WO2014168161A9 - 高周波モジュール - Google Patents

高周波モジュール Download PDF

Info

Publication number
WO2014168161A9
WO2014168161A9 PCT/JP2014/060246 JP2014060246W WO2014168161A9 WO 2014168161 A9 WO2014168161 A9 WO 2014168161A9 JP 2014060246 W JP2014060246 W JP 2014060246W WO 2014168161 A9 WO2014168161 A9 WO 2014168161A9
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
filter
frequency module
matching element
external connection
Prior art date
Application number
PCT/JP2014/060246
Other languages
English (en)
French (fr)
Other versions
WO2014168161A1 (ja
Inventor
竹内壮央
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201480020688.8A priority Critical patent/CN105453428B/zh
Priority to JP2015511272A priority patent/JP6187583B2/ja
Publication of WO2014168161A1 publication Critical patent/WO2014168161A1/ja
Priority to US14/878,082 priority patent/US9602078B2/en
Publication of WO2014168161A9 publication Critical patent/WO2014168161A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0004Impedance-matching networks
    • H03H9/0009Impedance-matching networks using surface acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0566Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers
    • H03H9/0576Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers including surface acoustic wave [SAW] devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/48Coupling means therefor
    • H03H9/52Electric coupling means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6479Capacitively coupled SAW resonator filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0047Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks
    • H03H9/0052Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically cascaded
    • H03H9/0057Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically cascaded the balanced terminals being on the same side of the tracks

Definitions

  • the present invention relates to a high-frequency module including a plurality of filter elements.
  • a portable device or the like having a wireless communication function includes a filter circuit in order to pass only high-frequency signals having a desired frequency and attenuate high-frequency signals other than the desired frequency.
  • Patent Document 1 describes a filter circuit including a plurality of SAW filters. Specifically, in the filter circuit of Patent Document 1, a plurality of SAW filters are connected in series between an input terminal and an output terminal. A SAW filter is also connected between the connection line connecting the SAW filters connected in series and the ground.
  • the filter circuit described in Patent Document 1 has an inductor or a series circuit of inductors and capacitors (referred to as a correction circuit) connected in parallel to the series circuit of the SAW filter. Yes.
  • the correction circuit is set so that the high-frequency signal outside the pass band (suppression target signal) propagating through the circuit unit composed of the SAW filter group and the suppression target signal propagating through the correction circuit have the same amplitude and the phase is reversed. adjust.
  • the suppression target signal is canceled at the connection point between the circuit unit including the SAW filter group and the correction circuit, and is not output from the output terminal.
  • a correction circuit composed of an inductor or a series circuit of an inductor and a capacitor must be provided only for improving the attenuation characteristics, separately from the circuit unit composed of the SAW filter group having the main filter function.
  • the number of components of the filter circuit is increased, and the filter circuit is increased in size, which is not suitable for current portable terminals and the like that are required to be reduced in size.
  • An object of the present invention is to provide a high-frequency module having a small filter circuit with excellent attenuation characteristics outside the passband.
  • the present invention includes a first external connection terminal, a second external connection terminal, a filter unit connected between the first external connection terminal and the second external connection terminal, and the first external connection terminal or the second external connection.
  • the present invention relates to a high-frequency module including a matching element connected between at least one of the terminals and the filter unit, and has the following characteristics.
  • the filter unit includes a first terminal connected to the first external connection terminal, a second terminal connected to the second external connection terminal, and a plurality of filter elements connected in series between the first terminal and the second terminal. Is provided.
  • At least one of the intermediate connection portions connecting the filter elements and the matching element are inductively coupled or capacitively coupled.
  • a sub-propagation path is formed via an inductive coupling or capacitive coupling path generated by the connection unit and the matching element.
  • the sub-propagation path has different amplitude characteristics and phase characteristics from the main propagation path depending on the degree of coupling of inductive coupling or capacitive coupling.
  • the high-frequency module of the present invention preferably has the following configuration.
  • the connection portion and the matching element that are inductively coupled or capacitively coupled to each other are inductively coupled or capacitively coupled so that the impedance outside the pass band of the filter portion changes.
  • the high frequency module of the present invention preferably has the following configuration.
  • the connection portion and the matching element that are inductively coupled or capacitively coupled to each other are inductively coupled or capacitively coupled so that the attenuation pole frequency outside the pass band of the filter portion changes.
  • the attenuation pole frequency is adjusted as an adjustment mode of the attenuation characteristic.
  • the matching element is connected in series between the first external connection terminal and the first terminal, or connected in series between the second external connection terminal and the second terminal.
  • a series connection type matching element may be used.
  • the matching element is connected between the connection line connecting the first external connection terminal and the first terminal and the grant, or the second external connection terminal and the second terminal. It may be a shunt connection type matching element connected between a connection line for connecting to the ground.
  • connection modes of the matching elements show specific connection modes of the matching elements. By appropriately determining these connection modes, it is possible to appropriately adjust the above-described attenuation characteristics while appropriately performing impedance matching between the filter unit and the outside.
  • the connecting portion is composed of a linear conductor pattern.
  • connection portion can be realized with a simple structure, and the filter portion and the high-frequency module can be formed in a small size.
  • the high-frequency module according to the present invention further includes a third terminal and a second filter unit, and the second filter unit includes a first connection line connecting the first terminal and the filter element connected to the first terminal, and a second filter unit. You may be connected between 3 terminals.
  • the high frequency module of the present invention may have the following configuration.
  • the high-frequency module includes a flat plate-like filter substrate having IDT electrodes and connection portions forming the filter portion formed on the first main surface, and a flat plate-like surface facing the first main surface of the filter substrate with a space therebetween.
  • a cover layer, a connection electrode protruding from the first main surface and penetrating the cover layer, and a laminated substrate on which a matching element is mounted or formed are provided.
  • the filter substrate is arranged so that the first main surface side faces the mounting surface of the multilayer substrate.
  • the filter substrate is connected to the multilayer substrate via connection electrodes.
  • a high-frequency module can be realized with a filter unit made of WLP (Wafer Level Package) and a laminated substrate. Thereby, a high frequency module can be reduced in size.
  • WLP Wafer Level Package
  • the high frequency module of the present invention may have the following configuration.
  • the matching element is a mounting element mounted on the mounting surface of the multilayer substrate.
  • the connecting portion is disposed in the vicinity of the first side of the first main surface of the filter substrate.
  • the mountable element is mounted in the vicinity of the first side of the filter substrate.
  • This configuration shows a specific configuration example of a high-frequency module using WLP in the case where the matching element is a mounting type element. With this configuration, the matching element and the connection portion can be reliably coupled.
  • the high frequency module of the present invention preferably has the following configuration.
  • the matching element includes a rectangular parallelepiped housing and a spiral conductor formed in the housing and having a substantially rectangular outer periphery in plan view.
  • the matching element is arranged so that the long side of the housing is parallel to the first side of the filter substrate.
  • the high frequency module of the present invention may have the following configuration.
  • the matching element is composed of a conductor pattern formed on the mounting surface or inside of the multilayer substrate, and the conductor pattern and the connection portion are at least partially overlapped in plan view.
  • This configuration shows a specific configuration example of a high-frequency module using WLP in the case where the matching element is made of a conductor pattern formed on a multilayer substrate.
  • the matching element and the connection portion can be reliably coupled.
  • the matching element is not mounted on the multilayer substrate as a mounting circuit element, there is no need for a planar space for mounting the matching element, and the planar shape of the high-frequency module can be reduced.
  • the high frequency module of the present invention may have the following configuration.
  • the high-frequency module includes a flat filter substrate in which an IDT electrode and a connection portion constituting a filter portion are formed on a first main surface, and a first main surface of the filter substrate disposed on the first main surface side of the filter substrate. And a flat plate-like filter mounting substrate on which the side is mounted.
  • the matching element is formed on the filter mounting substrate.
  • This configuration shows a case where the high-frequency module is realized by CSP (Chip Sized Package).
  • FIG. 5 is a circuit diagram showing a specific example of a matching element of the high-frequency module shown in FIGS. 1 to 4. It is a graph which shows the change of the passage characteristic of a high frequency module when changing the coupling degree of a matching element and a connection conductor.
  • FIG. 1 is a circuit block diagram showing a first circuit example of the high-frequency module according to the embodiment of the present invention.
  • FIG. 2 is a circuit block diagram showing a second circuit example of the high-frequency module according to the embodiment of the present invention.
  • FIG. 3 is a circuit block diagram showing a third circuit example of the high-frequency module according to the embodiment of the present invention.
  • FIG. 4 is a circuit block diagram showing a fourth circuit example of the high-frequency module according to the embodiment of the present invention.
  • FIG. 5A, FIG. 5B, FIG. 5C, and FIG. 5D are circuit diagrams showing specific examples of matching elements on the first external connection terminal side.
  • 5E, FIG. 5F, FIG. 5G, and FIG. 5H are circuit diagrams showing specific examples of matching elements on the second external connection terminal side.
  • the high-frequency modules 11, 12, 13, and 14 include a first external connection terminal P 1, a second external connection terminal P 2, and a filter unit 20.
  • the filter unit 20 is connected between the first external connection terminal P1 and the second external connection terminal P2.
  • the filter unit 20 includes a first terminal P21 and a second terminal P22.
  • the first terminal P21 is connected to the first external connection terminal P1 via a series connection type matching element or a shunt connection type matching element described later.
  • the second terminal P22 is connected to the second external connection terminal P2 via a series connection type matching element or a shunt connection type matching element described later.
  • the filter unit 20 includes a plurality of SAW resonators 201, 202, 203, 204, 205, 206, 207, 208 (hereinafter, when a plurality of SAW resonators are collectively described, a plurality of SAW resonators 201- 208). These SAW resonators correspond to the “filter element” of the present invention.
  • the plurality of SAW resonators 201 to 208 each have a resonance frequency and function as a band pass filter (BPF) having band pass characteristics individually.
  • BPF band pass filter
  • one end of the SAW resonator 201 is connected to the first terminal P21 via the connection conductor 301.
  • the other end of the SAW resonator 201 is connected to one end of the SAW resonator 202.
  • the other end of the SAW resonator 202 is connected to one end of the SAW resonator 203 via a connection conductor 302.
  • the other end of the SAW resonator 203 is connected to one end of the SAW resonator 204.
  • the other end of the SAW resonator 204 is connected to one end of the SAW resonator 205 via a connection conductor 303.
  • the other end of the SAW resonator 205 is connected to one end of the SAW resonator 206.
  • the other end of the SAW resonator 206 is connected to one end of the SAW resonator 207 via a connection conductor 304.
  • the other end of the SAW resonator 207 is connected to one end of the SAW resonator 208.
  • the other end of the SAW resonator 208 is connected to the second terminal P22 via the connection conductor 305.
  • connection conductors connections between the SAW resonators 201 and 202, between the SAW resonators 203 and 204, between the SAW resonators 205 and 206, and between the SAW resonators 207 and 208 are not particularly referred to as connection conductors. Can be regarded as a connection conductor. These connecting conductors correspond to the “connecting portion” of the present invention.
  • the filter unit 20 realizes desired band pass characteristics and attenuation characteristics outside the pass band as the filter unit 20 by combining the band pass characteristics and attenuation characteristics of the SAW resonators 201-208.
  • each high-frequency module has a specific circuit configuration as shown below.
  • a high frequency module 11 shown in FIG. 1 includes series connection type matching elements 41 and 42.
  • One of the matching elements 41 and 42 can be omitted.
  • the matching element 41 is connected between the first terminal P21 of the filter unit 20 and the first external connection terminal P1.
  • the matching element 41 is an inductor 41L connected in series between the first terminal P21 and the first external connection terminal P1 shown in FIG. 5A, or a matching element 41L shown in FIG.
  • the capacitor 41C is connected in series between the first terminal P21 and the first external connection terminal P1.
  • the element value (inductance or capacitance) of the matching element 41 is set to an element value that realizes impedance matching between the circuit connected to the first external connection terminal P1 side and the filter unit 20.
  • the matching element 42 is connected between the second terminal P22 of the filter unit 20 and the second external connection terminal P2.
  • the matching element 42 is an inductor 42L connected in series between the second terminal P22 and the second external connection terminal P2 shown in FIG. 5E, or the matching element 42 shown in FIG.
  • the capacitor 42C is connected in series between the two terminal P22 and the second external connection terminal P2.
  • the element value (inductance or capacitance) of the matching element 42 is set to an element value that realizes impedance matching between the circuit connected to the second external connection terminal P2 side and the filter unit 20.
  • At least one of the matching elements 41 and 42 is inductively coupled or capacitive with respect to at least one of the connection conductors 301, 302, 303, 304, and 305 of the filter unit 20, as indicated by a dotted arrow in FIG. Sexual coupling.
  • the matching element and the connection conductor are coupled to each other by the matching element and the connection conductor located at least via one SAW resonator.
  • the matching element 41 is coupled to at least one of the connection conductors 302, 303, 304, and 305.
  • the matching element 41 is the inductor 41L
  • the inductor 41L is inductively coupled or capacitively coupled to at least one of the connection conductors 302, 303, 304, and 305.
  • the matching element 41 is the capacitor 41C
  • the capacitor 41C is capacitively coupled to at least one of the connection conductors 302, 303, 304, and 305.
  • the matching element 42 is coupled to at least one of the connection conductors 301, 302, 303, and 304. If the matching element 42 is the inductor 42L, the inductor 42L is inductively coupled or capacitively coupled to at least one of the connection conductors 301, 302, 303, and 304. If the matching element 42 is the capacitor 42C, the capacitor 42C is capacitively coupled to at least one of the connection conductors 301, 302, 303, and 304.
  • the connecting conductor and the matching element to be coupled are connected in high frequency.
  • the matching element 41 is the inductor 41L and the inductor 41L and the connection conductor 304 are inductively coupled
  • an inductive coupling circuit having a mutual inductance M between the inductor 41L (matching element 41) and the connection conductor 304 is formed. Composed.
  • the high-frequency signal is not propagated between the first external connection terminal P1 and the second external connection terminal P2 only through the main propagation path having the filter unit 20 as a propagation path, and a part of the high-frequency signal is inductor 41L.
  • the inductive coupling circuit, and the sub-propagation path having the connection conductor 304 as a propagation path are also propagated.
  • the high-frequency module 11 becomes a combined transmission characteristic in which the transmission characteristic of the main propagation path and the transmission characteristic of the sub-propagation path are combined.
  • the amplitude and phase of the high-frequency signal propagating through the sub-propagation path can be adjusted by adjusting the coupling mode and coupling degree between the matching element to be coupled and the connection conductor.
  • the transmission characteristics of the sub-propagation path can be adjusted.
  • the transmission characteristics are, for example, attenuation characteristics (amplitude characteristics) and phase characteristics.
  • the transmission characteristic as the high frequency module 11 can be adjusted. For example, as will be described later, attenuation characteristics outside the passband can be adjusted.
  • the effective inductance value of the inductor 41L (matching element 21) can be increased by the mutual induction component due to the above-described coupling. Therefore, the line length of the inductor 41L can be further shortened.
  • the high frequency module 12 shown in FIG. 2 includes shunt connection type matching elements 43 and 44.
  • One of the matching elements 43 and 44 can be omitted.
  • the matching element 43 is connected between the connection line 401 that connects the first terminal P21 of the filter unit 20 and the first external connection terminal P1 and the ground.
  • the matching element 43 is an inductor 43L connected between the connection line 401 connecting the first terminal P21 and the first external connection terminal P1 shown in FIG.
  • the capacitor 43C is connected between the connection line 401 that connects the first terminal P21 and the first external connection terminal P1 shown in FIG. 5D and the ground.
  • the element value (inductance or capacitance) of the matching element 43 is set to an element value that realizes impedance matching between the circuit connected to the first external connection terminal P1 side and the filter unit 20.
  • the matching element 44 is connected between the connection line 402 that connects the second terminal P22 of the filter unit 20 and the second external connection terminal P2 and the ground. More specifically, the matching element 44 is an inductor 44L connected between the connection line 402 connecting the second terminal P22 and the second external connection terminal P2 shown in FIG. The capacitor 44C is connected between the connection line 402 that connects the second terminal P22 and the second external connection terminal P2 shown in FIG. 5H and the ground.
  • the element value (inductance or capacitance) of the matching element 44 is set to an element value that realizes impedance matching between the circuit connected to the second external connection terminal P2 side and the filter unit 20.
  • At least one of the matching elements 43 and 44 is inductively coupled or capacitive with respect to at least one of the connection conductors 301, 302, 303, 304, and 305 of the filter unit 20, as indicated by a dotted arrow in FIG. Sexual coupling.
  • the matching element and the connection conductor are coupled to each other by the matching element and the connection conductor located at least via one SAW resonator.
  • the matching element 43 is coupled to at least one of the connection conductors 302, 303, 304, and 305. If the matching element 43 is the inductor 43L, the inductor 43L is inductively coupled or capacitively coupled to at least one of the connection conductors 302, 303, 304, and 305. If the matching element 43 is the capacitor 43C, the capacitor 43C is capacitively coupled to at least one of the connection conductors 302, 303, 304, and 305.
  • the matching element 44 is coupled to at least one of the connection conductors 301, 302, 303, and 304. If the matching element 44 is the inductor 44L, the inductor 44L is inductively coupled or capacitively coupled to at least one of the connection conductors 301, 302, 303, and 304. If the matching element 44 is the capacitor 44C, the capacitor 44C is capacitively coupled to at least one of the connection conductors 301, 302, 303, and 304.
  • the connecting conductor to be coupled and the matching element are connected in a high frequency manner.
  • a matching element 44 capacitor 44C if the connection conductor 301 and capacitor 44C are capacitively coupled, the capacitive coupling circuit having a coupling capacitor C M between the capacitor 44C (matching element 44) and the connection conductor 301 Is configured.
  • the high-frequency signal is not propagated between the first external connection terminal P1 and the second external connection terminal P2 only through the main propagation path having the filter unit 20 as a propagation path, and part of the high-frequency signal is connected to the connection conductor. It is also propagated to the sub-propagation path having the propagation path 301, the capacitive coupling circuit and the capacitor 44C (matching element 44).
  • the high-frequency module 12 becomes a combined transmission characteristic in which the transmission characteristic of the main propagation path and the transmission characteristic of the sub-propagation path are combined.
  • the high-frequency module 13 shown in FIG. 3 includes a series connection type matching element 41 and a shunt connection type matching element 44.
  • the matching element 41 is connected between the first terminal P21 of the filter unit 20 and the first external connection terminal P1.
  • the matching element 41 is an inductor 41L connected in series between the first terminal P21 and the first external connection terminal P1 shown in FIG. 5A, or a matching element 41L shown in FIG.
  • the capacitor 41C is connected in series between the first terminal P21 and the first external connection terminal P1.
  • the element value (inductance or capacitance) of the matching element 41 is set to an element value that realizes impedance matching between the circuit connected to the first external connection terminal P1 side and the filter unit 20.
  • the matching element 44 is connected between the connection line 402 that connects the second terminal P22 of the filter unit 20 and the second external connection terminal P2 and the ground. More specifically, the matching element 44 is an inductor 44L connected between the connection line 402 connecting the second terminal P22 and the second external connection terminal P2 shown in FIG. The capacitor 44C is connected between the connection line 402 that connects the second terminal P22 and the second external connection terminal P2 shown in FIG. 5H and the ground.
  • the element value (inductance or capacitance) of the matching element 44 is set to an element value that realizes impedance matching between the circuit connected to the second external connection terminal P2 side and the filter unit 20.
  • At least one of the matching elements 41 and 44 is inductively coupled or capacitive with respect to at least one of the connection conductors 301, 302, 303, 304, and 305 of the filter unit 20 as indicated by a dotted arrow in FIG. Sexual coupling.
  • the matching element and the connection conductor are coupled to each other by the matching element and the connection conductor located at least via one SAW resonator.
  • the matching element 41 is coupled to at least one of the connection conductors 302, 303, 304, and 305.
  • the matching element 41 is the inductor 41L
  • the inductor 41L is inductively coupled or capacitively coupled to at least one of the connection conductors 302, 303, 304, and 305.
  • the matching element 41 is the capacitor 41C
  • the capacitor 41C is capacitively coupled to at least one of the connection conductors 302, 303, 304, and 305.
  • the matching element 44 is coupled to at least one of the connection conductors 301, 302, 303, and 304. If the matching element 44 is the inductor 44L, the inductor 44L is inductively coupled or capacitively coupled to at least one of the connection conductors 301, 302, 303, and 304. If the matching element 44 is the capacitor 44C, the capacitor 44C is capacitively coupled to at least one of the connection conductors 301, 302, 303, and 304.
  • the high-frequency module 13 has a combined transmission characteristic in which the transmission characteristic of the main propagation path through the filter unit 20 and the transmission characteristic of the sub-propagation path through the coupling unit are combined. Even with the high-frequency module 13 having such a configuration, a desired attenuation characteristic can be realized with a simpler configuration than the conventional configuration, similarly to the high-frequency modules 11 and 12 described above.
  • the high-frequency module 14 shown in FIG. 4 includes a shunt connection type matching element 42 and a series connection type matching element 43.
  • the matching element 42 is connected between the second terminal P22 of the filter unit 20 and the second external connection terminal P2.
  • the matching element 42 is an inductor 42L connected in series between the second terminal P22 and the second external connection terminal P2 shown in FIG. 5E, or the matching element 42 shown in FIG.
  • the capacitor 42C is connected in series between the two terminal P22 and the second external connection terminal P2.
  • the element value (inductance or capacitance) of the matching element 42 is set to an element value that realizes impedance matching between the circuit connected to the second external connection terminal P2 side and the filter unit 20.
  • the matching element 43 is connected between the connection line 401 that connects the first terminal P21 of the filter unit 20 and the first external connection terminal P1 and the ground.
  • the matching element 43 is an inductor 43L connected between the connection line 401 connecting the first terminal P21 and the first external connection terminal P1 shown in FIG.
  • the capacitor 43C is connected between the connection line 401 that connects the first terminal P21 and the first external connection terminal P1 shown in FIG. 5D and the ground.
  • the element value (inductance or capacitance) of the matching element 43 is set to an element value that realizes impedance matching between the circuit connected to the first external connection terminal P1 side and the filter unit 20.
  • At least one of the matching elements 42 and 43 is inductively coupled or capacitive with respect to at least one of the connection conductors 301, 302, 303, 304, and 305 of the filter unit 20 as indicated by a dotted arrow in FIG. 4.
  • the matching element and the connection conductor are coupled to each other by the matching element and the connection conductor located at least via one SAW resonator.
  • the matching element 42 is coupled to at least one of the connection conductors 301, 302, 303, and 304. If the matching element 42 is the inductor 42L, the inductor 42L is inductively coupled or capacitively coupled to at least one of the connection conductors 301, 302, 303, and 304. If the matching element 42 is the capacitor 42C, the capacitor 42C is capacitively coupled to at least one of the connection conductors 301, 302, 303, and 304.
  • the matching element 43 is coupled to at least one of the connection conductors 302, 303, 304, and 305. If the matching element 43 is the inductor 43L, the inductor 43L is inductively coupled or capacitively coupled to at least one of the connection conductors 302, 303, 304, and 305. If the matching element 43 is the capacitor 43C, the capacitor 43C is capacitively coupled to at least one of the connection conductors 302, 303, 304, and 305.
  • the high-frequency module 14 has a combined transmission characteristic in which the transmission characteristic of the main propagation path through the filter unit 20 and the transmission characteristic of the sub-propagation path through the coupling unit are combined. Even with the high-frequency module 14 having such a configuration, a desired attenuation characteristic can be realized with a simpler configuration than the conventional configuration, similarly to the high-frequency modules 11, 12, and 13 described above.
  • FIG. 6 is a graph showing changes in pass characteristics of the high-frequency module when the degree of coupling between the matching element and the connection conductor is changed.
  • the horizontal axis in FIG. 6 indicates the frequency
  • the vertical axis in FIG. 6 indicates the attenuation amount of the signal propagating from the first external connection terminal P1 to the second external connection terminal P2.
  • the characteristic of the dotted line shown in FIG. 6 shows a case where the inductive coupling is weaker and the capacitive coupling is stronger than the characteristic of the solid line. 6 indicates a case where the inductive coupling is stronger and the capacitive coupling is weaker than the solid line characteristics.
  • a SAW resonator is connected between the connection position of the SAW resonators 202 and 203 of the filter unit 20 and the ground, and the SAW resonator is connected between the connection position of the SAW resonators 204 and 205 and the ground.
  • a case is shown in which a resonator is connected and a ladder structure in which the SAW resonator is connected between the connection position of the SAW resonators 206 and 207 and the ground is shown.
  • the high-frequency module in the present embodiment is a band-pass filter whose pass band is the 800 MHz band.
  • the stronger the inductive coupling and the weaker the capacitive coupling the higher the frequency of the attenuation pole that appears on the higher frequency side of the passband.
  • the weaker the inductive coupling and the stronger the capacitive coupling the lower the frequency of the attenuation pole appearing on the high frequency side of the passband.
  • the frequency of the attenuation pole in FIG. 6 is a peak frequency in the approximate center of the frequency axis.
  • the attenuation characteristics on the high frequency side of the pass band can be changed. For example, the stronger the capacitive coupling and the weaker the inductive coupling, the smaller the attenuation near the passband, but the greater the attenuation at the frequency of the attenuation pole.
  • the capacitive coupling becomes weaker and the inductive coupling becomes stronger the amount of attenuation near the passband can be increased.
  • the frequency position, frequency width, and insertion loss of the passband hardly change without being affected by the strength of inductive coupling and capacitive coupling.
  • FIG. 7 is an equivalent circuit diagram of a high-frequency module having a duplexer configuration.
  • the high-frequency module 101 includes a filter unit 21, a first external connection terminal P1, a second external connection terminal P2, and a third external connection terminal that also serves as the third terminals P31 and P32 of the filter unit 21.
  • the first external connection terminal P1 is connected to an antenna.
  • the second external connection terminal P2 is connected to the transmission circuit.
  • the third external connection terminals (third terminals P31 and P32) are connected to the receiving circuit.
  • the filter 21 includes a first terminal P21 ', a second terminal P22, third terminals P31 and P32, a fourth terminal P23, and a fifth terminal P24.
  • the first terminal P21 ' is connected to the first external connection terminal P1 via the connection line 401.
  • An inductor 43L corresponding to the above-described matching element is connected between the connection line 401 and the ground.
  • the second terminal P22 is connected to the second external connection terminal P2 through the connection line 402.
  • a plurality of SAW resonators 201, 202, 203, 204, 205, 206 are connected in series between the first terminal P21 'and the second terminal P22.
  • one end of the SAW resonator 201 is connected to the first terminal P ⁇ b> 21 ′ via the connection conductor 301.
  • the other end of the SAW resonator 201 is connected to one end of the SAW resonator 202.
  • the other end of the SAW resonator 202 is connected to one end of the SAW resonator 203 via a connection conductor 302.
  • the other end of the SAW resonator 203 is connected to one end of the SAW resonator 204.
  • the other end of the SAW resonator 204 is connected to one end of the SAW resonator 205 via a connection conductor 303.
  • the other end of the SAW resonator 205 is connected to one end of the SAW resonator 206.
  • the other end of the SAW resonator 206 is connected to the second terminal P22 via a connection conductor 304.
  • one end of the SAW resonator 211 is connected to a connection point between the SAW resonator 202 and the SAW resonator 203, in other words, a predetermined position of the connection conductor 302, and the other end of the SAW resonator 211 is connected to the fourth terminal.
  • the fourth terminal P23 is connected to the ground via the inductor 50.
  • a connection point between the SAW resonator 204 and the SAW resonator 205 in other words, a predetermined position of the connection conductor 303 is connected to one end of the SAW resonator 212, and the other end of the SAW resonator 212 is connected to the fifth terminal P24. It is connected to the.
  • a connection point between the SAW resonator 206 and the second terminal P22 in other words, a predetermined position of the connection conductor 304 is connected to one end of the SAW resonator 213, and the other end of the SAW resonator 213 is connected to the fifth terminal P24. It is connected.
  • the fifth terminal P24 is connected to the ground via the inductor 60.
  • the filter unit 21 combines the bandpass characteristics and attenuation characteristics of the SAW resonators 201-208, 211, 212, and 213 between the first terminal P21 ′ and the second terminal P22.
  • a desired first band pass characteristic between the first and second terminals of the filter unit 21 and a first attenuation characteristic outside the first pass band are realized.
  • a SAW resonator 211 and longitudinally coupled SAW resonators 231 and 232 are connected in series.
  • the filter unit 21 combines the band-pass characteristics and the attenuation characteristics of the SAW resonators 221, 231, and 232 between the first terminal P21 ′ and the third terminals P31 and P32, thereby obtaining a filter.
  • a desired second band pass characteristic between the first and third terminals of the unit 21 and a second attenuation characteristic outside the second pass band are realized.
  • the second pass band is a frequency band different from the first pass band, and the second pass band is set to be within the attenuation band range outside the first pass band.
  • the filter unit 21 functions as a duplexer having the first terminal P21 'as a common terminal and the second terminal P22 and the third terminals P31 and P32 as individual terminals.
  • any of the connection conductors 302, 303, and 304 and the inductor 43L are inductively coupled.
  • the first attenuation characteristic can be adjusted by adjusting the degree of coupling.
  • the bandwidth and the amount of attenuation of the frequency band in which the amount of attenuation in the first attenuation characteristic is large can be adjusted so as to overlap the second passband. This can be achieved by selecting the connection conductors 302, 303, and 304 to be coupled to the inductor 43L and adjusting the degree of coupling between the coupled connection conductor and the inductor 43L.
  • FIG. 8 is a graph showing a change in isolation between the second external connection terminal and the third external connection terminal of the high-frequency module when the degree of coupling between the matching element and the connection conductor is changed.
  • the horizontal axis in FIG. 8 indicates the frequency
  • the vertical axis in FIG. 8 indicates the amount of isolation.
  • FIG. 8 shows that the lower the isolation amount, the stronger the isolation between the second and third terminals.
  • the dotted line characteristics shown in FIG. 8 indicate a case where the inductive coupling is weaker and the capacitive coupling is stronger than the solid line characteristics.
  • the characteristic of the broken line shown in FIG. 8 shows the case where the inductive coupling is stronger and the capacitive coupling is weaker than the characteristic of the solid line.
  • the isolation characteristics between the second and third terminals can be appropriately adjusted. That is, the isolation characteristic between the transmission circuit and the reception circuit can be optimized.
  • the high-frequency module having the above configuration can be realized by the following structure.
  • an example in which the high-frequency module 101 having the above-described duplexer configuration is structurally realized will be described.
  • FIG. 9 is a conceptual side view showing the main structure of the high-frequency module.
  • the high-frequency module 101 includes a multilayer substrate 100, a filter substrate 200, a cover layer 290, a side cover layer 291, and a mounting circuit element 430.
  • the laminated substrate 100 is formed by laminating a plurality of dielectric layers.
  • a predetermined pattern of electrodes is formed on the surface 100 ⁇ / b> S and the inner layer of the multilayer substrate 100, and wiring patterns and inductors 50 and 60 excluding the filter portion 21 of the high-frequency module 101 are formed.
  • External connection electrodes are formed on the bottom surface 100R of the multilayer substrate 100, and the first external connection terminal P1, the second external connection terminal P2, and the third external connection terminal described above are realized by these external connection electrodes.
  • the filter unit 21 is formed by the filter substrate 200, the cover layer 290, the side cover layer 291, the connection electrode 293, and the mounting electrode 294.
  • the filter substrate 200 is a flat piezoelectric substrate.
  • a filter electrode is formed on the first main surface of the filter substrate 200.
  • the filter electrode is, for example, a so-called IDT electrode.
  • IDT electrode an electrode pattern for realizing each connection conductor including the connection conductor 304 is formed on the first main surface of the filter substrate 200.
  • a flat cover layer 290 is disposed on the first main surface side of the filter substrate 200.
  • the cover layer 290 is made of a flat insulating material and has the same shape as the filter substrate 200 in plan view. Further, the cover layer 290 is disposed so as to overlap the filter substrate 200 in plan view, and is disposed at a predetermined distance from the first main surface of the filter substrate 200.
  • a side cover layer 291 is disposed between the first main surface of the filter substrate 200 and the cover layer 290.
  • the side cover layer 291 is also made of an insulating material, and the filter substrate 200 and the cover layer are viewed in plan view. Over the entire circumference of 290, it is formed only within a predetermined width range from the outer peripheral end to the inside. That is, the cover layer 290 has a frame-like structure having an opening at the center.
  • the cover layer 290 and the side cover layer 291 the region where the filter electrode on the first main surface of the filter substrate 200 is formed is the filter substrate 200, the cover layer 290, and the side cover layer 291. Is disposed in the sealed space 292. As a result, the resonance characteristics of the SAW resonator can be improved, and the desired characteristics as a filter can be accurately realized.
  • connection electrode 293 has a shape in which one end is in contact with the first main surface of the filter substrate 200 and the other end is exposed on the surface of the cover layer 290 opposite to the filter substrate 200 side. At this time, the connection electrode 293 is formed so as to penetrate the side cover layer 291 and the cover layer 290. One end of the connection electrode 293 is connected to an electrode pattern formed on the first main surface of the filter substrate 200.
  • the mounting electrode 294 is connected to the other end of the connection electrode 293 and formed in a shape protruding from the surface of the cover layer 290 opposite to the filter substrate 200 side.
  • the connection electrode 293 and the mounting electrode 294 By providing a plurality of sets of the connection electrode 293 and the mounting electrode 294, the first terminal P21 ′, the second terminal P22, the third terminals P31 and P32, the fourth terminal P23, and the fifth terminal of the filter unit 21 described above. P24 is realized.
  • a bump may be formed on the other end of the connection electrode 293 using solder, Au, or the like, and connected to the mounting electrode 294 via the bump.
  • the filter unit 21 has a so-called WLP (Wafer Level Package) structure, and the filter unit 21 can be formed in a small size.
  • WLP Wafer Level Package
  • the WLP structure filter unit 21 is mounted on the top surface (mounting surface) 100S of the multilayer substrate 100. Thereby, the filter unit 21 is connected to the first external connection terminal P1, the second external connection terminal P2, and the third external connection terminal.
  • the inductor 43L is realized by the mounted circuit element 430.
  • the mounting circuit element 430 includes a rectangular parallelepiped housing made of an insulating material, and a spiral electrode serving as the inductor 43L is formed inside the housing.
  • the spiral electrode is realized by a tubular linear electrode and an interlayer connection electrode that extend along the outer periphery of the casing and are partially cut.
  • the linear electrodes of each layer are connected to form one linear electrode by an interlayer connection electrode. Both ends of the spiral electrode are connected to external connection electrodes formed on opposite end surfaces of the casing.
  • the mounting circuit element 430 having such a configuration is mounted on the top surface (mounting surface) 100S of the multilayer substrate 100 in the same manner as the filter unit 21.
  • a connection line between the first terminal P21 ′ of the filter unit 21 and the first external connection terminal P1 is formed on the top surface 100S and inside of the multilayer substrate 100, and a ground electrode is formed inside the multilayer substrate 100.
  • the mounting circuit element 430 is connected to a mounting land. Accordingly, it is possible to realize a structure in which the inductor 43L is connected between the connection line between the first terminal P21 'of the filter unit 21 and the first external connection terminal P1 and the ground.
  • the inductive coupling between the inductor 43L and a predetermined connection conductor of the filter unit 21 is obtained by disposing the mounting circuit element 430 that realizes the inductor 43L in the vicinity of the filter unit 21 having the WLP structure. Can do.
  • the electrode pattern constituting the filter unit 21 has a structure as shown in FIG. 10, for example.
  • FIG. 10 is a conceptual plan view showing the main structure of the high-frequency module. Specifically, the IDT electrode constituting the SAW resonators 201-206, 211, 212, 213, and 221 and the IDT electrode constituting the longitudinally coupled SAW resonators 231 and 232 are formed on the first main surface of the filter substrate 200. And the electrode pattern which comprises each connection conductor is formed. In addition, land electrodes constituting the terminals P21 ', P22, P23, and P24 are also formed. The IDT electrode, the electrode pattern constituting the connection conductor, and the land electrode are formed in a predetermined pattern configuration so as to realize the circuit configuration shown in FIG.
  • the electrode pattern constituting the connection conductor 304 is formed in the vicinity of the first end side of the filter substrate 200 in a shape extending along the first end side.
  • the mounted circuit element 430 is mounted at a position close to the first end side of the filter substrate 200.
  • the inductor 43L made of a spiral electrode of the mounting circuit element 430 and the connecting conductor 304 made of a linear electrode pattern are brought close to each other, so that inductive coupling is generated as shown by a thick dotted line arrow in FIG. be able to.
  • the arrangement position of the mounting circuit element 430 is changed on the top surface 100S of the multilayer substrate 100 as shown by the thin broken line arrows in FIG.
  • the distance between the inductor 43L made of the spiral electrode of the mounting circuit element 430 and the connection conductor 304 made of a linear electrode pattern and the length of the electrode extending oppositely can be adjusted.
  • FIG. 10 shows an example in which the long side surface of the mounting circuit element 430 and the first end side of the filter substrate 200 are arranged in parallel.
  • the short side surface (end surface on which the external connection electrode is formed) of the mounting circuit element 430 and the first end surface of the filter substrate 200 may be arranged in parallel.
  • by arranging the longitudinal side surface of the mounting circuit element 430 and the first end side of the filter substrate 200 in parallel stronger inductive coupling can be realized more easily.
  • FIG. 10 shows an example in which the mounting circuit element 430 is mounted so that the center axis of the spiral electrode is orthogonal to the top surface 100S. However, the center axis of the spiral electrode is parallel to the top surface 100S.
  • the mounting circuit element 430 may be mounted.
  • FIG. 11 is a conceptual side view showing the main structure of the high-frequency module.
  • the inductor 43L is not realized by a mounted circuit element, but is realized by an electrode pattern formed in the multilayer substrate 100.
  • the configuration of the filter unit 21 is the same as that of the high-frequency module 101 shown in FIGS.
  • an inductor 43L made of an electrode pattern of a spiral electrode is formed.
  • the spiral electrode is realized by a tubular linear electrode formed on a plurality of dielectric layers constituting the multilayer body 100 and partly divided and an interlayer connection electrode.
  • the linear electrodes of the respective dielectric layers are connected in the stacking direction by interlayer connection electrodes, and are connected so as to become one linear electrode. With this configuration, it is possible to realize a spiral electrode having a central axis along the stacking direction.
  • One end of the spiral electrode constituting the inductor 43L is connected via a via conductor 431V to a land electrode on which the mounting electrode 294 serving as the first terminal P21 'of the filter unit 21 is mounted.
  • the land electrode is formed on the top surface 100 ⁇ / b> S of the multilayer substrate 100.
  • the other end of the spiral electrode constituting the inductor 43L is connected to an internal ground pattern formed near the bottom surface 100R in the multilayer substrate 100 via a via conductor 432V.
  • the spiral electrode that constitutes the inductor 43L is formed so that at least a portion thereof overlaps with the electrode pattern that constitutes the connection conductor 304 of the filter portion 21 in plan view.
  • the thick broken line arrow in FIG. 11 is formed between the inductor 43L formed of a spiral electrode in the multilayer substrate 100 and the connection conductor 304 formed of a linear electrode pattern formed on the first main surface of the filter substrate 200.
  • inductive binding can occur.
  • the inductor 43L and the connection conductor are changed by changing the distance between the spiral electrode constituting the inductor 43L and the electrode pattern constituting the connection conductor 304 of the filter unit 21 and the overlapping area of the spiral electrode and the electrode pattern.
  • the degree of coupling with 304 can be adjusted.
  • the attenuation characteristic of the high-frequency module 101A can be adjusted, and the desired attenuation characteristic can be realized more accurately.
  • the inductor 43L is not a mounted circuit element, a region for mounting the mounted circuit element may not be provided on the top surface 100S of the multilayer substrate 100. Thereby, the area which planarly viewed the multilayer substrate 100 can be reduced, and the planar area of the high-frequency module 101A can be reduced.
  • FIG. 12 is a conceptual side view showing the main structure of the high-frequency module.
  • the high frequency module 101B shown in FIG. 12 is realized by a so-called CSP (Chip Sized Package) structure.
  • CSP Chip Sized Package
  • the high frequency module 101B includes a filter substrate 200.
  • the filter substrate 200 is formed with the electrode pattern constituting each connection conductor including the filter electrode that realizes the filter unit 21 and the connection conductor 304.
  • the high-frequency module 101B further includes a filter mounting substrate 280.
  • the filter mounting substrate 280 is made of, for example, an alumina substrate, and has a larger area in plan view than the filter substrate 200 by a predetermined amount.
  • the filter substrate 200 is mounted on the filter mounting substrate 280 by the bump conductor 281 so that the first main surface is on the filter mounting substrate 280 side.
  • An external connection bump conductor 282 is formed on the surface of the filter mounting substrate 280 opposite to the mounting surface of the filter substrate 200.
  • the filter mounting substrate 280 is formed with a circuit pattern and an inductor 43L excluding the filter portion 21 of the high-frequency module 101B (high-frequency module 101 as a circuit configuration).
  • a mold resin 283 is applied to the surface of the filter mounting substrate 280 on which the filter substrate 200 is mounted.
  • the electrode pattern constituting the filter electrode and the connection conductor can be prevented from being exposed to the external environment, the resonance characteristics of the SAW resonator can be improved, and the desired characteristics as the filter can be accurately realized. Can do.
  • the electrode pattern constituting the inductor 43L formed on the filter mounting substrate 280 and the electrode pattern realizing the connection conductor 304 formed on the filter substrate 200 are at least partially overlapped in plan view. Deploy. Accordingly, as shown in FIG. 12, inductive coupling can be generated between the electrode pattern constituting the inductor 43L and the electrode pattern realizing the connection conductor 304.
  • inductive coupling can be generated between the electrode pattern constituting the inductor 43L and the electrode pattern realizing the connection conductor 304.
  • the distance (distance) between the electrode pattern constituting the inductor 43L and the electrode pattern realizing the connection conductor 304 can be shortened, stronger inductive coupling can be easily realized. be able to.
  • the high frequency module 101B can be realized in a small size and a thin shape.
  • an inductor is used as a matching element.
  • the matching element is a capacitor
  • the same structure can be realized.
  • a mounting type multilayer capacitor element may be used.
  • the capacitor may be realized by a plurality of plate electrodes formed so as to face different layers in the multilayer substrate 100.
  • a capacitor may be realized by an electrode pattern formed on the filter mounting substrate 280.
  • connection conductor coupled to the matching element may be provided with at least one SAW resonator interposed therebetween.
  • the influence on the attenuation characteristic is increased. Can be bigger.
  • the matching element and the connection conductor having many SAW resonators interposed therebetween are coupled. The greater the effect, the greater the effect on the attenuation characteristics.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

高周波モジュール(11)は、フィルタ部(20)、第1、第2外部接続端子(P1,P2)を備える。フィルタ部(20)は第1、第2端子(P21,P22)と、複数のSAW共振子(201-208)を備える。複数のSAW共振子(201-208)は、接続導体によって接続されている。第1端子(P21)と第1外部接続端子(P1)との間には、整合素子(41)が接続されており、第2端子(P22)と第2外部接続端子(P2)との間には、整合素子(42)が接続されている。整合素子(41,42)の少なくとも一方は、SAW共振子を少なくとも一つ介した位置にある接続導体(301,302,303,304,305)の少なくとも一つに誘導性結合または容量性結合している。

Description

高周波モジュール
 本発明は、複数のフィルタ素子を備えた高周波モジュールに関するものである。
 無線通信機能を備える携帯機器等では、所望周波数の高周波信号のみを通過し、当該所望周波数以外の高周波信号を減衰させるために、フィルタ回路を備えている。
 例えば、特許文献1には、SAWフィルタを複数備えたフィルタ回路が記載されている。具体的に、特許文献1のフィルタ回路は、入力端子と出力端子との間に、複数のSAWフィルタが直列接続されている。直列接続された各SAWフィルタを接続する接続ラインとグランドとの間にも、それぞれSAWフィルタが接続されている。
 特許文献1に記載のフィルタ回路は、通過帯域外の減衰特性を改善するために、インダクタもしくはインダクタとキャパシタの直列回路(補正回路と称する)を、SAWフィルタの直列回路に対して並列接続している。この際、SAWフィルタ群からなる回路部を伝搬する通過帯域外の高周波信号(抑圧対象信号)と、補正回路を伝搬する抑圧対象信号が、振幅が一致し位相が逆転するように、補正回路を調整する。これにより、抑圧対象信号は、SAWフィルタ群からなる回路部と補正回路との接続点で相殺され、出力端子からは出力されない。
特開2012-109818号公報
 しかしながら、上述の構成では、主たるフィルタ機能を有するSAWフィルタ群からなる回路部とは別に、減衰特性を改善するためだけに、インダクタもしくはインダクタとキャパシタの直列回路からなる補正回路を設けなければならない。
 したがって、フィルタ回路の構成要素が多くなり、フィルタ回路が大型化してしまい、小型化が要求される現在の携帯端末等には不向きである。
 本発明の目的は、通過帯域外の減衰特性が優れた小型のフィルタ回路を有する高周波モジュールを提供することにある。
 この発明は、第1外部接続端子と、第2外部接続端子と、第1外部接続端子と第2外部接続端子との間に接続されたフィルタ部と、第1外部接続端子もしくは第2外部接続端子の少なくとも一方とフィルタ部との間に接続された整合素子と、を備えた高周波モジュールに関するものであり、次の特徴を有する。
 フィルタ部は、第1外部接続端子に接続する第1端子と、第2外部接続端子に接続する第2端子と、第1端子と第2端子との間に直列接続された複数のフィルタ素子とを備える。複数のフィルタ素子における一方端のフィルタ素子と第1端子とを接続する一方端の接続部、複数のフィルタ素子における他方端のフィルタ素子と第2端子とを接続する他方端の接続部、隣り合うフィルタ素子間を接続する中間の接続部の少なくとも一つと整合素子とは、誘導性結合もしくは容量性結合されている。
 この構成では、高周波信号が複数のフィルタ部を伝搬する主伝搬経路とは別に、接続部と整合素子によって生じる誘導性結合または容量性結合の経路を介する副伝搬経路が形成される。副伝搬経路は、誘導性結合または容量性結合の結合度によって主伝搬経路とは異なる振幅特性および位相特性となり、副伝搬経路の振幅特性および位相特性を調整することで、高周波モジュールとしての伝送特性を調整することができる。これにより、別途インダクタやキャパシタを設けなくても、高周波モジュールの伝送特性を調整し、例えば減衰特性を改善できる。
 また、この発明の高周波モジュールは、次の構成であることが好ましい。互いに誘導性結合もしくは容量性結合する接続部と整合素子は、フィルタ部の通過帯域外のインピーダンスが変化するように誘導性結合もしくは容量性結合されている。
 この構成に示すように、結合態様や結合度を適宜調整することで、通過帯域の特性を変化させることなく、通過帯以外の特性すなわち減衰特性を変化させることができる。
 また、この発明の高周波モジュールでは、次の構成であることが好ましい。互いに誘導性結合もしくは容量性結合する接続部と整合素子は、フィルタ部の通過帯域外の減衰極周波数が変化するように誘導性結合もしくは容量性結合されている。
 この構成では、減衰特性の調整態様として、減衰極周波数が調整される。
 また、この発明の高周波モジュールでは、整合素子は、第1外部接続端子と第1端子との間に直列接続されるか、もしくは、第2外部接続端子と第2端子との間に直列接続される、シリーズ接続型の整合素子であってもよい。
 また、この発明の高周波モジュールでは、整合素子は、第1外部接続端子と第1端子とを接続する接続ラインとグラントとの間に接続されるか、もしくは、第2外部接続端子と第2端子とを接続する接続ラインとグランドの間に接続される、シャント接続型の整合素子であってもよい。
 これらの構成では、整合素子の具体的な接続態様を示している。これらの接続態様を適宜決定することで、フィルタ部と外部とのインピーダンス整合を適切に行いながら、上述の減衰特性の調整も適切に行える。
 また、この発明の高周波モジュールでは、接続部は線状導体パターンからなることが好ましい。
 この構成では、接続部を簡素な構造で実現でき、フィルタ部及び高周波モジュールを小型に形成することができる。
 また、この発明の高周波モジュールでは、第3端子と、第2のフィルタ部とを備え、第2のフィルタ部が、第1端子および該第1端子に接続するフィルタ素子を接続する接続ラインと第3端子との間に接続されていてもよい。
 この構成では、第1端子を共通端子とし、第2端子及び第3端子を個別端子とする合成分波器を実現できる。
 また、この発明の高周波モジュールでは、次の構成であってもよい。高周波モジュールは、フィルタ部を構成するIDT電極および接続部が第1主面に形成された平板状のフィルタ基板と、該フィルタ基板の第1主面に対して間隔を空けて対向する平板状のカバー層と、第1主面から突出し、カバー層を貫通する形状の接続電極と、整合素子が実装または形成された積層基板と、を備える。フィルタ基板は、第1主面側が積層基板の実装面に向くように配置されている。フィルタ基板は、接続電極を介して積層基板に接続されている。
 この構成では、WLP(Wafer Level Package)からなるフィルタ部と積層基板とで高周波モジュールを実現できる。これにより、高周波モジュールを小型化できる。
 また、この発明の高周波モジュールでは、次の構成であってもよい。整合素子は、積層基板の実装面に実装される実装型素子である。接続部は、フィルタ基板の第1主面における第1辺の近傍に配置されている。実装型素子は、フィルタ基板の第1辺の近傍に実装されている。
 この構成では、整合素子が実装型素子の場合におけるWLPを用いた高周波モジュールの具体的な構成例を示している。この構成により、整合素子と接続部との結合を確実に実現できる。
 また、この発明の高周波モジュールでは、次の構成であることが好ましい。整合素子は、直方体形状の筐体と、該筐体内に形成され平面視して略長方形の外周形からなるスパイラル導体と、を備える。整合素子は、筐体の長辺がフィルタ基板の第1辺に平行になるように、配置されている。
 この構成では、整合素子と接続部との結合を得やすく、所望とする結合量への調整も容易になる。
 また、この発明の高周波モジュールでは、次の構成であってもよい。整合素子は、積層基板の実装面または内部に形成された導体パターンからなり、該導体パターンと接続部は、平面視して少なくとも一部が重なっている。
 この構成では、整合素子が積層基板に形成された導体パターンからなる場合におけるWLPを用いた高周波モジュールの具体的な構成例を示している。この構成により、整合素子と接続部との結合を確実に実現できる。また、整合素子が実装型回路素子として積層基板に実装される態様ではないので、当該整合素子を実装するための平面的スペースが必要なく、高周波モジュールの平面形状を小さくすることができる。
 また、この発明の高周波モジュールでは、次の構成であってもよい。高周波モジュールは、フィルタ部を構成するIDT電極および接続部が第1主面に形成された平板状のフィルタ基板と、該フィルタ基板の第1主面側に配置され該フィルタ基板の第1主面側が実装された平板状のフィルタ実装用基板と、を備える。整合素子は、フィルタ実装用基板に形成されている。
 この構成では、高周波モジュールをCSP(Chip Sized Package)で実現する場合を示している。
 この発明によれば、優れた通過帯域外の減衰特性を備えた小型のフィルタ回路を有する高周波モジュールを実現することができる。
本発明の実施形態に係る高周波モジュールの第1回路例を示す回路ブロック図である。 本発明の実施形態に係る高周波モジュールの第2回路例を示す回路ブロック図である。 本発明の実施形態に係る高周波モジュールの第3回路例を示す回路ブロック図である。 本発明の実施形態に係る高周波モジュールの第4回路例を示す回路ブロック図である。 図1から図4に示す高周波モジュールの整合素子の具体例を示す回路図である。 整合素子と接続導体の結合度を変化させた時の高周波モジュールの通過特性の変化を示すグラフである。 デュプレクサ構成からなる高周波モジュールの等価回路図である。 整合素子と接続導体の結合度を変化させた時の高周波モジュールの第2外部接続端子と第3外部接続端子との間のアイソレーションの変化を示すグラフである。 高周波モジュールの第1の構造の主要構造を示す側面概念図である。 高周波モジュールの第1の構造の主要構造を示す平面概念図である。 高周波モジュールの第2の構造の主要構造を示す側面概念図である。 高周波モジュールの第3の構造の主要構造を示す側面概念図である。
 本発明の実施形態に係る高周波モジュールについて、図を参照して説明する。図1は本発明の実施形態に係る高周波モジュールの第1回路例を示す回路ブロック図である。図2は本発明の実施形態に係る高周波モジュールの第2回路例を示す回路ブロック図である。図3は本発明の実施形態に係る高周波モジュールの第3回路例を示す回路ブロック図である。図4は本発明の実施形態に係る高周波モジュールの第4回路例を示す回路ブロック図である。図5(A)、図5(B)、図5(C)、図5(D)は第1外部接続端子側の整合素子の具体例を示す回路図である。図5(E)、図5(F)、図5(G)、図5(H)は第2外部接続端子側の整合素子の具体例を示す回路図である。
 まず、図1から図4のそれぞれ示す高周波モジュール11,12,13,14に対して共通な回路構成について説明する。
 高周波モジュール11,12,13,14は、第1外部接続端子P1、第2外部接続端子P2、フィルタ部20を備える。フィルタ部20は、第1外部接続端子P1と第2外部接続端子P2との間に接続されている。
 フィルタ部20は、第1端子P21、第2端子P22を備える。第1端子P21は、後述するシリーズ接続型の整合素子もしくはシャント接続型の整合素子を介して第1外部接続端子P1に接続される。第2端子P22は、後述するシリーズ接続型の整合素子もしくはシャント接続型の整合素子を介して第2外部接続端子P2に接続される。
 フィルタ部20は、複数のSAW共振子201,202,203,204,205,206,207,208(以下、複数のSAW共振子をまとめて説明する場合には単純に複数のSAW共振子201-208と称する)を備える。これらSAW共振子が、本発明の「フィルタ素子」に相当する。
 複数のSAW共振子201-208は、それぞれに共振周波数を有し、それぞれ個別に帯域通過特性を有する帯域通過フィルタ(BPF)として機能する。複数のSAW共振子201-208は、第1端子P21と第2端子P22との間に直列接続されている。
 より具体的には、SAW共振子201の一方端は、接続導体301を介して第1端子P21に接続されている。SAW共振子201の他方端は、SAW共振子202の一方端に接続されている。
 SAW共振子202の他方端は、接続導体302を介してSAW共振子203の一方端に接続されている。SAW共振子203の他方端は、SAW共振子204の一方端に接続されている。
 SAW共振子204の他方端は、接続導体303を介してSAW共振子205の一方端に接続されている。SAW共振子205の他方端は、SAW共振子206の一方端に接続されている。
 SAW共振子206の他方端は、接続導体304を介してSAW共振子207の一方端に接続されている。SAW共振子207の他方端は、SAW共振子208の一方端に接続されている。
 SAW共振子208の他方端は、接続導体305を介して第2端子P22に接続されている。
 なお、ここでは、SAW共振子201,202間、SAW共振子203,204間、SAW共振子205,206間、SAW共振子207,208間の接続を、特に接続導体と称していないが、所定の長さの伝送路をもって接続する場合には、接続導体として見なすことができる。そして、これら接続導体が、本発明の「接続部」に相当する。
 フィルタ部20は、これらSAW共振子201-208の帯域通過特性および減衰特性を組み合わせることで、フィルタ部20としての所望の帯域通過特性および通過帯域外の減衰特性を実現している。
 このような高周波モジュール11,12,13,14の共通回路構成に対して、各高周波モジュールは、具体的に次に示すような回路構成からなる。
 (第1回路例)
 図1に示す高周波モジュール11は、シリーズ接続型の整合素子41,42を備える。なお、整合素子41,42の一方は、省略することができる。
 整合素子41は、フィルタ部20の第1端子P21と第1外部接続端子P1との間に接続されている。整合素子41は、具体的には、図5(A)に示す第1端子P21と第1外部接続端子P1との間に直列接続されたインダクタ41Lであったり、図5(B)に示す第1端子P21と第1外部接続端子P1との間に直列接続されたキャパシタ41Cである。整合素子41の素子値(インダクタンスまたはキャパシタンス)は、第1外部接続端子P1側に接続される回路とフィルタ部20とのインピーダンス整合を実現する素子値に設定されている。
 整合素子42は、フィルタ部20の第2端子P22と第2外部接続端子P2との間に接続されている。整合素子42は、具体的には、図5(E)に示す第2端子P22と第2外部接続端子P2との間に直列接続されたインダクタ42Lであったり、図5(F)に示す第2端子P22と第2外部接続端子P2との間に直列接続されたキャパシタ42Cである。整合素子42の素子値(インダクタンスまたはキャパシタンス)は、第2外部接続端子P2側に接続される回路とフィルタ部20とのインピーダンス整合を実現する素子値に設定されている。
 さらに、整合素子41,42の少なくとも一方は、図1の点線矢印に示すように、フィルタ部20の接続導体301,302,303,304,305の少なくとも一つに対して、誘導性結合または容量性結合している。この際、整合素子と接続導体は、少なくとも一つのSAW共振子を介した位置にある整合素子と接続導体同士で結合している。
 より具体的には、整合素子41は、接続導体302,303,304,305の少なくとも一つと結合している。例えば、整合素子41がインダクタ41Lであれば、インダクタ41Lは、接続導体302,303,304,305の少なくとも一つと誘導性結合または容量性結合している。整合素子41がキャパシタ41Cであれば、キャパシタ41Cは、接続導体302,303,304,305の少なくとも一つと容量性結合している。
 整合素子42は、接続導体301,302,303,304の少なくとも一つと結合している。整合素子42がインダクタ42Lであれば、インダクタ42Lは、接続導体301,302,303,304の少なくとも一つと誘導性結合または容量性結合している。整合素子42がキャパシタ42Cであれば、キャパシタ42Cは、接続導体301,302,303,304の少なくとも一つと容量性結合している。
 このような構成とすることで、結合する接続導体と整合素子は、高周波的に接続される。例えば、整合素子41がインダクタ41Lであり、インダクタ41Lと接続導体304とが誘導性結合した場合、インダクタ41L(整合素子41)と接続導体304との間に相互インダクタンスMを有する誘導性結合回路が構成される。これにより、高周波信号は、第1外部接続端子P1と第2外部接続端子P2との間で、フィルタ部20を伝搬経路とする主伝搬経路のみで伝搬されず、高周波信号の一部がインダクタ41L(整合素子41)、誘導性結合回路および接続導体304を伝搬経路とする副伝搬経路にも伝搬される。
 これにより、高周波モジュール11としては、主伝搬経路の伝送特性と副伝搬経路の伝送特性とが合成された合成伝送特性となる。
 ここで、結合する整合素子と接続導体との結合態様および結合度を調整することで、副伝搬経路を伝搬する高周波信号の振幅および位相を調整することができる。言い換えれば、副伝搬経路の伝送特性を調整することができる。伝送特性とは、例えば減衰特性(振幅特性)や位相特性である。
 さらに、この結合態様および結合度を調整することで、高周波モジュール11として通過させたい高周波信号(所望の高周波信号)の周波数帯域の伝送特性に殆ど影響を与えることなく、通過帯域外の減衰特性にのみ副伝搬経路を設置したことによる影響を与えることができる。
 そして、このように副伝搬経路の伝送特性を調整することで、高周波モジュール11としての伝送特性を調整できる。例えば、後述するように、通過帯域外の減衰特性を調整することができる。
 この際、従来構成のような高周波フィルタの伝送特性を調整するためのインダクタやキャパシタを別途必要としないので、所望の減衰特性を有する高周波フィルタを簡素な構成で実現できる。これにより、高周波フィルタを小型に形成することができる。
 さらに、上述の結合による相互誘導成分によって、インダクタ41L(整合素子21)の実効的なインダクタンス値を大きくさせることもできる。したがって、インダクタ41Lの線路長をより短くすることも可能である。
 (第2回路例)
 図2に示す高周波モジュール12は、シャント接続型の整合素子43,44を備える。なお、整合素子43,44の一方は、省略することができる。
 整合素子43は、フィルタ部20の第1端子P21と第1外部接続端子P1とを接続する接続ライン401とグランドとの間に接続されている。整合素子43は、具体的には、図5(C)に示す第1端子P21と第1外部接続端子P1とを接続する接続ライン401とグランドとの間に接続されたインダクタ43Lであったり、図5(D)に示す第1端子P21と第1外部接続端子P1とを接続する接続ライン401とグランドとの間に接続されたキャパシタ43Cである。整合素子43の素子値(インダクタンスまたはキャパシタンス)は、第1外部接続端子P1側に接続される回路とフィルタ部20とのインピーダンス整合を実現する素子値に設定されている。
 整合素子44は、フィルタ部20の第2端子P22と第2外部接続端子P2とを接続する接続ライン402とグランドとの間に接続されている。整合素子44は、具体的には、図5(G)に示す第2端子P22と第2外部接続端子P2とを接続する接続ライン402とグランドとの間に接続されたインダクタ44Lであったり、図5(H)に示す第2端子P22と第2外部接続端子P2とを接続する接続ライン402とグランドとの間に接続されたキャパシタ44Cである。整合素子44の素子値(インダクタンスまたはキャパシタンス)は、第2外部接続端子P2側に接続される回路とフィルタ部20とのインピーダンス整合を実現する素子値に設定されている。
 さらに、整合素子43,44の少なくとも一方は、図2の点線矢印に示すように、フィルタ部20の接続導体301,302,303,304,305の少なくとも一つに対して、誘導性結合または容量性結合している。この際、整合素子と接続導体は、少なくとも一つのSAW共振子を介した位置にある整合素子と接続導体同士で結合している。
 より具体的には、整合素子43は、接続導体302,303,304,305の少なくとも一つと結合している。整合素子43がインダクタ43Lであれば、インダクタ43Lは、接続導体302,303,304,305の少なくとも一つと誘導性結合または容量性結合している。整合素子43がキャパシタ43Cであれば、キャパシタ43Cは、接続導体302,303,304,305の少なくとも一つと容量性結合している。
 整合素子44は、接続導体301,302,303,304の少なくとも一つと結合している。整合素子44がインダクタ44Lであれば、インダクタ44Lは、接続導体301,302,303,304の少なくとも一つと誘導性結合または容量性結合している。整合素子44がキャパシタ44Cであれば、キャパシタ44Cは、接続導体301,302,303,304の少なくとも一つと容量性結合している。
 このような構成とすることで、結合する接続導体と整合素子は、高周波的に接続される。例えば、整合素子44がキャパシタ44Cであり、キャパシタ44Cと接続導体301とが容量性結合した場合、キャパシタ44C(整合素子44)と接続導体301との間に結合容量Cを有する容量性結合回路が構成される。これにより、高周波信号は、第1外部接続端子P1と第2外部接続端子P2との間で、フィルタ部20を伝搬経路とする主伝搬経路のみで伝搬されず、高周波信号の一部が接続導体301、容量性結合回路およびキャパシタ44C(整合素子44)を伝搬経路とする副伝搬経路にも伝搬される。
 これにより、高周波モジュール12としては、主伝搬経路の伝送特性と副伝搬経路の伝送特性とが合成された合成伝送特性となる。
 このような構成の高周波モジュール12であっても、上述の高周波モジュール11と同様に、所望の減衰特性を、従来構成よりも簡素な構成で実現できる。
 (第3回路例)
 図3に示す高周波モジュール13は、シリーズ接続型の整合素子41およびシャント接続型の整合素子44を備える。
 整合素子41は、フィルタ部20の第1端子P21と第1外部接続端子P1との間に接続されている。整合素子41は、具体的には、図5(A)に示す第1端子P21と第1外部接続端子P1との間に直列接続されたインダクタ41Lであったり、図5(B)に示す第1端子P21と第1外部接続端子P1との間に直列接続されたキャパシタ41Cである。整合素子41の素子値(インダクタンスまたはキャパシタンス)は、第1外部接続端子P1側に接続される回路とフィルタ部20とのインピーダンス整合を実現する素子値に設定されている。
 整合素子44は、フィルタ部20の第2端子P22と第2外部接続端子P2とを接続する接続ライン402とグランドとの間に接続されている。整合素子44は、具体的には、図5(G)に示す第2端子P22と第2外部接続端子P2とを接続する接続ライン402とグランドとの間に接続されたインダクタ44Lであったり、図5(H)に示す第2端子P22と第2外部接続端子P2とを接続する接続ライン402とグランドとの間に接続されたキャパシタ44Cである。整合素子44の素子値(インダクタンスまたはキャパシタンス)は、第2外部接続端子P2側に接続される回路とフィルタ部20とのインピーダンス整合を実現する素子値に設定されている。
 さらに、整合素子41,44の少なくとも一方は、図3の点線矢印に示すように、フィルタ部20の接続導体301,302,303,304,305の少なくとも一つに対して、誘導性結合または容量性結合している。この際、整合素子と接続導体は、少なくとも一つのSAW共振子を介した位置にある整合素子と接続導体同士で結合している。
 より具体的には、整合素子41は、接続導体302,303,304,305の少なくとも一つと結合している。整合素子41がインダクタ41Lであれば、インダクタ41Lは、接続導体302,303,304,305の少なくとも一つと誘導性結合または容量性結合している。整合素子41がキャパシタ41Cであれば、キャパシタ41Cは、接続導体302,303,304,305の少なくとも一つと容量性結合している。
 整合素子44は、接続導体301,302,303,304の少なくとも一つと結合している。整合素子44がインダクタ44Lであれば、インダクタ44Lは、接続導体301,302,303,304の少なくとも一つと誘導性結合または容量性結合している。整合素子44がキャパシタ44Cであれば、キャパシタ44Cは、接続導体301,302,303,304の少なくとも一つと容量性結合している。
 これにより、高周波モジュール13としては、フィルタ部20を介する主伝搬経路の伝送特性と、結合部を介する副伝搬経路の伝送特性とが合成された合成伝送特性となる。このような構成の高周波モジュール13であっても、上述の高周波モジュール11,12と同様に、所望の減衰特性を、従来構成よりも簡素な構成で実現できる。
 (第4回路例)
 図4に示す高周波モジュール14は、シャント接続型の整合素子42およびシリーズ接続型の整合素子43を備える。
 整合素子42は、フィルタ部20の第2端子P22と第2外部接続端子P2との間に接続されている。整合素子42は、具体的には、図5(E)に示す第2端子P22と第2外部接続端子P2との間に直列接続されたインダクタ42Lであったり、図5(F)に示す第2端子P22と第2外部接続端子P2との間に直列接続されたキャパシタ42Cである。整合素子42の素子値(インダクタンスまたはキャパシタンス)は、第2外部接続端子P2側に接続される回路とフィルタ部20とのインピーダンス整合を実現する素子値に設定されている。
 整合素子43は、フィルタ部20の第1端子P21と第1外部接続端子P1とを接続する接続ライン401とグランドとの間に接続されている。整合素子43は、具体的には、図5(C)に示す第1端子P21と第1外部接続端子P1とを接続する接続ライン401とグランドとの間に接続されたインダクタ43Lであったり、図5(D)に示す第1端子P21と第1外部接続端子P1とを接続する接続ライン401とグランドとの間に接続されたキャパシタ43Cである。整合素子43の素子値(インダクタンスまたはキャパシタンス)は、第1外部接続端子P1側に接続される回路とフィルタ部20とのインピーダンス整合を実現する素子値に設定されている。
 さらに、整合素子42,43の少なくとも一方は、図4の点線矢印に示すように、フィルタ部20の接続導体301,302,303,304,305の少なくとも一つに対して、誘導性結合または容量性結合している。この際、整合素子と接続導体は、少なくとも一つのSAW共振子を介した位置にある整合素子と接続導体同士で結合している。
 より具体的には、整合素子42は、接続導体301,302,303,304の少なくとも一つと結合している。整合素子42がインダクタ42Lであれば、インダクタ42Lは、接続導体301,302,303,304の少なくとも一つと誘導性結合または容量性結合している。整合素子42がキャパシタ42Cであれば、キャパシタ42Cは、接続導体301,302,303,304の少なくとも一つと容量性結合している。
 整合素子43は、接続導体302,303,304,305の少なくとも一つと結合している。整合素子43がインダクタ43Lであれば、インダクタ43Lは、接続導体302,303,304,305の少なくとも一つと誘導性結合または容量性結合している。整合素子43がキャパシタ43Cであれば、キャパシタ43Cは、接続導体302,303,304,305の少なくとも一つと容量性結合している。
 これにより、高周波モジュール14としては、フィルタ部20を介する主伝搬経路の伝送特性と、結合部を介する副伝搬経路の伝送特性とが合成された合成伝送特性となる。このような構成の高周波モジュール14であっても、上述の高周波モジュール11,12,13と同様に、所望の減衰特性を、従来構成よりも簡素な構成で実現できる。
 図6は、整合素子と接続導体の結合度を変化させた時の高周波モジュールの通過特性の変化を示すグラフである。図6の横軸は周波数を示し、図6の縦軸は第1外部接続端子P1から第2外部接続端子P2へ伝搬する信号の減衰量を示す。図6に示す点線の特性は、実線の特性よりも誘導性結合が弱く容量性結合が強い場合を示す。図6に示す破線の特性は、実線の特性よりも誘導性結合が強く容量性結合が弱い場合を示す。なお、図6の特性は、フィルタ部20のSAW共振子202,203の接続位置とグランドとの間にSAW共振子を接続し、SAW共振子204,205の接続位置とグランドとの間にSAW共振子を接続し、SAW共振子206,207の接続位置とグランドとの間にSAW共振子を接続するラダー構造にした場合を示している。なお、本実施形態における高周波モジュールは、800MHz帯を通過帯域とする帯域通過フィルタである。
 図6に示すように、誘導性結合が強くなり容量性結合が弱くなるほど、通過帯域の高周波数側に現れる減衰極の周波数は高くなる。一方、誘導性結合が弱くなり容量性結合が強くなるほど、通過帯域の高周波数側に現れる減衰極の周波数は低くなる。なお、図6における減衰極の周波数とは、周波数軸のほぼ中央にあるピーク周波数のことである。
 また、誘導性結合および容量性結合を適宜設定することで、通過帯域の高周波数側の減衰特性を変化させることができる。例えば、容量性結合が強くなり誘導性結合が弱くなるほど、通過帯域付近での減衰量が小さいが、減衰極の周波数での減衰量を大きく取ることができる。また、容量性結合が弱くなり誘導性結合が強くなるほど、通過帯域付近での減衰量を、より大きく取ることができる。
 そして、図6に示すように、誘導性結合および容量性結合の強さに影響されることなく、通過帯域の周波数位置、周波数幅および挿入損失は殆ど変化しない。
 したがって、本実施形態の構成を用いて、結合態様および結合度を適宜調整することで、通過帯域の特性を変化させることなく、高周波数側の減衰特性を所望の特性に調整することができる。言いかえれば、所望の通過帯域特性と減衰特性を有する高周波モジュールを実現することができる。
 このような構成からなる高周波モジュールは、具体的な適用例として、図7に示すデュプレクサ構成に利用することができる。図7は、デュプレクサ構成からなる高周波モジュールの等価回路図である。
 高周波モジュール101は、フィルタ部21、第1外部接続端子P1、第2外部接続端子P2、および、フィルタ部21の第3端子P31,P32を兼用する第3外部接続端子を備える。具体的な適用例として、第1外部接続端子P1は、アンテナに接続される。第2外部接続端子P2は送信回路に接続される。第3外部接続端子(第3端子P31,P32)は受信回路に接続される。
 フィルタ21は、第1端子P21’、第2端子P22、第3端子P31,P32、第4端子P23、および第5端子P24を備える。
 第1端子P21’は、接続ライン401を介して第1外部接続端子P1に接続されている。接続ライン401とグランドとの間には、上述の整合素子に対応するインダクタ43Lが接続されている。第2端子P22は、接続ライン402を介して第2外部接続端子P2に接続されている。
 第1端子P21’と第2端子P22との間には、複数のSAW共振子201,202,203,204,205,206が直列接続されている。
 より具体的には、SAW共振子201の一方端は、接続導体301を介して第1端子P21’に接続されている。SAW共振子201の他方端は、SAW共振子202の一方端に接続されている。SAW共振子202の他方端は、接続導体302を介してSAW共振子203の一方端に接続されている。SAW共振子203の他方端は、SAW共振子204の一方端に接続されている。SAW共振子204の他方端は、接続導体303を介してSAW共振子205の一方端に接続されている。SAW共振子205の他方端は、SAW共振子206の一方端に接続されている。SAW共振子206の他方端は、接続導体304を介して第2端子P22に接続されている。
 また、SAW共振子202とSAW共振子203の接続点、言い換えれば接続導体302の所定位置には、SAW共振子211の一方端が接続され、当該SAW共振子211の他方端は、第4端子P23に接続されている。第4端子P23は、インダクタ50を介してグランドに接続されている。
 SAW共振子204とSAW共振子205の接続点、言い換えれば、接続導体303の所定位置は、SAW共振子212の一方端に接続されており、SAW共振子212の他方端は、第5端子P24に接続されている。SAW共振子206と第2端子P22との接続点、言い換えれば接続導体304の所定位置は、SAW共振子213の一方端に接続されており、SAW共振子213の他方端は第5端子P24に接続されている。第5端子P24は、インダクタ60を介してグランドに接続されている。
 この構成により、フィルタ部21は、第1端子P21’と第2端子P22との間に対して、これらSAW共振子201-208,211,212,213の帯域通過特性および減衰特性を組み合わせることで、フィルタ部21の第1、第2端子間としての所望の第1帯域通過特性および第1通過帯域外の第1減衰特性を実現している。
 第1端子P21’と第3端子P31,P32との間には、SAW共振子211と縦結合型SAW共振子231,232が直列接続されている。この構成により、フィルタ部21は、第1端子P21’と第3端子P31,P32との間に対して、これらSAW共振子221,231,232の帯域通過特性および減衰特性を組み合わせることで、フィルタ部21の第1、第3端子間としての所望の第2帯域通過特性および第2通過帯域外の第2減衰特性を実現している。第2通過帯域は、第1通過帯域とは異なる周波数帯域であり、第2通過帯域は、第1通過帯域外の減衰帯域範囲内となるように設定されている。
 これにより、フィルタ部21は、第1端子P21’を共通端子とし、第2端子P22および第3端子P31,P32をそれぞれ個別端子とするデュプレクサとして機能する。
 さらに、高周波モジュール101では、接続導体302,303,304のいずれかとインダクタ43Lとを、誘導性結合させる。そして、この結合度を調整することで、第1減衰特性を調整することができる。
 ここで、本実施形態の構成を用いれば、第2通過帯域に重ねるように、第1減衰特性における減衰量を大きく取る周波数帯域の帯域幅および減衰量を調整することができる。これは、インダクタ43Lに結合させる接続導体302,303,304の選択と、結合する接続導体とインダクタ43Lとの結合度を調整すれば可能である。
 図8は、整合素子と接続導体の結合度を変化させた時の高周波モジュールの第2外部接続端子と第3外部接続端子との間のアイソレーションの変化を示すグラフである。図8の横軸は周波数を示し、図8の縦軸はアイソレーション量を示す。図8ではアイソレーション量が低いほど、第2、第3端子間で強くアイソレーションされていることを示している。図8に示す点線の特性は、実線の特性よりも誘導性結合が弱く容量性結合が強い場合を示す。図8に示す破線の特性は、実線の特性よりも誘導性結合が強く容量性結合が弱い場合を示す。
 図8に示すように、誘導性結合および容量性結合を調整することにより、受信回路Rx(第3端子側)の通過帯域のアイソレーション量およびアイソレーション特性を調整することができる。また、図8に示すように、誘導性結合および容量性結合を調整しても、送信回路Tx(第2端子側)の通過帯域のアイソレーション量およびアイソレーション特性は殆ど変化しない。
 このように、高周波モジュール101の構成を用いることで、第2、第3端子間のアイソレーション特性を適切に調整することができる。すなわち、送信回路と受信回路との間のアイソレーション特性を最適化することができる。
 以上のような構成からなる高周波モジュールは、次に示すような構造によって実現することができる。なお、以下では、上述のデュプレクサ構成からなる高周波モジュール101を構造的に実現する例を示す。
 (第1の構造)
 図9は、高周波モジュールの主要構造を示す側面概念図である。高周波モジュール101は、積層基板100、フィルタ基板200、カバー層290、側面カバー層291、実装型回路素子430を備える。
 積層基板100は、複数の誘電体層を積層してなる。積層基板100の表面100Sおよび内層には、所定パターンの電極が形成されており、高周波モジュール101のフィルタ部21を除く配線パターンやインダクタ50,60が形成されている。積層基板100の底面100Rには、外部接続用電極が形成されており、これら外部接続用電極により、上述の第1外部接続端子P1、第2外部接続端子P2、第3外部接続端子が実現される。
 フィルタ部21は、フィルタ基板200、カバー層290、側面カバー層291、接続電極293、および実装用電極294によって形成されている。
 フィルタ基板200は、平板状の圧電基板からなる。フィルタ基板200の第1主面には、フィルタ電極が形成されている。フィルタ電極は、例えば、所謂IDT電極からなる。このように、圧電基板の主面にIDT電極を形成することで、上述の各SAW共振子を実現することができる。また、フィルタ基板200の第1主面には、接続導体304を含む各接続導体を実現する電極パターンが形成されている。フィルタ基板200の第1主面側には、平板状のカバー層290が配置されている。カバー層290は、平板状の絶縁性材料からなり、平面視してフィルタ基板200と同じ形状からなる。また、カバー層290は、平面視して、フィルタ基板200と重なるように配置されており、フィルタ基板200の第1主面から所定距離の間隔を空けて配置されている。
 フィルタ基板200の第1主面とカバー層290との間には、側面カバー層291が配置されている、側面カバー層291も絶縁性材料からなり、平面視して、フィルタ基板200およびカバー層290の全周に亘って、外周端から内側へ所定幅の範囲にのみ形成されている。すなわち、カバー層290は、中央に開口を有する枠状の構造である。
 このように、カバー層290と側面カバー層291が配置されることで、フィルタ基板200の第1主面のフィルタ電極が形成される領域は、フィルタ基板200、カバー層290、および側面カバー層291によって密閉空間292内に配置される。これにより、SAW共振子の共振特性を向上させることができ、フィルタとしての所望の特性を精確に実現することができる。
 接続電極293は、フィルタ基板200の第1主面に一方端が接し、他方端がカバー層290におけるフィルタ基板200側と反対側の面に露出する形状からなる。この際、接続電極293は、側面カバー層291およびカバー層290を貫通するように形成されている。接続電極293の一方端は、フィルタ基板200の第1主面に形成された電極パターンに接続されている。
 実装用電極294は、接続電極293の他方端に接続し、カバー層290におけるフィルタ基板200側と反対側の面から突出する形状で形成されている。この接続電極293と実装用電極294の組を複数設けることにより、上述のフィルタ部21の第1端子P21’、第2端子P22、第3端子P31,P32、第4端子P23、および第5端子P24が実現される。なお、接続電極293の他方端に半田やAu等を用いてバンプを形成し、当該バンプを介して実装用電極294と接続してもよい。
 以上のような構成とすることで、フィルタ部21は、所謂WLP(Wafer Level Package)の構造となり、フィルタ部21を小型に形成することができる。
 そして、このWLP構造のフィルタ部21は、積層基板100の天面(実装面)100Sに実装されている。これにより、フィルタ部21は、第1外部接続端子P1、第2外部接続端子P2、第3外部接続端子に接続される。
 インダクタ43Lは、実装型回路素子430によって実現される。具体的には、実装型回路素子430は、絶縁性材料からなる直方体形状の筐体を備え、当該筐体の内部に、インダクタ43Lとなるスパイラル電極が形成されている。スパイラル電極は、筐体の外周に沿って伸長し一部が分断された管状の線状電極と層間接続電極によって実現される。各層の線状電極は、層間接続電極によって一本の線状電極になるように接続されている。スパイラル電極の両端は、筐体の対向する両端面に形成された外部接続電極に接続されている。
 このような構成からなる実装型回路素子430は、フィルタ部21と同様に、積層基板100の天面(実装面)100Sに実装されている。ここで、フィルタ部21の第1端子P21’と第1外部接続端子P1との接続ラインが積層基板100の天面100Sおよび内部に形成され、グランド電極が積層基板100の内部に形成されており、実装型回路素子430の実装用ランドに接続されている。これにより、インダクタ43Lがフィルタ部21の第1端子P21’と第1外部接続端子P1との接続ラインとグランドとの間に接続される構造を実現できる。
 そして、インダクタ43Lを実現する実装型回路素子430を、WLP構造のフィルタ部21に近接して配置することで、インダクタ43Lとフィルタ部21の所定の接続導体との間の誘導性結合を得ることができる。
 フィルタ部21を構成する電極パターンは、例えば図10に示すような構造になっている。図10は、高周波モジュールの主要構造を示す平面概念図である。具体的には、フィルタ基板200の第1主面には、SAW共振子201-206,211,212,213,221を構成するIDT電極、縦結合型SAW共振子231,232を構成するIDT電極、および、各接続導体を構成する電極パターンが形成されている。また、各端子P21’,P22,P23,P24を構成するランド電極も形成されている。これらIDT電極、接続導体を構成する電極パターン、およびランド電極は、図7に示す回路構成を実現するように、所定のパターン構成で形成されている。
 この際、接続導体304を構成する電極パターンは、フィルタ基板200の第1端辺の近傍に、該第1端辺に沿って伸長する形状で形成されている。
 そして、実装型回路素子430は、当該フィルタ基板200の第1端辺に近接する位置に実装されている。これにより、実装型回路素子430のスパイラル電極からなるインダクタ43Lと、線状の電極パターンからなる接続導体304とが近接するので、図10の太点線矢印に示すように、誘導性結合を生じさせることができる。このような構成とすることで、減衰特性調整用の素子を別途設けることなく、所望の減衰特性を有する高周波モジュール101を実現することができる。
 ここで、実装型回路素子430の配置位置を、図10の細破線矢印に示すように、積層基板100の天面100S上において変化させる。これにより、実装型回路素子430のスパイラル電極からなるインダクタ43Lと、線状の電極パターンからなる接続導体304との距離、および、対向して伸長する電極の長さを調整することができる。この構成により、インダクタ43Lと接続導体304との誘導性結合を調整することができ、減衰特性を調整することにより、所望とする減衰特性を精確に実現することができる。
 なお、図10では、実装型回路素子430の長手側面と、フィルタ基板200の第1端辺とが平行になるように配置した例を示した。しかしながら、実装型回路素子430の短手側面(外部接続電極が形成される端面)と、フィルタ基板200の第1端面とが平行になるように配置してもよい。ただし、実装型回路素子430の長手側面と、フィルタ基板200の第1端辺とを平行に配置することで、より強い誘導性結合を、より簡単に実現することができる。
 また、図10では、スパイラル電極の中心軸が天面100Sに直交するように、実装型回路素子430を実装する例を示したが、スパイラル電極の中心軸が天面100Sに平行になるように、実装型回路素子430を実装してもよい。
 (第2の構造)
 図11は、高周波モジュールの主要構造を示す側面概念図である。図11に示す高周波モジュール101Aは、インダクタ43Lが、実装型回路素子で実現されず、積層基板100内に形成された電極パターンによって実現される。フィルタ部21の構成は、図9、図10に示した高周波モジュール101と同じであり、説明は省略する。
 積層基板100の内部には、スパイラル電極の電極パターンからなるインダクタ43Lが形成されている。スパイラル電極は、積層体100を構成する複数の誘電体層に形成された一部が分断された管状の線状電極と層間接続電極によって実現される。各誘電体層の線状電極は、層間接続電極によって積層方向に接続され、一本の線状電極になるように接続されている。この構成により、中心軸が積層方向に沿ったスパイラル電極を実現することができる。インダクタ43Lを構成するスパイラル電極の一方端は、ビア導体431Vを介して、フィルタ部21の第1端子P21’となる実装用電極294が実装されるランド電極に接続されている。ランド電極は、積層基板100の天面100Sに形成されている。インダクタ43Lを構成するスパイラル電極の他方端は、ビア導体432Vを介して、積層基板100内の底面100R近傍に形成された内部グランドパターンに接続されている。
 さらに、インダクタ43Lを構成するスパイラル電極は、平面視して、フィルタ部21の接続導体304を構成する電極パターンと少なくとも一部が重なり合うようにして形成されている。
 この構成により、積層基板100内のスパイラル電極からなるインダクタ43Lと、フィルタ基板200の第1主面に形成された線状の電極パターンからなる接続導体304との間で、図11の太破線矢印に示すように、誘導性結合を生じさせることができる。この際、インダクタ43Lを構成するスパイラル電極と、フィルタ部21の接続導体304を構成する電極パターンとの距離、および、当該スパイラル電極と電極パターンの重なる面積を変化させることで、インダクタ43Lと接続導体304との結合度を調整できる。これにより、上述の第1の構造と同様に、高周波モジュール101Aの減衰特性を調整することができ、所望とする減衰特性をより精確に実現することができる。
 また、本実施形態では、インダクタ43Lが実装型回路素子ではないので、当該実装型回路素子を実装するための領域を、積層基板100の天面100Sに設けなくてもよい。これにより、積層基板100を平面視した面積を小さくでき、高周波モジュール101Aの平面面積を小さくすることができる。
 (第3の構造)
 図12は、高周波モジュールの主要構造を示す側面概念図である。図12に示す高周波モジュール101Bは、所謂CSP(Chip Sized Package)構造で実現されている。
 高周波モジュール101Bは、フィルタ基板200を備える。フィルタ基板200には、上述のようにフィルタ部21を実現するフィルタ電極、および接続導体304を含む各接続導体を構成する電極パターンが形成されている。
 高周波モジュール101Bは、さらにフィルタ実装用基板280を備える。フィルタ実装用基板280は、例えばアルミナ基板からなり、平面視した面積がフィルタ基板200よりも所定量大きい。
 フィルタ基板200は、第1主面がフィルタ実装用基板280側になるように、バンプ導体281によってフィルタ実装用基板280に実装されている。フィルタ実装用基板280におけるフィルタ基板200の実装面と反対側の面には、外部接続用バンプ導体282が形成されている。
 フィルタ実装用基板280には、高周波モジュール101B(回路構成としては高周波モジュール101)のフィルタ部21を除く回路パターンおよびインダクタ43Lが形成されている。
 フィルタ実装用基板280におけるフィルタ基板200が実装された面には、モールド樹脂283が塗布されている。これにより、フィルタ電極および接続導体を構成する電極パターンが外部環境に曝されることを防止でき、SAW共振子の共振特性を向上させることができ、フィルタとしての所望の特性を精確に実現することができる。
 ここで、フィルタ実装用基板280に形成されたインダクタ43Lを構成する電極パターンと、フィルタ基板200に形成された接続導体304を実現する電極パターンとが、平面視して少なくとも一部が重なるように配置する。これより、図12に示すように、インダクタ43Lを構成する電極パターンと接続導体304を実現する電極パターンとの間に、誘導性結合を生じさせることができる。特に、本実施形態の構成では、インダクタ43Lを構成する電極パターンと接続導体304を実現する電極パターンとの間隔(距離)を短くすることができるので、より強い誘導性結合を、容易に実現することができる。
 また、高周波モジュール101B全体がCSP構造であるので、高周波モジュール101Bを小型且つ薄型で実現することができる。
 なお、上述の各実現構造では、整合素子としてインダクタを用いる例を示したが、整合素子がキャパシタの場合についても、同様の構造で実現することができる。例えば、第1の構造であれば、実装型の積層コンデンサ素子を用いればよい。第2の構造であれば、積層基板100内の異なる層に互いに対向するように形成した複数の平板電極によって、キャパシタを実現すればよい。また、第3の構造であれば、フィルタ実装用基板280に形成した電極パターンによってキャパシタを実現すればよい。
 また、整合素子と結合する接続導体は、上述のように、少なくとも間に一つのSAW共振子を介するようにすればよいとしたが、間に介するSAW共振子が多いほど、減衰特性与える影響を大きくすることができる。例えば、第1の構造(図9参照)であれば、フィルタ基板200と実装型回路素子430との位置関係が同じであれば、間に介するSAW共振子が多い整合素子と接続導体とを結合させるほど、減衰特性に与える影響を大きくすることができる。
11,12,13,14,101,101A,101B:高周波モジュール、
20,21:フィルタ部、
201-208:SAW共振子、
301-305:接続導体、
41,42:(シリーズ接続型の)整合素子、
43,44:(シャント接続型の)整合素子、
41L,42L,43L,44L:インダクタ、
41C,42C,43C,44C:キャパシタ、
401,402:接続ライン、
P1:第1外部接続端子、
P2:第2外部接続端子、
P21,P21’:第1端子、
P22:第2端子、
P31,P32:第3端子、
P23:第4端子、
P24:第5端子、
100:積層基板、
100S:天面、
100R:底面、
200:フィルタ基板、
280:フィルタ実装用基板、
281:バンプ導体、
282:外部接続用バンプ導体、
283:モールド樹脂、
290:カバー層、
291:側面カバー層、
292:密閉空間、
293:接続電極、
294:実装用電極、
430:実装型回路素子

Claims (12)

  1.  第1外部接続端子と、
     第2外部接続端子と、
     前記第1外部接続端子と前記第2外部接続端子との間に接続されたフィルタ部と、
     前記第1外部接続端子もしくは前記第2外部接続端子の少なくとも一方と前記フィルタ部との間に接続された整合素子と、
    を備えた高周波モジュールであって、
     前記フィルタ部は、
     前記第1外部接続端子に接続する第1端子と、
     前記第2外部接続端子に接続する第2端子と、
     前記第1端子と前記第2端子との間に直列接続された複数のフィルタ素子と、
     前記複数のフィルタ素子の一方端のフィルタ素子と前記第1端子とを接続する一方端の接続部、前記複数のフィルタ素子の他方端のフィルタ素子と前記第2端子とを接続する他方端の接続部、隣り合うフィルタ素子間を接続する中間の接続部と、
     を備え、
     前記接続部の少なくとも一つと前記整合素子とが誘導性結合もしくは容量性結合されている、高周波モジュール。
  2.  互いに前記誘導性結合もしくは前記容量性結合する前記接続部と前記整合素子は、
     前記フィルタ部の通過帯域外のインピーダンスが変化するように前記誘導性結合もしくは前記容量性結合されている、請求項1に記載の高周波モジュール。
  3.  互いに前記誘導性結合もしくは前記容量性結合する前記接続部と前記整合素子は、
     前記フィルタ部の通過帯域外の減衰極周波数が変化するように前記誘導性結合もしくは前記容量性結合されている、請求項2に記載の高周波モジュール。
  4.  前記整合素子は、前記第1外部接続端子と前記第1端子との間に直列接続されるか、もしくは、前記第2外部接続端子と前記第2端子との間に直列接続される、シリーズ接続型の整合素子である、
     請求項1乃至請求項3のいずれかに記載の高周波モジュール。
  5.  前記整合素子は、前記第1外部接続端子と前記第1端子とを接続する接続ラインとグラントとの間に接続されるか、もしくは、前記第2外部接続端子と前記第2端子とを接続する接続ラインとグランドの間に接続される、シャント接続型の整合素子である、
     請求項1乃至請求項3のいずれかに記載の高周波モジュール。
  6.  前記接続部は線状導体パターンからなる、請求項1乃至請求項5のいずれかに記載の高周波モジュール。
  7.  第3端子と、第2のフィルタ部とを備え、
     前記第2のフィルタ部は、前記第1端子および該第1端子に接続するフィルタ素子を接続する接続ラインと、前記第3端子との間に接続されている、
     請求項1乃至請求項6のいずれかに記載の高周波モジュール。
  8.  前記フィルタ部を構成するIDT電極および前記接続部が第1主面に形成された平板状のフィルタ基板と、
     該フィルタ基板の前記第1主面に対して間隔を空けて対向する平板状のカバー層と、
     前記第1主面から突出し、前記カバー層を貫通する形状の接続電極と、
     前記整合素子が実装または形成された積層基板と、を備え、
     前記フィルタ基板は、前記第1主面側が前記積層基板の実装面に向くように配置され、
     前記フィルタ基板は、前記接続電極を介して前記積層基板に接続されている、請求項1乃至請求項7のいずれかに記載の高周波モジュール。
  9.  前記整合素子は、前記積層基板の実装面に実装される実装型素子であり、
     前記接続部は、前記フィルタ基板の前記第1主面における第1辺の近傍に配置されており、
     前記実装型素子は、前記フィルタ基板の前記第1辺の近傍に実装されている、
     請求項8に記載の高周波モジュール。
  10.  前記整合素子は、
     直方体形状の筐体と、
     該筐体内に形成され、平面視して略長方形の外周形からなるスパイラル導体と、
     を備え、
     前記整合素子は、前記筐体の長辺が前記フィルタ基板の前記第1辺に平行になるように、配置されている、
     請求項9に記載の高周波モジュール。
  11.  前記整合素子は、
     前記積層基板の実装面または内部に形成された導体パターンからなり、
     該導体パターンと前記接続部は、平面視して少なくとも一部が重なっている、
     請求項8に記載の高周波モジュール。
  12.  前記フィルタ部を構成するIDT電極および前記接続部が第1主面に形成された平板状のフィルタ基板と、
     該フィルタ基板の前記第1主面側に配置され、該フィルタ基板の前記第1主面側が実装された平板状のフィルタ実装用基板と、を備え、
     前記整合素子は、前記フィルタ実装用基板に形成されている、請求項1乃至請求項7のいずれかに記載の高周波モジュール。
PCT/JP2014/060246 2013-04-11 2014-04-09 高周波モジュール WO2014168161A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480020688.8A CN105453428B (zh) 2013-04-11 2014-04-09 高频模块
JP2015511272A JP6187583B2 (ja) 2013-04-11 2014-04-09 高周波モジュール
US14/878,082 US9602078B2 (en) 2013-04-11 2015-10-08 High-frequency module having a matching element coupled to a connection unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-083078 2013-04-11
JP2013083078 2013-04-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/878,082 Continuation US9602078B2 (en) 2013-04-11 2015-10-08 High-frequency module having a matching element coupled to a connection unit

Publications (2)

Publication Number Publication Date
WO2014168161A1 WO2014168161A1 (ja) 2014-10-16
WO2014168161A9 true WO2014168161A9 (ja) 2016-01-14

Family

ID=51689567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060246 WO2014168161A1 (ja) 2013-04-11 2014-04-09 高周波モジュール

Country Status (4)

Country Link
US (1) US9602078B2 (ja)
JP (1) JP6187583B2 (ja)
CN (1) CN105453428B (ja)
WO (1) WO2014168161A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016000873A1 (en) * 2014-06-30 2016-01-07 Epcos Ag Rf filter circuit, rf filter with improved attenuation and duplexer with improved isolation
CN106537793B (zh) * 2014-07-01 2019-09-06 株式会社村田制作所 高频模块
NL2014286B1 (en) 2015-02-12 2016-10-13 Biodentify B V Computer supported exploration and production of heterogeneous distributed hydrocarbon sources in subsurface formations based on microbial prospecting.
CN108432133B (zh) * 2015-12-25 2022-03-01 株式会社村田制作所 高频模块
WO2018052073A1 (ja) * 2016-09-16 2018-03-22 株式会社村田製作所 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2020205653A1 (en) * 2019-04-01 2020-10-08 Wilson Electronics, Llc Combined duplexer
CN111431505B (zh) * 2020-04-07 2021-01-05 诺思(天津)微系统有限责任公司 滤波器和多工器以及通信设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141771A (ja) * 2000-08-21 2002-05-17 Murata Mfg Co Ltd 弾性表面波フィルタ装置
JP2004080233A (ja) * 2002-08-14 2004-03-11 Murata Mfg Co Ltd 分波器
US20040227585A1 (en) * 2003-05-14 2004-11-18 Norio Taniguchi Surface acoustic wave branching filter
US7230512B1 (en) * 2003-08-19 2007-06-12 Triquint, Inc. Wafer-level surface acoustic wave filter package with temperature-compensating characteristics
US7385463B2 (en) * 2003-12-24 2008-06-10 Kyocera Corporation Surface acoustic wave device and electronic circuit device
TW200713681A (en) * 2005-09-26 2007-04-01 Murata Manufacturing Co High-frequency front end module, and duplexer
DE102006010752B4 (de) * 2006-03-08 2013-10-31 Epcos Ag DMS-Filter mit verschalteten Resonatoren
JP4713636B2 (ja) * 2006-03-08 2011-06-29 京セラ株式会社 分波器および通信装置
WO2007145049A1 (ja) * 2006-06-12 2007-12-21 Murata Manufacturing Co., Ltd. 弾性波分波器
JP4781969B2 (ja) * 2006-10-31 2011-09-28 京セラ株式会社 分波器デバイス用回路基板、分波器、及び通信装置
DE102006059996B4 (de) * 2006-12-19 2015-02-26 Epcos Ag Anordnung mit einem HF Bauelement und Verfahren zur Kompensation der Anbindungsinduktivität
JP5230270B2 (ja) * 2008-05-29 2013-07-10 京セラ株式会社 分波器および無線通信機器
JP4578575B2 (ja) * 2008-07-30 2010-11-10 京セラ株式会社 分波器、通信用モジュール部品、及び通信装置
JP5215767B2 (ja) * 2008-07-31 2013-06-19 太陽誘電株式会社 フィルタ、分波器、および通信機器
JPWO2011089746A1 (ja) * 2010-01-20 2013-05-20 株式会社村田製作所 分波器
CN102725958B (zh) * 2010-01-28 2015-03-11 株式会社村田制作所 弹性表面波滤波装置
JP5588838B2 (ja) 2010-11-17 2014-09-10 太陽誘電株式会社 フィルタ回路、分波器およびrfモジュール
CN103636124B (zh) 2011-07-08 2017-02-22 株式会社村田制作所 电路模块

Also Published As

Publication number Publication date
CN105453428A (zh) 2016-03-30
WO2014168161A1 (ja) 2014-10-16
JP6187583B2 (ja) 2017-08-30
JPWO2014168161A1 (ja) 2017-02-16
US20160028365A1 (en) 2016-01-28
CN105453428B (zh) 2018-08-28
US9602078B2 (en) 2017-03-21

Similar Documents

Publication Publication Date Title
JP6183456B2 (ja) 高周波モジュール
JP6249020B2 (ja) 高周波モジュール
JP5817795B2 (ja) 高周波モジュール
JP6406266B2 (ja) 高周波モジュール
US10680579B2 (en) High frequency module
JP6183461B2 (ja) 高周波モジュール
CN107078715B (zh) 高频模块
JP6187583B2 (ja) 高周波モジュール
JP6183462B2 (ja) 高周波モジュール
CN111164889B (zh) 混合滤波器装置以及多路调制器
JP6398978B2 (ja) 高周波モジュール
CN111386656B (zh) 多工器
US11368135B2 (en) High-frequency module

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480020688.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015511272

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782697

Country of ref document: EP

Kind code of ref document: A1