possible to arbitrarily set the boat speed by appropriately selecting the auxiliary thrust for a certain propeller rotational speed.
  • the ship speed is generally determined in accordance with the fluid similarity law, that is, the model ship's fluid number is the same as the actual ship.
  • the Reynolds number of the model ship is significantly different from that of the actual ship, the phenomenon related to viscosity is not similar between the model ship and the actual ship.
  • the frictional resistance which has a dominant influence on viscosity, differs greatly between model ships and actual ships.
  • Formula (1) when Formula (1) is made dimensionless, the following formula is obtained.
  • S represents the submerged surface area of the ship
  • D represents the propeller diameter.
  • Other variables are defined by
  • u is the front-rear direction component of boat speed
  • [rho is the density of water
  • tau represents the propeller load level
  • the C T total resistance coefficient
  • auxiliary thrust T A should be added to the model ship determined as a value corresponding to frictional resistance correction amount R SFC defined by the following equation.
  • the subscripts m and s indicate the values of the model ship and the actual ship, respectively.
  • the thrust reduction coefficient (1 + k) represents a shape influence coefficient determined by the shape of the ship. In general, it can be considered the same value for model ships and actual ships.
  • C F0 represents the frictional resistance coefficient of the corresponding flat plate determined by the Reynolds number.
  • ⁇ C F is a roughness correction coefficient and can be estimated using the length of the actual ship.
  • frictional resistance correction As described above, applying the auxiliary force expressed by the formula (6) to the model ship is referred to as frictional resistance correction or simply friction correction in the model test. Note that the propeller rotational speed when the friction correction is not performed is called a model self-propelling point, and the propeller rotational speed when the friction correction is performed is called an actual ship self-propelling point.
  • an auxiliary thrust setting method for making the steering effect similar to that of an actual ship in a free-running model test is provided using a load degree changing self-propelled test device capable of generating an arbitrary auxiliary thrust. To do.
  • U R can be expressed by the following equation using the left-right direction component v R and the front-rear direction component u R.
  • ⁇ R is expressed by the following equation.
  • v RP is a lateral flow velocity component due to the rotation of the propeller
  • ⁇ R is a rectification coefficient
  • l R ′ is the hydrodynamic front-rear position of the rudder
  • r ′ is a dimensionless turning angular velocity.
  • the left-right direction component v R is generally smaller than the front-rear direction component u R
  • the dominant ratio is the ratio u R / u between the front-rear direction component u R of the rudder effective inflow speed and the front-rear direction component u of the ship speed. It is a term of.
  • the lateral flow velocity component v RP due to the rotation of the propeller is smaller than the longitudinal component u R of the rudder effective inflow velocity, and therefore the second term is not dominant.
  • the third term of Equation (9) is 0, and if only the dominant term is left, Equation (8) and Equation (9) are as follows: I can write.
  • Equation (11) 1-w is the wake coefficient, ⁇ is the ratio of the wake coefficient at the rudder position and the wake coefficient at the propeller position, ⁇ is the speed increase rate of the propeller wake, and ⁇ is the ratio between the propeller diameter and the rudder height.
  • K T represents a thrust coefficient represented by the following equation.
  • n represents the propeller rotation speed.
  • J represents the propeller advance rate represented by the following equation.
  • the thrust coefficient KT is generally a function of the propeller advance rate J.
  • Equation (11) the propeller load degree ⁇ has a great influence on u R / u.
  • the ratio ⁇ of the wake coefficient at the rudder position and the wake coefficient at the propeller position is different from the speed increasing rate ⁇ and the wake coefficient 1-w
  • the dimensionless rudder direct pressure is not the same.
  • the wake coefficient 1-w is clearly different between the model ship and the actual ship under the influence of viscosity.
  • f TA is a variable representing how many times the auxiliary thrust is a value of the friction correction amount, and is referred to as an auxiliary thrust coefficient here.
  • the auxiliary thrust coefficient is determined for a certain ship speed, the corresponding propeller rotational speed n, propeller load degree ⁇ , u R / u, propeller advance rate J, etc. can be obtained by solving the formula (1) according to the value. .
  • the auxiliary thrust coefficient f TA at which u R / u becomes equal to the actual ship value is obtained, and the auxiliary thrust and the propeller rotational speed are set according to the equation (14), the dimensionless steering straight pressure, A free-running model test with a rudder effect equivalent to that of an actual ship can be conducted.
  • FIG. 1 shows u R / when the auxiliary thrust coefficient f TA is changed when a model ship with a scale of 1 / 75.5 (about 3 m in length) is traveling in a straight line at a ship speed corresponding to the planned ship speed. Shows how u changes.
  • the solid line indicates the value of the model ship, and the broken line indicates the estimated value of the actual ship.
  • auxiliary thrust coefficient f TA 0 without friction correction
  • u R / u shows a larger value for the model ship than the actual ship
  • the dimensionless rudder direct pressure means that the model ship is larger than the actual ship. To do. In other words, at the model self-propelled point, the rudder effect shows that the model ship is better.
  • u R / u is equal between the model ship and the actual ship when an auxiliary thrust slightly smaller than the friction correction amount is applied when the auxiliary thrust coefficient f TA is about 0.67.
  • auxiliary thrust coefficient f TA at which u R / u becomes equal between the model ship and the actual ship is rewritten as f REC .
  • FIG. 2 shows the change in fREC when the scale of the model ship is changed. As shown in FIG. 2, the case of a general ship, also vary the length of the model ship f REC is large it can be seen that unchanged.
  • FIG. 3 shows changes in fREC when the ship speed of the model ship is changed. As shown in FIG. 3, in the case of a general ship, there is a tendency that fREC slightly decreases as the ship speed increases.
  • the appropriate auxiliary thrust coefficient f TA varies depending on the ship speed, so that it depends on the ship speed. It is preferable to set an appropriate auxiliary thrust coefficient fTA .
  • control can be performed using the ship speed instead of the auxiliary thrust coefficient fTA .
  • f REC during steady straight travel is considered to be the basis for dealing with the steering effectiveness of the model ship and the actual ship. Therefore, the most basic way to carry out the free cruising model tests with f REC and propeller speed corresponding thereto in the constant straight.
  • the ratio ⁇ of the wake coefficient 1-w, the wake coefficient at the rudder position and the wake coefficient at the propeller position, the speed increasing rate ⁇ of the propeller wake, the propeller diameter and the rudder height The ratio ⁇ , the thrust coefficient K T , and the propeller advance rate J are required.
  • the wake coefficient 1-w some estimated value is generally obtained at the stage of ship design.
  • the propeller advance rate J is determined by the propeller rotational speed, ship speed, and wake coefficient 1-w during steady straight travel. These are also considered to require the planned ship speed and the propeller rotation speed at the design stage.
  • the ratio ⁇ between the propeller diameter and the rudder height is a geometrically determined value.
  • the ratio ⁇ of the wake coefficient at the rudder position and the wake coefficient at the propeller position and the speed increase rate ⁇ of the propeller wake may be used if any estimated value is obtained by a model experiment or the like. If there is no estimated value, it is assumed that it would not be a big mistake to use the values listed in the literature or similar ship data.
  • the f REC at the time of steady straight traveling can be obtained using the estimated value at the ship design stage, the geometric structure of the ship, and the estimated value at the model test, and is determined as described above. It is possible to calculate the auxiliary thrust T a by using the auxiliary thrust coefficient f TA and f REC. In free cruising model ship tests using free cruising model ship test apparatus described below, the test is conducted in consideration of the rudder with the aid thrust T A can be calculated in this way.
  • FIG. 5 is a diagram showing a free-running model ship test apparatus 100 for realizing the free-running model ship test method according to the embodiment of the present invention.
  • the free-running model ship test apparatus 100 includes an analog / pulse converter 12, a motor amplifier 14, a duct fan motor 16 and a dynamometer 18 mounted on the free-running model ship 10, and an automatic A camera 22 mounted on the tracking carriage 20, a galvanometer amplifier 24, and a control computer (control PC) 26 are included.
  • the free-running model ship 10 is a model ship imitating an actual ship to be tested.
  • the free-running model ship 10 has a main thrust system such as a propeller in addition to the auxiliary thrust system described below, and is configured to be able to freely travel on the water.
  • the automatic tracking cart 20 is configured to image the free-running model ship 10 with a camera 22 and automatically track the free-running model ship 10 under the control of the control computer 26 based on the information.
  • the automatic tracking cart 20 is attached to a rail disposed on the test pool, and is configured to track the free-running model ship 10 by traveling on the rail. Further, the speed (ship speed) of the free-running model ship 10 is measured by tracking the automatic tracking carriage 20 and input to the control computer 26.
  • the free-running model ship 10 is equipped with a duct fan motor 16 as auxiliary thrust adding means.
  • the duct fan motor 16 is controlled in output based on the auxiliary thrust command signal input to the analog / pulse converter 12, and the output is an auxiliary thrust provided separately from the main thrust system of the free-running model ship 10.
  • auxiliary thrust command signal When an auxiliary thrust command signal is input to the analog / pulse converter 12, it is converted into a pulse signal for controlling the duct fan motor 16 so as to generate a thrust according to the signal, and the pulse signal is amplified by the motor amplifier 14.
  • Input to the duct fan motor 16 causes the duct fan motor 16 to be driven.
  • a desired auxiliary thrust is given to the free-running model ship 10 by the duct fan motor 16.
  • the free-running model ship 10 is equipped with a dynamometer 18 that detects and outputs the output of the duct fan motor 16.
  • the dynamometer 18 detects the auxiliary output of the duct fan motor 16 and outputs it to the galvanometer amplifier 24.
  • the automatic tracking carriage 20 is equipped with a dynamometer amplifier 24, and an actual auxiliary output detected by the dynamometer 18 is input.
  • the dynamometer amplifier 24 amplifies the actual auxiliary output and outputs it to the control PC 26.
  • the control PC 26 receives a signal corresponding to the auxiliary output from the galvanometer amplifier 24, generates an auxiliary thrust command signal so that the auxiliary output becomes a desired value, and outputs the auxiliary thrust command signal to the analog / pulse converter 12.
  • a desired auxiliary thrust can be applied to the free-running model ship 10.
  • the desired auxiliary thrust can be set according to the above-mentioned free-running model ship test method. That is, the value of the auxiliary thrust coefficient f TA is obtained so that u R / u becomes equal to the value of the actual ship, and the auxiliary thrust and the propeller rotational speed are set according to the equation (14) using the value. At this time, the value of the auxiliary thrust coefficient fTA is preferably set according to the ship speed. Further, f REC can be obtained by using, for example, the estimated value at the ship design stage, the geometric structure of the ship, and the estimated value at the model test as described above when the vehicle is in a steady straight traveling . As a result, a free-running model test in which the dimensionless rudder direct pressure, that is, the rudder effect is equivalent to that of an actual ship can be performed.
  • a ship speed detector 70 is further mounted on the free-running model ship 10.
  • the ship speed detector 70 measures the speed (ship speed) of the free-running model ship 10 and inputs it to the control computer 26.
  • the ship speed detector 70 may obtain the ship speed from speed measuring means such as a Pitot tube, or may change the position of the free-running model ship 10 obtained from position measuring means such as GPS over time. You may seek speed. Further, the speed of the watercraft may be obtained using an electromagnetic LOG sensor, a Doppler LOG sensor, or the like.
  • the control computer 26 sets the value of the auxiliary thrust coefficient f TA so that u R / u becomes equal to the actual ship value according to the free-running model ship test method described above.
  • the auxiliary thrust and the propeller rotation speed are set according to the equation (14) using the obtained values.
  • the value of the auxiliary thrust coefficient fTA is preferably set according to the ship speed.
  • f REC can be obtained by using, for example, the estimated value at the ship design stage, the geometric structure of the ship, and the estimated value at the model test as described above when the vehicle is in a steady straight traveling .
  • a ship speed information receiver 72 is mounted on the free-running model ship 10 instead of the ship speed detector 70.
  • the ship speed information receiver 72 receives ship speed information of the free-running model ship 10 from a ship speed detector 74 provided on land, and inputs the information to the control computer 26.
  • the ship speed detector 74 may obtain the ship speed of the free-running model ship 10 by, for example, an optical method or a wireless method. Further, the ship speed may be obtained from a temporal change in the position of the free-running model ship 10 obtained from a position measuring means such as GPS.
  • u R / u is made equal to the actual ship value according to the above-mentioned free-running model ship test method. What is necessary is just to obtain
  • the free-running model ship 10 may be equipped with a power source such as a battery, and the power necessary for the test may be supplied from the power source. As a result, the test can be performed on the free-running model ship 10 alone without supplying external power from the automatic tracking cart 20 or the like.
  • FIG. 8 is a main part plan view showing the structure of the test water tank and the towing vehicle used in the load degree changing self-running test apparatus 200.
  • the towing vehicle (tracking means) A includes a main carriage 32, a sub-car 34 on the main car 32, and a turntable 36 on the sub-car 34.
  • the aquarium H is for allowing the free-running model ship 30 to self-run, and an XYZ three-dimensional orthogonal coordinate system is set.
  • X, Y, Z, and ⁇ are used.
  • the X direction of the XYZ three-dimensional orthogonal coordinate system refers to a rectangular longitudinal direction formed by the outline of the water surface when water enters the water tank H.
  • a direction orthogonal to the X axis on the water surface is defined as a Y direction
  • a vertical direction orthogonal to any of the X direction and the Y direction is defined as a Z direction.
  • the towing vehicle A can move in the X direction on the rail 38 by the main carriage 32.
  • the main cart 32 is provided with a sub cart 34, and the sub cart 34 can move on the main cart 32 in the Y direction.
  • the auxiliary cart 34 includes a rotating disk 36.
  • the turntable 36 can rotate about the Z direction (Z axis) as a rotation axis.
  • a rotation direction in which the turntable 36 rotates around the Z axis with respect to the X axis is referred to as a ⁇ direction.
  • the position of the towing vehicle A and the directions X c , Y c and ⁇ c can be controlled by signals from the outside.
  • FIG. 9 is a perspective view of a main part showing the structure of the load degree change test apparatus 200, and shows an outline of the structure of the load degree change test apparatus 200 for detecting displacement and adding auxiliary thrust.
  • the load degree changing test apparatus 200 is installed on the turntable 36 of the towing vehicle A shown in FIG. And in the model fixing
  • the towing vehicle A shown in FIG. 8 restrains the free-running model ship 30 from rolling, pitching, and bowing. Disappears. That is, the gimbal part 42 allows the free-running model ship 30 to move in the pitch direction, the roll direction, and the yaw direction.
  • the load degree changing test apparatus 200 has an xyz three-dimensional orthogonal coordinate system.
  • xyz three-dimensional orthogonal coordinate system refers to a predetermined direction parallel to the water surface of the water tank H fixed on the rotating disk 36.
  • a direction parallel to the water surface and orthogonal to the x-axis is defined as the y direction, and a vertical direction orthogonal to any of the x and y directions is defined as the z direction. Since the xyz three-dimensional orthogonal coordinate system is fixed on the turntable 36, the x direction and the y direction change as the turntable 36 rotates. However, since the reference position in the rotation direction around the z axis is the x direction, the rotation direction ⁇ around the z axis does not change with the rotation of the turntable 36.
  • a support column portion 44 including a model fixing portion 40 and a gimbal portion 42 is attached to an x moving portion (auxiliary thrust adding means) 46 so as to be movable in the vertical direction.
  • the support 44 is kept vertical by a roller (auxiliary thrust adding means) 48 in the x moving part 46 and does not restrain the free-running model ship 30 from shaking up and down.
  • the x moving unit 46 includes a roller 48 below, and the roller 48 is on the x rail 50. As the roller 48 rotates and moves along the x rail 50, the x moving part 46 can move in the x direction.
  • a roller (auxiliary thrust adding means) 52 is provided below the x rail 50, and the roller 52 rides on a y rail (auxiliary thrust adding means) 54. As the roller 52 rotates and moves on the y rail 54, the x rail 50 can move in the y direction.
  • the swing in the x direction of the free-running model ship 30 is detected by an x-swing detection potentiometer (motion state detecting means) 56.
  • the y-direction shaking of the free-running model ship 30 is detected by a y-swing detection potentiometer (motion state detecting means) 58.
  • the bow shake of the free-running model ship 30 is detected by a bow shake detection potentiometer (motion state detecting means) 60.
  • the values of x swing, y swing, and bow swing detected by these potentiometers are denoted as x, y, and ⁇ .
  • An x-force servomotor (auxiliary thrust adding means) 64 is connected to the x-moving portion 46 via an x-swing wire 62, and an x-direction force can be applied to the x-moving portion 46 via these.
  • a y-force servomotor (auxiliary thrust adding means) 68 is connected to the x-rail 50 via a y-swing wire 66, and a force in the y-direction can be applied to the x-rail 50 via these.
  • the x direction of the force servo motor 64 generate a x force F x
  • the y direction of the force servo motor 68 generate a y force referred to F y.
  • the desired auxiliary thrust can be set according to the above-mentioned free-running model ship test method. This is the same as the free-running model ship test apparatus shown in FIG.
  • the total weight of the model fixing part 40, the gimbal part 42 and the column part 44 is preferably included in the amount of drainage of the free-running model ship 30.
  • detected x, y, and ⁇ are converted into signals and input to the towing vehicle A, and X c , Y c are controlled by feedback control such as PID control so that these x, y, and ⁇ become zero. , ⁇ c are controlled.
  • the towing vehicle A moves by tracking the position and direction of the free-running model ship 30 that is self-propelled.
  • the propeller rotational speed and the output of the auxiliary thrust device are controlled based on the measurement data while measuring the longitudinal component u of the ship speed that changes under external force.
  • the ship speed response of the model ship under external force is similar to that of the actual ship.
  • ships Under external force, ships generally require steering. Steering induces rudder resistance and tilt / turning resistance, so these resistance components must be similar between the model ship and the actual ship in order to make the ship speed response similar.
  • Equation 15 the condition that the response of the longitudinal component u of the ship speed is similar between the actual ship and the model ship in the maneuvering motion under disturbance is expressed by the equation of motion of Equation (15).
  • M ′ is the mass of the ship including the additional mass
  • u ′ is the longitudinal component of the ship speed
  • t is the thrust reduction rate
  • T ′ is the propeller thrust
  • T A ′ is the auxiliary thrust
  • R ′ is the resistance during straight travel
  • the component, F ′ indicates a resistance component due to rudder and tilting / turning
  • E ′ indicates a resistance component due to disturbance.
  • “′” Means a dimensionless value based on the density ⁇ of water, the representative length L of the ship, and the gravitational acceleration g. That is, non-dimensionalization is performed by ⁇ L 3 for mass, ⁇ (Lg) for velocity, ⁇ L 3 g for force, and ⁇ (L / g) for time.
  • ⁇ and L values corresponding to the actual ship and the model ship are used. For example, when the ship speed u ′ is made dimensionless, it can be expressed as Expression (16).
  • Equation (15) In order for the ship speed response to be similar between the model ship and the actual ship, the two right-hand sides of Equation (15) should behave the same according to changes in ship speed from moment to moment.
  • F ′ is the rudder direct pressure and the maneuvering motion
  • E ′ is similar to the experimental condition and the maneuvering motion
  • the similarity is secured between the actual ship and the model ship, respectively.
  • the similarity between the steering straight pressure and the steering motion induced thereby can be approximated by Equation (17).
  • u Rs ' indicates the longitudinal component (the dimensionless value u R ': a function of the propeller rotation speed and the ship speed) of the effective rudder effective inflow speed of the actual ship
  • u Rm ' is the effective rudder inflow of the model ship. It shows the longitudinal component of speed (dimensionless value u R ': function of propeller rotation speed and ship speed).
  • auxiliary thrust T A ′ is expressed by Expression (19).
  • f TA is an auxiliary thrust coefficient representing how many times the auxiliary thrust is the friction correction amount.
  • T SFC ' is a force necessary for friction correction.
  • Equation (20) Substituting Equation (19) into Equation (18) yields Equation (20).
  • ⁇ S and ⁇ m can be obtained by replacing the subscript * in Equation (23) with s and m, respectively.
  • represents the ratio of the wake coefficient at the rudder position and the propeller position
  • represents the geometric dimension ratio between the propeller diameter and the rudder height.
  • represents a coefficient relating to the propeller acceleration rate.
  • s represents a propeller slip ratio defined by Expression (24).
  • FIG. 10 is a comparison of the estimated values of the four conditions of the model ship and the actual ship regarding the handling performance in flat water. Both are simulation calculations corresponding to the state where the actual propeller rotation speed is constant.
  • FIG. 10A shows a wake (X, Y) when a left 35 degree turn is performed.
  • FIG.10 (b) shows the time change of the steering straight pressure (FN) when turning 35 degrees to the left.
  • FIG. 10C shows a comparison between the vertical distance (Advance) and the turning zone (Tactical d.) When turning 35 ° to the left.
  • FIG. 10 (d) shows a wake (X, Y) when a right 20 degree Z test is performed in plain water.
  • FIG. 10A shows a wake (X, Y) when a left 35 degree turn is performed.
  • FIG.10 (b) shows the time change of the steering straight pressure (FN) when turning 35 degrees to the left.
  • FIG. 10C shows a comparison between the vertical distance (Advance) and the turning zone (Tact
  • FIG. 10 (e) shows the change over time in the snake angle and bow direction ( ⁇ , ⁇ ) when the right 20 ° Z test is performed in plain water.
  • FIG. 10 (f) shows the change over time of the steering straight pressure (F N ) when the right 20 degree Z test is performed in plain water.
  • FIG. 10 (g) shows a comparison between the first excess angle ( ⁇ oa1 ) and the second excess angle ( ⁇ oa2 ) when the right 20 degree Z test is performed in plain water.
  • the subscript NC in the figure is the simulation calculation result of the normal free-running model test (small broken line)
  • the SFC is the simulation calculation result of performing so-called friction correction using auxiliary thrust (large broken line)
  • REC and RSC are the results of the present invention.
  • the simulation calculation result according to the method is shown.
  • REC is a simulation calculation result when only the auxiliary thrust is controlled (dotted line, first embodiment)
  • RSC is a simulation calculation result when both the auxiliary thrust and the model propeller rotation speed are controlled (solid line, second line).
  • the plot (point) in a figure shows the estimated value in an actual ship.
  • FIGS. 11 (a) to 11 (c) show the ship speed ratio (V / V 0 ), the skew angle ( ⁇ ), and the steering angle ( ⁇ ), respectively, based on plain water during steady navigation in the waves.
  • V / V 0 the ship speed ratio
  • the skew angle
  • the steering angle
  • the simulation calculation results correspond to the actual ship propeller rotational speed constant state.
  • the direction of the incident wave was 30 degrees on the starboard side, that is, the encounter angle with the incident wave was 150 degrees (the encounter angle of the wave that hits the ship from the front was 180 degrees).
  • the ratio of the wave to the captain was 1/60.
  • the horizontal axis represents the wave length ratio.
  • the subscripts and line types in the figure are the same as those in FIG.
  • the simulation calculation results for the navigation in the waves were also improved compared to the simulation calculation results of the normal free-running model test and the simulation calculation results of so-called friction correction using auxiliary thrust.
  • the accuracy was higher when both the auxiliary thrust and the model propeller rotation speed were controlled than when only the auxiliary thrust was controlled. From this result, it can be seen that when both the auxiliary thrust and the model propeller rotational speed are controlled, the maneuvering performance is similar to that of an actual ship even under the influence of external forces such as waves.
  • FIG. 12 shows control characteristics of the auxiliary thrust and the propeller rotational speed of the model ship used when both the auxiliary thrust and the model propeller rotational speed are controlled (RSC) in the above calculation example.
  • the horizontal axis represents the ratio between the ship speed (u ′) that changes from time to time and the ship speed (u 0 ′) in flat water.
  • f TA represents the ratio of the auxiliary thrust used for the control and the force required for the friction correction coefficient.
  • n m ′ represents a non-dimensional model ship propeller rotation speed.
  • Equation 15 the ship speed changes only from the steering and the steering motion induced thereby.
  • the similarity in ship speed response requires the similarity in rudder response.
  • the auxiliary thrust coefficient in the free-running model test with a constant propeller rotation speed is used.
  • the steering effectiveness correction coefficient is determined based on the state of steady straight running in plain water, and the value is made constant during the maneuvering motion. For this reason, during the maneuvering movement, the similarity between the boat speed response and the steering effect is not necessarily guaranteed.
  • the effects of the left-right component ⁇ ′ and the dimensionless turning angular velocity r ′ of the ship speed appearing in the maneuvering motion on the self-propulsion factors such as the wake coefficient are not direct, and these are the ship speed u ′ and the propeller load ⁇ Assuming that this can be taken into account through the influence on the vehicle, the handling under a complicated maneuvering movement is simplified, and the method in the present embodiment can be applied even during the maneuvering movement.
  • the propeller rotational speed n ′ and the auxiliary thrust coefficient f TA that simultaneously satisfy the rudder effect and the ship speed response are obtained in advance as a function of the ship speed by the free-running model ship test method in the present embodiment. There are, may do it by controlling the auxiliary thrust coefficient f TA and propeller speed n 'according to the ship speed in steering movement. As a result, it is possible to improve the degree of approximation of the similarity of the maneuvering motion during the maneuvering motion as compared with the conventional method.
  • the steering effect and ship speed response are similar based not only on the actual propeller rotation speed but also on the constant torque and constant horsepower, or on the state estimation of the actual ship that simulates the engine response. Can be realized.
  • FIG. 13 is a diagram showing a free-running model ship test apparatus 300 for realizing the free-running model ship test method according to the second embodiment.
  • the basic configuration of the free-running model ship test apparatus 300 is the same as that of the free-running model ship test apparatus 100, but includes a propeller 80 and a propeller drive unit 82 as control elements.
  • the propeller drive unit 82 includes a motor for driving the propeller 80 that is the main drive system of the free-running model ship 10.
  • the propeller drive unit 82 is preferably a motor that can control the rotation speed, such as a servo motor.
  • the speed (ship speed) of the free-running model ship 10 is measured by tracking the automatic tracking carriage 20 and input to the control computer 26.
  • the auxiliary thrust and the propeller rotational speed are set based on the test conditions and the speed of the free-running model ship 10, and the auxiliary thrust according to the set auxiliary thrust and the propeller rotational speed.
  • a command signal and a propeller rotation speed command signal are generated.
  • the auxiliary thrust command signal is input to the duct fan motor 16 via the analog / pulse converter 12 and the motor amplifier 14 as in the first embodiment, and the duct fan motor 16 is driven.
  • the propeller rotational speed command signal is input to the propeller driving unit 82, whereby the rotational speed of the propeller 80 is controlled.
  • the present invention can be similarly applied to configurations such as the free-running model ship test apparatuses 102 and 104 shown in FIGS.
  • the speed (ship speed) of the free-running model ship 10 can be measured by various means described in paragraphs 0092 and 0094 related to these explanations in addition to the configurations shown in FIGS.
  • the present embodiment it is possible to realize a free-running model test that takes into account the influence of external forces such as wind and waves. As a result, the basic performance of the actual ship can be estimated by a free-running model test even under external force.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

舵の力が支配的な影響をおよぼす自由航走模型船での試験において、舵効きそのものを模型船と実船とで相似にするように補助推力を設定する。模型船に補助推力を付加する補助推力付加手段を、舵効きの相似性を確保するように模型船の船速に基づいて計算した補助推力の計算結果に応じて制御し、模型船に舵効きの相似性を確保する補助推力を付加する。

Description

自由航走模型船試験方法及び自由航走模型船試験装置
 本発明は、模型船の自走試験における自由航走模型船試験方法及び自由航走模型船試験装置に関する。
 補助推力装置を用いて曳航水槽での自航試験と同等の摩擦修正を行った自由航走模型試験方法が開示されている(特許文献1)。自由航走模型船が操舵を伴う場合あるいは波や風などの外乱が作用する場合はこれらが誘起する旋回や斜航のため船速が時々刻々変化する可能性がある。このような状況下でも、時々刻々船速に応じた補助推力を発生させることで摩擦修正が可能である。
 摩擦修正は、本来、模型船のプロペラ荷重度を実船と相似にすることによってプロペラ推力に関する力学的相似則を確保し、その条件下での模型試験によって実船の有効伴流率、プロペラ効率比、有効馬力など船の推進性能を推定するために用いられる方法の一つである。
 また、圧縮窒素ガス等により摩擦修正推力を模型船に対して真っ直ぐ後ろ向きに発生でき、摩擦修正推力の発生源を模型船体上に搭載しない自由航走模型試験方法が開示されている(特許文献2)。さらに、模型船の航走計画の変更が模型船からの遠隔操作で可能な模型船試験装置が開示されている(特許文献3)。
 一方、自由航走模型試験は一般に推進性能を調べるためだけの試験ではなく、操縦性能試験など推進性能以外の性能を調べる目的でも実施される。
 補助推力装置を装備していない従来の自由航走模型船を用いた操縦性能試験では、模型船のプロペラ荷重度が実船に比べて相対的に大きいため舵効きが実船よりも相対的に良くなることが知られている。すなわち、自由航走模型船を使った従来の操縦性試験結果は厳密にはそのまま実船の操縦性能とはみなすことができない。
 実船の操縦性能をより合理的に推定する手法として、拘束模型試験で得られた流体力データに基づくシミュレーション計算による手法が上げられる。拘束模型試験でプロペラ回転数を実船自航点にして計測をおこなって流体力特性を把握した上で実船対応のシミュレーション計算をおこなう方法である。この拘束模型試験時に曳引台車が摩擦修正に相当する力を模型船に加えることは定常直進時の自航試験の考え方と基本的に同じである。従来の補助推力のない自由航走模型試験結果は模型自航点で計測された流体力特性を用いた模型船対応シミュレーション計算に対応するが、実際の物理現象であることから、模型船の尺度で計算法の有効性を確認するための有力な検証データとなる。
 このように、これまでの模型船を用いた試験では曳航試験を含む拘束試験と自由航走試験のいずれにおいても模型試験におけるプロペラ回転数の設定は模型自航点か実船自航点の2つ、すなわち摩擦修正の有無が専ら関心の対象であった。実際、窒素ガス噴射による補助推力装置を用いた操縦性能試験でも定常直進状態での摩擦修正に相当する補助推力を発生させるようにしていた(非特許文献1)。
特開2012-112878号公報 特開2001-174364号公報 特開2009-264781号公報
小林英一,山崎啓市,箙一之,大森拓也,佐々木紀幸,鳥井幸典;第5章IMO操縦性基準に対する造船所の対応(2000)操縦性および復原性基準に関する研究の動向,試験水槽委員会シンポジウム,日本造船学会,pp.5-1-5-30.
 ところで、操縦性試験のように舵の力が支配的な影響をおよぼす試験においては、模型船のプロペラ荷重度を実船と同じにする摩擦修正ではなく、舵効きそのものを模型船と実船とで相似にするように補助推力を設定する方が合理的と考えられる。
 また、波・風等の外力による船の船速低下は、船の基本的な性能の一つに属し、運航計画を左右する重要な要素となる。近年では、国連海事機関を中心として船からの温暖化ガスの排出削減を目的とした規制が始まっており、その指標にも波・風が併存する実海域環境下での船速低下率が考慮されている。その一方で、国連海事機関の規制を満足するような燃料消費量の少ない船の開発が進む中、必要以上に出力の小さい機関を搭載した船が荒天下で操船不能になって海難事故に至る可能性が増加することが指摘されている。
 荒天下でどの程度船速が低下するのか、どの程度荒れた海象まで操船可能であるのかといったことを推定するための手法としては現状では推定計算によるほかない。波浪中における抵抗の増加に関する研究実績に基づき、外力下における通常航行時の船速低下に関する推定計算は実用的な水準に達していると考えられる。しかし、通常航行時の船速低下とは異なり、荒天下で操船不能近くまで船速が低下する状況では外力の船の前後方向成分だけではなく左右方向成分と回頭モーメント成分まで精度良く推定し、さらに操舵力も含めて船の航行状態を推定する必要がある。ところが、特に波漂流力の左右方向成分と回頭モーメント成分の実用的な推定法は現段階では確立されているとは言えない。
 本発明は、航行中のプロペラ荷重度を自由に変化させることができる自由航走模型船を用いて、従来の補助推力装置のない自由航走模型船あるいは補助推力装置による摩擦抵抗修正では実現できない、舵の効果(舵効き)を実船と相似にする、また外乱下においても舵の効果(舵効き)を実船と相似にする自由航走模型船試験方法及び自由航走模型船試験装置を提供する。
 本発明の請求項1に係る自由航走模型船試験方法は、プロペラと舵を有した自由航走可能な模型船を用いた自由航走模型船試験方法において、前記模型船に補助推力を付加する補助推力付加手段を、舵効きの相似性を確保するように前記模型船の船速に基づいて計算した補助推力の計算結果に応じて制御し、前記模型船に舵効きの相似性を確保する補助推力を付加することを特徴とする。
 ここで、舵直圧力に最も支配的な影響をおよぼす舵有効流入速度を用いて前記補助推力を計算することが好適である。なお、主として船速とプロペラ回転数により舵に流入する流れが決まり、舵有効流入速度及び舵直圧力が影響を受ける。
 また、前記補助推力の計算は、前記舵有効流入速度の前後方向成分uの無次元値u’に基づいて計算することが好適である。
 また、前記模型船と実船の双方の前記前後方向成分uの無次元値u’が等しくなる条件である
Figure JPOXMLDOC01-appb-M000006

Rs’:実船の舵有効流入速度の前後方向成分(無次元値u’:プロペラ回転数と船速の関数)
Rm’:模型船の舵有効流入速度の前後方向成分(無次元値u’:プロペラ回転数と船速の関数)
に基づいて前記補助推力を計算することが好適である。
 具体的には、前記前後方向成分uの無次元値u’を、プロペラ前進率Jに基づいて、
Figure JPOXMLDOC01-appb-M000007

:舵有効流入速度の前後方向成分、u:船速の前後方向成分、1-w:伴流係数、ε:舵位置の伴流係数とプロペラ位置の伴流係数の比、η:プロペラ直径と舵高さの比、κ:プロペラ後流の増速率に関する係数、K:推力係数、J:プロペラ前進率に基づいて求めることが好適である。
 また、具体的には、前記前後方向成分uの無次元値u’を、プロペラ荷重度τに基づいて、
Figure JPOXMLDOC01-appb-M000008

:舵有効流入速度の前後方向成分、u:船速の前後方向成分、1-w:伴流係数、ε:舵位置の伴流係数とプロペラ位置の伴流係数の比、η:プロペラ直径と舵高さの比、κ:プロペラ後流の増速率に関する係数、K:推力係数、τ:プロペラ荷重度に基づいて求めることが好適である。
 また、具体的には、前記前後方向成分uの無次元値u’を、プロペラスリップ比sに基づいて、
Figure JPOXMLDOC01-appb-M000009

:舵有効流入速度の前後方向成分、ε:舵位置の伴流係数とプロペラ位置の伴流係数の比、η:プロペラ直径と舵高さの比、κ:プロペラ後流の増速率に関する係数、K:推力係数、L:船の長さ、g:重力加速度、P:プロペラピッチ、D:プロペラ直径、n:プロペラ回転数、s:プロペラスリップ比に基づいて求めることが好適である。
 また、前記模型船と前記実船の双方の前記前後方向成分uの無次元値u’から前記補助推力の摩擦抵抗修正量に対する補助推力係数fTAを求めることが好適である。
 また、前記補助推力係数fTAを前記摩擦抵抗修正量に掛けて前記補助推力を算出することが好適である。
 また、前記補助推力係数fTAを前記模型船の船速により補正することが好適である。
 また、外力下で変化する模型船の前記船速を検出し、実船の前記船速を基に前記模型船の前記プロペラのプロペラ回転数と前記補助推力を制御し、前記外力下における前記模型船の船速応答を考慮した舵効きを前記実船と相似にしたことが好適である。
 前記模型船の前記プロペラ回転数と前記補助推力を
Figure JPOXMLDOC01-appb-M000010

Rs’:実船の舵有効流入速度の前後方向成分(無次元値u’:プロペラ回転数と船速の関数)
Rm’:模型船の舵有効流入速度の前後方向成分(無次元値u’:プロペラ回転数と船速の関数)
Figure JPOXMLDOC01-appb-M000011
:実船の推力減少率、T’:実船のプロペラ推力(無次元値:プロペラ回転数と船速の関数)、t:模型船の推力減少率、T’:模型船のプロペラ推力(無次元値:プロペラ回転数と船速の関数)、fTA:補助推力係数、TSFC’:摩擦修正に必要な力(無次元値:船速の関数)に基づいて導出される前記模型船のプロペラ回転数と補助推力係数fTAに基づき制御したことが好適である。
 また、プロペラ回転数一定、プロペラトルク一定、プロペラ出力一定、あるいは任意のプロペラ回転数変化を含む状態の前記実船を対象として、当該2つの式を基に前記模型船のプロペラ回転数と補助推力係数fTAを導出し、前記模型船のプロペラ回転数と補助推力を制御したことが好適である。
 本発明の請求項14に係る自由航走模型船試験装置は、舵を有した自由航走可能な模型船に補助推力を付加する補助推力付加手段と、前記模型船の船速を検出する船速検出手段と、前記船速と前記舵に流入する流れの舵有効流入速度に基づいて前記補助推力を計算する補助推力計算手段と、前記補助推力計算手段の計算結果に応じて補助推力付加手段を制御する制御手段を備え、前記模型船に前記舵有効流入速度に基づいた前記補助推力を付加することを特徴とする。
 ここで、前記補助推力計算手段は、前記舵有効流入速度の前後方向成分uの無次元値u’に基づいて前記補助推力を計算することが好適である。
 また、前記模型船と実船の双方の前記前後方向成分uの無次元値u’から前記補助推力の摩擦抵抗修正量に対する補助推力係数fTAを求めることが好適である。
 また、前記補助推力係数fTAを予め求めた前記摩擦抵抗修正量に掛けて前記補助推力を算出することが好適である。
 また、前記摩擦抵抗修正量は、実験で求めた値を用いることが好適である。
 また、船速の前後方向成分検出手段を備え、検出した船速の前後方向成分uに基づいて前記補助推力を計算することが好適である。
 本発明の請求項20に係る自由航走模型船試験装置は、プロペラと舵を有した自由航走可能な模型船に補助推力を付加する補助推力付加手段と、前記模型船の船速を検出する船速検出手段と、実船の基本的性能推定と検出した前記船速に基づき前記プロペラのプロペラ回転数と前記補助推力付加手段の出力を制御する制御手段を備え、前記模型船の外力下における船速応答を考慮して舵効きを前記実船と相似にしたことを特徴とする。
 また、前記制御手段は、上記自由航走模型船試験方法を実行したことが好適である。
 また、前記制御手段は、上記自由航走模型船試験方法により予め求めた前記模型船のプロペラ回転数と補助推力係数fTAの前記船速との関係を記憶して制御したことが好適である。
 また、前記補助推力付加手段を前記模型船に搭載し、前記模型船を追尾する追尾手段を設け、前記船速検出手段を前記追尾手段に搭載し、前記船速検出手段によって検出された前記船速をフィードバックして前記補助推力付加手段を制御することが好適である。
 また、前記補助推力付加手段を前記模型船に搭載し、前記船速検出手段によって検出された前記模型船の船速をフィードバックして前記補助推力付加手段を制御することが好適である。
 また、前記補助推力付加手段を前記模型船を追尾する追尾手段に設け、前記追尾手段として、X-Y-Z3次元直交座標系においてX軸方向に動く主台車と、この主台車上に設置されたY軸方向に動く副台車と、この副台車に設けたZ軸回りに回転する回転盤とを有した曳引車を用い、前記模型船の位置と方位に応じて前記主台車と前記副台車と前記回転盤を制御することが好適である。
 本発明に係る自由航走模型船試験方法は、プロペラと舵を有した自由航走可能な模型船を用いた自由航走模型船試験方法において、前記模型船に補助推力を付加する補助推力付加手段を、舵効きの相似性を確保するように前記模型船の船速に基づいて計算した補助推力の計算結果に応じて制御し、前記模型船に舵効きの相似性を確保する補助推力を付加することによって、例えば、風や波等の外力の影響下であっても舵の力が支配的な影響を及ぼすような状況下における自由航走模型船試験において舵の影響を適切に考慮した航走試験を実現することができる。
 ここで、前記舵直圧力に代わり、前記舵直圧力に最も支配的な影響をおよぼす舵有効流入速度を用いて前記補助推力を計算することによって、模型船における舵の影響をより実船に近づけることができる。ここで、前記舵直圧力に代わり、前記舵直圧力に最も支配的な影響をおよぼす舵有効流入速度を用いて前記補助推力を計算することによって、さらに、前記補助推力の計算は、前記舵有効流入速度の前後方向成分uの無次元値u’に基づいて計算することによって、模型船における舵の影響をより実船に近づけることが可能となる。
 また、前記模型船と実船の双方の前記前後方向成分uの無次元値u’が等しくなる条件である
Figure JPOXMLDOC01-appb-M000012
Rs’:実船の舵有効流入速度の前後方向成分(無次元値u’:プロペラ回転数と船速の関数)、uRm’:模型船の舵有効流入速度の前後方向成分(無次元値u’:プロペラ回転数と船速の関数)に基づいて前記補助推力を計算することによって、外力下において模型船に与えられる影響も考慮した試験結果を得ることが可能となる。
 具体的には、前記前後方向成分uの無次元値u’を、プロペラ前進率Jに基づいて、
Figure JPOXMLDOC01-appb-M000013

:舵有効流入速度の前後方向成分、u:船速の前後方向成分、1-w:伴流係数、ε:舵位置の伴流係数とプロペラ位置の伴流係数の比、η:プロペラ直径と舵高さの比、κ:プロペラ後流の増速率に関する係数、K:推力係数、J:プロペラ前進率に基づいて求めることによって、模型船と実船との相似性を考慮して、模型船における舵の影響を適切に考慮した自由航走模型船試験が可能となる。
 また、具体的には、前記前後方向成分uの無次元値u’を、プロペラ荷重度τに基づいて、
Figure JPOXMLDOC01-appb-M000014

:舵有効流入速度の前後方向成分、u:船速の前後方向成分、1-w:伴流係数、ε:舵位置の伴流係数とプロペラ位置の伴流係数の比、η:プロペラ直径と舵高さの比、κ:プロペラ後流の増速率に関する係数、K:推力係数、τ:プロペラ荷重度に基づいて求めることによって、模型船と実船との相似性を考慮して、模型船における舵の影響を適切に考慮した自由航走模型船試験が可能となる。
 また、具体的には、前記前後方向成分uの無次元値u’を、プロペラスリップ比sに基づいて、
Figure JPOXMLDOC01-appb-M000015

:舵有効流入速度の前後方向成分、ε:舵位置の伴流係数とプロペラ位置の伴流係数の比、η:プロペラ直径と舵高さの比、κ:プロペラ後流の増速率に関する係数、K:推力係数、L:船の長さ、g:重力加速度、P:プロペラピッチ、D:プロペラ直径、n:プロペラ回転数、s:プロペラスリップ比に基づいて求めたことによって、模型船と実船との相似性を考慮して、模型船における舵の影響を適切に考慮した自由航走模型船試験が可能となる。
 また、前記模型船と前記実船の双方の前記前後方向成分uの無次元値u’から前記補助推力の摩擦抵抗修正量に対する補助推力係数fTAを求めたことによって、補助推力係数fTAによって舵の影響を適切に反映した試験結果を得ることができる。具体的には、前記補助推力係数fTAを前記摩擦抵抗修正量に掛けて前記補助推力を算出することによって、舵の影響を反映させることができる。
 また、前記補助推力係数fTAを前記模型船の船速により補正することによって、前記模型船の船速に応じた適切な補助推力係数fTAを選択することが可能となり、船速によって変化する舵の影響を適切に考慮した試験結果を得ることができる。
 また、外力下で変化する模型船の前記船速を検出し、実船の前記船速を基に前記模型船の前記プロペラのプロペラ回転数と前記補助推力を制御し、前記外力下における前記模型船の船速応答を考慮した舵効きを前記実船と相似にしたことによって、さらに、前記模型船の前記プロペラ回転数と前記補助推力を
Figure JPOXMLDOC01-appb-M000016

Rs’:実船の舵有効流入速度の前後方向成分(無次元値u’:プロペラ回転数と船速の関数)
Rm’:模型船の舵有効流入速度の前後方向成分(無次元値u’:プロペラ回転数と船速の関数)
Figure JPOXMLDOC01-appb-M000017

:実船の推力減少率、T’:実船のプロペラ推力(無次元値:プロペラ回転数と船速の関数)、t:模型船の推力減少率、T’:模型船のプロペラ推力(無次元値:プロペラ回転数と船速の関数)、fTA:補助推力係数、TSFC’:摩擦修正に必要な力(無次元値:船速の関数)に基づいて導出される前記模型船のプロペラ回転数と補助推力係数fTAに基づき制御したことによって、風や波等の外力の影響下であっても自由航走模型船試験において舵の影響を適切に考慮した航走試験を実現することができる。
 また、プロペラ回転数一定、プロペラトルク一定、プロペラ出力一定、あるいは任意のプロペラ回転数変化を含む状態の前記実船を対象として、当該2つの式を基に前記模型船のプロペラ回転数と補助推力係数fTAを導出し、前記模型船のプロペラ回転数と補助推力を制御したことによって、プロペラ回転数一定、プロペラトルク一定、プロペラ出力一定の条件において風や波等の外力の影響下であっても自由航走模型船試験において舵の影響を適切に考慮した航走試験を実現することができる。
 本発明に係る自由航走模型船試験装置は、舵を有した自由航走可能な模型船に補助推力を付加する補助推力付加手段と、前記模型船の船速を検出する船速検出手段と、前記船速と前記舵に流入する流れの舵有効流入速度に基づいて前記補助推力を計算する補助推力計算手段と、前記補助推力計算手段の計算結果に応じて補助推力付加手段を制御する制御手段を備え、前記模型船に前記舵有効流入速度に基づいた前記補助推力を付加することによって、舵の力が支配的な影響を及ぼすような状況下における自由航走模型船試験において舵の影響を適切に考慮した航走試験を実現することができる。
 ここで、前記補助推力計算手段は、前記舵有効流入速度の前後方向成分uの無次元値u’に基づいて前記補助推力を計算することによって、模型船における舵の影響をより実船に近づけることができる。例えば、前記模型船と実船の双方の前記前後方向成分uの無次元値u’から前記補助推力の摩擦抵抗修正量に対する補助推力係数fTAを求めることによって、又は前記補助推力係数fTAを予め求めた前記摩擦抵抗修正量に掛けて前記補助推力を算出することによって、補助推力係数fTAによって舵の影響を適切に反映した試験結果を得ることができる。具体的には、前記補助推力係数fTAを予め求めた前記摩擦抵抗修正量に掛けて前記補助推力を算出することによって、舵の影響を反映させることができる。このとき、前記摩擦抵抗修正量は、実験で求めた値を用いることによって、実際の摩擦抵抗に応じた舵の影響を試験に反映させることが可能となる。
 また、船速の前後方向成分検出手段を備え、検出した船速の前後方向成分uに基づいて前記補助推力を計算することによって、船速に応じて変化する舵の影響を適切に考慮した試験結果を得ることができる。
 また、自由航走模型船試験装置は、プロペラと舵を有した自由航走可能な模型船に補助推力を付加する補助推力付加手段と、前記模型船の船速を検出する船速検出手段と、実船の基本的性能推定と検出した前記船速に基づき前記プロペラのプロペラ回転数と前記補助推力付加手段の出力を制御する制御手段を備え、前記模型船の外力下における船速応答を考慮して舵効きを前記実船と相似にしたことによって、特に、前記制御手段は、上記自由航走模型船試験方法を実行したことによって、上記の自由航走模型船試験方法を実現することができる。ここで、前記制御手段は、上記自由航走模型船試験方法により予め求めた前記模型船のプロペラ回転数と補助推力係数fTAの前記船速との関係を記憶して制御したことによって、風や波等の外力の影響下であっても舵の力が支配的な影響を及ぼすような状況下における自由航走模型船試験において舵の影響を適切に考慮した航走試験を実現することができる。また、前記補助推力付加手段を前記模型船に搭載し、前記模型船を追尾する追尾手段を設け、前記船速検出手段を前記追尾手段に搭載し、前記船速検出手段によって検出された前記船速をフィードバックして前記補助推力付加手段を制御することによって、または、前記補助推力付加手段を前記模型船に搭載し、前記船速検出手段によって検出された前記模型船の船速をフィードバックして前記補助推力付加手段を制御することによって、自走する模型船の運動情報に基づいて適切な補助推力を模型船に与えつつ試験を行うことができる。特に、船速に応じて変化する舵の影響を適切に考慮した試験結果を得ることができる。
 また、前記補助推力付加手段を前記模型船を追尾する追尾手段に設け、前記追尾手段として、X-Y-Z3次元直交座標系においてX軸方向に動く主台車と、この主台車上に設置されたY軸方向に動く副台車と、この副台車に設けたZ軸回りに回転する回転盤とを有した曳引車を用い、前記模型船の位置と方位に応じて前記主台車と前記副台車と前記回転盤を制御することによって、自走する模型船の運動情報に基づいて適切な補助推力を模型船に与えつつ試験を行うことができる。
計画船速におけるfTAとu/uの関係を示す図である。 計画船速における模型船長さとfRECとの関係を示す図である。 計画船速における模型船船速(V)とfRECとの関係を示す図である。 第1の実施の形態における20度Z試験における航跡と舵直圧力のシミュレーション結果を示す斜視図である。 第1の実施の形態における自由航走模型船試験装置の一例を示す図である。 第1の実施の形態における自由航走模型船試験装置の別例を示す図である。 第1の実施の形態における自由航走模型船試験装置の別例を示す図である。 第1の実施の形態における水槽と曳引車の構造を示す図である。 第1の実施の形態における自由航走模型船試験装置の別例を示す図である。 第2の実施の形態における自由航走模型船試験(平水中操縦性能)のシミュレーション計算結果を示す図である。 第2の実施の形態における自由航走模型船試験(規則波中定常航行状態)のシミュレーション計算結果を示す図である。 第2の実施の形態における補助推力係数と模型船プロペラ回転数の船速依存性のシミュレーション計算結果を示す図である。 第2の実施の形態における自由航走模型船試験装置の一例を示す図である。
[第1の実施の形態]
<自由航走模型船試験方法>
 自由航走する模型船に補助推力装置を搭載することによりプロペラ荷重度を自由に変化させることができる。模型船が直進している状態を考えると、補助推力装置により補助推力が与えられた模型船に加わる前後方向の力の釣り合いは数式(1)で表される。
Figure JPOXMLDOC01-appb-M000018

ここで、(1-t)は推力減少係数、Tはプロペラ推力、Tは補助推力、Rは全抵抗を表す。
 一般的に、推力減少係数は、船体とプロペラとの組み合わせによって特定の値となる。プロペラ推力は、船速とプロペラ回転数によって決まる。全抵抗は、船速によって決まる。補助推力は、船速及びプロペラ回転数に依存せず、任意に選ぶことができる。すなわち、ある船速について、補助推力を適当に選べば、プロペラ回転数を任意に設定することができる。また、あるプロペラ回転数について補助推力を適当に選ぶことによって船速を任意に設定することが可能である。これらの関係は、直進時以外の旋回や斜航中でも必要な特性がわかれば原理的には成り立つ。
 模型船を用いた船の試験では一般にフルードの相似則に則って、すなわち模型船のフルード数を実船と同じ値になるように船速を定める。このとき、模型船のレイノルズ数は実船と大きく異なるので粘性に関する現象が模型船と実船では相似にならない。特に、粘性が支配的な影響をおよぼす摩擦抵抗については模型船と実船で大きく異なる。
 ここで、数式(1)を無次元化すると次式を得る。
Figure JPOXMLDOC01-appb-M000019

ここで、Sは船の浸水表面積、Dはプロペラ直径を表す。他の変数は次式で定義される。
Figure JPOXMLDOC01-appb-M000020

Figure JPOXMLDOC01-appb-M000021

Figure JPOXMLDOC01-appb-M000022

ここで、uは船速の前後方向成分、ρは水の密度、τがプロペラ荷重度、Cが全抵抗係数を表す。
 模型船と実船で幾何学的形状が相似とするとS/{π(D/2)}は模型船と実船で同じ値である。また、一般に模型船と実船で推力減少係数(1-t)は同じと考えて良い。
 摩擦抵抗が模型船と実船とで異なることは全抵抗係数Cが模型船と実船で異なることを意味する。補助推力がない場合、すなわちτが0の場合、数式(2)より、全抵抗係数Cが模型船と実船とで同じであればプロペラ荷重度τも模型船と実船とで同じになるが、両者で全抵抗係数Cが異なるためτも異なることになる。
 船の馬力推定あるいは抵抗・推進の分野で実施される自航試験では、船速はフルードの相似則に従って決め、プロペラ回転数は模型船のプロペラ荷重度が実船と同じになるように設定される。この時、数式(2)のτあるいは数式(1)の補助推力Tに相当する力は試験水槽の曳引台車が受け持つことで数式(2)あるいは数式(1)が成立している。
 このとき、模型船に加えるべき補助推力Tは次式で定義される摩擦抵抗修正量RSFCに対応した値として求めることができる。
Figure JPOXMLDOC01-appb-M000023

 添え字のmとsはそれぞれ模型船と実船の値であることを表す。推力減少係数(1+k)は船の形状によって決まる形状影響係数を表す。一般に模型船と実船で同じ値と考えて良い。CF0はレイノルズ数によって決まる相当平板の摩擦抵抗係数を表す。ΔCは粗度修正係数で、実船の長さを用いて推定することができる。
 以上、数式(6)で表される補助的な力を模型船に加えることを模型試験における摩擦抵抗修正あるいは単に摩擦修正と呼ぶ。なお、摩擦修正をおこなわない場合のプロペラ回転数を模型自航点、摩擦修正をおこなった場合のプロペラ回転数を実船自航点と呼ぶ。
 さらに、本実施の形態では、任意の補助推力を発生することのできる荷重度変更自走試験装置を用いて、自由航走模型試験において舵効きを実船と相似にする補助推力設定法を提供する。
 幾何学的な相似とフルードの相似則のもと、模型船の舵効きを実船相当にするためには、次式で表される舵直圧力Fの無次元値を模型船と実船とで一致させれば良いと考えられる。
Figure JPOXMLDOC01-appb-M000024

 ここで、Aは舵面積、fαは舵の縦横比で決まる直圧力係数勾配、Uは舵有効流入速度、Vは船速、αは舵有効流入角をそれぞれ表す。また、u/Vはcosβに等しく、斜航角が小さい場合はほぼ1とみなすことができる。なお、βは船の斜航角である。船速Vは船速の前後方向成分uと左右方向成分vに分けられ、斜航角βを介してu=Vcosβ、v=-Vsinβの関係がある。舵有効流入速度Uは舵有効流入速度の前後方向成分uと舵有効流入速度vに分けられ、舵有効流入角αを介してu=UR cosα、v=-UR sinαの関係がある。舵直圧力Fは舵有効流入速度U、舵有効流入角αによって決まるが、この時vよりもuが支配的影響をおよぼす。uに大きな影響をおよぼすのはuとプロペラ回転数である。
 Uは前後方向成分uと左右方向成分vを用いて次式で表される。
Figure JPOXMLDOC01-appb-M000025

ここで、αは次式で表される。
Figure JPOXMLDOC01-appb-M000026

ここで、vRPはプロペラの回転による横方向流速成分、γは整流係数、l’は舵の流体力学的前後位置、r’は無次元旋回角速度をそれぞれ表す。
 数式(8)において左右方向成分vは一般に前後方向成分uに比べて小さく、支配的なのは舵有効流入速度の前後方向成分uと船速の前後方向成分uとの比u/uの項である。数式(9)においてもプロペラの回転による横方向流速成分vRPは舵有効流入速度の前後方向成分uに比べて小さく、従って第二項は支配的ではない。さらに、問題の見通しをよくするために直進状態を考えると数式(9)の第3項は0となり、支配的な項のみを残すと数式(8)と数式(9)は次式のように書ける。
Figure JPOXMLDOC01-appb-M000027
 数式(10)から、直進状態においては、u/uを模型船と実船で同じ値にすれば近似的に無次元直圧力すなわち舵効きを模型船と実船とで相似にすることができることがわかる。
 u/uは数式(11)で表される。
Figure JPOXMLDOC01-appb-M000028

ここで、1-wは伴流係数、εは舵位置の伴流係数とプロペラ位置の伴流係数の比、κはプロペラ後流の増速率、ηはプロペラ直径と舵高さの比をそれぞれ表す。Kは次式で表される推力係数を表す。
Figure JPOXMLDOC01-appb-M000029

ここで、nはプロペラ回転数を表す。Jは次式で表されるプロペラ前進率を表す。
Figure JPOXMLDOC01-appb-M000030

なお、推力係数Kは一般にプロペラ前進率Jの関数である。
 数式(11)によってu/uに対してはプロペラ荷重度τが大きな影響をおよぼすことがわかる。同時に、模型船と実船でプロペラ荷重度τが同じでも、舵位置の伴流係数とプロペラ位置の伴流係数の比εとプロペラ後流の増速率κ、伴流係数1-wが異なれば無次元舵直圧力は同じにならないことがわかる。特に、伴流係数1-wは粘性の影響を受けて模型船と実船で明らかに異なることが知られている。
 ここで、補助推力Tを次のように表す。
Figure JPOXMLDOC01-appb-M000031

ここで、fTAは補助推力が摩擦修正量の何倍の値であるかを表す変数で、ここでは補助推力係数と呼ぶことにする。補助推力係数fTA=0が摩擦修正なしの模型自航点、補助推力係数fTA=1が摩擦修正有りの実船自航点を表す。
 ある船速について補助推力係数を決めればその値に応じて数式(1)を解くことで対応するプロペラ回転数nやプロペラ荷重度τ、u/u、プロペラ前進率J等を求めることができる。つまり、u/uが実船の値と等しくなる補助推力係数fTAの値を求め、その値を使って数式(14)に従って補助推力とプロペラ回転数を設定すれば無次元舵直圧力すなわち舵効きを実船相当にした自由航走模型試験を実施することができる。
 図1は、縮尺1/75.5(長さ約3m)の模型船が計画船速対応の船速での定常直進航行時を対象として補助推力係数fTAを変化させたときのu/uが変化する様子を示す。図1において、実線が模型船の値を示し、破線は実船の推定値を示す。
 摩擦修正なしに対応する補助推力係数fTA=0ではu/uは模型船が実船より大きな値を示しており、無次元舵直圧力は模型船の方が実船より大きいことを意味する。すなわち模型自航点では舵効きは模型船の方が良いことを示している。一方、摩擦修正有りに対応する補助推力係数fTA=1ではプロペラ荷重度は模型船と実船で等しくなるが、u/uは模型船が実船より小さな値を示している。これは、相対的に模型船の舵効きが実船より悪くなっていることを示している。u/uが模型船と実船で等しくなるのはこの船の場合、補助推力係数fTAが約0.67のとき、摩擦修正量よりもやや小さめの補助推力を与えたときである。
 次に、舵効き修正係数fRECを用いた補助推力とプロペラ回転数の設定について考察する。u/uが模型船と実船で等しくなる補助推力係数fTAをあらためてfRECと書くことにする。
 図2は、模型船の縮尺を変化させたときのfRECの変化を示す。図2に示されるように、一般的な船の場合、模型船の長さが変化してもfRECは大きくは変化しないことがわかる。
 図3は、模型船の船速を変化させたときのfRECの変化を示す。図3に示されるように、一般的な船の場合、船速が大きくなるとややfRECが減少する傾向が見られる。
 このように、舵を考慮した試験を行うために模型船と実船とのu/uを一致させる場合、船速に応じて適切な補助推力係数fTAは変化するので、船速に応じて適切な補助推力係数fTAを設定することが好適である。また、船速に応じて適切な補助推力係数fTAは決定されるので、補助推力係数fTAの代わりに船速を用いて制御を行うことができる。
 定常直進付近は操縦性能において重要な針路安定性を判定する上で重要であるため、この定常直進時のfRECが模型船と実船の舵効きの対応に関する基本となると考えられる。従って、定常直進中のfRECとそれに対応したプロペラ回転数で自由航走模型試験を実施するのが最も基本的な方法となる。
 定常直進時のfRECを求めるためには伴流係数1-wと舵位置の伴流係数とプロペラ位置の伴流係数の比ε、プロペラ後流の増速率κ、プロペラ直径と舵高さの比η、推力係数K、プロペラ前進率Jが必要である。伴流係数1-wは船の設計段階で何らかの推定値が得られているのが一般的である。プロペラ前進率Jは、定常直進時のプロペラ回転数と船速と伴流係数1-wで決まる。これらも設計段階で計画船速とそのときのプロペラ回転数が求められていると考えられる。プロペラ単独性能を表す推力係数Kに関しても設計段階でプロペラ前進率Jの関数として推定されているのが一般的である。プロペラ直径と舵高さの比ηは幾何学的に決まる値である。舵位置の伴流係数とプロペラ位置の伴流係数の比εとプロペラ後流の増速率κについては模型実験等で何らかの推定値が得られていればそれを用いればよい。推定値がない場合は、文献に挙げられている値や類似する船のデータを用いても大きな間違いとはならないと推察される。
 図4は、20度Z試験について補助推力なし(fTA=0, Model(w/o corr.))の場合と摩擦修正をした場合(fTA=1, Model(SFC))、舵効き修正をした場合(fTA=fREC, Model(REC))、実船推定値それぞれの航跡と舵直圧力の時系列のシミュレーション結果を示す。実船推定値は、補助推力なしの場合と摩擦修正をした場合の間にあり、舵効き修正をした場合は実船推定値に近い値を示していることがわかる。
 このように、定常直進時のfRECは、船の設計段階での推定値、船の幾何学的な構造、模型試験での推定値を用いて求めることができ、上記のように決定される補助推力係数fTAとfRECとを用いて補助推力Tを算出することができる。以下に説明する自由航走模型船試験装置を用いた自由航走模型船試験では、このようにして算出できる補助推力Tを用いて舵を考慮して試験を行う。
<自由航走模型船試験装置>
 図5は、本発明の実施の形態における自由航走模型船試験方法を実現するための自由航走模型船試験装置100を示す図である。
 自由航走模型船試験装置100は、図5に示すように、自由航走模型船10に搭載されたアナログ/パルス変換器12、モータ増幅器14、ダクトファンモータ16及び検力計18と、自動追尾台車20に搭載されたカメラ22、検力計増幅器24及び制御コンピュータ(制御PC)26と、を含んで構成される。
 自由航走模型船10は、試験対象となる実際の船舶を模倣した模型船である。自由航走模型船10は、以下に説明する補助推力系とは別にプロペラ等の主推力系を有し、水上を自由航走することができるように構成されている。自動追尾台車20は、カメラ22によって自由航走模型船10を撮像し、その情報に基づいて制御コンピュータ26による制御によって自由航走模型船10を自動に追尾するように構成されている。例えば、自動追尾台車20は、試験用プール上に配置されたレールに取り付けられ、レール上を走行することによって自由航走模型船10を追尾できるように構成される。さらに、自動追尾台車20の追尾によって自由航走模型船10の速度(船速)が測定され、制御コンピュータ26に入力される。
 自由航走模型船10には、補助推力付加手段としてダクトファンモータ16が搭載されている。ダクトファンモータ16は、アナログ/パルス変換器12に入力された補助推力指令信号に基づいて出力が制御され、その出力が自由航走模型船10の主推力系とは別に設けられた補助推力となる。アナログ/パルス変換器12に補助推力指令信号が入力されると、その信号に応じた推力を生み出すようにダクトファンモータ16を制御するパルス信号に変換され、パルス信号がモータ増幅器14によって増幅されてダクトファンモータ16に入力され、ダクトファンモータ16が駆動される。これにより、ダクトファンモータ16によって自由航走模型船10に対して所望の補助推力が与えられる。
 また、自由航走模型船10には、ダクトファンモータ16の出力を検出して出力する検力計18が搭載されている。検力計18は、ダクトファンモータ16の補助出力を検出して、検力計増幅器24へ出力する。
 自動追尾台車20には、検力計増幅器24が搭載されており、検力計18で検出された実際の補助出力が入力される。検力計増幅器24は、実際の補助出力を増幅して制御PC26に出力する。制御PC26は、検力計増幅器24から補助出力に応じた信号を受けて、補助出力を所望の値となるように補助推力指令信号を生成してアナログ/パルス変換器12へ出力する。このように、フィードバック制御を行うことによって、自由航走模型船10に対して所望の補助推力を付与することができる。
 ここで、所望の補助推力は、上記の自由航走模型船試験方法にしたがって設定することができる。すなわち、u/uが実船の値と等しくなるように補助推力係数fTAの値を求め、その値を使って数式(14)に従って補助推力とプロペラ回転数を設定する。このとき、補助推力係数fTAの値は、船速に応じて設定することが好適である。また、fRECは、例えば定常直進時であれば上記のように船の設計段階での推定値、船の幾何学的な構造、模型試験での推定値を用いて求めることができる。これにより、無次元舵直圧力すなわち舵効きを実船相当にした自由航走模型試験を実施することができる。
 また、図6に示す自由航走模型船試験装置102のような構成としてもよい。自由航走模型船試験装置102では、検力計増幅器24及び制御コンピュータ(制御PC)26も自由航走模型船10に搭載される。なお、自由航走模型船試験装置100と同じ構成については、同一の符号を付して説明を省略する。
 自由航走模型船試験装置102では、さらに船速検出器70が自由航走模型船10に搭載される。船速検出器70は、自由航走模型船10の速度(船速)を計測し、制御コンピュータ26に入力する。船速検出器70は、例えば、ピトー管等の速度計測手段から船速を求めてもよいし、GPS等の位置計測手段から得られる自由航走模型船10の位置の時間的な変化から船速を求めてもよい。また、電磁LOGセンサやドップラーLOGセンサ等を用いて対水船速を求めてもよい。
 制御コンピュータ26は、自由航走模型船試験装置100と同様に、上記の自由航走模型船試験方法にしたがってu/uが実船の値と等しくなるように補助推力係数fTAの値を求め、その値を使って数式(14)に従って補助推力とプロペラ回転数を設定する。このとき、補助推力係数fTAの値は、船速に応じて設定することが好適である。また、fRECは、例えば定常直進時であれば上記のように船の設計段階での推定値、船の幾何学的な構造、模型試験での推定値を用いて求めることができる。
 また、図7に示す自由航走模型船試験装置104のような構成としてもよい。自由航走模型船試験装置104では、船速検出器70の代わりに、自由航走模型船10には船速情報受信器72が搭載される。船速情報受信器72は、陸上に設けた船速検出器74から自由航走模型船10の船速の情報を受信し、制御コンピュータ26に入力する。船速検出器74は、例えば、光学的方法や無線を用いた方法により自由航走模型船10の船速を求めるようにすればよい。また、GPS等の位置計測手段から得られる自由航走模型船10の位置の時間的な変化から船速を求めてもよい。
 自由航走模型船試験装置104においても、自由航走模型船試験装置100,102と同様に、上記の自由航走模型船試験方法にしたがってu/uが実船の値と等しくなるように補助推力係数fTAの値を求め、その値を使って数式(14)に従って補助推力とプロペラ回転数を設定すればよい。
 なお、自由航走模型船試験装置102,104では、自由航走模型船10に電池等の電源を搭載し、試験に必要な電力を当該電源から供給するようにしてもよい。これにより、自動追尾台車20等から外部電力を供給することなく、自由航走模型船10単体で試験を実施することができる。
 また、図8に示すような荷重度変更自走試験装置200よる自由航走模型船試験装置によっても本発明の実施の形態における自由航走模型船試験方法を実現することができる。図8は、荷重度変更自走試験装置200に用いる試験水槽と曳引車の構造を示す要部平面図である。
 図8に示すように、曳引車(追尾手段)Aは主台車32、主台車32上の副台車34、および副台車34上の回転盤36を含んで構成される。
 水槽Hは、自由航走模型船30を自走させるためのものであり、X-Y-Z3次元直交座標系が設定されている。以下、水槽Hに設定されている座標系を用いて自由航走模型船30の位置・方向を特定する場合、大文字のX、Y、Z及びΨを用いる。本実施形態においては、X-Y-Z3次元直交座標系のX方向は、水槽Hに水が入った状態において水面の外郭により形成される長方形の長手方向をいう。そして、水面上でX軸に直交する方向をY方向、X方向およびY方向の何れとも直交する鉛直方向をZ方向とする。
 曳引車Aは主台車32によってレール38上をX方向に動くことができる。主台車32には副台車34が設置されており、副台車34は主台車32上をY方向に動くことができる。副台車34は、回転盤36を備えている。回転盤36は、Z方向(Z軸)を回転軸として回転することができる。X軸を基準として、回転盤36がZ軸回りに回転する回転方向をΨ方向と記す。曳引車Aの位置をX,Yと記し、X軸を基準とした回転方向をΨと記す。曳引車Aの位置と方向X,Y,Ψは外部からの信号によってそれぞれ制御することができる。
 図9は、荷重度変更試験装置200の構造を示す要部斜視図であり、変位検出・補助推力付加のための荷重度変更試験装置200の構造の概略を示している。この荷重度変更試験装置200は、図8に示した曳引車Aの回転盤36上に設置される。そして、その下端の模型固定部40において、破線で示した自由航走模型船30の重心位置に固定される。自由航走模型船30を水平に保つためのジンバル部42を備えていることによって、図8に示す曳引車Aが自由航走模型船30の横揺れ・縦揺れ・船首揺れを拘束することがなくなる。すなわち、ジンバル部42により、自由航走模型船30のピッチ方向、ロール方向、ヨー方向に対する運動が許容される。
 水槽Hに設定されているX-Y-Z3次元直交座標系(図8参照)とは別に、荷重度変更試験装置200にはx-y-z3次元直交座標系が設定されている。以下、荷重度変更試験装置200に設定されている座標系を用いて自由航走模型船30の位置・方向を特定する場合、小文字のx、y、z及びψを用いる。このx-y-z3次元直交座標系のx方向とは、回転盤36上に固定された水槽Hの水面に平行な所定方向をいう。そして、水面に平行でx軸に直交する方向をy方向、x方向およびy方向の何れとも直交する鉛直方向をz方向とする。x-y-z3次元直交座標系は、回転盤36上に固定されたものであるから、回転盤36の回転に伴って、x方向、y方向が変化する。ただし、z軸回りの回転方向の基準位置をx方向としているから、z軸回りの回転方向ψが回転盤36の回転に伴って変化することはない。
 荷重度変更試験装置200では、模型固定部40およびジンバル部42を備えている支柱部44が、鉛直方向に移動可能な状態でx移動部(補助推力付加手段)46に取付けられている。支柱部44は、x移動部46内のローラー(補助推力付加手段)48によって、鉛直となるように保たれると同時に自由航走模型船30の上下揺れを拘束することはない。
 x移動部46は下方にローラー48を備えており、ローラー48がxレール50上に乗っている。ローラー48が回転してxレール50を移動することにより、x移動部46はx方向に動くことができる。xレール50の下方にはローラー(補助推力付加手段)52が設けられており、ローラー52がyレール(補助推力付加手段)54上に乗っている。ローラー52が回転してyレール54上を移動することにより、xレール50はy方向に動くことができる。
 自由航走模型船30のx方向の揺れはx揺れ検出用ポテンショメータ(運動状態検出手段)56によって検出される。自由航走模型船30のy方向の揺れはy揺れ検出用ポテンショメータ(運動状態検出手段)58によって検出される。自由航走模型船30の船首揺れは船首揺れ検出用ポテンショメータ(運動状態検出手段)60によって検出される。これらのポテンショメータによって検出されるx揺れとy揺れ、船首揺れの値をx,y,ψと記す。
 x移動部46にはx揺れ用ワイヤー62を介してx力用サーボモータ(補助推力付加手段)64が接続されており、これらを介してx移動部46にx方向の力をかけることができる。xレール50にはy揺れ用ワイヤー66を介してy力用サーボモータ(補助推力付加手段)68が接続されており、これらを介してxレール50にy方向の力をかけることができる。x力用サーボモータ64が生み出すx方向の力をF、y力用サーボモータ68が生み出すy方向の力をFと記す。
 ここで、所望の補助推力は、上記の自由航走模型船試験方法にしたがって設定することができる。これは、図8に示した自由航走模型船試験装置と同様である。
 なお、模型固定部40、ジンバル部42および支柱部44の合計重量は自由航走模型船30の排水量に含むようにすることが好適である。
 また、検出されたx,y,ψを信号に変換して曳引車Aに入力し、これらx,y,ψが0になるように例えばPID制御のようなフィードバック制御によってX,Y,Ψを制御する。その結果、曳引車Aは自走する自由航走模型船30の位置と方位を追尾して動くことになる。
 以上のように、舵効きを模型船と実船とで相似にすることによって、自由航走模型船で実船の操縦性能を直接調べることが可能となる。すなわち、検証の困難な実船対応のシミュレーション計算をおこなわなくても、幾何学的な寸法とフルードの相似則に従った時間の変換のみで、自由航走模型船の操縦運動を実船の操縦運動とみなすことができるようになる。様々な操舵に対する船の運動応答を模型船を使って直接の物理現象として再現して目で見ることができる、計測できることの意義は大きいといえる。
[第2の実施の形態]
<自由航走模型船試験方法>
 上記第1の実施の形態では、直進時船速Vが一定、したがって船速の前後方向成分uが一定である場合に実船と模型船で舵効きを相似させる態様について説明した。第2の実施の形態では、直進時船速Vが一定の場合に限らず風や波等の外力の影響等により直進時に限らず斜航・旋回時の船速の前後方向成分uが一定とならない場合にも実船と模型船で舵効きを相似にする態様について説明する。
 本実施の形態では、実船の基本的性能推定に基づき、外力下で変化する船速の前後方向成分uを計測しながらその計測データに基づきプロペラ回転数と補助推力装置の出力を制御することで外力下における模型船の船速応答を実船と相似にする。外力下では船は一般に操舵を必要とする。操舵は舵抵抗と斜航・旋回抵抗を誘起するので、船速応答を相似にするためにはこれらの抵抗成分も模型船と実船で相似にする必要がある。
 まず、外乱下の操縦運動において実船と模型船で船速の前後方向成分uの応答が相似となる条件は数式(15)の運動方程式で表現される。
Figure JPOXMLDOC01-appb-M000032

 ここで、M’は付加質量を含む船の質量、u’は船速の前後方向成分、tは推力減少率、T’はプロペラ推力、T’は補助推力、R’は直進時の抵抗成分、F’は舵と斜航・旋回による抵抗成分、E’は外乱による抵抗成分を示す。
 また、「’」は水の密度ρ、船の代表長さL、重力加速度gによる無次元値であることを意味する。すなわち、質量はρL、速度は√(Lg)、力はρLg、時間は√(L/g)によって無次元化が行われる。ρとLは、実船と模型船のそれぞれに対応する値を用いる。例えば、船速u’を無次元化すると、数式(16)として表わすことができる。
 船速応答が模型船と実船で相似になるためには数式(15)の2つの右辺が時々刻々の船速の変化に応じて等しい振る舞いをすればよい。ここで、F’は舵直圧力と操縦運動が、E’は実験条件と操縦運動が相似であればそれぞれ実船と模型船で相似性が確保される。舵直圧力とそれによって誘起される操縦運動の相似は数式(17)で近似される。
Figure JPOXMLDOC01-appb-M000034

 ここで、uRs’は、実船の舵有効流入速度の前後方向成分(無次元値u’:プロペラ回転数と船速の関数)を示し、uRm’は、模型船の舵有効流入速度の前後方向成分(無次元値u’:プロペラ回転数と船速の関数)を示す。
 舵効きの相似を前提とすれば、任意のu’について次式が成立すれば実船と模型船の相似性が確保されると考えられる。
Figure JPOXMLDOC01-appb-M000035
 ここで、補助推力T’は数式(19)で表わされる。
Figure JPOXMLDOC01-appb-M000036

 ここで、fTAは補助推力が摩擦修正量の何倍の値であるかを表す補助推力係数である。TSFC’は摩擦修正に必要な力である。
 数式(19)を数式(18)に代入すると数式(20)が得られる。
Figure JPOXMLDOC01-appb-M000037
 F’及びE’に関する模型船と実船の相似が数式(17)により確保され、T’の制御によって数式(20)が成り立つようにすることで数式(15)の右辺が実船と模型船の速度u’に対して等しく振ることになる。すなわち、数式(17)と数式(20)を非線形連立方程式とし、fTAと模型船のプロペラ回転数n’をu’を助変数とする未知数として解けば補助推力とプロペラ回転数を船速に応じてどのように制御すれば外乱下において実船と模型船で船速の前後方向成分の応答を相似にすることができるかがわかる。このことによって、船速応答の相似性が確保される。
 なお、舵有効流入速度u’を具体的に求めるための推定式はいくつか提案されているが、たとえば数式(21)で推定することができる。
Figure JPOXMLDOC01-appb-M000038

 ここで、P’は数式(22)で定義されるプロペラピッチの無次元値を示す。
Figure JPOXMLDOC01-appb-M000039

 また、λとλは数式(23)の添字の*をそれぞれsとmに読み替えて得られる。
Figure JPOXMLDOC01-appb-M000040

 ここで、εは舵位置とプロペラ位置での伴流係数の比、ηはプロペラ直径と舵高さの幾何学的寸法比を表す。κはプロペラ増速率に関する係数を表す。また、sは数式(24)で定義されるプロペラスリップ比を表す。
Figure JPOXMLDOC01-appb-M000041
 図10は平水中操縦性能について模型船の4状態と実船の推定値を比較したものである。いずれも実船プロペラ回転数一定状態に対応するシミュレーション計算である。図10(a)は、左35度旋回を行ったときの航跡(X,Y)を示す。図10(b)は、左35°旋回を行ったときの舵直圧力(FN)の時間変化を示す。図10(c)は、左35°旋回を行ったときの縦距(Advance)及び旋回圏(Tactical d.)の対比を示す。図10(d)は、平水中において右20度Z試験を行った場合の航跡(X,Y)を示す。図10(e)は、平水中において右20度Z試験を行った場合の蛇角と船首方向(δ,Ψ)の時間変化を示す。図10(f)は、平水中において右20度Z試験を行った場合の舵直圧力(F)の時間変化を示す。図10(g)は、平水中において右20度Z試験を行った場合の第1行き過ぎ角(Ψoa1)及び第2行き過ぎ角(Ψoa2)の対比を示す。
 図中の添字NCは通常の自由航走模型試験のシミュレーション計算結果(小破線)、SFCは補助推力を使っていわゆる摩擦修正をおこなったシミュレーション計算結果(大破線)、REC及びRSCは本発明の手法に従ったシミュレーション計算結果を示す。RECは補助推力のみを制御した場合のシミュレーション計算結果(点線、第1の実施の形態)であり、RSCは補助推力と模型プロペラ回転数両方を制御した場合のシミュレーション計算結果(実線、第2の実施の形態)である。なお、図中のプロット(点)は、実船における推定値を示す。
 本発明の手法に従ったシミュレーション計算結果は、補助推力のみを制御した場合及び補助推力と模型プロペラ回転数両方を制御した場合のいずれにおいても通常の自由航走模型試験のシミュレーション計算結果及び補助推力を使っていわゆる摩擦修正をおこなったシミュレーション計算結果に比べて改善された。補助推力のみを制御した場合と補助推力と模型プロペラ回転数両方を制御した場合は大差なく、いずれも実船相似の平水中操縦性能を示した。厳密には、補助推力と模型プロペラ回転数両方を制御した場合が補助推力のみを制御した場合よりも精度が高かった。
 図11(a)~図11(c)は、それぞれ波浪中定常航行時の平水中を基準とした船速比(V/V)と斜航角(β)、舵角(δ)を、先の模型船4状態と実船の推定値を比較したものである。シミュレーション計算結果は、実船プロペラ回転数一定状態に対応している。入射波の方向は船首右舷30度、すなわち入射波との出会角は150度とした(船と正面からぶつかる波の出会角を180度とする)。波と船長との比(波高船長比:Hw/L)は1/60とした。横軸は波長船長比を表す。なお、図中の添字、線種等は図10と同様に示した。
 波浪中の航行に対するシミュレーション計算結果も、通常の自由航走模型試験のシミュレーション計算結果及び補助推力を使っていわゆる摩擦修正をおこなったシミュレーション計算結果に比べて改善された。特に、補助推力と模型プロペラ回転数両方を制御した場合が補助推力のみを制御した場合よりも精度が高かった。この結果から、補助推力と模型プロペラ回転数両方を制御した場合、波等の外力の影響下においても実船と相似の操縦性能を示すことがわかる。
 図12は、上記計算例において補助推力と模型プロペラ回転数両方を制御した場合(RSC)において用いた補助推力と模型船のプロペラ回転数の制御特性を示す。横軸は、時々刻々と変化する船速(u’)と平水中船速(u’)との比を表す。図12は、実船のプロペラ回転数n’が一定(n’=const.)、実船のトルクQ’が一定(Q’=const.)、実船の出力馬力W’が一定(W’=const.)の場合について示している。fTAは、制御に用いる補助推力と摩擦修正係数に必要な力の比を表す。n’は、無次元の模型船プロペラ回転数を表す。
 図10及び図11では、実船のプロペラ回転数が一定の状態に対応した自由航走模型試験をおこなう場合の例を示したが、図12の制御特性を利用することによって実船の任意の状態に対応した模型船の制御が可能である。また、補助推力のみを制御した場合(REC)の場合は、u’/u’=1のときの補助推力と模型プロペラ回転数を用いればよい。
 なお、数式(15)においてE’の項を考慮しない場合は船速変化の起源は操舵とこれが誘起する操縦運動のみとなる。この場合、船速応答の相似は舵効き応答の相似を必要とする。
 自由航走模型試験で補助推力装置を用いた舵効き修正によって模型船の操縦運動を近似的に実船と相似にする手法では、プロペラ回転数一定の自由航走模型試験における補助推力係数の制御の簡単化と実用性を考慮して、平水中の定常直進時の状態をもとに舵効き修正係数を決め、その値を操縦運動中で一定としている。そのため、操縦運動中においては船速応答及び舵効きの相似が必ずしも厳密には保証されない。
 ここで、操縦運動で現れる船速の左右方向成分ν’と無次元回頭角速度r’が伴流係数などの自航要素に及ぼす影響が直接ではなく、これらが船速u’やプロペラ荷重度τにおよぼす影響を通して考慮できると仮定すれば、複雑な操縦運動下での取り扱いが簡単化されて本実施の形態における手法が操縦運動中にも適用できる。
 具体的には、舵効きと船速応答を同時に満足するプロペラ回転数n’と補助推力係数fTAを本実施の形態における自由航走模型船試験方法によってあらかじめ船速の関数としてあらかじめ求めておいて、操縦運動中の船速に応じてプロペラ回転数n’と補助推力係数fTAを制御してやればよい。これによって、操縦運動中も従来の手法より操縦運動の相似性の近似度を向上できる。
 なお、プロペラ回転数も制御することで実船のプロペラ回転数一定状態だけでなくトルク一定と馬力一定、あるいは機関応答を模擬した実船の状態推定に基づいて舵効きと船速応答の相似性を実現できる。
<自由航走模型船試験装置>
 図13は、第2の実施の形態における自由航走模型船試験方法を実現するための自由航走模型船試験装置300を示す図である。
 自由航走模型船試験装置300の基本構成は、自由航走模型船試験装置100と同様であるが、プロペラ80及びプロペラ駆動部82を制御要素として含んで構成される。プロペラ駆動部82は、自由航走模型船10の主駆動系であるプロペラ80を駆動するためのモータを含む。プロペラ駆動部82は、サーボモータ等の回転数を制御可能なモータとすることが好適である。
 第1の実施の形態と同様に、自動追尾台車20の追尾によって自由航走模型船10の速度(船速)が測定され、制御コンピュータ26に入力される。制御コンピュータ26では、図12に示したように試験条件及び自由航走模型船10の速度に基づいて補助推力及びプロペラ回転数が設定され、設定された補助推力及びプロペラ回転数に応じた補助推力指令信号及びプロペラ回転数指令信号が生成される。補助推力指令信号は、第1の実施の形態と同様に、アナログ/パルス変換器12、モータ増幅器14を介してダクトファンモータ16に入力され、ダクトファンモータ16が駆動される。これにより、ダクトファンモータ16によって自由航走模型船10に対して所望の補助推力が与えられる。また、プロペラ回転数指令信号は、プロペラ駆動部82に入力され、これによりプロペラ80の回転数が制御される。
 また、図6や図7に示した自由航走模型船試験装置102,104のような構成にも同様に適用することができる。なお、自由航走模型船10の速度(船速)は、図6及び図7に示した構成の他、これらの説明に関連した段落0092,0094で述べた各種の手段で測定できる。
 本実施の形態によれば、風や波等の外力の影響が考慮された自由航走模型試験を実現することができる。これにより、外力下においても自由航走模型試験によって実船の基本性能を推定することができる。
 本発明における自由航走模型船試験方法及び自由航走模型船試験装置は、船舶のみならず、外力及び流体から抵抗を受けて自走する物体の運動性能の試験に適用することができる。例えば、船舶以外の浮体、水中航行体等の各種の模型を用いた自由航走試験に適用することができる。
 10 自由航走模型船、16 ダクトファンモータ、18 検力計、20 自動追尾台車、26 制御コンピュータ、30 自由航走模型船、32 主台車、34 副台車、36 回転盤、38 レール、70 船速検出器、72 船速情報受信器、74 船速検出器、80 プロペラ、82 プロペラ駆動部、100,102,104 自由航走模型船試験装置、200 荷重度変更試験装置(自由航走模型船試験装置)、300 自由航走模型船試験装置。

Claims (25)

  1.  プロペラと舵を有した自由航走可能な模型船を用いた自由航走模型船試験方法において、
     前記模型船に補助推力を付加する補助推力付加手段を、舵効きの相似性を確保するように前記模型船の船速に基づいて計算した補助推力の計算結果に応じて制御し、前記模型船に舵効きの相似性を確保する補助推力を付加することを特徴とする自由航走模型船試験方法。
  2.  舵直圧力に最も支配的な影響をおよぼす舵有効流入速度を用いて前記補助推力を計算することを特徴とする請求項1に記載の自由航走模型船試験方法。
  3.  前記補助推力の計算は、前記舵有効流入速度の前後方向成分uの無次元値u’に基づいて計算することを特徴とする請求項2に記載の自由航走模型船試験方法。
  4.  前記模型船と実船の双方の前記前後方向成分uの無次元値u’が等しくなる条件である
    Figure JPOXMLDOC01-appb-M000001

    Rs’:実船の舵有効流入速度の前後方向成分(無次元値u’:プロペラ回転数と船速の関数)
    Rm’:模型船の舵有効流入速度の前後方向成分(無次元値u’:プロペラ回転数と船速の関数)
    に基づいて前記補助推力を計算することを特徴とする請求項3に記載の自由航走模型船試験方法。
  5.  前記前後方向成分uの無次元値u’を、プロペラ前進率Jに基づいて、
    Figure JPOXMLDOC01-appb-M000002

    :舵有効流入速度の前後方向成分
    u:船速の前後方向成分
    1-w:伴流係数
    ε:舵位置の伴流係数とプロペラ位置の伴流係数の比
    η:プロペラ直径と舵高さの比
    κ:プロペラ後流の増速率に関する係数
    :推力係数
    J:プロペラ前進率
    に基づいて求めたことを特徴とする請求項4に記載の自由航走模型船試験方法。
  6.  前記前後方向成分uの無次元値u’を、プロペラ荷重度τに基づいて、
    Figure JPOXMLDOC01-appb-M000003

    :舵有効流入速度の前後方向成分
    u:船速の前後方向成分
    1-w:伴流係数
    ε:舵位置の伴流係数とプロペラ位置の伴流係数の比
    η:プロペラ直径と舵高さの比
    κ:プロペラ後流の増速率に関する係数
    :推力係数
    τ:プロペラ荷重度
    に基づいて求めたことを特徴とする請求項4に記載の自由航走模型船試験方法。
  7.  前記前後方向成分uの無次元値u’を、プロペラスリップ比sに基づいて、
    Figure JPOXMLDOC01-appb-M000004

    :舵有効流入速度の前後方向成分
    ε:舵位置の伴流係数とプロペラ位置の伴流係数の比
    η:プロペラ直径と舵高さの比
    κ:プロペラ後流の増速率に関する係数
    :推力係数
    L:船の長さ
    g:重力加速度
    P:プロペラピッチ
    D:プロペラ直径
    n:プロペラ回転数
    s:プロペラスリップ比
    に基づいて求めたことを特徴とする請求項4に記載の自由航走模型船試験方法。
  8.  前記模型船と前記実船の双方の前記前後方向成分uの無次元値u’から前記補助推力の摩擦抵抗修正量に対する補助推力係数fTAを求めたことを特徴とする請求項4から請求項7のうちのいずれか1項に記載の自由航走模型船試験方法。
  9.  前記補助推力係数fTAを前記摩擦抵抗修正量に掛けて前記補助推力を算出することを特徴とする請求項8に記載の自由航走模型船試験方法。
  10.  前記補助推力係数fTAを前記模型船の船速により補正することを特徴とする請求項8あるいは請求項9に記載の自由航走模型船試験方法。
  11.  外力下で変化する模型船の前記船速を検出し、実船の前記船速を基に前記模型船の前記プロペラのプロペラ回転数と前記補助推力を制御し、前記外力下における前記模型船の船速応答を考慮した舵効きを前記実船と相似にしたことを特徴とする請求項1に記載の自由航走模型船試験方法。
  12.  前記模型船の前記プロペラ回転数と前記補助推力を前記数式(1)及び
    Figure JPOXMLDOC01-appb-M000005

    :実船の推力減少率
    ’:実船のプロペラ推力(無次元値:プロペラ回転数と船速の関数)
    :模型船の推力減少率
    ’:模型船のプロペラ推力(無次元値:プロペラ回転数と船速の関数)
    TA:補助推力係数
    SFC’:摩擦修正に必要な力(無次元値:船速の関数)
    に基づいて導出される前記模型船のプロペラ回転数と補助推力係数fTAに基づき制御したことを特徴とする請求項11に記載の自由航走模型船試験方法。
  13.  プロペラ回転数一定、プロペラトルク一定、プロペラ出力一定、あるいは任意のプロペラ回転数変化を含む状態の前記実船を対象として、前記数式(1)及び前記数式(5)を基に前記模型船のプロペラ回転数と補助推力係数fTAを導出し、前記模型船のプロペラ回転数と補助推力を制御したことを特徴とする請求項12に記載の自由航走模型船試験方法。
  14.  舵を有した自由航走可能な模型船に補助推力を付加する補助推力付加手段と、
     前記模型船の船速を検出する船速検出手段と、
     前記船速と前記舵に流入する流れの舵有効流入速度に基づいて前記補助推力を計算する補助推力計算手段と、
     前記補助推力計算手段の計算結果に応じて補助推力付加手段を制御する制御手段を備え、
     前記模型船に前記舵有効流入速度に基づいた前記補助推力を付加することを特徴とする自由航走模型船試験装置。
  15.  前記補助推力計算手段は、前記舵有効流入速度の前後方向成分uの無次元値u’に基づいて前記補助推力を計算することを特徴とする請求項14に記載の自由航走模型船試験装置。
  16.  前記模型船と実船の双方の前記前後方向成分uの無次元値u’から前記補助推力の摩擦抵抗修正量に対する補助推力係数fTAを求めることを特徴とする請求項15に記載の自由航走模型船試験装置。
  17.  前記補助推力係数fTAを予め求めた前記摩擦抵抗修正量に掛けて前記補助推力を算出することを特徴とする請求項16に記載の自由航走模型船試験装置。
  18.  前記摩擦抵抗修正量は、実験で求めた値を用いることを特徴とする請求項16又は請求項17に記載の自由航走模型船試験装置。
  19.  船速の前後方向成分検出手段を備え、検出した船速の前後方向成分uに基づいて前記補助推力を計算することを特徴とする請求項15から請求項18のうちのいずれか1項に記載の自由航走模型船試験装置。
  20.  プロペラと舵を有した自由航走可能な模型船に補助推力を付加する補助推力付加手段と、
     前記模型船の船速を検出する船速検出手段と、
     実船の基本的性能推定と検出した前記船速に基づき前記プロペラのプロペラ回転数と前記補助推力付加手段の出力を制御する制御手段を備え、
     前記模型船の外力下における船速応答を考慮して舵効きを前記実船と相似にしたことを特徴とする自由航走模型船試験装置。
  21.  前記制御手段は、請求項11から請求項13のうちの1項に記載の自由航走模型船試験方法を実行したことを特徴とする請求項20に記載の自由航走模型船試験装置。
  22.  前記制御手段は、請求項12又は請求項13に記載の自由航走模型船試験方法により予め求めた前記模型船のプロペラ回転数と補助推力係数fTAの前記船速との関係を記憶して制御したことを特徴とする請求項20に記載の自由航走模型船試験装置。
  23.  前記補助推力付加手段を前記模型船に搭載し、
     前記模型船を追尾する追尾手段を設け、
     前記船速検出手段を前記追尾手段に搭載し、
     前記船速検出手段によって検出された前記船速をフィードバックして前記補助推力付加手段を制御することを特徴とする請求項14から請求項22のうちの1項に記載の自由航走模型船試験装置。
  24.  前記補助推力付加手段を前記模型船に搭載し、前記船速検出手段によって検出された前記模型船の船速をフィードバックして前記補助推力付加手段を制御することを特徴とする請求項14から請求項22のうちのいずれか1項に記載の自由航走模型船試験装置。
  25.  前記補助推力付加手段を前記模型船を追尾する追尾手段に設け、
     前記追尾手段として、X-Y-Z3次元直交座標系においてX軸方向に動く主台車と、この主台車上に設置されたY軸方向に動く副台車と、この副台車に設けたZ軸回りに回転する回転盤とを有した曳引車を用い、前記模型船の位置と方位に応じて前記主台車と前記副台車と前記回転盤を制御することを特徴とする請求項14から請求項22のうちのいずれか1項に記載の自由航走模型船試験装置。
PCT/JP2014/060555 2013-04-12 2014-04-11 自由航走模型船試験方法及び自由航走模型船試験装置 WO2014168250A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015511321A JP6351045B2 (ja) 2013-04-12 2014-04-11 自由航走模型船試験方法及び自由航走模型船試験装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-084224 2013-04-12
JP2013084224 2013-04-12

Publications (1)

Publication Number Publication Date
WO2014168250A1 true WO2014168250A1 (ja) 2014-10-16

Family

ID=51689650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060555 WO2014168250A1 (ja) 2013-04-12 2014-04-11 自由航走模型船試験方法及び自由航走模型船試験装置

Country Status (2)

Country Link
JP (1) JP6351045B2 (ja)
WO (1) WO2014168250A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156254A (ja) * 2016-03-03 2017-09-07 国立研究開発法人物質・材料研究機構 シグナル解析方法及び試料ガス識別方法
WO2017168492A1 (ja) * 2016-03-28 2017-10-05 ジャパンマリンユナイテッド株式会社 多軸船の馬力推定方法
CN115649381A (zh) * 2022-11-10 2023-01-31 武汉理工大学 适用于微气泡减阻技术的试验样机

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6425241B2 (ja) * 2014-10-09 2018-11-21 国立研究開発法人 海上・港湾・航空技術研究所 自由航走模型試験から実船の変動トルク又は変動推力を推定する方法及びそれに用いられる自由航走模型船試験装置
JP6562335B2 (ja) * 2014-10-09 2019-08-21 国立研究開発法人 海上・港湾・航空技術研究所 自由航走模型船の推進器関連特性を実船相似にする方法及び自由航走模型船の推進器関連特性実船相似装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174364A (ja) * 1999-12-21 2001-06-29 Sumitomo Heavy Ind Ltd 船舶の自由航走模型試験方法および装置
JP2012112878A (ja) * 2010-11-26 2012-06-14 National Maritime Research Institute 荷重度変更自走試験法および装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174364A (ja) * 1999-12-21 2001-06-29 Sumitomo Heavy Ind Ltd 船舶の自由航走模型試験方法および装置
JP2012112878A (ja) * 2010-11-26 2012-06-14 National Maritime Research Institute 荷重度変更自走試験法および装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156254A (ja) * 2016-03-03 2017-09-07 国立研究開発法人物質・材料研究機構 シグナル解析方法及び試料ガス識別方法
WO2017168492A1 (ja) * 2016-03-28 2017-10-05 ジャパンマリンユナイテッド株式会社 多軸船の馬力推定方法
CN115649381A (zh) * 2022-11-10 2023-01-31 武汉理工大学 适用于微气泡减阻技术的试验样机
CN115649381B (zh) * 2022-11-10 2024-04-30 武汉理工大学 适用于微气泡减阻技术的试验样机

Also Published As

Publication number Publication date
JPWO2014168250A1 (ja) 2017-02-16
JP6351045B2 (ja) 2018-07-04

Similar Documents

Publication Publication Date Title
JP6351045B2 (ja) 自由航走模型船試験方法及び自由航走模型船試験装置
Klinger et al. Control of an unmanned surface vehicle with uncertain displacement and drag
JP6562335B2 (ja) 自由航走模型船の推進器関連特性を実船相似にする方法及び自由航走模型船の推進器関連特性実船相似装置
WO2017099219A1 (ja) 水中航走体の経路設定方法、それを用いた水中航走体の最適制御方法及び水中航走体
EP3330171B1 (en) Apparatus for predicting a power consumption of a maritime vessel
KR101370649B1 (ko) 무인잠수정의 경로 제어방법
RU2442718C1 (ru) Способ определения гидродинамических параметров математической модели движения судна
JP7110290B2 (ja) 船舶の低速推進を制御するための方法およびシステム
JP5717130B2 (ja) 荷重度変更自走試験法および装置
JP3949932B2 (ja) 自律型水中航走体の航走制御装置
Chuang et al. Speed loss of a vessel sailing in oblique waves
CN105824036A (zh) 使用辅助水船对船舶进行位置锁定
Tsukada et al. An auxiliary thruster for free-running model ship test
Ueno et al. Estimation of stopping ability of full-scale ship using free-running model
Jiang et al. Study on the manoeuvre characteristics of a trimaran under different layouts by water-jet self-propulsion model test
Ueno et al. Rudder effectiveness correction for scale model ship testing
JP6425241B2 (ja) 自由航走模型試験から実船の変動トルク又は変動推力を推定する方法及びそれに用いられる自由航走模型船試験装置
Pereira et al. An experimental study of station keeping on an underactuated ASV
CN106767796B (zh) 类渡槽环境中无人船测距单元与惯性测量单元的融合算法
Hasselaar et al. Evaluation of an energy saving device via validation speed/power trials and full scale CFD investigation
Qiu et al. 3D motion model for the freefall lifeboat during its launching from a moving ship
Roncin et al. Dynamic simulation of two sailing boats in match racing
Kang et al. Installing single-propeller twin-rudder system with less asymmetric maneuvering motions
RU2493048C1 (ru) Способ определения гидродинамических параметров математической модели судна
Steenson et al. Maneuvering of an over-actuated autonomous underwater vehicle using both through-body tunnel thrusters and control surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015511321

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14783231

Country of ref document: EP

Kind code of ref document: A1