WO2014166233A1 - 对roadm光网络进行监测的方法、装置以及系统 - Google Patents

对roadm光网络进行监测的方法、装置以及系统 Download PDF

Info

Publication number
WO2014166233A1
WO2014166233A1 PCT/CN2013/086000 CN2013086000W WO2014166233A1 WO 2014166233 A1 WO2014166233 A1 WO 2014166233A1 CN 2013086000 W CN2013086000 W CN 2013086000W WO 2014166233 A1 WO2014166233 A1 WO 2014166233A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
attribute information
wavelength label
optical
optical signal
Prior art date
Application number
PCT/CN2013/086000
Other languages
English (en)
French (fr)
Inventor
尚迎春
华锋
沈百林
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/784,086 priority Critical patent/US9831945B2/en
Priority to JP2016506754A priority patent/JP6200066B2/ja
Priority to EP13881898.4A priority patent/EP2985928A4/en
Priority to KR1020157030141A priority patent/KR101831042B1/ko
Publication of WO2014166233A1 publication Critical patent/WO2014166233A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0773Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0066Provisions for optical burst or packet networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0077Labelling aspects, e.g. multiprotocol label switching [MPLS], G-MPLS, MPAS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring

Definitions

  • the present invention relates to the field of communications, and in particular to a Reconfigurable Optical Add Drop Multiplexer (ROADM) optical network.
  • ROADM Reconfigurable Optical Add Drop Multiplexer
  • Methods, devices and systems for monitoring BACKGROUND
  • a Reconfigurable Optical Add Drop Multiplexer (ROADM) can be configured by software to implement local uplink and downlink and direct communication of channel wavelengths, thereby enhancing the flexibility of optical network service transmission.
  • the existing ROADM system has CDC functions, namely, wavelength independence, direction independence, and wavelength competition independence (Colorless, Directionless, Contentionless, abbreviated as CDC).
  • Conventional wavelength division multiplexing systems use fixed grid technology, and the channel grid is typically 50 GHz or 100 GHz.
  • the ultra-100G transmission technology has created the need for a gridless or flexible grid, that is, the width of the channel grid is variable to accommodate the transmission requirements of wavelength division multiplexing with different modulation patterns and different rates.
  • the CDC functionality of ROADM evolves into CDCG or CDCF functionality.
  • the flexible grid technology was initially standardized in February 2011 by the International Telecommunication Union Study Group 15 (ITU-T SG15) G.694.1 standard.
  • the internal version of the standard draft document is V1.2, and the standard frequency band is standardized.
  • the center frequency is 193.1 + nx 0.00625, where n is an integer and the normalized bandwidth is 12.5 GHz xm, where m is a positive integer.
  • the ROADM system with flexible grid technology is generally referred to as the Flex ROADM system.
  • adjacent channels carrying wavelengths of different rate services are fixed at intervals of 50 GHz or 100 GHz, and each wavelength is allocated with fixed optical spectrum bandwidth resources of 50 GHz or 100 GHz.
  • one channel may contain one carrier or multiple subcarriers, and each subcarrier may be continuously allocated in a spectrum or may be dispersed in a discontinuous spectrum. As shown in FIG. 1, one of the spectrum bandwidths is 8xl2.5 GHz, including 4 consecutive subcarriers, and each subcarrier has a 25 GHz spectral width.
  • the optical transmission network of the ultra-100G era not only introduces flexible grid technology, but also multi-carrier optical transmission technology and stronger coherent DSP processing capability, so that it has configurable/programming features and is programmable. It means that it can be changed as needed.
  • the line side of the system can select different spectrum efficiency and compensation algorithms according to different link states, and the wavelength selection device in the ROADM node in the system according to different signal spectrum width and number of cascades Select different grid widths and filter shapes; the receiving end in the system selects the corresponding DSP algorithm according to different baud rate and modulation format.
  • the configuration information is sent by the network management system to each node of the system.
  • the line side sender of the system changes the modulation format, subcarrier multiplexing mode, and other sending side configurations according to the link status, the network management system also needs to change the chain. Configuration of each ROADM node and receiver in the road.
  • the ROADM optical network uses the network management system to configure all nodes on the optical network.
  • these configurations are programmable.
  • the configuration may be changed as many times as needed.
  • the configuration workload increases, and the configuration error probability is large.
  • a wavelength-division signal is applied to each optical channel or optical wavelength in a wavelength division multiplexing system, which can realize a variety of special applications.
  • the application of the topping signal has been studied in the industry.
  • the topping signal is sometimes called a low-frequency dither signal, and the effect of the topping signal loaded in the wavelength signal on the transmission performance of the channel is almost negligible.
  • the research on the topping signal mainly includes: 1) in the transmission network layer based on the optical network element, using the topping signal to realize the confirmation and power management of the wavelength channel required for fault management in the wavelength division multiplexing system; 2) For example, in a method and apparatus for performance monitoring of an optical transmission system, a method for monitoring the performance of an optical amplifier is proposed, that is, monitoring a peaking signal of a known modulation depth to estimate an optical amplifier signal and a noise component; In the signal tracking and performance monitoring of multi-wavelength optical networks, a scheme of on-line wavelength routing tracking is proposed in a wavelength division multiplexing network, that is, each wavelength is modulated with a unique topping signal, and frequency shift keying is performed.
  • Embodiments of the present invention provide a method, a device, and a system for monitoring a ROADM optical network, so as to at least solve the technical problem that the ROADM optical network cannot be effectively monitored in the related art.
  • a method for monitoring a ROADM optical network includes: acquiring a wavelength label frequency carried in an optical signal and/or attribute information of a channel for transmitting the optical signal; The frequency and/or the above attribute information is used to monitor the ROADM optical network.
  • the attribute information includes at least one of the following: a width of the channel, a location of the channel, whether the channel has a subcarrier, a distribution of subcarriers, a source address, a destination address, a modulation format, a subcarrier multiplexing manner, and a signal rate.
  • the method before acquiring the wavelength label frequency and/or the attribute information, the method further includes: transmitting the attribute information on the wavelength label channel.
  • monitoring the ROADM optical network according to the wavelength label frequency and/or the attribute information includes at least one of: determining whether the path of the ROADM optical network is generated according to the wavelength label frequency and/or the attribute information. Optical signal misconnection; detecting, according to the wavelength label frequency and/or the attribute information, whether the coherent receiver and the optical channel of the optical signal are in line at the place where the optical signal is dropped; according to the wavelength label frequency and/or the above
  • the attribute information is used to generate the optical network configuration requirements, and is compared with the configuration information sent by the NMS to determine whether the network management information received by the node is abnormal.
  • detecting, according to the wavelength label frequency and the attribute information, whether the optical channel of the coherent receiver and the optical signal of the optical signal is matched at the place where the optical signal is dropped includes: detecting, analyzing, and analyzing a wavelength label frequency of the optical signal And outputting at least one of a wavelength, a subcarrier distribution, a modulation format, a subcarrier multiplexing mode, and a signal rate carried in the wavelength label frequency; and the attribute information and the analyzed distribution of the wavelength and/or subcarrier, Comparing with the spectrum emitted by the local laser of the monitoring end to determine whether the local oscillator frequency of the coherent receiver at the monitoring end matches the spectrum of the downlink, and if not, it is determined that a sub-process occurs during the transmission of the optical signal.
  • At least one of the number rates is compared to determine whether the settings of the sender and the receiver are matched. If they do not match, it is determined that the network management information has generated an error during the delivery process or the configuration information sent by the network management system is incorrect.
  • determining whether the optical signal is staggered on the path of the ROADM optical network according to the wavelength label frequency and/or the attribute information includes: detecting a wavelength label frequency of the optical signal, and analyzing the wavelength label frequency The distribution of wavelengths and/or subcarriers carried in the uplink; and the distribution of the analyzed wavelengths and/or subcarriers are compared with the attribute information to determine whether the optical signal is misconnected.
  • determining whether the path pipe configuration information transmission in the ROADM optical network is incorrect according to the wavelength label frequency and/or the attribute information includes: detecting a wavelength label frequency of the optical signal, and analyzing the wavelength label frequency Carrying at least one of a wavelength, a distribution of subcarriers, a modulation format of an optical channel, a subcarrier multiplexing mode, and a signal rate; and generating the configured attribute information to generate a configuration requirement of the node, Compare the configuration requirements with the configuration information transmitted by the network management system to determine whether the network management configuration information is transmitted incorrectly; and/or use the attribute information to determine whether the DSP algorithm received by the downlink is correct.
  • comparing the analyzed optical wavelength and/or the distribution of the photo subcarriers with the attribute information to determine whether the optical signal misconnection comprises at least one of the following: the attribute information indicates that the first channel has N
  • the first subchannel is determined to be a partial subcarrier, wherein the N is a positive integer.
  • the node for transmitting the optical signal determines, by using the wavelength label and/or the attribute information, whether the site where the optical signal is dropped is the same as the destination site indicated by the attribute information, and if different, determining whether the fiber is connected or An error occurs in scheduling the spectrum; in the node for transmitting the optical signal, the node is generated according to at least one of the wavelength of the attribute information, the distribution of subcarriers, the modulation format of the optical channel, the subcarrier multiplexing mode, and the signal rate. Whether the configuration of the configuration is consistent with the configuration information delivered by the NMS. Network configuration information transfer from the error.
  • monitoring the ROADM optical network according to the wavelength label frequency includes: determining that the spectrum of the same frequency is scheduled to be in the same optical fiber in the case that the wavelength label frequency conflicts.
  • the method before the obtaining the wavelength label frequency carried in the optical signal, the method further includes: loading, by the one or more subcarriers in the same channel, the wavelength label frequency, wherein each sub-carrier in the same channel The carriers load the same wavelength label frequency, or different subcarriers located in the same channel respectively load different wavelength label frequencies.
  • the method further includes: combining the plurality of subcarriers after the plurality of subcarriers in the same channel are loaded with the wavelength label frequency, wherein different subcarriers located in the same channel are respectively loaded Different wavelength label frequencies; or combining the plurality of subcarriers before the plurality of subcarriers in the same channel are loaded with the wavelength label frequency.
  • the ROADM optical network is a flexible ROADM optical network.
  • a method for monitoring a ROADM optical network includes: loading a wavelength label frequency and attribute information of a channel for transmitting the optical signal in an optical signal; transmitting the wavelength label frequency and / or the above attribute information, wherein the wavelength label frequency and/or the attribute information are used to monitor the ROADM optical network.
  • the attribute information includes at least one of the following: a width of the channel, a location of the channel, whether the channel has a subcarrier, a distribution of subcarriers, a source address, a destination address, a modulation format, a subcarrier multiplexing manner, and a signal rate.
  • transmitting the wavelength label frequency and/or the attribute information includes: transmitting the wavelength label frequency and/or the attribute information by using the wavelength label channel.
  • an apparatus for monitoring a ROADM optical network includes: an acquiring unit configured to acquire a wavelength label frequency carried in an optical signal and/or an attribute of a channel for transmitting the optical signal The monitoring unit is configured to monitor the ROADM optical network according to the wavelength label frequency and/or the attribute information.
  • the attribute information includes at least one of the following: a width of the channel, a location of the channel, whether the channel has a subcarrier, a distribution of subcarriers, a source address, a destination address, a modulation format, a subcarrier multiplexing manner, and a signal rate.
  • the apparatus further includes: a transmitting unit configured to transmit the attribute information on the wavelength label channel before acquiring the wavelength label frequency in the optical signal and/or the attribute information of the channel transmitting the optical signal.
  • the monitoring unit includes at least one of the following: a first monitoring module, configured to determine whether an optical signal is misconnected on a path of the ROADM optical network according to the wavelength label frequency and/or the attribute information; and/or Determining whether the received network management configuration information is incorrect; the second monitoring module is configured to detect, according to the wavelength label frequency and/or the attribute information, the coherent receiver and the optical channel of the optical signal downlink in the place where the optical signal is dropped Whether to match; and/or detecting whether the modulation format of the transmitting end matches the demodulation mode in the received network management configuration information; and the third monitoring module is configured to generate an optical network configuration according to the wavelength label frequency and/or the attribute information The configuration is compared with the configuration information sent by the NMS to determine whether the NMS information received by the node is abnormal.
  • a first monitoring module configured to determine whether an optical signal is misconnected on a path of the ROADM optical network according to the wavelength label frequency and/or the attribute information; and/or Determining whether the received network management configuration information is
  • an apparatus for monitoring a ROADM optical network includes: a loading unit configured to load a wavelength label frequency and attribute information of a channel for transmitting the optical signal in an optical signal; The unit is configured to send the foregoing wavelength label frequency and/or the attribute information, wherein the wavelength label frequency and/or the attribute information is used to monitor the ROADM optical network.
  • the attribute information includes at least one of the following: a width of the channel, a location of the channel, whether the channel has a subcarrier, a distribution of subcarriers, a source address, a destination address, a modulation format, a subcarrier multiplexing manner, and a signal rate.
  • the transmitting unit is configured to transmit the wavelength label frequency and/or the attribute information by using a wavelength label channel.
  • a system for monitoring a ROADM optical network including: the foregoing device for monitoring a ROADM optical network and the foregoing device for monitoring a ROADM optical network.
  • the wavelength label frequency information and the attribute information of the channel are used to realize the identification of the optical channel, thereby implementing monitoring of the ROADM optical network.
  • Figure 1 is a schematic diagram of a spectrum of a 50 GHz fixed grid network and a flexible grid network
  • Figure 2 is a preferred flow chart of a method for monitoring a ROADM optical network according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a spectrum of a 50 GHz fixed grid network and a flexible grid network
  • Figure 2 is a preferred flow chart of a method for monitoring a ROADM optical network according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram of a spectrum of a 50 GHz fixed grid network and a flexible grid network
  • Figure 2 is a preferred flow chart of a method for monitoring a ROADM optical network according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram of a spectrum of a 50 GHz fixed grid network and a flexible grid network
  • Figure 2 is a preferred flow chart of a method for monitoring a ROADM optical network according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram of a spectrum of
  • FIG. 4 is a block diagram showing a preferred structure of an apparatus for monitoring a ROADM optical network according to an embodiment of the present invention. Another preferred block diagram of an apparatus for monitoring a ROADM optical network in accordance with an embodiment of the present invention;
  • FIG. 6 is a preferred schematic diagram of a fiber optic connection diagnostic system of a Flex ROADM system in accordance with an embodiment of the present invention;
  • FIG. 8 is a schematic diagram of a transmitting end according to an embodiment of the present invention;
  • FIG. 9 is another schematic diagram of a transmitting end according to an embodiment of the present invention;
  • FIG. 8 is a schematic diagram of a transmitting end of a node in a Flex ROADM system;
  • FIG. 10 is a preferred schematic illustration of a monitoring end in accordance with an embodiment of the present invention
  • Figure 11 is another preferred schematic view of a monitoring end in accordance with an embodiment of the present invention.
  • the method includes the following steps: Step S202: Acquire a wavelength label frequency carried by the optical signal and/or Or attribute information of a channel for transmitting the optical signal; Step S204: monitoring the ROADM optical network according to the wavelength label frequency and/or the attribute information.
  • the wavelength label frequency information and the attribute information of the channel are used to realize the identification of the optical channel, thereby implementing monitoring of the ROADM optical network.
  • the technical problem that the ROADM optical network cannot be effectively monitored in the related art is solved by the above method, and the technical effect of effective monitoring of the ROADM optical network is achieved.
  • the wavelength labeling technology is at the source end of the wavelength path. Before the wavelength signal enters the wavelength division network, the encoder is used for modulation and coding.
  • Each wavelength signal is attached with a unique identifier of the whole network, that is, the wavelength label.
  • the so-called wavelength label frequency is different.
  • the meaning of the wavelength corresponds to different frequencies due to different frequencies.
  • the wavelength label frequency of each wavelength passing through the reference point can be monitored and identified by the embedded wavelength label frequency detector.
  • the wavelength label frequency is loaded in the current time window when a bit or baud is transmitted 1, and the wavelength label frequency is not loaded when 0 is transmitted.
  • the source end when the source end is loaded, information such as frame check may be added through a certain coding mode, and at the receiving end, the wavelength transmitted by the source end may be detected according to the change of the amplitude of each wavelength label frequency in the time window.
  • Label Information may include, but is not limited to, at least one of the following: a width of the channel, a location of the channel, whether the channel has a subcarrier, a distribution of subcarriers, a source address, a destination address, a modulation format, and a sub Carrier multiplexing mode, signal rate.
  • the attribute information is communicated through the wavelength label channel.
  • Profit The identification of the optical channel and photon carrier properties is realized by the wavelength tag frequency, and the transmission and reception of the optical channel in the optical network is realized by the transmission and reception of the wavelength channel information.
  • the monitoring of the optical network in the above manner mainly has two aspects of monitoring: 1) monitoring on each scheduling path, and 2) performing matching monitoring of the coherent receiver when the optical signal is down.
  • the monitoring of the foregoing two aspects may be: monitoring 1) determining, according to the wavelength label frequency and/or attribute information, whether an optical signal is misconnected on the path of the ROADM optical network; and/or determining whether the configuration information transmitted by the network management is Error; and/or monitoring 2) detecting, based on the wavelength label frequency and/or attribute information, whether the optical channel of the coherent receiver and the optical signal is matched in the vicinity of the optical signal; and/or detecting the modulation format and subcarrier of the transmitting end Whether at least one of the multiplexing mode and the signal rate matches the demodulation mode in the received network management configuration information.
  • the attribute information may be compared with the configuration information transmitted by the network management system to determine whether the network management information received by the node is abnormal.
  • monitoring 2 it can be implemented in the following preferred manner: detecting the wavelength label frequency of the optical signal, and analyzing at least the wavelength carried in the wavelength label frequency, the distribution of subcarriers, the subcarrier multiplexing mode, and the signal rate.
  • the wavelength label frequency determines whether or not the distribution of subcarriers and wavelengths by the wavelength label frequency, and then comparing the obtained subcarrier and wavelength distribution information and the attribute information obtained from the wavelength label channel with the spectrum emitted by the local laser to determine whether or not
  • the subcarrier multiplexing mode, the signal rate is compared with at least one of a demodulation mode, a subcarrier multiplexing mode, and a signal rate in the received network management configuration information.
  • the configuration information transmitted by the network management system is Errors; use these attribute information to determine whether the DSP algorithm received by the next channel (such as the nyqusit strong filter damage recovery algorithm) matches, so as to effectively detect the transmission and reception modulation mode and effectively monitor the network management information.
  • the above monitoring 1) it can be implemented in the following preferred manner: detecting the wavelength label frequency of the optical signal, analyzing the distribution of wavelengths and/or subcarriers carried in the wavelength label frequency; analyzing the wavelength and/or sub-wavelength The distribution of the carrier is compared with the attribute information to determine whether or not the optical signal is misconnected.
  • the result of the analysis is directly compared with the attribute information to see that the phase does not match to determine whether an optical signal misconnection has occurred.
  • the wavelength information, subcarrier of the above attribute information The configuration of the node, the modulation format of the optical channel, the subcarrier multiplexing mode, and the signal rate are the same as the configuration information sent by the NMS.
  • the configuration information may include the grid width and the filter shape configuration. If it is different, it is determined that the configuration information transmitted by the network management is incorrect; and/or the attribute information is used to determine whether the DSP algorithm received by the downlink (such as the nyqusit strong filtering damage recovery algorithm) matches.
  • the configuration requirement of the node and the network management according to at least one of the wavelength of the attribute information, the distribution of the subcarrier, the modulation format of the optical channel, the subcarrier multiplexing mode, and the signal rate Whether the configuration information sent is consistent.
  • the configuration information may include the grid width, the filter shape configuration, and the like. If they are different, the configuration information transmitted by the network management system is determined to be incorrect. Preferably, it is also possible to determine whether a misconnection or a collision is generated only by the wavelength tag frequency. In the case where the wavelength tag frequency conflicts, it can be determined that the spectrum of the same frequency is scheduled to be in the same fiber.
  • the method further includes: loading a wavelength label frequency on one or more subcarriers in the same channel in the optical signal.
  • each subcarrier located in the same channel can load the same wavelength label frequency, and different subcarriers located in the same channel can also load different wavelength label frequencies respectively.
  • the method further includes: performing multiplexing processing on the plurality of subcarriers, and the step of multiplexing processing may be performed before loading the wavelength label frequency or after loading the wavelength label frequency.
  • the combining is performed after loading the wavelength label frequency
  • different subcarriers located in the same channel can respectively load different wavelength label frequencies.
  • the present embodiment further provides a preferred method for monitoring a ROADM optical network, which is described from the transmitting end.
  • the method includes the following steps: Step S302: loading a wavelength label frequency and transmitting an optical signal in the optical signal. Attribute information of the channel; Step S304: Transmit wavelength label frequency and/or attribute information, where the wavelength label frequency and/or attribute information is used to monitor the ROADM optical network.
  • Step S302 and step S304 are performed before step S202, and steps S302 and S304 are performed at the loading end, and steps S202 to S204 are performed at the receiving end or the monitoring end.
  • the above attribute information includes but is not limited to at least one of the following: the width of the channel, the location of the channel, whether the channel has subcarriers, the distribution of subcarriers, the source address, the destination address, the modulation format, the subcarrier multiplexing mode, and the signal rate. .
  • the attribute information described above can be transmitted through a wavelength label channel.
  • the ROADM optical network may be a flexible ROADM optical network.
  • a device for monitoring the ROADM optical network is provided. The device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "unit” or “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and conceivable.
  • 4 is a block diagram of a preferred structure of an apparatus for monitoring a ROADM optical network according to an embodiment of the present invention.
  • the apparatus is located at a receiving end (or a monitoring end), as shown in FIG. 4, including: an obtaining unit 402 and Monitoring unit 404, the structure will be described below.
  • the obtaining unit 402 is configured to acquire the wavelength label frequency in the optical signal and/or the attribute information of the channel for transmitting the optical signal.
  • the monitoring unit 404 is coupled to the obtaining unit 402 and configured to light the ROADM according to the wavelength label frequency and/or the attribute information.
  • the network monitors.
  • the preferred embodiment further provides a device for monitoring the ROADM optical network of the reconfigurable add/drop multiplexer.
  • the device is located at the loading end (or the transmitting end).
  • the loading unit 502 is included. And is configured to load the wavelength label frequency and the attribute information of the channel for transmitting the optical signal in the optical signal;
  • the sending unit 504 is coupled to the loading unit 502, and is configured to send the wavelength label frequency and/or attribute information, where the wavelength label frequency and/or Or attribute information is used to monitor the ROADM optical network.
  • the transmitting unit 504 is further configured to transmit the wavelength label frequency and/or the attribute information through the wavelength label channel.
  • the monitoring unit includes: a first monitoring module, configured to determine, according to the wavelength label frequency and/or attribute information, whether an optical signal is misconnected on the path of the ROOA optical network; and/or determine that the network management is transmitted Whether the configuration information is incorrect; and/or, the second monitoring module is configured to detect, according to the wavelength label frequency and/or the attribute information, whether the optical channel of the coherent receiver and the optical signal is matched in the place where the optical signal is dropped; and Or detecting whether at least one of a modulation format, a subcarrier multiplexing mode, and a signal rate of the transmitting end matches a demodulation mode in the received network management configuration information.
  • the second monitoring module is further configured to process at least one of the following: detecting a wavelength label frequency of the optical signal, analyzing a distribution of wavelengths and/or subcarriers carried in the wavelength label frequency, and analyzing the attribute information and the analyzed The distribution of wavelengths and/or subcarriers is compared with the spectrum emitted by the local laser at the monitoring end to determine whether the local oscillator frequency of the coherent receiver at the monitoring end matches the spectrum of the downlink, and if not, the optical signal is determined.
  • a subcarrier scheduling error or a laser transmission optical signal error occurs during the transmission; at least one of the modulation mode, the subcarrier multiplexing mode, and the signal rate in the attribute information and the demodulation in the received network management configuration information Whether the mode is compared, if there is no match, the configuration information transmitted by the network management is incorrect; use these attribute information to determine whether the DSP algorithm received by the downlink (such as the nyqusit strong filtering damage recovery algorithm) matches, so as to implement the transmission and reception modulation mode. Effective detection and effective monitoring of network management information.
  • the first monitoring module is further configured to detect a wavelength label frequency of the optical signal, analyze a distribution of wavelengths and/or subcarriers carried in the wavelength label frequency, and analyze the analyzed wavelength and/or subcarrier distribution. Attribute information is compared to determine whether an optical signal is misconnected; and/or in the node for transmitting the optical signal, according to the wavelength of the attribute information, the distribution of subcarriers, the modulation format of the optical channel, the subcarrier multiplexing mode, At least one of the signal rates determines whether the configuration requirements of the local node are consistent with the configuration information sent by the network management system. If they are different, the configuration information transmitted by the network management system is determined to be incorrect.
  • the third monitoring module is configured to generate an optical network configuration requirement according to the wavelength label frequency and/or the attribute information, and compare with the configuration information sent by the network management to determine whether the network management information received by the node is abnormal.
  • the first monitoring module performs optical signal misconnection monitoring, there are mainly at least one of the following situations: 1) in the attribute information indicating that the first channel has N subcarriers in the optical signal, and the analyzed optical signal When the number of subcarriers located in the first channel is less than N, it is determined that the first channel loses part of the subcarriers, where N is a positive integer;
  • the optical signal When the optical signal is off the road, it is determined by the wavelength label and/or the attribute information whether the station where the optical signal is dropped is the same as the destination station indicated by the attribute information, and if it is different, the fiber connection or the scheduling of the spectrum is determined. An error occurred; 3) In the node of the optical signal transmission, the configuration requirement of the local node is generated according to the wavelength of the attribute information, the distribution of the subcarrier, the modulation format of the optical channel, the subcarrier multiplexing mode, and the signal rate. The configuration information is consistent. The configuration information may include the grid width, the filter shape configuration, and the like. If they are different, the configuration information transmitted by the network management system is determined to be incorrect.
  • the monitoring unit is further configured to determine that the spectrum of the same frequency is scheduled into the same fiber in the event of a collision of the wavelength label frequencies.
  • the loading unit 502 is further configured to load a wavelength label frequency into one or more subcarriers in the same channel in the optical signal, where each subcarrier located in the same channel loads the same wavelength label frequency, Alternatively, different subcarriers located in the same channel respectively load different wavelength label frequencies.
  • the apparatus further includes: a combining unit configured to combine the plurality of subcarriers, the combining unit may perform multiplexing before the loading unit loads the wavelength label frequency, or may load the wavelength in the loading unit. After the label frequency, the multiplex is performed.
  • a preferred system for monitoring a ROADM optical network including the foregoing device for monitoring a ROADM optical network at a loading end (or a transmitting end), and the foregoing being located at the receiving end (or monitoring) A device that monitors the ROADM optical network.
  • the monitoring method may be to add a wavelength label frequency to the channel, and determine whether the optical channel exists by detecting the presence of the wavelength label frequency on the line, and the transmission of the optical channel. path.
  • the low-frequency wavelength tag frequency can be analyzed by spectrum in the optical signal multiplexing section, and then the corresponding wavelength is obtained.
  • efficient detection of wavelength collisions can also be achieved using wavelength label frequencies.
  • the optical signal of one channel is not spectrally divided into different interfaces, and one or more subcarriers are not present, and the subcarriers are not spectrally present. Decentralized issues that require overall monitoring.
  • wavelength label frequencies For example: channel width
  • related attribute information of the optical channels or subcarriers for example: channel width
  • the location of the channel whether the channel has subcarriers, subcarrier distribution, source address, destination address, modulation format, subcarrier multiplexing mode, signal rate, etc.
  • the optical path can be diagnosed by detecting whether the optical channel or the subcarrier is complete, whether optical signal misconnection occurs (so-called optical signal misconnection can include errors such as fiber connection and spectral scheduling, etc.), or according to wavelength or subcarrier and Modulation
  • the configuration of the format is required to determine whether the configuration information delivered by the NMS matches (such as how the configuration information is required to be shaped for an optical channel), or whether the same error occurs and the local oscillator of the coherent receiver can be detected in the optical fiber.
  • the Flex ROADM-based optical channel has the characteristics of variable spectral width, sub-carriers, and sub-carriers may be discontinuous, and the wavelength label is loaded on the optical channel or the photo-subcarrier by increasing the wavelength label frequency, and The attribute information of the optical channel or the optical subcarrier is transmitted through the wavelength label channel, so that the optical channel or the subcarrier can be monitored on the optical path, and whether the optical signal is misconnected, whether the configuration information sent by the network management is incorrect, and whether the occurrence occurs
  • the coherent receiver's local oscillator spectrum does not match the optical path to be routed.
  • a diagnostic apparatus and method for optical signal misconnection in a preferred Flex ROADM system is proposed.
  • the apparatus and method are suitable for monitoring wavelengths or subcarriers in a high speed optical signal.
  • each subcarrier can be loaded with the wavelength label frequency of the same frequency as a whole, or a wavelength label frequency of a different frequency can be added to each subcarrier, or a wavelength label frequency of a different frequency can be added to the combination in the subcarrier.
  • the monitoring is performed on the scheduled paths of the optical layer ROADM to determine whether the scheduling of the subcarriers is correct, and whether the configuration information sent by the network management is incorrect.
  • the frequency of the local oscillator of the coherent receiver and the downlink are detected. Whether the spectrum or the frequency of each subcarrier matches, whether the modulation format and/or the subcarrier multiplexing mode and/or the signal rate match the demodulation mode corresponding to the demodulation end, thereby achieving diagnosis of the optical signal misconnection of the Flex ROADM. purpose.
  • the solution of the embodiment of the present invention will be specifically described below with reference to specific embodiments.
  • the sending end includes: a wavelength label loading unit and an information sending unit
  • the monitoring end includes: a wavelength label detecting unit, an information receiving unit, and an analyzing unit.
  • the information sending unit the information sent by the information sending unit is mainly used to characterize the channel of the optical signal, for example: the width of the channel and the position of the channel, whether the channel has subcarriers Subcarrier distribution, source node address, destination node address, modulation format, subcarrier multiplexing mode, signal rate, etc., and these attribute information can be transmitted through the wavelength label channel implemented by the wavelength label loading unit.
  • a certain channel that is, the above channel
  • a wavelength label frequency when a wavelength label frequency is applied to the subcarrier, a wavelength label frequency may be added, and a different wavelength label frequency may be added to each subcarrier
  • the wavelength label detecting unit is configured to determine a wavelength corresponding to the optical signal by analyzing a frequency of the wavelength label included in the optical signal
  • the information receiving unit is configured to receive the optical channel attribute information transmitted in the wavelength label channel; the analyzing unit, setting For the result of the detection by the receiving wavelength label detecting unit and the information received by the information receiving unit, comparing the wavelength of the optical signal or the distribution of the subcarriers, it is calculated whether the scheduling of each subcarrier in the ROADM system is correct, and the spectrum scheduling in the line Whether it is correct, and whether the configuration information sent by the network management system is incorrect; or whether the spectrum of the optical signal transmitted by the local oscillator laser matches, and at least one of the modulation format, the subcarrier multiplexing mode, and the signal rate is demodulated
  • each intermediate spectrum scheduling or downlink optical signal can be used to detect the wavelength label frequency of the optical spectrum and analyze the optical channel attribute information by using the optical wavelength or photon carrier corresponding to the wavelength label frequency.
  • the attribute information of the optical channel is compared to determine whether the optical signal is misconnected and whether the configuration information sent by the NMS is incorrect.
  • a Flex ROADM system including: a transmitting end and one or more monitoring ends
  • the preferred embodiment further provides a method for processing the same, including: at the transmitting end: selecting according to a wavelength or a center frequency of the subcarriers The corresponding wavelength label frequency loads the wavelength label onto the wavelength or subcarrier; the attribute information of the wavelength or subcarrier (for example: the width of the channel, the position of the channel, whether the channel has subcarriers, the distribution of subcarriers, the source address, the destination) Address, modulation format, subcarrier multiplexing mode, signal rate, etc.
  • misconnections mainly include: fiber connection error, spectrum scheduling error, etc.
  • wavelength label conflict is found through the wavelength label frequency, it is possible to diagnose an error in the scheduling of the fiber connection and the spectrum, thereby causing a partial spectrum of the same frequency to be dispatched into the same fiber to cause a collision; 3) If the wavelength label frequency and the channel attribute information are used, it is found that this channel is from one site to another destination site, but when the route is found to be not the destination site of the route, it can be diagnosed as An error occurred during the scheduling of the fiber connection and the spectrum to cause a channel to be lost;
  • the optical channel or subcarrier related attribute information is transmitted through the wavelength label channel by adding a corresponding wavelength label frequency to the optical channel or the subcarrier, and the optical channel or subcarrier is monitored on the line.
  • the embodiment of the invention is mainly based on a flexible grid wavelength division multiplexing system using wavelength label technology, which uses the wavelength label frequency to realize the identification of the optical channel and the photo subcarrier property, and cooperates with the transmission and reception of the wavelength channel information to realize the optical signal error in the Flex ROADM system. Diagnose and monitor the error of network management information transmission.
  • the wavelength label loading end loads the wavelength label signal in the optical signal, and transmits the related attribute information of the channel through the wavelength label channel; at the detecting end, the wavelength label detecting unit detects the wavelength label frequency, and judges The wavelength or subcarrier, and the information receiving unit receives the relevant attribute information of each optical channel in the optical signal, and combines the wavelength or the attribute information of the subcarrier and the optical channel to determine whether the fiber connection and the spectrum scheduling in the Flex ROADM are correct; This information is compared with the received network management configuration information to determine whether the network management information is correctly transmitted.
  • Figure 1 is a schematic diagram of a comparison of a fixed grid and a flexible grid.
  • the interval of adjacent channels carrying wavelengths of different rate services is fixed at 50 GHz, and each wavelength is allocated a fixed 50 GHz optical spectrum bandwidth resource.
  • each wavelength is allocated a fixed 50 GHz optical spectrum bandwidth resource.
  • the spectral width of a channel in a flexible grid network can be 12.5G, 25G, 50G, 75G, 100GHz, and the like.
  • Figure 6 is a system diagram of the fiber connection diagnosis of the Flex ROADM system, which includes two parts: the transmitting end and the monitoring end.
  • the transmitting end includes: a wavelength label loading unit and a channel information sending unit, where the former loads the wavelength label frequency of the optical channel or the subcarrier corresponding frequency on the optical channel or the photo subcarrier; the latter attributes related to the optical channel or the subcarrier Transmitted through a certain channel, preferably, the channel may be a wavelength label channel formed by a wavelength label.
  • the method includes: a wavelength label detecting unit, a channel information receiving unit, and an analyzing unit.
  • the wavelength label detecting unit detects the wavelength label frequency carried on the optical signal, analyzes the frequency component carried therein, and determines the optical channel or subcarrier component existing on the optical signal; the channel information receiving unit receives the optical channel attribute information through the wavelength label channel.
  • FIG. 7 is a connection diagram of a node's uplink and downlink and optical signal scheduling in a Flex ROADM system.
  • the multiplex section fiber includes a beam splitter, wherein the beam splitter splits the optical signal of the multiplex section into a part of the light for detecting the wavelength label.
  • FIG. 8 is an embodiment of a transmitting end, where an uplink optical channel includes four subcarriers, and after four subcarriers are first combined by a combiner, a wavelength label loading unit is used to simultaneously add an upper wavelength label to four subcarriers.
  • the frequency, the wavelength label loading unit loads the optical channel attribute information sent by the channel information sending unit onto the wavelength label channel.
  • the wavelength tag signal contains wavelength tag frequency and optical channel attribute information.
  • the frequency of the wavelength label may be the wavelength label frequency corresponding to the optical channel. In this case, it may be only one frequency. It may also be the wavelength label frequency corresponding to each subcarrier. In this case, only one frequency or multiple frequencies may be used.
  • FIG. 9 is another embodiment of the transmitting end, where the uplink optical channel includes 4 subcarriers, and the wavelength label loading unit first adds the upper wavelength label frequency to the 4 subcarriers, and the wavelength label loading unit sends the channel information sending unit. The transmitted optical channel attribute information is loaded onto each wavelength label channel, and then the four subcarriers are combined by the combiner.
  • Each wavelength label signal includes at least one wavelength label frequency, and the attribute information of the optical channel and the subcarrier is transmitted through a wavelength label channel formed by the wavelength label.
  • FIG. 10 is an embodiment of a monitoring end, wherein the optical signal to be detected has n ways, and each of the optical signals may include multiple optical channels.
  • the wavelength label detecting unit detects the wavelength label of the n optical signals, and detects the wavelength label frequency carried in each of the paths; and the information receiving unit receives the optical channel attribute information transmitted by the wavelength label forming the wavelength label channel.
  • the analyzing unit receives the result detected by the wavelength label detecting unit and the information received by the information receiving unit, compares the distribution of wavelengths or subcarriers in the n optical signals, and calculates whether the scheduling of each subcarrier in the ROADM system is correct and the spectrum in the line Whether the scheduling is correct and the network management configuration information is correct.
  • 11 is another embodiment of the monitoring end, wherein the wavelength label detecting unit performs detection of the wavelength label frequency on the optical signal of the downlink, and determines the wavelength of the light or the distribution of the photon carrier carried therein.
  • the information receiving unit receives the optical channel attribute information transmitted by the wavelength label forming the wavelength label channel.
  • the analyzing unit receives the result detected by the wavelength label detecting unit and the information received by the information receiving unit, and compares with the spectrum emitted by the local laser to determine whether the frequency of the local oscillator of the coherent receiver matches the spectrum of the downlink, thereby monitoring Whether subcarrier scheduling error occurs or the local oscillator laser sends an optical signal error; and whether the modulation mode of the transmitting end matches the local demodulation mode, and/or uses these attribute information to determine the DSP algorithm for downlink reception (such as nyqusit mode strong filter impairment) Whether the recovery algorithm) matches, so as to monitor whether the network management configuration information is correct.
  • the above-mentioned coherent receiver may be a receiving unit of a high speed service.
  • the diagnosis of the optical signal misconnection in the ROADM system and the monitoring of the network management information transmission error can be realized, that is, the monitoring of the correctness of the scheduling of each optical channel or subcarrier, and the downlink light can be realized.
  • software is also provided for performing the technical solutions described in the above embodiments and preferred embodiments.
  • a storage medium is provided, the software being stored, including but not limited to: an optical disk, a floppy disk, a hard disk, a rewritable memory, and the like.
  • the wavelength tag frequency information and the channel attribute information are used to realize the identification of the optical channel, thereby implementing monitoring of the ROADM optical network.
  • the technical problem that the ROADM optical network cannot be effectively monitored in the related art is solved by the above method, and the technical effect of effective monitoring of the ROADM optical network is achieved.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the computing device may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.
  • the method, device, and system for monitoring the optical network of the reconfigurable add/drop multiplexer provided by the embodiment of the present invention have the following beneficial effects: solving the problem that the ROADM optical network cannot be effectively monitored in the related art.
  • Technical problems have achieved the technical effect of effective monitoring of ROADM optical networks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种对ROADM光网络进行监测的方法、装置以及系统,其中,该方法包括:在发送端的光信号中加载波长标签频率和传输上述光信号的通道的属性信息;发送上述波长标签频率和/或上述属性信息;检测端接收上述光信号并获取光信号中的波长标签频率和/或传输上述光信号的通道的属性信息;根据上述波长标签频率和/或上述属性信息对ROADM(可重构分插复用器)光网络进行监测。本发明解决了相关技术中无法对ROADM光网络进行有效监测的技术问题,达到了对ROADM光网络的有效监测的技术效果。

Description

对 ROADM光网络进行监测的方法、 装置以及系统 技术领域 本发明涉及通信领域, 具体而言, 涉及一种对可重构分插复用器 (Reconfigurable Optical Add Drop Multiplexer, 简称为 ROADM) 光网络进行监测的方法、 装置以及系 统。 背景技术 可重构分插复用器(Reconfigurable Optical Add Drop Multiplexer,简称为 ROADM) 可以通过软件配置以实现通道波长的本地上下及直通, 增强了光网络业务传送的灵活 性。 现有的 ROADM系统具备 CDC功能, 即波长无关性、 方向无关性、 波长竞争无 关性 (Colorless、 Directionless、 Contentionless, 简称为 CDC)。 传统的波分复用系统 采用固定栅格技术, 通道栅格一般为 50GHz或 100GHz。 超 100G传送技术催生了灵 活栅格(gridless或 flexible grid)需求, 即通道栅格的宽度可变, 以适应不同调制码型、 不同速率的波分复用的传送需求。 ROADM的 CDC功能演进为 CDCG或 CDCF功能。 灵活栅格技术最早于 2011年 2月由国际电信联盟第 15研究组 (ITU-T SG15 )的 G.694.1 标准对其进行了初步标准化, 标准草案文稿内部版本为 V1.2, 规范频隙标称中心频率 为 193.1 + n x 0.00625, 其中 n为整数, 规范频宽为 12.5 GHz x m, 其中 m为正整数。 为了描述方便, 一般将具备灵活栅格技术的 ROADM系统简称为 Flex ROADM系统。 如图 1所示, 在固定栅格网络中, 承载不同速率业务的波长的相邻通道的间隔固定为 50 GHz或 100GHz, 同时每个波长分配固定 50 GHz或 100GHz的光频谱带宽资源。此 时承载不同业务速率的波长只需用 ITU-T G.694.1定义的 f=193.1+nxC.S的中心频率来 表示(C.S是 channel spacing的简称,用于表示相邻通道的固定间隔,其中, n为整数, nxC.S.代表了相对于 193.1 THZ的位移量)。 而对于灵活栅格的光网络, 可以根据实际 情况, 为高速的业务分配较多的频谱带宽资源, 对于较低的分配较少并且够用的光频 谱资源, 这种网络的带宽利用率会大为增加。 然而, 在高速的业务中, 一个通道中可 能包含有一个载波或多个子载波, 各子载波之间可能连续地分配在一段光谱上, 也可 能分散在非连续的光谱上。 如图 1所示, 其中一个频谱带宽为 8xl2.5GHz, 包括 4个 连续的子载波, 每个子载波为 25GHz谱宽。 再加上 ROADM系统中的 CDC复杂性, 导致高速业务光谱在 Flex ROADM系统中传输时, 容易出现如子载波丢失、 子载波分 配到错误的光路中、 子载波滤波不全或相互冲突等问题。 与传统的光网络不同, 超 100G时代的光传送网络不只是引入了灵活栅格技术, 还有多载波光传输技术和更强的相干 DSP 处理能力, 从而具备可配置 /编程特性, 而 可编程意味着可以根据需要而改变, 如系统的线路侧可根据不同的链路状态选择不同 的频谱效率和补偿算法, 而系统中的 ROADM节点中的波长选择器件根据不同的信号 谱宽和级联数量选择不同栅格宽度和滤波形状; 系统中的接收端根据不同的波特率和 调制格式选择相应的 DSP算法。这些配置信息由网管下发到系统的各节点, 当系统的 线路侧发送端根据链路状态由网管改变了调制格式、子载波复用方式等发送侧配置时, 相应地, 网管也需要改变链路中各 ROADM节点和接收端的配置。 ROADM光网络利 用网管对光网络上的所有节点进行配置, 尤其在超 100G应用中, 这些配置是可编程 的, 可能根据需要多次改变配置, 配置工作量增加, 配置出错概率较大, 但是现网中 这些配置信息本身是否错误以及在传递或转发过程中是否出现错误以及出现错误的位 置, 没有有效的判断方法或监测方法。 同时, 波分复用系统中为每个光通道或光波长加载一个调顶 (pilot tone) 信号, 可以实现多种特殊的应用, 对于调顶信号的应用在业界已经有一定的研究。 调顶信号 有时也叫低频微扰(low-frequency dither)信号, 在波长信号中加载的调顶信号对信道 的传输性能的影响几乎可以忽略不计。 相关技术中, 对调顶信号的研究主要有: 1 )在 基于光网络网元的传送网络层中, 利用调顶信号实现波分复用系统中故障管理所需的 波长通道的确认和功率管理; 2)例如在光传输系统的性能监测的方法和装置中提出一 种监测光放大器性能的方法, 即, 监测已知调制深度的调顶信号, 实现光放大器的信 号和噪声分量的预估; 3 )在多波长光网络的信号跟踪和性能监测中, 提出了一种波分 复用网络实现在线式波长路由跟踪的方案,即每个波长调制一个独一无二的调顶信号, 并通过频移键控方式进行数字信息的编码, 在光网络中的任意站点监测调顶信号, 从 而可以获知全网的波长路由信息。 然而, 上述这些应用一般都是针对固定栅格的 ROADM系统, 并不适用于针对灵活栅格以及子载波的监控。 针对上述的问题, 目前 尚未提出有效的解决方案。 发明内容 本发明实施例提供了一种对 ROADM光网络进行监测的方法、 装置以及系统, 以 至少解决相关技术中无法对 ROADM光网络进行有效监测的技术问题。 根据本发明实施例的一个方面, 提供了一种对 ROADM光网络进行监测的方法, 包括: 获取光信号中携带的波长标签频率和 /或传输上述光信号的通道的属性信息; 根 据上述波长标签频率和 /或上述属性信息对 ROADM光网络进行监测。 优选地, 上述属性信息包括以下至少之一: 通道的宽度、 通道的位置、 通道是否 带有子载波、 子载波的分布、 源地址、 目的地址、 调制格式、 子载波复用方式、 信号 速率。 优选地, 在获取上述波长标签频率和 /或上述属性信息之前, 上述方法还包括: 在 波长标签信道上传递上述属性信息。 优选地,根据上述波长标签频率和 /或上述属性信息对上述 ROADM光网络进行监 测包括以下至少之一: 根据上述波长标签频率和 /或上述属性信息, 判断在上述 ROADM光网络的路径上是否产生光信号错连; 根据上述波长标签频率和 /或上述属性 信息,在上述光信号下路的地方检测相干接收机和上述光信号下路的光通道是否匹配; 根据上述波长标签频率和 /或上述属性信息生成光网络配置要求, 并与网管下发的配置 信息进行对照, 判断本节点收到的网管信息是否异常。 优选地, 根据上述波长标签频率和上述属性信息, 在上述光信号下路的地方检测 相干接收机和上述光信号下路的光通道是否匹配包括: 对上述光信号的波长标签频率 进行检测, 分析出上述波长标签频率中携带的波长、 子载波的分布、 调制格式、 子载 波复用方式、 信号速率中的至少之一; 将上述属性信息和分析出的上述波长和 /或子载 波的分布, 与监测端本地的激光器发出的光谱进行对比, 以判断上述监测端的相干接 收机的本振频率与下路的频谱是否匹配, 如果不匹配, 则确定出在上述光信号传递的 过程中发生了子载波调度错误或上述激光器发送上述光信号错误; 和 /或, 将上述属性 信息和分析出的光通道调制格式、 子载波复用方式、 信号速率中的至少之一, 与监测 端本地收到网管传递过来的配置信息中的解调格式、 子载波复用方式、 信号速率中的 至少之一进行对比, 以判断发送端和接收端设置是否匹配, 如果不匹配, 则确定出网 管信息在传递过程中产生了错误或网管发送的配置信息错误。 优选地,根据上述波长标签频率和 /或上述属性信息,判断在上述 ROADM光网络 的路径上是否产生上述光信号错连包括: 对上述光信号的波长标签频率进行检测, 分 析出上述波长标签频率中携带的波长和 /或子载波的分布;将分析出的上述波长和 /或子 载波的分布与上述属性信息进行比较, 以判断是否产生上述光信号错连。 优选地,根据上述波长标签频率和 /或上述属性信息,判断在上述 ROADM光网络 的路径上网管配置信息传递是否错误包括: 对上述光信号的波长标签频率进行检测, 分析出上述波长标签频率中携带的波长、 子载波的分布、 光通道的调制格式、 子载波 复用方式、信号速率中的至少之一; 将分析出的上述属性信息生成本节点的配置要求, 将此配置要求与网管传递来的配置信息进行比较, 判断网管配置信息传递是否错误; 和 /或利用这些属性信息判断下路接收的 DSP算法等是否正确。 优选地, 将分析出的上述光波长和 /或光子载波的分布与上述属性信息进行比较, 以判断是否产生上述光信号错连包括以下至少之一: 在上述属性信息指示第一通道上 有 N个子载波在上述光信号中, 分析出的上述光信号中位于上述第一通道的子载波的 个数小于 N的情况下,确定出上述第一通道丢失部分子载波,其中,上述 N为正整数; 在上述光信号下路时, 通过上述波长标签和 /或上述属性信息确定出上述光信号下路的 站点与上述属性信息所指示的目的站点是否相同, 如果不同, 则确定出在光纤连接或 者对光谱的调度时出现错误; 在上述光信号传递的节点中,根据上述属性信息的波长、 子载波的分布、 光通道的调制格式、 子载波复用方式、 信号速率中的至少之一生成本 节点的配置要求与网管下发的配置信息是否一致, 如果不同, 则确定本节点收到网管 传递过来的配置信息错误。 优选地, 根据上述波长标签频率对上述 ROADM光网络进行监测包括: 在上述波 长标签频率出现冲突的情况下, 确定出同样频率的光谱被调度到了同一光纤中。 优选地, 在获取光信号中携带的波长标签频率之前, 上述方法还包括: 对上述光 信号中的位于同一通道的一个或多个子载波加载上述波长标签频率, 其中, 位于同一 通道内的各个子载波加载相同的波长标签频率, 或者, 位于同一通道内的不同子载波 分别加载不同的波长标签频率。 优选地, 上述方法还包括: 在对上述光信号中的位于同一通道多个子载波加载上 述波长标签频率之后, 对上述多个子载波进行合波, 其中, 位于同一通道内的不同子 载波分别加载了不同的波长标签频率; 或者在对上述光信号中的位于同一通道多个子 载波加载上述波长标签频率之前, 对上述多个子载波进行合波。 优选地, 上述 ROADM光网络是灵活 ROADM光网络。 根据本发明实施例的另一方面, 提供了一种对 ROADM光网络进行监测的方法, 包括: 在光信号中加载波长标签频率和传输上述光信号的通道的属性信息; 发送上述 波长标签频率和 /或上述属性信息,其中,上述波长标签频率和 /或上述属性信息用于对 ROADM光网络进行监测。 优选地, 上述属性信息包括以下至少之一: 通道的宽度、 通道的位置、 通道是否 带有子载波、 子载波的分布、 源地址、 目的地址、 调制格式、 子载波复用方式、 信号 速率。 优选地, 发送上述波长标签频率和 /或上述属性信息包括: 通过波长标签信道发送 上述波长标签频率和 /或上述属性信息。 根据本发明实施例的另一方面, 提供了一种对 ROADM光网络进行监测的装置, 包括: 获取单元, 设置为获取光信号中携带的波长标签频率和 /或传输上述光信号的通 道的属性信息; 监测单元, 设置为根据上述波长标签频率和 /或上述属性信息对 ROADM光网络进行监测。 优选地, 上述属性信息包括以下至少之一: 通道的宽度、 通道的位置、 通道是否 带有子载波、 子载波的分布、 源地址、 目的地址、 调制格式、 子载波复用方式、 信号 速率。 优选地, 上述装置还包括: 传递单元, 设置为在获取光信号中的波长标签频率和 / 或传输上述光信号的通道的属性信息之前, 在波长标签信道上传递上述属性信息。 优选地, 上述监测单元包括以下至少之一: 第一监测模块, 设置为根据上述波长 标签频率和 /或上述属性信息,判断在上述 ROADM光网络的路径上是否产生光信号错 连; 和 /或判断收到的网管配置信息是否错误; 第二监测模块, 设置为根据上述波长标 签频率和 /或上述属性信息, 在上述光信号下路的地方检测相干接收机和上述光信号下 路的光通道是否匹配; 和 /或检测发送端的调制格式与收到的网管配置信息中的解调方 式是否匹配; 第三监测模块, 设置为根据所述波长标签频率和 /或所述属性信息生成光 网络配置要求, 并与网管下发的配置信息进行对照, 判断本节点收到的网管信息是否 异常。 根据本发明实施例的另一方面, 提供了一种对 ROADM光网络进行监测的装置, 包括: 加载单元, 设置为在光信号中加载波长标签频率和传输上述光信号的通道的属 性信息; 发送单元, 设置为发送上述波长标签频率和 /或上述属性信息, 其中, 上述波 长标签频率和 /或上述属性信息用于对 ROADM光网络进行监测。 优选地, 上述属性信息包括以下至少之一: 通道的宽度、 通道的位置、 通道是否 带有子载波、 子载波的分布、 源地址、 目的地址、 调制格式、 子载波复用方式、 信号 速率。 优选地, 上述发送单元, 设置为通过波长标签信道发送上述波长标签频率和 /或上 述属性信息。 根据本发明实施例的另一方面, 提供了一种对 ROADM光网络进行监测的系统, 包括:上述的对 ROADM光网络进行监测的装置和上述的对 ROADM光网络进行监测 的装置。 在本发明实施例中, 利用波长标签频率信息和通道的属性信息以实现对光通道的 识别, 进而实现对 ROADM 光网络的监测。 通过上述方式解决了相关技术中无法对 ROADM光网络进行有效监测的技术问题, 达到了对 ROADM光网络的有效监测的技 术效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1是 50 GHz固定栅格网络与灵活栅格网络的频谱示意图; 图 2是根据本发明实施例的对 ROADM光网络进行监测的方法的一种优选流程 图; 图 3是根据本发明实施例的对 ROADM光网络进行监测的方法的另一种优选流程 图; 图 4是根据本发明实施例的对 ROADM光网络进行监测的装置的一种优选结构框 图; 图 5是根据本发明实施例的对 ROADM光网络进行监测的装置的另一种优选结构 框图; 图 6是根据本发明实施例的 Flex ROADM系统的光纤连接诊断系统的一种优选示 意图; 图 7是根据本发明实施例的在 Flex ROADM系统中某一个节点上下路和各向光信 号的连线图; 图 8是根据本发明实施例的发送端的一个优选示意图; 图 9是根据本发明实施例的发送端的另一个优选示意图; 图 10是根据本发明实施例的监测端的一个优选示意图; 图 11是根据本发明实施例的监测端的另一个优选示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 本发明实施例提供了一种优选的对 ROADM光网络进行监测的方法, 从监测端进 行描述, 如图 2所示, 该方法包括以下步骤: 步骤 S202: 获取光信号携带的波长标签频率和 /或传输光信号的通道的属性信息; 步骤 S204: 根据波长标签频率和 /或属性信息对 ROADM光网络进行监测。 在上述优选实施方式中, 利用波长标签频率信息和通道的属性信息以实现对光通 道的识别, 进而实现对 ROADM光网络的监测。 通过上述方式解决了相关技术中无法 对 ROADM光网络进行有效监测的技术问题,达到了对 ROADM光网络的有效监测的 技术效果。 波长标签技术就是在波长路径的源端, 在波长信号进入波分网络之前使用编码器 进行调制编码, 为每个波长信号附加一个全网唯一的标识, 即波长标签, 所谓的波长 标签频率就是不同波长的意思, 因不同的频率就对应着不同的频率。 在波长路径经过 的各个节点的各个参考点上, 都可以通过嵌入的波长标签频率检测器来监测和识别经 过该参考点的各个波长的波长标签频率。 通过波长标签信道传递波长标签频率时, 在 某一个比特或波特传递 1时, 在当前时间窗内加载波长标签频率, 而在传递 0时, 不 加载波长标签频率。 优选的, 在源端加载时, 可以经过一定的编码方式, 添加帧校验 等信息, 而在接收端, 可根据各波长标签频率在时间窗内的幅度的变化, 检测出源端 发送的波长标签信息。 在一个优选实施方式中, 上述属性信息可以包括但不限于以下至少之一: 通道的 宽度、 通道的位置、 通道是否带有子载波、 子载波的分布、 源地址、 目的地址、 调制 格式、 子载波复用方式、 信号速率。 为了使得属性信息可以较为简单地被解析出或者是使得属性信息可以和波长标签 频率被同时获取, 在一个优选实施方式中, 通过波长标签信道传递上述属性信息。 利 用波长标签频率实现光通道和光子载波属性的识别, 配合波长通道信息的收发, 实现 了对光网络中光信号错连的诊断和监测。 通过上述方式进行光网络的监测主要有两个方面的监测: 1 )在各个调度路径上进 行监测, 2)在光信号下路时进行相干接收机的匹配监测。 具体的, 上述两方面的监测 可以是: 监测 1 )根据波长标签频率和 /或属性信息, 判断在 ROADM光网络的路径上是否 产生光信号错连; 和 /或判断网管传递过来的配置信息是否错误; 和 /或 监测 2) 根据波长标签频率和 /或属性信息, 在光信号下路的地方检测相干接收机 和光信号下路的光通道是否匹配; 和 /或检测发送端的调制格式、 子载波复用方式、 信 号速率中的至少之一与收到的网管配置信息中的解调方式是否匹配。 另外, 还可以将这些属性信息与网管传递过来的配置信息进行对照, 判断本节点 收到的网管信息是否异常。 在上述监测 2) 中可以按照以下优选的方式实现: 对光信号的波长标签频率进行 检测, 分析出波长标签频率中携带的波长、 子载波的分布、 子载波复用方式、 信号速 率中的至少之一; 将属性信息和分析出的波长和 /或子载波的分布, 与监测端本地的激 光器发出的光谱进行对比, 以判断监测端的相干接收机的本振频率与下路的频谱是否 匹配, 如果不匹配, 则确定出在光信号传递的过程中发生了子载波调度错误或激光器 发送光信号错误。 即, 对通过波长标签频率确定子载波和波长的分布, 然后根据得到 的子载波和波长的分布信息以及从波长标签信道得到的属性信息与本地的激光器发出 的光谱进行比较,以最终确定是否会在下路的时候出现与相干接收机不匹配的情况下, 从而确定是否出现了子载波调度错误或者是发送光信号错误的问题, 以实现对光网络 的有效监测; 将上述属性信息中的调制方式、 子载波复用方式、 信号速率与收到的网 管配置信息中的解调方式、 子载波复用方式、 信号速率中的至少之一进行比较, 如果 不匹配, 则网管传递过来的配置信息有误; 利用这些属性信息判断下路接收的 DSP算 法(如 nyqusit方式强滤波损伤恢复算法)等是否匹配, 实现对收发调制方式的有效检 测和网管信息的有效监测。 在上述监测 1 ) 中可以按照以下优选的方式实现: 对光信号的波长标签频率进行 检测,分析出波长标签频率中携带的波长和 /或子载波的分布;将分析出的波长和 /或子 载波的分布与属性信息进行比较, 以判断是否产生光信号错连。 即, 通过对波长标签 频率的分析, 根据分析后的结果与属性信息直接进行比较看相不相符以确定是否产生 了光信号错连。 和 /或在上述光信号传递的节点中, 根据上述属性信息的波长、 子载波 的分布、 光通道的调制格式、 子载波复用方式、 信号速率中的至少之一生成本节点的 配置要求与网管下发的配置信息是否一致, 这些配置信息可能包括栅格宽度、 滤波器 形状配置等, 如果不同, 则确定网管传递过来的配置信息错误; 和 /或利用这些属性信 息判断下路接收的 DSP算法 (如 nyqusit方式强滤波损伤恢复算法) 等是否匹配。 可 以包括以下情况至少之一:
1 ) 在属性信息指示第一通道上有 N个子载波在光信号中, 分析出的光信号中位 于第一通道的子载波的个数小于 N的情况下, 则确定出第一通道丢失部分子载波, 其 中, N为正整数;
2) 在光信号下路时, 通过波长标签和 /或属性信息确定出光信号下路的站点与属 性信息所指示的目的站点是否相同, 如果不同, 则确定出在光纤连接或者对光谱的调 度时出现错误;
3 )在上述光信号传递的节点中, 根据上述属性信息的波长、 子载波的分布、 光通 道的调制格式、 子载波复用方式、 信号速率中的至少之一生成本节点的配置要求与网 管下发的配置信息是否一致, 这些配置信息可能包括栅格宽度、 滤波器形状配置等, 如果不同, 则确定网管传递过来的配置信息错误。 优选地, 还可以仅通过波长标签频率来确定是否产生错连或者是冲突, 在波长标 签频率出现冲突的情况下, 则可以确定出同样频率的光谱被调度到了同一光纤中。 在上述步骤 S202之前, 优选地, 还可以包括: 对光信号中的位于同一通道的一个 或多个子载波加载波长标签频率。 优选地, 位于同一通道内的各个子载波可以加载相 同的波长标签频率, 位于同一通道内的不同子载波也可以分别加载不同的波长标签频 率。 在一个优选实施方式中, 上述方法还包括: 对多个子载波进行合波处理, 对于合 波处理这个步骤可以在加载波长标签频率之前进行也可以在加载波长标签频率之后进 行。 优选地, 如果在加载波长标签频率之后进行合波, 则位于同一通道内的不同子载 波可以分别加载不同的波长标签频率。 本实施例还提供了一种优选的对 ROADM光网络进行监测的方法, 从发送端进行 描述, 如图 3所示, 包括以下步骤: 步骤 S302: 在光信号中加载波长标签频率和传输光信号的通道的属性信息; 步骤 S304: 发送波长标签频率和 /或属性信息, 其中, 波长标签频率和 /或属性信 息用于对 ROADM光网络进行监测。 优选地, 上述步骤 S302和步骤 S304在上述步骤 S202之前执行, 且步骤 S302和 步骤 S304在加载端执行, 步骤 S202至步骤 S204在接收端或监测端执行。 上述的属性信息包括但不限于以下至少之一: 通道的宽度、 通道的位置、 通道是 否带有子载波、 子载波的分布、 源地址、 目的地址、 调制格式、 子载波复用方式、 信 号速率。 优选地, 可以通过波长标签信道发送上述属性信息。 在上述各个优选实施方式中,上述的 ROADM光网络可以是灵活 ROADM光网络。 在本实施例中还提供了一种对 ROADM光网络进行监测的装置, 该装置用于实现 上述实施例及优选实施方式, 已经进行过说明的不再赘述。 如以下所使用的, 术语"单 元"或者"模块"可以实现预定功能的软件和 /或硬件的组合。 尽管以下实施例所描述的 装置较佳地以软件来实现, 但是硬件, 或者软件和硬件的组合的实现也是可能并被构 想的。 图 4是根据本发明实施例的对 ROADM光网络进行监测的装置的一种优选结构框 图, 优选地, 该装置位于接收端 (或者监测端), 如图 4 所示, 包括: 获取单元 402 和监测单元 404, 下面对该结构进行说明。 获取单元 402, 设置为获取光信号中的波长标签频率和 /或传输光信号的通道的属 性信息; 监测单元 404, 与获取单元 402耦合, 设置为根据波长标签频率和 /或属性信息对 ROADM光网络进行监测。 本优选实施例还提供了一种优选的对可重构分插复用器 ROADM光网络进行监测 的装置, 该装置位于加载端 (或者发送端), 如图 5所示, 包括: 加载单元 502, 设置 为在光信号中加载波长标签频率和传输光信号的通道的属性信息; 发送单元 504, 与 加载单元 502耦合, 设置为发送波长标签频率和 /或属性信息, 其中, 波长标签频率和 /或属性信息用于对 ROADM光网络进行监测。 在一个优选实施方式中, 上述发送单元 504还设置为通过波长标签信道发送波长 标签频率和 /或属性信息。 在一个优选实施方式中, 监测单元包括: 第一监测模块, 设置为根据波长标签频 率和 /或属性信息, 判断在 R0ADM光网络的路径上是否产生光信号错连; 和 /或判断 网管传递过来的配置信息是否错误; 和 /或, 第二监测模块, 设置为根据波长标签频率 和 /或属性信息, 在光信号下路的地方检测相干接收机和光信号下路的光通道是否匹 配; 和 /或检测发送端的调制格式、 子载波复用方式、 信号速率中的至少之一与收到的 网管配置信息中的解调方式是否匹配。 上述的第二监测模块还设置为处理以下至少之一: 对光信号的波长标签频率进行 检测, 分析出波长标签频率中携带的波长和 /或子载波的分布, 并将属性信息和分析出 的波长和 /或子载波的分布, 与监测端本地的激光器发出的光谱进行对比, 以判断监测 端的相干接收机的本振频率与下路的频谱是否匹配, 如果不匹配, 则确定出在光信号 传递的过程中发生了子载波调度错误或激光器发送光信号错误; 将上述属性信息中的 调制方式、 子载波复用方式、 信号速率中的至少之一与收到的网管配置信息中的解调 方式是否进行比较, 如果不匹配, 则网管传递过来的配置信息有误; 利用这些属性信 息判断下路接收的 DSP算法 (如 nyqusit方式强滤波损伤恢复算法) 等是否匹配, 以 实现对收发调制方式的有效检测和网管信息的有效监测。 上述的第一监测模块还设置为对光信号的波长标签频率进行检测, 分析出波长标 签频率中携带的波长和 /或子载波的分布;并将分析出的波长和 /或子载波的分布与属性 信息进行比较, 以判断是否产生光信号错连; 和 /或在上述光信号传递的节点中, 根据 上述属性信息的波长、 子载波的分布、 光通道的调制格式、 子载波复用方式、 信号速 率中的至少之一生成本节点的配置要求与网管下发的配置信息是否一致, 如果不同, 则确定网管传递过来的配置信息错误。 第三监测模块, 设置为根据波长标签频率和 /或属性信息生成光网络配置要求, 并 与网管下发的配置信息进行对照, 判断本节点收到的网管信息是否异常。 优选地, 上述第一监测模块进行光信号错连监测时, 主要有以下至少之一的情况: 1 ) 在属性信息指示第一通道上有 N个子载波在光信号中, 分析出的光信号中位 于第一通道的子载波的个数小于 N的情况下,确定出第一通道丢失部分子载波,其中, N为正整数;
2) 在光信号下路时, 通过波长标签和 /或属性信息确定出光信号下路的站点与属 性信息所指示的目的站点是否相同, 如果不同, 则确定出在光纤连接或者对光谱的调 度时出现错误; 3 )在光信号传递的节点中, 根据上述属性信息的波长、 子载波的分布、光通道的 调制格式、 子载波复用方式、 信号速率中的至少之一生成本节点的配置要求与网管下 发的配置信息是否一致, 这些配置信息可能包括栅格宽度、 滤波器形状配置等, 如果 不同, 则确定网管传递过来的配置信息错误。 和 /或利用这些属性信息判断下路接收的 DSP算法(如 nyqusit方式强滤波损伤恢复算法)等是否匹配, 如果不匹配, 则确定下 路节点的接收算法错误。 在一个优选实施方式中, 上述监测单元还设置为在波长标签频率出现冲突的情况 下, 确定出同样频率的光谱被调度到了同一光纤中。 在一个优选实施方式中, 上述加载单元 502还设置为对光信号中的位于同一通道 的一个或多个子载波加载波长标签频率, 其中, 位于同一通道内的各个子载波加载相 同的波长标签频率, 或者, 位于同一通道内的不同子载波分别加载不同的波长标签频 率。 在一个优选实施方式中, 上述装置还包括: 合波单元, 设置为对多个子载波进行 合波, 该合波单元可以在加载单元加载波长标签频率之前进行合波, 也可以在加载单 元加载波长标签频率之后进行合波。 在本实施例中还提供了一种优选的对 ROADM光网络进行监测的系统, 包括上述 的位于加载端 (或者发送端) 的对 ROADM光网络进行监测的装置, 和上述位于接收 端 (或者监测端) 的对 ROADM光网络进行监测的装置。 对于固定栅格的 ROADM系统中的光信号错连诊断, 其监控的方式可以是在通道 上添加波长标签频率, 在线路上通过检测波长标签频率是否存在进而判断光通道是否 存在, 以及光通道的传输路径。 通过在不同波长上添加不同的低频波长标签频率, 在 光信号复用段就能通过频谱分析出其中的低频波长标签频率, 进而得到其中对应的波 长。 而且, 利用波长标签频率也可以实现对波长冲突的有效检测。 然而, 对于固定栅 格系统并不会涉及到一个通道的光信号在光谱上被分割到不同的接口中, 也不会存现 一个或多个子载波的问题, 更不会出现子载波在光谱上分散而需要整体监控的问题。 为了适用于灵活栅格以及在灵活栅格系统中对子载波进行监控, 既需要在通道中 添加相应的波长标签频率, 还需要将光通道或子载波的相关的属性信息 (例如: 通道 的宽度、 通道的位置, 通道是否带有子载波, 子载波的分布、 源地址、 目的地址、 调 制格式、 子载波复用方式、 信号速率等信息) 通过波长标签信道进行传递。 这样, 在 线路上可以通过监控光通道或子载波是否完整来诊断是否发生光信号错连 (所谓的光 信号错连可以包括如光纤连接和光谱调度的错误等等),或者依据波长或子载波和调制 格式产生的配置要求判断网管下发的配置信息是否匹配 (如要求配置信息对某一个光 通道如何进行整形等);或在下路的光纤中可以检测出是否发生同样的错误以及相干接 收机本振光谱是否匹配, 或检测发送端的调制格式与下路节点收到的网管配置信息中 的解调方式是否匹配 (如源端采用 16QAM进行调制, 但网管发过来的配置信息要求 按照 QPSK进行解调)。 为了克服固定栅格 ROADM的弱点,基于 Flex ROADM的光信道具有光谱宽度不 定、 存在子载波且子载波可能不连续的特点, 通过上述增加波长标签频率对光通道或 光子载波进行波长标签加载,并通过波长标签信道传递光通道或光子载波的属性信息, 从而在光路径上可以监控光通道或子载波是否完整, 并诊断是否发生光信号错连, 是 否网管下发的配置信息错误, 以及是否发生相干接收机本振光谱与待下路的光通道不 匹配的错误。 本发明实施例中提出了一种优选的 Flex ROADM系统中光信号错连的诊断装置和 方法, 该装置和方法适用于对高速光信号中的波长或子载波进行监控。 在超 100G 的网络中, 各子载波可以整体加载同一个频率的波长标签频率, 也可 对各子载波分别添加不同频率的波长标签频率, 或者对子载波中的组合添加不同频率 的波长标签频率。 在光层 ROADM的各调度的路径上进行监测, 以判断子载波的调度 是否正确, 和网管下发的配置信息是否错误; 并在下路的地方, 检测相干接收机本振 的频率与下路的频谱或各子载波的频率是否匹配, 调制格式和 /或子载波复用方式和 / 或信号速率与解调端对应的解调方式是否匹配, 从而达到对 Flex ROADM的光信号错 连进行诊断的目的。 下面将结合具体的实施例对本发明实施例的方案进行具体的描述: 在 Flex ROADM系统中, 如图 6所示包含有一个发送端和一个或多个监测端。 其 中, 发送端包括: 波长标签加载单元和信息发送单元, 监测端包括: 波长标签检测单 元、 信息接收单元和分析单元。 下面对该结构进行具体描述: 信息发送单元, 该信息发送单元所发出的信息, 主要用于表征发送光信号的通道 的属性, 例如: 通道的宽度和通道的位置, 通道是否带有子载波, 子载波的分布、 源 节点地址、 目的节点地址、 调制格式、 子载波复用方式、 信号速率等, 这些属性信息 可以通过波长标签加载单元实现的波长标签信道进行传递。 如果某一个信道 (即上述 的通道) 中包含有多个子载波, 那么在对子载波加载波长标签频率时, 可添加一个波 长标签频率, 也可对每个子载波添加不同的波长标签频率; 波长标签检测单元, 设置为通过分析光信号中包含的波长标签的频率, 确定该光 信号所对应的波长; 信息接收单元, 设置为接收波长标签信道中传递的光通道属性信息; 分析单元, 设置为接收波长标签检测单元检测得到的结果和信息接收单元收到的 信息, 对比光信号的波长或子载波的分布, 统计出 ROADM系统中对各子载波的调度 是否正确, 以及线路中的光谱调度是否正确, 和网管下发的配置信息是否错误; 或者 是本振激光器发送光信号的光谱是否匹配, 调制格式、 子载波复用方式、 信号速率中 的至少之一与解调端对应的解调方式是否匹配。 在 Flex ROADM系统中, 每一个中间光谱调度或下路的光信号中, 都可通过分光 检测其中的波长标签频率, 并分析光通道属性信息, 通过将波长标签频率对应的光波 长或光子载波与光通道的属性信息进行比较, 以判断光信号是否出现错连问题, 和网 管下发的配置信息是否错误。 基于上述包括: 一个发送端和一个或多个监测端的 Flex ROADM系统, 本优选实 施例还提供了一种对其进行处理的方法, 包括: 在发送端: 根据波长或子载波的中心频率, 选择对应的波长标签频率加载波长标 签到波长或子载波上; 将波长或子载波的属性信息(例如: 通道的宽度、通道的位置, 通道是否带有子载波, 子载波的分布、 源地址、 目的地址、 调制格式、 子载波复用方 式、 信号速率等) 通过波长标签信道进行发送; 在监测端: 检测光信号中携带的波长标签频率, 分析其中的波长或子载波; 通过 波长标签信道接收通道属性信息, 将上述的波长和子载波与通道属性信息进行比较, 以诊断出光信号是否错连 (所谓的错连主要包括: 光纤连接错误、 光谱的调度错误等 等), 和网管下发的配置信息是否错误。 诊断的方法可以有以下几种:
1 )如果通过通道的属性信息分析出某一个通道上有多个子载波应该出现在这一光 信号中, 然而, 在该光信号仅检测到部分的子载波, 则可以诊断为有部分子载波在光 纤连接和光谱的调度时出现错误, 从而导致某一光通道丢失了部分子载波;
2)如果通过波长标签频率, 发现存在波长标签冲突, 可诊断在光纤连接和光谱的 调度时出现错误,从而导致同样频率的部分光谱被调度到同一个光纤中而产生了冲突; 3 )如果通过波长标签频率和通道的属性信息,发现这一个通道是来自某一个站点, 去往另一个目的站点, 然而在下路时发现本站点不是其下路的目的站点, 则可诊断为 在光纤连接和光谱的调度时出现错误以导致丢失了某一通道;
4) 通过波长标签频率和通道属性信息, 以及发现的下路的波长或子载波的属性, 可以诊断相干接收机本振的频率与下路的频谱或各子载波的频率是否匹配;
5 )根据上述属性信息的波长、 子载波的分布、 光通道的调制格式、 子载波复用方 式、 信号速率中的至少之一生成本节点的配置要求与网管下发的配置信息是否一致, 如果不同, 则确定网管传递过来的配置信息错误;
6)根据上述属性信息中的调制方式与收到的网管配置信息中的解调方式是否进行 比较, 和 /或利用这些属性信息判断下路接收的 DSP算法 (如 nyqusit方式强滤波损伤 恢复算法) 等是否匹配, 如果不匹配, 则网管传递过来的配置信息有误, 以实现对收 发调制方式的有效检测和网管信息的有效监测。 在上述各个优选实施方式中,通过在光通道或子载波上添加相应的波长标签频率, 将光通道或子载波相关的属性信息通过波长标签信道进行传递, 并在线路上通过监控 光通道或子载波是否完整来诊断是否发生了光信号错连, 网管信息是否正确, 或在下 路的光纤中可以检测出是否发生同样的错误以及相干接收机本振光谱是否匹配, 解调 方式与调制方式是否匹配, 下路接收的 DSP 算法是否匹配。 从而解决了相关技术中 Flex ROADM系统的光信号错连、 网管信息传递错误的诊断问题, 使得可以有效实现 对固定栅格的光通道、 以及灵活栅格的光通道进行有效的监控。 本发明实施例主要基于使用波长标签技术的灵活栅格波分复用系统, 利用波长标 签频率实现光通道和光子载波属性的识别, 配合波长通道信息的收发, 以实现 Flex ROADM系统中光信号错连、 网管信息传递错误的诊断和监测。 主要的发明构思就是: 波长标签加载端在光信号中加载波长标签信号, 并将通道 的相关属性信息通过波长标签信道随路发送; 在检测端, 通过波长标签检测单元检测 波长标签频率, 判断其中的波长或子载波, 并通过信息接收单元接收光信号的中各光 通道的相关属性信息, 结合波长或子载波和光通道的属性信息, 判断 Flex ROADM中 的光纤连接和光谱调度是否正确; 并将这些信息与收到的网管配置信息进行对比, 判 断网管信息传递是否正确。 下面结合几个具体的应用对本发明上述实施例做进一步的详细说明。 图 1是固定栅格和灵活栅格进行对比的示意图。如图 1所示,在固定栅格网络中, 承载不同速率业务的波长的相邻通道的间隔固定为 50 GHz, 同时每个波长分配固定 50 GHz的光频谱带宽资源。 而对于灵活栅格的光网络, 可以根据实际情况, 为高速的 业务分配较多的频谱带宽资源, 为低速的业务分配较少的并且够用的光频谱资源, 这 样网络的带宽利用率会大为增加, 在灵活栅格网络中一个通道的光谱宽度可以是 12.5G、 25G、 50G、 75G、 100GHz等。 图 6是 Flex ROADM系统的光纤连接诊断的系统图, 其中包含有发送端和监测端 两个部分。 在发送端, 包括: 波长标签加载单元和通道信息发送单元, 前者在光通道 或光子载波上加载此光通道或子载波对应频率的波长标签频率; 后者将此光通道或子 载波相关的属性通过一定的信道发送出去, 优选地, 这个信道可以是波长标签形成的 波长标签信道。 在监测端, 包括: 波长标签检测单元、 通道信息接收单元和分析单元。 其中, 波 长标签检测单元检测光信号上携带的波长标签频率, 分析其中携带的频率成分, 以便 判断出光信号上存在的光信道或子载波成分; 通道信息接收单元通过波长标签信道接 收光信道属性信息, 分析其中应该存在的光信道或子载波; 分析单元接收波长标签检 测单元检测结果和通道信息接收单元接收到的信息, 通过对比波长标签检测得到的波 长信息和通道信息接收单元接收到的光信道属性信息, 分析 Flex ROADM中的光纤连 接和光谱调度是否正确, 网管配置信息是否正确。 图 7是 Flex ROADM系统中, 某一个节点上下路和各向光信号调度的连线图。 其 中, 复用段光纤上都包含有分光器, 其中, 分光器将复用段的光信号分出部分光做波 长标签的检测。 在图 7中, 共分出 6路光信号, 分别是 1、 2、 3、 4、 5、 6。 通过对这 6路的光信号的波长标签的分析, 即可得出其中的光信道或光谱的调度是否存在问题, 例如: 某个通道的部分光谱被调度到非正确的光纤中了。 图 8是发送端的一个实施例, 其中, 上行的光信道中包含有 4个子载波, 先将 4 个子载波通过合波器进行合波之后, 利用波长标签加载单元对 4个子载波同时添加上 波长标签频率, 同时波长标签加载单元将通道信息发送单元发送的光信道属性信息加 载到波长标签信道上。 这样, 波长标签信号包含有波长标签频率和光信道属性信息。 波长标签的频率, 可以是这个光信道对应的波长标签频率, 这时可以只是一个频率; 也可以是每个子载波对应的波长标签频率, 这时可以仅采用一个频率, 也可以采用多 个频率。 图 9是发送端的另一个实施例, 其中, 上行的光信道中包含有 4个子载波, 先利 用波长标签加载单元对 4个子载波分别添加上波长标签频率, 同时波长标签加载单元 将通道信息发送单元发送的光信道属性信息加载到各个波长标签信道上, 然后将 4个 子载波通过合波器进行合波。 每个波长标签信号分别包含有至少一个波长标签频率, 而光信道和子载波的属性信息通过波长标签形成的波长标签信道进行传递。 因为每个 子载波带有不同的波长标签频率, 因此在光线路中, 能通过波长标签频率监测子载波 的调度情况。 图 10是监测端的一个实施例, 其中, 待检测的光信号有 n路, 每一路光信号中, 可能包含有多个光信道。 波长标签检测单元对这 n路光信号进行波长标签的检测, 检 测其中每一路上携带的波长标签频率; 信息接收单元接收由波长标签形成波长标签信 道传递的光信道属性信息。 分析单元接收波长标签检测单元检测的结果和信息接收单 元收到的信息, 对比这 n路光信号中的波长或子载波的分布, 统计出 ROADM系统中 各子载波的调度是否正确以及线路中光谱调度是否正确, 网管配置信息是否正确。 图 11是监测端的另一个实施例,其中, 波长标签检测单元对下路的光信号进行波 长标签频率的检测, 判断其中携带的光波长或光子载波的分布。 信息接收单元接收由 波长标签形成波长标签信道传递的光信道属性信息。 分析单元接收波长标签检测单元 检测的结果和信息接收单元收到的信息, 与本地的激光器发出的光谱进行比对, 以判 断相干接收机本振的频率与下路的频谱是否匹配, 以此监测是否发生子载波调度错误 或本振激光器发送光信号错误; 以及发送端的调制方式与本地的解调方式是否匹配, 和 /或利用这些属性信息判断下路接收的 DSP算法 (如 nyqusit方式强滤波损伤恢复算 法) 等是否匹配, 以此监测网管配置信息是否正确。 优选的, 上述相干接收机可以是 高速业务的接收单元。 通过以上的装置和方法, 即可实现对 ROADM系统中光信号错连的诊断和网管信 息传递错误的监控, 即实现对各光通道或子载波的调度正确与否的监控, 以及对下路 光信号与相干接收机的本振激光器发送光信号是否匹配的监控, 和网管信息传递是否 错误的监控, 从而实现了对 ROADM网络的有效监控。 在另外一个实施例中, 还提供了一种软件, 该软件用于执行上述实施例及优选实 施方式中描述的技术方案。 在另外一个实施例中, 还提供了一种存储介质, 该存储介质中存储有上述软件, 该存储介质包括但不限于: 光盘、 软盘、 硬盘、 可擦写存储器等。 从以上的描述中, 可以看出, 本发明实现了如下技术效果: 利用波长标签频率信 息和通道的属性信息以实现对光通道的识别, 进而实现对 ROADM光网络的监测。 通 过上述方式解决了相关技术中无法对 ROADM光网络进行有效监测的技术问题, 达到 了对 ROADM光网络的有效监测的技术效果。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 综上可知,本发明实施例提供的一种对可重构分插复用器光网络进行监测的方法、 装置以及系统具有如下有益效果: 解决了相关技术中无法对 ROADM光网络进行有效 监测的技术问题, 达到了对 ROADM光网络的有效监测的技术效果。

Claims

权 利 要 求 书
1. 一种对可重构分插复用器 ROADM光网络进行监测的方法, 包括: 获取光信号中携带的波长标签频率和 /或传输所述光信号的通道的属性信 息;
根据所述波长标签频率和 /或所述属性信息对 ROADM光网络进行监测。
2. 根据权利要求 1所述的方法, 其中, 所述属性信息包括以下至少之一: 通道的 宽度、 通道的位置、 通道是否带有子载波、 子载波的分布、 源地址、 目的地址、 调制格式、 子载波复用方式、 信号速率。
3. 根据权利要求 1所述的方法, 其中, 在获取所述波长标签频率和 /或所述属性信 息之前, 所述方法还包括:
在波长标签信道上传递所述属性信息。
4. 根据权利要求 1所述的方法, 其中, 根据所述波长标签频率和 /或所述属性信息 对所述 ROADM光网络进行监测包括以下至少之一:
根据所述波长标签频率和 /或所述属性信息,判断在所述 ROADM光网络的 路径上是否产生光信号错连;
根据所述波长标签频率和 /或所述属性信息,在所述光信号下路的地方检测 相干接收机和所述光信号下路的光通道是否匹配;
根据所述波长标签频率和 /或所述属性信息生成光网络配置要求,并与网管 下发的配置信息进行对照, 判断本节点收到的网管信息是否异常。
5. 根据权利要求 4所述的方法, 其中, 根据所述波长标签频率和所述属性信息, 在所述光信号下路的地方检测相干接收机和所述光信号下路的光通道是否匹配 包括:
对所述光信号的波长标签频率进行检测, 分析出以下至少之一: 所述波长 标签频率中携带的波长、 子载波的分布、 调制格式、 子载波复用方式、 信号速 率;
将所述属性信息和分析出的所述波长和 /或子载波的分布,与监测端本地的 激光器发出的光谱进行对比, 以判断所述监测端的相干接收机的本振频率与下 路的频谱是否匹配, 如果不匹配, 则确定出在所述光信号传递的过程中发生了 子载波调度错误或所述激光器发送所述光信号错误; 和 /或, 将所述属性信息和 分析出的光通道调制格式、 子载波复用方式、 信号速率至少之一, 与监测端本 地收到网管传递过来的配置信息中对应的解调格式、 子载波复用方式、 信号速 率中至少之一进行对比, 以判断发送端和接收端设置是否匹配, 如果不匹配, 则确定出网管信息在传递过程中产生了错误或网管发送的配置信息错误。
6. 根据权利要求 4所述的方法,其中,根据所述波长标签频率和 /或所述属性信息, 判断在所述 ROADM光网络的路径上是否产生所述光信号错连包括:
对所述光信号的波长标签频率进行检测, 分析出所述波长标签频率中携带 的波长和 /或子载波的分布;
将分析出的所述波长和 /或子载波的分布与所述属性信息进行比较, 以判断 是否产生所述光信号错连。
7 根据权利要求 4所述的方法,其中,根据所述波长标签频率和 /或上述属性信息, 判断在上述 ROADM光网络的路径上网管配置信息传递是否错误包括:
对所述光信号的波长标签频率进行检测, 分析出以下至少之一: 上述波长 标签频率中携带的波长、子载波的分布、光通道的调制格式、子载波复用方式、 信号速率;
将分析出的上述属性信息生成本节点的配置要求, 将此配置要求与网管传 递来的配置信息进行比较, 判断网管配置信息传递是否错误; 和 /或利用这些属 性信息判断下路接收的 DSP算法等是否正确。
8. 根据权利要求 6所述的方法, 其中, 将分析出的所述光波长和 /或光子载波的分 布与所述属性信息进行比较, 以判断是否产生所述光信号错连包括以下至少之 在所述属性信息指示第一通道上有 N个子载波在所述光信号中, 分析出的 所述光信号中位于所述第一通道的子载波的个数小于 N的情况下,确定出所述 第一通道丢失部分子载波, 其中, 所述 N为正整数;
在所述光信号下路时,通过所述波长标签和 /或所述属性信息确定出所述光 信号下路的站点与所述属性信息所指示的目的站点是否相同, 如果不同, 则确 定出在光纤连接或者对光谱的调度时出现错误; 在所述光信号传递的节点中, 根据所述属性信息的波长、 子载波的分布、 光通道的调制格式、 子载波复用方式、 信号速率中的至少之一生成本节点的配 置要求与网管下发的配置信息是否一致, 如果不同, 则确定本节点收到网管传 递过来的配置信息错误。
9. 根据权利要求 1所述的方法, 其中, 根据所述波长标签频率对所述 ROADM光 网络进行监测包括: 在所述波长标签频率出现冲突的情况下, 确定出同样频率 的光谱被调度到了同一光纤中。
10. 根据权利要求 1所述的方法,其中,在获取光信号中携带的波长标签频率之前, 所述方法还包括:
对所述光信号中的位于同一通道的一个或多个子载波加载所述波长标签频 率, 其中, 位于同一通道内的各个子载波加载相同的波长标签频率, 或者, 位 于同一通道内的不同子载波分别加载不同的波长标签频率。
11. 根据权利要求 10所述的方法, 其中, 所述方法还包括: 在对所述光信号中的位于同一通道多个子载波加载所述波长标签频率之 后, 对所述多个子载波进行合波, 其中, 位于同一通道内的不同子载波分别加 载了不同的波长标签频率; 或者
在对所述光信号中的位于同一通道多个子载波加载所述波长标签频率之 前, 对所述多个子载波进行合波。
12. 根据权利要求 1至 11中任一项所述的方法, 其中, 所述 ROADM光网络是灵 活 ROADM光网络。
13. 一种对可重构分插复用器 ROADM光网络进行监测的方法, 包括: 在光信号中加载波长标签频率和传输所述光信号的通道的属性信息; 发送所述波长标签频率和 /或所述属性信息, 其中, 所述波长标签频率和 / 或所述属性信息用于对 ROADM光网络进行监测。
14. 根据权利要求 13所述的方法, 其中, 所述属性信息包括以下至少之一: 通道的 宽度、 通道的位置、 通道是否带有子载波、 子载波的分布、 源地址、 目的地址、 调制格式、 子载波复用方式、 信号速率。
15. 根据权利要求 14所述的方法, 其中, 发送所述波长标签频率和 /或所述属性信 息包括: 通过波长标签信道发送所述波长标签频率和 /或所述属性信息。
16. 一种对可重构分插复用器 ROADM光网络进行监测的装置, 包括:
获取单元,设置为获取光信号中携带的波长标签频率和 /或传输所述光信号 的通道的属性信息;
监测单元,设置为根据所述波长标签频率和 /或所述属性信息对 ROADM光 网络进行监测。
17. 根据权利要求 16所述的装置, 其中, 所述属性信息包括以下至少之一: 通道的 宽度、 通道的位置、 通道是否带有子载波、 子载波的分布、 源地址、 目的地址、 调制格式、 子载波复用方式、 信号速率。
18. 根据权利要求 16所述的装置, 其中, 还包括:
传递单元,设置为在获取光信号中的波长标签频率和 /或传输所述光信号的 通道的属性信息之前, 在波长标签信道上传递所述属性信息。
19. 根据权利要求 18所述的装置, 其中, 所述监测单元包括以下至少之一:
第一监测模块, 设置为根据所述波长标签频率和 /或所述属性信息, 判断在 所述 ROADM光网络的路径上是否产生光信号错连;
第二监测模块, 设置为根据所述波长标签频率和 /或所述属性信息, 在所述 光信号下路的地方检测相干接收机和所述光信号下路的光通道是否匹配;
第三监测模块,设置为根据所述波长标签频率和 /或所述属性信息生成光网 络配置要求, 并与网管下发的配置信息进行对照, 判断本节点收到的网管信息 是否异常。
20. 一种对可重构分插复用器 ROADM光网络进行监测的装置, 包括:
加载单元, 设置为在光信号中加载波长标签频率和传输所述光信号的通道 的属性信息;
发送单元, 设置为发送所述波长标签频率和 /或所述属性信息, 其中, 所述 波长标签频率和 /或所述属性信息用于对 ROADM光网络进行监测。
21. 根据权利要求 20所述的装置, 其中, 所述属性信息包括以下至少之一: 通道的 宽度、 通道的位置、 通道是否带有子载波、 子载波的分布、 源地址、 目的地址、 调制格式、 子载波复用方式、 信号速率。
22. 根据权利要求 20所述的装置, 其中, 所述发送单元, 设置为通过波长标签信道 发送所述波长标签频率和 /或所述属性信息。
23. 一种对可重构分插复用器 ROADM光网络进行监测的系统, 其中, 包括: 上述 权利要求 16至 19中任一项所述的对 ROADM光网络进行监测的装置和上述权 利要求 20至 22中任一项所述的对 ROADM光网络进行监测的装置。
PCT/CN2013/086000 2013-04-11 2013-10-25 对roadm光网络进行监测的方法、装置以及系统 WO2014166233A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/784,086 US9831945B2 (en) 2013-04-11 2013-10-25 Methods, apparatuses and system for monitoring ROADM optical network
JP2016506754A JP6200066B2 (ja) 2013-04-11 2013-10-25 Roadm光ネットワークにモニタリングを行う方法、装置及びシステム
EP13881898.4A EP2985928A4 (en) 2013-04-11 2013-10-25 ROADM OPTICAL NETWORK SURVEILLANCE METHOD, APPARATUS AND SYSTEM
KR1020157030141A KR101831042B1 (ko) 2013-04-11 2013-10-25 Roadm 광네트워크에 모니터링을 수행하는 방법, 장치 및 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310126295.2A CN104104431B (zh) 2013-04-11 2013-04-11 对roadm光网络进行监测的方法、装置以及系统
CN201310126295.2 2013-04-11

Publications (1)

Publication Number Publication Date
WO2014166233A1 true WO2014166233A1 (zh) 2014-10-16

Family

ID=51672271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086000 WO2014166233A1 (zh) 2013-04-11 2013-10-25 对roadm光网络进行监测的方法、装置以及系统

Country Status (6)

Country Link
US (1) US9831945B2 (zh)
EP (1) EP2985928A4 (zh)
JP (1) JP6200066B2 (zh)
KR (1) KR101831042B1 (zh)
CN (1) CN104104431B (zh)
WO (1) WO2014166233A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9819436B2 (en) 2013-08-26 2017-11-14 Coriant Operations, Inc. Intranodal ROADM fiber management apparatuses, systems, and methods
CN105606910A (zh) * 2014-11-21 2016-05-25 中兴通讯股份有限公司 光信噪比检测电路、装置及方法
CN106817162B (zh) * 2015-11-27 2019-07-30 中国移动通信集团公司 一种信号处理方法及源端设备
CN107517115B (zh) * 2016-06-16 2021-11-12 中兴通讯股份有限公司 一种业务站点上下路的业务调整方法及装置
CN108781113B (zh) * 2016-06-24 2020-03-20 华为技术有限公司 用于提供导频音的方法和装置
CN107332608B (zh) * 2017-05-27 2019-09-27 烽火通信科技股份有限公司 一种基于相干光通信的串波告警系统及方法
US10715410B2 (en) * 2018-07-18 2020-07-14 Google Llc Connectivity verification testing and topology discovery
US11265084B2 (en) 2018-12-20 2022-03-01 Acacia Communications, Inc. Flexible baud rate
CN111510241B (zh) * 2020-03-26 2022-06-03 武汉邮电科学研究院有限公司 基于频域微扰光标签dwdm光信道识别监控方法及系统
CN112100475B (zh) * 2020-08-14 2023-10-03 武汉光迅科技股份有限公司 一种roadm设备维护方法、装置及计算机存储介质
CN115529102A (zh) * 2021-06-25 2022-12-27 中兴通讯股份有限公司 一种多维站点内连纤关系确定方法及装置
CN113992277B (zh) * 2021-10-22 2023-09-22 安天科技集团股份有限公司 一种光信号中的数据传输检测方法、系统、设备及介质
CN113938185B (zh) * 2021-12-16 2022-03-22 北京中昱光通科技有限公司 一种基于roadm系统的olp光线路保护方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102316389A (zh) * 2010-07-09 2012-01-11 中兴通讯股份有限公司 在可重构型分插复用系统中确定波长冲突的方法及装置
CN102546517A (zh) * 2012-02-23 2012-07-04 中兴通讯股份有限公司 一种实现波长标签技术中的信息解调的方法及装置
CN102624479A (zh) * 2012-03-30 2012-08-01 中兴通讯股份有限公司 波长标签传输方法及装置
CN102710323A (zh) * 2012-05-11 2012-10-03 中兴通讯股份有限公司 一种波长标签冲突检测方法及装置及波长标签接收设备

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6574016B1 (en) * 1998-11-25 2003-06-03 Nortel Networks Limited Method and apparatus for ancillary data in a wavelength division multiplexed system
JPWO2006008786A1 (ja) * 2004-07-15 2008-05-01 三菱電機株式会社 波長可変光送受信装置
JP4176061B2 (ja) * 2004-08-03 2008-11-05 富士通株式会社 光ネットワークシステム
WO2006080050A1 (ja) 2005-01-25 2006-08-03 Fujitsu Limited ネットワーク管理装置、光分岐挿入ノードおよびネットワーク管理方法
JP4589158B2 (ja) * 2005-03-18 2010-12-01 富士通株式会社 フォトニックネットワークにおいて監視制御情報を転送するノード装置
FR2893718A1 (fr) * 2005-11-24 2007-05-25 Alcatel Sa Dispositif de commutation optique entre des lignes optiques amont et aval, a adjonction de signature de noeud pour le suivi des chemins optiques de connexion
BRPI0506285B1 (pt) * 2005-12-01 2020-09-29 Petroleo Brasileiro S.A. - Petrobras Junta telescópica com anel deslizante e selagem
JP4792365B2 (ja) * 2006-09-29 2011-10-12 富士通株式会社 光伝送装置およびその制御方法
CN101312376B (zh) * 2007-05-25 2011-01-19 华为技术有限公司 检测光网络中部件级联顺序的方法、设备和系统
CN101340238B (zh) * 2007-07-05 2011-11-02 华为技术有限公司 光口之间连接关系的确定方法及装置
US8249451B2 (en) * 2007-08-16 2012-08-21 Futurewei Technologies, Inc. Methods for characterizing optical switches and multiplexers/demultiplexers
JP2009206707A (ja) * 2008-02-27 2009-09-10 Nec Corp 光分岐挿入装置、光クロスコネクト装置、光クロスコネクトシステム、及び光クロスコネクト装置の制御方法
CN101621714B (zh) * 2008-06-30 2013-06-12 华为技术有限公司 节点、数据处理系统和数据处理方法
US8335154B2 (en) * 2008-07-30 2012-12-18 Verizon Patent And Licensing Inc. Method and system for providing fault detection and notification for composite transport groups
JP5011257B2 (ja) * 2008-10-16 2012-08-29 日本電信電話株式会社 パストレース方法及びノード装置
WO2011030897A1 (ja) * 2009-09-14 2011-03-17 日本電信電話株式会社 帯域可変通信方法、帯域可変通信装置、伝送帯域決定装置、伝送帯域決定方法、ノード装置、通信路設定システム、及び通信路設定方法
US8457490B2 (en) * 2010-03-26 2013-06-04 Cisco Technology, Inc. Use of subcarrier deactivation in a multi-subcarrier channel to improve reach in an optical network
CN101944966B (zh) * 2010-09-16 2015-06-03 中兴通讯股份有限公司 一种无源光网络中的波长分配方法及系统
JP5803164B2 (ja) * 2011-03-10 2015-11-04 富士通株式会社 光送信器
CN102195739B (zh) * 2011-05-23 2015-08-12 中兴通讯股份有限公司 一种光标签的实现方法和系统
JP5811631B2 (ja) * 2011-06-27 2015-11-11 富士通株式会社 重畳信号検出回路および光ノード装置
US9137590B2 (en) * 2011-11-14 2015-09-15 Infinera Corporation OSPFTE extension to support GMPLS for flexible grid
US8942557B2 (en) * 2012-03-05 2015-01-27 Infinera Corporation Super-channel optical parameters GMPLS signaling and routing extensions systems and methods
CN102946275B (zh) * 2012-10-29 2016-02-24 中兴通讯股份有限公司 一种实现高速dwdm系统中osnr监测的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102316389A (zh) * 2010-07-09 2012-01-11 中兴通讯股份有限公司 在可重构型分插复用系统中确定波长冲突的方法及装置
CN102546517A (zh) * 2012-02-23 2012-07-04 中兴通讯股份有限公司 一种实现波长标签技术中的信息解调的方法及装置
CN102624479A (zh) * 2012-03-30 2012-08-01 中兴通讯股份有限公司 波长标签传输方法及装置
CN102710323A (zh) * 2012-05-11 2012-10-03 中兴通讯股份有限公司 一种波长标签冲突检测方法及装置及波长标签接收设备

Also Published As

Publication number Publication date
EP2985928A1 (en) 2016-02-17
US9831945B2 (en) 2017-11-28
CN104104431A (zh) 2014-10-15
US20160065303A1 (en) 2016-03-03
CN104104431B (zh) 2018-12-28
JP6200066B2 (ja) 2017-09-20
KR101831042B1 (ko) 2018-02-21
JP2016521490A (ja) 2016-07-21
EP2985928A4 (en) 2016-04-20
KR20150143517A (ko) 2015-12-23

Similar Documents

Publication Publication Date Title
WO2014166233A1 (zh) 对roadm光网络进行监测的方法、装置以及系统
US10715888B2 (en) Systems and methods for managing excess optical capacity and margin in optical networks
US9882634B1 (en) Coordinated connection validation systems and methods among mated transceivers for verifying optical and data plane connectivity
US8964581B2 (en) Bandwidth variable communication method, bandwidth variable communication apparatus, transmission bandwidth determination apparatus, transmission bandwidth determination method, node apparatus, communication path setting system, communication path setting
US20150304743A1 (en) Operations administration and management service for an optical layer of a communication network
US8649683B2 (en) Light path characterization, traffic protection, and wavelength defragmentation
US8488963B2 (en) Link diversity and load balancing across digital and optical express-thru nodes
CN103931123B (zh) Wson复原
US20050244161A1 (en) Optical transmission system, optical transmission and reception apparatus, optical transmission apparatus, optical wavelength channel connection recognition control method and wavelength allocation apparatus
US8811820B2 (en) Optical port discovery in a WDM optical network
US20190007131A1 (en) Method and system to prevent false restoration and protection in optical networks
US9571375B2 (en) Method and node for detecting subframe sequence error in inverse multiplexing
US9768904B2 (en) Method and apparatus for allocating slots for transmission of data
US9444573B2 (en) Transmission device and optical transmission system
US20200059712A1 (en) Method and system to synchronize remote defect signaling and wavelength selective switch controls
US10797824B2 (en) Fast restoration using SDFEC defects in coherent optical networks
Muñoz et al. Adaptive software defined networking control of space division multiplexing super-channels exploiting the spatial-mode dimension
US20020097461A1 (en) Bi-directional wavelength switched ring optical protection switching protocol
JP3856128B2 (ja) 光伝送システム
Borkowski et al. Experimental demonstration of mixed formats and bit rates signal allocation for spectrum-flexible optical networking
EP2640086B1 (en) Method and node device for establishing optical cross connection
US9847847B2 (en) Method and device for managing optical channel overhead and optical signal receiving node
ES2754396T3 (es) Método, sistema y dispositivo de nodo para establecer una interconexión de longitud de onda
CN117856885A (zh) 一种运维方法、光通信设备以及光通信系统
JP4464238B2 (ja) 無線中継装置、無線中継方法、情報通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506754

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14784086

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013881898

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157030141

Country of ref document: KR

Kind code of ref document: A