WO2014167784A1 - 形状検査装置 - Google Patents

形状検査装置 Download PDF

Info

Publication number
WO2014167784A1
WO2014167784A1 PCT/JP2014/001623 JP2014001623W WO2014167784A1 WO 2014167784 A1 WO2014167784 A1 WO 2014167784A1 JP 2014001623 W JP2014001623 W JP 2014001623W WO 2014167784 A1 WO2014167784 A1 WO 2014167784A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
data
shape
master
area
Prior art date
Application number
PCT/JP2014/001623
Other languages
English (en)
French (fr)
Inventor
高橋 英二
要 荒木
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP14782951.9A priority Critical patent/EP2960621B1/en
Priority to CN201480017690.XA priority patent/CN105051486B/zh
Priority to US14/783,061 priority patent/US9625353B2/en
Publication of WO2014167784A1 publication Critical patent/WO2014167784A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/027Tyres using light, e.g. infrared, ultraviolet or holographic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/042Calibration or calibration artifacts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/30Bars, blocks, or strips in which the distance between a pair of faces is fixed, although it may be preadjustable, e.g. end measure, feeler strip

Definitions

  • the present invention relates to a shape inspection apparatus for inspecting a concave / convex defect of a tire, and particularly to a technique for confirming measurement accuracy of the shape inspection apparatus.
  • a test for inspecting a defect of the tire shape in the final process is performed.
  • a tire to be inspected is rotated once, the tire is measured with a laser displacement meter, and one line of tire shape data is acquired. And the uneven
  • the angle formed by the line light irradiated from the line light irradiation means with respect to the surface of the tire and the line extending from the arrival point of the line light to the tire surface to the center of the image sensor are the surface of the tire.
  • a shape detection device is disclosed in which the positional relationship between the line light irradiation means and the imaging means is maintained so that the angle formed with respect to the angle is equal.
  • Patent Document 2 a sample original image of a sidewall surface of a sample tire on which a concavo-convex mark is formed is captured, a region where the concavo-convex mark is formed is extracted from the sample original image, and the concavo-convex mark is extracted from the sample original image.
  • a height offset image from which the area has been removed is created in advance.
  • the apparatus which subtracts a height offset image from the inspection image of the sidewall surface of the inspection tire and inspects the shape defect of the inspection tire from the obtained unevenness removal image is disclosed.
  • Patent Document 3 when confirming the inspection accuracy of a device that inspects the shape of a stator coil using an optical cutting method, a master work simulating the shape of the coil end of the stator core is prepared as an inspection jig, and this master work is used. A technique for checking the accuracy of the apparatus is disclosed.
  • Patent Documents 1 and 2 describes anything about the confirmation of the inspection accuracy of the shape inspection apparatus.
  • Patent Document 3 it is considered that no hardware change is required, but it is not considered that no software change is required.
  • An object of the present invention is to provide a shape inspection apparatus capable of confirming the measurement accuracy of a shape inspection apparatus without providing a special measurement mode in the existing shape inspection apparatus.
  • a shape inspection apparatus is a shape inspection apparatus that measures a surface shape of a tire and inspects the unevenness of the tire based on a measurement result, and an uneven plate having a known shape value is a measurement surface.
  • a measurement unit for measuring the surface shape of the measurement surface of a metal master disk simulating the tire, and a predetermined area in the uneven plate as an effective area, and an area other than the effective area as an ineffective area Based on the measurement data obtained by removing the invalid area measurement data from the measurement data measured by the measurement section using the mask data, and the measurement data from which the mask area has been removed by the mask processing section, A master data generation unit that generates master data indicating the surface shape of the measurement surface of the master disk.
  • the measurement accuracy of the shape inspection apparatus can be easily confirmed without providing a special measurement mode in the existing shape inspection apparatus.
  • (A) is the figure which showed the outline
  • (B) is a top view of the concavo-convex plate.
  • (C) is a sectional view of the concavo-convex plate from the CC direction. It is a graph which shows an example of the measurement data of a master disk. It is the graph which showed the measurement data for one round of a certain line. It is the graph which expanded the measurement data of the area
  • 1 is an overall configuration diagram of a shape inspection apparatus according to an embodiment of the present invention. It is a detailed block diagram of a sensor part. It is a block diagram which shows the structure of the shape inspection apparatus by embodiment of this invention. It is the flowchart which showed the process which the shape inspection apparatus by embodiment of this invention produces
  • FIG. 1A is a diagram showing an outline of the hardware configuration of the shape inspection apparatus according to the embodiment of the present invention.
  • the shape inspection apparatus includes a sensor unit 102 and an arm unit 103.
  • the sensor unit 102 includes an imaging unit and a light source.
  • the light source irradiates the optical cutting line in the radial direction of the master disk 100 or the tire to be measured.
  • the imaging unit images the master disk 100 or the tire irradiated with the light cutting line.
  • the arm unit 103 is provided at the rear end of the sensor unit 102 and moves the sensor unit 102 in the radial direction.
  • a metal pseudo tire simulating a tire is created and used as the master disk 100.
  • one uneven plate 101 is attached to the sidewall surface S1 of the master disk 100.
  • one uneven plate 101 is attached to the other sidewall surface S1.
  • the uneven plate 101 is attached to the master disk 100 using, for example, screws 150.
  • the concavo-convex plate 101 is arranged symmetrically about the central axis 106 of the master disk 100.
  • the master disk 100 has a space for attaching the uneven plate 101.
  • the shape value of the concavo-convex plate 101 is separately measured in units of 1 ⁇ m separately using means such as calipers, and this shape value is used as a reference value. Since the master disk 100 is made of metal, it has an optical scattering rate (reflectance) different from that of a rubber tire. Therefore, it is preferable that the master disk 100 is painted in black and has the same optical characteristics as a rubber tire.
  • FIG. 1B is a top view of the uneven plate 101
  • FIG. 1C is a cross-sectional view of the uneven plate 101 from the CC direction.
  • the uneven plate 101 includes a base surface 110, a convex surface 120, a concave surface 130, and a base surface 140.
  • the base surface 110 is continuous with the sidewall surface S1, and is parallel to the sidewall surface S1.
  • the convex surface 120 is formed to protrude from the base surface 110 by a predetermined height, and is parallel to the sidewall surface S1.
  • the concave surface 130 is formed to be depressed by a predetermined height from the base surface 110, and is parallel to the sidewall surface S1.
  • the base surface 140 is continuous with the sidewall surface S1, and is parallel to the sidewall surface S1.
  • the convex surface 120 is adjacent to the base surface 110, the concave surface 130 is adjacent to the convex surface 120, and the base surface 140 is adjacent to the concave surface 130.
  • each of the base surface 110, the convex surface 120, the concave surface 130, and the base surface 140 has a strip shape when viewed from above.
  • FIG. 2 is a graph showing an example of measurement data of the master disk 100.
  • the vertical axis indicates the height in pixels
  • the horizontal axis indicates the sample points for one round of the sidewall surface S1.
  • the master disk 100 is rotated once, while the sensor unit 102 images the master disk 100 a predetermined number of times (for example, 1000 to 5000 times), and measurement data is obtained from the obtained image data.
  • One piece of image data includes a predetermined number of horizontal lines (for example, the number corresponding to the resolution in the vertical direction of the image data) in the direction intersecting the light section line.
  • the measurement data of the sample point where the uneven plate 101 exists among the sample points of the central horizontal line is shown.
  • the height of the concavo-convex plate 101 varies within a predetermined range.
  • a base line A205 passing through the vicinity of the center of the vertical axis and parallel to the horizontal axis is an auxiliary line for determining the heights of the convex surface 120 and the concave surface 130 with respect to the base surfaces 110 and 140. .
  • the baseline A205 is determined based on, for example, measurement data of the area A101 corresponding to the base surface 110. As shown in FIG. 2, when the baseline A205 is determined using all the measurement data of the area A101, the measurement data in the area A101 is distorted, so that the baseline has an inclination deviated from the original inclination of the base surface 110. A205 may be calculated.
  • a defect sample point that cannot be measured may be generated due to the influence of a shadow due to a step between the concave surface 130 and the base surface 140. If this defective sample point exists, the base line A205 may be shifted from the original inclination of the base surface 110 due to the influence of the defective sample point.
  • the mask processing which will be described later is performed, and the inclinations of the base surfaces 110, 140, the convex surface 120, and the concave surface 130 are obtained using a part of the measurement data in the concave / convex plate 101 instead of the measurement data of the entire concave / convex plate 101.
  • the inclination inherent to these surfaces can be accurately obtained. Therefore, in this embodiment, a mask process described later is performed.
  • FIG. 3 is a graph showing measurement data for one round of a certain line.
  • FIG. 4 is a graph obtained by enlarging the measurement data of the region A301 corresponding to the uneven plate 101 of FIG.
  • FIG. 5 is a graph showing a function indicating the shape of the convex surface 120 shown in FIG. 4, a function indicating the shape of the concave surface 130, and a difference between these two functions.
  • the vertical axis and the horizontal axis are the same as those in FIG.
  • the vertical axis on the left indicates the height of the convex surface 120 and the concave surface 130 in units of pixels with respect to the baseline
  • the vertical axis on the right indicates the difference between the height of the convex surface 120 and the height of the concave surface 130. Shown in pixels.
  • x represents a horizontal axis
  • y represents a vertical axis.
  • the inclinations of the base surfaces 110, 140, the convex surface 120, and the concave surface 130 should originally be zero due to the jaggedness of the measurement data and the presence of defective sample points, but not zero.
  • master data is generated from measurement data of a sample tire serving as a reference, and irregularities are obtained from measurement data of a tire to be inspected using the master data.
  • the mark is removed, and the shape of the tire is evaluated from the measurement data after removal.
  • evaluation is performed using a Fourier transform value of a predetermined order (for example, about 16 to 100th order) or more of measurement data.
  • a software module for detecting and removing the concave and convex marks from the measurement data of the sample tire, obtaining a Fourier transform value, and calculating master data is incorporated.
  • the Fourier transform value may be greatly deviated from the value representing the original shape.
  • the purpose of this embodiment is to confirm the measurement accuracy of the shape inspection apparatus without providing a new measurement mode in the shape inspection apparatus. Therefore, only the measurement data necessary for checking the measurement accuracy of the apparatus is extracted from all the sample points of the master disk 100 using the mask data, and the obtained measurement data is processed by this software module to calculate the master data. Then, the measurement accuracy of the shape inspection apparatus is confirmed by comparing the obtained master data with the known shape value of the concavo-convex plate 101.
  • FIG. 6 is a schematic diagram of mask data according to the embodiment of the present invention.
  • mask data is shown so as to be superimposed on the measurement data of the master disk 100.
  • the horizontal axis indicates the circumferential direction
  • the vertical axis indicates the radial direction.
  • light and dark indicate the height, and a high portion is shown as it becomes bright, and a low portion is shown as it becomes dark.
  • an area 401 appearing in a strip shape over the entire screen is an area where measurement data of the sidewall surface of the master disk 100 is arranged.
  • four effective regions 411 to 414 having a rectangular shape in the longitudinal direction are provided.
  • the effective regions 411 to 414 are respectively provided corresponding to the base surface 110, the convex surface 120, the concave surface 130, and the base surface 140 shown in FIG.
  • Areas other than the valid areas 411 to 414 are invalid areas.
  • FIG. 7 is a graph showing measurement data in one line along the circumferential direction of FIG. 6, with the vertical axis showing the height in mm and the horizontal axis showing the sample points.
  • the effective region 411 is provided not at the entire base surface 110 but at the center of the base surface so that the boundary position with the convex surface 120 is not included.
  • the effective region 412 is provided not at the entire area of the convex surface 120 but at the center of the convex surface 120 so that the boundary position between the base surface 110 and the concave surface 130 is not included.
  • the effective area 413 is provided not at the entire area of the concave surface 130 but at the center of the concave surface 130 so that the boundary position between the convex surface 120 and the base surface 140 is not included.
  • the effective area 414 is provided not at the entire base surface 140 but at the center of the base surface 140 so that the boundary position with the concave surface 130 is not included.
  • the measurement accuracy of the apparatus can be confirmed using the measurement data from which the defective sample points have been removed.
  • the valid area and invalid area are set in advance by the manufacturer of the shape measuring apparatus. That is, the manufacturer of the shape measuring apparatus provides mask data corresponding to the master disk 100 as a set with the master disk 100.
  • the developer of the shape measuring device manufacturer displays the measurement data of the master disk 100 on the display screen, and visually identifies the positions on the measurement data corresponding to the base surfaces 110 and 140, the convex surface 120, and the concave surface 130. Then, mask data is created by setting an effective area and an invalid area.
  • the measurement data of each sample point in the invalid area may be calculated using the measurement data of the valid areas 411 and 414 corresponding to the base surfaces 110 and 140. For example, several sample points are extracted from the effective areas 411 and 412, and the measurement data of the extracted sample points are plotted at equal intervals in the invalid area, and linear interpolation is performed to obtain each sample point of the invalid area. Measurement data may be obtained.
  • FIG. 8 is a graph showing the design height of the concavo-convex plate 101.
  • the vertical axis shows the height in mm
  • the horizontal axis shows the sample points in the circumferential direction.
  • the average height 501 of the convex surface 120 when the base surfaces 110 and 140 are used as a reference is, for example, about 0.5 to 3.0 mm.
  • the average height 502 of the concave surface 130 with respect to the base surfaces 110 and 140 is, for example, about ⁇ 0.5 to ⁇ 3.0 mm.
  • FIG. 9 is a graph showing master data of one sidewall surface of the master disk 100 generated by the shape inspection apparatus, where the vertical axis indicates the height in mm, and the horizontal axis indicates the sample points in the circumferential direction.
  • FIG. 10 is a graph showing master data of the other sidewall surface of the master disk 100 generated by the shape inspection apparatus, where the vertical axis indicates height in mm and the horizontal axis indicates sample points in the circumferential direction. ing.
  • the average values of the heights of the convex surface 120 and the concave surface 130 with respect to the base surfaces 110 and 140 were calculated using the measurement data of the effective areas 411 to 414. Then, the average height of the convex surface 120 and the concave surface 130 substantially coincided with the average design height of the convex surface and the concave surface 130 of the master disk 100 in design. Therefore, it is understood that the accurate heights of the convex surface 120 and the concave surface 130 are obtained by performing mask processing using the mask data on the measurement data.
  • FIG. 11 is an overall configuration diagram of the shape inspection apparatus according to the embodiment of the present invention.
  • the shape inspection apparatus includes a rotating unit 2, a sensor unit 102, an encoder 4, a control unit 5, and a unit driving unit 10.
  • the rotating unit 2 rotates a tire or a master disk (hereinafter collectively referred to as a measurement object T) about a rotation axis R as a central axis.
  • the rotating unit 2 includes a shaft attached to the central axis of the measurement object T, a motor for rotating the shaft, and the like. For example, 60 rpm is employed as the rotation speed of the measurement object T by the rotating unit 2.
  • the sensor unit 102 includes a sensor unit 31 provided on the tread surface side of the measurement object T, a sensor unit 32 provided above the sidewall surface of the measurement object T, and a lower side wall surface of the measurement object T. There is a sensor unit 33 provided.
  • the sensor unit 31 is used when measuring the tread surface
  • the sensor unit 32 is used when measuring the upper side wall surface
  • the sensor unit 33 is used when measuring the lower side wall surface.
  • the sensor unit 31 scans the optical cutting line in the circumferential direction of the tread surface by irradiating the rotating measuring object T in the radial direction with the slit, and receives the reflected light from the measuring object T. Then, measurement data of the entire tread surface is acquired.
  • the sensor units 32 and 33 also irradiate the measuring object T with a light cutting line and acquire measurement data of the entire sidewall surface.
  • the encoder 4 outputs an angle signal indicating a rotation angle to the control unit 5 every time the measurement object T rotates by a predetermined angle.
  • the angle signal is used to determine the measurement timing of the sensor unit 102.
  • the control unit 5 is configured by, for example, a dedicated hardware circuit, a CPU, or the like, and performs processing to be described later on the measurement data output from the sensor unit 102.
  • the unit drive unit 10 includes three arm units (not shown) for positioning the sensor units 31 to 33, three motors for moving the three arm units, and the like.
  • the sensor units 31 to 33 are positioned below.
  • FIG. 11 although the aspect which provides the sensor parts 31-33 as the sensor part 102 was shown, it is not limited to this. For example, any one or two of the sensor units 31 to 33 may be omitted.
  • FIG. 12 is a detailed configuration diagram of the sensor unit 102.
  • the sensor part 102 at the time of measuring a tread surface is shown. 12
  • the Y axis indicates a direction parallel to the rotation axis R (see FIG. 11)
  • the Z axis indicates a normal direction of the tread surface
  • the X axis indicates a direction orthogonal to each of the Y axis and the Z axis. ing.
  • the light source 7 is a light source including a semiconductor laser, a cylindrical lens, and the like, and irradiates the measuring object T with an optical cutting line.
  • the light source 7 irradiates the light cutting line from the direction intersecting the Z axis. Since the measurement object T is rotated by the rotating unit 2, the light cutting line can scan the entire area of the dread surface of the measurement object T.
  • the camera 6 includes a camera lens 8 and an image sensor 9.
  • the camera lens 8 guides reflected light from the tread surface to the image sensor 9.
  • the imaging element 9 is configured by an image sensor such as a CCD or a COMS, and receives reflected light via the camera lens 8.
  • the image sensor 9 images the tread surface under the control of the control unit 5. Note that since the reflected light is preferably specularly reflected light, the camera lens 8 is configured to guide the specularly reflected light to the image sensor 9.
  • FIG. 13 is a block diagram showing the configuration of the shape inspection apparatus according to the embodiment of the present invention.
  • the shape inspection apparatus includes a light source 7, an image sensor 9 (an example of a measurement unit), a control unit 5, an operation unit 820, a storage unit 830, and a display unit 840.
  • the image sensor 9 images the master disk 100 irradiated with the light cutting line at a predetermined frame rate.
  • the control unit 5 includes, for example, an FPGA, and includes a measurement data calculation unit 811 (an example of a measurement unit), a mask processing unit 812, and a master data generation unit 813.
  • the operation unit 820 is configured by an input device such as a keyboard and a mouse, for example, and receives an operation instruction from the user.
  • the measurement data calculation unit 811 detects the position of the light section line from the image data captured by the image sensor 9. Specifically, the measurement data calculation unit 811 detects the position of the light section line CL included in the imaging data each time the imaging element 9 captures one piece of imaging data. As shown in FIG. 12, the measurement data calculation unit 811 assumes that the vertical coordinate is set in the direction intersecting the light cutting line CL and the horizontal coordinate is set in the direction along the light cutting line CL in the imaging device 9. The coordinates at which the luminance peaks in each vertical line are detected at the pixel level or sub-pixel level, and the coordinates are detected as the position of the light cutting line CL.
  • the measurement data calculation unit 811 calculates the height data of each position of the light section line from the detected position using the principle of triangulation, and sets the data group composed of the height data as one line along the radial direction. Calculated as measurement data.
  • the measurement data calculation unit 811 arranges one line of measurement data in a matrix and calculates measurement data of the entire measurement surface of the measurement object T. For example, assuming that the number of height data constituting one line of measurement data is M and the number of image data captured by the image sensor 9 is N, the measurement data is arranged in height rows of M rows ⁇ N columns. Data. Note that the measurement data calculation unit 811 calculates the measurement data of the tire to be inspected in the same manner as the master disk 100.
  • the mask processing unit 812 performs mask processing using the mask data on the measurement data calculated by the measurement data calculation unit 811 and outputs the obtained measurement data to the master data generation unit 813 as processing target data. .
  • the mask processing unit 812 performs mask processing only when evaluating the measurement accuracy of the shape inspection apparatus, and does not perform mask processing otherwise. In this case, the measurement data calculated by the measurement data calculation unit 811 is output to the master data generation unit 813.
  • the mask data shown in FIG. 6, that is, the base surfaces 110 and 140, the convex surface 120, and a part of the concave surface 130 are effective regions 411 to 414, and regions other than the effective regions 411 to 414 are invalid regions.
  • Mask data is adopted.
  • the mask processing unit 812 extracts the measurement data of the effective areas 411 to 414 from the measurement data of the master disk 100.
  • the mask processing unit 812 plots measurement data of several sample points constituting the effective areas 411 and 414 corresponding to the base surfaces 110 and 140 in the invalid area, and obtains measurement data of the invalid area by linear interpolation. .
  • the invalid area shown in FIG. 6 when plotting a total of 16 measurement data of 4 in the vertical direction and 4 in the horizontal direction, 8 measurement data are taken out from the base surface 110, and these 8 measurement data are taken.
  • 8 measurement data are taken out from the base surface 110, and these 8 measurement data are taken.
  • Eight pieces of measurement data are taken out from the base surface 140, and these eight pieces of measurement data are put in the invalid area on the right side of the effective area 414.
  • the mask process part 812 should just obtain
  • the master data generation unit 813 is configured by a software module that detects and removes the concave and convex marks from the sample tire measurement data, calculates a Fourier transform value, and calculates master data.
  • the master data is data indicating the surface shape of the measurement surface of the master disk 100.
  • the master data generation unit 813 displays the master data in a graph, for example, on the display unit 840.
  • the user evaluates the measurement accuracy of the shape inspection apparatus by comparing the master data with the known shape value of the concavo-convex plate 101.
  • FIG. 2 it is assumed that master data in which the inclination of the convex surface 120 or the concave surface 130 is inclined from the horizontal direction is displayed on the display unit 840.
  • the user can determine that the measurement accuracy of the shape inspection apparatus is poor.
  • the user adjusts the shape inspection apparatus so that the measurement accuracy of the shape inspection apparatus is improved.
  • the storage unit 830 stores mask data created in advance by the user.
  • a plurality of mask data are created according to the type of the master disk 100, and the storage unit 830 may store the master data in association with the disk ID that specifies the mask data.
  • the mask processing unit 812 reads mask data corresponding to the disk ID from the storage unit 830 and performs mask processing.
  • the storage unit 830 stores the master data generated by the master data generation unit 813.
  • the display unit 840 is configured by a liquid crystal display, for example, and displays the measurement data calculated by the measurement data calculation unit 811 in a graph or displays the master data generated by the master data generation unit 813.
  • FIG. 14 is a flowchart showing a process of generating master data by the shape inspection apparatus according to the embodiment of the present invention.
  • the image sensor 9 captures the master disk 100 irradiated with the light cutting line, and obtains one image data (S901).
  • the imaging device 9 returns the process to S901, and obtains the next piece of imaging data.
  • the process proceeds to S903. That is, the image sensor 9 repeatedly images the master disk 100 irradiated with the light cutting line at a predetermined frame rate until the master disk 100 makes one round.
  • step S903 the measurement data calculation unit 811 detects the position of the optical cutting line for each imaging data captured by the imaging device 9, and the optical cutting line is irradiated from the detected position using the principle of triangulation. Height data for each position is calculated, and measurement data for the entire area of the master disk 100 is calculated.
  • the mask processing unit 812 executes mask processing using mask data on the measurement data (S904).
  • the mask processing unit 812 interpolates the measurement data of each sample point in the invalid area using the measurement data in the valid area (S905).
  • the mask processing unit 812 outputs the effective area measurement data and the interpolated invalid area measurement data as processing target data to the master data generation unit 813 (S906).
  • the master data generation unit 813 calculates master data by executing processing for removing concave and convex marks and processing for obtaining a Fourier transform value for the processing target data (S907).
  • the master data generation unit 813 graphs the master data and displays it on the display unit 840.
  • the master data generation unit 813 may display the master data obtained by graphing one line in the circumferential direction on the display unit 840.
  • the master data generation unit 813 may display the master data graphed on the line on the display unit 840.
  • the user visually checks the master data displayed on the display unit 840 and confirms the measurement accuracy of the shape inspection apparatus.
  • the shape inspection apparatus of the present embodiment only the measurement data of the base surfaces 110 and 140, the convex surface 120, and the concave surface 130 of the concave-convex plate 101 provided on the master disk 100 are used, Master data has been generated. Therefore, master data that accurately reflects the shape of the master disk 100 can be obtained without providing a special measurement mode in the existing shape inspection apparatus, and the measurement accuracy of the shape inspection apparatus can be accurately confirmed. .
  • the measurement data of the invalid region sample points are interpolated using the measurement data of the effective region sample points.
  • the present invention is not limited to this, and the measurement data of the effective region is processed data.
  • the master data may be calculated as
  • the sidewall surface is the measurement surface, but the tread surface may be the measurement surface.
  • the uneven plate 101 may be provided on the tread surface.
  • a shape inspection apparatus is a shape inspection apparatus that measures a surface shape of a tire and inspects the unevenness of the tire based on a measurement result, and an uneven plate having a known shape value is a measurement surface.
  • a measurement unit for measuring the surface shape of the measurement surface of a metal master disk simulating the tire, and a predetermined area in the uneven plate as an effective area, and an area other than the effective area as an ineffective area Based on the measurement data from which the mask region is removed by the mask processing unit, the mask processing unit that removes the measurement data of the invalid region from the measurement data measured by the measurement unit, using the mask data
  • a master data generation unit that generates master data indicating the surface shape of the measurement surface of the master disk.
  • the measurement data of the invalid area is removed from the measurement data of the master disk by using the mask data in which the predetermined area in the uneven plate is the effective area and the other area is the invalid area. Based on the data, master data indicating the surface shape of the measurement surface of the master disk is generated.
  • the user can check the measurement accuracy of the shape inspection apparatus by comparing the data indicating the surface shape of the uneven plate included in the master data with the known shape value of the uneven plate.
  • the master data is generated by extracting only the measurement data of the effective area in the concavo-convex plate, not the measurement data of the entire master disk, the master disk is affected by the influence of defect data that has failed in actual measurement due to shadows etc It is possible to prevent generation of master data greatly deviating from the original shape.
  • master data is generated by performing processing for removing concave and convex marks and Fourier transform processing on the measurement data of the entire area of the master tire. Master data is generated using measurement data of the effective area. For this reason, even if the process to remove the concavo-convex mark is performed on the measurement data to be processed, the process to remove the concavo-convex mark at an unexpected position is executed, or the Fourier transform is greatly deviated from the actual shape of the concavo-convex plate A value can be prevented from being obtained. Therefore, the measurement accuracy of the shape inspection apparatus can be accurately confirmed without providing a special measurement mode in the existing shape inspection apparatus.
  • the rubber master tire may have a large swell due to the influence of the injected air, but in this configuration, since a metal master disk is adopted, it does not have a large swell. For this reason, it is possible to prevent the measurement accuracy of the shape inspection apparatus from being determined to be deteriorated due to the influence of waviness.
  • the concavo-convex plate includes two base surfaces connected to the measurement surface, a convex surface protruding from the base surface, and a concave surface recessed from the base surface, and the effective region is one of the base surfaces It is preferable that one is provided on each of the other base surface, the convex surface, and the concave surface.
  • the measurement target data is included in the processing target data. It is possible to prevent this, and it is possible to prevent defect data from being included in the processing target data.
  • the image processing apparatus may further include a storage unit that stores in advance mask data corresponding to the type of the master disk, and the mask processing unit uses the mask data corresponding to the master disk measured by the measurement unit.
  • the measurement data may be removed.
  • the measurement unit may measure the surface shape of the measurement surface by a light cutting method.
  • the surface shape of the entire measurement surface can be measured at a higher speed than when spot light is used.
  • the measurement surface may be a sidewall surface.

Abstract

タイヤを模擬した金属製の擬似タイヤを作成し、マスターディスクとして用いる。マスターディスクのサイドウォール面には凹凸板が取り付けられている。凹凸板は、ベース面、凸面、及び凹面を備えている。マスク処理部は、ベース面、凸面、凹面内の所定の領域を有効領域とし、残りを無効領域とするマスクデータを用いて、マスターディスクのサイドウォール面の計測データから有効領域の計測データを抽出する。マスターデータ生成部は、有効領域の計測データを用いてマスターディスクの表面形状を示すマスターデータを生成する。ユーザは凹凸板の形状値とマスターデータとを比較し、形状検査装置の計測精度を確認する。

Description

形状検査装置
 本発明は、タイヤの凹凸欠陥を検査する形状検査装置に関するものであり、特に形状検査装置の計測精度を確認する技術に関するものである。
 タイヤの製造工程においては、最終工程でタイヤの形状の欠陥を検査する試験が行われている。この試験では、例えば、検査対象となるタイヤを1回転させ、レーザ変位計でそのタイヤを計測し、1ラインのタイヤの形状データを取得する。そして、その形状データからタイヤの凹凸欠陥や低周波のうねり(ランアウト)を求め、タイヤの良否が判断されている。
 近年、主なタイヤメーカにより1ラインのみの形状計測では不十分との要求があり、シートレーザ光をタイヤに照射し、タイヤの計測面の全域における形状データを計測し、良否判断を行うことが行われている。
 例えば、特許文献1には、ライン光照射手段から照射されるライン光がタイヤの表面に対してなす角度と、ライン光のタイヤ表面への到達点から撮像素子の中心まで伸びる線がタイヤの表面に対してなす角度とが等しくなるように、ライン光照射手段と撮像手段との位置関係が保持された形状検出装置が開示されている。
 また、特許文献2には、凹凸マークが形成されたサンプルタイヤのサイドウォール面のサンプル原画像を撮像し、サンプル原画像から凹凸マークが形成された領域を抽出し、サンプル原画像から凹凸マークの領域が除去された高さオフセット画像を予め作成しておく。そして、検査タイヤのサイドウォール面の検査画像から高さオフセット画像を差し引き、得られた凹凸除去画像から検査タイヤの形状欠陥を検査する装置が開示されている。
 特許文献3では、光切断法を用いてステータコイルの形状を検査する装置の検査精度を確認するに際し、ステータコアのコイルエンドの形状を模擬したマスターワークを検査冶具として準備し、このマスターワークを用いて、装置の精度確認を行う技術が開示されている。
 ところで、形状検査装置の計測精度が低下すると、形状欠陥を持つタイヤが出荷されるおそれがあるため、定期的に形状検査装置の検査精度を確認する必要がある。また、この精度確認は、ユーザ側で簡便に行えることが望ましい。そのためには、精度確認用の特別な計測モードを用意するといったソフトウェアの変更を行わずに、精度確認を行えることが望ましい。
 しかしながら、特許文献1、2のいずれにも、形状検査装置の検査精度の確認に関する記載が全くなされていない。また、特許文献3では、ハードウェアの変更を要しないことは考慮されているが、ソフトウェアの変更を要しないことが考慮されていない。
特許第5046688号公報 特開2011-141260号公報 特開2010-169450号公報
 本発明の目的は、既存の形状検査装置に特別な計測モードを設けなくても、形状検査装置の計測精度を確認することができる形状検査装置を提供することである。
 本発明の一態様による形状検査装置は、タイヤの表面形状を計測し、計測結果に基づいて前記タイヤの凹凸欠陥を検査する形状検査装置であって、既知の形状値を持つ凹凸板が計測面に取り付けられ、前記タイヤを模擬した金属製のマスターディスクの前記計測面の表面形状を計測する計測部と、前記凹凸板内の所定の領域を有効領域とし、前記有効領域以外の領域を無効領域とするマスクデータを用いて、前記計測部により計測された計測データから前記無効領域の計測データを除去するマスク処理部と、前記マスク処理部により前記マスク領域が除去された計測データに基づいて、前記マスターディスクの前記計測面の表面形状を示すマスターデータを生成するマスターデータ生成部とを備える。
 この構成によれば、既存の形状検査装置に特別な計測モードを設けなくても、形状検査装置の計測精度を簡便に確認することができる。
(A)は本発明の実施の形態による形状検査装置のハードウェア構成の概要を示した図である。(B)は凹凸板の上面視からの図である。(C)は凹凸板のC-C方向からの断面図である。 マスターディスクの計測データの一例を示すグラフである。 ある1ラインの1周分の計測データを示したグラフである。 図3の凹凸板に対応する領域の計測データを拡大したグラフである。 図4に示す凸面の形状を示す関数と、凹面の形状を示す関数と、これら2つの関数の差分とを示したグラフである。 本発明の実施の形態によるマスクデータの模式図である。 図6の周方向に沿ったある1ラインにおける計測データを示したグラフである。 凹凸板の設計上の高さを示したグラフである。 形状検査装置を用いて計測されたマスターディスクの一方のサイドウォール面の計測データを示したグラフである。 形状検査装置を用いて計測されたマスターディスクの他方のサイドウォール面の計測データを示したグラフである。 本発明の実施の形態による形状検査装置の全体構成図である。 センサ部の詳細な構成図である。 本発明の実施の形態による形状検査装置の構成を示すブロック図である。 本発明の実施の形態による形状検査装置がマスターデータを生成する処理を示したフローチャートである。
 図1(A)は、本発明の実施の形態による形状検査装置のハードウェア構成の概要を示した図である。形状検査装置はセンサ部102及びアーム部103を備える。センサ部102は、撮像部及び光源を含む。光源は、マスターディスク100或いは計測対象となるタイヤの半径方向に光切断線を照射する。撮像部は、光切断線が照射されたマスターディスク100或いはタイヤを撮像する。アーム部103は、センサ部102の後端に設けられ、センサ部102を半径方向に移動させる。
 センサ部102を搭載した状態で、形状検査装置の計測精度を確認するためには、凹凸形状の形状値が既知である基準タイヤを用意する必要がある。基準タイヤとして、通常のタイヤと同じゴム製のタイヤを用いると、空気圧の変化や経年劣化により形状が大きく変化するおそれがあるため、ゴム製のタイヤを採用することは好ましくない。
 そこで、本実施の形態では、タイヤを模擬した金属製の擬似タイヤを作成し、これをマスターディスク100として用いる。マスターディスク100のサイドウォール面S1には、例えば1個の凹凸板101が取り付けられている。また、他方のサイドウォール面S1にも、例えば1個の凹凸板101が取り付けられている。凹凸板101は、例えば、ネジ150を用いてマスターディスク100に取り付けられている。
 ここで、サイドウォール面S1において、凹凸板101はマスターディスク100の中心軸106を中心として対称に配置されている。マスターディスク100は、凹凸板101を取り付けるために空間が設けられている。凹凸板101の形状値は、別途、ノギス等の手段を用いて、1μm単位で予め計測され、この形状値が基準値とされる。なお、マスターディスク100は、金属製であるため、ゴム製のタイヤとは光学的な散乱率(反射率)が異なっている。そこで、マスターディスク100は、黒で塗装し、ゴム製のタイヤと同程度の光学的特性を持たせることが好ましい。
 図1(B)は凹凸板101の上面視からの図であり、図1(C)は凹凸板101のC-C方向からの断面図である。図1(C)に示すように、凹凸板101は、ベース面110、凸面120、凹面130、及びベース面140を備えている。
 ベース面110は、サイドウォール面S1と連なっており、サイドウォール面S1と平行である。凸面120は、ベース面110から所定の高さ分突出して形成され、サイドウォール面S1と平行である。凹面130は、ベース面110から所定の高さ分陥没して形成され、サイドウォール面S1と平行である。ベース面140は、サイドウォール面S1と連なっており、サイドウォール面S1と平行である。凸面120はベース面110に隣接し、凹面130は凸面120に隣接し、ベース面140は凹面130に隣接している。また、図1(B)に示すように、上面視において、ベース面110、凸面120、凹面130、及びベース面140のそれぞれの形状は短冊状である。
 図2は、マスターディスク100の計測データの一例を示すグラフである。図2において、縦軸は高さをピクセル単位で示し、横軸はサイドウォール面S1の1周分のサンプル点を示している。図2の例では、マスターディスク100を1回転させ、その間にセンサ部102で所定回数(例えば、1000~5000回)、マスターディスク100を撮像し、得られた画像データから計測データを求めている。1枚の画像データには、光切断線と交差する方向に、所定本数(例えば、画像データの垂直方向の解像度に応じた本数)の水平ラインが含まれている。そして、図2の例では、中央の水平ラインのサンプル点のうち、凹凸板101が存在しているサンプル点の計測データが示されている。図2の縦軸に示すように、凹凸板101の高さは所定範囲内で変動していることが分かる。
 図2において、縦軸の中央付近を通り、横軸と平行なベースラインA205は、ベース面110、140を基準としたときの凸面120及び凹面130の高さを決定するための補助ラインである。
 ベースラインA205は、例えば、ベース面110に対応する領域A101の計測データに基づいて決定される。図2に示すように、領域A101の計測データを全て用いてベースラインA205を決定すると、領域A101内の計測データはギザついているため、本来のベース面110の傾きからずれた傾きを持つベースラインA205が算出されるおそれがある。
 更に、図2に示すように、凹面130の右端に対応する領域A202には、凹面130とベース面140との段差による影の影響により計測できない欠陥サンプル点が発生することもある。この欠陥サンプル点が存在すると、この欠陥サンプル点の影響によりベースラインA205が本来のベース面110の傾きからずれるおそれがある。
 したがって、後述するマスク処理を行って、凹凸板101の全域の計測データではなく、凹凸板101内の一部の計測データを用いてベース面110、140、凸面120、凹面130の傾き求めた方が、これらの面が本来持つ傾きを正確に求めることができる。したがって、本実施の形態では、後述するマスク処理を行う。
 図3は、ある1ラインの1周分の計測データを示したグラフである。図4は、図3の凹凸板101に対応する領域A301の計測データを拡大したグラフである。図5は、図4に示す凸面120の形状を示す関数と、凹面130の形状を示す関数と、これら2つの関数の差分とを示したグラフである。
 図3、図4において、縦軸及び横軸は、図2と同じである。図5において、左側の縦軸はベースラインを基準としたときの凸面120及び凹面130の高さをピクセル単位で示し、右側の縦軸は、凸面120の高さと凹面130の高さとの差分をピクセル単位で示している。
 図4に示すように、凸面120の計測データから凸面120の形状を示す関数を算出すると、その関数はy=a1・x+b1であった。ここで、xは横軸、yは縦軸を示す。また、凹面130の形状を示す関数は、y=a2・x+b2であった。また、ベース面110の形状を示す関数は、y=a3・x+b3であった。また、ベース面140の形状を示す関数は、y=a4・x+b4であった。
 このように、計測データのギザつきや欠陥サンプル点の存在により、ベース面110、140、凸面120、及び凹面130の傾きは本来0になるべきところであるが、0になっていないことが分かる。
 したがって、図5のグラフに示すように、どのサンプル点の計測データを用いるかによって、凸面120及び凹面130の高さが大きく変動することが分かる。
 以上のように全ての計測データをそのまま使用すると、計測データのギザつきや、欠陥サンプル点に引きずられて、形状検査装置の計測精度を正しく判定できないおそれがある。
 また、特許文献2に示すように、既存の形状検査装置では、基準となるサンプルタイヤの計測データからマスターデータを生成しておき、このマスターデータを用いて検査対象となるタイヤの計測データから凹凸マークを除去し、除去後の計測データからタイヤの形状が評価されている。また、タイヤ形状の評価試験においては、計測データの所定次数(例えば16~100次程度)以上のフーリエ変換値を用いて評価することが定められている。
 そのため、既存の形状検査装置では、サンプルタイヤの計測データから凹凸マークを検出して除去し、フーリエ変換値を求めてマスターデータを算出するソフトウェアモジュールが組み込まれている。
 マスターディスク100の全サンプル点の計測データをこのソフトウェアモジュールに通すと、ギザつきの大きなサンプル点が凹凸マークを構成するデータとみなされて予期しない位置の計測データが除去されるおそれがある。また、欠陥サンプル点やギザつきの大きなサンプル点の影響により、フーリエ変換値が本来の形状を表す値から大きくずれてしまうおそれがある。
 本実施の形態では、形状検査装置に新たに計測モードを設けることなく、形状検査装置の計測精度を確認することを目的としている。そこで、マスターディスク100の全サンプル点のうち装置の計測精度の確認に必要となる計測データのみをマスクデータを用いて抽出し、得られた計測データをこのソフトウェアモジュールに処理させてマスターデータを算出し、得られたマスターデータと凹凸板101の既知の形状値とを比較することで形状検査装置の計測精度を確認する。
 図6は、本発明の実施の形態によるマスクデータの模式図である。図6では、マスターディスク100の計測データに重畳するようにマスクデータが示されている。図6において、横軸は周方向を示し、縦軸は半径方向を示している。図6において、明暗は高さを示しており、明るくなるにつれて高い箇所が示され、暗くなるにつれて低い箇所が示されている。
 図6において画面全域に帯状に表れている領域401は、マスターディスク100のサイドウォール面の計測データが配置された領域である。領域401の中央には、縦方向を長手方向とする四角形の4つの有効領域411~414が設けられている。有効領域411~414は、それぞれ、図1(C)に示す、ベース面110、凸面120、凹面130、及びベース面140に対応して設けられている。有効領域411~414以外の領域は無効領域である。マスクデータを用いて計測データにマスク処理を実行すると、有効領域411~414のみの計測データが抽出され、それ以外の無効領域の計測データ無効とされる。
 図7は、図6の周方向に沿ったある1ラインにおける計測データを示したグラフであり、縦軸は高さをmm単位で示し、横軸はサンプル点を示している。
 図7に示すように、有効領域411は、ベース面110の全域ではなく、凸面120との境界位置が含まれないように、ベース面の中央に設けられている。また、有効領域412は、凸面120の全域ではなく、ベース面110及び凹面130との境界位置が含まれないように凸面120の中央に設けられている。また、有効領域413は、凹面130の全域ではなく、凸面120及びベース面140との境界位置が含まれないように凹面130の中央に設けられている。また、有効領域414は、ベース面140の全域ではなく、凹面130との境界位置が含まれないようにベース面140の中央に設けられている。
 これにより、欠陥サンプル点が除去された計測データを用いて、装置の計測精度を確認することができる。
 なお、有効領域及び無効領域の設定は、形状計測装置の製造メーカによって予め行われている。つまり、形状計測装置の製造メーカは、マスターディスク100とセットで、そのマスターディスク100に対応するマスクデータを提供する。なお、形状計測装置の製造メーカの開発者は、マスターディスク100の計測データを表示画面に表示させ、ベース面110、140、凸面120、及び凹面130に対応する計測データ上の位置を目視により特定し、有効領域及び無効領域を設定することでマスクデータを作成する。
 ここで、無効領域の各サンプル点の計測データは、ベース面110、140に対応する有効領域411、414の計測データを用いて算出されてもよい。例えば、有効領域411、412から数点のサンプル点を取り出し、取り出したサンプル点の計測データを、無効領域内に等間隔でプロットしていき、線形補間することで、無効領域の各サンプル点の計測データを求めてもよい。
 図8は、凹凸板101の設計上の高さを示したグラフであり、縦軸は、高さをmm単位で示し、横軸は周方向のサンプル点を示している。図8の凹凸板101では、ベース面110、140を基準としたときの凸面120の高さ501の平均は、例えば、0.5~3.0mm程度である。また、ベース面110、140を基準としたときの凹面130の高さ502の平均は、例えば、-0.5~-3.0mm程度である。
 図9は、形状検査装置が生成したマスターディスク100の一方のサイドウォール面のマスターデータを示したグラフであり、縦軸は高さをmm単位で示し、横軸は周方向のサンプル点を示している。図10は、形状検査装置が生成したマスターディスク100の他方のサイドウォール面のマスターデータを示したグラフであり、縦軸は高さをmm単位で示し、横軸は周方向のサンプル点を示している。
 図9において、有効領域411~414の計測データを用いて、ベース面110、140を基準としたときの、凸面120及び凹面130の高さの平均値を算出した。すると、凸面120及び凹面130の高さの平均値はマスターディスク100の凸面120及び凹面130の設計上の高さとほぼ一致した。
 また、図10において、有効領域411~414の計測データを用いて、ベース面110、140を基準としたときの、凸面120及び凹面130の高さの平均値を算出した。すると、凸面120及び凹面130の高さの平均値は設計上のマスターディスク100の凸面及び凹面130の設計上の高さの平均値とほぼ一致した。そのため、計測データに対してマスクデータを用いたマスク処理を施すことで、凸面120及び凹面130の正確な高さが得られていることが分かる。
 図11は、本発明の実施の形態による形状検査装置の全体構成図である。形状検査装置は、回転部2、センサ部102、エンコーダ4、制御部5、及びユニット駆動部10を含む。回転部2は、タイヤ又はマスターディスク(以下、両者を纏めて計測物Tと記述する)を回転軸Rを中心軸として回転させる。具体的には、回転部2は、計測物Tの中心軸に取り付けられるシャフト及びシャフトを回転させるためのモータ等を含む。回転部2による計測物Tの回転速度としては、例えば60rpmが採用される。
 センサ部102は、計測物Tのトレッド面側に設けられたセンサ部31と、計測物Tのサイドウォール面の上側に設けられたセンサ部32と、計測物Tのサイドウォール面の下側に設けられたセンサ部33とが存在する。センサ部31はトレッド面を計測する際に用いられ、センサ部32は上側のサイドウォール面を計測する際に用いられ、センサ部33は下側のサイドウォール面を計測する際に用いられる。
 センサ部31は、回転中の計測物Tに対して半径方向にスリット状の光切断線を照射することで光切断線をトレッド面の周方向に走査し、計測物Tからの反射光を受光し、トレッド面の全域の計測データを取得する。
 センサ部32、33も、センサ部33と同様にして、それぞれ、光切断線を計測物Tに照射し、サイドウォール面の全域の計測データを取得する。
 エンコーダ4は、計測物Tが所定角度回転する毎に、回転角度を示す角度信号を制御部5に出力する。角度信号は、センサ部102の計測タイミングを決定するために用いられる。
 制御部5は、例えば、専用のハードウェア回路や、CPU等により構成され、センサ部102から出力された計測データに対して後述する処理を行う。ユニット駆動部10は、センサ部31~33を位置決めするための3本のアーム部(図略)及び3本のアーム部をそれぞれ移動させるための3個のモータ等を含み、制御部5の制御の下、センサ部31~33を位置決めする。
 なお、図11において、センサ部102としてセンサ部31~33を設ける態様を示したが、これに限定されない。例えば、センサ部31~33のうちいずれか1個又は2個を省いてもよい。
 図12は、センサ部102の詳細な構成図である。図12では、トレッド面を計測する際のセンサ部102が示されている。図12において、Y軸は回転軸R(図11参照)と平行な方向を示し、Z軸はトレッド面の法線方向を示し、X軸はY軸及びZ軸のそれぞれと直交する方向を示している。
 光源7は、半導体レーザ及びシリンドリカルレンズ等を含む光源であり、光切断線を計測物Tに照射する。ここで、光源7は、Z軸と交差する方向から光切断線を照射する。計測物Tは回転部2によって回転されているため、光切断線は計測物Tのドレッド面の全域を走査することができる。
 カメラ6は、カメラレンズ8、及び撮像素子9を含む。カメラレンズ8はトレッド面からの反射光を撮像素子9に導く。撮像素子9は、例えば、CCDやCOMS等のイメージセンサにより構成され、カメラレンズ8を介して反射光を受光する。撮像素子9は、制御部5の制御の下、トレッド面を撮像する。なお、反射光は正反射光が好ましいため、カメラレンズ8は正反射光を撮像素子9に導くように構成される。
 図13は、本発明の実施の形態による形状検査装置の構成を示すブロック図である。形状検査装置は、光源7、撮像素子9(計測部の一例)、制御部5、操作部820、記憶部830、及び表示部840を備えている。撮像素子9は、光切断線が照射されたマスターディスク100を所定のフレームレートで撮像する。
 光源7は、計測物Tに光切断線を照射する。制御部5は、例えば、FPGAにより構成され、計測データ算出部811(計測部の一例)、マスク処理部812、及びマスターデータ生成部813を備えている。操作部820は、例えば、キーボードやマウス等の入力装置により構成され、ユーザからの操作指示を受け付ける。
 計測データ算出部811は、撮像素子9により撮像された撮像データから光切断線の位置を検出する。具体的には、計測データ算出部811は、撮像素子9が1枚の撮像データを撮像する都度、その撮像データに含まれる光切断線CLの位置を検出する。計測データ算出部811は、図12に示すように撮像素子9において、光切断線CLに交差する方向に垂直座標が設定され、光切断線CLに沿う方向に水平座標が設定されているとすると、垂直方向の各ラインにおいて輝度のピークとなる座標をピクセルレベル又はサブピクセルレベルで検出し、その座標を光切断線CLの位置として検出する。
 そして、計測データ算出部811は、検出した位置から三角測量の原理を用いて光切断線の各位置の高さデータを算出し、この高さデータからなるデータ群を半径方向に沿った1ラインの計測データとして算出する。
 そして、計測データ算出部811は、1ラインの計測データをマトリックス状に配列し、計測物Tの計測面の全域の計測データを算出する。例えば、1ラインの計測データを構成する高さデータの数がM個、撮像素子9が撮像した撮像データの枚数がN個とすると、計測データは、高さデータがM行×N列で配列されたデータとなる。なお、計測データ算出部811は、検査対象となるタイヤの計測データについても、マスターディスク100と同様にして算出する。
 マスク処理部812は、計測データ算出部811により算出された計測データに対して、マスクデータを用いたマスク処理を実行し、得られた計測データを処理対象データとしてマスターデータ生成部813に出力する。なお、本実施の形態では、形状検査装置の計測精度を評価するときのみ、マスク処理部812はマスク処理を行い、それ以外のときは、マスク処理を行わない。この場合、計測データ算出部811で算出された計測データは、マスターデータ生成部813に出力される。
 マスクデータとしては、図6に示したマスクデータ、すなわち、ベース面110、140、凸面120、及び凹面130の一部が有効領域411~414、有効領域411~414以外の領域が無効領域とされたマスクデータが採用される。
 そして、マスク処理部812は、マスターディスク100の計測データから有効領域411~414の計測データを抽出する。
 また、マスク処理部812は、ベース面110、140に対応する有効領域411、414を構成する数点のサンプル点の計測データを無効領域にプロットして、線形補間により無効領域の計測データを求める。例えば、図6に示す無効領域において、垂直方向に4つ、水平方向に4つの合計16個の計測データをプロットする場合、ベース面110から8個の計測データを取り出し、これら8個の計測データを有効領域411の左側の無効領域に4行×2列で等間隔にプロットし、ベース面140から8個の計測データを取り出し、これら8個の計測データを有効領域414の右側の無効領域に4行×2列で等間隔にプロットすればよい。そして、マスク処理部812は、プロットした16個の計測データを線形補間して、無効領域の各サンプル点における計測データを求めればよい。そして、マスク処理部812は、得られた無効領域の計測データと有効領域の計測データとを処理対象データとして、マスターデータ生成部813に出力してもよい。
 マスターデータ生成部813は、上述した、サンプルタイヤの計測データから凹凸マークを検出して除去し、フーリエ変換値を求めてマスターデータを算出するソフトウェアモジュールにより構成されている。ここで、処理対象データは、欠陥サンプル点が除去されているため、凹凸マークを検出して除去する処理が実行されても、凹凸マークが検出されない。なお、マスターデータはマスターディスク100の計測面の表面形状を示すデータである。
 また、マスターデータ生成部813は、マスターデータを例えばグラフ化して表示部840に表示させる。これにより、ユーザは、このマスターデータと凹凸板101の既知の形状値とを比較することで、形状検査装置の計測精度を評価する。例えば、図2において、凸面120や凹面130の傾きが水平方向から傾いたマスターデータが表示部840に表示されたとする。この場合、ユーザは形状検査装置の計測精度が悪いと判定することができる。そして、ユーザは、形状検査装置の計測精度が改善されるように形状検査装置の調整を行う。
 一方、図7に示すように、凸面120や凹面130の傾きが水平方向と平行なマスターデータが表示部840に表示された場合、ユーザは形状検査装置の計測精度は良好であると判定することができる。
 記憶部830は、ユーザにより予め作成されたマスクデータを記憶する。ここで、マスクデータは、マスターディスク100の種類に応じて複数作成されており、記憶部830は、マスクデータを特定するディスクIDと関連付けてマスターデータを記憶すればよい。なお、マスク処理部812は、マスターディスク100の計測時において、ユーザによりディスクIDが指定されると、そのディスクIDに対応するマスクデータを記憶部830から読み出してマスク処理を行う。また、記憶部830は、マスターデータ生成部813により生成されたマスターデータを記憶する。
 表示部840は、例えば、液晶ディスプレイにより構成され、計測データ算出部811により算出された計測データをグラフ化して表示したり、マスターデータ生成部813により生成されたマスターデータを表示したりする。
 図14は、本発明の実施の形態による形状検査装置がマスターデータを生成する処理を示したフローチャートである。まず、撮像素子9は、光切断線が照射されたマスターディスク100を撮像し、1枚の撮像データを得る(S901)。次に、マスターディスク100が1周していなければ(S902でNO)、撮像素子9は処理をS901に戻し、次の1枚の撮像データを得る。一方、マスターディスク100が1周すると(S902でYES)、処理がS903に進められる。つまり、撮像素子9は、マスターディスク100が1周するまで、所定のフレームレートで光切断線が照射されたマスターディスク100を繰り返し撮像するのである。
 S903において、計測データ算出部811は、撮像素子9により撮像された各撮像データに対して光切断線の位置を検出し、検出した位置から三角測量の原理を用いて光切断線が照射された各位置の高さデータを算出し、マスターディスク100の全域の計測データを算出する。
 次に、マスク処理部812は、計測データに対してマスクデータを用いたマスク処理を実行する(S904)。次に、マスク処理部812は、有効領域の計測データを用いて無効領域の各サンプル点の計測データを補間する(S905)。
 次に、マスク処理部812は、有効領域の計測データと、補間された無効領域の計測データとを処理対象データとして、マスターデータ生成部813に出力する(S906)。次に、マスターデータ生成部813は、処理対象データに対して、凹凸マークを除去する処理及びフーリエ変換値を求める処理を実行してマスターデータを算出する(S907)。
 次に、マスターデータ生成部813は、マスターデータをグラフ化し、表示部840に表示する。ここで、マスターデータ生成部813は、周方向のある1ラインをグラフ化したマスターデータを表示部840に表示すればよい。また、マスターデータ生成部813は、操作部820によりユーザから周方向のラインを指定する指示を受け付けると、そのラインのグラフ化したマスターデータを表示部840に表示すればよい。
 ユーザは、表示部840に表示されたマスターデータを目視し、形状検査装置の計測精度を確認する。
 このように、本実施の形態の形状検査装置によれば、マスターディスク100に設けられた凹凸板101のベース面110、140、凸面120、及び凹面130の一部の計測データのみを用いて、マスターデータが生成されている。そのため、既存の形状検査装置に特別な計測モードを設けなくても、マスターディスク100の形状が正確に反映されたマスターデータが得られ、形状検査装置の計測精度の確認を精度よく行うことができる。
 なお、上記実施の形態では、有効領域のサンプル点の計測データを用いて無効領域のサンプル点の計測データを補間したが、本発明はこれに限定されず、有効領域の計測データを処理対象データとしてマスターデータを算出してもよい。
 また、上記実施の形態では、サイドウォール面を計測面としたが、トレッド面を計測面としてもよい。この場合、トレッド面に凹凸板101を設ければよい。
 (本実施の形態の纏め)
 本発明の一態様による形状検査装置は、タイヤの表面形状を計測し、計測結果に基づいて前記タイヤの凹凸欠陥を検査する形状検査装置であって、既知の形状値を持つ凹凸板が計測面に取り付けられ、前記タイヤを模擬した金属製のマスターディスクの前記計測面の表面形状を計測する計測部と、前記凹凸板内の所定の領域を有効領域とし、前記有効領域以外の領域を無効領域とするマスクデータを用いて、前記計測部により計測された計測データから前記無効領域の計測データを除去するマスク処理部と、前記マスク処理部により前記マスク領域が除去された計測データに基づいて、前記マスターディスクの前記計測面の表面形状を示すマスターデータを生成するマスターデータ生成部とを備える。
 この構成によれば、凹凸板内の所定の領域が有効領域、それ以外の領域が無効領域とされたマスクデータを用いて、マスターディスクの計測データから無効領域の計測データが除去され、この計測データに基づいて、マスターディスクの計測面の表面形状を示すマスターデータが生成される。
 そのため、マスターデータに含まれる凹凸板の表面形状を示すデータと凹凸板の既知の形状値とを比較することでユーザは形状検査装置の計測精度を確認することができる。また、マスターディスク全域の計測データではなく凹凸板内の有効領域の計測データのみが抽出されてマスターデータが生成されているため、影等によって実際の計測に失敗した欠陥データの影響により、マスターディスクの本来の形状から大きくずれたマスターデータが生成されることを防止することができる。
 また、既存の形状検査装置では、マスタータイヤの全域の計測データに対して凹凸マークを除去する処理やフーリエ変換処理を施してマスターデータが生成されているが、本構成では、マスターディスクの全域ではなく有効領域の計測データを用いてマスターデータが生成されている。そのため、処理対象の計測データに対して凹凸マークを除去する処理を実行しても、予期せぬ位置に凹凸マークを除去する処理が実行されたり、凹凸板の実際の形状から大きく乖離したフーリエ変換値が得られたりすることを防止することができる。そのため、既存の形状検査装置に特別な計測モードを設けなくても形状検査装置の計測精度を精度よく確認することができる。
 また、ゴム製のマスタータイヤは注入される空気の影響により大きなうねりを持つことがあるが、本構成では、金属製のマスターディスクが採用されているため、大きなうねりを持つことがない。そのため、うねりの影響により形状検査装置の計測精度が劣化していると判定されることを防止することができる。
 上記態様において、前記凹凸板は、前記計測面と連なる2つのベース面と、前記ベース面から突出した凸面と、前記ベース面から陥没した凹面とを備え、前記有効領域は、一方の前記ベース面、他方の前記ベース面、前記凸面、及び前記凹面のそれぞれに1箇所ずつ設けられていることが好ましい。
 この構成によれば、凹凸板を構成する2つのベース面、凸面、凹面のそれぞれに1箇所ずつ有効領域が設けられているため、凹凸の変化が激しい箇所の計測データが処理対象データに含まれることを防止することができ、処理対象データに欠陥データが含まれることを防止することができる。
 上記態様において、前記マスターディスクの種類に応じたマスクデータを予め記憶する記憶部を更に備え、前記マスク処理部は、前記計測部により計測されたマスターディスクに対応するマスクデータを用いて前記無効領域の計測データを除去してもよい。
 この構成によれば、マスターディスクの種類に対応したマスクデータが用いられるため、マスターディスクにおける実際の凹凸板の位置とは異なる位置に有効領域が設定されることを防止することができる。
 (4)前記計測部は、光切断法により前記計測面の表面形状を計測してもよい。
 この構成によれば、光切断法によりマスターディスクの計測面の形状が計測されているため、スポット光を用いる場合に比べ、計測面全域の表面形状を高速に計測することができる。
 (5)前記計測面はサイドウォール面であってもよい。
 この構成によれば、サイドウォール面を計測する際の形状検査装置の計測精度を確認することができる。

Claims (5)

  1.  タイヤの表面形状を計測し、計測結果に基づいて前記タイヤの凹凸欠陥を検査する形状検査装置であって、
     既知の形状値を持つ凹凸板が計測面に取り付けられ、前記タイヤを模擬した金属製のマスターディスクの前記計測面の表面形状を計測する計測部と、
     前記凹凸板内の所定の領域を有効領域とし、前記有効領域以外の領域を無効領域とするマスクデータを用いて、前記計測部により計測された計測データから前記無効領域の計測データを除去するマスク処理部と、
     前記マスク処理部により前記無効領域が除去された計測データに基づいて、前記マスターディスクの前記計測面の表面形状を示すマスターデータを生成するマスターデータ生成部とを備える形状検査装置。
  2.  前記凹凸板は、前記計測面と連なる2つのベース面と、前記ベース面から突出した凸面と、前記ベース面から陥没した凹面とを備え、
     前記有効領域は、一方の前記ベース面、他方の前記ベース面、前記凸面、及び前記凹面のそれぞれに1箇所ずつ設けられている請求項1記載の形状検査装置。
  3.  前記マスターディスクの種類に応じたマスクデータを予め記憶する記憶部を更に備え、
     前記マスク処理部は、前記計測部により計測されたマスターディスクに対応するマスクデータを用いて前記無効領域の計測データを除去する請求項1記載の形状検査装置。
  4.  前記計測部は、光切断法により前記計測面の表面形状を計測する請求項1記載の形状検査装置。
  5.  前記計測面はサイドウォール面である請求項1~4のいずれかに記載の形状検査装置。
PCT/JP2014/001623 2013-04-08 2014-03-20 形状検査装置 WO2014167784A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14782951.9A EP2960621B1 (en) 2013-04-08 2014-03-20 Shape inspection device
CN201480017690.XA CN105051486B (zh) 2013-04-08 2014-03-20 形状检查装置
US14/783,061 US9625353B2 (en) 2013-04-08 2014-03-20 Shape inspection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013080648A JP5923054B2 (ja) 2013-04-08 2013-04-08 形状検査装置
JP2013-080648 2013-04-08

Publications (1)

Publication Number Publication Date
WO2014167784A1 true WO2014167784A1 (ja) 2014-10-16

Family

ID=51689207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001623 WO2014167784A1 (ja) 2013-04-08 2014-03-20 形状検査装置

Country Status (6)

Country Link
US (1) US9625353B2 (ja)
EP (1) EP2960621B1 (ja)
JP (1) JP5923054B2 (ja)
CN (1) CN105051486B (ja)
TW (1) TWI512278B (ja)
WO (1) WO2014167784A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059918A (ja) * 2016-10-03 2018-04-12 アクロン・スペシャル・マシナリー・インコーポレイテッドAkron Special Machinery Incorporated タイヤ分析機械での使用のためのテストホイール

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6652977B2 (ja) 2015-12-24 2020-02-26 三菱重工機械システム株式会社 マスタディスク及びその装着方法並びに取外方法
BR112018012511B1 (pt) * 2015-12-28 2022-09-20 Pirelli Tyre S.P.A. Método e dispositivo de ajuste para ajustar um aparelho de verificação de pneus
US10510006B2 (en) * 2016-03-09 2019-12-17 Uptake Technologies, Inc. Handling of predictive models based on asset location
CN106289105A (zh) * 2016-10-31 2017-01-04 吉林大学 基于主动视觉的汽车轮胎形貌检测仪的检定系统
CN115218811B (zh) * 2022-09-19 2023-01-06 中汽研汽车检验中心(天津)有限公司 假人肋骨形变测量方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108204A (ja) * 1986-10-25 1988-05-13 Sumitomo Rubber Ind Ltd 寸法測定方法
JPH04321185A (ja) * 1990-12-28 1992-11-11 Sharp Corp 画像処理方法
JPH0546688B2 (ja) 1985-01-28 1993-07-14 Canon Kk
JPH074931A (ja) * 1993-06-15 1995-01-10 Fujitsu Ltd 光切断法を使用してなすピーク検出法
JP2007121126A (ja) * 2005-10-28 2007-05-17 Yokohama Rubber Co Ltd:The 3次元形状測定装置及び3次元形状測定方法
WO2009148095A1 (ja) * 2008-06-04 2009-12-10 株式会社神戸製鋼所 タイヤ形状検査方法、タイヤ形状検査装置
JP2010169450A (ja) 2009-01-20 2010-08-05 Toyota Motor Corp ステータコイルの形状検査方法および形状検査用治具
JP2010181320A (ja) * 2009-02-06 2010-08-19 Kobe Steel Ltd タイヤ形状検査方法,タイヤ形状検査装置
JP2011138208A (ja) * 2009-12-25 2011-07-14 Sharp Corp 画像処理方法、画像処理装置、画像処理プログラムおよび記録媒体
JP2011141260A (ja) 2009-12-07 2011-07-21 Kobe Steel Ltd タイヤ形状検査方法、及びタイヤ形状検査装置
JP5046688B2 (ja) * 2007-03-08 2012-10-10 株式会社神戸製鋼所 タイヤ形状検出装置,タイヤ形状検出方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19849793C1 (de) * 1998-10-28 2000-03-16 Fraunhofer Ges Forschung Vorrichtung und Verfahren zur berührungslosen Erfassung von Unebenheiten in einer gewölbten Oberfläche
US6560883B2 (en) * 2000-06-28 2003-05-13 Snap-On Technologies, Inc. Method and system for conducting wheel alignment
US7614292B2 (en) * 2005-04-22 2009-11-10 Bridgestone Corporation Method and device for detecting defect in outer shape of tire side portion
US7369956B2 (en) * 2005-10-25 2008-05-06 Commercial Time Sharing, Inc. System for testing tire sidewall irregularities and related methods
JP5089286B2 (ja) * 2007-08-06 2012-12-05 株式会社神戸製鋼所 形状測定装置,形状測定方法
FR2938330A1 (fr) * 2008-11-07 2010-05-14 Michelin Soc Tech Evaluation du relief de la surface d'un pneumatique par stereovision active
US8712720B2 (en) * 2008-12-19 2014-04-29 Michelin Recherche at Technigue S.A. Filtering method for improving the data quality of geometric tire measurements
CN201716009U (zh) * 2010-08-16 2011-01-19 长安大学 一种胎面花纹检测装置
JP5726045B2 (ja) * 2011-11-07 2015-05-27 株式会社神戸製鋼所 タイヤ形状検査方法、及びタイヤ形状検査装置
JP5781481B2 (ja) * 2012-09-04 2015-09-24 株式会社神戸製鋼所 タイヤ形状検査方法、及びタイヤ形状検査装置
DE102013010402A1 (de) * 2013-06-21 2014-12-24 Steinbichler Optotechnik Gmbh Reifenprüfgerät, Reifenprüfanlage und Verfahren zur Reifenprüfung

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0546688B2 (ja) 1985-01-28 1993-07-14 Canon Kk
JPS63108204A (ja) * 1986-10-25 1988-05-13 Sumitomo Rubber Ind Ltd 寸法測定方法
JPH04321185A (ja) * 1990-12-28 1992-11-11 Sharp Corp 画像処理方法
JPH074931A (ja) * 1993-06-15 1995-01-10 Fujitsu Ltd 光切断法を使用してなすピーク検出法
JP2007121126A (ja) * 2005-10-28 2007-05-17 Yokohama Rubber Co Ltd:The 3次元形状測定装置及び3次元形状測定方法
JP5046688B2 (ja) * 2007-03-08 2012-10-10 株式会社神戸製鋼所 タイヤ形状検出装置,タイヤ形状検出方法
WO2009148095A1 (ja) * 2008-06-04 2009-12-10 株式会社神戸製鋼所 タイヤ形状検査方法、タイヤ形状検査装置
JP2010169450A (ja) 2009-01-20 2010-08-05 Toyota Motor Corp ステータコイルの形状検査方法および形状検査用治具
JP2010181320A (ja) * 2009-02-06 2010-08-19 Kobe Steel Ltd タイヤ形状検査方法,タイヤ形状検査装置
JP2011141260A (ja) 2009-12-07 2011-07-21 Kobe Steel Ltd タイヤ形状検査方法、及びタイヤ形状検査装置
JP2011138208A (ja) * 2009-12-25 2011-07-14 Sharp Corp 画像処理方法、画像処理装置、画像処理プログラムおよび記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2960621A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059918A (ja) * 2016-10-03 2018-04-12 アクロン・スペシャル・マシナリー・インコーポレイテッドAkron Special Machinery Incorporated タイヤ分析機械での使用のためのテストホイール
JP7051346B2 (ja) 2016-10-03 2022-04-11 アクロン・スペシャル・マシナリー・インコーポレイテッド タイヤ分析機械での使用のためのテストホイール

Also Published As

Publication number Publication date
EP2960621A4 (en) 2016-10-19
JP2014202676A (ja) 2014-10-27
EP2960621A1 (en) 2015-12-30
US20160054200A1 (en) 2016-02-25
JP5923054B2 (ja) 2016-05-24
US9625353B2 (en) 2017-04-18
TWI512278B (zh) 2015-12-11
TW201447255A (zh) 2014-12-16
EP2960621B1 (en) 2017-10-25
CN105051486A (zh) 2015-11-11
CN105051486B (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
US9097514B2 (en) Device and method for inspecting tyre shape
JP5923054B2 (ja) 形状検査装置
JP5969906B2 (ja) 計測方法及び計測装置
US9109974B2 (en) Tire shape inspection method and tire shape inspection apparatus
US20160236892A1 (en) Apparatus and method for determining a distance measure on wound-up materials
US9638606B2 (en) Tire shape inspection method and tire shape inspection device
EP2508871A1 (en) Inspection apparatus, measurement method for three-dimensional shape, and production method for structure
JP2014506995A (ja) 透明な容器の材料に分布する欠陥を検出するための方法及び装置
JP2010169450A (ja) ステータコイルの形状検査方法および形状検査用治具
JP3914500B2 (ja) 欠陥検査装置
JP2019011987A (ja) 欠陥検出装置および欠陥検出方法
JP5367292B2 (ja) 表面検査装置および表面検査方法
JP5087165B1 (ja) 表面検査装置を調整するためのデータを出力する調整装置、調整データ出力方法及びプログラム
JP4529227B2 (ja) 平面検査装置および平面検査方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017690.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782951

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014782951

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014782951

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14783061

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201507167

Country of ref document: ID